WO2023139940A1 - 歩行機能評価装置および歩行機能評価方法 - Google Patents
歩行機能評価装置および歩行機能評価方法 Download PDFInfo
- Publication number
- WO2023139940A1 WO2023139940A1 PCT/JP2022/044396 JP2022044396W WO2023139940A1 WO 2023139940 A1 WO2023139940 A1 WO 2023139940A1 JP 2022044396 W JP2022044396 W JP 2022044396W WO 2023139940 A1 WO2023139940 A1 WO 2023139940A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- walking
- subject
- unit
- signal pattern
- signal
- Prior art date
Links
- 238000011156 evaluation Methods 0.000 title claims description 45
- 230000033001 locomotion Effects 0.000 claims description 94
- 238000004364 calculation method Methods 0.000 claims description 33
- 210000003141 lower extremity Anatomy 0.000 claims description 32
- 238000001514 detection method Methods 0.000 claims description 28
- 238000000034 method Methods 0.000 claims description 18
- 230000005021 gait Effects 0.000 claims description 14
- 238000010606 normalization Methods 0.000 claims description 7
- 230000002747 voluntary effect Effects 0.000 claims description 3
- 230000008859 change Effects 0.000 abstract description 9
- 230000002123 temporal effect Effects 0.000 abstract description 3
- 230000006870 function Effects 0.000 description 47
- 210000000689 upper leg Anatomy 0.000 description 24
- 210000001699 lower leg Anatomy 0.000 description 21
- 210000001624 hip Anatomy 0.000 description 19
- 210000003205 muscle Anatomy 0.000 description 17
- 238000011282 treatment Methods 0.000 description 15
- 210000002414 leg Anatomy 0.000 description 12
- 238000012360 testing method Methods 0.000 description 11
- 210000000629 knee joint Anatomy 0.000 description 9
- 230000000694 effects Effects 0.000 description 7
- 210000003127 knee Anatomy 0.000 description 7
- 208000018360 neuromuscular disease Diseases 0.000 description 7
- 238000010586 diagram Methods 0.000 description 6
- 230000007246 mechanism Effects 0.000 description 6
- 230000000750 progressive effect Effects 0.000 description 6
- 206010002026 amyotrophic lateral sclerosis Diseases 0.000 description 4
- 238000000540 analysis of variance Methods 0.000 description 4
- 238000013500 data storage Methods 0.000 description 4
- 210000002683 foot Anatomy 0.000 description 4
- 230000005484 gravity Effects 0.000 description 4
- 239000011159 matrix material Substances 0.000 description 4
- 238000005259 measurement Methods 0.000 description 4
- 201000006938 muscular dystrophy Diseases 0.000 description 4
- 230000001133 acceleration Effects 0.000 description 3
- 210000004027 cell Anatomy 0.000 description 3
- 201000010099 disease Diseases 0.000 description 3
- 208000037265 diseases, disorders, signs and symptoms Diseases 0.000 description 3
- 210000001503 joint Anatomy 0.000 description 3
- 230000002232 neuromuscular Effects 0.000 description 3
- 229920000049 Carbon (fiber) Polymers 0.000 description 2
- 206010061296 Motor dysfunction Diseases 0.000 description 2
- 230000003321 amplification Effects 0.000 description 2
- 239000004917 carbon fiber Substances 0.000 description 2
- 239000004918 carbon fiber reinforced polymer Substances 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 210000004394 hip joint Anatomy 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 238000003199 nucleic acid amplification method Methods 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 238000000611 regression analysis Methods 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 210000002027 skeletal muscle Anatomy 0.000 description 2
- 208000024891 symptom Diseases 0.000 description 2
- 210000003371 toe Anatomy 0.000 description 2
- 229910000838 Al alloy Inorganic materials 0.000 description 1
- 229910000737 Duralumin Inorganic materials 0.000 description 1
- 238000001134 F-test Methods 0.000 description 1
- 206010017577 Gait disturbance Diseases 0.000 description 1
- 208000010428 Muscle Weakness Diseases 0.000 description 1
- 206010028289 Muscle atrophy Diseases 0.000 description 1
- 206010028372 Muscular weakness Diseases 0.000 description 1
- 230000036982 action potential Effects 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 210000003423 ankle Anatomy 0.000 description 1
- 238000003491 array Methods 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 210000004556 brain Anatomy 0.000 description 1
- 238000004422 calculation algorithm Methods 0.000 description 1
- 239000003795 chemical substances by application Substances 0.000 description 1
- 238000010835 comparative analysis Methods 0.000 description 1
- 238000005314 correlation function Methods 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 238000009109 curative therapy Methods 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 210000004744 fore-foot Anatomy 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 201000008319 inclusion body myositis Diseases 0.000 description 1
- 238000011221 initial treatment Methods 0.000 description 1
- 239000004973 liquid crystal related substance Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 230000007659 motor function Effects 0.000 description 1
- 230000020763 muscle atrophy Effects 0.000 description 1
- 201000000585 muscular atrophy Diseases 0.000 description 1
- 230000003183 myoelectrical effect Effects 0.000 description 1
- 210000000653 nervous system Anatomy 0.000 description 1
- 230000001537 neural effect Effects 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 238000007619 statistical method Methods 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 210000004243 sweat Anatomy 0.000 description 1
- 230000001225 therapeutic effect Effects 0.000 description 1
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61H—PHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
- A61H1/00—Apparatus for passive exercising; Vibrating apparatus; Chiropractic devices, e.g. body impacting devices, external devices for briefly extending or aligning unbroken bones
- A61H1/02—Stretching or bending or torsioning apparatus for exercising
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61H—PHYSICAL THERAPY APPARATUS, e.g. DEVICES FOR LOCATING OR STIMULATING REFLEX POINTS IN THE BODY; ARTIFICIAL RESPIRATION; MASSAGE; BATHING DEVICES FOR SPECIAL THERAPEUTIC OR HYGIENIC PURPOSES OR SPECIFIC PARTS OF THE BODY
- A61H3/00—Appliances for aiding patients or disabled persons to walk about
Definitions
- the present invention relates to a walking function evaluation device and a walking function evaluation method, and in particular proposes a walking function evaluation device and a walking function evaluation method for patients with progressive neuromuscular disease to wear a wearable movement assist device to improve their walking function.
- ALS amyotrophic lateral sclerosis
- MD muscular dystrophy
- wearable movement assist devices have been used to treat patients with progressive neuromuscular diseases with the aim of maintaining and improving their walking function.
- This wearable movement assisting device moves together with the patient based on physiological and exercise information such as bioelectric signals (BES) of the muscles of the lower extremities, joint angles, and floor reaction forces to assist the patient in walking.
- BES bioelectric signals
- a subject wearing this wearable movement assistance device can repeat walking based on the patient's intention to exercise without putting a load on the neuromuscular system. As a result, it becomes possible to promote the structural development and strengthening of neural loops through the wearable movement assist device, and to treat so that the activation of the nervous system leads to the maintenance and improvement of the patient's motor function.
- the walking function is generally evaluated based on the subject's walking distance and walking speed.
- a gait measuring machine that detects the walking state of the subject, analyzes the walking state of the subject based on the measured walking data, and calculates the walking ability of the subject (see Patent Document 2).
- the present invention has been made in consideration of the above points, and intends to propose a walking function evaluation device and a walking function evaluation method that can recognize temporal changes in a subject's walking function and dramatically improve the rapid construction of a treatment plan for the subject.
- a walking function evaluation apparatus that evaluates the walking function of a subject by using a worn motion assisting device that provides the subject with power corresponding to each walking phase that constitutes the walking motion of the subject.
- the wearable motion assisting device includes a driving unit that actively or passively drives in conjunction with the lower limb motion of the subject, and a body surface part of the subject based on the joint accompanying the lower limb motion of the subject.
- an optional control unit that causes the drive unit to generate power in accordance with the intention of the subject based on the biopotential signal acquired by the biosignal detection unit; a joint circumference detection unit that detects physical quantities around the joints associated with the movement of the lower limbs of the subject based on the output signal from the drive unit; a drive current generation unit that synthesizes control signals from the voluntary control unit and the autonomous control unit and supplies a drive current corresponding to the synthesized control signal to the drive unit; a gait synchronization calculation unit that calculates the walking cycle of the subject based on the detection result of a floor reaction force sensor that detects the pressure distribution on the left and right soles of the subject; a signal normalization unit that normalizes the gait cycle calculated by the gait synchronization calculation unit into a first signal pattern represented by a planar coordinate system of time and amplitude for each gait cycle; a similarity calculation unit that compares the first signal pattern obtained from the signal normalization unit with a second signal pattern corresponding to a healthy subject serving as
- the first signal pattern of the biopotential signal of the subject and the second signal pattern of the biopotential signal corresponding to a healthy person are normalized and compared, and based on the similarity obtained from the comparison result, it is possible to recognize the change over time in the walking function of the subject.
- the walking speed calculation unit calculates the walking speed of the subject based on the step length and the walking cycle calculated by the walking synchronization calculation unit, and the walking function evaluation unit analyzes the correlation between the similarity calculated by the similarity calculation unit and the walking distance per predetermined time based on the walking speed calculated by the walking speed calculation unit. made it
- the walking function evaluation device analyzes the correlation between the similarity of the first signal pattern and the second signal pattern and the walking distance per predetermined time based on the walking speed, and the higher the similarity, the longer the walking distance per predetermined time. Therefore, it can be confirmed that the more similar the first signal pattern during walking of a subject using the wearable movement assisting device to the second signal pattern of a healthy person, the longer the distance can be walked without using the subject.
- the similarity calculation unit compares the shapes of the first signal pattern and the second signal pattern in chronological order using the differential dynamic time warping (DDTW), and calculates the pattern similarity as the similarity from the corresponding relationship between the upward trend and the downward trend.
- DDTW differential dynamic time warping
- the wearable motion assisting device in the walking function evaluation method for evaluating the walking function of the subject by using a worn motion assisting device that provides the subject with power according to each walking phase that constitutes the walking motion of the subject, has a driving unit that actively or passively drives in conjunction with the lower limb motion of the subject, and based on the biopotential signal obtained from the body surface part of the subject with reference to the joint accompanying the lower limb motion of the subject, according to the intention of the subject. and autonomous control for generating power corresponding to each of the walking phases in the walking task of the subject based on the physical quantity around the joint associated with the motion of the lower limb of the subject detected based on the output signal of the driving section.
- the first signal pattern of the biopotential signal of the subject and the second signal pattern of the biopotential signal corresponding to a healthy person are normalized and compared, and based on the similarity obtained from the comparison result, it is possible to recognize the change in the walking function of the subject over time.
- the present invention it is possible to realize a walking function evaluation device and a walking function evaluation method that can recognize temporal changes in the walking function of a subject and dramatically improve the rapid construction of a treatment plan for the subject.
- FIG. 1 is a conceptual diagram for explaining a walking support system according to this embodiment;
- FIG. BRIEF DESCRIPTION OF THE DRAWINGS It is a perspective view which shows the external appearance structure of the wearable movement assistance apparatus by this Embodiment.
- 1 is a block diagram showing an internal configuration of a wearable movement assisting device according to this embodiment;
- FIG. It is a block diagram which shows the internal structure of the walking function evaluation apparatus using a wearable movement assistance apparatus. It is a chart showing the information about a subject.
- 4 is a graph showing a second signal pattern of biopotential signals obtained from the right knee extensor muscle of a healthy subject.
- 4 is a graph showing a second signal pattern of biopotential signals obtained from the right knee extensor muscle of a healthy subject.
- FIG. 10 is a normalized graph of the first signal pattern of the biopotential signal;
- FIG. 4 is a schematic diagram for explaining an alignment state by DDTW;
- 10 is a graph representing alignment results applying DDTW scores. It is a graph which shows the reference example of the result of DDTW. It is a graph which shows the reference example of the result of DDTW.
- FIG. 10 is a chart combining 2MWT distances and DDTW scores;
- FIG. 10 is a diagram for explaining an ANOVA table and correlation coefficients;
- FIG. 1 shows a walking support system 1 according to the present embodiment.
- the walking assistance system 1 includes a wearable movement assistance device 2 that assists the movement of the subject P, and a walking assistance device 3 that assists the rehabilitation of the subject P through walking movement.
- the wearable movement assisting device 2 and the walking assisting device 3 are communicably connected by wire or wirelessly.
- the walking support device 3 is configured such that a left frame 6L and a right frame 6R, which form a pair on both sides of the treadmill 5 as a reference, are curved from the tip of the treadmill 5 and erected so that the subject P can grasp end portions of the frames 6L and 6R with both hands.
- the treadmill 5 has a walking belt 7 that circulates due to the rotation of the rollers.
- the circulation speed of the walking belt 7 can be changed by changing the rotational speed of the rollers in accordance with the actuator drive.
- the walking support device 3 is provided with a monitor 8, for example, a liquid crystal display, in a sub-frame (not shown) bridging between the left frame 6L and the right frame 6R erected from the treadmill 5, and displays the operation result of the operation unit and various information necessary for walking support of the subject.
- a monitor 8 for example, a liquid crystal display
- the subject P wearing the wearable movement assisting device 2 holds one end of the pair of left frame 6L and right frame 6R of the walking assisting device 3 with both hands to stabilize the posture during walking and assist rehabilitation by walking.
- FIG. 2 shows a wearable movement assisting device 2 according to the present embodiment.
- the wearable movement assisting device 2 is a device that provides the subject with power corresponding to each walking phase that constitutes the walking motion of the subject. It detects a biopotential signal (surface myoelectric potential) generated when muscle force is generated by a signal from the brain and the movement angle of the hip joint and knee joint of the wearer, and operates to apply a driving force from the driving mechanism based on this detection signal.
- a biopotential signal surface myoelectric potential
- a lower-limb-type wearable movement assist device 2 in the present embodiment includes a waist frame 10 worn on the waist of a subject, a lower-limb frame 11 worn on the wearer's lower limbs, a plurality of driving units 12L, 12R, 13L, and 13R provided on the lower-limb frame 11 corresponding to the joints of the wearer, and the auxiliary units attached to the lower-limb frame 11 to apply the forces of the driving units 12L, 12R, 13L, and 13R to the wearer from the front or rear. It has cuffs 14L, 14R, 15L, 15R as force acting members, a control device 30 (FIG. 3 to be described later) that controls the drive units 12L, 12R, 13L, 13R based on signals caused by the wearer's lower limb movements, a back unit 16 equipped with the control device, and an operation unit (not shown) used by the caregiver.
- the control device 30 can relatively drive the lower limb frames 11 around the output shafts of the actuators of the drive units 12L, 12R, 13L, and 13R corresponding to the joints of the subject.
- Each drive unit 12L, 12R, 13L, 13R is equipped with a sensor group for detecting the drive torque, rotation angle, etc. of the actuator.
- the rear unit 16 is equipped with a battery unit (not shown) for supplying driving power to the entire apparatus.
- the waist frame 10 is a substantially C-shaped member that opens forward in plan view and is capable of receiving the waist of the subject and enclosing it from the back to the left and right sides.
- the left waist frame portion 18L and the right waist frame portion 18R are connected to the rear waist frame portion 17 via an opening adjustment mechanism (not shown). Base portions of the left waist frame portion 18L and the right waist frame portion 18R are inserted and held in the rear waist frame portion 17 so as to be slidable in the left-right direction.
- the lower limb frame 11 has a right lower limb frame 19R attached to the right lower limb of the subject and a left lower limb frame 19L attached to the left lower limb of the subject.
- the left lower leg frame 19L and the right lower leg frame 19R are formed symmetrically.
- the left lower leg frame 19L has a left thigh frame 20L located on the left side of the left thigh of the subject, a left lower leg frame 21L located on the left side of the left lower leg of the subject, and a left leg lower end frame 22L on which the sole of the left leg of the subject (the bottom of the left shoe when wearing shoes) is placed.
- the left leg frame 19L is connected to the tip of the left waist frame portion 18L via a waist connection mechanism 23L.
- the right lower leg frame 19R has a right thigh frame 20R positioned on the right side of the right thigh of the subject, a right lower leg frame 21R positioned on the right side of the right lower leg of the subject, and a right leg lower end frame 22R on which the sole of the right leg of the subject (the bottom of the right shoe when wearing shoes) is placed.
- the right lower limb frame 21R is connected to the tip of the right waist frame portion 18R via a waist connecting mechanism 23R.
- the waist frame 10 (rear waist frame 17, right waist frame 18R and left waist frame 18L) and lower leg frame 11 (lower right leg frame 19R and left lower leg frame 19L) have a frame main body made of metal such as stainless steel or carbon fiber (carbon fiber) in the shape of an elongated plate, and are formed to be lightweight and highly rigid.
- metal such as stainless steel or carbon fiber (carbon fiber) in the shape of an elongated plate, and are formed to be lightweight and highly rigid.
- carbon fiber reinforced plastic (CFRP) and extra super duralumin, which is an aluminum alloy, are used as the strength members.
- the cuffs 14L, 14R, 15L, 15R are provided on the left thigh frame 20L, the right thigh frame 20R, the left lower leg frame 21L, and the right lower leg frame 21R, respectively.
- the cuffs (hereinafter referred to as "thigh cuffs") 14L, 14R provided on the left thigh frame 20L and the right thigh frame 20R are supported by thigh cuff support mechanisms 24L, 24R attached to the lower ends of the thigh frame bodies.
- the thigh cuffs 14L and 14R have arcuately curved mounting surfaces that can be applied to the subject's thighs so as to be fitted thereon. Fitting members are attached to the mounting surfaces of the thigh cuffs 14L and 14R so that they can be in close contact with the subject's thighs without a gap.
- the cuffs (hereinafter referred to as "lower leg cuffs") 15L, 15R provided on the left lower leg frame 21L and right lower leg frame 21R are supported by lower leg cuff support mechanisms 25L, 25R attached to the upper end of the upper element.
- the lower leg cuffs 15L and 15R have arcuately curved mounting surfaces that can be applied to the subject's lower legs so as to be fitted thereon.
- a fitting member is attached to the mounting surfaces of the lower leg cuffs 15L and 15R so as to be in close contact with the lower leg of the subject without a gap.
- the left and right feet are fitted with special shoes 26L and 26R, respectively, the left and right lower legs are fitted with lower leg cuffs 15L and 15R, respectively, and the left and right thighs are fitted with thigh cuffs 14L and 14R, respectively. Then, a belt or the like is fastened to the shoe or cuff so that the foot, lower leg, and thigh are integrated with the corresponding frame.
- These special shoes 26L and 26R are composed of a pair of left and right shoes, and hold the subject's toes to ankles in close contact with each other, and can measure the load by a floor reaction force sensor (FRF sensor 60 described later) provided on the sole.
- FPF sensor 60 floor reaction force sensor
- the wearable movement assisting device 2 can control and assist walking motion based on the biopotential signal associated with voluntary muscle activity according to the intention of the subject wearing it.
- FIG. 3 is a block diagram showing the configuration of the control system of the wearable movement assisting device 2 .
- the control system 2X of the wearable movement assisting device 2 includes a control device 30 that supervises the overall control of the entire system, a data storage unit 31 in which various data are readable and writable according to commands from the control device 30, and a drive unit 12L, 12R, 13L, and 13R that are actively or passively driven in conjunction with the movement of the lower limbs of the subject.
- a potentiometer 32 for detecting the rotation angle of the output shaft is provided coaxially with the output shaft of the actuator in the drive units 12L, 12R, 13L, and 13R, and detects the joint angle according to the lower limb movement of the subject.
- the leg frame 11 is equipped with an absolute angle sensor 33 for measuring the absolute angle of the thigh with respect to the vertical direction.
- This absolute angle sensor 33 is composed of an acceleration sensor and a gyro sensor, and is used for sensor fusion, which is a method of extracting new information using multiple sensor data.
- the calculation of the absolute angle of the thigh uses a first-order filter to remove the effects of translational motion and temperature drift in each sensor. This primary filter is calculated by weighting and adding the values obtained from each sensor.
- ⁇ abs(k) be the absolute angle of the thigh with respect to the vertical direction
- ⁇ be the angular velocity obtained by the gyro sensor
- dt be the sampling period
- ⁇ be the acceleration obtained by the acceleration sensor.
- a biosignal detection unit 40 having a biosignal detection sensor (electrode group) is arranged on the subject's body surface region (mainly the body surface of the thigh) based on the joint associated with the subject's lower limb movement, and detects a biopotential signal for moving the subject's knee joint.
- the control device 30 is composed of, for example, a CPU (Central Processing Unit) chip having a memory, and includes an optional control section 50 , an autonomous control section 51 , a phase specifying section 52 and a gain changing section 53 .
- a CPU Central Processing Unit
- the optional control unit 50 causes the drive units 12L, 12R, 13L, and 13R to generate power in accordance with the intention of the subject based on the biopotential signal acquired by the biosignal detection unit 40. Specifically, the optional control section 50 supplies a command signal corresponding to the detection signal of the biological signal detection section 40 to the power amplification section 54 .
- the optional controller 50 applies a predetermined command function f(t) or gain P to the biosignal detector 40 to generate a command signal.
- This gain P is a preset value or function, and can be adjusted via a gain changer 53 based on an external input.
- the knee joint angle data detected by the potentiometer 32, the absolute angle data of the thigh with respect to the vertical direction detected by the absolute angle sensor 33, and the biosignal detected by the biosignal detector 40 are input to the reference parameter database 42.
- FRF Fluor Reaction Force sensors 60 are provided on the soles of the pair of special shoes 26L and 26R to detect the pressure distribution on the left and right soles of the subject.
- the FRF sensor 60 can separately measure the load applied to the sole of the foot separately for the forefoot portion (toe portion) and the rearfoot portion (heel portion).
- the FRF sensor 60 is composed of, for example, a piezoelectric element that outputs a voltage corresponding to the applied load, or a sensor whose capacitance changes according to the load, and can detect changes in the load due to weight shift and the presence or absence of contact between the wearer's leg and the ground.
- the center of gravity position can be obtained from the balance of the load on the left and right soles based on the detection results of each FRF sensor 60. In this way, with the pair of special shoes 26L and 26R, it is possible to estimate, based on the data measured by each FRF sensor 60, which side of the subject's left and right feet the center of gravity is biased.
- Each of the dedicated shoes 26L, 26R has an FRF control section 61 and a transmission section 62, which are composed of an FRF sensor 60 and an MCU (Micro Control Unit), in addition to the shoe structure.
- the output of the FRF sensor 60 is voltage-converted via a converter 63 and then input to an FRF control unit 61 with a high frequency band cut off via an LPF (Low Pass Filter) 64 .
- LPF Low Pass Filter
- the FRF control unit 61 Based on the detection result of the FRF sensor 60, the FRF control unit 61 obtains the load change accompanying the weight shift of the subject and the presence or absence of contact with the ground, and also obtains the position of the center of gravity according to the load balance of the left and right soles.
- the FRF control unit 61 wirelessly transmits the obtained center-of-gravity position as FRF data to the receiving unit 65 in the apparatus main body via the transmitting unit 62 .
- the controller 30 After the controller 30 receives the FRF data wirelessly transmitted from the transmitter 62 of each of the dedicated shoes 26L and 26R via the receiver 65, the loads and the center of gravity positions of the left and right soles based on the FRF data are stored in the reference parameter database 42 of the data storage 31.
- the phase identification unit 52 compares the knee joint angle data detected by the potentiometer 32 and the load data detected by the FRF sensor 60 with the knee joint angle and load of the reference parameters stored in the reference parameter database 42.
- the phase identification unit 52 identifies the phase of the motion of the subject based on the comparison result.
- the autonomous control unit 51 obtains the control data of the phase specified by the phase specifying unit 52, it generates a command signal corresponding to the control data of this phase, and supplies the power amplifier unit 54 with the command signal for causing the driving units 12L, 12R, 13L, and 13R to generate this power.
- the autonomous control unit 51 receives the gain adjusted by the gain changing unit 53 described above, generates a command signal according to this gain, and outputs it to the power amplifying unit 54 .
- the power amplifying unit 54 controls currents that drive the actuators of the driving units 12L, 12R, 13L, and 13R to control torque magnitudes and rotation angles of the actuators, thereby applying assist force from the actuators to the knee joints of the subject.
- the autonomous control unit 51 identifies each walking phase corresponding to the walking task of the subject based on the physical quantities detected by the joint detection unit (potentiometer 32 and absolute angle sensor 33), and causes the driving units 12L, 12R, 13L, and 13R to generate power corresponding to each walking phase.
- a power amplifier (drive current generator) 54 synthesizes the control signals from the voluntary control unit 50 and the autonomous control unit 51, amplifies the drive current according to the synthesized control signal, and supplies it to the actuators of the drive units 12L, 12R, 13L, and 13R.
- the torque of this actuator is transmitted to the subject's knee joint as an assist force via the lower limb frame.
- the walking function of a subject under treatment is evaluated by a walking function evaluation apparatus 70 (FIG. 4, which will be described later) using the wearable movement assisting device 2 described above.
- the biopotential signals of the lower extremity muscles measured using the wearable movement-assisting device 2 measure the muscle activity of the subject each time walking treatment is performed using the wearable movement-assisting device 2, and may be useful in evaluating the subject's walking function.
- Biopotential signals reflect changes in the subject's neuromuscular system due to action potentials generated during motion control.
- the signal pattern of the biopotential signal obtained from the skin surface around the muscles of the lower limbs changes according to muscle activity during walking.
- the signal pattern of the biopotential signal is characteristic for each measurement site.
- the signal pattern of the biopotential signal of the subject wearing the wearable movement assist device 2 is also considered to have characteristics, and by analyzing the signal pattern, it is possible to record the activity of the neuromuscular system during walking.
- the relationship between the walking ability of the subject and the signal pattern of the biopotential signal measured when walking while wearing the wearable movement assist device 2 may be applied to the walking evaluation of the subject under treatment.
- the signal pattern of the biopotential signal obtained from the subject under treatment using the wearable movement assisting device 2 is quantified, and the signal pattern of the biopotential signal corresponding to a healthy subject is evaluated to confirm the correlation between the signal pattern and the subject's walking ability.
- the walking function evaluation device 70 is a control system component provided in the control device 30 of the wearable movement assist device 2 described above, and as shown in FIG.
- a biopotential signal and data (walking cycle) related to the walking test are obtained from the subject.
- the wearable movement assistance device 2 measures the biopotential signals obtained from the extensors and flexors of the left and right knee joints and hip joints and the floor reaction force (FRF data) of both legs as time-series data.
- the gait test was performed on 7 subjects at a single facility within the past 2 years. The number of gait tests and 2MWT results performed during this study period varied from subject to subject.
- the table in FIG. 5 shows the disease content, sex, height, weight, and number of 2MWT results for each subject.
- the disease contents MD, ALS, IBM, and SBMA respectively indicate muscular dystrophy, amyotrophic lateral sclerosis, inclusion body myositis, and spinal and thigh muscle atrophy.
- Similarity is determined by comparing the biopotential signal patterns obtained from these subjects with the signal pattern of biopotential signals obtained when a healthy person wearing the wearable movement assist device 2 similarly walks as a reference.
- biopotential signals obtained from the right knee extensor muscle of a healthy subject were measured while walking on the treadmill 5 while wearing the wearable movement assistance device 2 .
- Three healthy adult males aged 21 to 23 (participants X to Z) were selected as healthy subjects.
- the control parameters of the wearable movement assist device 2 and the running speed of the walking belt 7 of the treadmill 5 were adjusted in advance so that each participant could walk at a comfortable walking speed.
- the average value of the signal pattern of the biopotential signals was obtained for 90 walking cycles per participant, that is, a total of 270 walking cycles.
- this signal pattern was obtained by the following procedures 1 to 5.
- the biopotential signal was divided into gait cycles starting from the instant of right foot heel contact detected based on the value of the floor reaction force sensor (FRF sensor 60) (procedure 1).
- Biopotential signals were resampled to 101 points at regular intervals from 0 to 100 of the gait cycle and normalized by the duration of each gait cycle. Further, cubic spline interpolation is used for interpolation of the resampled values (procedure 2).
- the amplitude of the biopotential signal was normalized for each walking cycle, with the maximum value set to 100 and the basic value set to 0 (procedure 3). For each sampling point, a signal pattern connecting the average value of 270 biopotential signals and the average value was obtained (procedure 4). The signal pattern obtained above was normalized along with the amplitude based on a method similar to that used in Procedure 3. This signal pattern was used as a walking reference for a healthy person using the wearable movement assist device 2 (procedure 5).
- FIGS. 6(A) and (B) and FIG. 7(A) show the signal patterns of the biopotential signals obtained from the right knee extensor muscles.
- FIG. 7(B) shows the average value of a total of 270 walking patterns of three participants, and the solid and dashed lines indicate the range of the average value and standard deviation, respectively.
- the average pattern shown in FIG. 7(B) was used as the signal pattern of the biopotential signal serving as a reference for a healthy subject, and applied to determine the similarity between the signal patterns of the subject and the healthy subject.
- the walking synchronization calculation unit 71 shown in FIG. 4 calculates the walking cycle of the subject based on the detection results of the floor reaction force sensor (FRF sensor 60) that detects the pressure distribution on the left and right soles of the subject.
- FPF sensor 60 floor reaction force sensor
- the signal normalization unit 72 normalizes the biopotential signal detected by the biosignal detection unit 40 into a first signal pattern represented by a planar coordinate system of time and amplitude for each walking cycle, based on the physical quantity detected by the joint circumference detection unit (potentiometer 32 and absolute angle sensor 33) and the walking cycle calculated by the walking synchronization calculation unit 71.
- the wearable movement assisting device 2 measures the biopotential signal obtained from the right knee extensor muscle of a subject suffering from progressive neuromuscular disease, and normalizes the signal pattern (first signal pattern) of the biopotential signal for each walking cycle with respect to amplitude and time and shows it in FIGS. 8(A) and (B).
- FIG. 8(A) is a graph normalizing the measurement results at the time of the first trial
- FIG. 8(B) is a graph normalizing the measurement results after 3 months. These two normalized graphs are significantly different, and the difference can be quantified by comparative analysis with the signal pattern (second signal pattern) of biopotential signals obtained from healthy subjects.
- the similarity calculation unit 73 compares the first signal pattern obtained from the signal normalization unit 72 with a second signal pattern corresponding to a healthy subject serving as a reference, and quantitatively calculates the similarity between the first signal pattern and the second signal pattern. Specifically, the similarity calculation unit 73 uses the differential dynamic time warping (DDTW) to compare the shapes of the first signal pattern and the second signal pattern in time series, and calculates the pattern similarity as the similarity from the corresponding relationship between the upward trend and the downward trend.
- DDTW differential dynamic time warping
- DDTW dynamic time warping
- differential estimation Ds[i] of a certain time series s can be expressed as in the following equation (4).
- 1 ⁇ i ⁇ M the first derivative was considered for each time series.
- Each matrix element (i,j) belongs to a first signal pattern S' and a second signal pattern T' and corresponds to a registration between points sj' and tj' having values of differential estimates Ds[i] and Dt[j].
- the combination (i, j) meaning the change in the differential value at the points sj' and tj' is inherited in the correspondence relationship between the first signal pattern S and the second signal pattern T and the points sj and tj, and is represented by the following equation (5).
- a warping path W which is a continuous set of matrix elements that define the correspondence between the first signal pattern S' and the second signal pattern T', was configured to satisfy the following three conditions.
- the optimum warping path W' is determined by minimizing the sum of d(si', tj') belonging to the matrix elements including the warping path W, and then the value of DDTW used for similarity evaluation is calculated as shown in the following equation (6).
- L represents the length of W'
- (s'ml, t'ml) represents a combination of l alignments of W'.
- the value of DDTW represents the average difference of the derivatives of the two points S' and T' aligned by W'. Therefore, it can be seen that the smaller the value of DDTW, the higher the similarity between the subject's first signal pattern and the healthy subject's second signal pattern.
- FIGS. 10(A) and (B) indicate the first signal pattern of the biopotential signal obtained from the subject under treatment using the wearable movement assistance device 2, which is the same as the signal pattern displayed in FIG. 7(B).
- the dashed lines in FIGS. 10A and 10B indicate the second signal pattern of biopotential signals obtained from a healthy person during walking using the wearable movement assistance device 2, which is the same as the signal pattern displayed in FIG. 7B.
- the signal pattern of the biopotential signal which does not appear in FIG. 10(A) is maximized immediately after the first contact with the floor, decreases toward the swing phase, and increases during the swing phase. Also, the tendency of the muscle activity pattern shown in FIG. 10(B) is similar to the gait of a healthy person.
- the lines connecting the graphs of subjects and healthy subjects shown in FIGS. 10(A) and (B) are aligned based on the DDTW scores, and the similarity was judged using the differential change for every two points that the lines connect.
- the DDTW value shown in FIG. 10(A) was 2.56, and the DDTW value shown in FIG. 10(B) was 0.96. Therefore, the value of DDTW is smaller in FIG. 10(B), and it can be said that the first signal pattern of the subject observed in FIG. 10(B) is close to the second signal pattern of the healthy subject.
- 11(A) and (B) and FIGS. 12(A) and (B) show reference examples of the results of DDTW.
- the walking function evaluation unit 74 evaluates the walking function of the subject based on the similarity calculated by the similarity calculation unit 73 . That is, the first signal pattern of the biopotential signal obtained from the subject under treatment using the wearable movement assisting device 2 is compared with the second signal pattern of the biopotential signal obtained from the healthy subject, and the relationship between the walking ability of the subject and the first signal pattern of the biopotential signal is clarified by investigating the correlation between the distance of the 2-minute walking test (2MWT) and the value of the dynamic time warping method (DDTW).
- 2MWT 2-minute walking test
- DDTW dynamic time warping method
- the walking speed calculation unit 75 obtains the stride length in the walking motion of the subject based on the length of the subject's leg input in advance and the change in the physical quantity detected by the joint circumference detection unit (potentiometer 32 and absolute angle sensor 33), and calculates the walking speed of the subject based on the stride length and the walking cycle calculated by the walking synchronization calculation unit 71. Then, the walking function evaluation unit 74 analyzes the correlation between the similarity calculated by the similarity calculation unit 73 and the walking distance per predetermined time (2 minutes) based on the walking speed calculated by the walking speed calculation unit 75.
- the correlation coefficient was calculated by combining the 2MWT distance and the DDTW score in each test.
- the 2MWT distances and DDTW scores by test round for all subjects (Patients AG) are shown in the table in FIG.
- the correlation function obtained from multiple (test number) measurements from each subject can be interpreted as the correlation between subjects and the subject's own correlation. Correlation coefficients between subjects were evaluated as weighted correlation coefficients, taking into account the different observations of each subject.
- the p-value which is the cumulative probability that the t-value occurs
- the F-test based on the t-value, which is the test statistic of the sample of 7 people (subjects).
- intrasubject correlation coefficients were determined using multiple regression based on the calculation method by J.M.Bland and D.G. Altman described above.
- the 2MWT distance was used as the outcome variable.
- the DDTW score and the subject treated as a categorical factor using a dummy variable with 6 degrees of freedom were used as predictor variables.
- An analysis of variance (ANOVA) table is used for regression, and the magnitude CCWP of the intra-subject correlation coefficient can be described as in the following equation (8).
- the sign of the correlation coefficient corresponds to the sign of the regression coefficient obtained from the DDTW score.
- the correlation coefficient between subjects was -0.83.
- the t-value was 9.59 and the p-value was 2.08 ⁇ 10.
- multiple regression analysis was performed to obtain the intra-patient correlation coefficient, and an ANOVA table as shown in FIG. 14(A) was obtained.
- the sign of the partial regression coefficient of the DDTW score was negative. Therefore, the calculated within-subject correlation coefficient was ⁇ 0.39 and the corresponding p-value was 1.88 ⁇ 10.
- the first signal pattern of the biopotential signal of the subject and the second signal pattern of the biopotential signal corresponding to a healthy person are normalized and compared, thereby making it possible to recognize the change in the walking function of the subject over time based on the degree of similarity obtained from the comparison result.
- the walking function evaluation device 70 analyzes the correlation between the similarity of the first signal pattern and the second signal pattern and the walking distance per predetermined time based on the walking speed, and the higher the similarity, the longer the walking distance per predetermined time. Therefore, it can be confirmed that the more similar the first signal pattern during walking of the subject using the wearable movement assisting device 2 is to the second signal pattern of the healthy person, the longer distance the subject can walk without using the subject.
- the walking function evaluation device 70 it is possible to recognize changes in the walking function of the subject over time, and to dramatically improve the rapid establishment of a treatment plan for the subject.
- the present invention is not limited to this, and the subject using the wearable movement assistance device 2 may walk together with a movable walker.
- Absolute angle sensor 40 Biological signal detection unit 41 Command signal database 42 Reference parameter database 50 Optional control unit 51 Autonomous control unit 52 Phase identification unit 53 Gain change unit 54 Power amplification unit 60 FRF sensor 61 FRF control unit 62 Transmitter 63 Converter 64 LPF 65 Receiver 70 Gait function evaluation device 71 Gait synchronization calculator 72 Signal Normalization unit 73 Similarity calculation unit 74 Walking function evaluation unit 75 Walking speed calculation unit.
Landscapes
- Health & Medical Sciences (AREA)
- Epidemiology (AREA)
- Pain & Pain Management (AREA)
- Physical Education & Sports Medicine (AREA)
- Rehabilitation Therapy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Rehabilitation Tools (AREA)
Abstract
被検者の生体電位信号の第1信号パターンおよび健常者に相当する生体電位信号の第2信号パターンを正規化して双方を比較することにより、当該比較結果から得られる類似度に基づいて、被検者の歩行機能を経時的変化として認識するようにした。
Description
本発明は、歩行機能評価装置および歩行機能評価方法に関し、特に進行性の神経筋疾患患者が装着式動作補助装置を装着して歩行機能を向上しようとするための歩行機能評価装置および歩行機能評価方法を提案しようとするものである。
筋萎縮性側索硬化症(ALS)や筋ジストロフィー(MD)などの進行性神経筋疾患は、神経や筋肉の障害によって引き起こされ、徐々に筋力低下や運動機能障害が生じる。これらの疾患には根治的な治療法が存在せず、薬による治療では症状の自然な進行を抑える以上のことは困難であった。
従来、筋力が失われた身体障害者や筋力が衰えた高齢者等の動作を補助あるいは代行するための種々のパワーアシスト装置が普及している。これらのパワーアシスト装置として、例えば、装着者の意図に応じた随意的な筋活動に伴う生体電位を基に、運動を制御および補助することが可能な装着式動作補助装置が提案されている(特許文献1参照)。
近年、このような装着式動作補助装置を用いて、進行性神経筋疾患患者の歩行機能の維持および改善を目的とした治療が行われている。この装着式動作補助装置は、下肢の筋肉の生体電気信号(BES)、関節角度、床反力などの生理・運動情報に基づいて、患者と一体となって動いて歩行動作を補助する。
この装着式動作補助装置を装着する被検者は、神経筋系に負荷をかけることなく、患者の運動意図に基づいた歩行を繰り返すことができる。この結果、装着式動作補助装置を介して神経ループの構造的な発達と強化を促し、神経系の活性化が患者の運動機能の維持および向上につながるように治療することが可能となる。
そして、装着式動作補助装置を用いた被検者の運動機能障害の治療効果や治療経過を把握するために、一般的には被検者の歩行距離や歩行速度に基づいて歩行機能を評価している。
歩行機能の評価に関しては、従来から、被測定者の歩行状態を検出して計測された歩行データに基づき当該被測定者の歩行状態を解析し、被測定者の歩行能力を算出するようになされた歩行測定機が提案されている(特許文献2参照)。
ところが、従来の歩行機能評価方法では、被検者の安全性を確保しながらデータを測定する医療スタッフの負担を考えると、治療のたびに実施することは実用上困難であり、装着式動作補助装置を用いた治療に伴う被検者の歩行機能の経時的な変化を認識することが困難であった。
また、特許文献2における歩行機能の評価方法においても、歩行マット内部に複数のセンサを配置し、被測定者が踏んだ位置と着地してから離地するまでの時間をモニタし、被測定者の歩幅と歩行速度を測定する構成であり、歩行マットへの接地タイミングを基準とする類推にて歩行機能を評価しているにすぎない。
本発明は以上の点を考慮してなされたもので、被検者の歩行機能の経時的変化を認識して当該被検者の治療計画の迅速な構築を格段と向上させることができる歩行機能評価装置および歩行機能評価方法を提案しようとするものである。
かかる課題を解決するため本発明においては、被検者の歩行動作を構成する各歩行フェイズに応じた動力を当該被検者に付与する装着動作補助装置を用いて、前記被検者の歩行機能を評価する歩行機能評価装置において、前記装着式動作補助装置は、前記被検者の下肢動作に連動して能動的または受動的に駆動する駆動部と、前記被検者の下肢動作に伴う関節を基準とする当該被検者の体表部位に配置され、当該被検者の生体電位信号を検出するための電極群を有する生体信号検出部と、前記生体信号検出部により取得された生体電位信号に基づいて、前記被検者の意思に従った動力を前記駆動部に発生させる随意的制御部と、前記駆動部からの出力信号に基づいて、前記被検者の下肢動作に伴う関節周りの物理量を検出する関節周り検出部と、前記関節周り検出部により検出される物理量に基づいて、前記被検者の歩行タスクに応じた歩行フェイズをそれぞれ特定し、前記各歩行フェイズに対応する動力を前記駆動部に発生させる自律的制御部と、前記随意的制御部および前記自律的制御部からの制御信号を合成し、当該合成された制御信号に応じた駆動電流を前記駆動部に供給する駆動電流生成部と、前記被検者の左右の足裏面への圧力分布を検出する床反力センサの検出結果に基づいて、前記被検者の歩行周期を算出する歩行同期算出部と、前記生体信号検出部により検出される生体電位信号を、前記関節周り検出部により検出される物理量と前記歩行同期算出部から算出される歩行周期とを基準として、当該歩行周期ごとに時間および振幅の平面座標系で表される第1信号パターンに正規化する信号正規化部と、前記信号正規化部から得られる前記第1信号パターンを、基準となる健常者に相当する第2信号パターンとを比較し、前記第1信号パターンおよび前記第2信号パターンの類似度を定量的に算出する類似度算出部と、前記類似度算出部により算出された類似度に基づいて、前記被検者の歩行機能を評価する歩行機能評価部とを備えるようにした。
この結果、装着式動作補助装置を用いた歩行機能評価装置では、被検者の生体電位信号の第1信号パターンおよび健常者に相当する生体電位信号の第2信号パターンを正規化して双方を比較することにより、当該比較結果から得られる類似度に基づいて、被検者の歩行機能を経時的変化として認識することが可能となる。
また本発明においては、事前入力される被検者の足の長さと関節周り検出部により検出される物理量の変遷とに基づいて、被検者の歩行動作における歩幅を求め、当該歩幅と歩行同期算出部から算出される歩行周期とに基づいて、被検者の歩行速度を算出する歩行速度算出部を備え、歩行機能評価部は、類似度算出部により算出された類似度と、歩行速度算出部により算出された歩行速度に基づく所定時間当たりの歩行距離との相関関係を分析するようにした。
この結果、歩行機能評価装置では、第1信号パターンおよび第2信号パターンの類似度と、歩行速度に基づく所定時間当たりの歩行距離との相関関係を分析することにより、当該類似度が高いほど所定時間当たりの歩行距離が長くなる。したがって、装着式動作補助装置を使用した被検者の歩行時の第1信号パターンが健常者の第2信号パターンと類似しているほど、当該被検者を使用しなくてもより長い距離を歩行可能であることが確認できる。
さらに本発明においては、類似度算出部は、動的時間伸縮法(DDTW:Differential Dynamic Time Warping)を用いて、第1信号パターンおよび第2信号パターンの形状同士を時系列的に比較して、上昇トレンドおよび下降トレンドの対応関係からパターン類似性を類似度として算出する。この結果、DDTWの値が小さいほど、被検者の第1信号パターンは健常者の第2信号パターンに近いことが確認できる。
さらに本発明においては、被検者の歩行動作を構成する各歩行フェイズに応じた動力を当該被検者に付与する装着動作補助装置を用いて、前記被検者の歩行機能を評価する歩行機能評価方法において、前記装着式動作補助装置は、前記被検者の下肢動作に連動して能動的または受動的に駆動する駆動部を有し、前記被検者の下肢動作に伴う関節を基準とする当該被検者の体表部位から取得された生体電位信号に基づいて、前記被検者の意思に従った動力を前記駆動部に発生させる随意的制御と、前記駆動部の出力信号に基づき検出された前記被検者の下肢動作に伴う関節周りの物理量に基づいて、前記被検者の歩行タスクに応じた歩行フェイズをそれぞれ特定し、前記各歩行フェイズに対応する動力を前記駆動部に発生させる自律的制御とを合成して行い、当該合成された制御信号に応じた駆動電流を前記駆動部に供給するようになされ、前記生体電位信号を、前記関節周りの物理量と前記被検者の左右の足裏面への圧力分布の検出結果に基づいて算出する歩行周期とを基準として、当該歩行周期ごとに時間および振幅の平面座標系で表される第1信号パターンに正規化する第1ステップと、前記第1ステップから得られる前記第1信号パターンを、基準となる健常者に相当する第2信号パターンとを比較し、前記第1信号パターンおよび前記第2信号パターンの類似度を定量的に算出する第2ステップと、前記第2ステップにより算出された類似度に基づいて、前記被検者の歩行機能を評価する第3ステップとを備えるようにした。
この結果、装着式動作補助装置を用いた歩行機能評価方法では、被検者の生体電位信号の第1信号パターンおよび健常者に相当する生体電位信号の第2信号パターンを正規化して双方を比較することにより、当該比較結果から得られる類似度に基づいて、被検者の歩行機能を経時的変化として認識することが可能となる。
本発明によれば、被検者の歩行機能の経時的変化を認識して当該被検者の治療計画の迅速な構築を格段と向上させることができる歩行機能評価装置および歩行機能評価方法を実現することができる。
以下図面について、本発明の一実施の形態を詳述する。
(1)本実施の形態による歩行支援システムの構成
図1は本実施の形態による歩行支援システム1を示す。歩行支援システム1は、被検者Pの動作を補助する装着式動作補助装置2と、被検者Pが歩行動作によるリハビリテーションを支援するための歩行支援装置3とを備えている。装着式動作補助装置2と歩行支援装置3とは有線または無線により通信可能に接続されている。
図1は本実施の形態による歩行支援システム1を示す。歩行支援システム1は、被検者Pの動作を補助する装着式動作補助装置2と、被検者Pが歩行動作によるリハビリテーションを支援するための歩行支援装置3とを備えている。装着式動作補助装置2と歩行支援装置3とは有線または無線により通信可能に接続されている。
まず、歩行支援装置3は、トレッドミル5を基準としたその両側に一対の関係をなす左フレーム6Lおよび右フレーム6Rが当該トレッドミル5の先端から湾曲して植立され、当該両フレーム6L、6Rの端側部位を被検者Pが両手で把持し得るように構成されている。
トレッドミル5は、ローラの回転により循環するように移動する歩行ベルト7を有する。アクチュエータ駆動に応じてローラの回転速度を変化させることにより、歩行ベルト7の循環速度を変えることができる。
歩行支援装置3は、トレッドミル5から植立された左フレーム6Lおよび右フレーム6Rの間を橋架するサブフレーム(図示せず)に、例えば液晶ディスプレイからなるモニタ8が設けられ、操作部による操作結果や、被検者の歩行支援に必要な種々の情報を映像表示するようになされている。
このように歩行支援システム1では、装着式動作補助装置2を装着した被検者Pが、歩行支援装置3における一対の左フレーム6Lおよび右フレーム6Rの一端を両手で把持して歩行動作時の姿勢を安定化させながら、歩行動作によるリハビリテーションを支援し得るようになされている。
(2)本実施の形態による装着式動作補助装置の構成
図2は本実施の形態による装着式動作補助装置2を示す。装着式動作補助装置2は、被検者の歩行動作を構成する各歩行フェイズに応じた動力を当該被検者に付与する装置であり、脳からの信号により筋力を発生させる際に生じる生体電位信号(表面筋電位)や当該装着者の股関節や膝関節の動作角度を検出し、この検出信号に基づいて駆動機構からの駆動力を付与するように作動する。
図2は本実施の形態による装着式動作補助装置2を示す。装着式動作補助装置2は、被検者の歩行動作を構成する各歩行フェイズに応じた動力を当該被検者に付与する装置であり、脳からの信号により筋力を発生させる際に生じる生体電位信号(表面筋電位)や当該装着者の股関節や膝関節の動作角度を検出し、この検出信号に基づいて駆動機構からの駆動力を付与するように作動する。
本実施の形態における下肢型の装着式動作補助装置2は、被検者の腰に装着される腰フレーム10と、装着者の下肢に装着される下肢フレーム11と、装着者の関節に対応させて下肢フレーム11に設けられた複数の駆動部12L、12R、13L、13Rと、駆動部12L、12R、13L、13Rの力を装着者に前方または後方から作用させるべく下肢フレーム11に取り付けられた補助力作用部材としてのカフ14L、14R、15L、15Rと、装着者の下肢動作に起因する信号に基づいて駆動部12L、12R、13L、13Rを制御する制御装置30(後述する図3)と、制御装置を搭載した背面ユニット16と、介助者が使用する操作ユニット(図示せず)とを有する。
制御装置30(図3)は、被検者の関節に対応する駆動部12L、12R、13L、13Rのアクチュエータの出力軸を中心に相対的に下肢フレーム11同士を駆動することができる。各駆動部12L、12R、13L、13Rには、アクチュエータの駆動トルクや回転角度等を検出するためのセンサ群が搭載されている。なお、背面ユニット16には、装置全体の駆動電源を供給するためのバッテリユニット(図示せず)が搭載されている。
腰フレーム10は、被検者の腰を受け入れてその後部から左右両側部にかけて包囲し得る前方に開いた平面視略C字形状の部材であり、被検者の背後に位置する後腰フレーム部17と、後腰フレーム部17の両端から湾曲しつつ前方に延びる左腰フレーム部18Lおよび右腰フレーム部18Rとを有する。
左腰フレーム部18Lおよび右腰フレーム部18Rは、開度調節機構(図示せず)を介して後腰フレーム部17に連結されている。左腰フレーム部18Lおよび右腰フレーム部18Rの基部は、後腰フレーム部内17に左右方向にスライド可能に挿入されて保持されている。
下肢フレーム11は、被検者の右下肢に装着される右下肢フレーム19Rと、被検者の左下肢に装着される左下肢フレーム19Lとを有する。左下肢フレーム19Lと右下肢フレーム19Rは、左右対称に形成されている。
左下肢フレーム19Lは、被検者の左大腿の左側に位置する左大腿フレーム20Lと、被検者の左下腿の左側に位置する左下腿フレーム21Lと、被検者の左脚の裏(靴を履く場合には、左側の靴の底)が載置される左脚下端フレーム22Lとを有する。左下肢フレーム19Lは、腰部連結機構23Lを介して左腰フレーム部18Lの先端部に連結されている。
右下肢フレーム19Rは、被検者の右大腿の右側に位置する右大腿フレーム20Rと、被検者の右下腿の右側に位置する右下腿フレーム21Rと、被検者の右脚の裏(靴を履く場合には、右側の靴の底)が載置される右脚下端フレーム22Rとを有する。右下肢フレーム21Rは、腰部連結機構23Rを介して右腰フレーム部18Rの先端部に連結されている。
なお、腰フレーム10(後腰フレーム17、右腰フレーム18Rおよび左腰フレーム18L)と下肢フレーム11(右下肢フレーム19Rおよび左下肢フレーム19L)とは、例えばステンレス等の金属またはカーボンファイバ(炭素繊維)等により細長い板状に形成されたフレーム本体を有し、軽量かつ高い剛性をもつように形成される。本実施の形態においては、強度部材として炭素繊維強化フラスチック(Carbon Fiber Reinforced Plastic;CFRP)およびアルミ合金である超々ジェラルミンを用いることとした。
カフ14L、14R、15L、15Rは、左大腿フレーム20L、右大腿フレーム20R、左下腿フレーム21Lおよび右下腿フレーム21Rに、各々一つずつ設けられている。
左大腿フレーム20Lおよび右大腿フレーム20Rに設けられているカフ(以下、「大腿カフ」と記す。)14L、14Rは、大腿フレーム本体の下端部に取り付けられた大腿カフ支持機構24L、24Rに支持されている。大腿カフ14L、14Rは、被検者の大腿に嵌合させるようにして添え当て得る円弧状に湾曲した装着面を有している。大腿カフ14L、14Rの装着面には、被検者の大腿と隙間をなく密着し得るようフィッティング部材が取り付けられている。
左下腿フレーム21Lおよび右下腿フレーム21Rに設けられているカフ(以下、「下腿カフ」と記す。)15L、15Rは、上側要素の上端部に取り付けられた下腿カフ支持機構25L、25Rに支持されている。下腿カフ15L、15Rは、被検者の下腿に嵌合させるようにして添え当て得る円弧状に湾曲した装着面を有している。下腿カフ15L、15Rの装着面には、被検者の下腿と隙間をなく密着し得るようフィッティング部材が取り付けられている。
実際にこの装着式動作補助装置2を被検者に装着する場合、左右の足部にそれぞれ専用靴26L、26Rが装着されるとともに、左右の下腿部にそれぞれ下腿カフ15L、15Rが装着され、さらに左右の大腿部にそれぞれ大腿カフ14L、14Rが装着される。そして、これら足部、下腿部、大腿部をそれぞれ対応するフレームと一体化するように、靴やカフにベルト等を締結させる。
この専用靴26L、26Rは、左右一対の構成からなり、被検者の足先から足首までを密着した状態で保持すると共に、足底に設けられた床反力センサ(後述のFRFセンサ60)により荷重測定し得る。
このように装着式動作補助装置2は、装着する被検者の意図に応じた随意的な筋活動に伴う生体電位信号に基づいて、歩行運動を制御および補助することができる。
(3)装着式動作補助装置における内部システム構成
図3は、装着式動作補助装置2の制御系システムの構成を示すブロック図である。図3に示すように、装着式動作補助装置2の制御系システム2Xは、システム全体の統括制御を司る制御装置30と、当該制御装置30の指令に応じて各種データが読書き可能にデータベース化されているデータ格納部31と、被検者の下肢動作に連動して能動的または受動的に駆動する駆動部12L、12R、13L、13Rとを有する。
図3は、装着式動作補助装置2の制御系システムの構成を示すブロック図である。図3に示すように、装着式動作補助装置2の制御系システム2Xは、システム全体の統括制御を司る制御装置30と、当該制御装置30の指令に応じて各種データが読書き可能にデータベース化されているデータ格納部31と、被検者の下肢動作に連動して能動的または受動的に駆動する駆動部12L、12R、13L、13Rとを有する。
また、駆動部12L、12R、13L、13Rにおけるアクチュエータの出力軸と同軸上には、当該出力軸の回転角度を検出するポテンショメータ32が設けられ、被検者の下肢動作に応じた関節角度を検出するようになされている。
さらに、下肢フレーム11には、大腿部の鉛直方向に対する絶対角度を計測するための絶対角度センサ33が搭載されている。この絶対角度センサ33は、加速度センサおよびジャイロセンサから構成され、複数のセンサデータを用いて新しい情報を抽出する方法であるセンサフュージョンに用いられる。
大腿部の絶対角度の算出には、各センサにおける並進運動および温度ドリフトの影響を取り除くため、1次フィルタが使用される。この1次フィルタは、各センサから得られる値に対して重み付けを付与して加算されることで算出される。
大腿部の鉛直方向に対する絶対角度をθabs(k)、ジャイロセンサによって得られた角速度をω、サンプリング周期をdt、加速度センサによって得られた加速度をαとすると、θabs(t)は、次の(1)式のように表される。
被検者の下肢動作に伴う関節を基準とする当該被検者の体表部位(主として大腿部の体表面)には生体信号検出センサ(電極群)を有する生体信号検出部40が配置されており、当該被検者の膝関節を動作させるための生体電位信号を検出するようになされている。
データ格納部31には、指令信号データベース41と基準パラメータデータベース42とが格納されている。制御装置30は、例えば、メモリを有するCPU(Central Processing Unit)チップで構成され、随意的制御部50と自律的制御部51とフェーズ特定部52とゲイン変更部53とを備えている。
随意的制御部50は、生体信号検出部40により取得された生体電位信号に基づいて、被検者の意思に従った動力を駆動部12L、12R、13L、13Rに発生させる。具体的に、随意的制御部50は、生体信号検出部40の検出信号に応じた指令信号を電力増幅部54に供給する。随意的制御部50は、生体信号検出部40に所定の指令関数f(t)またはゲインPを適用して指令信号を生成する。このゲインPは予め設定された値または関数であり、外部入力によるゲイン変更部53を介して調整することができる。
また、ポテンショメータ32により検出された膝関節の角度データに基づいてアクチュエータの駆動トルク(トルクの大きさおよび回動角度)を制御する方法を選択することも可能である。この方法は、被検者の運動症状に伴う歩行障害の度合いが比較的軽い場合や、被検者の皮膚が汗で濡れることが予想され、生体信号検出部40からの生体信号の入力が得られない可能性がある場合等に有効である。
ポテンショメータ32によって検出された膝関節角度のデータと、絶対角度センサ33によって検出された大腿部の鉛直方向に対する絶対角度のデータと、生体信号検出部40によって検出された生体信号とは、基準パラメータデータベース42に入力される。
また、一対の専用靴26L、26Rの足底には、FRF(Floor Reaction Force)センサ60が設けられ、被検者の左右の足裏面への圧力分布を検出する。このFRFセンサ60は、足裏面にかかる荷重を前足部(つま先部)と後足部(踵部)とに分割して独立して測定可能である。
このFRFセンサ60は、例えば、印加された荷重に応じた電圧を出力する圧電素子または荷重に応じて静電容量が変化するセンサなどからなり、体重移動に伴う荷重変化および装着者の脚と地面との接地の有無をそれぞれ検出することができる。
さらに一対の専用靴26L、26Rでは、各FRFセンサ60の検出結果に基づく左右の足裏面に係る荷重のバランスから、重心位置を求めることができる。このように一対の専用靴26L、26Rでは、被検者の左右の足のどちら側に重心が偏っているかを、各FRFセンサ60で計測されるデータに基づいて、推定することができる。
各専用靴26L、26Rは、靴構造以外に、FRFセンサ60とMCU(Micro Control Unit)からなるFRF制御部61と送信部62とを有する。FRFセンサ60の出力は、変換器63を介して電圧変換された後、LPF(Low Pass Filter)64を介して高域周波数帯が遮断されてFRF制御部61に入力される。
このFRF制御部61は、FRFセンサ60の検知結果に基づいて、被検者の体重移動に伴う荷重変化や接地の有無を求めると共に、左右の足裏に係る荷重バランスに応じた重心位置を求める。FRF制御部61は、求めた重心位置をFRFデータとして送信部62を介して装置本体内の受信部65にワイヤレス送信する。
制御装置30は、受信部65を介して各専用靴26L、26Rの送信部62からワイヤレス送信されたFRFデータを受信した後、当該FRFデータに基づく左右の足裏に係る荷重および重心位置がデータ格納部31の基準パラメータデータベース42に格納される。
フェーズ特定部52は、ポテンショメータ32により検出された膝関節角度のデータと、FRFセンサ60により検出された荷重のデータとを、基準パラメータデータベース42に格納された基準パラメータの膝関節角度および荷重と比較する。フェーズ特定部52は、この比較結果に基づいて、被検者の動作のフェーズを特定する。
そして、自律的制御部51は、フェーズ特定部52により特定されたフェーズの制御データを得ると、このフェーズの制御データに応じた指令信号を生成し、この動力を駆動部12L、12R、13L、13Rに発生させるための指令信号を電力増幅部54に供給する。
また、自律的制御部51は、前述したゲイン変更部53により調整されたゲインが入力されており、このゲインに応じた指令信号を生成し、電力増幅部54に出力する。電力増幅部54は、駆動部12L、12R、13L、13Rのアクチュエータを駆動する電流を制御してアクチュエータのトルクの大きさおよび回動角度を制御することにより、被検者の膝関節にアクチュエータによるアシスト力を付与する。
このように自律的制御部51は、関節周り検出部(ポテンショメータ32および絶対角度センサ33)により検出される物理量に基づいて、被検者の歩行タスクに応じた歩行フェイズをそれぞれ特定し、各歩行フェイズに対応する動力を駆動部12L、12R、13L、13Rに発生させる。
電力増幅部(駆動電流生成部)54は、随意的制御部50および自律的制御部51からの制御信号を合成し、当該合成された制御信号に応じた駆動電流を増幅して駆動部12L、12R、13L、13Rのアクチュエータに供給する。被検者の膝関節には、このアクチュエータのトルクが、アシスト力として下肢フレームを介して伝達される。
(4)本実施の形態による歩行機能評価装置の構成
本発明においては、上述した装着式動作補助装置2を用いた歩行機能評価装置70(後述する図4)により、治療中の被検者の歩行機能を評価するようになされている。
本発明においては、上述した装着式動作補助装置2を用いた歩行機能評価装置70(後述する図4)により、治療中の被検者の歩行機能を評価するようになされている。
その前提として、装着式動作補助装置2を用いた測定された下肢筋の生体電位信号は、当該装着式動作補助装置2を用いた歩行治療のたびに被検者の筋活動が測定されるため、被検者の歩行機能の評価に役立つ可能性がある。生体電位信号は、動作制御時に発生する活動電位に起因する被検者の神経筋系の変化を反映している。
生体電位信号の信号パターンに着目し、歩行評価の指標として活用する。下肢筋周辺の皮膚表面から得られる生体電位信号の信号パターンは、歩行時の筋活動に応じて変化する。
装着式動作補助装置2を装着していない健常者の正常な歩行では、生体電位信号の信号パターンは測定部位ごとの特徴となる。同様に、装着式動作補助装置2を装着した被検者の生体電位信号の信号パターンにも特徴があると考えられ、当該信号パターンを解析することにより、歩行時の神経筋系の活動を記録することが可能となる。さらに、被検者の歩行能力と、装着式動作補助装置2を装着して歩行した際に測定した生体電位信号の信号パターンとの関係は、治療中の被検者の歩行評価に応用できる可能性がある。
このため本発明においては、装着式動作補助装置2を用いた治療中の被検者から得られる生体電位信号の信号パターンを定量化するとともに、健常者に相当する生体電位信号の信号パターンと比較して評価することにより、信号パターンと被検者の歩行能力との相関関係を確認するようにした。
この歩行機能評価装置70は、上述した装着式動作補助装置2における制御装置30内に設けられた制御系構成要素であり、図4に示すように、歩行同期算出部71、信号正規化部72、類似度算出部73、歩行機能評価部74および歩行速度算出部75を備える。
まず装着式動作補助装置2を用いて、被検者から生体電位信号および歩行試験に関するデータ(歩行周期)を取得しておく。具体的には、進行性神経筋疾患を患う被検者に対する装着式動作補助装置2を用いた治療においては、1回の歩行試験につき約20~40分間、歩行する必要がある。この間、装着式動作補助装置2は、左右の膝関節および股関節の伸筋および屈筋から得られる生体電位信号と、両脚の床反力(FRFデータ)を時系列データとして測定する。
実際に進行性の神経筋疾患を患う被検者7名(Patient ID:A~G)に対して装着式動作補助装置を用いた治療時に測定した時系列データの結果を用いた。また、被検者は定期的に2分間の歩行距離を測定する2分間歩行試験(2MWT)を行い、歩行評価を確実に行うために装着式動作補助装置2を装着せずに実施した。
被検者7名は、歩行試験は単一の施設にて過去2年以内に実施した。この試験期間中に実施された歩行試験と2MWT結果数は、被検者ごとに異なった。各被検者の疾患内容、性別、身長、体重、2MWTの結果数を図5の表に示す。この図5の表にて、疾患内容のMD、ALS、IBM、SBMAはそれぞれ、筋ジストロフィー、筋萎縮性側索硬化症、封入体筋炎、脊髄・大腿筋萎縮症を示す。
これら被検者から得られる生体電位信号の信号パターンを、同様に装着式動作補助装置2を装着する健常者の歩行時に得られる生体電位信号の信号パターンを基準として比較により類似性を判断する。
上述した図1に示す歩行支援システム1において、健常者の右膝伸展筋から得られる生体電位信号を、装着式動作補助装置2を装着した状態でトレッドミル5上を歩行しながら測定した。健常者としては、21~23歳の健康な成人男性3名(参加者X~Z)を選んで実施した。装着式動作補助装置2の制御パラメータおよびトレッドミル5の歩行ベルト7の走行速度は、各参加者にとって快適な歩行速度となるように事前に調整しておいた。
装着式動作補助装置2を用いて参加者X~Zの右膝伸展筋から得られる生体電位信号を測定して信号処理を行った後、当該生体電位信号の信号パターンの平均値を、参加者1名当たり90回の歩行周期、すなわち合計270回の歩行周期で求めた。
この信号パターンの平均値を健常者の基準として用い、以下の手順1~5により求めた。生体電位信号を、床反力センサ(FRFセンサ60)の値に基づいて検出された右足の踵の接触の瞬間から開始される歩行周期に分割した(手順1)。生体電位信号を、歩行周期を0~100の一定間隔で101点にリサンプリングし、各歩行周期の期間で正規化した。また、リサンプリングした値の補間には、3次スプライン補間を用いた(手順2)。
歩行周期ごとに生体電位信号の振幅を正規化し、最大値を100、基本値を0とした(手順3)。各サンプリング点について、270回の生体電位信号の平均値とその平均値を結ぶ信号パターンとして求めた(手順4)。上記で得られた信号パターンを、手順3で用いた方法と同様の方法に基づいて、振幅と併せて正規化した。この信号パターンを装着式動作補助装置2を用いた健常者の歩行基準とした(手順5)。
このように装着式動作補助装置2を装着した状態でトレッドミル5上を歩行する健常者(参加者X~Z)について、右膝伸展筋から得られる生体電位信号の信号パターンをそれぞれ図6(A)および(B)、図7(A)に示す。図7(B)は3人の参加者の合計270回の歩行パターンの平均値を示しており、実線と破線はそれぞれ平均値と標準偏差の範囲を示している。図7(B)に示す平均パターンを健常者の基準となる生体電位信号の信号パターンとして、被検者と健常者の信号パターンの類似性の判定に適用した。
上述の歩行周期を求めるために、図4に示す歩行同期算出部71は、被検者の左右の足裏面への圧力分布を検出する床反力センサ(FRFセンサ60)の検出結果に基づいて、被検者の歩行周期を算出する。
信号正規化部72は、生体信号検出部40により検出される生体電位信号を、関節周り検出部(ポテンショメータ32および絶対角度センサ33)により検出される物理量と歩行同期算出部71から算出される歩行周期とを基準として、当該歩行周期ごとに時間および振幅の平面座標系で表される第1信号パターンに正規化する。
具体的に本実施の形態においては、装着式動作補助装置2は、進行性神経筋疾患を患う被検者の右膝伸展筋から得られる生体電位信号を測定するとともに、歩行周期ごとの生体電位信号の信号パターン(第1信号パターン)を、振幅と時間に関して正規化して図8(A)および(B)に示した。
図8(A)は初回試行時の測定結果を正規化したグラフであり、図8(B)はその3ヶ月後の測定結果を正規化したグラフである。この2つの正規化グラフは有意に異なっており、健常者から得られる生体電位信号の信号パターン(第2信号パターン)と比較分析することにより、その違いを定量化することが可能となった。
類似度算出部73は、信号正規化部72から得られる第1信号パターンを、基準となる健常者に相当する第2信号パターンとを比較し、第1信号パターンおよび第2信号パターンの類似度を定量的に算出する。具体的には、類似度算出部73は、動的時間伸縮法(DDTW:Differential Dynamic Time Warping)を用いて、第1信号パターンおよび第2信号パターンの形状同士を時系列的に比較して、上昇トレンドおよび下降トレンドの対応関係からパターン類似性を類似度として算出する。
そこで、カリフォルニア大学のE.J.KeoghおよびM.J.Pazzaniが提案した手法(Derivative Dynamic Time Warping)を用いて類似性の計算を行った。この手法は、ピアソンの相関係数、二乗平均平方根誤差、リニアフィット法などの特定の比較手法とは異なり、時間的なずれやパラメータ間の非線形関係に比較的柔軟に対応可能な類似度計算法である。
以下に動的時間伸縮法(DDTW)のアルゴリズムを用いて2つの時系列データの類似性を算出する。まず、被検者の時系列データから得られた第1信号パターンをSとし、健常者Tの時系列データから得られた第2信号パターンをTとして、次式(2)および(3)のように仮定する。
第1信号パターンSと第2信号パターンTの全ての点を、式(4)で表される微分推定式を用いて、第1信号パターンS’と第2信号パターンT’に変換した後、図9に示すように、行列を考慮して、第1信号パターンS’と第2信号パターンT’の配列を整列させた。
各行列要素(i,j)は、第1信号パターンS’および第2信号パターンT’に属し、微分推定Ds[i]およびDt[j]の値を持つ点sj’およびtj’の間の位置合わせに対応してる。また、第1信号パターンSおよび第2信号パターンTと点sjおよびtjと対応関係には、点sj’およびtj’における微分値の変化を意味する組合せ(i,j)が継承され、次式(5)のように表される。
続いて、第1信号パターンS’および第2信号パターンT’の対応関係を定義する行列要素の連続集合であるワーピングパスWを、以下の3つ条件を満たすように構成した。第1に、行列の対角線上にあるコーナーセルを始点かつ終点とする。第2に、ステップは斜めに隣接するセルを含む隣接セルに限定される。第3に、点が時間とともに単調に減少しないように配置されている。
上述の3つの条件を満たすワーピングパスWは複数存在するため、当該ワーピングパスWを含む行列要素に属するd(si’,tj’)の総和を最小化することにより、最適なワーピングパスW’を決定し、その後、類似性の評価に用いるDDTWの値を、次式(6)のように算出した。
この式(6)において、LはW’の長さを表し、(s’ml,t’ml)は W’のl個のアライメントの組み合わせを表す。DDTWの値は、W’によって整列された2つの点S’とT’の導関数の差の平均を表している。したがって、DDTWの値が小さいほど、被検者の第1信号パターンと健常者の第2信号パターンとの類似性が高いことがわかる。
装着式動作補助装置2を用いた歩行時の被検者と健常者との生体電位信号の信号パターンの類似性をDDTWスコアで表現した例として、図8(A)および(B)に対して、後述するDDTWスコアを適用したアライメント結果を図10(A)および(B)に示す。
図10(A)および(B)における実線は、装着式動作補助装置2を用いた治療中の被検者から得られる生体電位信号の第1信号パターンを示しており、図7(B)に表示された信号パターンと同様である。図10(A)および(B)における破線は、装着式動作補助装置2を用いた歩行中の健常者から得られる生体電位信号の第2信号パターンを示しており、図7(B)に表示された信号パターンと同様である。これらの結果は、最初の治療時に被検者から測定された生体電位信号の第1信号パターンと、3ヶ月後に測定された生体電位信号の第1信号パターンとの間に大きな違いがあることが明確である。
図10(B)からわかるように、生体電位信号の信号パターンは、図10(A)には現れていないが、最初の床面への接触直後に最大となり、遊脚期に向かって減少しながら、当該遊脚期には増加している。また図10(B)に示す筋活動パターンの傾向は、健常者の歩容と類似している。
図10(A)および(B)に示す被検者と健常者のグラフを結ぶ線は、DDTWスコアに基づいて整列させてあり、線が結ぶ2点ごとの微分変化を用いて類似性を判断した。図10(A)に示すDDTWの値は2.56であり、図10(B)に示すDDTWの値は0.96であった。したがって、図10(B)の方がDDTWの値が小さく、この図10(B)で観察される被検者の第1信号パターンは健常者の第2信号パターンに近いと言い得る。なお、図11(A)および(B)、図12(A)および(B)に、DDTWの結果の参考例を示す。
続いて、歩行機能評価部74(図4)は、類似度算出部73により算出された類似度に基づいて、被検者の歩行機能を評価する。すなわち、装着式動作補助装置2を用いて治療中の被検者から得られる生体電位信号の第1信号パターンを、健常者から得られる生体電位信号の第2信号パターンと比較して、2分間歩行試験(2MWT)の距離と動的時間伸縮法(DDTW)の値との相関関係を調べることにより、被検者の歩行能力と生体電位信号の第1信号パターンとの関係を明確にする。
そこで、歩行速度算出部75は、事前入力される被検者の足の長さと関節周り検出部(ポテンショメータ32および絶対角度センサ33)により検出される物理量の変遷とに基づいて、被検者の歩行動作における歩幅を求め、当該歩幅と歩行同期算出部71から算出される歩行周期とに基づいて、被検者の歩行速度を算出する。そして歩行機能評価部74は、類似度算出部73により算出された類似度と、歩行速度算出部75により算出された歩行速度に基づく所定時間当たり(2分間)の歩行距離との相関関係を分析する。
まず、被検者7名(患者A~G)が装着式動作補助装置2を用いて治療試行時の生体電位信号から得られた第1信号パターンについて「DDTWスコア」を算出した。このDDTWスコアは、各試験について上述した式(5)で表されるDDTW値の平均を算出し、当該算出結果として表される。
その後、各試験における2MWTの距離とDDTWスコアとを組み合わせて相関係数を算出した。全ての被検者(患者A~G)について、試験回ごとの2MWTの距離とDDTWスコアを図13の表に示す。各被検者から複数(試験回数)の測定値から得られた相関関数は、被検者間の相関とその被検者自体の相関として解釈することができる。被検者間の相関係数は、各被検者の様々な観察結果を考慮し、加重相関係数として評価した。
その手順は、J.M.BlandおよびD.G. Altmanによる計算方法(Calculating correlation coefficients with repeated observations)に従って行われた。実際の加重相関係数WCCは、次式(7)に示す計算式により表される。
ここで、すべての合計はi=1から7(被検者数)であり、miは被検者iの観察数を意味し、xiとyiはそれぞれ被検者iの2MWTの距離とDDTWの値の平均値であることを表す。
その後、重回帰分析(統計的手法により説明変数と被説明変数の関係を推計する分析方法)を用いて、7人(被検者数)のサンプルの検定統計量であるt値を元に、当該t値が起こる累積確率であるp値をF検定から算出する。そして上述のJ.M.BlandおよびD.G. Altmanによる計算方法に基づく重回帰を用いて、被検者内の相関係数を決定した。
上述した図13の表に示すように、2MWTの距離を結果変数とした。またDDTWスコアと、自由度6のダミー変数を用いてカテゴリ要因として扱われる被検者とを予測変数とした。回帰には分散分析(ANOVA:analysis of variance)表を用い、被検者内の相関係数の大きさCCWPは、次式(8)のように記述することができる。
ここで、相関係数の符号はDDTWスコアから求めた回帰係数の符号に対応している。
このようにして2MWTの距離とDDTWスコアとの相関関係を調べた結果、被検者間の相関係数は-0.83となった。このとき、t値は9.59、p値は2.08×10であった。さらに、患者内の相関係数を求めるために重回帰分析を行い、図14(A)に示すようなANOVA表が得られた。さらに、DDTWスコアの偏回帰係数の符号は負であった。したがって、計算された被検者内の相関係数は-0.39であり、対応するp値は1.88×10であった。
以上のように、被検者間のデータ関係を調べた結果、図14(B)の表に示すように、2MWTの距離とDDTWスコアは、-0.83(p=2.08×10-4<0.01)の強い負の相関係数を示した。さらに、被検者内におけるデータのばらつきを調べた結果、2MWTの距離とDDTWスコアの間に-0.39(p=1.88×10-2<0.05)の弱い負の相関係数を示した。この結果、装着式動作補助装置を使用した歩行と歩行能力の間には、生体電位信号の信号パターンの有意な関係があることが確認できた。
このように装着式動作補助装置2を用いた歩行機能評価装置70では、被検者の生体電位信号の第1信号パターンおよび健常者に相当する生体電位信号の第2信号パターンを正規化して双方を比較することにより、当該比較結果から得られる類似度に基づいて、被検者の歩行機能を経時的変化として認識することが可能となる。
また、歩行機能評価装置70では、第1信号パターンおよび第2信号パターンの類似度と、歩行速度に基づく所定時間当たりの歩行距離との相関関係を分析することにより、当該類似度が高いほど所定時間当たりの歩行距離が長くなる。したがって、装着式動作補助装置2を使用した被検者の歩行時の第1信号パターンが健常者の第2信号パターンと類似しているほど、当該被検者を使用しなくてもより長い距離を歩行可能であることが確認できる。
この結果、歩行機能評価装置70においては、被検者の歩行機能の経時的変化を認識して当該被検者の治療計画の迅速な構築を格段と向上させることができる。
(5)他の実施の形態
なお上述のように本実施の形態においては、主として被検者の右膝伸展筋から得られる生体電位信号の第1信号パターンのみを歩行評価の対象とするようにした場合について述べたが、本発明はこれに限らず、被検者の歩行に必要な複数の筋を統合して得られる生体電位信号の信号パターンを歩行評価に適用するようにしてもよい。
なお上述のように本実施の形態においては、主として被検者の右膝伸展筋から得られる生体電位信号の第1信号パターンのみを歩行評価の対象とするようにした場合について述べたが、本発明はこれに限らず、被検者の歩行に必要な複数の筋を統合して得られる生体電位信号の信号パターンを歩行評価に適用するようにしてもよい。
また本実施の形態においては、被検者は歩行支援装置3のトレッドミル5上を歩行するようにしてリハビリテーションを支援するようにした場合について述べたが、本発明はこれに限らず、装着式動作補助装置2を用いた被検者が移動可能な歩行器と一緒に歩行するようにしてもよい。
1…歩行支援システム、2…装着式動作補助装置、2X…制御系システム、3…歩行支援装置、5…トレッドミル、6L…左フレーム、6R…右フレーム、7…歩行ベルト、8…モニタ、10…腰フレーム、11…下肢フレーム、12L、12R、13L、13R…駆動部、26L、26R…専用靴、30…制御装置、31…データ格納部、32…ポテンショメータ、33…絶対角度センサ、40…生体信号検出部、41…指令信号データベース、42…基準パラメータデータベース、50…随意的制御部、51…自律的制御部、52…フェーズ特定部、53…ゲイン変更部、54…電力増幅部、60…FRFセンサ、61…FRF制御部、62…送信部、63…変換器、64…LPF、65…受信部、70…歩行機能評価装置、71…歩行同期算出部、72…信号正規化部、73…類似度算出部、74…歩行機能評価部、75…歩行速度算出部。
Claims (6)
- 被検者の歩行動作を構成する各歩行フェイズに応じた動力を当該被検者に付与する装着動作補助装置を用いて、前記被検者の歩行機能を評価する歩行機能評価装置において、
前記装着式動作補助装置は、
前記被検者の下肢動作に連動して能動的または受動的に駆動する駆動部と、
前記被検者の下肢動作に伴う関節を基準とする当該被検者の体表部位に配置され、当該被検者の生体電位信号を検出するための電極群を有する生体信号検出部と、
前記生体信号検出部により取得された生体電位信号に基づいて、前記被検者の意思に従った動力を前記駆動部に発生させる随意的制御部と、
前記駆動部からの出力信号に基づいて、前記被検者の下肢動作に伴う関節周りの物理量を検出する関節周り検出部と、
前記関節周り検出部により検出される物理量に基づいて、前記被検者の歩行タスクに応じた歩行フェイズをそれぞれ特定し、前記各歩行フェイズに対応する動力を前記駆動部に発生させる自律的制御部と、
前記随意的制御部および前記自律的制御部からの制御信号を合成し、当該合成された制御信号に応じた駆動電流を前記駆動部に供給する駆動電流生成部と、
前記被検者の左右の足裏面への圧力分布を検出する床反力センサの検出結果に基づいて、前記被検者の歩行周期を算出する歩行同期算出部と、
前記生体信号検出部により検出される生体電位信号を、前記関節周り検出部により検出される物理量と前記歩行同期算出部から算出される歩行周期とを基準として、当該歩行周期ごとに時間および振幅の平面座標系で表される第1信号パターンに正規化する信号正規化部と、
前記信号正規化部から得られる前記第1信号パターンを、基準となる健常者に相当する第2信号パターンとを比較し、前記第1信号パターンおよび前記第2信号パターンの類似度を定量的に算出する類似度算出部と、
前記類似度算出部により算出された類似度に基づいて、前記被検者の歩行機能を評価する歩行機能評価部と
を備えることを特徴とする歩行機能評価装置。 - 事前入力される前記被検者の足の長さと前記関節周り検出部により検出される物理量の変遷とに基づいて、前記被検者の歩行動作における歩幅を求め、当該歩幅と前記歩行同期算出部から算出される歩行周期とに基づいて、前記被検者の歩行速度を算出する歩行速度算出部を備え、
前記歩行機能評価部は、前記類似度算出部により算出された類似度と、前記歩行速度算出部により算出された歩行速度に基づく所定時間当たりの歩行距離との相関関係を分析する
ことを特徴とする請求項1に記載の歩行機能評価装置。 - 前記類似度算出部は、動的時間伸縮法(DDTW:Differential Dynamic Time Warping)を用いて、前記第1信号パターンおよび前記第2信号パターンの形状同士を時系列的に比較して、上昇トレンドおよび下降トレンドの対応関係からパターン類似性を前記類似度として算出する
ことを特徴とする請求項1または2に記載の歩行機能評価装置。 - 被検者の歩行動作を構成する各歩行フェイズに応じた動力を当該被検者に付与する装着動作補助装置を用いて、前記被検者の歩行機能を評価する歩行機能評価方法において、
前記装着式動作補助装置は、前記被検者の下肢動作に連動して能動的または受動的に駆動する駆動部を有し、前記被検者の下肢動作に伴う関節を基準とする当該被検者の体表部位から取得された生体電位信号に基づいて、前記被検者の意思に従った動力を前記駆動部に発生させる随意的制御と、前記駆動部の出力信号に基づき検出された前記被検者の下肢動作に伴う関節周りの物理量に基づいて、前記被検者の歩行タスクに応じた歩行フェイズをそれぞれ特定し、前記各歩行フェイズに対応する動力を前記駆動部に発生させる自律的制御とを合成して行い、当該合成された制御信号に応じた駆動電流を前記駆動部に供給するようになされ、
前記生体電位信号を、前記関節周りの物理量と前記被検者の左右の足裏面への圧力分布の検出結果に基づいて算出する歩行周期とを基準として、当該歩行周期ごとに時間および振幅の平面座標系で表される第1信号パターンに正規化する第1ステップと、
前記第1ステップから得られる前記第1信号パターンを、基準となる健常者に相当する第2信号パターンとを比較し、前記第1信号パターンおよび前記第2信号パターンの類似度を定量的に算出する第2ステップと、
前記第2ステップにより算出された類似度に基づいて、前記被検者の歩行機能を評価する第3ステップと
を備えることを特徴とする歩行機能評価方法。 - 事前入力される前記被検者の足の長さと前記関節周りの物理量の変遷とに基づいて、前記被検者の歩行動作における歩幅を求め、当該歩幅と前記歩行周期とに基づいて、前記被検者の歩行速度を算出しておき、
前記第3ステップでは、前記類似度算出部により算出された類似度と、前記歩行速度算出部により算出された歩行速度に基づく所定時間当たりの歩行距離との相関関係を分析する
ことを特徴とする請求項4に記載の歩行機能評価方法。 - 前記第3ステップでは、動的時間伸縮法(DDTW:Differential Dynamic Time Warping)を用いて、前記第1信号パターンおよび前記第2信号パターンの形状同士を時系列的に比較して、上昇トレンドおよび下降トレンドの対応関係からパターン類似性を前記類似度として算出する
ことを特徴とする請求項4または5に記載の歩行機能評価方法。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022-005783 | 2022-01-18 | ||
JP2022005783A JP2023104654A (ja) | 2022-01-18 | 2022-01-18 | 歩行機能評価装置および歩行機能評価方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023139940A1 true WO2023139940A1 (ja) | 2023-07-27 |
Family
ID=87348074
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/044396 WO2023139940A1 (ja) | 2022-01-18 | 2022-12-01 | 歩行機能評価装置および歩行機能評価方法 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2023104654A (ja) |
WO (1) | WO2023139940A1 (ja) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005095561A (ja) | 2003-08-21 | 2005-04-14 | Yoshiyuki Yamaumi | 装着式動作補助装置、装着式動作補助装置の制御方法および制御用プログラム |
WO2012118143A1 (ja) * | 2011-03-02 | 2012-09-07 | 国立大学法人 筑波大学 | 歩行訓練装置及び歩行訓練システム |
JP2012210478A (ja) * | 2012-07-24 | 2012-11-01 | Honda Motor Co Ltd | リハビリテーション装置およびその制御方法 |
JP2015130964A (ja) | 2014-01-10 | 2015-07-23 | トヨタ車体株式会社 | 車両の車椅子固定装置 |
JP2016140591A (ja) * | 2015-02-03 | 2016-08-08 | 国立大学法人 鹿児島大学 | 動作解析評価装置、動作解析評価方法、及びプログラム |
WO2018066151A1 (ja) * | 2016-10-06 | 2018-04-12 | Cyberdyne株式会社 | 歩行障害支援装置及び歩行障害支援方法 |
-
2022
- 2022-01-18 JP JP2022005783A patent/JP2023104654A/ja active Pending
- 2022-12-01 WO PCT/JP2022/044396 patent/WO2023139940A1/ja active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2005095561A (ja) | 2003-08-21 | 2005-04-14 | Yoshiyuki Yamaumi | 装着式動作補助装置、装着式動作補助装置の制御方法および制御用プログラム |
WO2012118143A1 (ja) * | 2011-03-02 | 2012-09-07 | 国立大学法人 筑波大学 | 歩行訓練装置及び歩行訓練システム |
JP2012210478A (ja) * | 2012-07-24 | 2012-11-01 | Honda Motor Co Ltd | リハビリテーション装置およびその制御方法 |
JP2015130964A (ja) | 2014-01-10 | 2015-07-23 | トヨタ車体株式会社 | 車両の車椅子固定装置 |
JP2016140591A (ja) * | 2015-02-03 | 2016-08-08 | 国立大学法人 鹿児島大学 | 動作解析評価装置、動作解析評価方法、及びプログラム |
WO2018066151A1 (ja) * | 2016-10-06 | 2018-04-12 | Cyberdyne株式会社 | 歩行障害支援装置及び歩行障害支援方法 |
Also Published As
Publication number | Publication date |
---|---|
JP2023104654A (ja) | 2023-07-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7181801B2 (ja) | 心臓リハビリテーション支援装置及びその制御プログラム | |
US11654035B2 (en) | Gait disorder support apparatus and gait disorder support method | |
Kressler et al. | Understanding therapeutic benefits of overground bionic ambulation: exploratory case series in persons with chronic, complete spinal cord injury | |
Neckel et al. | Abnormal joint torque patterns exhibited by chronic stroke subjects while walking with a prescribed physiological gait pattern | |
Gandolla et al. | Automatic setting procedure for exoskeleton-assisted overground gait: proof of concept on stroke population | |
Grazi et al. | Gastrocnemius myoelectric control of a robotic hip exoskeleton can reduce the user's lower-limb muscle activities at push off | |
Cherni et al. | Effects of body weight support and guidance force settings on muscle synergy during Lokomat walking | |
Kasai et al. | The effect of a hybrid assistive limb® on sit-to-stand and standing patterns of stroke patients | |
Portnoy et al. | Prevention of genu recurvatum in poststroke patients using a hinged soft knee orthosis | |
Boes et al. | Six-minute walk test performance in persons with multiple sclerosis while using passive or powered ankle-foot orthoses | |
Puentes et al. | Reshaping of gait coordination by robotic intervention in myelopathy patients after surgery | |
Afzal et al. | Evaluation of muscle synergy during exoskeleton-assisted walking in persons with multiple sclerosis | |
de Miguel-Fernández et al. | Immediate biomechanical effects of providing adaptive assistance with an ankle exoskeleton in individuals after stroke | |
Laroche et al. | Kinematic adaptation of locomotor pattern in rheumatoid arthritis patients with forefoot impairment | |
EP3666245A1 (en) | Method of assessing degree of rehabilitation using an active exoskeleton for patients with disorders of the musculoskeletal system | |
Hsu et al. | Use of pelvic corrective force with visual feedback improves paretic leg muscle activities and gait performance after stroke | |
Fang et al. | Bilateral vs. Paretic-Limb-Only ankle exoskeleton assistance for improving hemiparetic gait: A case series | |
Sato et al. | Identifying the effects of assistive and resistive guidance on the gait of elderly people using a smart walker | |
WO2023139940A1 (ja) | 歩行機能評価装置および歩行機能評価方法 | |
Chaparro-Cárdenas et al. | Characterization of muscle fatigue in the lower limb by sEMG and angular position using the WFD protocol | |
Wang et al. | Gender differences of the improvement in balance control based on the real-time visual feedback system with smart wearable devices | |
WO2023139941A1 (ja) | 機能改善支援装置および機能改善支援方法 | |
Sarkisian et al. | Knee exoskeleton reduces muscle effort and improves balance during sit-to-stand transitions after stroke: A case study | |
Uehara et al. | Proposal of Period Modulation Control of Wearable Cyborg HAL Trunk-Unit for Parkinson's Disease/Parkinsonism Utilizing Motor Intention and Dynamics | |
Ryu et al. | Immediate effects of real-time visual bio-feedback using ground reaction forces on gait symmetry in elderly males |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22922091 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2022922091 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2022922091 Country of ref document: EP Effective date: 20240819 |