WO2023241602A1 - 节能唤醒方法、装置、终端、基站及存储介质 - Google Patents
节能唤醒方法、装置、终端、基站及存储介质 Download PDFInfo
- Publication number
- WO2023241602A1 WO2023241602A1 PCT/CN2023/100084 CN2023100084W WO2023241602A1 WO 2023241602 A1 WO2023241602 A1 WO 2023241602A1 CN 2023100084 W CN2023100084 W CN 2023100084W WO 2023241602 A1 WO2023241602 A1 WO 2023241602A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- energy
- base station
- saving
- wake
- information
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims abstract description 140
- 238000012545 processing Methods 0.000 claims abstract description 70
- 238000005259 measurement Methods 0.000 claims description 65
- 230000005540 biological transmission Effects 0.000 claims description 37
- 206010062519 Poor quality sleep Diseases 0.000 claims description 7
- 238000004891 communication Methods 0.000 abstract description 35
- 230000002618 waking effect Effects 0.000 abstract description 5
- 230000006870 function Effects 0.000 description 34
- 238000010586 diagram Methods 0.000 description 26
- 230000000694 effects Effects 0.000 description 17
- 238000005516 engineering process Methods 0.000 description 14
- 238000007726 management method Methods 0.000 description 9
- 238000013507 mapping Methods 0.000 description 9
- 238000004590 computer program Methods 0.000 description 6
- 230000001360 synchronised effect Effects 0.000 description 6
- 238000001514 detection method Methods 0.000 description 4
- 125000004122 cyclic group Chemical group 0.000 description 2
- 230000007774 longterm Effects 0.000 description 2
- 230000003068 static effect Effects 0.000 description 2
- 101100533725 Mus musculus Smr3a gene Proteins 0.000 description 1
- 241000699670 Mus sp. Species 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 230000003190 augmentative effect Effects 0.000 description 1
- 238000013523 data management Methods 0.000 description 1
- 238000007599 discharging Methods 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000013468 resource allocation Methods 0.000 description 1
- 239000004984 smart glass Substances 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
Classifications
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/02—Power saving arrangements
- H04W52/0203—Power saving arrangements in the radio access network or backbone network of wireless communication networks
- H04W52/0206—Power saving arrangements in the radio access network or backbone network of wireless communication networks in access points, e.g. base stations
-
- H—ELECTRICITY
- H04—ELECTRIC COMMUNICATION TECHNIQUE
- H04W—WIRELESS COMMUNICATION NETWORKS
- H04W52/00—Power management, e.g. TPC [Transmission Power Control], power saving or power classes
- H04W52/02—Power saving arrangements
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02D—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
- Y02D30/00—Reducing energy consumption in communication networks
- Y02D30/70—Reducing energy consumption in communication networks in wireless communication networks
Definitions
- This application belongs to the field of communication technology, and specifically relates to an energy-saving wake-up method, device, terminal, base station and storage medium.
- the base station may completely turn off downlink transmission; only turn on part of the uplink reception function; turn off some hardware, such as some antennas or ports; or extend the transmission cycle of the common signal, etc., thus To achieve the purpose of energy saving.
- WUS signals can be sent through User Equipment (UE) (such as terminals): waking up these base stations in an energy-saving state; switching the base station from deep sleep to light sleep; allowing the base station to turn on all turned off hardware; and reducing the transmission of common signals. cycle, etc.
- UE User Equipment
- the WUS signal may need to carry some information to better assist the base station in 'waking up'.
- the preamble cannot carry bits and cannot assist the base station in waking up.
- Embodiments of the present application provide an energy-saving wake-up method, device, terminal, base station and storage medium. quality, which can solve the problem of being unable to assist the base station in wake-up work.
- the first aspect provides an energy-saving wake-up method, which includes:
- the terminal sends an energy-saving wake-up signal
- the energy-saving wake-up signal is used to wake up the first base station, the energy-saving wake-up signal carries first information, and the first information is used to indicate energy-saving processing after the first base station is awakened; the energy-saving wake-up signal includes preamble sequence.
- an energy-saving wake-up method which method includes:
- the first base station receives the energy-saving wake-up signal
- the first base station performs energy-saving processing according to the first information in the energy-saving wake-up signal
- the energy-saving wake-up signal includes a preamble sequence.
- an energy-saving wake-up method which method includes:
- the second base station receives the energy-saving wake-up signal
- the second base station wakes up the first base station indicated by the first information according to the first information in the energy-saving wake-up signal, where the first information includes the base station identification of the first base station;
- the energy-saving wake-up signal includes a preamble sequence
- the base station identification of the first base station corresponds to the preamble sequence
- the fourth aspect provides an energy-saving wake-up method, which includes:
- the second base station receives the SSB measurement results
- the second base station wakes up the first base station indicated by the SSB measurement result according to the SSB measurement result.
- an energy-saving wake-up device which device includes:
- the first sending module is used to send energy-saving wake-up signals
- the energy-saving wake-up signal is used to wake up the first base station, the energy-saving wake-up signal carries first information, and the first information is used to indicate energy-saving processing after the first base station is awakened; the energy-saving wake-up signal includes preamble sequence.
- an energy-saving wake-up device which device includes:
- the first receiving module is used to receive the energy-saving wake-up signal
- a first processing module configured to perform energy-saving processing according to the first information in the energy-saving wake-up signal
- the energy-saving wake-up signal includes a preamble sequence.
- an energy-saving wake-up device which device includes:
- the second receiving module is used to receive the energy-saving wake-up signal
- a first wake-up module configured to wake up the first base station indicated by the first information according to the first information in the energy-saving wake-up signal, where the first information includes the base station identification of the first base station;
- the energy-saving wake-up signal includes a preamble sequence
- the base station identification of the first base station corresponds to the preamble sequence
- An eighth aspect provides an energy-saving wake-up device, which includes:
- the third receiving module is used to receive SSB measurement results
- the second wake-up module is configured to wake up the first base station indicated by the SSB measurement result according to the SSB measurement result.
- a terminal in a ninth aspect, includes a processor and a memory.
- the memory stores programs or instructions that can be run on the processor.
- the program or instructions are executed by the processor, the following implementations are implemented: The steps of the method described in one aspect.
- a terminal including a processor and a communication interface, wherein the communication interface is used for:
- the energy-saving wake-up signal is used to wake up the first base station, the energy-saving wake-up signal carries first information, and the first information is used to indicate energy-saving processing after the first base station is awakened; the energy-saving wake-up signal includes preamble sequence.
- a first base station in an eleventh aspect, includes a processor and a memory.
- the memory stores programs or instructions that can be run on the processor.
- the program or instructions are used by the processor. When executed, the steps of the method as described in the second aspect are implemented.
- a first base station including a processor and a communication interface, wherein the communication interface is used for:
- the processor is used for:
- the energy-saving wake-up signal includes a preamble sequence.
- a second base station in a thirteenth aspect, includes a processor and a memory.
- the memory stores programs or instructions that can be run on the processor.
- the program or instructions are used by the processor. When executed, the steps of the method as described in the third aspect are implemented.
- a second base station including a processor and a communication interface, wherein the communication interface is used for:
- the processor is used for:
- the energy-saving wake-up signal includes a preamble sequence
- the base station identification of the first base station corresponds to the preamble sequence
- a second base station in a fifteenth aspect, includes a processor and a memory.
- the memory stores programs or instructions that can be run on the processor.
- the program or instructions are used by the processor. When executed, the steps of the method described in the fourth aspect are implemented.
- a second base station including a processor and a communication interface, wherein the communication interface is used for:
- the processor is used for:
- an energy-saving wake-up system including: a terminal, a first base station, and a second base station.
- the terminal can be used to perform the steps of the energy-saving wake-up method as described in the first aspect.
- the first base station can In order to perform the energy-saving wake-up method as described in the second aspect, the second base station may be used to perform the energy-saving wake-up method as described in the third or fourth aspect.
- a readable storage medium is provided. Programs or instructions are stored on the readable storage medium. When the programs or instructions are executed by a processor, the method as described in the first aspect is implemented, or the method as described in the first aspect is implemented. The method described in the second aspect either implements the method described in the third aspect or implements the method described in the fourth aspect.
- a chip in a nineteenth aspect, includes a processor and a communication interface.
- the communication interface is coupled to the processor.
- the processor is used to run programs or instructions to implement the method described in the first aspect. Method, or implement the method as described in the second aspect, or implement the method as described in the third aspect, or implement the method as described in the fourth aspect.
- a computer program/program product is provided, the computer program/program product is stored in a storage medium, and the computer program/program product is executed by at least one processor to implement the first aspect method, or implement the method described in the second aspect, or implement the method described in the third aspect, or implement the method described in the fourth aspect.
- the wake-up signal including the preamble sequence carries the first information to indicate the energy-saving processing after the first base station is awakened, thereby assisting the first base station in saving energy.
- Figure 1 shows a block diagram of a wireless communication system to which embodiments of the present application are applicable
- FIG. 2 is a schematic flow chart of four-step RACH provided by related technologies
- Figure 3 is a schematic diagram comparing two-step RACH and four-step RACH provided by related technologies
- Figure 4 is a schematic diagram of a PDCCH-based wake-up signal provided by related technologies
- FIG. 5 is one of the flow diagrams of the energy-saving wake-up method provided by the embodiment of the present application.
- FIG. 6 is the second schematic flowchart of the energy-saving wake-up method provided by the embodiment of the present application.
- Figure 7 is the third schematic flowchart of the energy-saving wake-up method provided by the embodiment of the present application.
- Figure 8 is the fourth schematic flowchart of the energy-saving wake-up method provided by the embodiment of the present application.
- Figure 9 is one of the structural schematic diagrams of the energy-saving wake-up device provided by the embodiment of the present application.
- Figure 10 is the second structural schematic diagram of the energy-saving wake-up device provided by the embodiment of the present application.
- Figure 11 is the third structural schematic diagram of the energy-saving wake-up device provided by the embodiment of the present application.
- Figure 12 is the fourth structural schematic diagram of the energy-saving wake-up device provided by the embodiment of the present application.
- Figure 13 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
- Figure 14 is a schematic diagram of the hardware structure of a terminal that implements an embodiment of the present application.
- Figure 15 is a schematic diagram of the hardware structure of a first base station that implements an embodiment of the present application.
- Figure 16 is one of the schematic diagrams of the hardware structure of the second base station that implements the embodiment of the present application.
- Figure 17 is the second schematic diagram of the hardware structure of the second base station that implements the embodiment of the present application.
- first, second, etc. in the description and claims of this application are used to distinguish similar objects and are not used to describe a specific order or sequence. It is to be understood that the terms so used are interchangeable under appropriate circumstances so that the embodiments of the present application can be practiced in sequences other than those illustrated or described herein, and that "first" and “second” are distinguished objects It is usually one type, and the number of objects is not limited.
- the first object can be one or multiple.
- “and/or” in the description and claims indicates at least one of the connected objects, and the character “/" generally indicates that the related objects are in an "or” relationship.
- LTE Long Term Evolution
- LTE-Advanced, LTE-A Long Term Evolution
- CDMA Code Division Multiple Access
- TDMA Time Division Multiple Access
- FDMA Frequency Division Multiple Access
- OFDMA Orthogonal Frequency Division Multiple Access
- SC-FDMA Single-carrier Frequency Division Multiple Access
- system and “network” in the embodiments of this application are often used interchangeably, and the described technology can be used not only for the above-mentioned systems and radio technologies, but also for other systems and radio technologies.
- NR New Radio
- the following description describes a New Radio (NR) system for example purposes, and uses NR terminology in much of the following description, but these techniques can also be applied to applications other than NR system applications, such as 6th Generation , 6G) communication system.
- NR New Radio
- FIG. 1 shows a block diagram of a wireless communication system to which embodiments of the present application are applicable.
- the wireless communication system includes a terminal 11 and a network side device 12.
- the terminal 11 may be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer), or a notebook computer, a personal digital assistant (Personal Digital Assistant, PDA), a palmtop computer, Netbook, ultra-mobile personal computer (UMPC), mobile Internet device (MID), augmented reality (AR)/virtual reality (VR) equipment, robots, wearables Wearable Device, vehicle-mounted equipment (VUE), pedestrian terminal (PUE), smart home (home equipment with wireless communication functions, such as refrigerators, TVs, washing machines or furniture, etc.), game consoles, personal computers, PC), teller machines or self-service machines and other terminal-side devices.
- UMPC ultra-mobile personal computer
- MID mobile Internet device
- AR augmented reality
- VR virtual reality
- VUE vehicle-mounted equipment
- PUE pedestrian terminal
- the network side device 12 may include an access network device or a core network device, where the access network device 12 may also be called a radio access network device, a radio access network (Radio Access Network, RAN), a radio access network function or Wireless access network unit.
- the access network device 12 may include a base station, a WLAN access point or a WiFi node, etc.
- the base station may be called a Node B, an evolved Node B (eNB), an access point, a Base Transceiver Station (BTS), a radio Base station, radio transceiver, Basic Service Set (BSS), Extended Service Set (ESS), Home Node B, Home Evolved Node B, Transmitting Receiving Point (TRP) or all
- eNB evolved Node B
- BTS Base Transceiver Station
- BSS Basic Service Set
- ESS Extended Service Set
- Home Node B Home Evolved Node B
- TRP Transmitting Receiving Point
- Core network equipment may include but is not limited to at least one of the following: core network nodes, core network functions, mobility management entities (Mobility Management Entity, MME), access mobility management functions (Access and Mobility Management Function, AMF), session management functions (Session Management Function, SMF), User Plane Function (UPF), Policy Control Function (PCF), Policy and Charging Rules Function (PCRF), Edge Application Service Discovery function (Edge Application Server Discovery Function, EASDF), Unified Data Management (UDM), Unified Data Repository (UDR), Home Subscriber Server (HSS), Centralized network configuration (CNC), Network Repository Function (NRF), Network Exposure Function (NEF), local NEF (Local NEF, or L-NEF), binding support function (Binding Support Function, BSF), application function (Application Function, AF), etc.
- MME mobility management entities
- AMF Access and Mobility Management Function
- SMF Session Management Function
- UPF User Plane Function
- PCF Policy Control Function
- PCF Policy and Charging Rules Function
- the UE and the cell obtain downlink synchronization, and the UE can receive downlink data.
- the UE can only perform uplink transmission when it obtains uplink synchronization with the cell.
- the UE establishes a connection with the cell through the random access procedure (Random Access Procedure) and obtains uplink synchronization.
- the UE can be in the Radio Resource Control (RRC) connection state and can perform normal uplink and downlink transmissions with the network.
- RRC Radio Resource Control
- the main purposes of random access (1) Obtain uplink synchronization; (2) Assign a unique identifier to the UE: Cell Radio Network Temporary Identifier (C-RNTI).
- C-RNTI Cell Radio Network Temporary Identifier
- the first step of the random access process is that the UE sends a random access preamble (Random Access preamble).
- the main function of the preamble is to tell the base station (gNB) that there is a random access request, and to enable the gNB to estimate the transmission delay between it and the UE, so that the gNB can calibrate the uplink timing and pass the calibration information through the RAR. Notify the UE of the timing advance command.
- the preamble sequence is generated by cyclically shifting the root ZC sequence (root Zadoff-Chu sequence).
- Each Physical Random Access Channel (PRACH) time-frequency opportunity defines 64 preambles. These 64 preambles will first be in increasing order of the cyclic shift N_cs of the logical root sequence, and then incremented by different logical root sequences. Numbered in order. If 64 preambles cannot be obtained by cyclic shifting based on a single root sequence, then the remaining preamble sequences will be generated through the root sequence corresponding to the next index. Generate until all 64 preambles are generated.
- PRACH Physical Random Access Channel
- the RACH process can be divided into four-step RACH and two-step RACH.
- FIG 2 is a schematic flowchart of four-step RACH provided by related technologies.
- Figure 3 is a schematic diagram comparing two-step RACH and four-step RACH provided by related technologies. As shown in Figures 2 and 3, the approximate differences between two-step RACH and four-step RACH are shown in Figure 2 and Figure 3. The difference is shown in the picture above. That is, Msg (Message) A contains the information of Msg 1 and Msg 3 in the four-step RACH. Msg B contains the information of Msg 2 and Msg 4.
- MsgA contains preamble and payload, which is similar to the combination of Msg1+Msg3, but because MsgA preamble and MsgA payload need to be sent successively (carrying some letters, such as UE flag, etc.).
- the RAR can carry the physical uplink shared channel (Physical Uplink Shared Channel, PUSCH) resource for sending Msg3, but in 2-step RACH, MsgA PUSCH can be sent with MsgA preamble, so the resources of MsgA PUSCH need to be This is indicated to the UE before RACH is initiated.
- PUSCH Physical Uplink Shared Channel
- msgA-PUSCH-TimeDomainOffset indicates the slot offset between the time slot (slot) where the first MsgA PO (Physical Random Access Channel occasion, physical random access channel opportunity) is located and the slot of the PRACH occasion, with a total of consecutive nrofSlotsMsgA- PUSCH slots. There are nrofMsgA-PO-perSlot consecutive MsgA POs in each slot.
- parameters to indicate the time domain allocation of each MsgA PO which is similar to the uplink DCI indicating the resource allocation of PUSCH, that is, a parameter is used to indicate the starting position and length;
- MsgA PUSCH occasion of continuous nrofMsgA-PO-FDM multiple Frequency Division Multiplex (FDM) supports RB-level configurable guard band, which can be indicated by the parameter guardBandMsgA-PUSCH.
- FIG. 4 is a schematic diagram of a PDCCH-based wake-up signal provided by related technologies.
- a physical downlink control channel Physical downlink control channel, PDCCH
- WUS wake-up signal
- the function of WUS is to inform the UE whether it needs to monitor the PDCCH during the wake-up activation period (onDuration) of a specific discontinuous reception (Discontinuous Reception, DRX).
- onDuration wake-up activation period
- DRX discontinuous Reception
- the UE does not need to monitor the PDCCH during onDuration, which is equivalent to the UE being in a sleep state during the entire DRX Long cycle, thereby further saving power.
- the WUS signal is a kind of downlink control information (DCI), referred to as DCP (DCI with CRC scrambled by PS-RNTI), where PS-RNTI is allocated by the network to the UE specifically for power saving features.
- DCI downlink control information
- PS-RNTI Radio Network Temporary Identifier
- RNTI Radio Network Temporary Identifier
- the UE decides whether to start the onDuration timer in the next discontinuous reception (Discontinuous Reception, DRX) cycle and whether to monitor the PDCCH.
- FIG 5 is one of the flow diagrams of the energy-saving wake-up method provided by the embodiment of the present application. As shown in Figure 5, the energy-saving wake-up method includes the following steps:
- Step 500 The terminal sends an energy-saving wake-up signal
- the energy-saving wake-up signal is used to wake up the first base station, the energy-saving wake-up signal carries first information, and the first information is used to indicate energy-saving processing after the first base station is awakened; the energy-saving wake-up signal includes preamble sequence.
- the first base station may be a base station that is in an energy-saving state and is to be awakened;
- the first base station may be the wake-up target of the terminal
- the energy-saving wake-up signal may be called WUS, UE WUS, or WUS signal;
- the terminal can send an energy-saving wake-up signal including a preamble sequence, and carry the first information through the energy-saving wake-up signal, Used to instruct the first base station to perform energy-saving processing after waking up;
- the UE sends an energy-saving wake-up signal, and uses the first information carried by the energy-saving signal to assist the first base station in performing energy-saving processing.
- the wake-up signal including the preamble sequence carries the first information to indicate the energy-saving processing after the first base station is awakened, thereby assisting the first base station in saving energy.
- the first information includes at least one of the following:
- the terminal identification of the terminal is the terminal identification of the terminal
- the base station identification of the first base station is the base station identification of the first base station
- the transmit power of the terminal is the transmit power of the terminal
- the location information of the terminal is the location information of the terminal.
- the priority or data size of the terminal is data
- the beam information or beam configuration information determined by the terminal The beam information or beam configuration information determined by the terminal;
- the preset information is used to demodulate the energy-saving wake-up signal.
- the information carried by WUS may include any one or more of the following:
- Terminal identification (UE ID) of the terminal UE ID
- GUI Globally Unique Temporary UE Identity
- TMSI Temporary Mobile Subscriber Identity
- the second base station (which may correspond to the serving cell of the terminal) can synchronize to the first base station in the energy-saving state, and a UE is about to send or is sending a WUS signal, and inform the terminal of the UE ID.
- the UE ID can be solved before it starts to 'wake up'.
- the second base station may be the terminal's serving base station
- the base station identification of the first base station (for example, it can be Cell ID);
- the first base station when there are multiple first base stations in the energy-saving state, it will 'wake up' only if it detects a cell with the same ID information as its own.
- the second base station wakes up the first base station in the energy-saving state through the network side (higher layer, such as the Xn interface) based on the base station identity of the first base station.
- the first base station in the energy-saving state can estimate the UL WUS path loss based on the transmission power of the terminal and the measurement of the reference signal RSRP, and can adjust the appropriate downlink power to serve the UE. .
- the first energy-saving state Base stations may use larger SSB periods. If the UE finds that the downlink is out of synchronization, or the measurement is not accurate, the terminal can inform the first base station of the desired SSB period through WUS.
- the first base station in the energy-saving state can determine whether it needs to 'wake up' based on the location information of the terminal.
- the first base station in the energy-saving state can also be replaced by a cell in the energy-saving state of the cell in the energy-saving mode, which is applicable to each embodiment of the present application;
- the first base station in the energy-saving state can 'wake up'.
- the UE can obtain the beam of the preferred first base station in the energy-saving state when performing neighbor cell measurements in the serving cell.
- the terminal can notify the first base station in the energy-saving state through WUS.
- the first base station in the energy-saving state can selectively send beams (selectively turn on some hardware devices, such as PA, etc.) based on this information.
- the preset information is used to demodulate the energy-saving wake-up signal
- the preset information (or can be called a designated signal or a special signal) is a signal predefined by the protocol and dedicated to WUS demodulation.
- the first base station in the energy-saving state can wake up after receiving and demodulating the content.
- the energy-saving wake-up signal includes one or more preamble sequences, or the energy-saving wake-up signal
- the wake-up signal includes preamble sequence and payload.
- the terminal sends an energy-saving wake-up signal.
- the energy-saving wake-up signal may be composed of a single or multiple preamble sequences; or it may be composed of a single preamble sequence combined with a payload.
- the first information is jointly carried by the multiple preamble sequences, and each preamble sequence in the multiple preamble sequences respectively carries the 1-bit content in the first information.
- the first information carried by the energy-saving wake-up signal may be carried by multiple preambles
- each preamble sequence may implicitly represent carrying 1 bit of information.
- the time-frequency domain positions of the multiple preambles may be in TDM mode and/or FDM mode.
- the number of multiple preambles and the time and frequency domain can be configured to the UE by the tracking area where the UE is currently located (the tracking area synchronizes the configuration to the first node in the energy-saving state). base station).
- the cells in the tracking area include: the current serving cell, or the most recently connected serving cell, or any serving cell in the current tracking area.
- the preamble sequence satisfies at least one of the following:
- the index of the preamble sequence corresponds to the first information
- the first preamble sequence group in which the index of the preamble sequence is located corresponds to the first information, wherein the first preamble sequence group is a plurality of index groups formed by all available preamble sequences in the cell where the terminal is located.
- the logical root sequence of the preamble sequence corresponds to the first information
- the preamble sequence corresponds to the first information
- the second preamble sequence group in which the preamble sequence is located corresponds to the first information, wherein the second preamble sequence group is a plurality of preambles formed by grouping all available preamble sequences in the cell where the terminal is located.
- the sequence group items One of the sequence group items.
- the energy-saving wake-up signal consists of a single preamble sequence
- the energy-saving wake-up signal The first information carried is implicitly carried by this single preamble.
- multiple preambles in a certain cell can be divided into multiple groups, and each group represents carrying different information.
- the grouping rules can be any of the following:
- preamble 0-11 is a group
- preamble 12-23 is a group, and so on.
- the network side configures itself, such as preamble 1,13,24,36 as a group.
- the energy-saving wake-up signal consists of a single preamble sequence
- these 64 preambles can be divided into multiple groups, each group representing carrying different information. For example, it is divided into 3 groups.
- Group 1 means that the preamble in this group does not carry redundant information
- group 2 means that the preamble in this group carries specific information, such as specific power information, specific common signal cycle information, and specific beam information. Etc.
- group 3 has similar functions to group 2, the difference is that the indicated values are different.
- the number of preambles available in a cell is not limited to 64, but can also be 128, or any other achievable value, which is not limited in this embodiment of the application;
- the first base station after the first base station receives the energy-saving wake-up signal, it can be determined based on the index of the single preamble sequence, or the single preamble sequence, according to the preset mapping relationship between each group of preamble sequences and the first information.
- the specific content of the first information indicated by the energy-saving wake-up signal is not limited to the specific content of the first information indicated by the energy-saving wake-up signal.
- the index of the preamble sequence corresponds to the first information
- the first preamble sequence group in which the index of the preamble sequence is located corresponds to the first information, wherein the first preamble sequence group is formed by the index grouping of all available preamble sequences in the cell where the terminal is located.
- indexes 1-8 of the preamble sequence correspond to the terminal identifier a1 of the terminal and/or the transmit power b1 of the terminal
- indices 9-16 of the preamble sequence correspond to the terminal identifier a2 of the terminal and/or the transmit power b2 of the terminal
- Indexes 17-24 of the preamble sequence correspond to the terminal identifier a3 of the terminal. and/or the transmit power b3 of the terminal...and so on.
- the terminal uses any of the indexes 19-24.
- indexes 1-8 of the preamble sequence correspond to the terminal identifier a1 of the terminal and/or the beam information c1 determined by the terminal
- indices 9-16 of the preamble sequence correspond to the terminal identifier a2 of the terminal and/or the beam information determined by the terminal.
- the indexes 17-24 of the preamble sequence correspond to the terminal identification a3 of the terminal and/or the beam information c3 determined by the terminal; the indexes 25-32 of the preamble sequence correspond to the priority d1 of the data of the terminal, and the indexes 33-40 of the preamble sequence Corresponding to the priority d2 of the terminal's data, the indexes 41-48 of the preamble sequence correspond to the priority d3 of the terminal's data... and so on, then the first information that needs to be indicated by the terminal includes the terminal identifier a2 of the terminal and/or the terminal determines In the case of beam information c2, the preamble sequence corresponding to any one of indexes 9-16 is used. When the first information that needs to be indicated includes the priority d1 of the terminal's data, the terminal uses any one of indexes 25-32.
- the logical root sequence of the preamble sequence corresponds to the first information
- the logical root sequence A1 of the preamble sequence corresponds to the terminal identifier a1 of the terminal and/or the transmit power b1 of the terminal
- the logical root sequence A2 of the preamble sequence corresponds to the terminal identifier a2 of the terminal and/or the transmit power b2 of the terminal
- the logical root sequence A3 of the preamble sequence corresponds to the terminal identification a3 of the terminal and/or the transmission power b3 of the terminal, and so on.
- the first information that the terminal needs to indicate includes the terminal identification a3 of the terminal and/or the transmission power of the terminal. In the case of power b3, the preamble sequence of logical root sequence A3 is used;
- the logical root sequence A1 of the preamble sequence corresponds to the identifier e1 of the tracking area where the terminal is located and/or the transmit power b1 of the terminal
- the logical root sequence A2 of the preamble sequence corresponds to the identifier e2 of the tracking area where the terminal is located and/or the The transmit power b2 of the terminal
- the logical root sequence A3 of the preamble sequence corresponds to the identifier e3 of the tracking area where the terminal is located and/or the transmit power b3 of the terminal... and so on
- the first information that needs to be indicated by the terminal includes the tracking area where the terminal is located.
- the preamble sequence of the logical root sequence A3 is used;
- the logical root sequence A1 of the preamble sequence corresponds to the beam information c1 determined by the terminal
- the logical root sequence A2 of the preamble sequence corresponds to the beam information c2 determined by the terminal.
- the logical root sequence A3 of the column corresponds to the beam information c3 determined by the terminal;
- the logical root sequence A4 of the preamble sequence corresponds to the priority d1 of the terminal's data
- the logical root sequence A5 of the preamble sequence corresponds to the priority d2 of the terminal's data
- the root sequence A6 corresponds to the priority d3 of the terminal's data...and so on.
- the preamble sequence of the logical root sequence A2 is used.
- the terminal uses the preamble sequence of the logical root sequence A2.
- the preamble sequence of the logical root sequence A6 is used;
- the preamble sequence corresponds to the first information
- the second preamble sequence group in which the preamble sequence is located corresponds to the first information, wherein the second preamble sequence group is a plurality of preambles formed by grouping all available preamble sequences in the cell where the terminal is located.
- preamble sequences B1-B8 correspond to the beam configuration information f1 determined by the terminal and/or the transmit power b1 of the terminal
- preamble sequences C1-C8 correspond to the beam configuration information f2 determined by the terminal and/or the transmit power b2 of the terminal
- the preamble sequences D1-D8 correspond to the beam configuration information f3 determined by the terminal and/or the transmit power b3 of the terminal...and so on, then the first information that needs to be indicated by the terminal includes the beam configuration information f3 determined by the terminal and/or the terminal In the case of transmission power b3, any one of the preamble sequences D1-D8 is used;
- the preamble sequences B1-B8 correspond to the terminal identification a1 of the terminal and/or the transmission power b1 of the terminal
- the preamble sequences C1-C8 correspond to the terminal identification a2 of the terminal and/or the transmission power b2 of the terminal
- the preamble sequence D1- D8 corresponds to the terminal identification a3 of the terminal and/or the transmission power b3 of the terminal, and so on.
- a single preamble sequence can indicate the terminal identification of the terminal, the base station identification of the first base station, the transmission power of the terminal, the expected period of the common signal by the terminal, the location information of the terminal, the priority or data size of the terminal's data, One or more of the beam information or beam configuration information determined by the terminal, the identification of the tracking area where the terminal is located, and the preset information are only used as examples to help understanding and do not limit the present application.
- the energy-saving wake-up signal includes a preamble sequence and payload Next
- the first information is carried by the payload.
- the energy-saving wake-up signal includes a preamble sequence and payload
- it is similar to the Msg A scheme in 2-step RACH. That is, a PUSCH is sent after the preamble sequence, and bits information (first information) is carried through the PUSCH.
- the time-frequency domain position of PUSCH can be configured to the UE through the tracking area where the UE is currently located, and synchronized to the first base station in the energy-saving state.
- This configuration can be configured separately, or by default it is the same as the configuration of Msg A under the serving cell.
- the method before the terminal sends an energy-saving wake-up signal, the method further includes:
- the terminal determines the transmission configuration of the energy-saving wake-up signal based on the transmission configuration indication information of the cell in the tracking area where the terminal is located;
- the cells in the tracking area where the terminal is located include at least one of the following:
- the current serving cell of the terminal (corresponding to the second base station);
- the serving cell to which the terminal was recently connected The serving cell to which the terminal was recently connected;
- the current tracking area of the terminal is any serving cell within the tracking area.
- the configuration of the energy-saving signal sent by the UE is configured by the cell in the tracking area (tracking area) where the UE is located.
- the cells in the tracking area include: the current serving cell of the terminal, or the serving cell to which the terminal is recently connected, or any serving cell in the current tracking area of the terminal.
- the transmission configuration can be a separate configuration, or the default is the same as certain configurations in a certain serving cell in the tracking area.
- the transmission configuration of the energy-saving wake-up signal includes at least one of the following:
- the transmission configuration of the energy-saving wake-up signal may include any one or more of the following:
- the number of preambles is the number of preambles.
- the number of preamble sequences may refer to the number of preambles, for example, it may correspond to a single or multiple preambles included in the energy-saving wake-up signal.
- multiple preambles can be used to indicate the first information, or only a single preamble sequence can be used to indicate, or a preamble combined with a payload can be used to indicate.
- the transmission configuration of the energy-saving wake-up signal includes one preamble
- the base station identifier of the first base station corresponds to the index of the preamble sequence.
- the base station identifier of the first base station can be associated with the index of the preamble sequence
- the method also includes:
- the terminal measures SSB and obtains SSB measurement results
- the terminal determines the first base station as a wake-up target based on the SSB measurement result.
- the terminal can perform SSB measurement and obtain the SSB measurement result.
- the first base station indicated by the base station identifier corresponding to the SSB measurement result needs to be awakened.
- the terminal sending an energy-saving wake-up signal includes: the terminal determines the index of the preamble sequence corresponding to the base station identification based on the base station identification of the first base station;
- the terminal sends the energy-saving wake-up signal to the first base station based on the base station identifier of the first base station and the index of the preamble sequence.
- the terminal may determine the index of the preamble sequence that needs to be used based on the association between the base station identifier of the first base station and the index of the preamble sequence.
- an energy-saving wake-up signal can be generated and sent.
- the terminal sends an energy-saving wake-up signal, including:
- the terminal sends the SSB measurement result to the second base station, where the SSB measurement result includes the base station identification of the first base station.
- the terminal can directly send the SSB measurement result to the second base station.
- the SSB measurement result includes the base station identification of the first base station.
- the first base station in the energy-saving state that needs to be awakened can be confirmed through the following steps:
- Step1 Establish a mapping relationship between the first base station ID in the energy-saving state and RACH resources.
- the mapping relationship can be based on the following rules:
- the network side divides the preamble index into N groups, each group corresponds to a base station identifier, such as Cell ID; or,
- the network side divides the preamble index into N groups, and uses Cell ID mod N to determine which group of preamble to select;
- Step2 The UE measures the SSB and obtains the Cell ID that it wants to wake up. Thus, the preamble index that can be sent is obtained;
- Step3 For idle UE: UE sends preamble, and the first base station in energy-saving state 'wakes up' upon receiving the preamble. Or, after receiving the preamble, the serving cell wakes up the first base station in the energy-saving state through the network side (higher layer, such as the Xn interface).
- Step3 For connected terminals (for connected UE): The UE directly reports the SSB measurement results (base station identification, such as Cell ID) to the serving cell, and uses the serving cell to wake up the first base station in the energy-saving state.
- base station identification such as Cell ID
- the wake-up signal including the preamble sequence carries the first information to indicate the energy-saving processing after the first base station is awakened, thereby assisting the first base station in saving energy.
- FIG 6 is the second schematic flowchart of the energy-saving wake-up method provided by the embodiment of the present application. As shown in Figure 6, the method includes the following steps:
- Step 600 The first base station receives an energy-saving wake-up signal
- Step 610 The first base station performs energy-saving processing according to the first information in the energy-saving wake-up signal
- the energy-saving wake-up signal includes a preamble sequence.
- the first base station may be a base station that is in an energy-saving state and is to be awakened;
- the first base station may be the wake-up target of the terminal
- the energy-saving wake-up signal may be called WUS, UE WUS, or WUS signal;
- the terminal can send an energy-saving wake-up signal including a preamble sequence, and carry the first information through the energy-saving wake-up signal,
- the first base station can receive the energy-saving wake-up signal and perform energy-saving processing according to the first information in the energy-saving wake-up signal;
- the UE sends an energy-saving wake-up signal, and uses the first information carried by the energy-saving signal to assist the first base station in performing energy-saving processing.
- the wake-up signal including the preamble sequence carries the first information to indicate the energy-saving processing after the first base station is awakened, thereby assisting the first base station in saving energy.
- the first base station performs energy saving processing according to the first information in the energy saving wake-up signal, including:
- the first base station determines the transmit power of the first base station based on the first information
- the first information includes at least one of the following:
- the transmit power of the terminal is the transmit power of the terminal
- the location information of the terminal is the location information of the terminal.
- the first base station may calculate and determine its own transmit power based on the UE transmit power and/or UE location information;
- the first base station in the energy-saving state can estimate the UL WUS path loss based on the transmission power of the terminal and the measurement of the reference signal RSRP, and can adjust the appropriate downlink power to serve the UE. .
- the first base station in the energy-saving state can determine whether it needs to 'wake up' based on the location information of the terminal.
- the first base station performs energy saving processing according to the first information in the energy saving wake-up signal, including:
- the first base station determines the period of the common signal of the first base station based on the first information
- the first information includes at least one of the following:
- the terminal s expected period for common signal.
- the first base station may configure its own common signal period according to the terminal's expected period of the common signal in the first information.
- the first information may include the terminal's expected period of the common signal, that is, the common signal period desired by the UE;
- the first base station in the energy-saving state may use a larger SSB period. If the UE finds that the downlink is out of synchronization, or the measurement is not accurate, the terminal can inform the first base station of the desired SSB period through WUS.
- the first base station performs energy saving processing according to the first information in the energy saving wake-up signal, including:
- the first base station determines whether to enable all or part of the hardware that is in a closed state based on the first information, and/or determines whether to enable all or part of the bandwidth resources that are in a closed state;
- the first information includes at least one of the following:
- the priority or data size of the terminal is data
- Beam information or beam configuration information determined by the terminal Beam information or beam configuration information determined by the terminal.
- the first base station can decide whether to turn on all/partially turned off hardware, bandwidth resources, etc. based on the UE data priority/size, or the UE prefer beam/or beam configuration;
- the first base station in the energy-saving state can 'wake up'.
- the first base station performs energy saving processing according to the first information in the energy saving wake-up signal, including:
- the first base station determines that the wake-up target of the energy-saving wake-up information is the first base station according to the first information, and then wakes up from the energy-saving state or switches from the deep sleep state to the light sleep state;
- the first information includes at least one of the following:
- the terminal identification of the terminal is the terminal identification of the terminal
- the preset information is used to demodulate the energy-saving wake-up signal.
- the first information may include a terminal identification (UE ID) of the terminal;
- UE ID terminal identification
- GUTI Globally Unique Temporary UE Identity
- TMSI Temporary Mobile Subscriber Identity
- similar terminal identifier that can uniquely identify the terminal
- the second base station (for example, the serving cell of the terminal) can synchronize to the first base station in the energy-saving state.
- a UE is about to send or is sending a WUS signal, and inform the terminal of the UE ID. After the blind detection of the first base station in the energy-saving state, the UE ID can be solved before it starts to 'wake up'.
- the second base station may be the terminal's serving base station
- the first information may include the base station identification of the first base station (for example, it may be Cell ID);
- the first base station when there are multiple first base stations in the energy-saving state, only cells with the same ID information as its own are detected to 'wake up'.
- the second base station wakes up the first base station in the energy-saving state through the network side (higher layer, such as the Xn interface) based on the base station identifier of the first base station.
- the first information may include preset information, the preset information being used to demodulate the energy-saving wake-up signal;
- the preset information (or can be called a designated signal or a special signal) is a signal predefined by the protocol and dedicated to WUS demodulation.
- the first base station in the energy-saving state can wake up after receiving and demodulating the content.
- the first information may include the identification of the tracking area where the terminal is located, that is, the tracking area ID.
- the first base station can determine whether the signal is sent to itself based on the ID information or designated information, thereby deciding whether to completely wake up from the energy-saving state; or switch from deep sleep to light sleep; the ID information includes the UE ID, Cell ID, tracking area ID, etc.
- the information carried by WUS may include any one or more of the following:
- Terminal identification (UE ID) of the terminal UE ID
- GUI Globally Unique Temporary UE Identity
- TMSI Temporary Mobile Subscriber Identity
- the second base station (for example, the serving cell of the terminal) can synchronize to the first base station in the energy-saving state.
- a UE is about to send or is sending a WUS signal, and inform the terminal of the UE ID. After the blind detection of the first base station in the energy-saving state, the UE ID can be solved before it starts to 'wake up'.
- the base station identification of the first base station (for example, it can be Cell ID);
- the first base station when there are multiple first base stations in the energy-saving state, only cells with the same ID information as its own are detected to 'wake up'.
- the second base station wakes up the first base station in the energy-saving state through the network side (higher layer, such as the Xn interface) based on the base station identification of the first base station (for example, it may be a Cell ID).
- the first base station in the energy-saving state can estimate the UL WUS path loss based on the transmission power of the terminal and the measurement of the reference signal RSRP, and can adjust the appropriate downlink power to serve the UE. .
- the first base station in the energy-saving state may use a larger SSB cycle. If the UE finds that the downlink is out of synchronization, or the measurement is not accurate, the terminal can inform the first base station of the desired SSB period through WUS.
- the first base station in the energy-saving state can determine whether it needs to 'wake up' based on the location information of the terminal.
- the first base station in the energy-saving state can 'wake up'.
- the UE can obtain the preferred first base station in the energy-saving state when performing neighbor cell measurements in the serving cell. beam.
- the terminal can notify the first base station in the energy-saving state through WUS.
- the first base station in the energy-saving state can selectively send beams (selectively turn on some hardware devices, such as PA, etc.) based on this information.
- the preset information is used to demodulate the energy-saving wake-up signal
- the preset information (or can be called a designated signal or a special signal) is a signal predefined by the protocol and dedicated to WUS demodulation.
- the first base station in the energy-saving state can wake up after receiving and demodulating the content.
- the base station identifier of the first base station corresponds to the preamble sequence.
- the base station identifier of the first base station can be associated with the index of the preamble sequence
- the first base station in the energy-saving state that needs to be awakened can be confirmed through the following steps:
- Step1 Establish a mapping relationship between the first base station ID in the energy-saving state and RACH resources.
- the mapping relationship can be based on the following rules:
- the network side divides the preamble index into N groups, each group corresponds to a base station identifier, such as Cell ID; or,
- the network side divides the preamble index into N groups, and uses Cell ID mod N to determine which group of preamble to select;
- Step2 The UE measures the SSB and obtains the Cell ID that it wants to wake up. Thus, the preamble index that can be sent is obtained;
- Step3 For idle UE: UE sends preamble, and the first base station in energy-saving state 'wakes up' upon receiving the preamble.
- the wake-up signal including the preamble sequence carries the first information to indicate the energy-saving processing after the first base station is awakened, thereby assisting the first base station in saving energy.
- FIG 7 is the third schematic flowchart of the energy-saving wake-up method provided by the embodiment of the present application. As shown in Figure 7 As shown, the method includes the following steps:
- Step 700 the second base station receives the energy-saving wake-up signal
- Step 710 The second base station wakes up the first base station indicated by the first information according to the first information in the energy-saving wake-up signal, where the first information includes the base station identification of the first base station;
- the energy-saving wake-up signal includes a preamble sequence
- the base station identification of the first base station corresponds to the preamble sequence
- the first base station may be a base station that is in an energy-saving state and is to be awakened;
- the first base station may be the wake-up target of the terminal
- the second base station may be the terminal's serving base station
- the energy-saving wake-up signal may be called WUS, UE WUS, or WUS signal;
- the terminal can send an energy-saving wake-up signal including a preamble sequence, and carry the first information through the energy-saving wake-up signal, It is used to indicate the energy-saving processing after the first base station is awakened.
- the second base station can wake up the first base station indicated by the first information according to the first information in the energy-saving wake-up signal.
- the first information includes a base station identifier of the first base station;
- the UE sends an energy-saving wake-up signal, and uses the first information carried by the energy-saving signal to assist the first base station in performing energy-saving processing.
- the base station identifier of the first base station can be associated with the index of the preamble sequence
- the first information carried by the energy-saving wake-up signal includes the base station identification of the first base station (for example, it may be a Cell ID)
- the first base station in the energy-saving state that needs to be awakened can be confirmed through the following steps:
- Step 1 Establish a mapping relationship between the base station identifier of the first base station in the energy-saving state and the RACH resource.
- the mapping relationship can be based on the following rules:
- the network side divides the preamble index into N groups, each group corresponds to a base station identifier, such as Cell ID; or,
- the network side divides the preamble index into N groups and uses Cell ID mod N to determine which a set of preamble;
- Step2 The UE measures the SSB and obtains the Cell ID that it wants to wake up. Thus, the preamble index that can be sent is obtained;
- Step3 For idle UEs: After receiving the preamble, the serving cell wakes up the first base station in the energy-saving state through the network side (higher layer, such as Xn interface).
- the wake-up signal including the preamble sequence carries the first information to indicate the energy-saving processing after the first base station is awakened, thereby assisting the first base station in saving energy.
- FIG 8 is the fourth schematic flowchart of the energy-saving wake-up method provided by the embodiment of the present application. As shown in Figure 8, the method includes the following steps:
- Step 800 The second base station receives the SSB measurement result
- Step 810 The second base station wakes up the first base station indicated by the SSB measurement result according to the SSB measurement result.
- the first base station may be a base station that is in an energy-saving state and is to be awakened;
- the first base station may be the wake-up target of the terminal
- the second base station may be the terminal's serving base station
- the energy-saving wake-up signal may be called WUS, UE WUS, or WUS signal;
- the terminal can send an energy-saving wake-up signal including a preamble sequence, and carry the first information through the energy-saving wake-up signal, It is used to indicate the energy-saving processing after the first base station is awakened.
- the second base station can wake up the first base station indicated by the first information according to the first information in the energy-saving wake-up signal.
- the first information includes a base station identifier of the first base station;
- the UE sends an energy-saving wake-up signal, and uses the first information carried by the energy-saving signal to assist the first base station in performing energy-saving processing.
- the base station identifier of the first base station can be associated with the index of the preamble sequence
- the energy-saving state that needs to be awakened can be confirmed through the following steps.
- Step1 Establish a mapping relationship between the first base station ID in the energy-saving state and RACH resources.
- the mapping relationship can be based on the following rules:
- the network side divides the preamble index into N groups, each group corresponds to a base station identifier, such as Cell ID; or,
- the network side divides the preamble index into N groups, and uses Cell ID mod N to determine which group of preamble to select;
- Step2 The UE measures the SSB and obtains the Cell ID that it wants to wake up. Thus, the preamble index that can be sent is obtained;
- Step3 For connected terminals (for connected UE): The UE directly reports the SSB measurement result (Cell ID) to the serving cell, and uses the serving cell to wake up the first base station in the energy-saving state.
- Cell ID the SSB measurement result
- the wake-up signal including the preamble sequence carries the first information to indicate the energy-saving processing after the first base station is awakened, thereby assisting the first base station in saving energy.
- the execution subject may be an energy-saving wake-up device.
- the energy-saving wake-up device performing the energy-saving wake-up method is used as an example to illustrate the energy-saving wake-up device provided by the embodiment of the present application.
- Figure 9 is one of the structural schematic diagrams of an energy-saving wake-up device provided by an embodiment of the present application.
- the device 900 includes: a first sending module 910; wherein:
- the first sending module 910 is used to send an energy-saving wake-up signal
- the energy-saving wake-up signal is used to wake up the first base station, the energy-saving wake-up signal carries first information, and the first information is used to indicate energy-saving processing after the first base station is awakened; the energy-saving wake-up signal includes preamble sequence.
- the wake-up signal including the preamble sequence carries the first information to indicate the energy-saving processing after the first base station is awakened, thereby assisting the first base station in saving energy.
- the first information includes at least one of the following:
- the terminal identification of the terminal is the terminal identification of the terminal
- the base station identification of the first base station is the base station identification of the first base station
- the transmit power of the terminal is the transmit power of the terminal
- the location information of the terminal is the location information of the terminal.
- the priority or data size of the terminal is data
- the beam information or beam configuration information determined by the terminal The beam information or beam configuration information determined by the terminal;
- the preset information is used to demodulate the energy-saving wake-up signal.
- the energy-saving wake-up signal includes one or more preamble sequences, or the energy-saving wake-up signal includes a preamble sequence and a payload.
- the first information is jointly carried by the multiple preamble sequences, and each preamble sequence in the multiple preamble sequences separately carries the 1-bit content in the first information.
- the preamble sequence satisfies at least one of the following:
- the index of the preamble sequence corresponds to the first information
- the first preamble sequence group in which the index of the preamble sequence is located corresponds to the first information, wherein the first preamble sequence group is a plurality of preambles formed by index groups of all available preamble sequences in the cell where the terminal is located.
- the logical root sequence of the preamble sequence corresponds to the first information
- the preamble sequence corresponds to the first information
- the second preamble sequence group in which the preamble sequence is located corresponds to the first information, wherein the second preamble sequence group is a plurality of preambles formed by grouping all available preamble sequences in the cell where the terminal is located.
- the sequence group items One of the sequence group items.
- the energy-saving wake-up signal includes a preamble sequence and a payload
- the first information is carried by the payload.
- the device also includes:
- a first determination module configured to determine the transmission configuration of the energy-saving wake-up signal based on the transmission configuration indication information of the cell in the tracking area where the terminal is located before sending the energy-saving wake-up signal;
- the cells in the tracking area where the terminal is located include at least the following: One item:
- the current serving cell of the terminal is the current serving cell of the terminal.
- the serving cell to which the terminal was recently connected The serving cell to which the terminal was recently connected;
- the current tracking area of the terminal is any serving cell within the tracking area.
- the transmission configuration of the energy-saving wake-up signal includes at least one of the following:
- the base station identifier of the first base station corresponds to the index of the preamble sequence.
- the device also includes:
- the first measurement module is used to measure SSB and obtain SSB measurement results
- the second determination module is configured to determine the first base station as the wake-up target based on the SSB measurement result.
- the first sending module is specifically used for:
- the energy-saving wake-up signal is sent to the first base station based on the base station identifier of the first base station and the index of the preamble sequence.
- the first sending module is specifically used for:
- the wake-up signal including the preamble sequence carries the first information to indicate the energy-saving processing after the first base station is awakened, thereby assisting the first base station in saving energy.
- the energy-saving wake-up device in the embodiment of the present application may be an electronic device, such as an electronic device with an operating system, or may be a component in the electronic device, such as an integrated circuit or chip.
- the electronic device may be a terminal or other devices other than the terminal.
- terminals may include but are not limited to the types of terminals 11 listed above, and other devices may be servers, network attached storage (Network Attached Storage, NAS), etc., which are not specifically limited in the embodiment of this application.
- NAS Network Attached Storage
- the energy-saving wake-up device provided by the embodiment of the present application can implement each process implemented by the method embodiment in Figure 5 and achieve the same technical effect. To avoid duplication, it will not be described again here.
- Figure 10 is the second structural schematic diagram of an energy-saving wake-up device provided by an embodiment of the present application.
- the device 1000 includes: a first receiving module 1010 and a first processing module 1020; wherein:
- the first receiving module 1010 is used to receive an energy-saving wake-up signal
- the first processing module 1020 is configured to perform energy-saving processing according to the first information in the energy-saving wake-up signal
- the energy-saving wake-up signal includes a preamble sequence.
- the wake-up signal including the preamble sequence carries the first information to indicate the energy-saving processing after the first base station is awakened, thereby assisting the first base station in saving energy.
- the first processing module is specifically used for:
- the first information includes at least one of the following:
- the transmit power of the terminal is the transmit power of the terminal
- the location information of the terminal is the location information of the terminal.
- the first processing module is specifically used for:
- the first information determine the period of the common signal of the first base station
- the first information includes at least one of the following:
- the terminal s expected period for common signal.
- the first processing module is specifically used for:
- the first information determine whether to open all or part of the hardware that is in a closed state, and/or determine whether to open all or part of the bandwidth resources that are in a closed state;
- the first information includes at least one of the following:
- the priority or data size of the terminal is data
- Beam information or beam configuration information determined by the terminal Beam information or beam configuration information determined by the terminal.
- the first processing module is specifically used for:
- the wake-up target of the energy-saving wake-up information is the first base station, then it is awakened from the energy-saving state or switched from the deep sleep state to the light sleep state;
- the first information includes at least one of the following:
- the terminal identification of the terminal is the terminal identification of the terminal
- the preset information is used to demodulate the energy-saving wake-up signal.
- the base station identifier of the first base station corresponds to the preamble sequence.
- the wake-up signal including the preamble sequence carries the first information to indicate the energy-saving processing after the first base station is awakened, thereby assisting the first base station in saving energy.
- the energy-saving wake-up device in the embodiment of the present application may be an electronic device, such as an electronic device with an operating system, or may be a component in the electronic device, such as an integrated circuit or chip.
- the electronic device may be a terminal or other devices other than the terminal.
- terminals may include but are not limited to the types of terminals 11 listed above, and other devices may be servers, network attached storage (Network Attached Storage, NAS), etc., which are not specifically limited in the embodiment of this application.
- NAS Network Attached Storage
- the energy-saving wake-up device provided by the embodiment of the present application can implement each process implemented by the method embodiment in Figure 6 and achieve the same technical effect. To avoid duplication, it will not be described again here.
- Figure 11 is a third structural schematic diagram of an energy-saving wake-up device provided by an embodiment of the present application. As shown in Figure 11, the device 1100 includes: a second receiving module 1110 and a first wake-up module 1120; wherein:
- the second receiving module 1110 is used to receive the energy-saving wake-up signal
- the first wake-up module 1120 is configured to wake up the first base station indicated by the first information according to the first information in the energy-saving wake-up signal, where the first information includes the base station identifier of the first base station;
- the energy-saving wake-up signal includes a preamble sequence
- the base station identifier of the first base station corresponds to the preamble sequence
- the wake-up signal including the preamble sequence carries the first information to indicate the energy-saving processing after the first base station is awakened, thereby assisting the first base station in saving energy.
- the energy-saving wake-up device in the embodiment of the present application may be an electronic device, such as an electronic device with an operating system, or may be a component in the electronic device, such as an integrated circuit or chip.
- the electronic The device may be a terminal or other devices other than the terminal.
- terminals may include but are not limited to the types of terminals 11 listed above, and other devices may be servers, network attached storage (Network Attached Storage, NAS), etc., which are not specifically limited in the embodiment of this application.
- NAS Network Attached Storage
- the energy-saving wake-up device provided by the embodiment of the present application can implement each process implemented by the method embodiment in Figure 7 and achieve the same technical effect. To avoid duplication, it will not be described again here.
- Figure 12 is a fourth structural schematic diagram of an energy-saving wake-up device provided by an embodiment of the present application. As shown in Figure 12, the device 1200 includes: a third receiving module 1210 and a second wake-up module 1220; wherein:
- the third receiving module 1210 is used to receive SSB measurement results
- the second wake-up module 1220 is configured to wake up the first base station indicated by the SSB measurement result according to the SSB measurement result.
- the wake-up signal including the preamble sequence carries the first information to indicate the energy-saving processing after the first base station is awakened, thereby assisting the first base station in saving energy.
- the energy-saving wake-up device in the embodiment of the present application may be an electronic device, such as an electronic device with an operating system, or may be a component in the electronic device, such as an integrated circuit or chip.
- the electronic device may be a terminal or other devices other than the terminal.
- terminals may include but are not limited to the types of terminals 11 listed above, and other devices may be servers, network attached storage (Network Attached Storage, NAS), etc., which are not specifically limited in the embodiment of this application.
- NAS Network Attached Storage
- the energy-saving wake-up device provided by the embodiment of the present application can implement each process implemented by the method embodiment in Figure 8 and achieve the same technical effect. To avoid duplication, it will not be described again here.
- Figure 13 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
- an embodiment of the present application also provides a communication device 1300, which includes a processor 1301 and a memory 1302.
- the memory 1302 stores A program or instruction that can be run on the processor 1301.
- the communication device 1300 is a terminal
- the program or instruction is executed by the processor 1301, it implements the various steps of the energy-saving wake-up method embodiment corresponding to the terminal, and can achieve the same technical effect.
- the communication device 1300 is the first base station
- each step of the energy-saving wake-up method embodiment corresponding to the first base station is implemented, and can achieve the same technical effect.
- each step of the energy-saving wake-up method embodiment corresponding to the second base station is implemented, and the same technical effect can be achieved. To avoid repetition, they will not be repeated here.
- An embodiment of the present application also provides a terminal, including a processor and a communication interface, wherein the communication interface is used for:
- the energy-saving wake-up signal is used to wake up the first base station, the energy-saving wake-up signal carries first information, and the first information is used to indicate energy-saving processing after the first base station is awakened; the energy-saving wake-up signal includes preamble sequence.
- FIG. 14 is a schematic diagram of the hardware structure of a terminal that implements an embodiment of the present application.
- the terminal 1400 includes but is not limited to: a radio frequency unit 1401, a network module 1402, an audio output unit 1403, an input unit 1404, a sensor 1405, a display unit 1406, a user input unit 1407, an interface unit 1408, a memory 1409, a processor 1410, etc. At least some parts.
- the terminal 1400 may also include a power supply (such as a battery) that supplies power to various components.
- the power supply may be logically connected to the processor 1410 through a power management system, thereby managing charging, discharging, and power consumption through the power management system. Management and other functions.
- the terminal structure shown in FIG. 14 does not constitute a limitation on the terminal.
- the terminal may include more or fewer components than shown in the figure, or some components may be combined or arranged differently, which will not be described again here.
- the input unit 1404 may include a graphics processing unit (GPU) 14041 and a microphone 14042.
- the graphics processor 14041 is responsible for the image capture device (GPU) in the video capture mode or the image capture mode. Process the image data of still pictures or videos obtained by cameras (such as cameras).
- the display unit 1406 may include a display panel 14061, which may be configured in the form of a liquid crystal display, an organic light emitting diode, or the like.
- the user input unit 1407 includes a touch panel 14071 and at least one of other input devices 14072. Touch panel 14071, also known as touch screen. Touch panel 14071 It may include two parts: a touch detection device and a touch controller.
- Other input devices 14072 may include but are not limited to physical keyboards, function keys (such as volume control keys, switch keys, etc.), trackballs, mice, and joysticks, which will not be described again here.
- the radio frequency unit 1401 after receiving downlink data from the network side device, the radio frequency unit 1401 can transmit it to the processor 1410 for processing; in addition, the radio frequency unit 1401 can send uplink data to the network side device.
- the radio frequency unit 1401 includes, but is not limited to, an antenna, amplifier, transceiver, coupler, low noise amplifier, duplexer, etc.
- Memory 1409 may be used to store software programs or instructions as well as various data.
- the memory 1409 may mainly include a first storage area for storing programs or instructions and a second storage area for storing data, wherein the first storage area may store an operating system, an application program or instructions required for at least one function (such as a sound playback function, Image playback function, etc.) etc.
- memory 1409 may include volatile memory or nonvolatile memory, or memory 1409 may include both volatile and nonvolatile memory.
- non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), electrically removable memory.
- Volatile memory can be random access memory (Random Access Memory, RAM), static random access memory (Static RAM, SRAM), dynamic random access memory (Dynamic RAM, DRAM), synchronous dynamic random access memory (Synchronous DRAM, SDRAM), double data rate synchronous dynamic random access memory (Double Data Rate SDRAM, DDRSDRAM), enhanced synchronous dynamic random access memory (Enhanced SDRAM, ESDRAM), synchronous link dynamic random access memory (Synch link DRAM) , SLDRAM) and direct memory bus random access memory (Direct Rambus RAM, DRRAM).
- RAM Random Access Memory
- SRAM static random access memory
- DRAM dynamic random access memory
- synchronous dynamic random access memory Synchronous DRAM, SDRAM
- Double data rate synchronous dynamic random access memory Double Data Rate SDRAM, DDRSDRAM
- Enhanced SDRAM, ESDRAM synchronous link dynamic random access memory
- Synch link DRAM synchronous link dynamic random access memory
- SLDRAM direct memory bus random access memory
- the processor 1410 may include one or more processing units; optionally, the processor 1410 integrates an application processor and a modem processor, where the application processor mainly handles operations related to the operating system, user interface, application programs, etc., Modem processors mainly process wireless communication signals, such as baseband processors. It can be understood that the above modem processor may not be integrated into the processor 1410.
- the radio frequency unit 1401 is used for:
- the energy-saving wake-up signal is used to wake up the first base station, the energy-saving wake-up signal carries first information, and the first information is used to indicate energy-saving processing after the first base station is awakened; the energy-saving wake-up signal includes preamble sequence.
- the wake-up signal including the preamble sequence carries the first information to indicate the energy-saving processing after the first base station is awakened, thereby assisting the first base station in saving energy.
- the first information includes at least one of the following:
- the terminal identification of the terminal is the terminal identification of the terminal
- the base station identification of the first base station is the base station identification of the first base station
- the transmit power of the terminal is the transmit power of the terminal
- the location information of the terminal is the location information of the terminal.
- the priority or data size of the terminal is data
- the beam information or beam configuration information determined by the terminal The beam information or beam configuration information determined by the terminal;
- the preset information is used to demodulate the energy-saving wake-up signal.
- the energy-saving wake-up signal includes one or more preamble sequences, or the energy-saving wake-up signal includes a preamble sequence and a payload.
- the first information is jointly carried by the multiple preamble sequences, and each preamble sequence in the multiple preamble sequences carries the 1-bit content in the first information.
- the preamble sequence satisfies at least one of the following:
- the index of the preamble sequence corresponds to the first information
- the first preamble sequence group in which the index of the preamble sequence is located corresponds to the first information, wherein the first preamble sequence group is a plurality of index groups formed by all available preamble sequences in the cell where the terminal is located.
- the logical root sequence of the preamble sequence corresponds to the first information
- the preamble sequence corresponds to the first information
- the second preamble sequence group in which the preamble sequence is located corresponds to the first information, wherein the second preamble sequence group is a plurality of preambles formed by grouping all available preamble sequences in the cell where the terminal is located.
- the sequence group items One of the sequence group items.
- the energy-saving wake-up signal includes a preamble sequence and a payload
- the first information is carried by the payload.
- processor 1410 is used for:
- the terminal Before the terminal sends the energy-saving wake-up signal, determine the transmission configuration of the energy-saving wake-up signal based on the transmission configuration indication information of the cell in the tracking area where the terminal is located;
- the cells in the tracking area where the terminal is located include at least one of the following:
- the current serving cell of the terminal is the current serving cell of the terminal.
- the serving cell to which the terminal was recently connected The serving cell to which the terminal was recently connected;
- the current tracking area of the terminal is any serving cell within the tracking area.
- the transmission configuration of the energy-saving wake-up signal includes at least one of the following:
- the base station identifier of the first base station corresponds to the index of the preamble sequence.
- processor 1410 is used for:
- the first base station is determined to be a wake-up target.
- the radio frequency unit 1401 is configured to: the terminal determines, based on the base station identity of the first base station, the index of the preamble sequence corresponding to the base station identity;
- the terminal sends the energy-saving wake-up signal to the first base station based on the base station identifier of the first base station and the index of the preamble sequence.
- the radio frequency unit 1401 is used for:
- the terminal sends the SSB measurement result to the second base station, and the SSB measurement result
- the result includes the base station identification of the first base station.
- the wake-up signal including the preamble sequence carries the first information to indicate the energy-saving processing after the first base station is awakened, thereby assisting the first base station in saving energy.
- An embodiment of the present application also provides a first base station, including a processor and a communication interface, wherein the communication interface is used for:
- the processor is used for:
- the energy-saving wake-up signal includes a preamble sequence.
- This first base station embodiment corresponds to the above-mentioned first base station method embodiment.
- Each implementation process and implementation manner of the above-mentioned method embodiment can be applied to this first base station embodiment, and can achieve the same technical effect.
- the embodiment of the present application also provides a first base station.
- Figure 15 is a schematic diagram of the hardware structure of a first base station that implements an embodiment of the present application.
- the first base station 1500 includes: an antenna 1501, a radio frequency device 1502, a baseband device 1503, a processor 1504 and a memory 1505.
- Antenna 1501 is connected to radio frequency device 1502.
- the radio frequency device 1502 receives information through the antenna 1501 and sends the received information to the baseband device 1503 for processing.
- the baseband device 1503 processes the information to be sent and sends it to the radio frequency device 1502.
- the radio frequency device 1502 processes the received information and then sends it out through the antenna 1501.
- the method performed by the first base station in the above embodiment can be implemented in the baseband device 1503, which includes a baseband processor.
- the baseband device 1503 may include, for example, at least one baseband board on which multiple chips are disposed, as shown in FIG. Program to perform the network device operations shown in the above method embodiments.
- the first base station may also include a network interface 1506, which is, for example, a common public radio interface (CPRI).
- a network interface 1506 which is, for example, a common public radio interface (CPRI).
- CPRI common public radio interface
- the first base station 1500 in this embodiment of the present invention also includes: stored in the memory 1505 instructions or programs that can be run on the processor 1504.
- the processor 1504 calls the instructions or programs in the memory 1505 to execute the method of executing each module shown in Figure 6, and achieves the same technical effect. To avoid duplication, it is not described here. Repeat.
- the radio frequency device 1502 is used for:
- Processor 1504 is used for:
- the energy-saving wake-up signal includes a preamble sequence.
- the wake-up signal including the preamble sequence carries the first information to indicate the energy-saving processing after the first base station is awakened, thereby assisting the first base station in saving energy.
- processor 1504 is used for:
- the first information includes at least one of the following:
- the transmit power of the terminal is the transmit power of the terminal
- the location information of the terminal is the location information of the terminal.
- processor 1504 is used for:
- the first base station determines the period of the common signal of the first base station based on the first information
- the first information includes at least one of the following:
- the terminal s expected period for common signal.
- processor 1504 is used for:
- the first base station determines whether to enable all or part of the hardware that is in a closed state based on the first information, and/or determines whether to enable all or part of the bandwidth resources that are in a closed state;
- the first information includes at least one of the following:
- the priority or data size of the terminal is data
- Beam information or beam configuration information determined by the terminal Beam information or beam configuration information determined by the terminal.
- processor 1504 is used for:
- the first base station determines that the wake-up target of the energy-saving wake-up information is the first base station according to the first information, and then wakes up from the energy-saving state or switches from the deep sleep state to the light sleep state. state;
- the first information includes at least one of the following:
- the terminal identification of the terminal is the terminal identification of the terminal
- the base station identification of the first base station is the base station identification of the first base station
- the preset information is used to demodulate the energy-saving wake-up signal.
- the base station identifier of the first base station corresponds to the preamble sequence.
- the wake-up signal including the preamble sequence carries the first information to indicate the energy-saving processing after the first base station is awakened, thereby assisting the first base station in saving energy.
- An embodiment of the present application also provides a second base station, including a processor and a communication interface, wherein the communication interface is used for:
- the processor is used for:
- the energy-saving wake-up signal includes a preamble sequence
- the base station identifier of the first base station corresponds to the preamble sequence
- This first base station embodiment corresponds to the above-mentioned first base station method embodiment.
- Each implementation process and implementation manner of the above-mentioned method embodiment can be applied to this first base station embodiment, and can achieve the same technical effect.
- FIG. 16 is a schematic diagram of the hardware structure of a second base station that implements an embodiment of the present application.
- the second base station 1600 includes: an antenna 1601, a radio frequency device 1602, a baseband device 1603, a processor 1604, and a memory 1605.
- Antenna 1601 is connected to radio frequency device 1602.
- the radio frequency device 1602 receives information through the antenna 1601 and sends the received information to the baseband device 1603 for processing.
- the baseband device 1603 processes the information to be sent and sends it to the radio frequency device 1602.
- the radio frequency device 1602 processes the received information and then sends it out through the antenna 1601.
- the method performed by the second base station in the above embodiment can be implemented in the baseband device 1603, which Baseband device 1603 includes a baseband processor.
- the baseband device 1603 may include, for example, at least one baseband board, which is provided with multiple chips, as shown in FIG. Program to perform the operations of the second base station shown in the above method embodiment.
- the second base station may also include a network interface 1606, which is, for example, a common public radio interface (CPRI).
- a network interface 1606 which is, for example, a common public radio interface (CPRI).
- CPRI common public radio interface
- the second base station 1600 in this embodiment of the present invention also includes: instructions or programs stored in the memory 1605 and executable on the processor 1604.
- the processor 1604 calls the instructions or programs in the memory 1605 to execute each of the operations shown in Figure 7
- the method of module execution and achieving the same technical effect will not be described in detail here to avoid duplication.
- An embodiment of the present application also provides a second base station, including a processor and a communication interface, wherein the communication interface is used for:
- the processor is used for:
- FIG 17 is a second schematic diagram of the hardware structure of a second base station that implements an embodiment of the present application.
- the second base station 1700 includes: an antenna 1701, a radio frequency device 1702, a baseband device 1703, a processor 1704, and a memory 1705.
- Antenna 1701 is connected to radio frequency device 1702.
- the radio frequency device 1702 receives information through the antenna 1701 and sends the received information to the baseband device 1703 for processing.
- the baseband device 1703 processes the information to be sent and sends it to the radio frequency device 1702.
- the radio frequency device 1702 processes the received information and then sends it out through the antenna 1701.
- the method performed by the second base station in the above embodiment can be implemented in the baseband device 1703, which includes a baseband processor.
- the baseband device 1703 may include, for example, at least one baseband board. Multiple chips are provided on the baseband board, as shown in FIG. 17 . One of the chips is, for example, a baseband processor. Through a bus interface, Connect to the memory 1705 to call the program in the memory 1705 to perform the operations of the second base station shown in the above method embodiment.
- the second base station may also include a network interface 1706, which is, for example, a common public radio interface (CPRI).
- a network interface 1706 which is, for example, a common public radio interface (CPRI).
- CPRI common public radio interface
- the second base station 1700 in this embodiment of the present invention also includes: instructions or programs stored in the memory 1705 and executable on the processor 1704.
- the processor 1704 calls the instructions or programs in the memory 1705 to execute the various operations shown in Figure 8. The method of module execution and achieving the same technical effect will not be described in detail here to avoid duplication.
- Embodiments of the present application also provide a readable storage medium.
- Programs or instructions are stored on the readable storage medium.
- the program or instructions are executed by a processor, each process of the above energy-saving wake-up method embodiment is implemented, and the same can be achieved. The technical effects will not be repeated here to avoid repetition.
- the processor is the processor in the terminal described in the above embodiment.
- the readable storage medium includes computer readable storage media, such as computer read-only memory ROM, random access memory RAM, magnetic disk or optical disk, etc.
- An embodiment of the present application further provides a chip.
- the chip includes a processor and a communication interface.
- the communication interface is coupled to the processor.
- the processor is used to run programs or instructions to implement the above energy-saving wake-up method embodiment. Each process can achieve the same technical effect. To avoid duplication, it will not be described again here.
- chips mentioned in the embodiments of this application may also be called system-on-chip, system-on-a-chip, system-on-chip or system-on-chip, etc.
- Embodiments of the present application further provide a computer program/program product.
- the computer program/program product is stored in a storage medium.
- the computer program/program product is executed by at least one processor to implement the above energy-saving wake-up method embodiment.
- Each process can achieve the same technical effect. To avoid repetition, we will not go into details here.
- Embodiments of the present application also provide an energy-saving wake-up system, including: a terminal, a first base station, and a second base station.
- the terminal can be used to perform the energy-saving wake-up method corresponding to the terminal as described above.
- the first base station can be used to perform the above According to the energy-saving wake-up method corresponding to the first base station, the second base station may be used to perform the energy-saving wake-up method corresponding to the second base station as described above.
- the methods of the above embodiments can be implemented by means of software plus the necessary general hardware platform. Of course, it can also be implemented by hardware, but in many cases the former is better. implementation.
- the technical solution of the present application can be embodied in the form of a computer software product that is essentially or contributes to the existing technology.
- the computer software product is stored in a storage medium (such as ROM/RAM, disk , CD), including several instructions to cause a terminal (which can be a mobile phone, computer, server, air conditioner, or network device, etc.) to execute the methods described in various embodiments of this application.
Landscapes
- Engineering & Computer Science (AREA)
- Computer Networks & Wireless Communication (AREA)
- Signal Processing (AREA)
- Mobile Radio Communication Systems (AREA)
Abstract
本申请公开了一种节能唤醒方法、装置、终端、基站及存储介质,属于通信技术领域,本申请实施例的节能唤醒方法包括:终端发送节能唤醒信号;其中,所述节能唤醒信号用于唤醒第一基站,所述节能唤醒信号携带第一信息,所述第一信息用于指示所述第一基站被唤醒后的节能处理;所述节能唤醒信号包括preamble序列。
Description
相关申请的交叉引用
本申请要求享有于2022年06月14日提交的名称为“节能唤醒方法、装置、终端、基站及存储介质”的中国专利申请202210674982.7的优先权,该申请的全部内容通过引用并入本文中。
本申请属于通信技术领域,具体涉及一种节能唤醒方法、装置、终端、基站及存储介质。
在网络节能技术中,可能会存在这样一张可能:有些基站处于关闭,或者睡眠态。在这些状态下,基站可能完全关闭下行发送;只开启部分的上行接收的功能;关闭部分硬件,比如一些天线或者端口(port);或者延长公共信号(common signal)的发送周期,等状态,从而实现节能的目的。
可以通过用户设备(User Equipment,UE)(例如终端)发送WUS信号实现:唤醒这些处于节能状态的基站;让基站从深度睡眠切换至浅睡眠;让基站开启所有关闭的硬件;减少common signal的发送周期,等。基于上述考虑,可能需要WUS信号携带一些信息,从而更好地辅助基站进行‘醒来’。
但是若UE WUS是前导码(preamble),Preamble无法携带比特信息(bits),则无法辅助基站的唤醒工作。
发明内容
本申请实施例提供一种节能唤醒方法、装置、终端、基站及存储介
质,能够解决无法辅助基站的唤醒工作的问题。
第一方面,提供了一种节能唤醒方法,该方法包括:
终端发送节能唤醒信号;
其中,所述节能唤醒信号用于唤醒第一基站,所述节能唤醒信号携带第一信息,所述第一信息用于指示所述第一基站被唤醒后的节能处理;所述节能唤醒信号包括preamble序列。
第二方面,提供了一种节能唤醒方法,该方法包括:
第一基站接收节能唤醒信号;
所述第一基站根据所述节能唤醒信号中的第一信息,进行节能处理;
其中,所述节能唤醒信号包括preamble序列。
第三方面,提供了一种节能唤醒方法,该方法包括:
第二基站接收节能唤醒信号;
所述第二基站根据所述节能唤醒信号中的第一信息,唤醒所述第一信息所指示的第一基站,所述第一信息包括所述第一基站的基站标识;
其中,所述节能唤醒信号包括preamble序列,所述第一基站的基站标识和所述preamble序列相对应。
第四方面,提供了一种节能唤醒方法,该方法包括:
第二基站接收SSB测量结果;
所述第二基站根据所述SSB测量结果,唤醒所述SSB测量结果所指示的第一基站。
第五方面,提供了一种节能唤醒装置,该装置包括:
第一发送模块,用于发送节能唤醒信号;
其中,所述节能唤醒信号用于唤醒第一基站,所述节能唤醒信号携带第一信息,所述第一信息用于指示所述第一基站被唤醒后的节能处理;所述节能唤醒信号包括preamble序列。
第六方面,提供了一种节能唤醒装置,该装置包括:
第一接收模块,用于接收节能唤醒信号;
第一处理模块,用于根据所述节能唤醒信号中的第一信息,进行节能处理;
其中,所述节能唤醒信号包括preamble序列。
第七方面,提供了一种节能唤醒装置,该装置包括:
第二接收模块,用于接收节能唤醒信号;
第一唤醒模块,用于根据所述节能唤醒信号中的第一信息,唤醒所述第一信息所指示的第一基站,所述第一信息包括所述第一基站的基站标识;
其中,所述节能唤醒信号包括preamble序列,所述第一基站的基站标识和所述preamble序列相对应。
第八方面,提供了一种节能唤醒装置,该装置包括:
第三接收模块,用于接收SSB测量结果;
第二唤醒模块,用于根据所述SSB测量结果,唤醒所述SSB测量结果所指示的第一基站。
第九方面,提供了一种终端,该终端包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的方法的步骤。
第十方面,提供了一种终端,包括处理器及通信接口,其中,所述通信接口用于:
发送节能唤醒信号;
其中,所述节能唤醒信号用于唤醒第一基站,所述节能唤醒信号携带第一信息,所述第一信息用于指示所述第一基站被唤醒后的节能处理;所述节能唤醒信号包括preamble序列。
第十一方面,提供了一种第一基站,该第一基站包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第二方面所述的方法的步骤。
第十二方面,提供了一种第一基站,包括处理器及通信接口,其中,所述通信接口用于:
接收节能唤醒信号;
所述处理器用于:
根据所述节能唤醒信号中的第一信息,进行节能处理;
其中,所述节能唤醒信号包括preamble序列。
第十三方面,提供了一种第二基站,该第二基站包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第三方面所述的方法的步骤。
第十四方面,提供了一种第二基站,包括处理器及通信接口,其中,所述通信接口用于:
接收节能唤醒信号;
所述处理器用于:
根据所述节能唤醒信号中的第一信息,唤醒所述第一信息所指示的第一基站,所述第一信息包括所述第一基站的基站标识;
其中,所述节能唤醒信号包括preamble序列,所述第一基站的基站标识和所述preamble序列相对应。
第十五方面,提供了一种第二基站,该第二基站包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第四方面所述的方法的步骤。
第十六方面,提供了一种第二基站,包括处理器及通信接口,其中,所述通信接口用于:
接收SSB测量结果;
所述处理器用于:
根据所述SSB测量结果,唤醒所述SSB测量结果所指示的第一基站。
第十七方面,提供了一种节能唤醒系统,包括:终端、第一基站、第二基站,所述终端可用于执行如第一方面所述的节能唤醒方法的步骤,所述第一基站可用于执行如第二方面所述的节能唤醒方法,所述第二基站可用于执行如第三方面或第四方面所述的节能唤醒方法。
第十八方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的方法,或者实现如第二方面所述的方法,或者实现如第三方面所述的方法,或者实现如第四方面所述的方法。
第十九方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面所述的方法,或者实现如第二方面所述的方法,或者实现如第三方面所述的方法,或者实现如第四方面所述的方法。
第二十方面,提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现如第一方面所述的方法,或者实现如第二方面所述的方法,或者实现如第三方面所述的方法,或者实现如第四方面所述的方法。
在本申请实施例中,通过包括preamble序列的唤醒信号携带第一信息,以指示第一基站被唤醒后的节能处理,实现辅助第一基站进行节能。
图1示出本申请实施例可应用的一种无线通信系统的框图;
图2是相关技术提供的四步RACH的流程示意图;
图3是相关技术提供的两步RACH和四步RACH的对比示意图;
图4是相关技术提供的基于PDCCH的唤醒信号的示意图;
图5是本申请实施例提供的节能唤醒方法的流程示意图之一;
图6是本申请实施例提供的节能唤醒方法的流程示意图之二;
图7是本申请实施例提供的节能唤醒方法的流程示意图之三;
图8是本申请实施例提供的节能唤醒方法的流程示意图之四;
图9是本申请实施例提供的节能唤醒装置的结构示意图之一;
图10是本申请实施例提供的节能唤醒装置的结构示意图之二;
图11是本申请实施例提供的节能唤醒装置的结构示意图之三;
图12是本申请实施例提供的节能唤醒装置的结构示意图之四;
图13是本申请实施例提供的通信设备的结构示意图;
图14为实现本申请实施例的一种终端的硬件结构示意图;
图15为实现本申请实施例的一种第一基站的硬件结构示意图;
图16为实现本申请实施例的第二基站的硬件结构示意图之一;
图17为实现本申请实施例的第二基站的硬件结构示意图之二。
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的术语在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。以下描述出于示例目的描述了新空口(New Radio,NR)系统,并且在以下大部分描述中使用NR术语,但是这些技术也可应用于NR系统应用以外的应用,如第6代(6th Generation,6G)通信系统。
图1示出本申请实施例可应用的一种无线通信系统的框图。无线通信系统包括终端11和网络侧设备12。其中,终端11可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、
上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、增强现实(augmented reality,AR)/虚拟现实(virtual reality,VR)设备、机器人、可穿戴式设备(Wearable Device)、车载设备(VUE)、行人终端(PUE)、智能家居(具有无线通信功能的家居设备,如冰箱、电视、洗衣机或者家具等)、游戏机、个人计算机(personal computer,PC)、柜员机或者自助机等终端侧设备,可穿戴式设备包括:智能手表、智能手环、智能耳机、智能眼镜、智能首饰(智能手镯、智能手链、智能戒指、智能项链、智能脚镯、智能脚链等)、智能腕带、智能服装等。需要说明的是,在本申请实施例并不限定终端11的具体类型。网络侧设备12可以包括接入网设备或核心网设备,其中,接入网设备12也可以称为无线接入网设备、无线接入网(Radio Access Network,RAN)、无线接入网功能或无线接入网单元。接入网设备12可以包括基站、WLAN接入点或WiFi节点等,基站可被称为节点B、演进节点B(eNB)、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、家用B节点、家用演进型B节点、发送接收点(Transmitting Receiving Point,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例进行介绍,并不限定基站的具体类型。核心网设备可以包含但不限于如下至少一项:核心网节点、核心网功能、移动管理实体(Mobility Management Entity,MME)、接入移动管理功能(Access and Mobility Management Function,AMF)、会话管理功能(Session Management Function,SMF)、用户平面功能(User Plane Function,UPF)、策略控制功能(Policy Control Function,PCF)、策略与计费规则功能单元(Policy and Charging Rules Function,PCRF)、边缘应用服务发现功能(Edge Application Server Discovery Function,EASDF)、统一数据管理(Unified Data Management,UDM),统一数据仓储(Unified Data Repository,UDR)、归属用户服务器(Home Subscriber Server,HSS)、
集中式网络配置(Centralized network configuration,CNC)、网络存储功能(Network Repository Function,NRF),网络开放功能(Network Exposure Function,NEF)、本地NEF(Local NEF,或L-NEF)、绑定支持功能(Binding Support Function,BSF)、应用功能(Application Function,AF)等。需要说明的是,在本申请实施例中仅以NR系统中的核心网设备为例进行介绍,并不限定核心网设备的具体类型。
下面结合附图,通过一些实施例及其应用场景对本申请实施例提供的节能唤醒方法、装置、终端、基站及存储介质进行详细地说明。
首先对以下内容进行介绍:
(1)前导码(Preamble);
在小区搜索过程和获取系统信息之后,UE与小区取得下行同步,UE能够接收下行数据。但UE只有与小区取得上行同步,才能进行上行传输。UE通过随机接入过程(Random Access Procedure)与小区建立连接并取得上行同步。随机接入过程成功之后,UE可以处于无线资源控制(Radio Resource Control,RRC)连接态,并可以与网络进行正常的上下行传输。随机接入的主要目的:(1)获得上行同步;(2)为UE分配一个唯一的标识:小区无线网络临时标识(Cell Radio Network Temporary Identifier,C-RNTI)。
随机接入过程的步骤一是UE发送随机接入前导码(Random Access preamble)。preamble的主要作用是可以告诉基站(gNB)有一个随机接入请求,并可以使得gNB能估计其与UE之间的传输时延,以便gNB校准上行定时(uplink timing)并将校准信息通过RAR中的定时提前命令(timing advance command)告知UE。
其中,preamble序列是通过对根ZC序列(root Zadoff-Chu sequence)进行循环移位生成的。每个物理随机接入信道(Physical Random Access Channel,PRACH)时频机会上定义了64个preamble,这64个preamble会先按照逻辑根序列的循环移位N_cs递增的顺序,后不同逻辑根序列递增的顺序进行编号。如果基于单一的根序列进行循环移位无法获得64个preamble,那么剩余的preamble序列会通过紧接着的索引对应的根序列来
生成,直到64个preamble都生成了为止。
(2)四步随机接入(4-step RACH)以及两步随机接入(2-step RACH);
可选地,RACH过程可以分为四步RACH以及两步RACH。
图2是相关技术提供的四步RACH的流程示意图,图3是相关技术提供的两步RACH和四步RACH的对比示意图,如图2和图3所示,两步RACH与四步RACH的大致不同如上图所示。即,在Msg(Message)A中包含四步RACH中的Msg 1以及Msg 3的信息。而在Msg B中包含Msg 2以及Msg 4的信息。
其中,MsgA包含preamble和payload,类似于Msg1+Msg3的组合,但是由于要先后发送MsgA preamble和MsgA payload(携带一些写信,如UE标志等)。在4-step RACH中,RAR中可以携带发Msg3的物理上行共享信道(Physical Uplink Shared Channel,PUSCH)资源,但在2-step RACH中,MsgA PUSCH可以跟着MsgA preamble发送,所以MsgA PUSCH的资源需要在发起RACH前就指示给UE。
时域上,msgA-PUSCH-TimeDomainOffset指示第一个MsgA PO(Physical Random Access Channel occasion,物理随机接入信道时机)所在时隙(slot)与PRACH occasion的slot之间的slot offset,共连续nrofSlotsMsgA-PUSCH个slot。每个slot中有nrofMsgA-PO-perSlot个连续MsgA PO。另外可以有参数指示每个MsgA PO的时域allocation,和上行DCI指示PUSCH的resource allocation方式类似,即通过一个参数来指示起始位置及长度;
频域上,连续nrofMsgA-PO-FDM多个频分复用(Frequency Division Multiplex,FDM)的MsgA PUSCH occasion支持RB级的可配的guard band,可以由参数guardBandMsgA-PUSCH指示。
(3)下行唤醒信号(DL WUS);
图4是相关技术提供的基于PDCCH的唤醒信号的示意图,如图4所示,在5G系统中,为了进一步提高UE的省电性能,可以引入基于物理下行控制信道(Physical downlink control channel,PDCCH)的唤醒信号
(Wake Up Signal,WUS)。WUS的作用是可以告知UE在特定的非连续接收(Discontinuous Reception,DRX)的唤醒激活期(onDuration)期间,是否需要监听PDCCH。当没有数据的情况,UE可以不需要监听onDuration期间的PDCCH,相当于UE在整个DRX Long cycle中都可以处于休眠状态,从而更进一步的省电。
相关技术中,WUS信号是一种下行控制信息(Downlink Control Information,DCI),简称DCP(DCI with CRC scrambled by PS-RNTI),其中PS-RNTI是网络为UE分配的专门用于省电特性的无线网络临时标识(Radio Network Temporary Identifier,RNTI),以该RNTI加扰的DCI,即携带了网络对UE的唤醒/休眠指示。UE根据该指示,决定下一个非连续接收(Discontinuous Reception,DRX)周期是否启动onDuration定时器,以及是否进行PDCCH监听。
图5是本申请实施例提供的节能唤醒方法的流程示意图之一,如图5所示,节能唤醒方法包括如下步骤:
步骤500,终端发送节能唤醒信号;
其中,所述节能唤醒信号用于唤醒第一基站,所述节能唤醒信号携带第一信息,所述第一信息用于指示所述第一基站被唤醒后的节能处理;所述节能唤醒信号包括preamble序列。
可选地,第一基站可以是处于节能状态的待唤醒的基站;
可选地,第一基站可以是终端的唤醒目标;
可选地,节能唤醒信号可以称为WUS、UE WUS,或WUS信号;
可选地,在UE WUS是preamble的情况下,由于Preamble无法携带bits来指示信息,因此,本申请实施例中,终端可以发送包括preamble序列的节能唤醒信号,通过节能唤醒信号携带第一信息,用于指示第一基站被唤醒后的节能处理;
可选地,本申请实施例中,UE发送节能唤醒信号,并通过节能信号所携带的第一信息,辅助第一基站进行节能处理。
在本申请实施例中,通过包括preamble序列的唤醒信号携带第一信息,以指示第一基站被唤醒后的节能处理,实现辅助第一基站进行节能。
可选地,所述第一信息包括以下至少一项:
所述终端的终端标识;
所述第一基站的基站标识;
所述终端的发送功率;
所述终端对common signal的期望周期;
所述终端的位置信息;
所述终端的数据的优先级或数据大小;
所述终端确定的波束信息或波束配置信息;
所述终端所在的跟踪区域的标识;或
预设信息,所述预设信息用于解调所述节能唤醒信号。
可选地,WUS携带的信息可以包括如下任意一项或多项:
(1)终端的终端标识(UE ID);
比如全球唯一临时UE标识(Globally Unique Temporary UE Identity,GUTI)、或临时移动用户标识(Temporary Mobile Subscriber Identity,TMSI)等类似可以唯一标识终端的终端标识;
可选地,第二基站(可以对应终端的服务小区Serving cell)可以同步给节能态的第一基站,有一个UE将要或正在发送WUS信号,并告知该终端的UE ID。节能态的第一基站盲检后,可以解出UE ID后,才开始‘醒来’。
可选地,第二基站可以是终端的服务基站;
(2)第一基站的基站标识(例如可以是Cell ID);
可选地,对于第一基站来说,在存在多个节能态的第一基站的情况下,只有检测到与自己ID信息相同的cell才‘醒来’。
或者,第二基站基于第一基站的基站标识通过网络侧(高层,如Xn接口)将该节能态的第一基站唤醒。
(3)终端的发送功率;
可选地,对于第一基站来说,节能态的第一基站可以根据该终端的发送功率,以及对参考信号RSRP的测量,从而估算出UL WUS路损,可以调整到合适的下行功率服务UE。
(4)终端对common signal的期望周期,即UE所希望的common signal周期;
可选地,在同步信号/物理广播信道信号块(或同步信号块)(Synchronization Signal and PBCH block,SSB)信号实现初始接入,下行同步,干扰测量等功能的情况下,节能态的第一基站可能会使用较大的SSB周期。如果UE发现下行失步,或者测量不准时,终端可以通过WUS告知第一基站,所希望的SSB周期。
(5)终端的位置信息;
可选地,节能态的第一基站可以根据终端的位置信息,判断是否需要‘醒来’。
可选地,节能态的第一基站还可以替换为处于节能模式的小区节能态的cell,均适用于本申请各实施例;
(6)终端的数据的优先级或数据大小;
可选地,在UE当前收发数据的优先级较高的情况下,若当前的状态无法满足UE收发数据的要求,则节能态的第一基站可以‘醒来’。
(7)终端确定的波束信息或波束配置信息;
可选地,如果节能态的第一基站还是会发送SSB信息,则UE在serving cell进行邻区测量时,可以得到prefer的节能态的第一基站的beam。终端可以通过WUS告诉节能态的第一基站。节能态的第一基站则可以根据该信息,选择性的发送beam(选择性的打开一些硬件设备,比如PA等)。
(8)预设信息,所述预设信息用于解调所述节能唤醒信号;
可选地,预设信息(或者可以称为指定信号或特殊信号)为协议预定义的专用于WUS解调的信号。节能态的第一基站可以在收到并解调出该内容后,即醒来。
(9)终端所在的跟踪区域的标识,即跟踪区域ID。
可选地,在存在多个节能态的第一基站的情况下,只有检测到与自己tracking area ID信息相同的cell才‘醒来’。
可选地,所述节能唤醒信号包括一个或多个preamble序列,或所述节
能唤醒信号包括preamble序列和payload。
可选地,所述终端发送节能唤醒信号,该节能唤醒信号可以为由单个或多个preamble序列构成;或者由单个preamble序列结合payload的方式构成。
可选地,在所述节能唤醒信号包括多个preamble序列的情况下,所述第一信息由所述多个preamble序列联合携带,所述多个preamble序列中的每一个preamble序列分别携带所述第一信息中的1比特内容。
可选地,在所述节能唤醒信号由多个preamble序列构成的情况下,该节能唤醒信号所携带的第一信息可以由多个preamble共同携带;
可选地,第一信息由多个preamble共同携带时,每个preamble序列可以隐式的代表携带了1bit信息。该多个preamble的时频域位置可以是TDM的方式和/或FDM的方式。
可选地,第一信息由多个preamble共同携带时,该多个preamble的数量,以及时频域可以由UE当前所在的tracking area配置给UE(tracking area将该配置同步给节能态的第一基站)。所述tracking area中的小区包括:当前服务小区,或最近连接的服务小区,或当前tracking area内任一服务小区。
可选地,在所述节能唤醒信号包括一个preamble序列的情况下,所述一个preamble序列满足以下至少一项:
所述preamble序列的索引与所述第一信息相对应;
所述preamble序列的索引所在的第一preamble序列组与所述第一信息相对应,其中,所述第一preamble序列组为所述终端所在的小区中所有可用的preamble序列的索引分组形成的多个preamble序列组的其中一项;
所述preamble序列的逻辑根序列与所述第一信息相对应;
所述preamble序列与所述第一信息相对应;
或,所述preamble序列所在的第二preamble序列组与所述第一信息相对应,其中,所述第二preamble序列组为所述终端所在的小区中所有可用的preamble序列分组形成的多个preamble序列组的其中一项。
可选地,节能唤醒信号由单个preamble序列构成时,该节能唤醒信号
所携带的第一信息由该单个preamble隐式携带。
比如,可以将某小区内的多个preamble分成多组,每组代表携带不同的信息。
可选地,分组规则可为以下任一项:
(1)根据preamble的index进行分组。例如preamble 0-11为一组,preamble12-23为一组,依次类推。
(2)根据逻辑根序列进行分组。即,基于同样跟序列生成的preamble为一组。
(3)网络侧自行配置,如preamble 1,13,24,36为一组。
可选地,节能唤醒信号由单个preamble序列构成时,以一个小区内可用的preamble是64个为例,可以将这64个preamble分成多组,每组代表携带不同的信息。例如分为3组,group 1代表该组内的preamble不携带多余信息;group 2代表该组内的preamble携带指示特定的信息,如特定的功率信息、特定的common signal周期信息、特定的beam信息等等;group 3与group 2功能类似,区别在于指示的值不一样。
可选地,一个小区内可用的preamble不仅仅限于64,还可以是128,或者其他任意可实现的值,本申请实施例对此不作限定;
可选地,在第一基站收到节能唤醒信号后,可以基于该单个preamble序列的索引,或该单个preamble序列,根据预设的每一组preamble序列和第一信息之间的映射关系,确定节能唤醒信号所指示的第一信息的具体内容;
比如,所述preamble序列的索引与所述第一信息相对应;
比如,所述preamble序列的索引所在的第一preamble序列组与所述第一信息相对应,其中,所述第一preamble序列组为所述终端所在的小区中所有可用的preamble序列的索引分组形成的多个preamble序列组的其中一项;
比如,preamble序列的索引1-8对应终端的终端标识a1和/或所述终端的发送功率b1,preamble序列的索引9-16对应终端的终端标识a2和/或所述终端的发送功率b2,preamble序列的索引17-24对应终端的终端标识a3
和/或所述终端的发送功率b3…依次类推,则终端在需要指示的第一信息包括终端的终端标识a3和/或所述终端的发送功率b3的情况下,采用索引19-24中任一个索引对应的preamble序列;
比如,preamble序列的索引1-8对应终端的终端标识a1和/或所述终端确定的波束信息c1,preamble序列的索引9-16对应终端的终端标识a2和/或所述终端确定的波束信息c2,preamble序列的索引17-24对应终端的终端标识a3和/或所述终端确定的波束信息c3;preamble序列的索引25-32对应终端的数据的优先级d1,preamble序列的索引33-40对应终端的数据的优先级d2,preamble序列的索引41-48对应终端的数据的优先级d3…依次类推,则终端在需要指示的第一信息包括终端的终端标识a2和/或所述终端确定的波束信息c2的情况下,采用索引9-16中任一个索引对应的preamble序列,终端在需要指示的第一信息包括终端的数据的优先级d1的情况下,采用索引25-32中任一个索引对应的preamble序列;
比如,所述preamble序列的逻辑根序列与所述第一信息相对应;
比如,preamble序列的逻辑根序列A1对应终端的终端标识a1和/或所述终端的发送功率b1,preamble序列的逻辑根序列A2对应终端的终端标识a2和/或所述终端的发送功率b2,preamble序列的逻辑根序列A3对应终端的终端标识a3和/或所述终端的发送功率b3…依次类推,则终端在需要指示的第一信息包括终端的终端标识a3和/或所述终端的发送功率b3的情况下,采用逻辑根序列A3的preamble序列;
比如,preamble序列的逻辑根序列A1对应终端所在的跟踪区域的标识e1和/或所述终端的发送功率b1,preamble序列的逻辑根序列A2对应终端所在的跟踪区域的标识e2和/或所述终端的发送功率b2,preamble序列的逻辑根序列A3对应终端所在的跟踪区域的标识e3和/或所述终端的发送功率b3…依次类推,则终端在需要指示的第一信息包括终端所在的跟踪区域的标识e3和/或所述终端的发送功率b3的情况下,采用逻辑根序列A3的preamble序列;
比如,preamble序列的逻辑根序列A1对应终端确定的波束信息c1,preamble序列的逻辑根序列A2对应终端确定的波束信息c2,preamble序
列的逻辑根序列A3对应终端确定的波束信息c3;preamble序列的逻辑根序列A4对应终端的数据的优先级d1,preamble序列的逻辑根序列A5对应终端的数据的优先级d2,preamble序列的逻辑根序列A6对应终端的数据的优先级d3…依次类推,则终端在需要指示的第一信息包括终端确定的波束信息c2的情况下,采用逻辑根序列A2的preamble序列,终端在需要指示的第一信息包括终端的数据的优先级d3的情况下,采用逻辑根序列A6的preamble序列;
比如,所述preamble序列与所述第一信息相对应;
比如,所述preamble序列所在的第二preamble序列组与所述第一信息相对应,其中,所述第二preamble序列组为所述终端所在的小区中所有可用的preamble序列分组形成的多个preamble序列组的其中一项;
比如,preamble序列B1-B8对应终端确定的波束配置信息f1和/或所述终端的发送功率b1,preamble序列C1-C8对应终端确定的波束配置信息f2和/或所述终端的发送功率b2,preamble序列D1-D8对应终端确定的波束配置信息f3和/或所述终端的发送功率b3…依次类推,则终端在需要指示的第一信息包括终端确定的波束配置信息f3和/或所述终端的发送功率b3的情况下,采用preamble序列D1-D8中的任一项;
比如,preamble序列B1-B8对应终端的终端标识a1和/或所述终端的发送功率b1,preamble序列C1-C8对应终端的终端标识a2和/或所述终端的发送功率b2,preamble序列D1-D8对应终端的终端标识a3和/或所述终端的发送功率b3…依次类推,则终端在需要指示的第一信息包括终端的终端标识a3和/或所述终端的发送功率b3的情况下,采用preamble序列D1-D8中的任一项;
需要说明的是,单个preamble序列可以指示终端的终端标识、第一基站的基站标识、终端的发送功率、终端对common signal的期望周期、终端的位置信息、终端的数据的优先级或数据大小、终端确定的波束信息或波束配置信息、终端所在的跟踪区域的标识、以及预设信息中的一项或多项,以上举例仅作为例子以帮助理解,不作为对本申请的限定。
可选地,在所述节能唤醒信号包括preamble序列和payload的情况
下,所述第一信息由所述payload携带。
可选地,在所述节能唤醒信号包括preamble序列和payload的情况下,类似于2-step RACH中的Msg A方案。即在preamble序列后再发送一个PUSCH,通过该PUSCH携带bits信息(第一信息)。
可选地,PUSCH的时频域位置可以通过UE当前所在的tracking area配置给UE,并同步给处于节能态的第一基站。该配置可以是单独配置,或者默认与serving cell下Msg A的配置相同。
可选地,在所述终端发送节能唤醒信号之前,所述方法还包括:
所述终端基于所述终端所在的跟踪区域tracking area中的小区的传输配置指示信息,确定所述节能唤醒信号的传输配置;
其中,所述终端所在的跟踪区域tracking area中的小区包括以下至少一项:
所述终端的当前服务小区(对应第二基站);
所述终端最近连接的服务小区;
所述终端的当前跟踪区域tracking area内的任一服务小区。
可选地,所述UE发送的节能信号的配置由UE所在的跟踪区域(tracking area)中的小区所配置。
可选地,所述tracking area中的小区包括:终端的当前服务小区,或终端最近连接的服务小区,或终端当前tracking area内任一服务小区。
可选地,传输配置可以是单独配置,或者默认与tracking area内某一服务小区内的某些配置相同。
可选地,所述节能唤醒信号的传输配置包括以下至少一项:
所述节能唤醒信号的时频位置;
所述preamble序列的数量。
可选地,节能唤醒信号的传输配置可以包括如下任意一项或多项:
所述节能唤醒信号的时频位置;
preamble的个数。
可选地,preamble序列的数量可以指preamble的个数,比如可以对应节能唤醒信号中包括的单个或多个preamble。
可选地,节能唤醒信号的传输配置包括preamble的个数为多个时,可以使用多个preamble进行第一信息的指示,或仅使用单个preamble序列进行指示,或使用preamble结合payload进行指示。
可选地,节能唤醒信号的传输配置包括preamble的个数为一个时,可以仅使用单个preamble序列进行指示,或使用preamble结合payload进行指示
可选地,所述第一基站的基站标识和所述preamble序列的索引相对应。
可选地,在第一信息中包括第一基站的基站标识的情况下,可以将第一基站的基站标识和所述preamble序列的索引进行关联;
可选地,所述方法还包括:
所述终端对SSB进行测量,获得SSB测量结果;
所述终端基于所述SSB测量结果,确定所述第一基站为唤醒目标。
可选地,终端可以进行SSB测量,获得SSB测量结果,SSB测量结果对应的基站标识指示的第一基站需要唤醒。
可选地,所述终端发送节能唤醒信号,包括:所述终端基于所述第一基站的基站标识,确定与所述基站标识相对应的所述preamble序列的索引;
所述终端基于所述第一基站的基站标识和所述preamble序列的索引,向所述第一基站发送所述节能唤醒信号。
可选地,终端在确定需要唤醒的第一基站的基站标识后,基于第一基站的基站标识和所述preamble序列的索引之间的关联关系,可以确定需要使用的preamble序列的索引。
可选地,在确定需要使用的preamble序列的索引后,可以生成节能唤醒信号并发送。
可选地,所述终端发送节能唤醒信号,包括:
所述终端向所述第二基站发送所述SSB测量结果,所述SSB测量结果包括所述第一基站的基站标识。
可选地,终端在获得SSB测量结果后,可以直接向所述第二基站发送
所述SSB测量结果,所述SSB测量结果包括所述第一基站的基站标识。
可选地,当节能唤醒信号所携带的第一信息包括第一基站的基站标识时,可以通过如下步骤确认所需要唤醒的节能态第一基站:
Step1:建立节能态第一基站ID和RACH资源的映射关系,该映射关系可以按照如下规则:
网络侧将preamble index分为N组,每组对应一个基站标识,比如可以是Cell ID;或者,
网络侧将preamble index分为N组,使用Cell ID mod N,确定选择哪一组preamble;
Step2:UE对SSB进行测量,得到想唤醒的Cell ID。从而得到可发送的preamble index;
Step3:对于空闲态的终端(for idle UE):UE发送preamble,节能态第一基站在收到该preamble的情况下‘醒来’。或者,serving cell收到该preamble后,通过网络侧(高层,如Xn接口)将该节能态第一基站唤醒。
Step3:对于连接态的终端(for connected UE):UE直接上报SSB测量结果(基站标识,比如可以是Cell ID)给serving cell,通过serving cell去唤醒节能态第一基站。
在本申请实施例中,通过包括preamble序列的唤醒信号携带第一信息,以指示第一基站被唤醒后的节能处理,实现辅助第一基站进行节能。
图6是本申请实施例提供的节能唤醒方法的流程示意图之二,如图6所示,该方法包括如下步骤:
步骤600,第一基站接收节能唤醒信号;
步骤610,所述第一基站根据所述节能唤醒信号中的第一信息,进行节能处理;
其中,所述节能唤醒信号包括preamble序列。
可选地,第一基站可以是处于节能状态的待唤醒的基站;
可选地,第一基站可以是终端的唤醒目标;
可选地,节能唤醒信号可以称为WUS、UE WUS,或WUS信号;
可选地,在UE WUS是preamble的情况下,由于Preamble无法携带bits来指示信息,因此,本申请实施例中,终端可以发送包括preamble序列的节能唤醒信号,通过节能唤醒信号携带第一信息,第一基站可以接收节能唤醒信号,并根据节能唤醒信号中的第一信息,进行节能处理;
可选地,本申请实施例中,UE发送节能唤醒信号,并通过节能信号所携带的第一信息,辅助第一基站进行节能处理。
在本申请实施例中,通过包括preamble序列的唤醒信号携带第一信息,以指示第一基站被唤醒后的节能处理,实现辅助第一基站进行节能。
可选地,所述第一基站根据所述节能唤醒信号中的第一信息,进行节能处理,包括:
所述第一基站根据所述第一信息,确定所述第一基站的发送功率;
其中,所述第一信息包括以下至少一项:
终端的发送功率;
所述终端的位置信息。
可选地,第一基站可以根据UE发送功率和/或UE位置信息,计算并决定自己的发送功率;
可选地,对于第一基站来说,节能态的第一基站可以根据该终端的发送功率,以及对参考信号RSRP的测量,从而估算出UL WUS路损,可以调整到合适的下行功率服务UE。
可选地,节能态的第一基站可以根据终端的位置信息,判断是否需要‘醒来’。
可选地,所述第一基站根据所述节能唤醒信号中的第一信息,进行节能处理,包括:
所述第一基站根据所述第一信息,确定所述第一基站的common signal的周期;
其中,所述第一信息包括以下至少一项:
终端对common signal的期望周期。
可选地,第一基站可以根据第一信息中的终端对common signal的期望周期,配置自己的common signal周期。
可选地,第一信息可以包括终端对common signal的期望周期,即UE所希望的common signal周期;
可选地,在SSB信号实现初始接入,下行同步,干扰测量等功能的情况下,节能态的第一基站可能会使用较大的SSB周期。如果UE发现下行失步,或者测量不准时,终端可以通过WUS告知第一基站,所希望的SSB周期。
可选地,所述第一基站根据所述节能唤醒信号中的第一信息,进行节能处理,包括:
所述第一基站根据所述第一信息,判断是否开启全部或部分处于关闭状态的硬件,和/或,判断是否开启全部或部分处于关闭状态的带宽资源;
其中,所述第一信息包括以下至少一项:
终端的数据的优先级或数据大小;
所述终端确定的波束信息或波束配置信息。
可选地,第一基站可以根据UE数据优先级/大小,或者UE prefer beam/或者beam配置决定是否开启所有/部分关闭的硬件,带宽资源等;
可选地,在UE当前收发数据的优先级较高的情况下,若当前的状态无法满足UE收发数据的要求,则节能态的第一基站可以‘醒来’。
可选地,所述第一基站根据所述节能唤醒信号中的第一信息,进行节能处理,包括:
所述第一基站根据所述第一信息,确定所述节能唤醒信息的唤醒目标为所述第一基站,则从节能态被唤醒或从深度睡眠状态切换为浅睡眠状态;
其中,所述第一信息包括以下至少一项:
终端的终端标识;
所述第一基站的基站标识;
所述终端所在的跟踪区域的标识;或
预设信息,所述预设信息用于解调所述节能唤醒信号。
可选地,第一信息可以包括终端的终端标识(UE ID);
比如全球唯一临时UE标识(Globally Unique Temporary UE Identity,
GUTI)、或临时移动用户标识(Temporary Mobile Subscriber Identity,TMSI)等类似可以唯一标识终端的终端标识;
可选地,第二基站(比如可以是终端的服务小区Serving cell)可以同步给节能态的第一基站,有一个UE将要或正在发送WUS信号,并告知该终端的UE ID。节能态的第一基站盲检后,可以解出UE ID后,才开始‘醒来’。
可选地,第二基站可以是终端的服务基站;
可选地,第一信息可以包括第一基站的基站标识(比如可以是Cell ID);
可选地,对于第一基站来说,在存在多个节能态的第一基站的情况下,只有检测到与自己ID信息相同的cell才‘醒来’。
或者,第二基站基于第一基站的基站标识通过网络侧(高层,如Xn接口)将该节能态第一基站唤醒。
可选地,第一信息可以包括预设信息,所述预设信息用于解调所述节能唤醒信号;
可选地,预设信息(或者可以称为指定信号或特殊信号)为协议预定义的专用于WUS解调的信号。节能态的第一基站可以在收到并解调出该内容后,即醒来。
可选地,第一信息可以包括终端所在的跟踪区域的标识,即跟踪区域ID。
可选地,在存在多个节能态的第一基站的情况下,只有检测到与自己tracking area ID信息相同的cell才‘醒来’。
可选地,第一基站可以根据ID信息或者指定信息判断是否是发给自己的信号,从而决定是否从节能态完全醒来;或者从深度睡眠切换至浅睡眠;所述ID信息包括UE ID,Cell ID,tracking area ID等。
可选地,WUS携带的信息可以包括如下任意一项或多项:
(1)终端的终端标识(UE ID);
比如全球唯一临时UE标识(Globally Unique Temporary UE Identity,GUTI)、或临时移动用户标识(Temporary Mobile Subscriber Identity,
TMSI)等类似可以唯一标识终端的终端标识;
可选地,第二基站(比如可以是终端的服务小区Serving cell)可以同步给节能态的第一基站,有一个UE将要或正在发送WUS信号,并告知该终端的UE ID。节能态的第一基站盲检后,可以解出UE ID后,才开始‘醒来’。
(2)第一基站的基站标识(比如可以是Cell ID);
可选地,对于第一基站来说,在存在多个节能态的第一基站的情况下,只有检测到与自己ID信息相同的cell才‘醒来’。
或者,第二基站基于第一基站的基站标识(比如可以是Cell ID)通过网络侧(高层,如Xn接口)将该节能态第一基站唤醒。
(3)终端的发送功率;
可选地,对于第一基站来说,节能态的第一基站可以根据该终端的发送功率,以及对参考信号RSRP的测量,从而估算出UL WUS路损,可以调整到合适的下行功率服务UE。
(4)终端对common signal的期望周期,即UE所希望的common signal周期;
可选地,在SSB信号实现初始接入,下行同步,干扰测量等功能的情况下,节能态的第一基站可能会使用较大的SSB周期。如果UE发现下行失步,或者测量不准时,终端可以通过WUS告知第一基站,所希望的SSB周期。
(5)终端的位置信息;
可选地,节能态的第一基站可以根据终端的位置信息,判断是否需要‘醒来’。
(6)终端的数据的优先级或数据大小;
可选地,在UE当前收发数据的优先级较高的情况下,若当前的状态无法满足UE收发数据的要求,则节能态的第一基站可以‘醒来’。
(7)终端确定的波束信息或波束配置信息;
可选地,如果节能态的第一基站还是会发送SSB信息,则UE在serving cell进行邻区测量时,可以得到prefer的节能态的第一基站的
beam。终端可以通过WUS告诉节能态的第一基站。节能态的第一基站则可以根据该信息,选择性的发送beam(选择性的打开一些硬件设备,比如PA等)。
(8)预设信息,所述预设信息用于解调所述节能唤醒信号;
可选地,预设信息(或者可以称为指定信号或特殊信号)为协议预定义的专用于WUS解调的信号。节能态的第一基站可以在收到并解调出该内容后,即醒来。
(9)终端所在的跟踪区域的标识,即跟踪区域ID。
可选地,在存在多个节能态的第一基站的情况下,只有检测到与自己tracking area ID信息相同的cell才‘醒来’。
可选地,所述第一基站的基站标识和所述preamble序列相对应。
可选地,在第一信息中包括第一基站的基站标识的情况下,可以将第一基站的基站标识和所述preamble序列的索引进行关联;
可选地,当节能唤醒信号所携带的第一信息包括第一基站的基站标识(可以是Cell ID)时,可以通过如下步骤确认所需要唤醒的节能态第一基站:
Step1:建立节能态第一基站ID和RACH资源的映射关系,该映射关系可以按照如下规则:
网络侧将preamble index分为N组,每组对应一个基站标识,比如可以是Cell ID;或者,
网络侧将preamble index分为N组,使用Cell ID mod N,确定选择哪一组preamble;
Step2:UE对SSB进行测量,得到想唤醒的Cell ID。从而得到可发送的preamble index;
Step3:对于空闲态的终端(for idle UE):UE发送preamble,节能态第一基站在收到该preamble的情况下‘醒来’。
在本申请实施例中,通过包括preamble序列的唤醒信号携带第一信息,以指示第一基站被唤醒后的节能处理,实现辅助第一基站进行节能。
图7是本申请实施例提供的节能唤醒方法的流程示意图之三,如图7
所示,该方法包括如下步骤:
步骤700,第二基站接收节能唤醒信号;
步骤710,所述第二基站根据所述节能唤醒信号中的第一信息,唤醒所述第一信息所指示的第一基站,所述第一信息包括所述第一基站的基站标识;
其中,所述节能唤醒信号包括preamble序列,所述第一基站的基站标识和所述preamble序列相对应。
可选地,第一基站可以是处于节能状态的待唤醒的基站;
可选地,第一基站可以是终端的唤醒目标;
可选地,第二基站可以是终端的服务基站;
可选地,节能唤醒信号可以称为WUS、UE WUS,或WUS信号;
可选地,在UE WUS是preamble的情况下,由于Preamble无法携带bits来指示信息,因此,本申请实施例中,终端可以发送包括preamble序列的节能唤醒信号,通过节能唤醒信号携带第一信息,用于指示第一基站被唤醒后的节能处理,则第二基站接收节能唤醒信号后,可以根据所述节能唤醒信号中的第一信息,唤醒所述第一信息所指示的第一基站,所述第一信息包括所述第一基站的基站标识;
可选地,本申请实施例中,UE发送节能唤醒信号,并通过节能信号所携带的第一信息,辅助第一基站进行节能处理。
可选地,在第一信息中包括第一基站的基站标识的情况下,可以将第一基站的基站标识和所述preamble序列的索引进行关联;
可选地,当节能唤醒信号所携带的第一信息包括第一基站的基站标识(比如可以是Cell ID)时,可以通过如下步骤确认所需要唤醒的节能态的第一基站:
Step1:建立节能态的第一基站的基站标识和RACH资源的映射关系,该映射关系可以按照如下规则:
网络侧将preamble index分为N组,每组对应一个基站标识,比如可以是Cell ID;或者,
网络侧将preamble index分为N组,使用Cell ID mod N,确定选择哪
一组preamble;
Step2:UE对SSB进行测量,得到想唤醒的Cell ID。从而得到可发送的preamble index;
Step3:对于空闲态的终端(for idle UE):serving cell收到该preamble后,通过网络侧(高层,如Xn接口)将该节能态的第一基站唤醒。
在本申请实施例中,通过包括preamble序列的唤醒信号携带第一信息,以指示第一基站被唤醒后的节能处理,实现辅助第一基站进行节能。
图8是本申请实施例提供的节能唤醒方法的流程示意图之四,如图8所示,该方法包括如下步骤:
步骤800,第二基站接收SSB测量结果;
步骤810,所述第二基站根据所述SSB测量结果,唤醒所述SSB测量结果所指示的第一基站。
可选地,第一基站可以是处于节能状态的待唤醒的基站;
可选地,第一基站可以是终端的唤醒目标;
可选地,第二基站可以是终端的服务基站;
可选地,节能唤醒信号可以称为WUS、UE WUS,或WUS信号;
可选地,在UE WUS是preamble的情况下,由于Preamble无法携带bits来指示信息,因此,本申请实施例中,终端可以发送包括preamble序列的节能唤醒信号,通过节能唤醒信号携带第一信息,用于指示第一基站被唤醒后的节能处理,则第二基站接收节能唤醒信号后,可以根据所述节能唤醒信号中的第一信息,唤醒所述第一信息所指示的第一基站,所述第一信息包括所述第一基站的基站标识;
可选地,本申请实施例中,UE发送节能唤醒信号,并通过节能信号所携带的第一信息,辅助第一基站进行节能处理。
可选地,在第一信息中包括第一基站的基站标识的情况下,可以将第一基站的基站标识和所述preamble序列的索引进行关联;
可选地,当节能唤醒信号所携带的第一信息包括第一基站的基站标识(比如可以是Cell ID)时,可以通过如下步骤确认所需要唤醒的节能态第
一基站:
Step1:建立节能态的第一基站ID和RACH资源的映射关系,该映射关系可以按照如下规则:
网络侧将preamble index分为N组,每组对应一个基站标识,比如可以是Cell ID;或者,
网络侧将preamble index分为N组,使用Cell ID mod N,确定选择哪一组preamble;
Step2:UE对SSB进行测量,得到想唤醒的Cell ID。从而得到可发送的preamble index;
Step3:对于连接态的终端(for connected UE):UE直接上报SSB测量结果(Cell ID)给serving cell,通过serving cell去唤醒节能态的第一基站。
在本申请实施例中,通过包括preamble序列的唤醒信号携带第一信息,以指示第一基站被唤醒后的节能处理,实现辅助第一基站进行节能。
本申请实施例提供的节能唤醒方法,执行主体可以为节能唤醒装置。本申请实施例中以节能唤醒装置执行节能唤醒方法为例,说明本申请实施例提供的节能唤醒装置。
图9是本申请实施例提供的节能唤醒装置的结构示意图之一,如图9所示,该装置900包括:第一发送模块910;其中:
第一发送模块910用于发送节能唤醒信号;
其中,所述节能唤醒信号用于唤醒第一基站,所述节能唤醒信号携带第一信息,所述第一信息用于指示所述第一基站被唤醒后的节能处理;所述节能唤醒信号包括preamble序列。
在本申请实施例中,通过包括preamble序列的唤醒信号携带第一信息,以指示第一基站被唤醒后的节能处理,实现辅助第一基站进行节能。
可选的,所述第一信息包括以下至少一项:
终端的终端标识;
所述第一基站的基站标识;
所述终端的发送功率;
所述终端对common signal的期望周期;
所述终端的位置信息;
所述终端的数据的优先级或数据大小;
所述终端确定的波束信息或波束配置信息;
所述终端所在的跟踪区域的标识;或
预设信息,所述预设信息用于解调所述节能唤醒信号。
可选的,所述节能唤醒信号包括一个或多个preamble序列,或所述节能唤醒信号包括preamble序列和payload。
可选的,在所述节能唤醒信号包括多个preamble序列的情况下,所述第一信息由所述多个preamble序列联合携带,所述多个preamble序列中的每一个preamble序列分别携带所述第一信息中的1比特内容。
可选的,在所述节能唤醒信号包括一个preamble序列的情况下,所述一个preamble序列满足以下至少一项:
所述preamble序列的索引与所述第一信息相对应;
所述preamble序列的索引所在的第一preamble序列组与所述第一信息相对应,其中,所述第一preamble序列组为终端所在的小区中所有可用的preamble序列的索引分组形成的多个preamble序列组的其中一项;
所述preamble序列的逻辑根序列与所述第一信息相对应;
所述preamble序列与所述第一信息相对应;
或,所述preamble序列所在的第二preamble序列组与所述第一信息相对应,其中,所述第二preamble序列组为所述终端所在的小区中所有可用的preamble序列分组形成的多个preamble序列组的其中一项。
可选的,在所述节能唤醒信号包括preamble序列和payload的情况下,所述第一信息由所述payload携带。
可选的,所述装置还包括:
第一确定模块,用于在发送节能唤醒信号之前,基于终端所在的跟踪区域tracking area中的小区的传输配置指示信息,确定所述节能唤醒信号的传输配置;
其中,所述终端所在的跟踪区域tracking area中的小区包括以下至少
一项:
所述终端的当前服务小区;
所述终端最近连接的服务小区;
所述终端的当前跟踪区域tracking area内的任一服务小区。
可选的,所述节能唤醒信号的传输配置包括以下至少一项:
所述节能唤醒信号的时频位置;
所述preamble序列的数量。
可选的,所述第一基站的基站标识和所述preamble序列的索引相对应。
可选的,所述装置还包括:
第一测量模块,用于对SSB进行测量,获得SSB测量结果;
第二确定模块,用于基于所述SSB测量结果,确定所述第一基站为唤醒目标。
可选的,所述第一发送模块具体用于:
基于所述第一基站的基站标识,确定与所述基站标识相对应的所述preamble序列的索引;
基于所述第一基站的基站标识和所述preamble序列的索引,向所述第一基站发送所述节能唤醒信号。
可选的,所述第一发送模块具体用于:
向第二基站发送所述SSB测量结果,所述SSB测量结果包括所述第一基站的基站标识。
在本申请实施例中,通过包括preamble序列的唤醒信号携带第一信息,以指示第一基站被唤醒后的节能处理,实现辅助第一基站进行节能。
本申请实施例中的节能唤醒装置可以是电子设备,例如具有操作系统的电子设备,也可以是电子设备中的部件,例如集成电路或芯片。该电子设备可以是终端,也可以为除终端之外的其他设备。示例性的,终端可以包括但不限于上述所列举的终端11的类型,其他设备可以为服务器、网络附属存储器(Network Attached Storage,NAS)等,本申请实施例不作具体限定。
本申请实施例提供的节能唤醒装置能够实现图5的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
图10是本申请实施例提供的节能唤醒装置的结构示意图之二,如图10所示,该装置1000包括:第一接收模块1010和第一处理模块1020;其中:
第一接收模块1010用于接收节能唤醒信号;
第一处理模块1020用于根据所述节能唤醒信号中的第一信息,进行节能处理;
其中,所述节能唤醒信号包括preamble序列。
在本申请实施例中,通过包括preamble序列的唤醒信号携带第一信息,以指示第一基站被唤醒后的节能处理,实现辅助第一基站进行节能。
可选的,所述第一处理模块具体用于:
根据所述第一信息,确定第一基站的发送功率;
其中,所述第一信息包括以下至少一项:
终端的发送功率;
所述终端的位置信息。
可选的,所述第一处理模块具体用于:
根据所述第一信息,确定第一基站的common signal的周期;
其中,所述第一信息包括以下至少一项:
终端对common signal的期望周期。
可选的,所述第一处理模块具体用于:
根据所述第一信息,判断是否开启全部或部分处于关闭状态的硬件,和/或,判断是否开启全部或部分处于关闭状态的带宽资源;
其中,所述第一信息包括以下至少一项:
终端的数据的优先级或数据大小;
所述终端确定的波束信息或波束配置信息。
可选的,所述第一处理模块具体用于:
根据所述第一信息,确定所述节能唤醒信息的唤醒目标为第一基站,则从节能态被唤醒或从深度睡眠状态切换为浅睡眠状态;
其中,所述第一信息包括以下至少一项:
终端的终端标识;
所述第一基站的基站标识;
所述终端所在的跟踪区域的标识;或
预设信息,所述预设信息用于解调所述节能唤醒信号。
可选的,所述第一基站的基站标识和所述preamble序列相对应。
在本申请实施例中,通过包括preamble序列的唤醒信号携带第一信息,以指示第一基站被唤醒后的节能处理,实现辅助第一基站进行节能。
本申请实施例中的节能唤醒装置可以是电子设备,例如具有操作系统的电子设备,也可以是电子设备中的部件,例如集成电路或芯片。该电子设备可以是终端,也可以为除终端之外的其他设备。示例性的,终端可以包括但不限于上述所列举的终端11的类型,其他设备可以为服务器、网络附属存储器(Network Attached Storage,NAS)等,本申请实施例不作具体限定。
本申请实施例提供的节能唤醒装置能够实现图6的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
图11是本申请实施例提供的节能唤醒装置的结构示意图之三,如图11所示,该装置1100包括:第二接收模块1110和第一唤醒模块1120;其中:
第二接收模块1110用于接收节能唤醒信号;
第一唤醒模块1120用于根据所述节能唤醒信号中的第一信息,唤醒所述第一信息所指示的第一基站,所述第一信息包括所述第一基站的基站标识;
其中,所述节能唤醒信号包括preamble序列,所述第一基站的基站标识和所述preamble序列相对应。
在本申请实施例中,通过包括preamble序列的唤醒信号携带第一信息,以指示第一基站被唤醒后的节能处理,实现辅助第一基站进行节能。
本申请实施例中的节能唤醒装置可以是电子设备,例如具有操作系统的电子设备,也可以是电子设备中的部件,例如集成电路或芯片。该电子
设备可以是终端,也可以为除终端之外的其他设备。示例性的,终端可以包括但不限于上述所列举的终端11的类型,其他设备可以为服务器、网络附属存储器(Network Attached Storage,NAS)等,本申请实施例不作具体限定。
本申请实施例提供的节能唤醒装置能够实现图7的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
图12是本申请实施例提供的节能唤醒装置的结构示意图之四,如图12所示,该装置1200包括:第三接收模块1210和第二唤醒模块1220;其中:
第三接收模块1210用于接收SSB测量结果;
第二唤醒模块1220用于根据所述SSB测量结果,唤醒所述SSB测量结果所指示的第一基站。
在本申请实施例中,通过包括preamble序列的唤醒信号携带第一信息,以指示第一基站被唤醒后的节能处理,实现辅助第一基站进行节能。
本申请实施例中的节能唤醒装置可以是电子设备,例如具有操作系统的电子设备,也可以是电子设备中的部件,例如集成电路或芯片。该电子设备可以是终端,也可以为除终端之外的其他设备。示例性的,终端可以包括但不限于上述所列举的终端11的类型,其他设备可以为服务器、网络附属存储器(Network Attached Storage,NAS)等,本申请实施例不作具体限定。
本申请实施例提供的节能唤醒装置能够实现图8的方法实施例实现的各个过程,并达到相同的技术效果,为避免重复,这里不再赘述。
可选的,图13是本申请实施例提供的通信设备的结构示意图,如图13所示,本申请实施例还提供一种通信设备1300,包括处理器1301和存储器1302,存储器1302上存储有可在所述处理器1301上运行的程序或指令,例如,该通信设备1300为终端时,该程序或指令被处理器1301执行时实现上述中终端对应的节能唤醒方法实施例的各个步骤,且能达到相同的技术效果。该通信设备1300为第一基站时,该程序或指令被处理器1301执行时实现上述第一基站对应的节能唤醒方法实施例的各个步骤,且
能达到相同的技术效果。该通信设备1300为第二基站时,该程序或指令被处理器1301执行时实现上述第二基站对应的节能唤醒方法实施例的各个步骤,且能达到相同的技术效果。为避免重复,这里不再赘述。
本申请实施例还提供一种终端,包括处理器和通信接口,其中,所述通信接口用于:
发送节能唤醒信号;
其中,所述节能唤醒信号用于唤醒第一基站,所述节能唤醒信号携带第一信息,所述第一信息用于指示所述第一基站被唤醒后的节能处理;所述节能唤醒信号包括preamble序列。
该终端实施例与上述终端侧方法实施例对应,上述方法实施例的各个实施过程和实现方式均可适用于该终端实施例中,且能达到相同的技术效果。具体地,图14为实现本申请实施例的一种终端的硬件结构示意图。
该终端1400包括但不限于:射频单元1401、网络模块1402、音频输出单元1403、输入单元1404、传感器1405、显示单元1406、用户输入单元1407、接口单元1408、存储器1409以及处理器1410等中的至少部分部件。
本领域技术人员可以理解,终端1400还可以包括给各个部件供电的电源(比如电池),电源可以通过电源管理系统与处理器1410逻辑相连,从而通过电源管理系统实现管理充电、放电、以及功耗管理等功能。图14中示出的终端结构并不构成对终端的限定,终端可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置,在此不再赘述。
应理解的是,本申请实施例中,输入单元1404可以包括图形处理单元(Graphics Processing Unit,GPU)14041和麦克风14042,图形处理器14041对在视频捕获模式或图像捕获模式中由图像捕获装置(如摄像头)获得的静态图片或视频的图像数据进行处理。显示单元1406可包括显示面板14061,可以采用液晶显示器、有机发光二极管等形式来配置显示面板14061。用户输入单元1407包括触控面板14071以及其他输入设备14072中的至少一种。触控面板14071,也称为触摸屏。触控面板14071
可包括触摸检测装置和触摸控制器两个部分。其他输入设备14072可以包括但不限于物理键盘、功能键(比如音量控制按键、开关按键等)、轨迹球、鼠标、操作杆,在此不再赘述。
本申请实施例中,射频单元1401接收来自网络侧设备的下行数据后,可以传输给处理器1410进行处理;另外,射频单元1401可以向网络侧设备发送上行数据。通常,射频单元1401包括但不限于天线、放大器、收发信机、耦合器、低噪声放大器、双工器等。
存储器1409可用于存储软件程序或指令以及各种数据。存储器1409可主要包括存储程序或指令的第一存储区和存储数据的第二存储区,其中,第一存储区可存储操作系统、至少一个功能所需的应用程序或指令(比如声音播放功能、图像播放功能等)等。此外,存储器1409可以包括易失性存储器或非易失性存储器,或者,存储器1409可以包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDRSDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synch link DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DRRAM)。本申请实施例中的存储器1409包括但不限于这些和任意其它适合类型的存储器。
处理器1410可包括一个或多个处理单元;可选的,处理器1410集成应用处理器和调制解调处理器,其中,应用处理器主要处理涉及操作系统、用户界面和应用程序等的操作,调制解调处理器主要处理无线通信信号,如基带处理器。可以理解的是,上述调制解调处理器也可以不集成到处理器1410中。
其中,射频单元1401用于:
发送节能唤醒信号;
其中,所述节能唤醒信号用于唤醒第一基站,所述节能唤醒信号携带第一信息,所述第一信息用于指示所述第一基站被唤醒后的节能处理;所述节能唤醒信号包括preamble序列。
在本申请实施例中,通过包括preamble序列的唤醒信号携带第一信息,以指示第一基站被唤醒后的节能处理,实现辅助第一基站进行节能。
可选的,所述第一信息包括以下至少一项:
所述终端的终端标识;
所述第一基站的基站标识;
所述终端的发送功率;
所述终端对common signal的期望周期;
所述终端的位置信息;
所述终端的数据的优先级或数据大小;
所述终端确定的波束信息或波束配置信息;
所述终端所在的跟踪区域的标识;或
预设信息,所述预设信息用于解调所述节能唤醒信号。
可选的,所述节能唤醒信号包括一个或多个preamble序列,或所述节能唤醒信号包括preamble序列和payload。
可选的,在所述节能唤醒信号包括多个preamble序列的情况下,所述第一信息由所述多个preamble序列联合携带,所述多个preamble序列中的每一个preamble序列分别携带所述第一信息中的1比特内容。
可选的,在所述节能唤醒信号包括一个preamble序列的情况下,所述一个preamble序列满足以下至少一项:
所述preamble序列的索引与所述第一信息相对应;
所述preamble序列的索引所在的第一preamble序列组与所述第一信息相对应,其中,所述第一preamble序列组为所述终端所在的小区中所有可用的preamble序列的索引分组形成的多个preamble序列组的其中一项;
所述preamble序列的逻辑根序列与所述第一信息相对应;
所述preamble序列与所述第一信息相对应;
或,所述preamble序列所在的第二preamble序列组与所述第一信息相对应,其中,所述第二preamble序列组为所述终端所在的小区中所有可用的preamble序列分组形成的多个preamble序列组的其中一项。
可选的,在所述节能唤醒信号包括preamble序列和payload的情况下,所述第一信息由所述payload携带。
可选的,处理器1410用于:
在所述终端发送节能唤醒信号之前,基于所述终端所在的跟踪区域tracking area中的小区的传输配置指示信息,确定所述节能唤醒信号的传输配置;
其中,所述终端所在的跟踪区域tracking area中的小区包括以下至少一项:
所述终端的当前服务小区;
所述终端最近连接的服务小区;
所述终端的当前跟踪区域tracking area内的任一服务小区。
可选的,所述节能唤醒信号的传输配置包括以下至少一项:
所述节能唤醒信号的时频位置;
所述preamble序列的数量。
可选的,所述第一基站的基站标识和所述preamble序列的索引相对应。
可选的,处理器1410用于:
对SSB进行测量,获得SSB测量结果;
基于所述SSB测量结果,确定所述第一基站为唤醒目标。
可选的,射频单元1401用于:所述终端基于所述第一基站的基站标识,确定与所述基站标识相对应的所述preamble序列的索引;
所述终端基于所述第一基站的基站标识和所述preamble序列的索引,向所述第一基站发送所述节能唤醒信号。
可选的,射频单元1401用于:
所述终端向所述第二基站发送所述SSB测量结果,所述SSB测量结
果包括所述第一基站的基站标识。
在本申请实施例中,通过包括preamble序列的唤醒信号携带第一信息,以指示第一基站被唤醒后的节能处理,实现辅助第一基站进行节能。
本申请实施例还提供一种第一基站,包括处理器和通信接口,其中,所述通信接口用于:
接收节能唤醒信号;
所述处理器用于:
根据所述节能唤醒信号中的第一信息,进行节能处理;
其中,所述节能唤醒信号包括preamble序列。
该第一基站实施例与上述第一基站方法实施例对应,上述方法实施例的各个实施过程和实现方式均可适用于该第一基站实施例中,且能达到相同的技术效果。
具体地,本申请实施例还提供了一种第一基站。图15为实现本申请实施例的一种第一基站的硬件结构示意图,如图15所示,该第一基站1500包括:天线1501、射频装置1502、基带装置1503、处理器1504和存储器1505。天线1501与射频装置1502连接。在上行方向上,射频装置1502通过天线1501接收信息,将接收的信息发送给基带装置1503进行处理。在下行方向上,基带装置1503对要发送的信息进行处理,并发送给射频装置1502,射频装置1502对收到的信息进行处理后经过天线1501发送出去。
以上实施例中第一基站执行的方法可以在基带装置1503中实现,该基带装置1503包括基带处理器。
基带装置1503例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图15所示,其中一个芯片例如为基带处理器,通过总线接口与存储器1505连接,以调用存储器1505中的程序,执行以上方法实施例中所示的网络设备操作。
该第一基站还可以包括网络接口1506,该接口例如为通用公共无线接口(common public radio interface,CPRI)。
具体地,本发明实施例的第一基站1500还包括:存储在存储器1505
上并可在处理器1504上运行的指令或程序,处理器1504调用存储器1505中的指令或程序执行图6所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
其中,射频装置1502用于:
接收节能唤醒信号;
处理器1504用于:
根据所述节能唤醒信号中的第一信息,进行节能处理;
其中,所述节能唤醒信号包括preamble序列。
在本申请实施例中,通过包括preamble序列的唤醒信号携带第一信息,以指示第一基站被唤醒后的节能处理,实现辅助第一基站进行节能。
可选的,处理器1504用于:
根据所述第一信息,确定所述第一基站的发送功率;
其中,所述第一信息包括以下至少一项:
终端的发送功率;
所述终端的位置信息。
可选的,处理器1504用于:
所述第一基站根据所述第一信息,确定所述第一基站的common signal的周期;
其中,所述第一信息包括以下至少一项:
终端对common signal的期望周期。
可选的,处理器1504用于:
所述第一基站根据所述第一信息,判断是否开启全部或部分处于关闭状态的硬件,和/或,判断是否开启全部或部分处于关闭状态的带宽资源;
其中,所述第一信息包括以下至少一项:
终端的数据的优先级或数据大小;
所述终端确定的波束信息或波束配置信息。
可选的,处理器1504用于:
所述第一基站根据所述第一信息,确定所述节能唤醒信息的唤醒目标为所述第一基站,则从节能态被唤醒或从深度睡眠状态切换为浅睡眠状
态;
其中,所述第一信息包括以下至少一项:
终端的终端标识;
所述第一基站的基站标识;
所述终端所在的跟踪区域的标识;或
预设信息,所述预设信息用于解调所述节能唤醒信号。
可选的,所述第一基站的基站标识和所述preamble序列相对应。
在本申请实施例中,通过包括preamble序列的唤醒信号携带第一信息,以指示第一基站被唤醒后的节能处理,实现辅助第一基站进行节能。
本申请实施例还提供一种第二基站,包括处理器和通信接口,其中,所述通信接口用于:
接收节能唤醒信号;
所述处理器用于:
根据所述节能唤醒信号中的第一信息,唤醒所述第一信息所指示的第一基站,所述第一信息包括所述第一基站的基站标识;
其中,所述节能唤醒信号包括preamble序列,所述第一基站的基站标识和所述preamble序列相对应。
该第一基站实施例与上述第一基站方法实施例对应,上述方法实施例的各个实施过程和实现方式均可适用于该第一基站实施例中,且能达到相同的技术效果。
具体地,本申请实施例还提供了一种第二基站。图16为实现本申请实施例的第二基站的硬件结构示意图之一,如图16所示,该第二基站1600包括:天线1601、射频装置1602、基带装置1603、处理器1604和存储器1605。天线1601与射频装置1602连接。在上行方向上,射频装置1602通过天线1601接收信息,将接收的信息发送给基带装置1603进行处理。在下行方向上,基带装置1603对要发送的信息进行处理,并发送给射频装置1602,射频装置1602对收到的信息进行处理后经过天线1601发送出去。
以上实施例中第二基站执行的方法可以在基带装置1603中实现,该
基带装置1603包括基带处理器。
基带装置1603例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图16所示,其中一个芯片例如为基带处理器,通过总线接口与存储器1605连接,以调用存储器1605中的程序,执行以上方法实施例中所示的第二基站的操作。
该第二基站还可以包括网络接口1606,该接口例如为通用公共无线接口(common public radio interface,CPRI)。
具体地,本发明实施例的第二基站1600还包括:存储在存储器1605上并可在处理器1604上运行的指令或程序,处理器1604调用存储器1605中的指令或程序执行图7所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
本申请实施例还提供一种第二基站,包括处理器和通信接口,其中,所述通信接口用于:
接收SSB测量结果;
所述处理器用于:
根据所述SSB测量结果,唤醒所述SSB测量结果所指示的第一基站。
具体地,本申请实施例还提供了一种第二基站。图17为实现本申请实施例的第二基站的硬件结构示意图之二,如图17所示,该第二基站1700包括:天线1701、射频装置1702、基带装置1703、处理器1704和存储器1705。天线1701与射频装置1702连接。在上行方向上,射频装置1702通过天线1701接收信息,将接收的信息发送给基带装置1703进行处理。在下行方向上,基带装置1703对要发送的信息进行处理,并发送给射频装置1702,射频装置1702对收到的信息进行处理后经过天线1701发送出去。
以上实施例中第二基站执行的方法可以在基带装置1703中实现,该基带装置1703包括基带处理器。
基带装置1703例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图17所示,其中一个芯片例如为基带处理器,通过总线接口
与存储器1705连接,以调用存储器1705中的程序,执行以上方法实施例中所示的第二基站的操作。
该第二基站还可以包括网络接口1706,该接口例如为通用公共无线接口(common public radio interface,CPRI)。
具体地,本发明实施例的第二基站1700还包括:存储在存储器1705上并可在处理器1704上运行的指令或程序,处理器1704调用存储器1705中的指令或程序执行图8所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述节能唤醒方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的终端中的处理器。所述可读存储介质,包括计算机可读存储介质,如计算机只读存储器ROM、随机存取存储器RAM、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述节能唤醒方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
本申请实施例另提供了一种计算机程序/程序产品,所述计算机程序/程序产品被存储在存储介质中,所述计算机程序/程序产品被至少一个处理器执行以实现上述节能唤醒方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
本申请实施例还提供了一种节能唤醒系统,包括:终端、第一基站、第二基站,所述终端可用于执行如上所述终端对应的节能唤醒方法,所述第一基站可用于执行如上所述第一基站对应的节能唤醒方法,所述第二基站可用于执行如上所述第二基站对应的节能唤醒方法。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体
意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以计算机软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。
Claims (45)
- 一种节能唤醒方法,包括:终端发送节能唤醒信号;其中,所述节能唤醒信号用于唤醒第一基站,所述节能唤醒信号携带第一信息,所述第一信息用于指示所述第一基站被唤醒后的节能处理;所述节能唤醒信号包括前导码preamble序列。
- 根据权利要求1所述的节能唤醒方法,其中,所述第一信息包括以下至少一项:所述终端的终端标识;所述第一基站的基站标识;所述终端的发送功率;所述终端对公共信号common signal的期望周期;所述终端的位置信息;所述终端的数据的优先级或数据大小;所述终端确定的波束信息或波束配置信息;所述终端所在的跟踪区域的标识;或预设信息,所述预设信息用于解调所述节能唤醒信号。
- 根据权利要求1或2所述的节能唤醒方法,其中,所述节能唤醒信号包括一个或多个preamble序列,或所述节能唤醒信号包括preamble序列和负载payload。
- 根据权利要求3所述的节能唤醒方法,其中,在所述节能唤醒信号包括多个preamble序列的情况下,所述第一信息由所述多个preamble序列联合携带,所述多个preamble序列中的每一个preamble序列分别携带所述第一信息中的1比特内容。
- 根据权利要求3所述的节能唤醒方法,其中,在所述节能唤醒信号包括一个preamble序列的情况下,所述一个preamble序列满足以下至少一项:所述preamble序列的索引与所述第一信息相对应;所述preamble序列的索引所在的第一preamble序列组与所述第一信息相对应,其中,所述第一preamble序列组为所述终端所在的小区中所有可用的preamble序列的索引分组形成的多个preamble序列组的其中一项;所述preamble序列的逻辑根序列与所述第一信息相对应;所述preamble序列与所述第一信息相对应;或,所述preamble序列所在的第二preamble序列组与所述第一信息相对应,其中,所述第二preamble序列组为所述终端所在的小区中所有可用的preamble序列分组形成的多个preamble序列组的其中一项。
- 根据权利要求3所述的节能唤醒方法,其中,在所述节能唤醒信号包括preamble序列和payload的情况下,所述第一信息由所述payload携带。
- 根据权利要求1-6任一项所述的节能唤醒方法,其中,在所述终端发送节能唤醒信号之前,所述方法还包括:所述终端基于所述终端所在的跟踪区域tracking area中的小区的传输配置指示信息,确定所述节能唤醒信号的传输配置;其中,所述终端所在的跟踪区域tracking area中的小区包括以下至少一项:所述终端的当前服务小区;所述终端最近连接的服务小区;所述终端的当前跟踪区域tracking area内的任一服务小区。
- 根据权利要求7所述的节能唤醒方法,其中,所述节能唤醒信号的传输配置包括以下至少一项:所述节能唤醒信号的时频位置;所述preamble序列的数量。
- 根据权利要求2-8任一项所述的节能唤醒方法,其中,所述第一基站的基站标识和所述preamble序列的索引相对应。
- 根据权利要求9所述的节能唤醒方法,所述方法还包括:所述终端对同步信号块SSB进行测量,获得SSB测量结果;所述终端基于所述SSB测量结果,确定所述第一基站为唤醒目标。
- 根据权利要求10所述的节能唤醒方法,其中,所述终端发送节能唤醒信号,包括:所述终端基于所述第一基站的基站标识,确定与所述基站标识相对应的所述preamble序列的索引;所述终端基于所述第一基站的基站标识和所述preamble序列的索引,向所述第一基站发送所述节能唤醒信号。
- 根据权利要求10所述的节能唤醒方法,其中,所述终端发送节能唤醒信号,包括:所述终端向所述第二基站发送所述SSB测量结果,所述SSB测量结果包括所述第一基站的基站标识。
- 一种节能唤醒方法,包括:第一基站接收节能唤醒信号;所述第一基站根据所述节能唤醒信号中的第一信息,进行节能处理;其中,所述节能唤醒信号包括preamble序列。
- 根据权利要求13所述的节能唤醒方法,其中,所述第一基站根据所述节能唤醒信号中的第一信息,进行节能处理,包括:所述第一基站根据所述第一信息,确定所述第一基站的发送功率;其中,所述第一信息包括以下至少一项:终端的发送功率;所述终端的位置信息。
- 根据权利要求13所述的节能唤醒方法,其中,所述第一基站根据所述节能唤醒信号中的第一信息,进行节能处理,包括:所述第一基站根据所述第一信息,确定所述第一基站的common signal的周期;其中,所述第一信息包括以下至少一项:终端对common signal的期望周期。
- 根据权利要求13所述的节能唤醒方法,其中,所述第一基站根据所述节能唤醒信号中的第一信息,进行节能处理,包括:所述第一基站根据所述第一信息,判断是否开启全部或部分处于关闭状态的硬件,和/或,判断是否开启全部或部分处于关闭状态的带宽资源;其中,所述第一信息包括以下至少一项:终端的数据的优先级或数据大小;所述终端确定的波束信息或波束配置信息。
- 根据权利要求13所述的节能唤醒方法,其中,所述第一基站根据所述节能唤醒信号中的第一信息,进行节能处理,包括:所述第一基站根据所述第一信息,确定所述节能唤醒信息的唤醒目标为所述第一基站,则从节能态被唤醒或从深度睡眠状态切换为浅睡眠状态;其中,所述第一信息包括以下至少一项:终端的终端标识;所述第一基站的基站标识;所述终端所在的跟踪区域的标识;或预设信息,所述预设信息用于解调所述节能唤醒信号。
- 根据权利要求17所述的节能唤醒方法,其中,所述第一基站的基站标识和所述preamble序列相对应。
- 一种节能唤醒方法,包括:第二基站接收节能唤醒信号;所述第二基站根据所述节能唤醒信号中的第一信息,唤醒所述第一信息所指示的第一基站,所述第一信息包括所述第一基站的基站标识;其中,所述节能唤醒信号包括preamble序列,所述第一基站的基站标识和所述preamble序列相对应。
- 一种节能唤醒方法,包括:第二基站接收SSB测量结果;所述第二基站根据所述SSB测量结果,唤醒所述SSB测量结果所指示的第一基站。
- 一种节能唤醒装置,包括:第一发送模块,用于发送节能唤醒信号;其中,所述节能唤醒信号用于唤醒第一基站,所述节能唤醒信号携带第一信息,所述第一信息用于指示所述第一基站被唤醒后的节能处理;所 述节能唤醒信号包括preamble序列。
- 根据权利要求21所述的节能唤醒装置,其中,所述第一信息包括以下至少一项:终端的终端标识;所述第一基站的基站标识;所述终端的发送功率;所述终端对common signal的期望周期;所述终端的位置信息;所述终端的数据的优先级或数据大小;所述终端确定的波束信息或波束配置信息;所述终端所在的跟踪区域的标识;或预设信息,所述预设信息用于解调所述节能唤醒信号。
- 根据权利要求21或22所述的节能唤醒装置,其中,所述节能唤醒信号包括一个或多个preamble序列,或所述节能唤醒信号包括preamble序列和payload。
- 根据权利要求23所述的节能唤醒装置,其中,在所述节能唤醒信号包括多个preamble序列的情况下,所述第一信息由所述多个preamble序列联合携带,所述多个preamble序列中的每一个preamble序列分别携带所述第一信息中的1比特内容。
- 根据权利要求23所述的节能唤醒装置,其中,在所述节能唤醒信号包括一个preamble序列的情况下,所述一个preamble序列满足以下至少一项:所述preamble序列的索引与所述第一信息相对应;所述preamble序列的索引所在的第一preamble序列组与所述第一信息相对应,其中,所述第一preamble序列组为终端所在的小区中所有可用的preamble序列的索引分组形成的多个preamble序列组的其中一项;所述preamble序列的逻辑根序列与所述第一信息相对应;所述preamble序列与所述第一信息相对应;或,所述preamble序列所在的第二preamble序列组与所述第一信息相 对应,其中,所述第二preamble序列组为所述终端所在的小区中所有可用的preamble序列分组形成的多个preamble序列组的其中一项。
- 根据权利要求23所述的节能唤醒装置,其中,在所述节能唤醒信号包括preamble序列和payload的情况下,所述第一信息由所述payload携带。
- 根据权利要求21-26任一项所述的节能唤醒装置,所述装置还包括:第一确定模块,用于在发送节能唤醒信号之前,基于终端所在的跟踪区域tracking area中的小区的传输配置指示信息,确定所述节能唤醒信号的传输配置;其中,所述终端所在的跟踪区域tracking area中的小区包括以下至少一项:所述终端的当前服务小区;所述终端最近连接的服务小区;所述终端的当前跟踪区域tracking area内的任一服务小区。
- 根据权利要求27所述的节能唤醒装置,其中,所述节能唤醒信号的传输配置包括以下至少一项:所述节能唤醒信号的时频位置;所述preamble序列的数量。
- 根据权利要求22-28任一项所述的节能唤醒装置,其中,所述第一基站的基站标识和所述preamble序列的索引相对应。
- 根据权利要求29所述的节能唤醒装置,所述装置还包括:第一测量模块,用于对SSB进行测量,获得SSB测量结果;第二确定模块,用于基于所述SSB测量结果,确定所述第一基站为唤醒目标。
- 根据权利要求30所述的节能唤醒装置,其中,所述第一发送模块具体用于:基于所述第一基站的基站标识,确定与所述基站标识相对应的所述preamble序列的索引;基于所述第一基站的基站标识和所述preamble序列的索引,向所述第一基站发送所述节能唤醒信号。
- 根据权利要求30所述的节能唤醒装置,其中,所述第一发送模块具体用于:向第二基站发送所述SSB测量结果,所述SSB测量结果包括所述第一基站的基站标识。
- 一种节能唤醒装置,包括:第一接收模块,用于接收节能唤醒信号;第一处理模块,用于根据所述节能唤醒信号中的第一信息,进行节能处理;其中,所述节能唤醒信号包括preamble序列。
- 根据权利要求33所述的节能唤醒装置,其中,所述第一处理模块具体用于:根据所述第一信息,确定第一基站的发送功率;其中,所述第一信息包括以下至少一项:终端的发送功率;所述终端的位置信息。
- 根据权利要求33所述的节能唤醒装置,其中,所述第一处理模块具体用于:根据所述第一信息,确定第一基站的common signal的周期;其中,所述第一信息包括以下至少一项:终端对common signal的期望周期。
- 根据权利要求33所述的节能唤醒装置,其中,所述第一处理模块具体用于:根据所述第一信息,判断是否开启全部或部分处于关闭状态的硬件,和/或,判断是否开启全部或部分处于关闭状态的带宽资源;其中,所述第一信息包括以下至少一项:终端的数据的优先级或数据大小;所述终端确定的波束信息或波束配置信息。
- 根据权利要求33所述的节能唤醒装置,其中,所述第一处理模块具体用于:根据所述第一信息,确定所述节能唤醒信息的唤醒目标为第一基站,则从节能态被唤醒或从深度睡眠状态切换为浅睡眠状态;其中,所述第一信息包括以下至少一项:终端的终端标识;所述第一基站的基站标识;所述终端所在的跟踪区域的标识;或预设信息,所述预设信息用于解调所述节能唤醒信号。
- 根据权利要求37所述的节能唤醒装置,其中,所述第一基站的基站标识和所述preamble序列相对应。
- 一种节能唤醒装置,包括:第二接收模块,用于接收节能唤醒信号;第一唤醒模块,用于根据所述节能唤醒信号中的第一信息,唤醒所述第一信息所指示的第一基站,所述第一信息包括所述第一基站的基站标识;其中,所述节能唤醒信号包括preamble序列,所述第一基站的基站标识和所述preamble序列相对应。
- 一种节能唤醒装置,包括:第三接收模块,用于接收SSB测量结果;第二唤醒模块,用于根据所述SSB测量结果,唤醒所述SSB测量结果所指示的第一基站。
- 一种终端,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至12任一项所述的节能唤醒方法。
- 一种第一基站,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求12至18任一项所述的节能唤醒方法。
- 一种第二基站,包括处理器和存储器,所述存储器存储可在所述 处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求19所述的节能唤醒方法。
- 一种第二基站,包括处理器和存储器,所述存储器存储可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求20所述的节能唤醒方法。
- 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如权利要求1至20任一项所述的节能唤醒方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202210674982.7A CN117279074A (zh) | 2022-06-14 | 2022-06-14 | 节能唤醒方法、装置、终端、基站及存储介质 |
CN202210674982.7 | 2022-06-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023241602A1 true WO2023241602A1 (zh) | 2023-12-21 |
Family
ID=89192303
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2023/100084 WO2023241602A1 (zh) | 2022-06-14 | 2023-06-14 | 节能唤醒方法、装置、终端、基站及存储介质 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN117279074A (zh) |
WO (1) | WO2023241602A1 (zh) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105165062A (zh) * | 2013-08-08 | 2015-12-16 | 东莞宇龙通信科技有限公司 | 小区干扰协调方法、基站和终端 |
US20190028967A1 (en) * | 2017-06-30 | 2019-01-24 | Wilus Institute Of Standards And Technology Inc. | Wireless communication method and apparatus using wakeup radio |
CN110557811A (zh) * | 2018-06-04 | 2019-12-10 | 电信科学技术研究院有限公司 | 节能信号发送的方法、节能信号接收的方法、基站及终端 |
CN111108765A (zh) * | 2018-08-10 | 2020-05-05 | 苹果公司 | 用于未许可频谱中的蜂窝通信的唤醒信号 |
CN111165027A (zh) * | 2017-09-29 | 2020-05-15 | 高通股份有限公司 | 用于唤醒信号设计和资源分配的技术和装置 |
CN111386732A (zh) * | 2017-11-03 | 2020-07-07 | 索尼公司 | 两部分唤醒信号 |
-
2022
- 2022-06-14 CN CN202210674982.7A patent/CN117279074A/zh active Pending
-
2023
- 2023-06-14 WO PCT/CN2023/100084 patent/WO2023241602A1/zh unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN105165062A (zh) * | 2013-08-08 | 2015-12-16 | 东莞宇龙通信科技有限公司 | 小区干扰协调方法、基站和终端 |
US20190028967A1 (en) * | 2017-06-30 | 2019-01-24 | Wilus Institute Of Standards And Technology Inc. | Wireless communication method and apparatus using wakeup radio |
CN111165027A (zh) * | 2017-09-29 | 2020-05-15 | 高通股份有限公司 | 用于唤醒信号设计和资源分配的技术和装置 |
CN111386732A (zh) * | 2017-11-03 | 2020-07-07 | 索尼公司 | 两部分唤醒信号 |
CN110557811A (zh) * | 2018-06-04 | 2019-12-10 | 电信科学技术研究院有限公司 | 节能信号发送的方法、节能信号接收的方法、基站及终端 |
CN111108765A (zh) * | 2018-08-10 | 2020-05-05 | 苹果公司 | 用于未许可频谱中的蜂窝通信的唤醒信号 |
Also Published As
Publication number | Publication date |
---|---|
CN117279074A (zh) | 2023-12-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TW202005448A (zh) | 信號傳輸方法及裝置 | |
JP2024524594A (ja) | 初期帯域幅部分構成の取得方法、端末及びネットワーク側機器 | |
WO2023241602A1 (zh) | 节能唤醒方法、装置、终端、基站及存储介质 | |
WO2024067508A1 (zh) | 小区同步方法、装置、终端、网络侧设备及存储介质 | |
WO2023138510A1 (zh) | 配置确定方法、装置、终端及网络侧设备 | |
WO2024001939A1 (zh) | 上行信号的传输方法、终端及网络侧设备 | |
WO2024222931A1 (zh) | 传输方法、装置、终端及网络侧设备 | |
WO2024140575A1 (zh) | 信号监听方法、终端及网络侧设备 | |
WO2024022311A1 (zh) | 同步参考小区确定方法、装置、终端及网络侧设备 | |
WO2024078611A1 (zh) | 信息配置方法、装置、终端及网络侧设备 | |
WO2024093913A1 (zh) | Wus传输方法、装置、用户设备及存储介质 | |
WO2024017322A1 (zh) | 传输处理方法、装置、终端及网络侧设备 | |
WO2023207840A1 (zh) | 信号接收方法、装置及终端 | |
WO2023216985A1 (zh) | 信号监听方法、配置方法、装置、终端及网络侧设备 | |
WO2023143413A1 (zh) | 同步信号块接收方法、同步信号块发送方法及相关设备 | |
WO2024027678A1 (zh) | 扩展非连续接收的配置方法及装置、通信设备 | |
WO2023221819A1 (zh) | 信号发送条件确定方法、ssb周期控制方法、装置、终端和网络侧设备 | |
WO2024051539A1 (zh) | 准共址参数的确定方法、装置及终端 | |
WO2024160109A1 (zh) | Dci大小的确定方法、dci的发送方法、装置及相关设备 | |
WO2023198183A1 (zh) | 信息获取方法、信息发送方法、装置、终端及网络侧设备 | |
WO2023193676A1 (zh) | 测量上报处理方法、装置、终端及网络侧设备 | |
WO2024208124A1 (zh) | 通信方法、装置、终端、无线接入网设备及核心网设备 | |
WO2024230655A1 (zh) | 寻呼物理下行控制信道监听处理方法、装置及相关设备 | |
WO2024027589A1 (zh) | 唤醒信号的同步源的确定方法、终端及网络侧设备 | |
WO2024067378A1 (zh) | 上行资源的处理方法、装置及通信设备 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23823169 Country of ref document: EP Kind code of ref document: A1 |