[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2023243438A1 - Substrate treatment device and substrate treatment method - Google Patents

Substrate treatment device and substrate treatment method Download PDF

Info

Publication number
WO2023243438A1
WO2023243438A1 PCT/JP2023/020620 JP2023020620W WO2023243438A1 WO 2023243438 A1 WO2023243438 A1 WO 2023243438A1 JP 2023020620 W JP2023020620 W JP 2023020620W WO 2023243438 A1 WO2023243438 A1 WO 2023243438A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
unit
holding
wafer
difference
Prior art date
Application number
PCT/JP2023/020620
Other languages
French (fr)
Japanese (ja)
Inventor
洋 丸本
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Publication of WO2023243438A1 publication Critical patent/WO2023243438A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/304Mechanical treatment, e.g. grinding, polishing, cutting
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching

Definitions

  • the present disclosure provides a technique that can accurately detect the holding state of a substrate.
  • the holding state of the substrate can be detected with high accuracy.
  • FIG. 1 is a schematic diagram showing a schematic configuration of a substrate processing system according to an embodiment.
  • FIG. 2 is a schematic diagram showing an example of a specific configuration of the processing unit according to the embodiment.
  • FIG. 3 is a block diagram showing an example of the configuration of the control device according to the embodiment.
  • FIG. 4 is a diagram illustrating an example of periodic fluctuation data according to the embodiment.
  • FIG. 5 is a diagram for explaining the state of a wafer held by the substrate holding unit according to the embodiment.
  • FIG. 6 is a diagram illustrating an example of difference data according to the embodiment.
  • FIG. 7 is a flowchart illustrating an example of a control processing procedure executed by the substrate processing system according to the embodiment.
  • FIG. 1 is a schematic diagram showing a schematic configuration of a substrate processing system according to an embodiment.
  • FIG. 2 is a schematic diagram showing an example of a specific configuration of the processing unit according to the embodiment.
  • FIG. 3 is a block diagram showing an example of the configuration of the control device
  • FIG. 8 is a flowchart illustrating an example of the procedure of the holding abnormality detection process executed by the substrate processing system according to the embodiment.
  • FIG. 9 is a flowchart illustrating an example of the procedure of the temporal change detection process executed by the substrate processing system according to the embodiment.
  • FIG. 1 is a diagram showing a schematic configuration of a substrate processing system 1 according to an embodiment.
  • the substrate processing system 1 is an example of a substrate processing apparatus.
  • an X-axis, a Y-axis, and a Z-axis that are perpendicular to each other are defined, and the positive direction of the Z-axis is defined as a vertically upward direction.
  • the substrate processing system 1 includes a loading/unloading station 2 and a processing station 3.
  • the loading/unloading station 2 and the processing station 3 are provided adjacent to each other.
  • the loading/unloading station 2 includes a hoop placement section 11 and a transport section 12.
  • the processing station 3 is provided adjacent to the transport section 12.
  • the processing station 3 includes a transport section 15 and a plurality of processing units 16.
  • the plurality of processing units 16 are arranged side by side on both sides of the transport section 15 .
  • the wafer W carried into the processing unit 16 is processed by the processing unit 16, and then carried out from the processing unit 16 by the substrate transport device 17 and placed on the transfer section 14. Then, the processed wafer W placed on the transfer section 14 is returned to the hoop H of the hoop placement section 11 by the substrate transfer device 13.
  • FIG. 2 is a schematic diagram showing an example of a specific configuration of the processing unit 16.
  • the processing unit 16 includes a chamber 20, a substrate processing section 30, a liquid supply section 40, a collection cup 50, an optical sensor 60, and an imaging device 70.
  • the chamber 20 accommodates a substrate processing section 30, a liquid supply section 40, a collection cup 50, an optical sensor 60, and an imaging device 70.
  • a fan filter unit (FFU) 21 is provided on the ceiling of the chamber 20 . FFU 21 forms a downflow within chamber 20 .
  • the substrate processing unit 30 rotates the substrate holding unit 31 supported by the support unit 32 by rotating the support unit 32 using the drive unit 33, thereby rotating the wafer W held by the substrate holding unit 31. Rotate.
  • the substrate holding unit 31 is not limited to holding the substrate by the holding member 31a, and may hold the wafer W horizontally by suctioning the lower surface of the wafer W, for example.
  • the substrate holding section 31 may be an electrostatic chuck or the like.
  • the liquid supply unit 40 supplies processing fluid to the wafer W.
  • the liquid supply section 40 includes nozzles 41a and 41b, an arm 42 that horizontally supports the nozzles 41a and 41b, and a turning and lifting mechanism 43 that turns and raises and lowers the arm 42.
  • the nozzle 41a is connected to a processing liquid supply source 46a via a valve 44a and a flow rate regulator 45a.
  • the processing liquid supply source 46a is a tank that stores processing liquid.
  • Such a treatment liquid is used, for example, for liquid treatment of the wafer W (eg, etching treatment, cleaning treatment, etc.).
  • the nozzle 41b is connected to a DIW supply source 46b via a valve 44b and a flow regulator 45b.
  • the DIW supply source 46b is, for example, a tank that stores DIW (DeIonized Water). Such DIW is used for rinsing the wafer W, for example.
  • FIG. 3 is a block diagram showing an example of the configuration of the control device 4 according to the embodiment.
  • the control device 4 includes a control section 18 and a storage section 19.
  • control device 4 may include various functional units included in known computers, such as various input devices and audio output devices.
  • the control unit 18 is realized by, for example, a CPU, an MPU (Micro Processing Unit), a GPU (Graphics Processing Unit), etc., executing a program stored in the storage unit 19 using the RAM as a work area.
  • a CPU Central Processing Unit
  • MPU Micro Processing Unit
  • GPU Graphics Processing Unit
  • the control unit 18 includes a creation unit 18a, a calculation unit 18b, a determination unit 18c, an abnormality handling unit 18d, and a prediction unit 18e, and realizes or executes the functions and actions of the control processing described below.
  • the internal configuration of the control unit 18 is not limited to the configuration shown in FIG. 3, and may be any other configuration as long as it performs the control processing described below.
  • FIG. 4 is a diagram showing an example of periodic fluctuation data according to the embodiment.
  • the periodic fluctuation data according to the embodiment is a curve showing the transition of the intensity of reflected light over the entire circumference of the wafer W (that is, the rotation angle is in the range of 0 (deg) to 360 (deg)). It is expressed as
  • FIG. 4 actual values measured using a gauge, which is conventionally performed to confirm the holding state of the wafer W, are also shown.
  • the actual value measured with such a gauge is obtained by applying the gauge to the peripheral edge of the wafer W held in the substrate holder 31 and measuring the position in the height direction at the peripheral edge. This is data that measures changes in position.
  • the quality of the holding state of the wafer W is determined based on the actual value measured with this gauge. For example, if the variation in the height position of the peripheral edge of the wafer W is not within a given range, it can be determined that the wafer W is held poorly.
  • the optical sensor 60 installed inside the processing unit 16 is used to create periodic fluctuation data indicating changes in the intensity of reflected light over one circumference of the wafer W. As shown in FIG. 4, there is a high correlation between the actual values measured by the gauge in the conventional technology and the periodic fluctuation data of the present disclosure.
  • FIG. 5 is a diagram for explaining the state of the wafer W held by the substrate holding section 31 according to the embodiment.
  • periodic variation data that includes information about the presence or absence of a bend in the wafer W (in this case, the depression Wa) and the state of the bend, including the position information of the bend.
  • the creation unit 18a controls the substrate processing unit 30 and rotates the wafer W in a range of 1 (rpm) to 100 (rpm), while observing the change in the intensity of reflected light throughout one rotation of the wafer W. is preferably measured by the optical sensor 60. This makes it possible to reduce the influence of deflection of the wafer W caused by excessively increasing the number of rotations, and thus it is possible to create highly accurate periodic variation data.
  • the calculation unit 18b calculates the difference between the reference period fluctuation data stored in advance and the period fluctuation data created by the creation unit 18a.
  • This reference period fluctuation data is, for example, period fluctuation data created by the creation section 18a immediately after returning the substrate holding section 31 to a normal state (for example, immediately after replacing the substrate holding section 31 with a new one).
  • the difference between the reference periodic fluctuation data and the periodic fluctuation data calculated by the calculating section 18b is the difference in the holding state between the substrate holding section 31 in a normal state and the substrate holding section 31 at the time when the periodic fluctuation data was created. It shows.
  • the reference period variation data is stored in the reference period variation data storage section 19a of the storage section 19, for example.
  • the determination unit 18c determines that the holding state of the wafer W is not normal.
  • the holding state of the wafer W can be detected with high accuracy by determining whether the holding state of the wafer W is good or bad based on the periodic fluctuation data.
  • the difference in the holding state between the substrate holding section 31 in a normal state and the substrate holding section 31 at the time of measurement is evaluated by the difference between the reference periodic fluctuation data and the periodic fluctuation data, so that a plurality of processes can be performed.
  • the difference between devices for each unit 16 can be included in the determination of whether the holding state is good or bad.
  • the holding state of the wafer W can be detected with higher accuracy.
  • periodic fluctuation data created before substrate processing is performed on a certain wafer W is used as reference periodic fluctuation data when the calculation unit 18b performs calculation processing after substrate processing is performed on the same wafer W. It's okay.
  • the holding state of the wafer W can be detected with higher accuracy.
  • periodic variation data created for a certain wafer W before substrate processing is stored in the standard periodic variation data storage section 19a of the storage section 19 as reference periodic variation data for the wafer W.
  • the abnormality handling unit 18d executes various abnormality handling processes when the determining unit 18c determines that the holding state of the wafer W is not normal.
  • the abnormality handling process according to the embodiment is, for example, notifying the operator that the holding state of the wafer W in the processing unit 16 is not normal. This allows the operator to recognize the abnormal state of the substrate holding section 31.
  • the abnormality handling process according to the embodiment may include, for example, once returning the wafer W to the substrate transport device 17 (see FIG. 1) and holding it again in the substrate holding unit 31. Thereby, even if the abnormality in the holding state is temporary, the holding state of the target wafer W can be returned to normal.
  • the abnormality handling unit 18d may save the captured image of the wafer W during processing.
  • a captured image is, for example, a moving image, and is stored in the captured image storage section 19b of the storage section 19.
  • the determining unit 18c uses the periodic fluctuation data created before performing substrate processing on the target wafer W to be used as a reference period when the calculating unit 18b performs calculation processing after performing substrate processing on the same wafer W. It is good to use it as fluctuation data.
  • the abnormality handling unit 18d may associate the captured image during substrate processing stored in the captured image storage unit 19b as described above with log information indicating that an abnormal state has been reported for the same wafer W.
  • the calculation unit 18b calculates the difference between the reference period fluctuation data and the period fluctuation data for each of the plurality of wafers W successively carried into the processing unit 16, and calculates the maximum of the difference. Calculate the value as difference data.
  • the periodic fluctuation data created by the creation section 18a immediately after returning the substrate holding section 31 to a normal state (for example, immediately after replacing the board holding section 31 with a new one) is used as the reference periodic fluctuation data. It will be done. Then, this difference data is stored in the difference data storage section 19c of the storage section 19, and plotted as shown in FIG. 6, for example.
  • the prediction unit 18e predicts the holding state of the substrate holding unit 31 based on the temporal change of the difference data as shown in FIG.
  • the prediction unit 18e predicts the holding state of the substrate holding unit 31 by, for example, linear regression analysis.
  • the prediction unit 18e predicts that the holding state becomes abnormal at time T2, which is the intersection of the straight line L and the upper limit (or lower limit) of the maximum value of the difference that is considered to maintain the holding state well. , is predicted at time T1.
  • the holding state of the substrate holding section 31 can be predicted with high accuracy based on the temporal change of the difference data. Therefore, according to the embodiment, based on the obtained prediction, the operator can prepare parts such as the board holding part 31 in advance and plan maintenance.
  • the difference between the reference period fluctuation data and the period fluctuation data is calculated for each of the plurality of wafers W that are successively carried into the processing unit 16, and the average value of the differences is calculated as the difference data. good.
  • the prediction unit 18e may predict the holding state of the substrate holding unit 31 based on the change in the difference data over time. This also makes it possible to accurately predict the holding state of the substrate holder 31.
  • FIG. 6 shows an example in which the prediction unit 18e predicts the holding state of the substrate holding unit 31 by linear regression analysis
  • the present disclosure is not limited to such an example, and the prediction unit 18e predicts the holding state of the substrate holding unit 31 by using various analysis methods.
  • the holding state of the holding section 31 may be predicted.
  • the substrate processing apparatus (substrate processing system 1) according to the embodiment includes a substrate holding section 31, an optical sensor 60, and a control section 18.
  • the substrate holding unit 31 holds and rotates a substrate (wafer W) to be processed.
  • the optical sensor 60 irradiates light onto a rotating substrate (wafer W) held by the substrate holder 31 and receives reflected light.
  • the control section 18 controls each section. Further, the control unit 18 includes a creation unit 18a and a determination unit 18c.
  • the creation unit 18a irradiates the rotating substrate (wafer W) held by the substrate holding unit 31 with light from the optical sensor 60, and obtains changes in the intensity of reflected light during the period when the substrate (wafer W) is rotating. Create periodic fluctuation data.
  • the determining unit 18c determines whether the holding state of the substrate (wafer W) held by the substrate holding unit 31 is normal based on the periodic fluctuation data. Thereby, the holding state of the wafer W can be detected with high accuracy.
  • the control unit 18 includes a calculation unit 18b that calculates the difference between the reference period fluctuation data stored in advance and the period fluctuation data created by the creation unit 18a. , further has. Further, the determination unit 18c determines that the holding state of the substrate (wafer W) is normal when the difference is within a given range, and when the difference is not within the given range, the determination unit 18c determines that the holding state of the substrate (wafer W) is normal. It is determined that the holding state of the wafer W) is not normal. Thereby, the holding state of the wafer W can be detected with higher accuracy.
  • the reference period fluctuation data is set before the substrate (wafer W) held in the substrate holding part 31 is carried in. This is periodic fluctuation data created for another board. Thereby, reference period fluctuation data when the substrate holder 31 is normal can be obtained.
  • the creation unit 18a creates individual periodic fluctuation data each time a plurality of substrates (wafers W) are carried in one by one. Further, the calculation unit 18b calculates the maximum value of the difference among the plurality of substrates (wafers W) as difference data. Furthermore, the control unit 18 further includes a prediction unit 18e that predicts the holding state of the substrate holding unit 31 based on the change in the difference data over time. Thereby, the holding state of the substrate holding section 31 can be predicted with high accuracy.
  • the creation unit 18a creates individual periodic fluctuation data each time a plurality of substrates (wafers W) are carried in one by one. Further, the calculation unit 18b calculates the average value of the differences among the plurality of substrates (wafers W) as difference data. Furthermore, the control unit 18 further includes a prediction unit 18e that predicts the holding state of the substrate holding unit 31 based on the change in the difference data over time. Thereby, the holding state of the substrate holding section 31 can be predicted with high accuracy.
  • control unit 18 executes an abnormality response process when the determination unit 18c determines that the holding state of the substrate (wafer W) is not normal. It further includes a corresponding portion 18d. This allows the operator to recognize the abnormal state of the substrate holding section 31.
  • the substrate processing apparatus (substrate processing system 1) according to the embodiment further includes an imaging device 70 that images the substrate (wafer W) held by the substrate holding section 31.
  • the creation unit 18a creates periodic variation data of the substrate (wafer W) after processing.
  • the determination unit 18c determines that the holding state of the processed substrate (wafer W) is not normal, the abnormality handling unit 18d stores the captured image of the substrate during processing. This allows the operator to confirm the details of the malfunction again at a later date using the stored captured image.
  • FIG. 7 is a flowchart illustrating an example of a control processing procedure executed by the substrate processing system 1 according to the embodiment.
  • control unit 18 controls the substrate processing unit 30 and the like to rotate the wafer W at a given rotation speed, and controls the liquid supply unit 40 and the like to apply liquid onto the wafer W. Supply the processing liquid at a given supply rate.
  • control unit 18 performs a DIW rinsing process on the wafer W that has been subjected to the liquid treatment using the treatment liquid. Further, the control unit 18 performs a drying process such as spin drying on the wafer W after the rinsing process.
  • control unit 18 performs a holding abnormality detection process to detect an abnormality in the holding state of the wafer W held by the substrate holding unit 31 (step S105), and ends the series of control processes.
  • FIG. 8 is a flowchart illustrating an example of the procedure of the holding abnormality detection process executed by the substrate processing system 1 according to the embodiment.
  • control unit 18 rotates the wafer W at a predetermined rotation speed (for example, in the range of 1 (rpm) to 100 (rpm)) and illuminates the peripheral portion of the wafer W.
  • the sensor 60 measures it (step S201).
  • control unit 18 creates periodic fluctuation data of the wafer W based on the measurement results by the optical sensor 60 (step S202). Then, the control unit 18 calculates the difference between the reference cycle variation data stored in advance and the cycle variation data of the wafer W (step S203).
  • control unit 18 determines whether the calculated difference is within a given range (step S204). If the difference is within the given range (step S204, Yes), the control unit 18 considers that the holding state of the wafer W is normal, and ends the series of holding abnormality detection processing.
  • step S204 determines whether the difference is within the given range. If the difference is not within the given range (step S204, No), the control unit 18 considers that the holding state of the wafer W is not normal, and executes various abnormality handling processes (step S205).
  • control unit 18 determines whether the wafer W whose holding state is considered to be abnormal has been subjected to a given substrate treatment (step S206). Then, if the target wafer W has undergone a given substrate processing (step S206, Yes), the control unit 18 stores the captured image of the substrate processing of the wafer W performed immediately before in the storage unit 19. It is saved (step S207), and the series of retention abnormality detection processing is ended.
  • step S206, No if the target wafer W has not been subjected to the given substrate processing (step S206, No), the series of holding abnormality detection processing ends.
  • FIG. 9 is a flowchart illustrating an example of the procedure of the temporal change detection process executed by the substrate processing system 1 according to the embodiment.
  • control unit 18 calculates the maximum value or the average value of the difference between the pre-stored reference periodic variation data and the periodic variation data created in the above-mentioned temporal change detection process, and converts it into difference data. (Step S301).
  • control unit 18 plots the maximum value or average value of the difference between the reference periodic fluctuation data and the periodic fluctuation data in the XY space as shown in FIG. 6 (step S302). Then, the control unit 18 performs a linear regression analysis of the temporal change in the difference data in the XY space in which the maximum value or average value of the differences among the plurality of wafers W is plotted (step S303).
  • control unit 18 determines whether there is a significant difference in the slopes of the straight lines created by linear regression analysis (step S304). If it is determined that there is a significant difference in the slope of the straight line created by the linear regression analysis (step S304, Yes), the control unit 18 predicts the timing at which the maximum value or average value of the difference deviates from the allowable range. (Step S305).
  • control unit 18 notifies the worker of the predicted departure timing (step S306), and ends the series of temporal change detection processing. On the other hand, if it is determined that there is no significant difference in the slope of the straight line created by the linear regression analysis (step S304, No), the series of temporal change detection processing is ended.
  • the substrate processing method includes a holding step (step S101), a creating step (step S202), and a determining step (step S204).
  • the holding step (step S101) the substrate (wafer W) is held by the substrate holding section 31.
  • the step of creating (step S202) periodic variation data is created at least one of before and after processing the substrate (wafer W). Such periodic fluctuation data is based on the period during which a rotating substrate (wafer W) held by the substrate holder 31 is irradiated with light from the optical sensor 60 that irradiates light and receives reflected light, and the substrate (wafer W) is rotating. It is created by acquiring changes in the intensity of reflected light.
  • the determining step (step S204) it is determined whether the holding state of the substrate (wafer W) held by the substrate holding unit 31 is normal based on the periodic fluctuation data. Thereby, the holding state of the wafer W can be detected with high accuracy.
  • the substrate processing method further includes a step of calculating (step S203).
  • the calculating step (step S203) calculates the difference between the reference period fluctuation data stored in advance and the period fluctuation data created in the creating step (step S202). Further, in the determining step (step S204), if the difference is within a given range, it is determined that the holding state of the substrate (wafer W) is normal, and if the difference is not within the given range, it is determined that the holding state of the substrate (wafer W) is normal. It is determined that the holding state of the substrate (wafer W) is not normal. Thereby, the holding state of the wafer W can be detected with higher accuracy.
  • the substrate processing method according to the embodiment further includes a step (step S205) of performing abnormality handling processing when the determining step (step S204) determines that the holding state of the substrate (wafer W) is not normal. include. This allows the operator to recognize the abnormal state of the substrate holding section 31.
  • reference period fluctuation data, captured images, difference data, etc. are stored in the storage unit 19 provided in the control device 4 of the substrate processing system 1, but the present disclosure does not apply to such an example.
  • reference period variation data, captured images, difference data, etc. may be stored in another storage device connected to the control device 4 via a network.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)

Abstract

A substrate treatment device according to an aspect of the present disclosure is provided with: a substrate holding part (31); an optical sensor (60); and a control unit (18). The substrate holding part (31) holds and rotates a substrate to be treated. The optical sensor (60) irradiates the substrate that is held and rotated by the substrate holding part (31) with light and receives reflection light. The control unit (18) controls each part. In addition, the control unit (18) has a generation unit (18a) and a determination unit (18c). The generation unit (18a) causes the optical sensor (60) to irradiate the substrate that is held and rotated by the substrate holding part (31) with light and acquires changes in intensity of the reflection light in a time period during which the substrate is rotating, thus generating periodic fluctuation data. The determination unit (18c) determines whether or not the holding state of the substrate that is held by the substrate holding part (31) is normal on the basis of the periodic fluctuation data.

Description

基板処理装置および基板処理方法Substrate processing equipment and substrate processing method
 開示の実施形態は、基板処理装置および基板処理方法に関する。 The disclosed embodiments relate to a substrate processing apparatus and a substrate processing method.
 従来、半導体ウェハ(以下、ウェハとも呼称する。)などの基板を一枚ずつ処理する枚葉処理は、基板保持部において基板を保持した状態で回転させながら行われる(特許文献1参照)。 Conventionally, single-wafer processing in which substrates such as semiconductor wafers (hereinafter also referred to as wafers) are processed one by one is performed while rotating the substrate while holding it in a substrate holder (see Patent Document 1).
特許第5661022号公報Patent No. 5661022
 本開示は、基板の保持状態を精度よく検知することができる技術を提供する。 The present disclosure provides a technique that can accurately detect the holding state of a substrate.
 本開示の一態様による基板処理装置は、基板保持部と、光センサと、制御部と、を備える。基板保持部は、処理する基板を保持して回転させる。光センサは、前記基板保持部に保持され回転する前記基板に光を照射し反射光を受光する。制御部は、各部を制御する。また、前記制御部は、作成部と、判定部とを有する。作成部は、前記基板保持部に保持され回転する前記基板に前記光センサから光を照射し、前記基板が回転している期間の反射光の強度変化を取得して周期変動データを作成する。判定部は、前記周期変動データに基づいて、前記基板保持部に保持される前記基板の保持状態が正常であるか否かを判定する。 A substrate processing apparatus according to one aspect of the present disclosure includes a substrate holding section, an optical sensor, and a control section. The substrate holding section holds and rotates a substrate to be processed. The optical sensor irradiates the rotating substrate held by the substrate holder with light and receives reflected light. The control section controls each section. Further, the control section includes a creation section and a determination section. The creation unit irradiates light from the optical sensor to the rotating substrate held by the substrate holding unit, obtains changes in intensity of reflected light during a period when the substrate is rotating, and creates periodic fluctuation data. The determining unit determines whether or not the holding state of the substrate held by the substrate holding unit is normal based on the periodic fluctuation data.
 本開示によれば、基板の保持状態を精度よく検知することができる。 According to the present disclosure, the holding state of the substrate can be detected with high accuracy.
図1は、実施形態に係る基板処理システムの概略構成を示す模式図である。FIG. 1 is a schematic diagram showing a schematic configuration of a substrate processing system according to an embodiment. 図2は、実施形態に係る処理ユニットの具体的な構成の一例を示す模式図である。FIG. 2 is a schematic diagram showing an example of a specific configuration of the processing unit according to the embodiment. 図3は、実施形態に係る制御装置の構成の一例を示すブロック図である。FIG. 3 is a block diagram showing an example of the configuration of the control device according to the embodiment. 図4は、実施形態に係る周期変動データの一例を示す図である。FIG. 4 is a diagram illustrating an example of periodic fluctuation data according to the embodiment. 図5は、実施形態に係る基板保持部に保持されるウェハの状態を説明するための図である。FIG. 5 is a diagram for explaining the state of a wafer held by the substrate holding unit according to the embodiment. 図6は、実施形態に係る差分データの一例を示す図である。FIG. 6 is a diagram illustrating an example of difference data according to the embodiment. 図7は、実施形態に係る基板処理システムが実行する制御処理の手順の一例を示すフローチャートである。FIG. 7 is a flowchart illustrating an example of a control processing procedure executed by the substrate processing system according to the embodiment. 図8は、実施形態に係る基板処理システムが実行する保持異常検知処理の手順の一例を示すフローチャートである。FIG. 8 is a flowchart illustrating an example of the procedure of the holding abnormality detection process executed by the substrate processing system according to the embodiment. 図9は、実施形態に係る基板処理システムが実行する経時変化検知処理の手順の一例を示すフローチャートである。FIG. 9 is a flowchart illustrating an example of the procedure of the temporal change detection process executed by the substrate processing system according to the embodiment.
 以下、添付図面を参照して、本願の開示する基板処理装置および基板処理方法の実施形態を詳細に説明する。なお、以下に示す実施形態により本開示が限定されるものではない。また、図面は模式的なものであり、各要素の寸法の関係、各要素の比率などは、現実と異なる場合があることに留意する必要がある。さらに、図面の相互間においても、互いの寸法の関係や比率が異なる部分が含まれている場合がある。 Hereinafter, embodiments of a substrate processing apparatus and a substrate processing method disclosed in the present application will be described in detail with reference to the accompanying drawings. Note that the present disclosure is not limited to the embodiments described below. Furthermore, it should be noted that the drawings are schematic, and the dimensional relationship of each element, the ratio of each element, etc. may differ from reality. Furthermore, drawings may include portions with different dimensional relationships and ratios.
 従来、半導体ウェハ(以下、ウェハとも呼称する。)などの基板を一枚ずつ処理する枚葉処理は、基板保持部において基板を保持した状態で回転させながら行われる。そのため、十分に基板が保持されていない状態で基板処理が行われると、基板処理が十分にできなかったり、チャンバの内壁などに処理液が大きく飛び散るなどの不具合が生じる恐れがある。 Conventionally, single-wafer processing in which substrates such as semiconductor wafers (hereinafter also referred to as wafers) are processed one by one is performed while rotating the substrate while holding it in a substrate holder. Therefore, if the substrate is processed while the substrate is not being held sufficiently, there is a risk that the substrate may not be processed sufficiently or problems may occur, such as large amounts of processing liquid being splashed on the inner wall of the chamber or the like.
 かかる保持状態悪化の要因としては、たとえば、保持クランプまたはピンのパーツ不良または組み付け不良、保持クランプまたはピンの摩耗や熱変形などによる劣化、搬送アームポジションのセンタリング調整不良などが挙げられる。 Factors that may cause such deterioration of the holding condition include, for example, defective parts or poor assembly of the holding clamp or pin, deterioration due to wear or thermal deformation of the holding clamp or pin, and incorrect centering adjustment of the transport arm position.
 そこで、撮像手段を用いて保持された基板を撮像し、撮像画像と基準画像とを比較することで基板の保持状態を検知する技術が知られている。一方で、この従来技術では、基板の保持状態を精度よく検知するという点で更なる改善の余地があった。 Therefore, a technique is known in which the held state of the substrate is detected by capturing an image of the held substrate using an imaging means and comparing the captured image with a reference image. On the other hand, this conventional technique leaves room for further improvement in terms of accurately detecting the holding state of the substrate.
 そこで、上述の問題点を克服し、基板の保持状態を精度よく検知することができる技術の実現が期待されている。 Therefore, it is hoped that a technology that can overcome the above-mentioned problems and accurately detect the holding state of the substrate will be realized.
<基板処理システムの概要>
 最初に、図1を参照しながら、実施形態に係る基板処理システム1の概略構成について説明する。図1は、実施形態に係る基板処理システム1の概略構成を示す図である。かかる基板処理システム1は、基板処理装置の一例である。以下では、位置関係を明確にするために、互いに直交するX軸、Y軸およびZ軸を規定し、Z軸正方向を鉛直上向き方向とする。
<Summary of substrate processing system>
First, a schematic configuration of a substrate processing system 1 according to an embodiment will be described with reference to FIG. FIG. 1 is a diagram showing a schematic configuration of a substrate processing system 1 according to an embodiment. The substrate processing system 1 is an example of a substrate processing apparatus. In the following, in order to clarify the positional relationship, an X-axis, a Y-axis, and a Z-axis that are perpendicular to each other are defined, and the positive direction of the Z-axis is defined as a vertically upward direction.
 図1に示すように、基板処理システム1は、搬入出ステーション2と、処理ステーション3とを備える。搬入出ステーション2と処理ステーション3とは隣接して設けられる。 As shown in FIG. 1, the substrate processing system 1 includes a loading/unloading station 2 and a processing station 3. The loading/unloading station 2 and the processing station 3 are provided adjacent to each other.
 搬入出ステーション2は、フープ載置部11と、搬送部12とを備える。フープ載置部11には、複数枚の基板、実施形態では半導体ウェハW(以下、ウェハWと呼称する。)を水平状態で収容する複数のフープHが載置される。 The loading/unloading station 2 includes a hoop placement section 11 and a transport section 12. A plurality of hoops H that horizontally accommodate a plurality of substrates, in the embodiment semiconductor wafers W (hereinafter referred to as wafers W), are placed on the hoop mounting section 11 .
 搬送部12は、フープ載置部11に隣接して設けられ、内部に基板搬送装置13と、受渡部14とを備える。基板搬送装置13は、ウェハWを保持するウェハ保持機構を備える。また、基板搬送装置13は、水平方向および鉛直方向への移動ならびに鉛直軸を中心とする旋回が可能であり、ウェハ保持機構を用いてフープHと受渡部14との間でウェハWの搬送を行う。 The transport section 12 is provided adjacent to the hoop mounting section 11 and includes a substrate transport device 13 and a transfer section 14 inside. The substrate transfer device 13 includes a wafer holding mechanism that holds the wafer W. Further, the substrate transfer device 13 is capable of horizontal and vertical movement and rotation about a vertical axis, and uses a wafer holding mechanism to transfer the wafer W between the hoop H and the transfer section 14. conduct.
 処理ステーション3は、搬送部12に隣接して設けられる。処理ステーション3は、搬送部15と、複数の処理ユニット16とを備える。複数の処理ユニット16は、搬送部15の両側に並べて設けられる。 The processing station 3 is provided adjacent to the transport section 12. The processing station 3 includes a transport section 15 and a plurality of processing units 16. The plurality of processing units 16 are arranged side by side on both sides of the transport section 15 .
 搬送部15は、内部に基板搬送装置17を備える。基板搬送装置17は、ウェハWを保持するウェハ保持機構を備える。また、基板搬送装置17は、水平方向および鉛直方向への移動ならびに鉛直軸を中心とする旋回が可能であり、ウェハ保持機構を用いて受渡部14と処理ユニット16との間でウェハWの搬送を行う。 The transport section 15 includes a substrate transport device 17 inside. The substrate transfer device 17 includes a wafer holding mechanism that holds the wafer W. Further, the substrate transfer device 17 is capable of horizontal and vertical movement and rotation about a vertical axis, and is capable of transferring wafers W between the transfer section 14 and the processing unit 16 using a wafer holding mechanism. I do.
 処理ユニット16は、基板搬送装置17によって搬送されるウェハWに対して所定の基板処理を行う。 The processing unit 16 performs predetermined substrate processing on the wafer W transported by the substrate transport device 17.
 また、基板処理システム1は、制御装置4を備える。制御装置4は、たとえばコンピュータであり、制御部18と記憶部19とを備える。記憶部19には、基板処理システム1において実行される各種の処理を制御するプログラムが格納される。制御部18は、記憶部19に記憶されたプログラムを読み出して実行することによって基板処理システム1の動作を制御する。 The substrate processing system 1 also includes a control device 4. The control device 4 is, for example, a computer, and includes a control section 18 and a storage section 19. The storage unit 19 stores programs that control various processes executed in the substrate processing system 1. The control unit 18 controls the operation of the substrate processing system 1 by reading and executing a program stored in the storage unit 19 .
 なお、かかるプログラムは、コンピュータによって読み取り可能な記憶媒体に記録されていたものであって、その記憶媒体から制御装置4の記憶部19にインストールされたものであってもよい。コンピュータによって読み取り可能な記憶媒体としては、たとえばハードディスク(HD)、フレキシブルディスク(FD)、コンパクトディスク(CD)、マグネットオプティカルディスク(MO)、メモリカードなどがある。 Note that such a program may be one that has been recorded on a computer-readable storage medium, and may be one that is installed in the storage unit 19 of the control device 4 from the storage medium. Examples of computer-readable storage media include hard disks (HD), flexible disks (FD), compact disks (CD), magnetic optical disks (MO), and memory cards.
 上記のように構成された基板処理システム1では、まず、搬入出ステーション2の基板搬送装置13が、フープ載置部11に載置されたフープHからウェハWを取り出し、取り出したウェハWを受渡部14に載置する。受渡部14に載置されたウェハWは、処理ステーション3の基板搬送装置17によって受渡部14から取り出されて、処理ユニット16へ搬入される。 In the substrate processing system 1 configured as described above, first, the substrate transfer device 13 of the loading/unloading station 2 takes out a wafer W from the hoop H placed on the hoop placement section 11, and receives the taken out wafer W. Place it on Watabe 14. The wafer W placed on the transfer section 14 is taken out from the transfer section 14 by the substrate transport device 17 of the processing station 3 and carried into the processing unit 16.
 処理ユニット16へ搬入されたウェハWは、処理ユニット16によって処理された後、基板搬送装置17によって処理ユニット16から搬出されて、受渡部14に載置される。そして、受渡部14に載置された処理済のウェハWは、基板搬送装置13によってフープ載置部11のフープHへ戻される。 The wafer W carried into the processing unit 16 is processed by the processing unit 16, and then carried out from the processing unit 16 by the substrate transport device 17 and placed on the transfer section 14. Then, the processed wafer W placed on the transfer section 14 is returned to the hoop H of the hoop placement section 11 by the substrate transfer device 13.
<処理ユニットの構成>
 次に、実施形態に係る処理ユニット16の構成について、図2を参照しながら説明する。図2は、処理ユニット16の具体的な構成の一例を示す模式図である。図2に示すように、処理ユニット16は、チャンバ20と、基板処理部30と、液供給部40と、回収カップ50と、光センサ60と、撮像装置70とを備える。
<Processing unit configuration>
Next, the configuration of the processing unit 16 according to the embodiment will be described with reference to FIG. 2. FIG. 2 is a schematic diagram showing an example of a specific configuration of the processing unit 16. As shown in FIG. 2, the processing unit 16 includes a chamber 20, a substrate processing section 30, a liquid supply section 40, a collection cup 50, an optical sensor 60, and an imaging device 70.
 チャンバ20は、基板処理部30と、液供給部40と、回収カップ50と、光センサ60と、撮像装置70とを収容する。チャンバ20の天井部には、FFU(Fan Filter Unit)21が設けられる。FFU21は、チャンバ20内にダウンフローを形成する。 The chamber 20 accommodates a substrate processing section 30, a liquid supply section 40, a collection cup 50, an optical sensor 60, and an imaging device 70. A fan filter unit (FFU) 21 is provided on the ceiling of the chamber 20 . FFU 21 forms a downflow within chamber 20 .
 基板処理部30は、基板保持部31と、支柱部32と、駆動部33とを備え、載置されたウェハWに所与の基板処理を施す。基板保持部31は、ウェハWを水平に保持する。支柱部32は、鉛直方向に延在する部材であり、基端部が駆動部33によって回転可能に支持され、先端部において基板保持部31を水平に支持する。駆動部33は、支柱部32を鉛直軸まわりに回転させる。 The substrate processing section 30 includes a substrate holding section 31, a support section 32, and a driving section 33, and performs a given substrate processing on the mounted wafer W. The substrate holding section 31 holds the wafer W horizontally. The support column 32 is a member extending in the vertical direction, has a base end rotatably supported by a drive unit 33, and a distal end horizontally supports the substrate holding unit 31. The drive section 33 rotates the support section 32 around a vertical axis.
 かかる基板処理部30は、駆動部33を用いて支柱部32を回転させることによって支柱部32に支持された基板保持部31を回転させ、これにより、基板保持部31に保持されたウェハWを回転させる。 The substrate processing unit 30 rotates the substrate holding unit 31 supported by the support unit 32 by rotating the support unit 32 using the drive unit 33, thereby rotating the wafer W held by the substrate holding unit 31. Rotate.
 基板処理部30が備える基板保持部31の上面には、ウェハWを側面から保持する保持部材31aが設けられる。ウェハWは、かかる保持部材31aによって基板保持部31の上面からわずかに離間した状態で水平保持される。なお、ウェハWは、基板処理が行われる表面を上方に向けた状態で基板保持部31に保持される。 A holding member 31a that holds the wafer W from the side is provided on the upper surface of the substrate holding section 31 included in the substrate processing section 30. The wafer W is held horizontally by the holding member 31a while being slightly spaced apart from the upper surface of the substrate holding section 31. Note that the wafer W is held by the substrate holder 31 with the surface on which substrate processing is performed facing upward.
 なお、基板保持部31は、保持部材31aによって基板を保持する場合に限られず、たとえば、ウェハWの下面を吸着することにより、かかるウェハWを水平に保持してもよい。さらに、基板保持部31は、静電チャックなどであってもよい。 Note that the substrate holding unit 31 is not limited to holding the substrate by the holding member 31a, and may hold the wafer W horizontally by suctioning the lower surface of the wafer W, for example. Furthermore, the substrate holding section 31 may be an electrostatic chuck or the like.
 液供給部40は、ウェハWに対して処理流体を供給する。液供給部40は、ノズル41a、41bと、かかるノズル41a、41bを水平に支持するアーム42と、アーム42を旋回および昇降させる旋回昇降機構43とを備える。 The liquid supply unit 40 supplies processing fluid to the wafer W. The liquid supply section 40 includes nozzles 41a and 41b, an arm 42 that horizontally supports the nozzles 41a and 41b, and a turning and lifting mechanism 43 that turns and raises and lowers the arm 42.
 ノズル41aは、バルブ44aおよび流量調整器45aを介して処理液供給源46aに接続される。処理液供給源46aは、処理液を貯留するタンクである。かかる処理液は、たとえばウェハWの液処理(たとえば、エッチング処理や洗浄処理など)に用いられる。 The nozzle 41a is connected to a processing liquid supply source 46a via a valve 44a and a flow rate regulator 45a. The processing liquid supply source 46a is a tank that stores processing liquid. Such a treatment liquid is used, for example, for liquid treatment of the wafer W (eg, etching treatment, cleaning treatment, etc.).
 ノズル41bは、バルブ44bおよび流量調整器45bを介してDIW供給源46bに接続される。DIW供給源46bは、たとえば、DIW(DeIonized Water:脱イオン水)を貯留するタンクである。かかるDIWは、たとえばウェハWのリンス処理に用いられる。 The nozzle 41b is connected to a DIW supply source 46b via a valve 44b and a flow regulator 45b. The DIW supply source 46b is, for example, a tank that stores DIW (DeIonized Water). Such DIW is used for rinsing the wafer W, for example.
 なお、図2の例では、液供給部40が処理液およびリンス液(DIW)をウェハWに供給する例について示したが、本開示はかかる例に限られず、その他の薬液をウェハWに供給するように構成されてもよい。 Although the example in FIG. 2 shows an example in which the liquid supply unit 40 supplies the processing liquid and the rinsing liquid (DIW) to the wafer W, the present disclosure is not limited to such an example, and other chemical liquids may be supplied to the wafer W. It may be configured to do so.
 回収カップ50は、基板保持部31を取り囲むように配置され、基板保持部31の回転によってウェハWから飛散する処理液を捕集する。回収カップ50の底部には、排液口51が形成されており、回収カップ50によって捕集された処理液は、かかる排液口51から処理ユニット16の外部へ排出される。また、回収カップ50の底部には、FFU21から供給される気体を処理ユニット16の外部へ排出する排気口52が形成される。 The collection cup 50 is arranged to surround the substrate holding part 31 and collects the processing liquid scattered from the wafer W by the rotation of the substrate holding part 31. A drain port 51 is formed at the bottom of the recovery cup 50, and the processing liquid collected by the recovery cup 50 is discharged to the outside of the processing unit 16 from the drain port 51. Furthermore, an exhaust port 52 is formed at the bottom of the collection cup 50 to discharge the gas supplied from the FFU 21 to the outside of the processing unit 16.
 光センサ60は、基板保持部31に保持され回転するウェハWに光を照射するとともに、かかるウェハWからの反射光を受光する。光センサ60は、たとえば、ウェハWの周縁部の上方に配置され、ウェハWの周縁部に対して鉛直下向きに光を照射する。そして、光センサ60は、ウェハWの周縁部から反射する光を受光し、この反射光の強度を検出する。 The optical sensor 60 irradiates light onto the rotating wafer W held by the substrate holder 31 and receives reflected light from the wafer W. The optical sensor 60 is arranged, for example, above the peripheral edge of the wafer W, and irradiates the peripheral edge of the wafer W with light vertically downward. The optical sensor 60 receives light reflected from the peripheral edge of the wafer W, and detects the intensity of this reflected light.
 撮像装置70は、たとえばウェハWの上方に配置され、基板保持部31に保持されながら液供給部40からの処理流体によって処理されるウェハWの様子を撮像する。 The imaging device 70 is disposed above the wafer W, for example, and images the state of the wafer W being processed by the processing fluid from the liquid supply unit 40 while being held by the substrate holding unit 31.
<検知処理の詳細>
 次に、実施形態に係る検知処理の詳細について、図3~図6を参照しながら説明する。図3は、実施形態に係る制御装置4の構成の一例を示すブロック図である。図3に示すように、制御装置4は、制御部18と、記憶部19とを備える。
<Details of detection processing>
Next, details of the detection processing according to the embodiment will be explained with reference to FIGS. 3 to 6. FIG. 3 is a block diagram showing an example of the configuration of the control device 4 according to the embodiment. As shown in FIG. 3, the control device 4 includes a control section 18 and a storage section 19.
 また、制御装置4には、上述した基板処理部30と、液供給部40と、光センサ60と、撮像装置70とが接続される。なお、制御装置4は、図3に示す機能部以外にも、既知のコンピュータが有する各種の機能部、たとえば各種の入力デバイスや音声出力デバイスなどの機能部を有することとしてもかまわない。 Furthermore, the above-described substrate processing section 30, liquid supply section 40, optical sensor 60, and imaging device 70 are connected to the control device 4. In addition to the functional units shown in FIG. 3, the control device 4 may include various functional units included in known computers, such as various input devices and audio output devices.
 記憶部19は、たとえば、RAM、フラッシュメモリなどの半導体メモリ素子、ハードディスクや光ディスクなどの記憶装置によって実現される。記憶部19は、基準周期変動データ記憶部19aと、撮像画像記憶部19bと、差分データ記憶部19cとを有する。これらの記憶部についての詳細は後述する。また、記憶部19は、制御部18での各種処理に用いられる情報を記憶する。 The storage unit 19 is realized by, for example, a semiconductor memory element such as a RAM or a flash memory, or a storage device such as a hard disk or an optical disk. The storage unit 19 includes a reference period variation data storage unit 19a, a captured image storage unit 19b, and a difference data storage unit 19c. Details of these storage units will be described later. Furthermore, the storage unit 19 stores information used for various processes in the control unit 18.
 制御部18は、たとえば、CPU、MPU(Micro Processing Unit)、GPU(Graphics Processing Unit)などによって、記憶部19に記憶されているプログラムがRAMを作業領域として実行されることにより実現される。 The control unit 18 is realized by, for example, a CPU, an MPU (Micro Processing Unit), a GPU (Graphics Processing Unit), etc., executing a program stored in the storage unit 19 using the RAM as a work area.
 また、制御部18は、たとえば、ASIC(Application Specific Integrated Circuit)やFPGA(Field Programmable Gate Array)などの集積回路により実現されるようにしてもよい。 Furthermore, the control unit 18 may be realized by an integrated circuit such as an ASIC (Application Specific Integrated Circuit) or an FPGA (Field Programmable Gate Array).
 制御部18は、作成部18aと、算出部18bと、判定部18cと、異常対応部18dと、予測部18eとを有し、以下に説明する制御処理の機能や作用を実現または実行する。なお、制御部18の内部構成は、図3に示した構成に限られず、以降で説明する制御処理を行う構成であれば他の構成であってもよい。 The control unit 18 includes a creation unit 18a, a calculation unit 18b, a determination unit 18c, an abnormality handling unit 18d, and a prediction unit 18e, and realizes or executes the functions and actions of the control processing described below. Note that the internal configuration of the control unit 18 is not limited to the configuration shown in FIG. 3, and may be any other configuration as long as it performs the control processing described below.
 作成部18aは、基板保持部31に保持され回転するウェハWに光センサ60から光を照射し、ウェハWが回転している期間の反射光の強度変化を取得して周期変動データを作成する。かかる周期変動データの詳細について、図4を参照しながら説明する。 The creation unit 18a irradiates light from the optical sensor 60 to the rotating wafer W held by the substrate holding unit 31, obtains changes in the intensity of reflected light during the period when the wafer W is rotating, and creates periodic fluctuation data. . Details of such periodic fluctuation data will be explained with reference to FIG. 4.
 図4は、実施形態に係る周期変動データの一例を示す図である。図4に示すように、実施形態にかかる周期変動データは、ウェハWの1周全体(すなわち、回転角度が0(deg)~360(deg)の範囲)における反射光の強度の推移を示す曲線で表される。 FIG. 4 is a diagram showing an example of periodic fluctuation data according to the embodiment. As shown in FIG. 4, the periodic fluctuation data according to the embodiment is a curve showing the transition of the intensity of reflected light over the entire circumference of the wafer W (that is, the rotation angle is in the range of 0 (deg) to 360 (deg)). It is expressed as
 また、図4には、ウェハWの保持状態を確認するために従来行われている、ゲージでの実測値も並んで示している。かかるゲージでの実測値は、基板保持部31に保持されるウェハWの周縁部に対してゲージを当て、かかる周縁部における高さ方向の位置を測定して、ウェハWの1周全体における高さ位置の推移を測定したデータである。 Further, in FIG. 4, actual values measured using a gauge, which is conventionally performed to confirm the holding state of the wafer W, are also shown. The actual value measured with such a gauge is obtained by applying the gauge to the peripheral edge of the wafer W held in the substrate holder 31 and measuring the position in the height direction at the peripheral edge. This is data that measures changes in position.
 従来は、このゲージでの実測値に基づいて、ウェハWの保持状態の良否を判定している。たとえば、ウェハWにおける周縁部の高さ位置の変動が所与の範囲内でない場合に、ウェハWの保持状態が悪いと判定することができる。 Conventionally, the quality of the holding state of the wafer W is determined based on the actual value measured with this gauge. For example, if the variation in the height position of the peripheral edge of the wafer W is not within a given range, it can be determined that the wafer W is held poorly.
 一方で、この方法では、処理ユニット16を開放して、作業者が内部のウェハWにゲージを当てて作業する必要があるため、非常に手間がかかるとともに、ウェハWの処理中には測定することができない。 On the other hand, with this method, it is necessary to open the processing unit 16 and work by applying a gauge to the wafer W inside, which is very time-consuming and requires measurement while the wafer W is being processed. I can't.
 そこで、実施形態では、処理ユニット16の内部に設置された光センサ60を用いて、ウェハWの1周全体における反射光の強度変化を示す周期変動データを作成する。そして、図4に示すように、従来技術におけるゲージでの実測値と、本開示の周期変動データとは高い相関性が見られる。 Therefore, in the embodiment, the optical sensor 60 installed inside the processing unit 16 is used to create periodic fluctuation data indicating changes in the intensity of reflected light over one circumference of the wafer W. As shown in FIG. 4, there is a high correlation between the actual values measured by the gauge in the conventional technology and the periodic fluctuation data of the present disclosure.
 また、本開示では、かかる周期変動データによって、保持状態の悪化によって生じる微小なウェハWの撓みを、ウェハWの1周全体において精度よく検知することができる。なぜなら、ウェハWが撓んで傾く箇所については、撓み量がたとえ小さい場合でも、ウェハWから鉛直上向きに反射され、光センサ60に入射する光の量が少なくなるからである。 Furthermore, in the present disclosure, by using such periodic fluctuation data, minute deflections of the wafer W caused by deterioration of the holding state can be detected with high precision throughout one rotation of the wafer W. This is because, at a portion where the wafer W is bent and tilted, even if the amount of bending is small, the amount of light that is reflected vertically upward from the wafer W and enters the optical sensor 60 is reduced.
 なお、図4に示すように、周期変動データおよびゲージでの実測値において、値が低い領域が3箇所見られるが、これは図5に示すように、ウェハWが3つの保持部材31aによって支持される際に、ウェハWに形成される3箇所の窪みWaに起因する。図5は、実施形態に係る基板保持部31に保持されるウェハWの状態を説明するための図である。 Note that, as shown in FIG. 4, there are three regions where the values are low in the periodic fluctuation data and the actual measured values with the gauge, but this is because the wafer W is supported by the three holding members 31a as shown in FIG. This is due to the three depressions Wa formed in the wafer W during the process. FIG. 5 is a diagram for explaining the state of the wafer W held by the substrate holding section 31 according to the embodiment.
 このように、実施形態では、ウェハWの撓み(ここでは、窪みWa)の有無や状態について、かかる撓みの位置情報まで含んだデータを周期変動データとして作成することができる。 In this way, in the embodiment, it is possible to create periodic variation data that includes information about the presence or absence of a bend in the wafer W (in this case, the depression Wa) and the state of the bend, including the position information of the bend.
 実施形態では、作成部18aが、基板処理部30を制御して、1(rpm)~100(rpm)の範囲でウェハWを回転させながら、ウェハWの1周全体における反射光の強度の推移を光センサ60で測定するとよい。これにより、回転数を過剰に大きくすることで生じるウェハWの撓みの影響を低減することができるため、精度のよい周期変動データを作成することができる。 In the embodiment, the creation unit 18a controls the substrate processing unit 30 and rotates the wafer W in a range of 1 (rpm) to 100 (rpm), while observing the change in the intensity of reflected light throughout one rotation of the wafer W. is preferably measured by the optical sensor 60. This makes it possible to reduce the influence of deflection of the wafer W caused by excessively increasing the number of rotations, and thus it is possible to create highly accurate periodic variation data.
 図3の説明に戻る。算出部18bは、あらかじめ記憶された基準周期変動データと、作成部18aが作成した周期変動データとの差分を算出する。この基準周期変動データは、たとえば、基板保持部31を正常な状態に戻した直後(たとえば、基板保持部31を新品に交換した直後)に、作成部18aによって作成された周期変動データである。 Returning to the explanation of FIG. 3. The calculation unit 18b calculates the difference between the reference period fluctuation data stored in advance and the period fluctuation data created by the creation unit 18a. This reference period fluctuation data is, for example, period fluctuation data created by the creation section 18a immediately after returning the substrate holding section 31 to a normal state (for example, immediately after replacing the substrate holding section 31 with a new one).
 すなわち、算出部18bで算出される基準周期変動データと周期変動データとの差分は、正常状態の基板保持部31と、周期変動データを作成した時点での基板保持部31との保持状態の違いを示している。基準周期変動データは、たとえば、記憶部19の基準周期変動データ記憶部19aに記憶される。 That is, the difference between the reference periodic fluctuation data and the periodic fluctuation data calculated by the calculating section 18b is the difference in the holding state between the substrate holding section 31 in a normal state and the substrate holding section 31 at the time when the periodic fluctuation data was created. It shows. The reference period variation data is stored in the reference period variation data storage section 19a of the storage section 19, for example.
 判定部18cは、作成部18aが作成した周期変動データに基づいて、基板保持部31に保持されるウェハWの保持状態が正常であるか否かを判定する。たとえば、判定部18cは、基準周期変動データと周期変動データとの差分が所与の範囲内である場合には、ウェハWの保持状態が正常であると判定する。 The determination unit 18c determines whether the holding state of the wafer W held by the substrate holding unit 31 is normal or not based on the periodic fluctuation data created by the creation unit 18a. For example, the determination unit 18c determines that the holding state of the wafer W is normal when the difference between the reference periodic variation data and the periodic variation data is within a given range.
 一方で、判定部18cは、基準周期変動データと周期変動データとの差分が所与の範囲内でない場合には、ウェハWの保持状態が正常でないと判定する。 On the other hand, if the difference between the reference cycle variation data and the cycle variation data is not within the given range, the determination unit 18c determines that the holding state of the wafer W is not normal.
 ここまで説明したように、実施形態では、周期変動データに基づいてウェハWの保持状態の良否を判定することで、ウェハWの保持状態を精度よく検知することができる。 As described so far, in the embodiment, the holding state of the wafer W can be detected with high accuracy by determining whether the holding state of the wafer W is good or bad based on the periodic fluctuation data.
 また、実施形態では、正常状態の基板保持部31と測定時点での基板保持部31との保持状態の違いを、基準周期変動データと周期変動データとの差分によって評価することで、複数の処理ユニット16ごとの装置間差を保持状態の良否判定に含ませることができる。 Furthermore, in the embodiment, the difference in the holding state between the substrate holding section 31 in a normal state and the substrate holding section 31 at the time of measurement is evaluated by the difference between the reference periodic fluctuation data and the periodic fluctuation data, so that a plurality of processes can be performed. The difference between devices for each unit 16 can be included in the determination of whether the holding state is good or bad.
 したがって、実施形態によれば、ウェハWの保持状態をさらに精度よく検知することができる。 Therefore, according to the embodiment, the holding state of the wafer W can be detected with higher accuracy.
 また、実施形態では、あるウェハWについて、基板処理を行う前に作成された周期変動データを、同じウェハWに基板処理を行った後に算出部18bが算出処理する際の基準周期変動データとして用いてもよい。 Further, in the embodiment, periodic fluctuation data created before substrate processing is performed on a certain wafer W is used as reference periodic fluctuation data when the calculation unit 18b performs calculation processing after substrate processing is performed on the same wafer W. It's okay.
 これにより、所与の基板処理(たとえば、急激な温度変化を伴う処理)を行っている最中に発生した保持状態の悪化を、かかる処理の直後に検出することができる。したがって、実施形態によれば、ウェハWの保持状態をさらに精度よく検知することができる。 As a result, deterioration in the holding state that occurs during a given substrate process (for example, a process involving a rapid temperature change) can be detected immediately after such process. Therefore, according to the embodiment, the holding state of the wafer W can be detected with higher accuracy.
 なおこの場合、あるウェハWについて、基板処理を行う前に作成された周期変動データは、かかるウェハWの基準周期変動データとして記憶部19の基準周期変動データ記憶部19aに記憶されるとよい。 Note that in this case, it is preferable that periodic variation data created for a certain wafer W before substrate processing is stored in the standard periodic variation data storage section 19a of the storage section 19 as reference periodic variation data for the wafer W.
 異常対応部18dは、判定部18cによってウェハWの保持状態が正常でないと判定された場合に、各種の異常対応処理を実行する。 The abnormality handling unit 18d executes various abnormality handling processes when the determining unit 18c determines that the holding state of the wafer W is not normal.
 実施形態に係る異常対応処理は、たとえば、処理ユニット16内にあるウェハWの保持状態が正常でない旨を作業者に通報することである。これにより、作業者が基板保持部31の異常状態を認知することができる。 The abnormality handling process according to the embodiment is, for example, notifying the operator that the holding state of the wafer W in the processing unit 16 is not normal. This allows the operator to recognize the abnormal state of the substrate holding section 31.
 また、実施形態にかかる異常対応処理は、たとえば、ウェハWを一旦基板搬送装置17(図1参照)に戻し、基板保持部31で保持し直すことであってもよい。これにより、保持状態の異常が一時的であった場合に、対象となるウェハWの保持状態を正常に戻すことができる。 Furthermore, the abnormality handling process according to the embodiment may include, for example, once returning the wafer W to the substrate transport device 17 (see FIG. 1) and holding it again in the substrate holding unit 31. Thereby, even if the abnormality in the holding state is temporary, the holding state of the target wafer W can be returned to normal.
 また、異常対応部18dは、基板処理後のウェハWの保持状態が正常でないと判定部18cが判定した場合に、かかるウェハWの処理中の撮像画像を保存してもよい。かかる撮像画像は、たとえば動画であり、記憶部19の撮像画像記憶部19bに保存される。 Furthermore, when the determination unit 18c determines that the holding state of the wafer W after substrate processing is not normal, the abnormality handling unit 18d may save the captured image of the wafer W during processing. Such a captured image is, for example, a moving image, and is stored in the captured image storage section 19b of the storage section 19.
 またこの場合、判定部18cは、対象となるウェハWに基板処理を行う前に作成された周期変動データを、同じウェハWに基板処理を行った後に算出部18bが算出処理する際の基準周期変動データとして用いるとよい。 In this case, the determining unit 18c uses the periodic fluctuation data created before performing substrate processing on the target wafer W to be used as a reference period when the calculating unit 18b performs calculation processing after performing substrate processing on the same wafer W. It is good to use it as fluctuation data.
 さらに、異常対応部18dは、上記の通り撮像画像記憶部19bに保存された基板処理中の撮像画像と、同じウェハWについて異常状態が報知された旨のログ情報とを対応付けてもよい。 Further, the abnormality handling unit 18d may associate the captured image during substrate processing stored in the captured image storage unit 19b as described above with log information indicating that an abnormal state has been reported for the same wafer W.
 このように、保持状態が正常でないと判定されたウェハWについて、処理中の撮像画像を記憶部19に保存することで、作業者が後日改めて不具合の詳細を記憶された撮像画像によって確認することができる。また、基板処理中の撮像画像と異常状態が報知された旨のログ情報とを対応付けることで、作業者が簡便に異常時の撮像画像を確認することができる。 In this way, by storing the captured image during processing in the storage unit 19 for the wafer W whose holding state is determined to be abnormal, the operator can check the details of the malfunction again at a later date using the stored captured image. Can be done. Furthermore, by associating captured images during substrate processing with log information indicating that an abnormal condition has been reported, the operator can easily check captured images during abnormal conditions.
 上述した算出部18bは、上記の算出処理に加えて、処理ユニット16に続けて搬入される複数のウェハWについて、それぞれ基準周期変動データと周期変動データとの差分を算出し、かかる差分の最大値を差分データとして算出する。 In addition to the above calculation process, the calculation unit 18b calculates the difference between the reference period fluctuation data and the period fluctuation data for each of the plurality of wafers W successively carried into the processing unit 16, and calculates the maximum of the difference. Calculate the value as difference data.
 この場合、基準周期変動データとしては、基板保持部31を正常な状態に戻した直後(たとえば、基板保持部31を新品に交換した直後)に、作成部18aによって作成された周期変動データが用いられる。そして、この差分データは、記憶部19の差分データ記憶部19cに記憶され、たとえば図6のようにプロットされる。 In this case, the periodic fluctuation data created by the creation section 18a immediately after returning the substrate holding section 31 to a normal state (for example, immediately after replacing the board holding section 31 with a new one) is used as the reference periodic fluctuation data. It will be done. Then, this difference data is stored in the difference data storage section 19c of the storage section 19, and plotted as shown in FIG. 6, for example.
 図6は、実施形態に係る差分データの一例を示す図である。図6に示すように、実施形態に係る差分データは、たとえば、横軸が時間(またはウェハWの処理枚数)であり、縦軸が基準周期変動データと周期変動データとの差分の最大値であるXY空間に、複数のウェハWのデータがプロットされる。 FIG. 6 is a diagram showing an example of difference data according to the embodiment. As shown in FIG. 6, in the difference data according to the embodiment, for example, the horizontal axis represents time (or the number of processed wafers W), and the vertical axis represents the maximum value of the difference between the reference periodic fluctuation data and the periodic fluctuation data. Data of a plurality of wafers W is plotted in a certain XY space.
 予測部18eは、図6に示されるような差分データの経時変化に基づいて、基板保持部31の保持状態を予測する。予測部18eは、たとえば、直線回帰分析によって基板保持部31の保持状態を予測する。 The prediction unit 18e predicts the holding state of the substrate holding unit 31 based on the temporal change of the difference data as shown in FIG. The prediction unit 18e predicts the holding state of the substrate holding unit 31 by, for example, linear regression analysis.
 たとえば、図6の例では、時間T0までの期間において、差分の最大値の時間経過は、差分の最大値=0の直線に回帰している。すなわち、図6の例において、時間T0までは基板保持部31を正常な状態に戻した直後と比べて、基板保持部31の保持状態に目立った変化はなく、良好な保持状態が維持されていると推定される。 For example, in the example of FIG. 6, in the period up to time T0, the time course of the maximum value of the difference regresses to a straight line where the maximum value of the difference=0. That is, in the example of FIG. 6, there is no noticeable change in the holding state of the substrate holding part 31 compared to immediately after returning the substrate holding part 31 to the normal state until time T0, and a good holding state is maintained. It is estimated that there are.
 一方で、時間T0以降は、差分の最大値の時間経過が、傾きを有する直線Lに回帰している。そこで、予測部18eは、かかる直線Lと、保持状態が良好に維持されるとみなされる差分の最大値の上限値(または下限値)との交点である時間T2で保持状態が正常でなくなると、時間T1の時点に予測する。 On the other hand, after time T0, the time course of the maximum value of the difference regresses to a straight line L having an inclination. Therefore, the prediction unit 18e predicts that the holding state becomes abnormal at time T2, which is the intersection of the straight line L and the upper limit (or lower limit) of the maximum value of the difference that is considered to maintain the holding state well. , is predicted at time T1.
 このように、実施形態では、差分データの経時変化に基づいて、基板保持部31の保持状態を精度よく予測することができる。したがって、実施形態によれば、得られた予測に基づいて、作業者は事前に基板保持部31などの部品を準備し、メンテナンスを計画することができる。 In this way, in the embodiment, the holding state of the substrate holding section 31 can be predicted with high accuracy based on the temporal change of the difference data. Therefore, according to the embodiment, based on the obtained prediction, the operator can prepare parts such as the board holding part 31 in advance and plan maintenance.
 なお、上記の実施形態では、処理ユニット16に続けて搬入される複数のウェハWについて、それぞれ基準周期変動データと周期変動データとの差分を算出し、かかる差分の最大値を差分データとして算出する例について示したが、本開示はかかる例に限られない。 Note that in the above embodiment, the difference between the reference periodic variation data and the periodic variation data is calculated for each of the plurality of wafers W successively carried into the processing unit 16, and the maximum value of the difference is calculated as the difference data. Although examples are shown, the present disclosure is not limited to such examples.
 たとえば、本開示では、処理ユニット16に続けて搬入される複数のウェハWについて、それぞれ基準周期変動データと周期変動データとの差分を算出し、かかる差分の平均値を差分データとして算出してもよい。 For example, in the present disclosure, the difference between the reference period fluctuation data and the period fluctuation data is calculated for each of the plurality of wafers W that are successively carried into the processing unit 16, and the average value of the differences is calculated as the difference data. good.
 そして、予測部18eは、かかる差分データの経時変化に基づいて、基板保持部31の保持状態を予測してもよい。これによっても、基板保持部31の保持状態を精度よく予測することができる。 Then, the prediction unit 18e may predict the holding state of the substrate holding unit 31 based on the change in the difference data over time. This also makes it possible to accurately predict the holding state of the substrate holder 31.
 また、図6の例では、予測部18eが、直線回帰分析によって基板保持部31の保持状態を予測する例について示したが、本開示はかかる例に限られず、種々の分析法を用いて基板保持部31の保持状態を予測してもよい。 Further, although the example of FIG. 6 shows an example in which the prediction unit 18e predicts the holding state of the substrate holding unit 31 by linear regression analysis, the present disclosure is not limited to such an example, and the prediction unit 18e predicts the holding state of the substrate holding unit 31 by using various analysis methods. The holding state of the holding section 31 may be predicted.
 実施形態に係る基板処理装置(基板処理システム1)は、基板保持部31と、光センサ60と、制御部18と、を備える。基板保持部31は、処理する基板(ウェハW)を保持して回転させる。光センサ60は、基板保持部31に保持され回転する基板(ウェハW)に光を照射し反射光を受光する。制御部18は、各部を制御する。また、制御部18は、作成部18aと、判定部18cとを有する。作成部18aは、基板保持部31に保持され回転する基板(ウェハW)に光センサ60から光を照射し、基板(ウェハW)が回転している期間の反射光の強度変化を取得して周期変動データを作成する。判定部18cは、周期変動データに基づいて、基板保持部31に保持される基板(ウェハW)の保持状態が正常であるか否かを判定する。これにより、ウェハWの保持状態を精度よく検知することができる。 The substrate processing apparatus (substrate processing system 1) according to the embodiment includes a substrate holding section 31, an optical sensor 60, and a control section 18. The substrate holding unit 31 holds and rotates a substrate (wafer W) to be processed. The optical sensor 60 irradiates light onto a rotating substrate (wafer W) held by the substrate holder 31 and receives reflected light. The control section 18 controls each section. Further, the control unit 18 includes a creation unit 18a and a determination unit 18c. The creation unit 18a irradiates the rotating substrate (wafer W) held by the substrate holding unit 31 with light from the optical sensor 60, and obtains changes in the intensity of reflected light during the period when the substrate (wafer W) is rotating. Create periodic fluctuation data. The determining unit 18c determines whether the holding state of the substrate (wafer W) held by the substrate holding unit 31 is normal based on the periodic fluctuation data. Thereby, the holding state of the wafer W can be detected with high accuracy.
 また、実施形態に係る基板処理装置(基板処理システム1)において、制御部18は、あらかじめ記憶された基準周期変動データと、作成部18aが作成した周期変動データとの差分を算出する算出部18b、をさらに有する。また、判定部18cは、差分が所与の範囲内である場合には、基板(ウェハW)の保持状態が正常であると判定し、差分が所与の範囲内でない場合には、基板(ウェハW)の保持状態が正常でないと判定する。これにより、ウェハWの保持状態をさらに精度よく検知することができる。 Further, in the substrate processing apparatus (substrate processing system 1) according to the embodiment, the control unit 18 includes a calculation unit 18b that calculates the difference between the reference period fluctuation data stored in advance and the period fluctuation data created by the creation unit 18a. , further has. Further, the determination unit 18c determines that the holding state of the substrate (wafer W) is normal when the difference is within a given range, and when the difference is not within the given range, the determination unit 18c determines that the holding state of the substrate (wafer W) is normal. It is determined that the holding state of the wafer W) is not normal. Thereby, the holding state of the wafer W can be detected with higher accuracy.
 また、実施形態に係る基板処理装置(基板処理システム1)において、基準周期変動データは、基板保持部31に保持される基板(ウェハW)が搬入される前に、基板保持部に保持された別の基板について作成された周期変動データである。これにより、基板保持部31が正常な場合の基準周期変動データを取得することができる。 Further, in the substrate processing apparatus (substrate processing system 1) according to the embodiment, the reference period fluctuation data is set before the substrate (wafer W) held in the substrate holding part 31 is carried in. This is periodic fluctuation data created for another board. Thereby, reference period fluctuation data when the substrate holder 31 is normal can be obtained.
 また、実施形態に係る基板処理装置(基板処理システム1)において、作成部18aは、複数の基板(ウェハW)が1枚ずつ搬入される毎に個別の周期変動データを作成する。また、算出部18bは、複数の基板(ウェハW)における差分の最大値を差分データとして算出する。また、制御部18は、差分データの経時変化に基づいて、基板保持部31の保持状態を予測する予測部18e、をさらに有する。これにより、基板保持部31の保持状態を精度よく予測することができる。 Furthermore, in the substrate processing apparatus (substrate processing system 1) according to the embodiment, the creation unit 18a creates individual periodic fluctuation data each time a plurality of substrates (wafers W) are carried in one by one. Further, the calculation unit 18b calculates the maximum value of the difference among the plurality of substrates (wafers W) as difference data. Furthermore, the control unit 18 further includes a prediction unit 18e that predicts the holding state of the substrate holding unit 31 based on the change in the difference data over time. Thereby, the holding state of the substrate holding section 31 can be predicted with high accuracy.
 また、実施形態に係る基板処理装置(基板処理システム1)において、作成部18aは、複数の基板(ウェハW)が1枚ずつ搬入される毎に個別の周期変動データを作成する。また、算出部18bは、複数の基板(ウェハW)における差分の平均値を差分データとして算出する。また、制御部18は、差分データの経時変化に基づいて、基板保持部31の保持状態を予測する予測部18e、をさらに有する。これにより、基板保持部31の保持状態を精度よく予測することができる。 Furthermore, in the substrate processing apparatus (substrate processing system 1) according to the embodiment, the creation unit 18a creates individual periodic fluctuation data each time a plurality of substrates (wafers W) are carried in one by one. Further, the calculation unit 18b calculates the average value of the differences among the plurality of substrates (wafers W) as difference data. Furthermore, the control unit 18 further includes a prediction unit 18e that predicts the holding state of the substrate holding unit 31 based on the change in the difference data over time. Thereby, the holding state of the substrate holding section 31 can be predicted with high accuracy.
 また、実施形態に係る基板処理装置(基板処理システム1)において、制御部18は、判定部18cが基板(ウェハW)の保持状態が正常でないと判定した場合に、異常対応処理を実行する異常対応部18d、をさらに有する。これにより、作業者が基板保持部31の異常状態を認知することができる。 Further, in the substrate processing apparatus (substrate processing system 1) according to the embodiment, the control unit 18 executes an abnormality response process when the determination unit 18c determines that the holding state of the substrate (wafer W) is not normal. It further includes a corresponding portion 18d. This allows the operator to recognize the abnormal state of the substrate holding section 31.
 また、実施形態に係る基板処理装置(基板処理システム1)は、基板保持部31に保持される基板(ウェハW)を撮像する撮像装置70、をさらに備える。また、作成部18aは、処理後の基板(ウェハW)の周期変動データを作成する。また、異常対応部18dは、判定部18cが処理後の基板(ウェハW)の保持状態が正常でないと判定した場合に、かかる基板の処理中の撮像画像を保存する。これにより、作業者が後日改めて不具合の詳細を記憶された撮像画像によって確認することができる。 Further, the substrate processing apparatus (substrate processing system 1) according to the embodiment further includes an imaging device 70 that images the substrate (wafer W) held by the substrate holding section 31. Further, the creation unit 18a creates periodic variation data of the substrate (wafer W) after processing. Furthermore, when the determination unit 18c determines that the holding state of the processed substrate (wafer W) is not normal, the abnormality handling unit 18d stores the captured image of the substrate during processing. This allows the operator to confirm the details of the malfunction again at a later date using the stored captured image.
<制御処理の手順>
 つづいて、実施形態に係る制御処理の手順について、図7~図9を参照しながら説明する。図7は、実施形態に係る基板処理システム1が実行する制御処理の手順の一例を示すフローチャートである。
<Control processing procedure>
Next, the procedure of the control processing according to the embodiment will be explained with reference to FIGS. 7 to 9. FIG. 7 is a flowchart illustrating an example of a control processing procedure executed by the substrate processing system 1 according to the embodiment.
 実施形態に係る制御処理では、まず、制御部18が、処理ユニット16に搬入されたウェハWを基板保持部31で保持する(ステップS101)。そして、制御部18は、基板保持部31に保持されたウェハWの保持状態の異常を検知する保持異常検知処理を実施する(ステップS102)。かかる保持異常検知処理の詳細については後述する。 In the control process according to the embodiment, first, the control section 18 holds the wafer W carried into the processing unit 16 with the substrate holding section 31 (step S101). Then, the control unit 18 performs a holding abnormality detection process to detect an abnormality in the holding state of the wafer W held by the substrate holding unit 31 (step S102). Details of this holding abnormality detection process will be described later.
 次に、制御部18は、基板保持部31に保持されたウェハWの保持状態の経時変化を検知する経時変化検知処理を実施する(ステップS103)。かかる経時変化検知処理の詳細については後述する。 Next, the control unit 18 performs a temporal change detection process to detect a temporal change in the holding state of the wafer W held by the substrate holding unit 31 (step S103). Details of this temporal change detection processing will be described later.
 次に、制御部18は、基板保持部31に保持されたウェハWを回転させながら処理液やリンス液をウェハWに供給して、ウェハWに所与の処理を行う(ステップS104)。 Next, the control unit 18 supplies a processing liquid and a rinsing liquid to the wafer W while rotating the wafer W held by the substrate holding unit 31, and performs a given process on the wafer W (step S104).
 かかるステップS104の処理では、たとえば、制御部18が、基板処理部30などを制御して、ウェハWを所与の回転数で回転させ、液供給部40などを制御して、ウェハW上に所与の供給量で処理液を供給する。 In the process of step S104, for example, the control unit 18 controls the substrate processing unit 30 and the like to rotate the wafer W at a given rotation speed, and controls the liquid supply unit 40 and the like to apply liquid onto the wafer W. Supply the processing liquid at a given supply rate.
 また、制御部18は、処理液による液処理が終了したウェハWに対して、DIWによるリンス処理を実施する。さらに、制御部18は、リンス処理が終了したウェハWに対して、スピン乾燥などによる乾燥処理を実施する。 Furthermore, the control unit 18 performs a DIW rinsing process on the wafer W that has been subjected to the liquid treatment using the treatment liquid. Further, the control unit 18 performs a drying process such as spin drying on the wafer W after the rinsing process.
 最後に、制御部18は、基板保持部31に保持されたウェハWの保持状態の異常を検知する保持異常検知処理を実施し(ステップS105)、一連の制御処理を終了する。 Finally, the control unit 18 performs a holding abnormality detection process to detect an abnormality in the holding state of the wafer W held by the substrate holding unit 31 (step S105), and ends the series of control processes.
 図8は、実施形態に係る基板処理システム1が実行する保持異常検知処理の手順の一例を示すフローチャートである。 FIG. 8 is a flowchart illustrating an example of the procedure of the holding abnormality detection process executed by the substrate processing system 1 according to the embodiment.
 この保持異常検知処理では、まず、制御部18が、ウェハWを所与の回転数(たとえば、1(rpm)~100(rpm)の範囲)で回転させながら、かかるウェハWの周縁部を光センサ60で測定する(ステップS201)。 In this holding abnormality detection process, first, the control unit 18 rotates the wafer W at a predetermined rotation speed (for example, in the range of 1 (rpm) to 100 (rpm)) and illuminates the peripheral portion of the wafer W. The sensor 60 measures it (step S201).
 次に、制御部18は、光センサ60での測定結果に基づいて、ウェハWの周期変動データを作成する(ステップS202)。そして、制御部18は、あらかじめ記憶された基準周期変動データと、ウェハWの周期変動データとの差分を算出する(ステップS203)。 Next, the control unit 18 creates periodic fluctuation data of the wafer W based on the measurement results by the optical sensor 60 (step S202). Then, the control unit 18 calculates the difference between the reference cycle variation data stored in advance and the cycle variation data of the wafer W (step S203).
 次に、制御部18は、算出された差分が所与の範囲内であるか否かを判定する(ステップS204)。そして、差分が所与の範囲内である場合(ステップS204,Yes)、制御部18は、ウェハWの保持状態が正常であるとみなし、一連の保持異常検知処理を終了する。 Next, the control unit 18 determines whether the calculated difference is within a given range (step S204). If the difference is within the given range (step S204, Yes), the control unit 18 considers that the holding state of the wafer W is normal, and ends the series of holding abnormality detection processing.
 一方で、差分が所与の範囲内でない場合(ステップS204,No)、制御部18は、ウェハWの保持状態が正常でないとみなし、各種の異常対応処理を実行する(ステップS205)。 On the other hand, if the difference is not within the given range (step S204, No), the control unit 18 considers that the holding state of the wafer W is not normal, and executes various abnormality handling processes (step S205).
 次に、制御部18は、保持状態が正常でないとみなされたウェハWが、所与の基板処理を実施した後であるか否かを判定する(ステップS206)。そして、対象となるウェハWが所与の基板処理を実施した後である場合(ステップS206,Yes)、制御部18は、直前に実施されたウェハWの基板処理の撮像画像を記憶部19に保存して(ステップS207)、一連の保持異常検知処理を終了する。 Next, the control unit 18 determines whether the wafer W whose holding state is considered to be abnormal has been subjected to a given substrate treatment (step S206). Then, if the target wafer W has undergone a given substrate processing (step S206, Yes), the control unit 18 stores the captured image of the substrate processing of the wafer W performed immediately before in the storage unit 19. It is saved (step S207), and the series of retention abnormality detection processing is ended.
 一方で、対象となるウェハWが所与の基板処理を実施した後でない場合(ステップS206,No)、一連の保持異常検知処理を終了する。 On the other hand, if the target wafer W has not been subjected to the given substrate processing (step S206, No), the series of holding abnormality detection processing ends.
 図9は、実施形態に係る基板処理システム1が実行する経時変化検知処理の手順の一例を示すフローチャートである。 FIG. 9 is a flowchart illustrating an example of the procedure of the temporal change detection process executed by the substrate processing system 1 according to the embodiment.
 この経時変化検知処理では、まず、制御部18が、あらかじめ記憶された基準周期変動データと、上述の経時変化検知処理において作成された周期変動データとの差分の最大値または平均値を、差分データとして算出する(ステップS301)。 In this temporal change detection process, first, the control unit 18 calculates the maximum value or the average value of the difference between the pre-stored reference periodic variation data and the periodic variation data created in the above-mentioned temporal change detection process, and converts it into difference data. (Step S301).
 次に、制御部18は、基準周期変動データと周期変動データとの差分の最大値または平均値を、図6に示したようなXY空間にプロットする(ステップS302)。そして、制御部18は、複数のウェハWにおける差分の最大値または平均値がプロットされたXY空間において、差分データの経時変化を直線回帰分析する(ステップS303)。 Next, the control unit 18 plots the maximum value or average value of the difference between the reference periodic fluctuation data and the periodic fluctuation data in the XY space as shown in FIG. 6 (step S302). Then, the control unit 18 performs a linear regression analysis of the temporal change in the difference data in the XY space in which the maximum value or average value of the differences among the plurality of wafers W is plotted (step S303).
 次に、制御部18は、直線回帰分析によって作成された直線の傾きに有意差があるか否かを判定する(ステップS304)。そして、直線回帰分析によって作成された直線の傾きに有意差があると判定された場合(ステップS304,Yes)、制御部18は、差分の最大値または平均値が許容範囲を逸脱するタイミングを予測する(ステップS305)。 Next, the control unit 18 determines whether there is a significant difference in the slopes of the straight lines created by linear regression analysis (step S304). If it is determined that there is a significant difference in the slope of the straight line created by the linear regression analysis (step S304, Yes), the control unit 18 predicts the timing at which the maximum value or average value of the difference deviates from the allowable range. (Step S305).
 さらに、制御部18は、予測された逸脱タイミングを作業者に通知して(ステップS306)、一連の経時変化検知処理を終了する。一方で、直線回帰分析によって作成された直線の傾きに有意差がないと判定された場合(ステップS304,No)、一連の経時変化検知処理を終了する。 Further, the control unit 18 notifies the worker of the predicted departure timing (step S306), and ends the series of temporal change detection processing. On the other hand, if it is determined that there is no significant difference in the slope of the straight line created by the linear regression analysis (step S304, No), the series of temporal change detection processing is ended.
 実施形態に係る基板処理方法は、保持する工程(ステップS101)と、作成する工程(ステップS202)と、判定する工程(ステップS204)と、を含む。保持する工程(ステップS101)は、基板保持部31によって基板(ウェハW)を保持する。作成する工程(ステップS202)は、基板(ウェハW)を処理する前および処理した後の少なくとも一方において、周期変動データを作成する。かかる周期変動データは、光を照射し反射光を受光する光センサ60から基板保持部31に保持され回転する基板(ウェハW)に光を照射し、基板(ウェハW)が回転している期間の反射光の強度変化を取得して作成される。判定する工程(ステップS204)は、周期変動データに基づいて、基板保持部31に保持される基板(ウェハW)の保持状態が正常であるか否かを判定する。これにより、ウェハWの保持状態を精度よく検知することができる。 The substrate processing method according to the embodiment includes a holding step (step S101), a creating step (step S202), and a determining step (step S204). In the holding step (step S101), the substrate (wafer W) is held by the substrate holding section 31. In the step of creating (step S202), periodic variation data is created at least one of before and after processing the substrate (wafer W). Such periodic fluctuation data is based on the period during which a rotating substrate (wafer W) held by the substrate holder 31 is irradiated with light from the optical sensor 60 that irradiates light and receives reflected light, and the substrate (wafer W) is rotating. It is created by acquiring changes in the intensity of reflected light. In the determining step (step S204), it is determined whether the holding state of the substrate (wafer W) held by the substrate holding unit 31 is normal based on the periodic fluctuation data. Thereby, the holding state of the wafer W can be detected with high accuracy.
 また、実施形態に係る基板処理方法は、算出する工程(ステップS203)、をさらに含む。算出する工程(ステップS203)は、あらかじめ記憶された基準周期変動データと、作成する工程(ステップS202)が作成した周期変動データとの差分を算出する。また、判定する工程(ステップS204)は、差分が所与の範囲内である場合には、基板(ウェハW)の保持状態が正常であると判定し、差分が所与の範囲内でない場合には、基板(ウェハW)の保持状態が正常でないと判定する。これにより、ウェハWの保持状態をさらに精度よく検知することができる。 Furthermore, the substrate processing method according to the embodiment further includes a step of calculating (step S203). The calculating step (step S203) calculates the difference between the reference period fluctuation data stored in advance and the period fluctuation data created in the creating step (step S202). Further, in the determining step (step S204), if the difference is within a given range, it is determined that the holding state of the substrate (wafer W) is normal, and if the difference is not within the given range, it is determined that the holding state of the substrate (wafer W) is normal. It is determined that the holding state of the substrate (wafer W) is not normal. Thereby, the holding state of the wafer W can be detected with higher accuracy.
 また、実施形態に係る基板処理方法において、基準周期変動データは、基板保持部31に保持される基板(ウェハW)が搬入される前に、基板保持部31に保持された別の基板について作成された周期変動データである。これにより、基板保持部31が正常な場合の基準周期変動データを取得することができる。 Further, in the substrate processing method according to the embodiment, the reference period fluctuation data is created for another substrate held in the substrate holding unit 31 before the substrate (wafer W) held in the substrate holding unit 31 is carried in. This is the periodic fluctuation data. Thereby, reference period fluctuation data when the substrate holder 31 is normal can be obtained.
 また、実施形態に係る基板処理方法において、作成する工程(ステップS202)は、複数の基板(ウェハW)が1枚ずつ搬入される毎に個別の周期変動データを作成する。また、算出する工程(ステップS203)は、複数の基板(ウェハW)における差分の平均値を差分データとして算出する。また、実施形態に係る基板処理方法は、差分データの経時変化に基づいて、基板保持部31の保持状態を予測する工程(ステップS305)、をさらに含む。これにより、基板保持部31の保持状態を精度よく予測することができる。 Furthermore, in the substrate processing method according to the embodiment, the step of creating (step S202) creates individual periodic fluctuation data each time a plurality of substrates (wafers W) are carried in one by one. Further, in the calculating step (step S203), the average value of the differences among a plurality of substrates (wafers W) is calculated as difference data. Further, the substrate processing method according to the embodiment further includes a step of predicting the holding state of the substrate holding section 31 based on the temporal change of the difference data (step S305). Thereby, the holding state of the substrate holding section 31 can be predicted with high accuracy.
 また、実施形態に係る基板処理方法は、判定する工程(ステップS204)が基板(ウェハW)の保持状態が正常でないと判定した場合に、異常対応処理を実行する工程(ステップS205)、をさらに含む。これにより、作業者が基板保持部31の異常状態を認知することができる。 Further, the substrate processing method according to the embodiment further includes a step (step S205) of performing abnormality handling processing when the determining step (step S204) determines that the holding state of the substrate (wafer W) is not normal. include. This allows the operator to recognize the abnormal state of the substrate holding section 31.
 以上、本開示の実施形態について説明したが、本開示は上記実施形態に限定されるものではなく、その趣旨を逸脱しない限りにおいて種々の変更が可能である。たとえば、上記の実施形態では、基板処理システム1の制御装置4に設けられた記憶部19に基準周期変動データや撮像画像、差分データなどを記憶する例について示したが、本開示はかかる例に限られない。たとえば、本開示では、制御装置4とネットワークで接続された別の記憶装置に基準周期変動データや撮像画像、差分データなどが記憶されてもよい。 Although the embodiments of the present disclosure have been described above, the present disclosure is not limited to the above embodiments, and various changes can be made without departing from the spirit thereof. For example, in the above embodiment, an example is shown in which reference period fluctuation data, captured images, difference data, etc. are stored in the storage unit 19 provided in the control device 4 of the substrate processing system 1, but the present disclosure does not apply to such an example. Not limited. For example, in the present disclosure, reference period variation data, captured images, difference data, etc. may be stored in another storage device connected to the control device 4 via a network.
 今回開示された実施形態は全ての点で例示であって制限的なものではないと考えられるべきである。実に、上記した実施形態は多様な形態で具現され得る。また、上記の実施形態は、添付の請求の範囲及びその趣旨を逸脱することなく、様々な形態で省略、置換、変更されてもよい。 The embodiments disclosed this time should be considered to be illustrative in all respects and not restrictive. Indeed, the embodiments described above may be implemented in various forms. Moreover, the above-described embodiments may be omitted, replaced, or modified in various forms without departing from the scope and spirit of the appended claims.
 W   ウェハ(基板の一例)
 1   基板処理システム(基板処理装置の一例)
 4   制御装置
 16  処理ユニット
 18  制御部
 18a 作成部
 18b 算出部
 18c 判定部
 18d 異常対応部
 18e 予測部
 19  記憶部
 19a 基準周期変動データ記憶部
 19b 撮像画像記憶部
 19c 差分データ記憶部
 31  基板保持部
 60  光センサ
 70  撮像装置
W wafer (an example of a substrate)
1 Substrate processing system (an example of substrate processing equipment)
4 Control device 16 Processing unit 18 Control section 18a Creation section 18b Calculation section 18c Judgment section 18d Abnormality handling section 18e Prediction section 19 Storage section 19a Reference period variation data storage section 19b Captured image storage section 19c Difference data storage section 31 Substrate holding section 60 Optical sensor 70 Imaging device

Claims (12)

  1.  処理する基板を保持して回転させる基板保持部と、
     前記基板保持部に保持され回転する前記基板に光を照射し反射光を受光する光センサと、
     各部を制御する制御部と、
     を備え、
     前記制御部は、
     前記基板保持部に保持され回転する前記基板に前記光センサから光を照射し、前記基板が回転している期間の反射光の強度変化を取得して周期変動データを作成する作成部と、
     前記周期変動データに基づいて、前記基板保持部に保持される前記基板の保持状態が正常であるか否かを判定する判定部と、
     を有する基板処理装置。
    a substrate holder that holds and rotates the substrate to be processed;
    an optical sensor that irradiates the rotating substrate held by the substrate holder with light and receives reflected light;
    A control unit that controls each part,
    Equipped with
    The control unit includes:
    a creation unit that irradiates light from the optical sensor to the rotating substrate held by the substrate holding unit, obtains intensity changes of reflected light during a period when the substrate is rotating, and creates periodic fluctuation data;
    a determination unit that determines whether the holding state of the substrate held by the substrate holding unit is normal based on the periodic fluctuation data;
    A substrate processing apparatus having:
  2.  前記制御部は、あらかじめ記憶された基準周期変動データと、前記作成部が作成した前記周期変動データとの差分を算出する算出部、をさらに有し、
     前記判定部は、前記差分が所与の範囲内である場合には、前記基板の保持状態が正常であると判定し、前記差分が所与の範囲内でない場合には、前記基板の保持状態が正常でないと判定する
     請求項1に記載の基板処理装置。
    The control unit further includes a calculation unit that calculates a difference between reference period fluctuation data stored in advance and the period fluctuation data created by the creation unit,
    The determination unit determines that the holding state of the substrate is normal when the difference is within a given range, and determines that the holding state of the substrate is normal when the difference is not within the given range. The substrate processing apparatus according to claim 1, wherein the substrate processing apparatus is determined to be abnormal.
  3.  前記基準周期変動データは、前記基板保持部に保持される前記基板が搬入される前に、前記基板保持部に保持された別の基板について作成された周期変動データである
     請求項2に記載の基板処理装置。
    The reference period variation data is period variation data created for another substrate held by the substrate holder before the substrate held by the substrate holder is carried in. Substrate processing equipment.
  4.  前記作成部は、複数の前記基板が1枚ずつ搬入される毎に個別の前記周期変動データを作成し、
     前記算出部は、複数の前記基板における前記差分の最大値を差分データとして算出し、
     前記制御部は、
     前記差分データの経時変化に基づいて、前記基板保持部の保持状態を予測する予測部、をさらに有する
     請求項2または3に記載の基板処理装置。
    The creation unit creates individual periodic fluctuation data each time a plurality of boards are brought in one by one,
    The calculation unit calculates the maximum value of the difference among the plurality of substrates as difference data,
    The control unit includes:
    The substrate processing apparatus according to claim 2 , further comprising a prediction unit that predicts a holding state of the substrate holding unit based on a change in the difference data over time.
  5.  前記作成部は、複数の前記基板が1枚ずつ搬入される毎に個別の前記周期変動データを作成し、
     前記算出部は、複数の前記基板における前記差分の平均値を差分データとして算出し、
     前記制御部は、
     前記差分データの経時変化に基づいて、前記基板保持部の保持状態を予測する予測部、をさらに有する
     請求項2または3に記載の基板処理装置。
    The creation unit creates individual periodic fluctuation data each time a plurality of boards are brought in one by one,
    The calculation unit calculates an average value of the differences among the plurality of substrates as difference data,
    The control unit includes:
    The substrate processing apparatus according to claim 2 , further comprising a prediction unit that predicts a holding state of the substrate holding unit based on a change in the difference data over time.
  6.  前記制御部は、
     前記判定部が前記基板の保持状態が正常でないと判定した場合に、異常対応処理を実行する異常対応部、をさらに有する
     請求項1~3のいずれか一つに記載の基板処理装置。
    The control unit includes:
    The substrate processing apparatus according to any one of claims 1 to 3, further comprising an abnormality handling unit that executes abnormality handling processing when the determination unit determines that the holding state of the substrate is not normal.
  7.  前記基板保持部に保持される前記基板を撮像する撮像装置、をさらに備え、
     前記作成部は、処理後の前記基板の前記周期変動データを作成し、
     前記異常対応部は、
     前記判定部が処理後の前記基板の保持状態が正常でないと判定した場合に、当該基板の処理中の撮像画像を保存する
     請求項6に記載の基板処理装置。
    further comprising an imaging device that images the substrate held by the substrate holder,
    The creation unit creates the periodic fluctuation data of the substrate after processing,
    The abnormality handling department is
    The substrate processing apparatus according to claim 6, wherein when the determination unit determines that the holding state of the substrate after processing is not normal, a captured image of the substrate during processing is saved.
  8.  基板保持部によって基板を保持する工程と、
     前記基板を処理する前および処理した後の少なくとも一方において、光を照射し反射光を受光する光センサから前記基板保持部に保持され回転する前記基板に光を照射し、前記基板が回転している期間の反射光の強度変化を取得して周期変動データを作成する工程と、
     前記周期変動データに基づいて、前記基板保持部に保持される前記基板の保持状態が正常であるか否かを判定する工程と、
     を含む基板処理方法。
    holding the substrate by the substrate holding section;
    At least one of before and after processing the substrate, a light sensor that irradiates light and receives reflected light irradiates the rotating substrate held by the substrate holder, and the substrate rotates. a step of obtaining periodic fluctuation data by acquiring changes in the intensity of reflected light over a period of time;
    determining whether or not the holding state of the substrate held by the substrate holding unit is normal based on the periodic fluctuation data;
    Substrate processing methods including.
  9.  あらかじめ記憶された基準周期変動データと、前記作成する工程が作成した前記周期変動データとの差分を算出する工程、をさらに含み、
     前記判定する工程は、前記差分が所与の範囲内である場合には、前記基板の保持状態が正常であると判定し、前記差分が所与の範囲内でない場合には、前記基板の保持状態が正常でないと判定する
     請求項8に記載の基板処理方法。
    further comprising a step of calculating a difference between pre-stored reference period fluctuation data and the period fluctuation data created in the creating step,
    In the determining step, if the difference is within a given range, it is determined that the holding state of the substrate is normal, and if the difference is not within the given range, the holding state of the substrate is determined to be normal. The substrate processing method according to claim 8, wherein the condition is determined to be abnormal.
  10.  前記基準周期変動データは、前記基板保持部に保持される前記基板が搬入される前に、前記基板保持部に保持された別の基板について作成された周期変動データである
     請求項9に記載の基板処理方法。
    The reference period variation data is period variation data created for another substrate held by the substrate holder before the substrate held by the substrate holder is carried in. Substrate processing method.
  11.  前記作成する工程は、複数の前記基板が1枚ずつ搬入される毎に個別の前記周期変動データを作成し、
     前記算出する工程は、複数の前記基板における前記差分の平均値を差分データとして算出し、
     前記差分データの経時変化に基づいて、前記基板保持部の保持状態を予測する工程、をさらに含む
     請求項9または10に記載の基板処理方法。
    The creating step creates individual periodic variation data each time a plurality of boards are brought in one by one,
    The step of calculating calculates an average value of the differences among the plurality of substrates as difference data,
    The substrate processing method according to claim 9 or 10, further comprising the step of predicting a holding state of the substrate holder based on a change in the difference data over time.
  12.  前記判定する工程が前記基板の保持状態が正常でないと判定した場合に、異常対応処理を実行する工程、をさらに含む
     請求項9または10に記載の基板処理方法。
    11. The substrate processing method according to claim 9, further comprising the step of executing abnormality handling processing when the determining step determines that the holding state of the substrate is not normal.
PCT/JP2023/020620 2022-06-16 2023-06-02 Substrate treatment device and substrate treatment method WO2023243438A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022097021 2022-06-16
JP2022-097021 2022-06-16

Publications (1)

Publication Number Publication Date
WO2023243438A1 true WO2023243438A1 (en) 2023-12-21

Family

ID=89191025

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/020620 WO2023243438A1 (en) 2022-06-16 2023-06-02 Substrate treatment device and substrate treatment method

Country Status (2)

Country Link
TW (1) TW202414636A (en)
WO (1) WO2023243438A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003229403A (en) * 2002-02-04 2003-08-15 Shibaura Mechatronics Corp Spin processing device and method therefor
JP2013016698A (en) * 2011-07-05 2013-01-24 Tokyo Electron Ltd Substrate processing device, substrate processing method, and storage medium with program for executing substrate processing method recorded
JP2013110270A (en) * 2011-11-21 2013-06-06 Tokyo Electron Ltd Substrate processing apparatus, substrate processing method, and computer readable storage medium storing substrate processing program
JP2015096830A (en) * 2013-11-15 2015-05-21 株式会社Screenホールディングス Substrate processing device and substrate processing method
JP2021190511A (en) * 2020-05-27 2021-12-13 株式会社Screenホールディングス Substrate processing method and substrate processing apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003229403A (en) * 2002-02-04 2003-08-15 Shibaura Mechatronics Corp Spin processing device and method therefor
JP2013016698A (en) * 2011-07-05 2013-01-24 Tokyo Electron Ltd Substrate processing device, substrate processing method, and storage medium with program for executing substrate processing method recorded
JP2013110270A (en) * 2011-11-21 2013-06-06 Tokyo Electron Ltd Substrate processing apparatus, substrate processing method, and computer readable storage medium storing substrate processing program
JP2015096830A (en) * 2013-11-15 2015-05-21 株式会社Screenホールディングス Substrate processing device and substrate processing method
JP2021190511A (en) * 2020-05-27 2021-12-13 株式会社Screenホールディングス Substrate processing method and substrate processing apparatus

Also Published As

Publication number Publication date
TW202414636A (en) 2024-04-01

Similar Documents

Publication Publication Date Title
EP0898300B1 (en) Method for processing a semiconductor wafer on a robotic track having access to in situ wafer backside particle detection
US7289661B2 (en) Apparatus and method for inspecting a substrate
US7488127B2 (en) Resist pattern forming apparatus and method thereof
JP5392520B2 (en) Adjustment method and substrate processing method
US20150235368A1 (en) Displacement detection apparatus, substrate processing apparatus, displacement detection method and substrate processing method
WO2016181930A1 (en) Method for inspecting substrate, substrate treatment system, and computer storage medium
US11158079B2 (en) Substrate treating apparatus and apparatus and method for eccentricity inspection
JP6432458B2 (en) Substrate processing apparatus, substrate processing method, and storage medium
CN111630637A (en) Substrate processing apparatus
US10083845B2 (en) Substrate processing apparatus, substrate processing method and storage medium
US20070076942A1 (en) Semiconductor device manufacturing system
WO2023243438A1 (en) Substrate treatment device and substrate treatment method
JP5002380B2 (en) Processing device abnormality detection method, processing device, and computer-readable storage medium
KR102628421B1 (en) A system for determining whether the transfer robot is normal, a method for determining whether the transfer robot is normal, and substrate treating appartus
US7542134B2 (en) System, method and apparatus for in-situ substrate inspection
JP6524185B2 (en) Substrate processing system
JP6752081B2 (en) Cleaning method and cleaning device for wetted nozzles
WO2023243562A1 (en) Substrate processing apparatus and substrate processing method
JP7572564B2 (en) SUBSTRATE PROCESSING APPARATUS, INFORMATION PROCESSING METHOD, AND STORAGE MEDIUM
US20230207351A1 (en) Apparatus and method for treating substrate
US20240282603A1 (en) Substrate processing apparatus and method of estimating flow rate of processing liquid for substrate processing apparatus
WO2021246328A1 (en) Operation method for substrate processing device
JP6638796B2 (en) Substrate processing apparatus, substrate processing method, and storage medium
JP2008177231A (en) Method and apparatus for automatic probe inspection
KR20230100217A (en) Method and apparatus for treating substrate

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23823731

Country of ref document: EP

Kind code of ref document: A1