[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2023130312A1 - Aperiodic channel state information reporting for cross-carrier scheduling - Google Patents

Aperiodic channel state information reporting for cross-carrier scheduling Download PDF

Info

Publication number
WO2023130312A1
WO2023130312A1 PCT/CN2022/070503 CN2022070503W WO2023130312A1 WO 2023130312 A1 WO2023130312 A1 WO 2023130312A1 CN 2022070503 W CN2022070503 W CN 2022070503W WO 2023130312 A1 WO2023130312 A1 WO 2023130312A1
Authority
WO
WIPO (PCT)
Prior art keywords
cell
csi
measurement configuration
scell
csi measurement
Prior art date
Application number
PCT/CN2022/070503
Other languages
French (fr)
Inventor
Kazuki Takeda
Chenxi HAO
Alexandros MANOLAKOS
Original Assignee
Qualcomm Incorporated
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Qualcomm Incorporated filed Critical Qualcomm Incorporated
Priority to PCT/CN2022/070503 priority Critical patent/WO2023130312A1/en
Publication of WO2023130312A1 publication Critical patent/WO2023130312A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • H04W72/232Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the physical layer, e.g. DCI signalling
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signalling, i.e. of overhead other than pilot signals
    • H04L5/0057Physical resource allocation for CQI
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports

Definitions

  • aspects of the present disclosure generally relate to wireless communication and to techniques and apparatuses for aperiodic channel state information (A-CSI) reporting for cross-carrier scheduling.
  • A-CSI aperiodic channel state information
  • Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts.
  • Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources (e.g., bandwidth, transmit power, or the like) .
  • multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency division multiple access (FDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, single-carrier frequency division multiple access (SC-FDMA) systems, time division synchronous code division multiple access (TD-SCDMA) systems, and Long Term Evolution (LTE) .
  • LTE/LTE-Advanced is a set of enhancements to the Universal Mobile Telecommunications System (UMTS) mobile standard promulgated by the Third Generation Partnership Project (3GPP) .
  • UMTS Universal Mobile Telecommunications System
  • a wireless network may include one or more base stations that support communication for a user equipment (UE) or multiple UEs.
  • a UE may communicate with a base station via downlink communications and uplink communications.
  • Downlink (or “DL” ) refers to a communication link from the base station to the UE
  • uplink (or “UL” ) refers to a communication link from the UE to the base station.
  • New Radio which may be referred to as 5G, is a set of enhancements to the LTE mobile standard promulgated by the 3GPP.
  • NR is designed to better support mobile broadband internet access by improving spectral efficiency, lowering costs, improving services, making use of new spectrum, and better integrating with other open standards using orthogonal frequency division multiplexing (OFDM) with a cyclic prefix (CP) (CP-OFDM) on the downlink, using CP-OFDM and/or single-carrier frequency division multiplexing (SC-FDM) (also known as discrete Fourier transform spread OFDM (DFT-s-OFDM) ) on the uplink, as well as supporting beamforming, multiple-input multiple-output (MIMO) antenna technology, and carrier aggregation.
  • OFDM orthogonal frequency division multiplexing
  • SC-FDM single-carrier frequency division multiplexing
  • DFT-s-OFDM discrete Fourier transform spread OFDM
  • MIMO multiple-input multiple-output
  • an apparatus for wireless communication at a user equipment includes a memory and one or more processors, coupled to the memory, configured to: receive, from a base station, a channel state information (CSI) measurement configuration via a primary cell (PCell) or a primary secondary cell (PSCell) (P (S) Cell) ; receive, from the base station, a CSI measurement configuration via a secondary cell (SCell) ; receive, from the base station and via the SCell, uplink downlink control information (DCI) that schedules an aperiodic CSI (A-CSI) report in an uplink channel of the P (S) Cell based at least in part on a cross-carrier scheduling; and transmit, to the base station and via the uplink channel of the P (S) Cell, the A-CSI report based at least in part on the uplink DCI and one or more of the CSI measurement configuration associated with the P (S) Cell or the CSI measurement configuration associated with the SCell.
  • CSI channel state information
  • PCell primary cell
  • PSCell primary secondary
  • an apparatus for wireless communication at a base station includes a memory and one or more processors, coupled to the memory, configured to: transmit, to a UE, a CSI measurement configuration via a P (S) Cell; transmit, to the UE, a CSI measurement configuration via an SCell; transmit, to the UE and via the SCell, uplink DCI that schedules an A-CSI report in an uplink channel of the P (S) Cell based at least in part on a cross-carrier scheduling; and receive, from the UE and via the uplink channel of the P (S) Cell, the A-CSI report based at least in part on the uplink DCI and one or more of the CSI measurement configuration associated with the P (S) Cell or the CSI measurement configuration associated with the SCell.
  • a method of wireless communication performed by a UE includes receiving, from a base station, a CSI measurement configuration via a P (S) Cell; receiving, from the base station, a CSI measurement configuration via an SCell; receiving, from the base station and via the SCell, uplink DCI that schedules an A-CSI report in an uplink channel of the P (S) Cell based at least in part on a cross-carrier scheduling; and transmitting, to the base station and via the uplink channel of the P (S) Cell, the A-CSI report based at least in part on the uplink DCI and one or more of the CSI measurement configuration associated with the P (S) Cell or the CSI measurement configuration associated with the SCell.
  • a method of wireless communication performed by a base station includes transmitting, to a UE, a CSI measurement configuration via a P (S) Cell; transmitting, to the UE, a CSI measurement configuration via an SCell; transmitting, to the UE and via the SCell, uplink DCI that schedules an A-CSI report in an uplink channel of the P (S) Cell based at least in part on a cross-carrier scheduling; and receiving, from the UE and via the uplink channel of the P (S) Cell, the A-CSI report based at least in part on the uplink DCI and one or more of the CSI measurement configuration associated with the P (S) Cell or the CSI measurement configuration associated with the SCell.
  • a non-transitory computer-readable medium storing a set of instructions for wireless communication includes one or more instructions that, when executed by one or more processors of a UE, cause the UE to: receive, from a base station, a CSI measurement configuration via a P (S) Cell; receive, from the base station, a CSI measurement configuration via an SCell; receive, from the base station and via the SCell, uplink DCI that schedules an A-CSI report in an uplink channel of the P (S) Cell based at least in part on a cross-carrier scheduling; and transmit, to the base station and via the uplink channel of the P (S) Cell, the A-CSI report based at least in part on the uplink DCI and one or more of the CSI measurement configuration associated with the P (S) Cell or the CSI measurement configuration associated with the SCell.
  • a non-transitory computer-readable medium storing a set of instructions for wireless communication includes one or more instructions that, when executed by one or more processors of a base station, cause the base station to: transmit, to a UE, a CSI measurement configuration via a P (S) Cell; transmit, to the UE, a CSI measurement configuration via an SCell; transmit, to the UE and via the SCell, uplink DCI that schedules an A-CSI report in an uplink channel of the P (S) Cell based at least in part on a cross-carrier scheduling; and receive, from the UE and via the uplink channel of the P (S) Cell, the A-CSI report based at least in part on the uplink DCI and one or more of the CSI measurement configuration associated with the P (S) Cell or the CSI measurement configuration associated with the SCell.
  • an apparatus for wireless communication includes means for receiving, from a base station, a CSI measurement configuration via a P (S) Cell; means for receiving, from the base station, a CSI measurement configuration via an SCell; means for receiving, from the base station and via the SCell, uplink DCI that schedules an A-CSI report in an uplink channel of the P (S) Cell based at least in part on a cross-carrier scheduling; and means for transmitting, to the base station and via the uplink channel of the P (S) Cell, the A-CSI report based at least in part on the uplink DCI and one or more of the CSI measurement configuration associated with the P (S) Cell or the CSI measurement configuration associated with the SCell.
  • an apparatus for wireless communication includes means for transmitting, to a UE, a CSI measurement configuration via a P (S) Cell; means for transmitting, to the UE, a CSI measurement configuration via an SCell; means for transmitting, to the UE and via the SCell, uplink DCI that schedules an A-CSI report in an uplink channel of the P (S) Cell based at least in part on a cross-carrier scheduling; and means for receiving, from the UE and via the uplink channel of the P (S) Cell, the A-CSI report based at least in part on the uplink DCI and one or more of the CSI measurement configuration associated with the P (S) Cell or the CSI measurement configuration associated with the SCell.
  • aspects generally include a method, apparatus, system, computer program product, non-transitory computer-readable medium, user equipment, base station, wireless communication device, and/or processing system as substantially described herein with reference to and as illustrated by the drawings and specification.
  • aspects are described in the present disclosure by illustration to some examples, those skilled in the art will understand that such aspects may be implemented in many different arrangements and scenarios.
  • Techniques described herein may be implemented using different platform types, devices, systems, shapes, sizes, and/or packaging arrangements.
  • some aspects may be implemented via integrated chip embodiments or other non-module-component based devices (e.g., end-user devices, vehicles, communication devices, computing devices, industrial equipment, retail/purchasing devices, medical devices, and/or artificial intelligence devices) .
  • Aspects may be implemented in chip-level components, modular components, non-modular components, non-chip-level components, device-level components, and/or system-level components.
  • Devices incorporating described aspects and features may include additional components and features for implementation and practice of claimed and described aspects.
  • transmission and reception of wireless signals may include one or more components for analog and digital purposes (e.g., hardware components including antennas, radio frequency (RF) chains, power amplifiers, modulators, buffers, processors, interleavers, adders, and/or summers) .
  • RF radio frequency
  • aspects described herein may be practiced in a wide variety of devices, components, systems, distributed arrangements, and/or end-user devices of varying size, shape, and constitution.
  • Fig. 1 is a diagram illustrating an example of a wireless network, in accordance with the present disclosure.
  • Fig. 2 is a diagram illustrating an example of a base station in communication with a user equipment (UE) in a wireless network, in accordance with the present disclosure.
  • UE user equipment
  • Fig. 3 is a diagram illustrating an example of an aperiodic channel state information (A-CSI) report configuration with cross-carrier scheduling, in accordance with the present disclosure.
  • A-CSI aperiodic channel state information
  • Fig. 4 is a diagram illustrating an example of cross-carrier scheduling from a secondary cell (SCell) to a primary cell (PCell) or primary secondary cell (PSCell) , in accordance with the present disclosure.
  • Figs. 5-7 are diagrams illustrating examples associated with A-CSI reporting for cross-carrier scheduling, in accordance with the present disclosure.
  • Figs. 8-9 are diagrams illustrating example processes associated with A-CSI reporting for cross-carrier scheduling, in accordance with the present disclosure.
  • Figs. 10-11 are diagrams of example apparatuses for wireless communication, in accordance with the present disclosure.
  • NR New Radio
  • RAT radio access technology
  • Fig. 1 is a diagram illustrating an example of a wireless network 100, in accordance with the present disclosure.
  • the wireless network 100 may be or may include elements of a 5G (e.g., NR) network and/or a 4G (e.g., Long Term Evolution (LTE) ) network, among other examples.
  • the wireless network 100 may include one or more base stations 110 (shown as a BS 110a, a BS 110b, a BS 110c, and a BS 110d) , a user equipment (UE) 120 or multiple UEs 120 (shown as a UE 120a, a UE 120b, a UE 120c, a UE 120d, and a UE 120e) , and/or other network entities.
  • UE user equipment
  • a base station 110 is an entity that communicates with UEs 120.
  • a base station 110 (sometimes referred to as a BS) may include, for example, an NR base station, an LTE base station, a Node B, an eNB (e.g., in 4G) , a gNB (e.g., in 5G) , an access point, and/or a transmission reception point (TRP) .
  • Each base station 110 may provide communication coverage for a particular geographic area.
  • the term “cell” can refer to a coverage area of a base station 110 and/or a base station subsystem serving this coverage area, depending on the context in which the term is used.
  • a base station 110 may provide communication coverage for a macro cell, a pico cell, a femto cell, and/or another type of cell.
  • a macro cell may cover a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs 120 with service subscriptions.
  • a pico cell may cover a relatively small geographic area and may allow unrestricted access by UEs 120 with service subscription.
  • a femto cell may cover a relatively small geographic area (e.g., a home) and may allow restricted access by UEs 120 having association with the femto cell (e.g., UEs 120 in a closed subscriber group (CSG) ) .
  • CSG closed subscriber group
  • a base station 110 for a macro cell may be referred to as a macro base station.
  • a base station 110 for a pico cell may be referred to as a pico base station.
  • a base station 110 for a femto cell may be referred to as a femto base station or an in-home base station.
  • the BS 110a may be a macro base station for a macro cell 102a
  • the BS 110b may be a pico base station for a pico cell 102b
  • the BS 110c may be a femto base station for a femto cell 102c.
  • a base station may support one or multiple (e.g., three) cells.
  • a cell may not necessarily be stationary, and the geographic area of the cell may move according to the location of a base station 110 that is mobile (e.g., a mobile base station) .
  • the base stations 110 may be interconnected to one another and/or to one or more other base stations 110 or network nodes (not shown) in the wireless network 100 through various types of backhaul interfaces, such as a direct physical connection or a virtual network, using any suitable transport network.
  • the wireless network 100 may include one or more relay stations.
  • a relay station is an entity that can receive a transmission of data from an upstream station (e.g., a base station 110 or a UE 120) and send a transmission of the data to a downstream station (e.g., a UE 120 or a base station 110) .
  • a relay station may be a UE 120 that can relay transmissions for other UEs 120.
  • the BS 110d e.g., a relay base station
  • the BS 110a e.g., a macro base station
  • a base station 110 that relays communications may be referred to as a relay station, a relay base station, a relay, or the like.
  • the wireless network 100 may be a heterogeneous network that includes base stations 110 of different types, such as macro base stations, pico base stations, femto base stations, relay base stations, or the like. These different types of base stations 110 may have different transmit power levels, different coverage areas, and/or different impacts on interference in the wireless network 100.
  • macro base stations may have a high transmit power level (e.g., 5 to 40 watts) whereas pico base stations, femto base stations, and relay base stations may have lower transmit power levels (e.g., 0.1 to 2 watts) .
  • a network controller 130 may couple to or communicate with a set of base stations 110 and may provide coordination and control for these base stations 110.
  • the network controller 130 may communicate with the base stations 110 via a backhaul communication link.
  • the base stations 110 may communicate with one another directly or indirectly via a wireless or wireline backhaul communication link.
  • the UEs 120 may be dispersed throughout the wireless network 100, and each UE 120 may be stationary or mobile.
  • a UE 120 may include, for example, an access terminal, a terminal, a mobile station, and/or a subscriber unit.
  • a UE 120 may be a cellular phone (e.g., a smart phone) , a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless phone, a wireless local loop (WLL) station, a tablet, a camera, a gaming device, a netbook, a smartbook, an ultrabook, a medical device, a biometric device, a wearable device (e.g., a smart watch, smart clothing, smart glasses, a smart wristband, smart jewelry (e.g., a smart ring or a smart bracelet) ) , an entertainment device (e.g., a music device, a video device, and/or a satellite radio)
  • Some UEs 120 may be considered machine-type communication (MTC) or evolved or enhanced machine-type communication (eMTC) UEs.
  • An MTC UE and/or an eMTC UE may include, for example, a robot, a drone, a remote device, a sensor, a meter, a monitor, and/or a location tag, that may communicate with a base station, another device (e.g., a remote device) , or some other entity.
  • Some UEs 120 may be considered Internet-of-Things (IoT) devices, and/or may be implemented as NB-IoT (narrowband IoT) devices.
  • Some UEs 120 may be considered a Customer Premises Equipment.
  • a UE 120 may be included inside a housing that houses components of the UE 120, such as processor components and/or memory components.
  • the processor components and the memory components may be coupled together.
  • the processor components e.g., one or more processors
  • the memory components e.g., a memory
  • the processor components and the memory components may be operatively coupled, communicatively coupled, electronically coupled, and/or electrically coupled.
  • any number of wireless networks 100 may be deployed in a given geographic area.
  • Each wireless network 100 may support a particular RAT and may operate on one or more frequencies.
  • a RAT may be referred to as a radio technology, an air interface, or the like.
  • a frequency may be referred to as a carrier, a frequency channel, or the like.
  • Each frequency may support a single RAT in a given geographic area in order to avoid interference between wireless networks of different RATs.
  • NR or 5G RAT networks may be deployed.
  • two or more UEs 120 may communicate directly using one or more sidelink channels (e.g., without using a base station 110 as an intermediary to communicate with one another) .
  • the UEs 120 may communicate using peer-to-peer (P2P) communications, device-to-device (D2D) communications, a vehicle-to-everything (V2X) protocol (e.g., which may include a vehicle-to-vehicle (V2V) protocol, a vehicle-to-infrastructure (V2I) protocol, or a vehicle-to-pedestrian (V2P) protocol) , and/or a mesh network.
  • V2X vehicle-to-everything
  • a UE 120 may perform scheduling operations, resource selection operations, and/or other operations described elsewhere herein as being performed by the base station 110.
  • Devices of the wireless network 100 may communicate using the electromagnetic spectrum, which may be subdivided by frequency or wavelength into various classes, bands, channels, or the like. For example, devices of the wireless network 100 may communicate using one or more operating bands.
  • two initial operating bands have been identified as frequency range designations FR1 (410 MHz -7.125 GHz) and FR2 (24.25 GHz -52.6 GHz) . It should be understood that although a portion of FR1 is greater than 6 GHz, FR1 is often referred to (interchangeably) as a “Sub-6 GHz” band in various documents and articles.
  • FR2 which is often referred to (interchangeably) as a “millimeter wave” band in documents and articles, despite being different from the extremely high frequency (EHF) band (30 GHz -300 GHz) which is identified by the International Telecommunications Union (ITU) as a “millimeter wave” band.
  • EHF extremely high frequency
  • ITU International Telecommunications Union
  • FR3 7.125 GHz -24.25 GHz
  • FR3 7.125 GHz -24.25 GHz
  • FR4a or FR4-1 52.6 GHz -71 GHz
  • FR4 52.6 GHz -114.25 GHz
  • FR5 114.25 GHz -300 GHz
  • sub-6 GHz may broadly represent frequencies that may be less than 6 GHz, may be within FR1, or may include mid-band frequencies.
  • millimeter wave may broadly represent frequencies that may include mid-band frequencies, may be within FR2, FR4, FR4-a or FR4-1, and/or FR5, or may be within the EHF band.
  • frequencies included in these operating bands may be modified, and techniques described herein are applicable to those modified frequency ranges.
  • a UE may include a communication manager 140.
  • the communication manager 140 may receive, from a base station, a channel state information (CSI) measurement configuration via a primary cell (PCell) or a primary secondary cell (PSCell) (P (S) Cell) ; receive, from the base station, a CSI measurement configuration via a secondary cell (SCell) ; receive, from the base station and via the SCell, uplink downlink control information (DCI) that schedules an aperiodic CSI (A-CSI) report in an uplink channel of the P (S) Cell based at least in part on a cross-carrier scheduling; and transmit, to the base station and via the uplink channel of the P (S) Cell, the A-CSI report based at least in part on the uplink DCI and one or more of the CSI measurement configuration associated with the P (S) Cell or the CSI measurement configuration associated with the SCell.
  • DCI uplink downlink control information
  • A-CSI aperiodic CSI
  • a base station may include a communication manager 150.
  • the communication manager 150 may transmit, to a UE, a CSI measurement configuration via a P (S) Cell; transmit, to the UE, a CSI measurement configuration via an SCell; transmit, to the UE and via the SCell, uplink DCI that schedules an A-CSI report in an uplink channel of the P (S) Cell based at least in part on a cross-carrier scheduling; and receive, from the UE and via the uplink channel of the P (S) Cell, the A-CSI report based at least in part on the uplink DCI and one or more of the CSI measurement configuration associated with the P (S) Cell or the CSI measurement configuration associated with the SCell. Additionally, or alternatively, the communication manager 150 may perform one or more other operations described herein.
  • Fig. 1 is provided as an example. Other examples may differ from what is described with regard to Fig. 1.
  • Fig. 2 is a diagram illustrating an example 200 of a base station 110 in communication with a UE 120 in a wireless network 100, in accordance with the present disclosure.
  • the base station 110 may be equipped with a set of antennas 234a through 234t, such as T antennas (T ⁇ 1) .
  • the UE 120 may be equipped with a set of antennas 252a through 252r, such as R antennas (R ⁇ 1) .
  • a transmit processor 220 may receive data, from a data source 212, intended for the UE 120 (or a set of UEs 120) .
  • the transmit processor 220 may select one or more modulation and coding schemes (MCSs) for the UE 120 based at least in part on one or more channel quality indicators (CQIs) received from that UE 120.
  • MCSs modulation and coding schemes
  • CQIs channel quality indicators
  • the base station 110 may process (e.g., encode and modulate) the data for the UE 120 based at least in part on the MCS (s) selected for the UE 120 and may provide data symbols for the UE 120.
  • the transmit processor 220 may process system information (e.g., for semi-static resource partitioning information (SRPI) ) and control information (e.g., CQI requests, grants, and/or upper layer signaling) and provide overhead symbols and control symbols.
  • the transmit processor 220 may generate reference symbols for reference signals (e.g., a cell-specific reference signal (CRS) or a demodulation reference signal (DMRS) ) and synchronization signals (e.g., a primary synchronization signal (PSS) or a secondary synchronization signal (SSS) ) .
  • reference signals e.g., a cell-specific reference signal (CRS) or a demodulation reference signal (DMRS)
  • synchronization signals e.g., a primary synchronization signal (PSS) or a secondary synchronization signal (SSS)
  • a transmit (TX) multiple-input multiple-output (MIMO) processor 230 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, the overhead symbols, and/or the reference symbols, if applicable, and may provide a set of output symbol streams (e.g., T output symbol streams) to a corresponding set of modems 232 (e.g., T modems) , shown as modems 232a through 232t.
  • each output symbol stream may be provided to a modulator component (shown as MOD) of a modem 232.
  • Each modem 232 may use a respective modulator component to process a respective output symbol stream (e.g., for OFDM) to obtain an output sample stream.
  • Each modem 232 may further use a respective modulator component to process (e.g., convert to analog, amplify, filter, and/or upconvert) the output sample stream to obtain a downlink signal.
  • the modems 232a through 232t may transmit a set of downlink signals (e.g., T downlink signals) via a corresponding set of antennas 234 (e.g., T antennas) , shown as antennas 234a through 234t.
  • a set of antennas 252 may receive the downlink signals from the base station 110 and/or other base stations 110 and may provide a set of received signals (e.g., R received signals) to a set of modems 254 (e.g., R modems) , shown as modems 254a through 254r.
  • R received signals e.g., R received signals
  • each received signal may be provided to a demodulator component (shown as DEMOD) of a modem 254.
  • DEMOD demodulator component
  • Each modem 254 may use a respective demodulator component to condition (e.g., filter, amplify, downconvert, and/or digitize) a received signal to obtain input samples.
  • Each modem 254 may use a demodulator component to further process the input samples (e.g., for OFDM) to obtain received symbols.
  • a MIMO detector 256 may obtain received symbols from the modems 254, may perform MIMO detection on the received symbols if applicable, and may provide detected symbols.
  • a receive processor 258 may process (e.g., demodulate and decode) the detected symbols, may provide decoded data for the UE 120 to a data sink 260, and may provide decoded control information and system information to a controller/processor 280.
  • controller/processor may refer to one or more controllers, one or more processors, or a combination thereof.
  • a channel processor may determine a reference signal received power (RSRP) parameter, a received signal strength indicator (RSSI) parameter, a reference signal received quality (RSRQ) parameter, and/or a CQI parameter, among other examples.
  • RSRP reference signal received power
  • RSSI received signal strength indicator
  • RSSRQ reference signal received quality
  • CQI CQI parameter
  • the network controller 130 may include a communication unit 294, a controller/processor 290, and a memory 292.
  • the network controller 130 may include, for example, one or more devices in a core network.
  • the network controller 130 may communicate with the base station 110 via the communication unit 294.
  • One or more antennas may include, or may be included within, one or more antenna panels, one or more antenna groups, one or more sets of antenna elements, and/or one or more antenna arrays, among other examples.
  • An antenna panel, an antenna group, a set of antenna elements, and/or an antenna array may include one or more antenna elements (within a single housing or multiple housings) , a set of coplanar antenna elements, a set of non-coplanar antenna elements, and/or one or more antenna elements coupled to one or more transmission and/or reception components, such as one or more components of Fig. 2.
  • a transmit processor 264 may receive and process data from a data source 262 and control information (e.g., for reports that include RSRP, RSSI, RSRQ, and/or CQI) from the controller/processor 280.
  • the transmit processor 264 may generate reference symbols for one or more reference signals.
  • the symbols from the transmit processor 264 may be precoded by a TX MIMO processor 266 if applicable, further processed by the modems 254 (e.g., for DFT-s-OFDM or CP-OFDM) , and transmitted to the base station 110.
  • the modem 254 of the UE 120 may include a modulator and a demodulator.
  • the UE 120 includes a transceiver.
  • the transceiver may include any combination of the antenna (s) 252, the modem (s) 254, the MIMO detector 256, the receive processor 258, the transmit processor 264, and/or the TX MIMO processor 266.
  • the transceiver may be used by a processor (e.g., the controller/processor 280) and the memory 282 to perform aspects of any of the methods described herein (e.g., with reference to Figs. 5-11) .
  • the uplink signals from UE 120 and/or other UEs may be received by the antennas 234, processed by the modem 232 (e.g., a demodulator component, shown as DEMOD, of the modem 232) , detected by a MIMO detector 236 if applicable, and further processed by a receive processor 238 to obtain decoded data and control information sent by the UE 120.
  • the receive processor 238 may provide the decoded data to a data sink 239 and provide the decoded control information to the controller/processor 240.
  • the base station 110 may include a communication unit 244 and may communicate with the network controller 130 via the communication unit 244.
  • the base station 110 may include a scheduler 246 to schedule one or more UEs 120 for downlink and/or uplink communications.
  • the modem 232 of the base station 110 may include a modulator and a demodulator.
  • the base station 110 includes a transceiver.
  • the transceiver may include any combination of the antenna (s) 234, the modem (s) 232, the MIMO detector 236, the receive processor 238, the transmit processor 220, and/or the TX MIMO processor 230.
  • the transceiver may be used by a processor (e.g., the controller/processor 240) and the memory 242 to perform aspects of any of the methods described herein (e.g., with reference to Figs. 5-11) .
  • the controller/processor 240 of the base station 110, the controller/processor 280 of the UE 120, and/or any other component (s) of Fig. 2 may perform one or more techniques associated with A-CSI reporting for cross-carrier scheduling, as described in more detail elsewhere herein.
  • the controller/processor 240 of the base station 110, the controller/processor 280 of the UE 120, and/or any other component (s) of Fig. 2 may perform or direct operations of, for example, process 800 of Fig. 8, process 900 of Fig. 9, and/or other processes as described herein.
  • the memory 242 and the memory 282 may store data and program codes for the base station 110 and the UE 120, respectively.
  • the memory 242 and/or the memory 282 may include a non-transitory computer-readable medium storing one or more instructions (e.g., code and/or program code) for wireless communication.
  • the one or more instructions when executed (e.g., directly, or after compiling, converting, and/or interpreting) by one or more processors of the base station 110 and/or the UE 120, may cause the one or more processors, the UE 120, and/or the base station 110 to perform or direct operations of, for example, process 800 of Fig. 8, process 900 of Fig. 9, and/or other processes as described herein.
  • executing instructions may include running the instructions, converting the instructions, compiling the instructions, and/or interpreting the instructions, among other examples.
  • a UE (e.g., UE 120) includes means for receiving, from a base station, a CSI measurement configuration via a P (S) Cell; means for receiving, from the base station, a CSI measurement configuration via an SCell; means for receiving, from the base station and via the SCell, uplink DCI that schedules an A-CSI report in an uplink channel of the P (S) Cell based at least in part on a cross-carrier scheduling; and/or means for transmitting, to the base station and via the uplink channel of the P (S) Cell, the A-CSI report based at least in part on the uplink DCI and one or more of the CSI measurement configuration associated with the P (S) Cell or the CSI measurement configuration associated with the SCell.
  • PCell or PSCell is abbreviated herein as “P (S) Cell” .
  • the means for the UE to perform operations described herein may include, for example, one or more of communication manager 140, antenna 252, modem 254, MIMO detector 256, receive processor 258, transmit processor 264, TX MIMO processor 266, controller/processor 280, or memory 282.
  • a base station (e.g., base station 110) includes means for transmitting, to a UE, a CSI measurement configuration via a P (S) Cell; means for transmitting, to the UE, a CSI measurement configuration via an SCell; means for transmitting, to the UE and via the SCell, uplink DCI that schedules an A-CSI report in an uplink channel of the P (S) Cell based at least in part on a cross-carrier scheduling; and/or means for receiving, from the UE and via the uplink channel of the P (S) Cell, the A-CSI report based at least in part on the uplink DCI and one or more of the CSI measurement configuration associated with the P (S) Cell or the CSI measurement configuration associated with the SCell.
  • the means for the base station to perform operations described herein may include, for example, one or more of communication manager 150, transmit processor 220, TX MIMO processor 230, modem 232, antenna 234, MIMO detector 236, receive processor 238, controller/processor 240, memory 242, or scheduler 246.
  • While blocks in Fig. 2 are illustrated as distinct components, the functions described above with respect to the blocks may be implemented in a single hardware, software, or combination component or in various combinations of components.
  • the functions described with respect to the transmit processor 264, the receive processor 258, and/or the TX MIMO processor 266 may be performed by or under the control of the controller/processor 280.
  • Fig. 2 is provided as an example. Other examples may differ from what is described with regard to Fig. 2.
  • a CSI measurement configuration (e.g., CSI-MeasConfig) may be used to configure channel state information reference signals (CSI-RSs) belonging to a serving cell in which the CSI measurement configuration is included, CSI reports to be transmitted on a physical uplink control channel (PUCCH) on the serving cell in which the CSI measurement configuration is included, and CSI reports on a physical uplink shared channel (PUSCH) triggered by DCI received on the serving cell in which the CSI measurement configuration is included.
  • the CSI measurement configuration may indicate a CSI report configuration to add or modify list (e.g., csi-ReportConfigToAddModList) , which may indicate configured CSI report settings.
  • the CSI measurement configuration may indicate a report trigger size (e.g., reportTriggerSize) , which may indicate a size of a CSI request field in DCI (in terms of a quantity of bits) .
  • the report trigger size may apply to DCI format 0_1.
  • the CSI measurement configuration may indicate an aperiodic trigger state list (e.g., aperiodicTriggerStateList) , which may indicate trigger states for dynamically selecting one or more aperiodic or semi-persistent reporting configurations and/or triggering one or more aperiodic CSI-RS resource sets for channel and/or interference measurement.
  • Fig. 3 is a diagram illustrating an example 300 of an aperiodic channel state information (A-CSI) report configuration with cross-carrier scheduling, in accordance with the present disclosure.
  • A-CSI aperiodic channel state information
  • an A-CSI report configuration may occur when cross-carrier scheduling is configured.
  • a UE may measure a CSI on a plurality of component carriers, such as a first component carrier (CC#1) , a second component carrier (CC#2) , a third component carrier (CC#3) , and a fourth component carrier (CC#4) , based at least in part on CSI-RSs associated with each of the four component carriers.
  • the cross-carrier scheduling may be configured from the second component carrier to the third component carrier, but in other examples, cross-carrier scheduling between other component carriers may be performed.
  • a base station may transmit, to the UE, an uplink DCI triggering the A-CSI report on the second component carrier.
  • the uplink DCI may schedule the A-CSI report for transmission on the third component carrier.
  • the UE may transmit the A-CSI report using a PUSCH on the third component carrier, where the A-CSI report may be scheduled by the uplink DCI received from the base station on the second component carrier.
  • the PUSCH may or may not carry uplink data. Since the uplink DCI is transmitted on the second component carrier and schedules the A-CSI report on the third component carrier, the UE may not monitor a physical downlink control channel (PDCCH) of the third component carrier. Rather, the UE may monitor a PDCCH of the second component carrier to receive the uplink DCI.
  • PDCCH physical downlink control channel
  • the A-CSI report may indicate CSI measurements of the CSI-RSs associated with each of the four component carriers (e.g., four CSI measurements corresponding to four CSI- RSs, respectively) , or the A-CSI report may indicate CSI measurements of the CSI-RSs associated with a subset of the four CSI-RSs.
  • the UE may receive, from the base station, a CSI measurement configuration that configures the CSI-RSs associated with each of the four component carriers.
  • the UE may receive, from the base station, a CSI measurement configuration in each of the first component carrier, the third component carrier, and the fourth component carrier, where each CSI measurement configuration may indicate non-zero-power (NZP) -CSI-RS resources and/or resource sets, and a CSI resource configuration.
  • the UE may receive, from the base station, a CSI measurement configuration in the second component carrier, which may indicate NZP-RS resources and/or resource sets, and a CSI resource configuration.
  • the CSI measurement configuration in the second component carrier may also indicate a CSI report configuration (e.g., csi-ReportConfigToAddModList) , a report trigger size (e.g., reportTriggerSize) , and an aperiodic trigger state list (e.g., aperiodicTriggerStateList) . Since the second component carrier is associated with a serving/scheduling cell that schedules the A-CSI report on the third component carrier, the CSI measurement configuration in the second component carrier may also indicate the CSI report configuration, the report trigger size, and the aperiodic trigger state list.
  • a CSI report configuration e.g., csi-ReportConfigToAddModList
  • a report trigger size e.g., reportTriggerSize
  • aperiodicTriggerStateList e.g., aperiodicTriggerStateList
  • Fig. 3 is provided as an example. Other examples may differ from what is described with regard to Fig. 3.
  • Fig. 4 is a diagram illustrating an example of cross-carrier scheduling from an SCell to a PSCell, in accordance with the present disclosure.
  • a cross-carrier scheduling may be supported from an SCell to a P (S) Cell (e.g., a PCell or a PSCell) .
  • the SCell may be a special SCell (sSCell) .
  • a physical downlink shared channel (PDSCH) and PUSCH on the P (S) Cell may still be scheduled by a PDCCH on the P (S) Cell itself based at least in part on a self-scheduling.
  • two scheduling cells may be present for a given scheduled cell.
  • PDCCH candidates may be associated with a common search space (CSS) set or a UE-specific search space (USS) set.
  • SCS common search space
  • USS UE-specific search space
  • PDCCH candidates for P (S) Cell scheduling may be associated with either the P (S) Cell or the SCell.
  • Scheduled data for the P (S) Cell which may be associated with a PDSCH or a PUSCH, may be scheduled by either a PDCCH on the P (S) Cell or a PDCCH on the SCell.
  • the two scheduling cells may be present for the given scheduled cell, since the P (S) Cell and the SCell may correspond to the two scheduling cells and the P (S) Cell may correspond to a given scheduled cell.
  • Fig. 4 is provided as an example. Other examples may differ from what is described with regard to Fig. 4.
  • a UE and a base station may not be configured to handle A-CSI measurement and reporting when cross-carrier scheduling is scheduled from an SCell to a P (S) Cell.
  • the UE and the base station may not be configured to handle the A-CSI measurement and reporting due to a presence of two scheduling cells for a given scheduled cell, as opposed to a single scheduling cell for the given scheduled cell.
  • certain CSI measurement configuration parameters e.g., csi-ReportConfigToAddModList, reportTriggerSize, and aperiodicTriggerStateList
  • CSI measurement configuration parameters may be indicated in a CSI measurement configuration for the single scheduling cell, but for two scheduling cells, the UE and the base station may not be configured with such CSI measurement configuration parameters, thereby resulting in problems with A-CSI measurement and reporting.
  • a UE may receive, from a base station, a CSI measurement configuration via a P (S) Cell.
  • the UE may receive, from the base station, a CSI measurement configuration via an SCell.
  • the UE may receive, from the base station and via the SCell, uplink DCI that schedules an A-CSI report in an uplink channel of the P (S) Cell based at least in part on a cross-carrier scheduling.
  • the UE may transmit, to the base station and via the uplink channel of the P (S) Cell, the A-CSI report based at least in part on the uplink DCI and one or more of the CSI measurement configuration associated with the P (S) Cell or the CSI measurement configuration associated with the SCell.
  • the CSI measurement configuration associated with the P (S) Cell and/or the CSI measurement configuration associated with the SCell may indicate a CSI report configuration, a report trigger size, and an aperiodic trigger state list.
  • Parameters associated with the CSI report configuration, the report trigger size, and the aperiodic trigger state list may be identical or may be different between the CSI measurement configuration associated with the P (S) Cell and the CSI measurement configuration associated with the SCell.
  • the UE may perform, using the parameters, A-CSI reporting when the cross-carrier scheduling from the SCell to the P (S) Cell is configured.
  • Fig. 5 is a diagram illustrating an example 500 associated with A-CSI reporting for cross-carrier scheduling, in accordance with the present disclosure.
  • example 500 includes communication between a UE (e.g., UE 120) and a base station (e.g., base station 110) .
  • the UE and the base station may be included in a wireless network, such as wireless network 100.
  • the UE may receive, from a base station, a CSI measurement configuration via a P (S) Cell.
  • the CSI measurement configuration received via the P (S) Cell may indicate a plurality of parameters associated with CSI-RS resources and a CSI resource configuration, where the CSI resources and the CSI resource configuration may be associated with the P (S) Cell.
  • the UE may receive, from the base station, a CSI measurement configuration via an SCell.
  • the CSI measurement configuration received via the SCell may indicate a plurality of parameters associated with CSI-RS resources and a CSI resource configuration, where the CSI resources and the CSI resource configuration may be associated with the SCell.
  • the UE may receive, from the base station and via the SCell, uplink DCI that schedules an A-CSI report in an uplink channel of the P (S) Cell based at least in part on a cross-carrier scheduling.
  • the UE may receive, from the P (S) Cell, the uplink DCI that schedules the A-CSI report in the uplink channel of the P (S) Cell based at least in part on a self-scheduling.
  • the UE may receive the uplink DCI via the SCell or the P (S) Cell.
  • the uplink DCI received via the SCell may be associated with a first DCI payload size
  • the uplink DCI received via the P (S) Cell may be associated with a second DCI payload size that is different from the first DCI payload size.
  • the CSI measurement configuration associated with the P (S) Cell or the CSI measurement configuration associated with the SCell may indicate a CSI report configuration, a report trigger size, and an aperiodic trigger state list.
  • the UE may determine the CSI report configuration, the report trigger size, and the aperiodic trigger state based at least in part on the CSI measurement configuration associated with the P (S) Cell or the CSI measurement configuration regardless of which of the P (S) Cell or the SCell the UE monitors for the uplink DCI that triggers the A-CSI report using the uplink channel of the P (S) Cell.
  • the CSI measurement configuration associated with the P (S) Cell and the CSI measurement configuration associated with the SCell each indicate a CSI report configuration, a report trigger size, and an aperiodic trigger state list.
  • parameter values associated with the CSI report configuration, the report trigger size, and the aperiodic trigger state list may be identical between the CSI measurement configuration associated with the P (S) Cell and the CSI measurement configuration associated with the SCell.
  • a parameter value associated with the report trigger size may be identical between the CSI measurement configuration associated with the P (S) Cell and the CSI measurement configuration associated with the SCell, and parameter values associated with the CSI report configuration and the aperiodic trigger state list may be different between the CSI measurement configuration associated with the P (S) Cell and the CSI measurement configuration associated with the SCell.
  • parameter values associated with the CSI report configuration, the report trigger size, and the aperiodic trigger state list may be different between the CSI measurement configuration associated with the P (S) Cell and the CSI measurement configuration associated with the SCell.
  • one or more parameter values associated with the CSI report configuration, the report trigger size, and the aperiodic trigger state list may be different between the CSI measurement configuration associated with the P (S) Cell and the CSI measurement configuration associated with the SCell.
  • the UE may determine the CSI report configuration, the report trigger size, and the aperiodic trigger state of a corresponding P (S) Cell or SCell depending on which of the P (S) Cell or the SCell the UE detects the uplink DCI triggering the A-CSI report using the uplink channel of the P (S) Cell.
  • the UE may transmit, to the base station and via the uplink channel (e.g., a PUSCH) of the P (S) Cell, the A-CSI report based at least in part on the uplink DCI and one or more of the CSI measurement configuration associated with the P (S) Cell or the CSI measurement configuration associated with the SCell.
  • the A-CSI report may indicate one or more CSI-RS measurements, where each of the CSI-RS measurements may be received via different cells (e.g., P (S) Cell and/or SCell, or other cells associated with different component carriers) .
  • the uplink DCI may be a first uplink DCI and the A-CSI report may be a first A-CSI report.
  • the UE may receive, from the base station and via the SCell, a second uplink DCI that schedules a second A-CSI report in an uplink channel of the SCell based at least in part on a self-scheduling or an uplink channel of a third cell based at least in part on the cross-carrier scheduling.
  • the P (S) Cell, the SCell, and the third cell may be associated with different CSI measurement configuration parameters.
  • the SCell may correspond to a scheduling cell, and one or more of the P (S) Cell, the SCell, or the third cell may be associated with scheduled cells.
  • the CSI measurement configuration associated with the P (S) Cell may support a first set of CSI measurement configuration parameters and the CSI measurement configuration associated with the SCell may support a second set of CSI measurement configuration parameters, where each of the first set of CSI measurement configuration parameters and the second set of CSI measurement configuration parameters may indicate a CSI report configuration, a report trigger size, and an aperiodic trigger state list.
  • the P (S) Cell, the SCell, and the third cell may be associated with different CSI measurement configuration parameters based at least in part on CSI measurement configuration parameters being associated with a scheduled cell in which the A-CSI report is transmitted instead of the scheduling cell.
  • Fig. 5 is provided as an example. Other examples may differ from what is described with regard to Fig. 5.
  • Fig. 6 is a diagram illustrating an example 600 associated with A-CSI reporting for cross-carrier scheduling, in accordance with the present disclosure.
  • a UE may measure a CSI on a plurality of component carriers, such as a first component carrier (CC#1) associated with a P (S) Cell, a second component carrier (CC#2) associated with an SCell, a third component carrier (CC#3) , and a fourth component carrier (CC#4) , based at least in part on CSI-RSs associated with each of the four component carriers.
  • a cross-carrier scheduling may be configured from the SCell to the P (S) Cell.
  • a base station may transmit, to the UE, an uplink DCI triggering the A-CSI report on either the P (S) Cell or the SCell.
  • the uplink DCI triggering the A-CSI report may be transmitted on either the P (S) Cell associated with the first component carrier or the SCell associated with the second component carrier.
  • the uplink DCI may schedule the A-CSI report for transmission on the P (S) Cell based at least in part on the cross-carrier scheduling from the SCell to the P (S) Cell.
  • the UE may transmit the A-CSI report using a PUSCH on the P (S) Cell, where the A-CSI report may be scheduled by the uplink DCI received from the base station on either the P (S) Cell or the SCell.
  • the PUSCH may or may not carry uplink data.
  • the A-CSI report may indicate CSI measurements of the CSI-RSs associated with each of the four component carriers (e.g., four CSI measurements corresponding to four CSI-RSs, respectively) .
  • the UE may receive, from the base station, a CSI measurement configuration that configures the CSI-RSs associated with each of the four component carriers.
  • the UE may receive, from the base station, a separate CSI measurement configuration in each of the first component carrier (e.g., the P (S) Cell) , the second component carrier (e.g., the SCell) , the third component carrier, and the fourth component carrier.
  • the first component carrier e.g., the P (S) Cell
  • the second component carrier e.g., the SCell
  • the third component carrier e.g., the fourth component carrier.
  • the CSI measurement configuration on either the P (S) Cell or the SCell may indicate a CSI report configuration (e.g., csi-ReportConfigToAddModList) , a report trigger size (e.g., reportTriggerSize) , and/or an aperiodic trigger state list (e.g., aperiodicTriggerStateList) .
  • a CSI measurement configuration on only one of the P (S) Cell or the SCell may indicate the CSI report configuration, the report trigger size, and/or the aperiodic trigger state list.
  • the UE may refer to the CSI report configuration, the report trigger size, and/or the aperiodic trigger state list indicated in the CSI measurement configuration on either the P (S) Cell or the SCell.
  • the uplink DCI received on the P (S) Cell and the SCell triggering the A-CSI report on a PUSCH on the P (S) Cell may be based at least in part on the CSI report configuration, the report trigger size, and/or the aperiodic trigger state list indicated in the CSI measurement configuration on the SCell.
  • the CSI measurement configuration on the P (S) Cell and the CSI measurement configuration on the SCell may each indicate a same CSI report configuration, a same report trigger size, and/or a same aperiodic trigger state list.
  • the CSI measurement configuration on both the P (S) Cell and the SCell may indicate the same parameters, such as the same CSI report configuration, the same report trigger size, and/or the same aperiodic trigger state list.
  • the P (S) Cell and the SCell may be associated with the same report trigger sizes, the same CSI report configurations, and/or the same aperiodic trigger state lists.
  • the UE may use a CSI report configuration, a report trigger size, and/or an aperiodic trigger state list indicated in a CSI measurement configuration of a serving cell (e.g., the P (S) Cell or the SCell) in which the uplink DCI triggering the A-CSI report is detected.
  • a serving cell e.g., the P (S) Cell or the SCell
  • the CSI report configuration, the report trigger size, and/or the aperiodic trigger state list may be the same.
  • the CSI measurement configuration on the P (S) Cell and the CSI measurement configuration on the SCell may each indicate a same report trigger size.
  • the CSI measurement configuration on the P (S) Cell and the CSI measurement configuration on the SCell may indicate different CSI report configurations and different aperiodic trigger state lists.
  • the report trigger size may be the same between the CSI measurement configuration on the P (S) Cell and the CSI measurement configuration on the SCell, but the CSI report configuration and the aperiodic trigger state list may be different between the CSI measurement configuration on the P (S) Cell and the CSI measurement configuration on the SCell.
  • the P (S) Cell and the SCell may be associated with the same report trigger sizes, but different CSI report configurations and different aperiodic trigger state lists.
  • a trigger state pointed by an A-CSI request field value and a CSI measurement and/or reporting procedure may be different.
  • the report trigger size (or trigger field size) may be aligned between uplink DCIs in the P (S) Cell and the SCell, which may simplify a UE PDCCH decoding procedure.
  • the CSI measurement configuration on the P (S) Cell and the CSI measurement configuration on the SCell may indicate different report trigger sizes, different CSI report configurations, and/or different aperiodic trigger state lists.
  • the report trigger size, the CSI report configuration, and/or the aperiodic trigger state list may be different between the CSI measurement configuration on the P (S) Cell and the CSI measurement configuration on the SCell.
  • the P (S) Cell and the SCell may be associated with different report trigger sizes, different CSI report configurations, and/or different aperiodic trigger state lists.
  • a CSI measurement and/or reporting procedure may be different depending on which of the P (S) Cell or the SCell the UE monitors/detects the uplink DCI triggering the A-CSI report.
  • a CSI measurement and/or reporting procedure may be different.
  • different uplink DCIs triggering A-CSI reports may have different sizes, where a more optimized DCI size (e.g., a larger DCI size) may increase a complexity at the UE and/or the base station.
  • the uplink DCI on the P (S) Cell for the P (S) Cell PUSCH may have a 2-bit A-CSI request field
  • the uplink DCI on the SCell for the P (S) Cell PUSCH may have a 4-bit A-CSI request field.
  • Fig. 6 is provided as an example. Other examples may differ from what is described with regard to Fig. 6.
  • Fig. 7 is a diagram illustrating an example 700 associated with A-CSI reporting for cross-carrier scheduling, in accordance with the present disclosure.
  • a UE may measure a CSI on a plurality of component carriers, such as a first component carrier (CC#1) , a second component carrier (CC#2) , a third component carrier (CC#3) , and a fourth component carrier (CC#4) , based at least in part on CSI-RSs associated with each of the four component carriers.
  • the first component carrier may be associated with a P (S) Cell
  • the second component carrier may be associated with an SCell.
  • a cross-carrier scheduling may be configured from the SCell to the P (S) Cell
  • a cross-carrier scheduling may be configured from the SCell to the third component carrier.
  • a self-scheduling may be configured for the SCell.
  • a base station may transmit, to the UE, a first uplink DCI triggering a first A-CSI report on either the P (S) Cell or the SCell.
  • the base station may transmit, to the UE, a second uplink DCI triggering a second A-CSI report on the SCell.
  • the base station may transmit, to the UE, a third uplink DCI triggering a third A-CSI report on the SCell.
  • the UE may transmit a PUSCH associated with the first A-CSI report on the PS (S) Cell.
  • the UE may transmit a PUSCH associated with the second A-CSI report on the SCell.
  • the UE may transmit a PUSCH associated with the third A-CSI report on the third component carrier.
  • the first A-CSI report, the second A-CSI report, and the third A-CSI report may indicate CSI measurements of the CSI-RSs associated with each of the four component carriers.
  • one scheduling cell may be configured to cross-carrier schedule to more than one carrier.
  • the SCell (the scheduling cell) may cross-carrier schedule to the P (S) Cell and the third component carrier.
  • self-scheduling may be configured to the scheduling carrier.
  • the SCell (the scheduling cell) may self-schedule the SCell itself.
  • the SCell may schedule three cells including itself.
  • CSI report parameters may be configured for a scheduling cell and may be common for different scheduled cells from the same scheduling cell.
  • CSI report parameters may be configured for the SCell (the scheduling cell) , and these CSI report parameters may be common for both the P (S) Cell and the third component carrier (the different scheduled cells) .
  • the same CSI report parameters may be used by the SCell, the P (S) Cell, and the third component carrier.
  • uplink DCIs for different scheduled cells may be monitored/detected using different PDCCH decoding procedures.
  • having common CSI report parameters for the different scheduled cells from the same scheduling cell may not be useful, but rather may be restrictive and result in less flexibility.
  • different CSI measurement configuration parameters may be enabled for different scheduled cells from the same scheduling cell.
  • multiple sets of parameters may be supported in a CSI measurement configuration of a cell in which uplink DCI is monitored, where each set of parameters may be associated with each scheduled cell from the same scheduling cell.
  • different sets of parameters may be associated with different scheduled cells from the same scheduling cell.
  • Each set of parameters may include a report trigger size, a CSI report configuration, and/or an aperiodic trigger state list.
  • the SCell (the scheduling cell) may be configured with a first set of parameters in a CSI measurement configuration, where the first set of parameters may include the report trigger size, the CSI report configuration, and/or the aperiodic trigger state list.
  • the P (S) Cell and the third component carrier (the different scheduled cells) may be configured with a second set of parameters in a CSI measurement configuration and a third set of parameters in a CSI measurement configuration, respectively, where the second set of parameters and the third set of parameters each include the report trigger size, the CSI report configuration, and/or the aperiodic trigger state list.
  • the SCell may also be a scheduled cell due to self-scheduling.
  • the first set of parameters associated with the SCell, the second set of parameters associated with the P (S) Cell, and the third set of parameters associated with the third component carrier may be different with respect to each other.
  • parameters associated with the scheduling cell may not be common with parameters associated with the scheduled cells.
  • a CSI measurement configuration may be used to configure CSI-RSs belonging to a serving cell in which the CSI measurement configuration is included, CSI reports to be transmitted on a PUCCH on the serving cell in which the CSI measurement configuration is included, and DCI-triggered CSI reports on a PUSCH on the serving cell in which the CSI measurement configuration is included.
  • a set of parameters (e.g., report trigger size, CSI report configuration, and/or aperiodic trigger state list) in a CSI measurement configuration used to configure the CSI-RSs may be based at least in part on a CSI measurement configuration of a scheduled cell in which an A-CSI report (e.g., the DCI- triggered CSI report) is transmitted (e.g., the P (S) Cell, the SCell, or the third component carrier) instead of a scheduling cell (e.g., the SCell) .
  • an A-CSI report e.g., the DCI- triggered CSI report
  • a scheduling cell e.g., the SCell
  • Fig. 7 is provided as an example. Other examples may differ from what is described with regard to Fig. 7.
  • Fig. 8 is a diagram illustrating an example process 800 performed, for example, by a UE, in accordance with the present disclosure.
  • Example process 800 is an example where the UE (e.g., UE 120) performs operations associated with A-CSI reporting for cross-carrier scheduling.
  • process 800 may include receiving, from a base station, a CSI measurement configuration via a P (S) Cell (block 810) .
  • the UE e.g., using reception component 1002, depicted in Fig. 10) may receive, from a base station, a CSI measurement configuration via a P (S) Cell, as described above.
  • process 800 may include receiving, from the base station, a CSI measurement configuration via an SCell (block 820) .
  • the UE e.g., using reception component 1002, depicted in Fig. 10
  • process 800 may include receiving, from the base station and via the SCell, uplink DCI that schedules an A-CSI report in an uplink channel of the P (S) Cell based at least in part on a cross-carrier scheduling (block 830) .
  • the UE e.g., using reception component 1002, depicted in Fig. 10
  • process 800 may include transmitting, to the base station and via the uplink channel of the P (S) Cell, the A-CSI report based at least in part on the uplink DCI and one or more of the CSI measurement configuration associated with the P (S) Cell or the CSI measurement configuration associated with the SCell (block 840) .
  • the UE e.g., using transmission component 1004, depicted in Fig. 10
  • Process 800 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
  • the CSI measurement configuration associated with the P (S) Cell or the CSI measurement configuration associated with the SCell indicates a CSI report configuration, a report trigger size, and an aperiodic trigger state list
  • process 800 further includes determining the CSI report configuration, the report trigger size, and the aperiodic trigger state based at least in part on the CSI measurement configuration associated with the P (S) Cell or the CSI measurement configuration regardless of which of the P (S) Cell or the SCell the UE monitors for the uplink DCI that triggers the A-CSI report using the uplink channel of the P (S) Cell.
  • the CSI measurement configuration associated with the P (S) Cell and the CSI measurement configuration associated with the SCell each indicate a CSI report configuration, a report trigger size, and an aperiodic trigger state list, wherein parameter values associated with the CSI report configuration, the report trigger size, and the aperiodic trigger state list are identical between the CSI measurement configuration associated with the P (S) Cell and the CSI measurement configuration associated with the SCell.
  • the CSI measurement configuration associated with the P (S) Cell and the CSI measurement configuration associated with the SCell each indicate a CSI report configuration, a report trigger size, and an aperiodic trigger state list, wherein a parameter value associated with the report trigger size is identical between the CSI measurement configuration associated with the P (S) Cell and the CSI measurement configuration associated with the SCell, and parameter values associated with the CSI report configuration and the aperiodic trigger state list are potentially different between the CSI measurement configuration associated with the P (S) Cell and the CSI measurement configuration associated with the SCell.
  • the CSI measurement configuration associated with the P (S) Cell and the CSI measurement configuration associated with the SCell each indicate a CSI report configuration, a report trigger size, and an aperiodic trigger state list, wherein parameter values associated with the CSI report configuration, the report trigger size, and the aperiodic trigger state list are potentially different between the CSI measurement configuration associated with the P (S) Cell and the CSI measurement configuration associated with the SCell.
  • process 800 includes receiving the uplink DCI via the SCell or the P (S) Cell, wherein the uplink DCI received via the SCell is associated with a first DCI payload size, and the uplink DCI received via the P (S) Cell is associated with a second DCI payload size that is different from the first DCI payload size.
  • the uplink DCI is a first uplink DCI and the A-CSI report is a first A-CSI report
  • process 800 further includes receiving, from the base station and via the SCell, a second uplink DCI that schedules a second A-CSI report in an uplink channel of the SCell based at least in part on a self-scheduling or an uplink channel of a third cell based at least in part on the cross-carrier scheduling, wherein the P (S) Cell, the SCell, and the third cell are associated with different CSI measurement configuration parameters, wherein the SCell corresponds to a scheduling cell, and one or more of the P (S) Cell, the SCell, or the third cell are associated with scheduled cells.
  • process 800 includes the CSI measurement configuration associated with the P (S) Cell supports a first set of CSI measurement configuration parameters and the CSI measurement configuration associated with the SCell supports a second set of CSI measurement configuration parameters, wherein each of the first set of CSI measurement configuration parameters and the second set of CSI measurement configuration parameters indicates a CSI report configuration, a report trigger size, and an aperiodic trigger state list, or the P (S) Cell, the SCell, and the third cell are associated with different CSI measurement configuration parameters based at least in part on CSI measurement configuration parameters being associated with a scheduled cell in which the A-CSI report is transmitted instead of the scheduling cell.
  • process 800 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 8. Additionally, or alternatively, two or more of the blocks of process 800 may be performed in parallel.
  • Fig. 9 is a diagram illustrating an example process 900 performed, for example, by a base station, in accordance with the present disclosure.
  • Example process 900 is an example where the base station (e.g., base station 110) performs operations associated with A-CSI reporting for cross-carrier scheduling.
  • process 900 may include transmitting, to a UE, a CSI measurement configuration via a P (S) Cell (block 910) .
  • the base station e.g., using transmission component 1104, depicted in Fig. 11
  • process 900 may include transmitting, to the UE, a CSI measurement configuration via an SCell (block 920) .
  • the base station e.g., using transmission component 1104, depicted in Fig. 11
  • process 900 may include transmitting, to the UE and via the SCell, uplink DCI that schedules an A-CSI report in an uplink channel of the P (S) Cell based at least in part on a cross-carrier scheduling (block 930) .
  • the base station e.g., using transmission component 1104, depicted in Fig. 11
  • process 900 may include receiving, from the UE and via the uplink channel of the P (S) Cell, the A-CSI report based at least in part on the uplink DCI and one or more of the CSI measurement configuration associated with the P (S) Cell or the CSI measurement configuration associated with the SCell (block 940) .
  • the base station e.g., using reception component 1102, depicted in Fig. 11
  • Process 900 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
  • the CSI measurement configuration associated with the P (S) Cell or the CSI measurement configuration associated with the SCell indicates a CSI report configuration, a report trigger size, and an aperiodic trigger state list.
  • the CSI measurement configuration associated with the P (S) Cell and the CSI measurement configuration associated with the SCell each indicate a CSI report configuration, a report trigger size, and an aperiodic trigger state list, wherein parameter values associated with the CSI report configuration, the report trigger size, and the aperiodic trigger state list are identical between the CSI measurement configuration associated with the P (S) Cell and the CSI measurement configuration associated with the SCell.
  • the CSI measurement configuration associated with the P (S) Cell and the CSI measurement configuration associated with the SCell each indicate a CSI report configuration, a report trigger size, and an aperiodic trigger state list, wherein a parameter value associated with the report trigger size is identical between the CSI measurement configuration associated with the P (S) Cell and the CSI measurement configuration associated with the SCell, and parameter values associated with the CSI report configuration and the aperiodic trigger state list are potentially different between the CSI measurement configuration associated with the P (S) Cell and the CSI measurement configuration associated with the SCell.
  • the CSI measurement configuration associated with the P (S) Cell and the CSI measurement configuration associated with the SCell each indicate a CSI report configuration, a report trigger size, and an aperiodic trigger state list, wherein parameter values associated with the CSI report configuration, the report trigger size, and the aperiodic trigger state list are potentially different between the CSI measurement configuration associated with the P (S) Cell and the CSI measurement configuration associated with the SCell.
  • the uplink DCI is a first uplink DCI and the A-CSI report is a first A-CSI report
  • process 900 further includes transmitting, to the UE and via the SCell, a second uplink DCI that schedules a second A-CSI report in an uplink channel of the SCell based at least in part on a self-scheduling or an uplink channel of a third cell based at least in part on the cross-carrier scheduling, wherein the P (S) Cell, the SCell, and the third cell are associated with different CSI measurement configuration parameters, wherein the SCell corresponds to a scheduling cell, and one or more of the P (S) Cell, the SCell, or the third cell are associated with scheduled cells.
  • process 900 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 9. Additionally, or alternatively, two or more of the blocks of process 900 may be performed in parallel.
  • Fig. 10 is a diagram of an example apparatus 1000 for wireless communication.
  • the apparatus 1000 may be a UE, or a UE may include the apparatus 1000.
  • the apparatus 1000 includes a reception component 1002 and a transmission component 1004, which may be in communication with one another (for example, via one or more buses and/or one or more other components) .
  • the apparatus 1000 may communicate with another apparatus 1006 (such as a UE, a base station, or another wireless communication device) using the reception component 1002 and the transmission component 1004.
  • another apparatus 1006 such as a UE, a base station, or another wireless communication device
  • the apparatus 1000 may be configured to perform one or more operations described herein in connection with Figs. 5-7. Additionally, or alternatively, the apparatus 1000 may be configured to perform one or more processes described herein, such as process 800 of Fig. 8.
  • the apparatus 1000 and/or one or more components shown in Fig. 10 may include one or more components of the UE described in connection with Fig. 2. Additionally, or alternatively, one or more components shown in Fig. 10 may be implemented within one or more components described in connection with Fig. 2. Additionally, or alternatively, one or more components of the set of components may be implemented at least in part as software stored in a memory. For example, a component (or a portion of a component) may be implemented as instructions or code stored in a non-transitory computer-readable medium and executable by a controller or a processor to perform the functions or operations of the component.
  • the reception component 1002 may receive communications, such as reference signals, control information, data communications, or a combination thereof, from the apparatus 1006.
  • the reception component 1002 may provide received communications to one or more other components of the apparatus 1000.
  • the reception component 1002 may perform signal processing on the received communications (such as filtering, amplification, demodulation, analog-to-digital conversion, demultiplexing, deinterleaving, de-mapping, equalization, interference cancellation, or decoding, among other examples) , and may provide the processed signals to the one or more other components of the apparatus 1000.
  • the reception component 1002 may include one or more antennas, a modem, a demodulator, a MIMO detector, a receive processor, a controller/processor, a memory, or a combination thereof, of the UE described in connection with Fig. 2.
  • the transmission component 1004 may transmit communications, such as reference signals, control information, data communications, or a combination thereof, to the apparatus 1006.
  • one or more other components of the apparatus 1000 may generate communications and may provide the generated communications to the transmission component 1004 for transmission to the apparatus 1006.
  • the transmission component 1004 may perform signal processing on the generated communications (such as filtering, amplification, modulation, digital-to-analog conversion, multiplexing, interleaving, mapping, or encoding, among other examples) , and may transmit the processed signals to the apparatus 1006.
  • the transmission component 1004 may include one or more antennas, a modem, a modulator, a transmit MIMO processor, a transmit processor, a controller/processor, a memory, or a combination thereof, of the UE described in connection with Fig. 2. In some aspects, the transmission component 1004 may be co-located with the reception component 1002 in a transceiver.
  • the reception component 1002 may receive, from a base station, a CSI measurement configuration via a P (S) Cell.
  • the reception component 1002 may receive, from the base station, a CSI measurement configuration via an SCell.
  • the reception component 1002 may receive, from the base station and via the SCell, uplink DCI that schedules an A-CSI report in an uplink channel of the P (S) Cell based at least in part on a cross-carrier scheduling.
  • the transmission component 1004 may transmit, to the base station and via the uplink channel of the P (S) Cell, the A-CSI report based at least in part on the uplink DCI and one or more of the CSI measurement configuration associated with the P (S) Cell or the CSI measurement configuration associated with the SCell.
  • Fig. 10 The number and arrangement of components shown in Fig. 10 are provided as an example. In practice, there may be additional components, fewer components, different components, or differently arranged components than those shown in Fig. 10. Furthermore, two or more components shown in Fig. 10 may be implemented within a single component, or a single component shown in Fig. 10 may be implemented as multiple, distributed components. Additionally, or alternatively, a set of (one or more) components shown in Fig. 10 may perform one or more functions described as being performed by another set of components shown in Fig. 10.
  • Fig. 11 is a diagram of an example apparatus 1100 for wireless communication.
  • the apparatus 1100 may be a base station, or a base station may include the apparatus 1100.
  • the apparatus 1100 includes a reception component 1102 and a transmission component 1104, which may be in communication with one another (for example, via one or more buses and/or one or more other components) .
  • the apparatus 1100 may communicate with another apparatus 1106 (such as a UE, a base station, or another wireless communication device) using the reception component 1102 and the transmission component 1104.
  • another apparatus 1106 such as a UE, a base station, or another wireless communication device
  • the apparatus 1100 may be configured to perform one or more operations described herein in connection with Figs. 5-7. Additionally, or alternatively, the apparatus 1100 may be configured to perform one or more processes described herein, such as process 900 of Fig. 9.
  • the apparatus 1100 and/or one or more components shown in Fig. 11 may include one or more components of the base station described in connection with Fig. 2. Additionally, or alternatively, one or more components shown in Fig. 11 may be implemented within one or more components described in connection with Fig. 2. Additionally, or alternatively, one or more components of the set of components may be implemented at least in part as software stored in a memory. For example, a component (or a portion of a component) may be implemented as instructions or code stored in a non-transitory computer-readable medium and executable by a controller or a processor to perform the functions or operations of the component.
  • the reception component 1102 may receive communications, such as reference signals, control information, data communications, or a combination thereof, from the apparatus 1106.
  • the reception component 1102 may provide received communications to one or more other components of the apparatus 1100.
  • the reception component 1102 may perform signal processing on the received communications (such as filtering, amplification, demodulation, analog-to-digital conversion, demultiplexing, deinterleaving, de-mapping, equalization, interference cancellation, or decoding, among other examples) , and may provide the processed signals to the one or more other components of the apparatus 1100.
  • the reception component 1102 may include one or more antennas, a modem, a demodulator, a MIMO detector, a receive processor, a controller/processor, a memory, or a combination thereof, of the base station described in connection with Fig. 2.
  • the transmission component 1104 may transmit communications, such as reference signals, control information, data communications, or a combination thereof, to the apparatus 1106.
  • one or more other components of the apparatus 1100 may generate communications and may provide the generated communications to the transmission component 1104 for transmission to the apparatus 1106.
  • the transmission component 1104 may perform signal processing on the generated communications (such as filtering, amplification, modulation, digital-to-analog conversion, multiplexing, interleaving, mapping, or encoding, among other examples) , and may transmit the processed signals to the apparatus 1106.
  • the transmission component 1104 may include one or more antennas, a modem, a modulator, a transmit MIMO processor, a transmit processor, a controller/processor, a memory, or a combination thereof, of the base station described in connection with Fig. 2. In some aspects, the transmission component 1104 may be co-located with the reception component 1102 in a transceiver.
  • the transmission component 1104 may transmit, to a UE, a CSI measurement configuration via a P (S) Cell.
  • the transmission component 1104 may transmit, to the UE, a CSI measurement configuration via an SCell.
  • the transmission component 1104 may transmit, to the UE and via the SCell, uplink DCI that schedules an A-CSI report in an uplink channel of the P (S) Cell based at least in part on a cross-carrier scheduling.
  • the reception component 1102 may receive, from the UE and via the uplink channel of the P (S) Cell, the A-CSI report based at least in part on the uplink DCI and one or more of the CSI measurement configuration associated with the P (S) Cell or the CSI measurement configuration associated with the SCell.
  • Fig. 11 The number and arrangement of components shown in Fig. 11 are provided as an example. In practice, there may be additional components, fewer components, different components, or differently arranged components than those shown in Fig. 11. Furthermore, two or more components shown in Fig. 11 may be implemented within a single component, or a single component shown in Fig. 11 may be implemented as multiple, distributed components. Additionally, or alternatively, a set of (one or more) components shown in Fig. 11 may perform one or more functions described as being performed by another set of components shown in Fig. 11.
  • a method of wireless communication performed by a user equipment (UE) comprising: receiving, from a base station, a channel state information (CSI) measurement configuration via a primary cell (PCell) or a primary secondary cell (PSCell) (P (S) Cell) ; receiving, from the base station, a CSI measurement configuration via a secondary cell (SCell) ; receiving, from the base station and via the SCell, uplink downlink control information (DCI) that schedules an aperiodic CSI (A-CSI) report in an uplink channel of the P (S) Cell based at least in part on a cross-carrier scheduling; and transmitting, to the base station and via the uplink channel of the P (S) Cell, the A-CSI report based at least in part on the uplink DCI and one or more of the CSI measurement configuration associated with the P (S) Cell or the CSI measurement configuration associated with the SCell.
  • CSI channel state information
  • PCell primary cell
  • PSCell primary secondary cell
  • DCI uplink downlink control information
  • Aspect 2 The method of Aspect 1, wherein the CSI measurement configuration associated with the P (S) Cell or the CSI measurement configuration associated with the SCell indicates: a CSI report configuration, a report trigger size, and an aperiodic trigger state list, and further comprising determining the CSI report configuration, the report trigger size, and the aperiodic trigger state based at least in part on the CSI measurement configuration associated with the P (S) Cell or the CSI measurement configuration regardless of which of the P (S) Cell or the SCell the UE monitors for the uplink DCI that triggers the A-CSI report using the uplink channel of the P (S) Cell.
  • Aspect 3 The method of any of Aspects 1 through 2, wherein the CSI measurement configuration associated with the P (S) Cell and the CSI measurement configuration associated with the SCell each indicate: a CSI report configuration, a report trigger size, and an aperiodic trigger state list, wherein parameter values associated with the CSI report configuration, the report trigger size, and the aperiodic trigger state list are identical between the CSI measurement configuration associated with the P (S) Cell and the CSI measurement configuration associated with the SCell.
  • Aspect 4 The method of any of Aspects 1 through 3, wherein the CSI measurement configuration associated with the P (S) Cell and the CSI measurement configuration associated with the SCell each indicate: a CSI report configuration, a report trigger size, and an aperiodic trigger state list, wherein a parameter value associated with the report trigger size is identical between the CSI measurement configuration associated with the P (S) Cell and the CSI measurement configuration associated with the SCell, and wherein parameter values associated with the CSI report configuration and the aperiodic trigger state list are potentially different between the CSI measurement configuration associated with the P (S) Cell and the CSI measurement configuration associated with the SCell.
  • Aspect 5 The method of any of Aspects 1 through 4, wherein the CSI measurement configuration associated with the P (S) Cell and the CSI measurement configuration associated with the SCell each indicate: a CSI report configuration, a report trigger size, and an aperiodic trigger state list, wherein parameter values associated with the CSI report configuration, the report trigger size, and the aperiodic trigger state list are potentially different between the CSI measurement configuration associated with the P (S) Cell and the CSI measurement configuration associated with the SCell.
  • Aspect 6 The method of any of Aspects 1 through 5, wherein the CSI measurement configuration associated with the P (S) Cell and the CSI measurement configuration associated with the SCell each indicate: a CSI report configuration, a report trigger size, and an aperiodic trigger state list, wherein one or more parameter values associated with the CSI report configuration, the report trigger size, and the aperiodic trigger state list are potentially different between the CSI measurement configuration associated with the P (S) Cell and the CSI measurement configuration associated with the SCell, and wherein the one or more processors are further configured to determine the CSI report configuration, the report trigger size, and the aperiodic trigger state of a corresponding P (S) Cell or SCell depending on which of the P (S) Cell or the SCell the UE detects the uplink DCI triggering the A-CSI report using the uplink channel of the P (S) Cell.
  • Aspect 7 The method of any of Aspects 1 through 6, wherein receiving the uplink DCI comprises receiving the uplink DCI via the SCell or the P (S) Cell, wherein the uplink DCI received via the SCell is associated with a first DCI payload size, and wherein the uplink DCI received via the P (S) Cell is associated with a second DCI payload size that is different from the first DCI payload size.
  • Aspect 8 The method of any of Aspects 1 through 7, wherein the uplink DCI is a first uplink DCI and the A-CSI report is a first A-CSI report, and further comprising: receiving, from the base station and via the SCell, a second uplink DCI that schedules a second A-CSI report in an uplink channel of the SCell based at least in part on a self-scheduling or an uplink channel of a third cell based at least in part on the cross-carrier scheduling, wherein the P (S) Cell, the SCell, and the third cell are associated with different CSI measurement configuration parameters, wherein the SCell corresponds to a scheduling cell, and one or more of the P (S) Cell, the SCell, or the third cell are associated with scheduled cells.
  • Aspect 9 The method of any of Aspects 1 through 8, wherein: the CSI measurement configuration associated with the P (S) Cell supports a first set of CSI measurement configuration parameters and the CSI measurement configuration associated with the SCell supports a second set of CSI measurement configuration parameters, wherein each of the first set of CSI measurement configuration parameters and the second set of CSI measurement configuration parameters indicates: a CSI report configuration, a report trigger size, and an aperiodic trigger state list.
  • Aspect 10 The method of any of Aspects 1 through 9, wherein the P (S) Cell, the SCell, and the third cell are associated with different CSI measurement configuration parameters based at least in part on CSI measurement configuration parameters being associated with a scheduled cell in which the A-CSI report is transmitted instead of the scheduling cell.
  • a method of wireless communication performed by a base station comprising: transmitting, to a user equipment (UE) , a channel state information (CSI) measurement configuration via a primary cell (PCell) or a primary secondary cell (PSCell) (P (S) Cell) ; transmitting, to the UE, a CSI measurement configuration via a secondary cell (SCell) ; transmitting, to the UE and via the SCell, uplink downlink control information (DCI) that schedules an aperiodic CSI (A-CSI) report in an uplink channel of the P (S) Cell based at least in part on a cross-carrier scheduling; and receiving, from the UE and via the uplink channel of the P (S) Cell, the A-CSI report based at least in part on the uplink DCI and one or more of the CSI measurement configuration associated with the P (S) Cell or the CSI measurement configuration associated with the SCell.
  • DCI downlink control information
  • A-CSI aperiodic CSI
  • Aspect 12 The method of Aspect 11, wherein the CSI measurement configuration associated with the P (S) Cell or the CSI measurement configuration associated with the SCell indicates: a CSI report configuration, a report trigger size, and an aperiodic trigger state list.
  • Aspect 13 The method of any of Aspects 11 through 12, wherein the CSI measurement configuration associated with the P (S) Cell and the CSI measurement configuration associated with the SCell each indicate: a CSI report configuration, a report trigger size, and an aperiodic trigger state list, wherein parameter values associated with the CSI report configuration, the report trigger size, and the aperiodic trigger state list are identical between the CSI measurement configuration associated with the P (S) Cell and the CSI measurement configuration associated with the SCell.
  • Aspect 14 The method of any of Aspects 11 through 13, wherein the CSI measurement configuration associated with the P (S) Cell and the CSI measurement configuration associated with the SCell each indicate: a CSI report configuration, a report trigger size, and an aperiodic trigger state list, wherein a parameter value associated with the report trigger size is identical between the CSI measurement configuration associated with the P (S) Cell and the CSI measurement configuration associated with the SCell, and wherein parameter values associated with the CSI report configuration and the aperiodic trigger state list are potentially different between the CSI measurement configuration associated with the P (S) Cell and the CSI measurement configuration associated with the SCell.
  • Aspect 15 The method of any of Aspects 11 through 14, wherein the CSI measurement configuration associated with the P (S) Cell and the CSI measurement configuration associated with the SCell each indicate: a CSI report configuration, a report trigger size, and an aperiodic trigger state list, wherein parameter values associated with the CSI report configuration, the report trigger size, and the aperiodic trigger state list are potentially different between the CSI measurement configuration associated with the P (S) Cell and the CSI measurement configuration associated with the SCell.
  • Aspect 16 The method of any of Aspects 11 through 15, wherein the uplink DCI is a first uplink DCI and the A-CSI report is a first A-CSI report, and further comprising: transmitting, to the UE and via the SCell, a second uplink DCI that schedules a second A-CSI report in an uplink channel of the SCell based at least in part on a self-scheduling or an uplink channel of a third cell based at least in part on the cross-carrier scheduling, wherein the P (S) Cell, the SCell, and the third cell are associated with different CSI measurement configuration parameters, wherein the SCell corresponds to a scheduling cell, and wherein one or more of the P (S) Cell, the SCell, or the third cell are associated with scheduled cells.
  • Aspect 17 An apparatus for wireless communication at a device, comprising a processor; memory coupled with the processor; and instructions stored in the memory and executable by the processor to cause the apparatus to perform the method of one or more of Aspects 1-10.
  • Aspect 18 A device for wireless communication, comprising a memory and one or more processors coupled to the memory, the one or more processors configured to perform the method of one or more of Aspects 1-10.
  • Aspect 19 An apparatus for wireless communication, comprising at least one means for performing the method of one or more of Aspects 1-10.
  • Aspect 20 A non-transitory computer-readable medium storing code for wireless communication, the code comprising instructions executable by a processor to perform the method of one or more of Aspects 1-10.
  • Aspect 21 A non-transitory computer-readable medium storing a set of instructions for wireless communication, the set of instructions comprising one or more instructions that, when executed by one or more processors of a device, cause the device to perform the method of one or more of Aspects 1-10.
  • Aspect 22 An apparatus for wireless communication at a device, comprising a processor; memory coupled with the processor; and instructions stored in the memory and executable by the processor to cause the apparatus to perform the method of one or more of Aspects 11-15.
  • Aspect 23 A device for wireless communication, comprising a memory and one or more processors coupled to the memory, the one or more processors configured to perform the method of one or more of Aspects 11-15.
  • Aspect 24 An apparatus for wireless communication, comprising at least one means for performing the method of one or more of Aspects 11-15.
  • Aspect 25 A non-transitory computer-readable medium storing code for wireless communication, the code comprising instructions executable by a processor to perform the method of one or more of Aspects 11-15.
  • Aspect 26 A non-transitory computer-readable medium storing a set of instructions for wireless communication, the set of instructions comprising one or more instructions that, when executed by one or more processors of a device, cause the device to perform the method of one or more of Aspects 11-15.
  • the term “component” is intended to be broadly construed as hardware and/or a combination of hardware and software.
  • “Software” shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, and/or functions, among other examples, whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise.
  • a “processor” is implemented in hardware and/or a combination of hardware and software. It will be apparent that systems and/or methods described herein may be implemented in different forms of hardware and/or a combination of hardware and software.
  • satisfying a threshold may, depending on the context, refer to a value being greater than the threshold, greater than or equal to the threshold, less than the threshold, less than or equal to the threshold, equal to the threshold, not equal to the threshold, or the like.
  • “at least one of: a, b, or c” is intended to cover a, b, c, a + b, a + c, b + c, and a + b + c, as well as any combination with multiples of the same element (e.g., a + a, a + a + a, a + a + b, a + a + c, a + b + b, a + c + c, b + b, b + b + b, b + b + c, c + c, and c + c + c, or any other ordering of a, b, and c) .
  • the terms “has, ” “have, ” “having, ” or the like are intended to be open-ended terms that do not limit an element that they modify (e.g., an element “having” A may also have B) .
  • the phrase “based on” is intended to mean “based, at least in part, on” unless explicitly stated otherwise.
  • the term “or” is intended to be inclusive when used in a series and may be used interchangeably with “and/or, ” unless explicitly stated otherwise (e.g., if used in combination with “either” or “only one of” ) .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

In some implementations, a user equipment (UE) may receive, from a base station, a channel state information (CSI) measurement configuration via a primary cell (PCell) or a primary secondary cell (PSCell) (P (S) Cell). The UE may receive, from the base station, a CSI measurement configuration via a secondary cell (SCell). The UE may receive, from the base station and via the SCell, uplink downlink control information (DCI) that schedules an aperiodic CSI (A-CSI) report in an uplink channel of the P (S) Cell based at least in part on a cross-carrier scheduling. The UE may transmit, to the base station and via the uplink channel of the P (S) Cell, the A-CSI report based at least in part on the uplink DCI and one or more of the CSI measurement configuration associated with the P (S) Cell or the CSI measurement configuration associated with the SCell.

Description

APERIODIC CHANNEL STATE INFORMATION REPORTING FOR CROSS-CARRIER SCHEDULING
FIELD OF THE DISCLOSURE
Aspects of the present disclosure generally relate to wireless communication and to techniques and apparatuses for aperiodic channel state information (A-CSI) reporting for cross-carrier scheduling.
BACKGROUND
Wireless communication systems are widely deployed to provide various telecommunication services such as telephony, video, data, messaging, and broadcasts. Typical wireless communication systems may employ multiple-access technologies capable of supporting communication with multiple users by sharing available system resources (e.g., bandwidth, transmit power, or the like) . Examples of such multiple-access technologies include code division multiple access (CDMA) systems, time division multiple access (TDMA) systems, frequency division multiple access (FDMA) systems, orthogonal frequency division multiple access (OFDMA) systems, single-carrier frequency division multiple access (SC-FDMA) systems, time division synchronous code division multiple access (TD-SCDMA) systems, and Long Term Evolution (LTE) . LTE/LTE-Advanced is a set of enhancements to the Universal Mobile Telecommunications System (UMTS) mobile standard promulgated by the Third Generation Partnership Project (3GPP) .
A wireless network may include one or more base stations that support communication for a user equipment (UE) or multiple UEs. A UE may communicate with a base station via downlink communications and uplink communications. “Downlink” (or “DL” ) refers to a communication link from the base station to the UE, and “uplink” (or “UL” ) refers to a communication link from the UE to the base station.
The above multiple access technologies have been adopted in various telecommunication standards to provide a common protocol that enables different UEs to communicate on a municipal, national, regional, and/or global level. New Radio (NR) , which may be referred to as 5G, is a set of enhancements to the LTE mobile standard promulgated by the 3GPP. NR is designed to better support mobile broadband internet access by improving spectral efficiency, lowering costs, improving services, making use of new spectrum, and better integrating with other open standards using orthogonal frequency division multiplexing (OFDM) with a cyclic prefix (CP) (CP-OFDM) on the downlink, using CP-OFDM and/or single-carrier frequency division multiplexing (SC-FDM) (also known as discrete Fourier  transform spread OFDM (DFT-s-OFDM) ) on the uplink, as well as supporting beamforming, multiple-input multiple-output (MIMO) antenna technology, and carrier aggregation. As the demand for mobile broadband access continues to increase, further improvements in LTE, NR, and other radio access technologies remain useful.
SUMMARY
In some implementations, an apparatus for wireless communication at a user equipment (UE) includes a memory and one or more processors, coupled to the memory, configured to: receive, from a base station, a channel state information (CSI) measurement configuration via a primary cell (PCell) or a primary secondary cell (PSCell) (P (S) Cell) ; receive, from the base station, a CSI measurement configuration via a secondary cell (SCell) ; receive, from the base station and via the SCell, uplink downlink control information (DCI) that schedules an aperiodic CSI (A-CSI) report in an uplink channel of the P (S) Cell based at least in part on a cross-carrier scheduling; and transmit, to the base station and via the uplink channel of the P (S) Cell, the A-CSI report based at least in part on the uplink DCI and one or more of the CSI measurement configuration associated with the P (S) Cell or the CSI measurement configuration associated with the SCell.
In some implementations, an apparatus for wireless communication at a base station includes a memory and one or more processors, coupled to the memory, configured to: transmit, to a UE, a CSI measurement configuration via a P (S) Cell; transmit, to the UE, a CSI measurement configuration via an SCell; transmit, to the UE and via the SCell, uplink DCI that schedules an A-CSI report in an uplink channel of the P (S) Cell based at least in part on a cross-carrier scheduling; and receive, from the UE and via the uplink channel of the P (S) Cell, the A-CSI report based at least in part on the uplink DCI and one or more of the CSI measurement configuration associated with the P (S) Cell or the CSI measurement configuration associated with the SCell.
In some implementations, a method of wireless communication performed by a UE includes receiving, from a base station, a CSI measurement configuration via a P (S) Cell; receiving, from the base station, a CSI measurement configuration via an SCell; receiving, from the base station and via the SCell, uplink DCI that schedules an A-CSI report in an uplink channel of the P (S) Cell based at least in part on a cross-carrier scheduling; and transmitting, to the base station and via the uplink channel of the P (S) Cell, the A-CSI report based at least in part on the uplink DCI and one or more of the CSI measurement configuration associated with the P (S) Cell or the CSI measurement configuration associated with the SCell.
In some implementations, a method of wireless communication performed by a base station includes transmitting, to a UE, a CSI measurement configuration via a P (S) Cell;  transmitting, to the UE, a CSI measurement configuration via an SCell; transmitting, to the UE and via the SCell, uplink DCI that schedules an A-CSI report in an uplink channel of the P (S) Cell based at least in part on a cross-carrier scheduling; and receiving, from the UE and via the uplink channel of the P (S) Cell, the A-CSI report based at least in part on the uplink DCI and one or more of the CSI measurement configuration associated with the P (S) Cell or the CSI measurement configuration associated with the SCell.
In some implementations, a non-transitory computer-readable medium storing a set of instructions for wireless communication includes one or more instructions that, when executed by one or more processors of a UE, cause the UE to: receive, from a base station, a CSI measurement configuration via a P (S) Cell; receive, from the base station, a CSI measurement configuration via an SCell; receive, from the base station and via the SCell, uplink DCI that schedules an A-CSI report in an uplink channel of the P (S) Cell based at least in part on a cross-carrier scheduling; and transmit, to the base station and via the uplink channel of the P (S) Cell, the A-CSI report based at least in part on the uplink DCI and one or more of the CSI measurement configuration associated with the P (S) Cell or the CSI measurement configuration associated with the SCell.
In some implementations, a non-transitory computer-readable medium storing a set of instructions for wireless communication includes one or more instructions that, when executed by one or more processors of a base station, cause the base station to: transmit, to a UE, a CSI measurement configuration via a P (S) Cell; transmit, to the UE, a CSI measurement configuration via an SCell; transmit, to the UE and via the SCell, uplink DCI that schedules an A-CSI report in an uplink channel of the P (S) Cell based at least in part on a cross-carrier scheduling; and receive, from the UE and via the uplink channel of the P (S) Cell, the A-CSI report based at least in part on the uplink DCI and one or more of the CSI measurement configuration associated with the P (S) Cell or the CSI measurement configuration associated with the SCell.
In some implementations, an apparatus for wireless communication includes means for receiving, from a base station, a CSI measurement configuration via a P (S) Cell; means for receiving, from the base station, a CSI measurement configuration via an SCell; means for receiving, from the base station and via the SCell, uplink DCI that schedules an A-CSI report in an uplink channel of the P (S) Cell based at least in part on a cross-carrier scheduling; and means for transmitting, to the base station and via the uplink channel of the P (S) Cell, the A-CSI report based at least in part on the uplink DCI and one or more of the CSI measurement configuration associated with the P (S) Cell or the CSI measurement configuration associated with the SCell.
In some implementations, an apparatus for wireless communication includes means for transmitting, to a UE, a CSI measurement configuration via a P (S) Cell; means for transmitting, to the UE, a CSI measurement configuration via an SCell; means for transmitting,  to the UE and via the SCell, uplink DCI that schedules an A-CSI report in an uplink channel of the P (S) Cell based at least in part on a cross-carrier scheduling; and means for receiving, from the UE and via the uplink channel of the P (S) Cell, the A-CSI report based at least in part on the uplink DCI and one or more of the CSI measurement configuration associated with the P (S) Cell or the CSI measurement configuration associated with the SCell.
Aspects generally include a method, apparatus, system, computer program product, non-transitory computer-readable medium, user equipment, base station, wireless communication device, and/or processing system as substantially described herein with reference to and as illustrated by the drawings and specification.
The foregoing has outlined rather broadly the features and technical advantages of examples according to the disclosure in order that the detailed description that follows may be better understood. Additional features and advantages will be described hereinafter. The conception and specific examples disclosed may be readily utilized as a basis for modifying or designing other structures for carrying out the same purposes of the present disclosure. Such equivalent constructions do not depart from the scope of the appended claims. Characteristics of the concepts disclosed herein, both their organization and method of operation, together with associated advantages, will be better understood from the following description when considered in connection with the accompanying figures. Each of the figures is provided for the purposes of illustration and description, and not as a definition of the limits of the claims.
While aspects are described in the present disclosure by illustration to some examples, those skilled in the art will understand that such aspects may be implemented in many different arrangements and scenarios. Techniques described herein may be implemented using different platform types, devices, systems, shapes, sizes, and/or packaging arrangements. For example, some aspects may be implemented via integrated chip embodiments or other non-module-component based devices (e.g., end-user devices, vehicles, communication devices, computing devices, industrial equipment, retail/purchasing devices, medical devices, and/or artificial intelligence devices) . Aspects may be implemented in chip-level components, modular components, non-modular components, non-chip-level components, device-level components, and/or system-level components. Devices incorporating described aspects and features may include additional components and features for implementation and practice of claimed and described aspects. For example, transmission and reception of wireless signals may include one or more components for analog and digital purposes (e.g., hardware components including antennas, radio frequency (RF) chains, power amplifiers, modulators, buffers, processors, interleavers, adders, and/or summers) . It is intended that aspects described herein may be practiced in a wide variety of devices, components, systems, distributed arrangements, and/or end-user devices of varying size, shape, and constitution.
BRIEF DESCRIPTION OF THE DRAWINGS
So that the above-recited features of the present disclosure can be understood in detail, a more particular description, briefly summarized above, may be had by reference to aspects, some of which are illustrated in the appended drawings. It is to be noted, however, that the appended drawings illustrate only certain typical aspects of this disclosure and are therefore not to be considered limiting of its scope, for the description may admit to other equally effective aspects. The same reference numbers in different drawings may identify the same or similar elements.
Fig. 1 is a diagram illustrating an example of a wireless network, in accordance with the present disclosure.
Fig. 2 is a diagram illustrating an example of a base station in communication with a user equipment (UE) in a wireless network, in accordance with the present disclosure.
Fig. 3 is a diagram illustrating an example of an aperiodic channel state information (A-CSI) report configuration with cross-carrier scheduling, in accordance with the present disclosure.
Fig. 4 is a diagram illustrating an example of cross-carrier scheduling from a secondary cell (SCell) to a primary cell (PCell) or primary secondary cell (PSCell) , in accordance with the present disclosure.
Figs. 5-7 are diagrams illustrating examples associated with A-CSI reporting for cross-carrier scheduling, in accordance with the present disclosure.
Figs. 8-9 are diagrams illustrating example processes associated with A-CSI reporting for cross-carrier scheduling, in accordance with the present disclosure.
Figs. 10-11 are diagrams of example apparatuses for wireless communication, in accordance with the present disclosure.
DETAILED DESCRIPTION
Various aspects of the disclosure are described more fully hereinafter with reference to the accompanying drawings. This disclosure may, however, be embodied in many different forms and should not be construed as limited to any specific structure or function presented throughout this disclosure. Rather, these aspects are provided so that this disclosure will be thorough and complete, and will fully convey the scope of the disclosure to those skilled in the art. One skilled in the art should appreciate that the scope of the disclosure is intended to cover any aspect of the disclosure disclosed herein, whether implemented independently of or combined with any other aspect of the disclosure. For example, an apparatus may be implemented or a method may be practiced using any number of the aspects set forth herein. In addition, the scope of the disclosure is intended to cover such an apparatus or method which is  practiced using other structure, functionality, or structure and functionality in addition to or other than the various aspects of the disclosure set forth herein. It should be understood that any aspect of the disclosure disclosed herein may be embodied by one or more elements of a claim.
Several aspects of telecommunication systems will now be presented with reference to various apparatuses and techniques. These apparatuses and techniques will be described in the following detailed description and illustrated in the accompanying drawings by various blocks, modules, components, circuits, steps, processes, algorithms, or the like (collectively referred to as “elements” ) . These elements may be implemented using hardware, software, or combinations thereof. Whether such elements are implemented as hardware or software depends upon the particular application and design constraints imposed on the overall system.
While aspects may be described herein using terminology commonly associated with a 5G or New Radio (NR) radio access technology (RAT) , aspects of the present disclosure can be applied to other RATs, such as a 3G RAT, a 4G RAT, and/or a RAT subsequent to 5G (e.g., 6G) .
Fig. 1 is a diagram illustrating an example of a wireless network 100, in accordance with the present disclosure. The wireless network 100 may be or may include elements of a 5G (e.g., NR) network and/or a 4G (e.g., Long Term Evolution (LTE) ) network, among other examples. The wireless network 100 may include one or more base stations 110 (shown as a BS 110a, a BS 110b, a BS 110c, and a BS 110d) , a user equipment (UE) 120 or multiple UEs 120 (shown as a UE 120a, a UE 120b, a UE 120c, a UE 120d, and a UE 120e) , and/or other network entities. A base station 110 is an entity that communicates with UEs 120. A base station 110 (sometimes referred to as a BS) may include, for example, an NR base station, an LTE base station, a Node B, an eNB (e.g., in 4G) , a gNB (e.g., in 5G) , an access point, and/or a transmission reception point (TRP) . Each base station 110 may provide communication coverage for a particular geographic area. In the Third Generation Partnership Project (3GPP) , the term “cell” can refer to a coverage area of a base station 110 and/or a base station subsystem serving this coverage area, depending on the context in which the term is used.
base station 110 may provide communication coverage for a macro cell, a pico cell, a femto cell, and/or another type of cell. A macro cell may cover a relatively large geographic area (e.g., several kilometers in radius) and may allow unrestricted access by UEs 120 with service subscriptions. A pico cell may cover a relatively small geographic area and may allow unrestricted access by UEs 120 with service subscription. A femto cell may cover a relatively small geographic area (e.g., a home) and may allow restricted access by UEs 120 having association with the femto cell (e.g., UEs 120 in a closed subscriber group (CSG) ) . A base station 110 for a macro cell may be referred to as a macro base station. A base station 110 for a pico cell may be referred to as a pico base station. A base station 110 for a femto cell may be referred to as a femto base station or an in-home base station. In the example shown in Fig. 1,  the BS 110a may be a macro base station for a macro cell 102a, the BS 110b may be a pico base station for a pico cell 102b, and the BS 110c may be a femto base station for a femto cell 102c. A base station may support one or multiple (e.g., three) cells.
In some examples, a cell may not necessarily be stationary, and the geographic area of the cell may move according to the location of a base station 110 that is mobile (e.g., a mobile base station) . In some examples, the base stations 110 may be interconnected to one another and/or to one or more other base stations 110 or network nodes (not shown) in the wireless network 100 through various types of backhaul interfaces, such as a direct physical connection or a virtual network, using any suitable transport network.
The wireless network 100 may include one or more relay stations. A relay station is an entity that can receive a transmission of data from an upstream station (e.g., a base station 110 or a UE 120) and send a transmission of the data to a downstream station (e.g., a UE 120 or a base station 110) . A relay station may be a UE 120 that can relay transmissions for other UEs 120. In the example shown in Fig. 1, the BS 110d (e.g., a relay base station) may communicate with the BS 110a (e.g., a macro base station) and the UE 120d in order to facilitate communication between the BS 110a and the UE 120d. A base station 110 that relays communications may be referred to as a relay station, a relay base station, a relay, or the like.
The wireless network 100 may be a heterogeneous network that includes base stations 110 of different types, such as macro base stations, pico base stations, femto base stations, relay base stations, or the like. These different types of base stations 110 may have different transmit power levels, different coverage areas, and/or different impacts on interference in the wireless network 100. For example, macro base stations may have a high transmit power level (e.g., 5 to 40 watts) whereas pico base stations, femto base stations, and relay base stations may have lower transmit power levels (e.g., 0.1 to 2 watts) .
network controller 130 may couple to or communicate with a set of base stations 110 and may provide coordination and control for these base stations 110. The network controller 130 may communicate with the base stations 110 via a backhaul communication link. The base stations 110 may communicate with one another directly or indirectly via a wireless or wireline backhaul communication link.
The UEs 120 may be dispersed throughout the wireless network 100, and each UE 120 may be stationary or mobile. A UE 120 may include, for example, an access terminal, a terminal, a mobile station, and/or a subscriber unit. A UE 120 may be a cellular phone (e.g., a smart phone) , a personal digital assistant (PDA) , a wireless modem, a wireless communication device, a handheld device, a laptop computer, a cordless phone, a wireless local loop (WLL) station, a tablet, a camera, a gaming device, a netbook, a smartbook, an ultrabook, a medical device, a biometric device, a wearable device (e.g., a smart watch, smart clothing, smart glasses,  a smart wristband, smart jewelry (e.g., a smart ring or a smart bracelet) ) , an entertainment device (e.g., a music device, a video device, and/or a satellite radio) , a vehicular component or sensor, a smart meter/sensor, industrial manufacturing equipment, a global positioning system device, and/or any other suitable device that is configured to communicate via a wireless medium.
Some UEs 120 may be considered machine-type communication (MTC) or evolved or enhanced machine-type communication (eMTC) UEs. An MTC UE and/or an eMTC UE may include, for example, a robot, a drone, a remote device, a sensor, a meter, a monitor, and/or a location tag, that may communicate with a base station, another device (e.g., a remote device) , or some other entity. Some UEs 120 may be considered Internet-of-Things (IoT) devices, and/or may be implemented as NB-IoT (narrowband IoT) devices. Some UEs 120 may be considered a Customer Premises Equipment. A UE 120 may be included inside a housing that houses components of the UE 120, such as processor components and/or memory components. In some examples, the processor components and the memory components may be coupled together. For example, the processor components (e.g., one or more processors) and the memory components (e.g., a memory) may be operatively coupled, communicatively coupled, electronically coupled, and/or electrically coupled.
In general, any number of wireless networks 100 may be deployed in a given geographic area. Each wireless network 100 may support a particular RAT and may operate on one or more frequencies. A RAT may be referred to as a radio technology, an air interface, or the like. A frequency may be referred to as a carrier, a frequency channel, or the like. Each frequency may support a single RAT in a given geographic area in order to avoid interference between wireless networks of different RATs. In some cases, NR or 5G RAT networks may be deployed.
In some examples, two or more UEs 120 (e.g., shown as UE 120a and UE 120e) may communicate directly using one or more sidelink channels (e.g., without using a base station 110 as an intermediary to communicate with one another) . For example, the UEs 120 may communicate using peer-to-peer (P2P) communications, device-to-device (D2D) communications, a vehicle-to-everything (V2X) protocol (e.g., which may include a vehicle-to-vehicle (V2V) protocol, a vehicle-to-infrastructure (V2I) protocol, or a vehicle-to-pedestrian (V2P) protocol) , and/or a mesh network. In such examples, a UE 120 may perform scheduling operations, resource selection operations, and/or other operations described elsewhere herein as being performed by the base station 110.
Devices of the wireless network 100 may communicate using the electromagnetic spectrum, which may be subdivided by frequency or wavelength into various classes, bands, channels, or the like. For example, devices of the wireless network 100 may communicate using one or more operating bands. In 5G NR, two initial operating bands have been identified  as frequency range designations FR1 (410 MHz -7.125 GHz) and FR2 (24.25 GHz -52.6 GHz) . It should be understood that although a portion of FR1 is greater than 6 GHz, FR1 is often referred to (interchangeably) as a “Sub-6 GHz” band in various documents and articles. A similar nomenclature issue sometimes occurs with regard to FR2, which is often referred to (interchangeably) as a “millimeter wave” band in documents and articles, despite being different from the extremely high frequency (EHF) band (30 GHz -300 GHz) which is identified by the International Telecommunications Union (ITU) as a “millimeter wave” band.
The frequencies between FR1 and FR2 are often referred to as mid-band frequencies. Recent 5G NR studies have identified an operating band for these mid-band frequencies as frequency range designation FR3 (7.125 GHz -24.25 GHz) . Frequency bands falling within FR3 may inherit FR1 characteristics and/or FR2 characteristics, and thus may effectively extend features of FR1 and/or FR2 into mid-band frequencies. In addition, higher frequency bands are currently being explored to extend 5G NR operation beyond 52.6 GHz. For example, three higher operating bands have been identified as frequency range designations FR4a or FR4-1 (52.6 GHz -71 GHz) , FR4 (52.6 GHz -114.25 GHz) , and FR5 (114.25 GHz -300 GHz) . Each of these higher frequency bands falls within the EHF band.
With the above examples in mind, unless specifically stated otherwise, it should be understood that the term “sub-6 GHz” or the like, if used herein, may broadly represent frequencies that may be less than 6 GHz, may be within FR1, or may include mid-band frequencies. Further, unless specifically stated otherwise, it should be understood that the term “millimeter wave” or the like, if used herein, may broadly represent frequencies that may include mid-band frequencies, may be within FR2, FR4, FR4-a or FR4-1, and/or FR5, or may be within the EHF band. It is contemplated that the frequencies included in these operating bands (e.g., FR1, FR2, FR3, FR4, FR4-a, FR4-1, and/or FR5) may be modified, and techniques described herein are applicable to those modified frequency ranges.
In some aspects, a UE (e.g., UE 120) may include a communication manager 140. As described in more detail elsewhere herein, the communication manager 140 may receive, from a base station, a channel state information (CSI) measurement configuration via a primary cell (PCell) or a primary secondary cell (PSCell) (P (S) Cell) ; receive, from the base station, a CSI measurement configuration via a secondary cell (SCell) ; receive, from the base station and via the SCell, uplink downlink control information (DCI) that schedules an aperiodic CSI (A-CSI) report in an uplink channel of the P (S) Cell based at least in part on a cross-carrier scheduling; and transmit, to the base station and via the uplink channel of the P (S) Cell, the A-CSI report based at least in part on the uplink DCI and one or more of the CSI measurement configuration associated with the P (S) Cell or the CSI measurement configuration associated with the SCell. Additionally, or alternatively, the communication manager 140 may perform one or more other operations described herein. “PCell or PSCell” is abbreviated herein as “P (S) Cell” .
In some aspects, a base station (e.g., base station 110) may include a communication manager 150. As described in more detail elsewhere herein, the communication manager 150 may transmit, to a UE, a CSI measurement configuration via a P (S) Cell; transmit, to the UE, a CSI measurement configuration via an SCell; transmit, to the UE and via the SCell, uplink DCI that schedules an A-CSI report in an uplink channel of the P (S) Cell based at least in part on a cross-carrier scheduling; and receive, from the UE and via the uplink channel of the P (S) Cell, the A-CSI report based at least in part on the uplink DCI and one or more of the CSI measurement configuration associated with the P (S) Cell or the CSI measurement configuration associated with the SCell. Additionally, or alternatively, the communication manager 150 may perform one or more other operations described herein.
As indicated above, Fig. 1 is provided as an example. Other examples may differ from what is described with regard to Fig. 1.
Fig. 2 is a diagram illustrating an example 200 of a base station 110 in communication with a UE 120 in a wireless network 100, in accordance with the present disclosure. The base station 110 may be equipped with a set of antennas 234a through 234t, such as T antennas (T ≥ 1) . The UE 120 may be equipped with a set of antennas 252a through 252r, such as R antennas (R ≥ 1) .
At the base station 110, a transmit processor 220 may receive data, from a data source 212, intended for the UE 120 (or a set of UEs 120) . The transmit processor 220 may select one or more modulation and coding schemes (MCSs) for the UE 120 based at least in part on one or more channel quality indicators (CQIs) received from that UE 120. The base station 110 may process (e.g., encode and modulate) the data for the UE 120 based at least in part on the MCS (s) selected for the UE 120 and may provide data symbols for the UE 120. The transmit processor 220 may process system information (e.g., for semi-static resource partitioning information (SRPI) ) and control information (e.g., CQI requests, grants, and/or upper layer signaling) and provide overhead symbols and control symbols. The transmit processor 220 may generate reference symbols for reference signals (e.g., a cell-specific reference signal (CRS) or a demodulation reference signal (DMRS) ) and synchronization signals (e.g., a primary synchronization signal (PSS) or a secondary synchronization signal (SSS) ) . A transmit (TX) multiple-input multiple-output (MIMO) processor 230 may perform spatial processing (e.g., precoding) on the data symbols, the control symbols, the overhead symbols, and/or the reference symbols, if applicable, and may provide a set of output symbol streams (e.g., T output symbol streams) to a corresponding set of modems 232 (e.g., T modems) , shown as modems 232a through 232t. For example, each output symbol stream may be provided to a modulator component (shown as MOD) of a modem 232. Each modem 232 may use a respective modulator component to process a respective output symbol stream (e.g., for OFDM) to obtain an output sample stream. Each modem 232 may further use a respective modulator component  to process (e.g., convert to analog, amplify, filter, and/or upconvert) the output sample stream to obtain a downlink signal. The modems 232a through 232t may transmit a set of downlink signals (e.g., T downlink signals) via a corresponding set of antennas 234 (e.g., T antennas) , shown as antennas 234a through 234t.
At the UE 120, a set of antennas 252 (shown as antennas 252a through 252r) may receive the downlink signals from the base station 110 and/or other base stations 110 and may provide a set of received signals (e.g., R received signals) to a set of modems 254 (e.g., R modems) , shown as modems 254a through 254r. For example, each received signal may be provided to a demodulator component (shown as DEMOD) of a modem 254. Each modem 254 may use a respective demodulator component to condition (e.g., filter, amplify, downconvert, and/or digitize) a received signal to obtain input samples. Each modem 254 may use a demodulator component to further process the input samples (e.g., for OFDM) to obtain received symbols. A MIMO detector 256 may obtain received symbols from the modems 254, may perform MIMO detection on the received symbols if applicable, and may provide detected symbols. A receive processor 258 may process (e.g., demodulate and decode) the detected symbols, may provide decoded data for the UE 120 to a data sink 260, and may provide decoded control information and system information to a controller/processor 280. The term “controller/processor” may refer to one or more controllers, one or more processors, or a combination thereof. A channel processor may determine a reference signal received power (RSRP) parameter, a received signal strength indicator (RSSI) parameter, a reference signal received quality (RSRQ) parameter, and/or a CQI parameter, among other examples. In some examples, one or more components of the UE 120 may be included in a housing 284.
The network controller 130 may include a communication unit 294, a controller/processor 290, and a memory 292. The network controller 130 may include, for example, one or more devices in a core network. The network controller 130 may communicate with the base station 110 via the communication unit 294.
One or more antennas (e.g., antennas 234a through 234t and/or antennas 252a through 252r) may include, or may be included within, one or more antenna panels, one or more antenna groups, one or more sets of antenna elements, and/or one or more antenna arrays, among other examples. An antenna panel, an antenna group, a set of antenna elements, and/or an antenna array may include one or more antenna elements (within a single housing or multiple housings) , a set of coplanar antenna elements, a set of non-coplanar antenna elements, and/or one or more antenna elements coupled to one or more transmission and/or reception components, such as one or more components of Fig. 2.
On the uplink, at the UE 120, a transmit processor 264 may receive and process data from a data source 262 and control information (e.g., for reports that include RSRP, RSSI, RSRQ, and/or CQI) from the controller/processor 280. The transmit processor 264 may  generate reference symbols for one or more reference signals. The symbols from the transmit processor 264 may be precoded by a TX MIMO processor 266 if applicable, further processed by the modems 254 (e.g., for DFT-s-OFDM or CP-OFDM) , and transmitted to the base station 110. In some examples, the modem 254 of the UE 120 may include a modulator and a demodulator. In some examples, the UE 120 includes a transceiver. The transceiver may include any combination of the antenna (s) 252, the modem (s) 254, the MIMO detector 256, the receive processor 258, the transmit processor 264, and/or the TX MIMO processor 266. The transceiver may be used by a processor (e.g., the controller/processor 280) and the memory 282 to perform aspects of any of the methods described herein (e.g., with reference to Figs. 5-11) .
At the base station 110, the uplink signals from UE 120 and/or other UEs may be received by the antennas 234, processed by the modem 232 (e.g., a demodulator component, shown as DEMOD, of the modem 232) , detected by a MIMO detector 236 if applicable, and further processed by a receive processor 238 to obtain decoded data and control information sent by the UE 120. The receive processor 238 may provide the decoded data to a data sink 239 and provide the decoded control information to the controller/processor 240. The base station 110 may include a communication unit 244 and may communicate with the network controller 130 via the communication unit 244. The base station 110 may include a scheduler 246 to schedule one or more UEs 120 for downlink and/or uplink communications. In some examples, the modem 232 of the base station 110 may include a modulator and a demodulator. In some examples, the base station 110 includes a transceiver. The transceiver may include any combination of the antenna (s) 234, the modem (s) 232, the MIMO detector 236, the receive processor 238, the transmit processor 220, and/or the TX MIMO processor 230. The transceiver may be used by a processor (e.g., the controller/processor 240) and the memory 242 to perform aspects of any of the methods described herein (e.g., with reference to Figs. 5-11) .
The controller/processor 240 of the base station 110, the controller/processor 280 of the UE 120, and/or any other component (s) of Fig. 2 may perform one or more techniques associated with A-CSI reporting for cross-carrier scheduling, as described in more detail elsewhere herein. For example, the controller/processor 240 of the base station 110, the controller/processor 280 of the UE 120, and/or any other component (s) of Fig. 2 may perform or direct operations of, for example, process 800 of Fig. 8, process 900 of Fig. 9, and/or other processes as described herein. The memory 242 and the memory 282 may store data and program codes for the base station 110 and the UE 120, respectively. In some examples, the memory 242 and/or the memory 282 may include a non-transitory computer-readable medium storing one or more instructions (e.g., code and/or program code) for wireless communication. For example, the one or more instructions, when executed (e.g., directly, or after compiling, converting, and/or interpreting) by one or more processors of the base station 110 and/or the UE 120, may cause the one or more processors, the UE 120, and/or the base station 110 to perform  or direct operations of, for example, process 800 of Fig. 8, process 900 of Fig. 9, and/or other processes as described herein. In some examples, executing instructions may include running the instructions, converting the instructions, compiling the instructions, and/or interpreting the instructions, among other examples.
In some aspects, a UE (e.g., UE 120) includes means for receiving, from a base station, a CSI measurement configuration via a P (S) Cell; means for receiving, from the base station, a CSI measurement configuration via an SCell; means for receiving, from the base station and via the SCell, uplink DCI that schedules an A-CSI report in an uplink channel of the P (S) Cell based at least in part on a cross-carrier scheduling; and/or means for transmitting, to the base station and via the uplink channel of the P (S) Cell, the A-CSI report based at least in part on the uplink DCI and one or more of the CSI measurement configuration associated with the P (S) Cell or the CSI measurement configuration associated with the SCell. “PCell or PSCell” is abbreviated herein as “P (S) Cell” . The means for the UE to perform operations described herein may include, for example, one or more of communication manager 140, antenna 252, modem 254, MIMO detector 256, receive processor 258, transmit processor 264, TX MIMO processor 266, controller/processor 280, or memory 282.
In some aspects, a base station (e.g., base station 110) includes means for transmitting, to a UE, a CSI measurement configuration via a P (S) Cell; means for transmitting, to the UE, a CSI measurement configuration via an SCell; means for transmitting, to the UE and via the SCell, uplink DCI that schedules an A-CSI report in an uplink channel of the P (S) Cell based at least in part on a cross-carrier scheduling; and/or means for receiving, from the UE and via the uplink channel of the P (S) Cell, the A-CSI report based at least in part on the uplink DCI and one or more of the CSI measurement configuration associated with the P (S) Cell or the CSI measurement configuration associated with the SCell. The means for the base station to perform operations described herein may include, for example, one or more of communication manager 150, transmit processor 220, TX MIMO processor 230, modem 232, antenna 234, MIMO detector 236, receive processor 238, controller/processor 240, memory 242, or scheduler 246.
While blocks in Fig. 2 are illustrated as distinct components, the functions described above with respect to the blocks may be implemented in a single hardware, software, or combination component or in various combinations of components. For example, the functions described with respect to the transmit processor 264, the receive processor 258, and/or the TX MIMO processor 266 may be performed by or under the control of the controller/processor 280.
As indicated above, Fig. 2 is provided as an example. Other examples may differ from what is described with regard to Fig. 2.
A CSI measurement configuration (e.g., CSI-MeasConfig) may be used to configure channel state information reference signals (CSI-RSs) belonging to a serving cell in which the CSI measurement configuration is included, CSI reports to be transmitted on a physical uplink control channel (PUCCH) on the serving cell in which the CSI measurement configuration is included, and CSI reports on a physical uplink shared channel (PUSCH) triggered by DCI received on the serving cell in which the CSI measurement configuration is included. The CSI measurement configuration may indicate a CSI report configuration to add or modify list (e.g., csi-ReportConfigToAddModList) , which may indicate configured CSI report settings. The CSI measurement configuration may indicate a report trigger size (e.g., reportTriggerSize) , which may indicate a size of a CSI request field in DCI (in terms of a quantity of bits) . The report trigger size may apply to DCI format 0_1. The CSI measurement configuration may indicate an aperiodic trigger state list (e.g., aperiodicTriggerStateList) , which may indicate trigger states for dynamically selecting one or more aperiodic or semi-persistent reporting configurations and/or triggering one or more aperiodic CSI-RS resource sets for channel and/or interference measurement.
Fig. 3 is a diagram illustrating an example 300 of an aperiodic channel state information (A-CSI) report configuration with cross-carrier scheduling, in accordance with the present disclosure.
As shown in Fig. 3, an A-CSI report configuration may occur when cross-carrier scheduling is configured. A UE may measure a CSI on a plurality of component carriers, such as a first component carrier (CC#1) , a second component carrier (CC#2) , a third component carrier (CC#3) , and a fourth component carrier (CC#4) , based at least in part on CSI-RSs associated with each of the four component carriers. In this example, the cross-carrier scheduling may be configured from the second component carrier to the third component carrier, but in other examples, cross-carrier scheduling between other component carriers may be performed. A base station may transmit, to the UE, an uplink DCI triggering the A-CSI report on the second component carrier. The uplink DCI may schedule the A-CSI report for transmission on the third component carrier. In other words, the UE may transmit the A-CSI report using a PUSCH on the third component carrier, where the A-CSI report may be scheduled by the uplink DCI received from the base station on the second component carrier. The PUSCH may or may not carry uplink data. Since the uplink DCI is transmitted on the second component carrier and schedules the A-CSI report on the third component carrier, the UE may not monitor a physical downlink control channel (PDCCH) of the third component carrier. Rather, the UE may monitor a PDCCH of the second component carrier to receive the uplink DCI. The A-CSI report may indicate CSI measurements of the CSI-RSs associated with each of the four component carriers (e.g., four CSI measurements corresponding to four CSI- RSs, respectively) , or the A-CSI report may indicate CSI measurements of the CSI-RSs associated with a subset of the four CSI-RSs.
The UE may receive, from the base station, a CSI measurement configuration that configures the CSI-RSs associated with each of the four component carriers. The UE may receive, from the base station, a CSI measurement configuration in each of the first component carrier, the third component carrier, and the fourth component carrier, where each CSI measurement configuration may indicate non-zero-power (NZP) -CSI-RS resources and/or resource sets, and a CSI resource configuration. The UE may receive, from the base station, a CSI measurement configuration in the second component carrier, which may indicate NZP-RS resources and/or resource sets, and a CSI resource configuration. The CSI measurement configuration in the second component carrier may also indicate a CSI report configuration (e.g., csi-ReportConfigToAddModList) , a report trigger size (e.g., reportTriggerSize) , and an aperiodic trigger state list (e.g., aperiodicTriggerStateList) . Since the second component carrier is associated with a serving/scheduling cell that schedules the A-CSI report on the third component carrier, the CSI measurement configuration in the second component carrier may also indicate the CSI report configuration, the report trigger size, and the aperiodic trigger state list.
As indicated above, Fig. 3 is provided as an example. Other examples may differ from what is described with regard to Fig. 3.
Fig. 4 is a diagram illustrating an example of cross-carrier scheduling from an SCell to a PSCell, in accordance with the present disclosure.
A cross-carrier scheduling may be supported from an SCell to a P (S) Cell (e.g., a PCell or a PSCell) . The SCell may be a special SCell (sSCell) . In this case, a physical downlink shared channel (PDSCH) and PUSCH on the P (S) Cell may still be scheduled by a PDCCH on the P (S) Cell itself based at least in part on a self-scheduling. In other words, two scheduling cells may be present for a given scheduled cell.
As shown in Fig. 4, for the P (S) Cell, PDCCH candidates may be associated with a common search space (CSS) set or a UE-specific search space (USS) set. For the SCell, PDCCH candidates may be associated with a CSS set or a USS set. PDCCH candidates for P (S) Cell scheduling may be associated with either the P (S) Cell or the SCell. Scheduled data for the P (S) Cell, which may be associated with a PDSCH or a PUSCH, may be scheduled by either a PDCCH on the P (S) Cell or a PDCCH on the SCell. As a result, the two scheduling cells may be present for the given scheduled cell, since the P (S) Cell and the SCell may correspond to the two scheduling cells and the P (S) Cell may correspond to a given scheduled cell.
As indicated above, Fig. 4 is provided as an example. Other examples may differ from what is described with regard to Fig. 4.
A UE and a base station may not be configured to handle A-CSI measurement and reporting when cross-carrier scheduling is scheduled from an SCell to a P (S) Cell. The UE and the base station may not be configured to handle the A-CSI measurement and reporting due to a presence of two scheduling cells for a given scheduled cell, as opposed to a single scheduling cell for the given scheduled cell. For the single scheduling cell for the given scheduled cell, certain CSI measurement configuration parameters (e.g., csi-ReportConfigToAddModList, reportTriggerSize, and aperiodicTriggerStateList) may be indicated in a CSI measurement configuration for the single scheduling cell, but for two scheduling cells, the UE and the base station may not be configured with such CSI measurement configuration parameters, thereby resulting in problems with A-CSI measurement and reporting.
In various aspects of techniques and apparatuses described herein, a UE may receive, from a base station, a CSI measurement configuration via a P (S) Cell. The UE may receive, from the base station, a CSI measurement configuration via an SCell. The UE may receive, from the base station and via the SCell, uplink DCI that schedules an A-CSI report in an uplink channel of the P (S) Cell based at least in part on a cross-carrier scheduling. The UE may transmit, to the base station and via the uplink channel of the P (S) Cell, the A-CSI report based at least in part on the uplink DCI and one or more of the CSI measurement configuration associated with the P (S) Cell or the CSI measurement configuration associated with the SCell. The CSI measurement configuration associated with the P (S) Cell and/or the CSI measurement configuration associated with the SCell may indicate a CSI report configuration, a report trigger size, and an aperiodic trigger state list. Parameters associated with the CSI report configuration, the report trigger size, and the aperiodic trigger state list may be identical or may be different between the CSI measurement configuration associated with the P (S) Cell and the CSI measurement configuration associated with the SCell. As a result, the UE may perform, using the parameters, A-CSI reporting when the cross-carrier scheduling from the SCell to the P (S) Cell is configured.
Fig. 5 is a diagram illustrating an example 500 associated with A-CSI reporting for cross-carrier scheduling, in accordance with the present disclosure. As shown in Fig. 5, example 500 includes communication between a UE (e.g., UE 120) and a base station (e.g., base station 110) . In some aspects, the UE and the base station may be included in a wireless network, such as wireless network 100.
As shown by reference number 502, the UE may receive, from a base station, a CSI measurement configuration via a P (S) Cell. The CSI measurement configuration received via the P (S) Cell may indicate a plurality of parameters associated with CSI-RS resources and a CSI resource configuration, where the CSI resources and the CSI resource configuration may be associated with the P (S) Cell.
As shown by reference number 504, the UE may receive, from the base station, a CSI measurement configuration via an SCell. The CSI measurement configuration received via the SCell may indicate a plurality of parameters associated with CSI-RS resources and a CSI resource configuration, where the CSI resources and the CSI resource configuration may be associated with the SCell.
As shown by reference number 506, the UE may receive, from the base station and via the SCell, uplink DCI that schedules an A-CSI report in an uplink channel of the P (S) Cell based at least in part on a cross-carrier scheduling. In some cases, the UE may receive, from the P (S) Cell, the uplink DCI that schedules the A-CSI report in the uplink channel of the P (S) Cell based at least in part on a self-scheduling. In other words, the UE may receive the uplink DCI via the SCell or the P (S) Cell. The uplink DCI received via the SCell may be associated with a first DCI payload size, and the uplink DCI received via the P (S) Cell may be associated with a second DCI payload size that is different from the first DCI payload size.
In some aspects, the CSI measurement configuration associated with the P (S) Cell or the CSI measurement configuration associated with the SCell may indicate a CSI report configuration, a report trigger size, and an aperiodic trigger state list. The UE may determine the CSI report configuration, the report trigger size, and the aperiodic trigger state based at least in part on the CSI measurement configuration associated with the P (S) Cell or the CSI measurement configuration regardless of which of the P (S) Cell or the SCell the UE monitors for the uplink DCI that triggers the A-CSI report using the uplink channel of the P (S) Cell.
In some aspects, the the CSI measurement configuration associated with the P (S) Cell and the CSI measurement configuration associated with the SCell each indicate a CSI report configuration, a report trigger size, and an aperiodic trigger state list. In some aspects, parameter values associated with the CSI report configuration, the report trigger size, and the aperiodic trigger state list may be identical between the CSI measurement configuration associated with the P (S) Cell and the CSI measurement configuration associated with the SCell. In some aspects, a parameter value associated with the report trigger size may be identical between the CSI measurement configuration associated with the P (S) Cell and the CSI measurement configuration associated with the SCell, and parameter values associated with the CSI report configuration and the aperiodic trigger state list may be different between the CSI measurement configuration associated with the P (S) Cell and the CSI measurement configuration associated with the SCell. In some aspects, parameter values associated with the CSI report configuration, the report trigger size, and the aperiodic trigger state list may be different between the CSI measurement configuration associated with the P (S) Cell and the CSI measurement configuration associated with the SCell.
In some aspects, one or more parameter values associated with the CSI report configuration, the report trigger size, and the aperiodic trigger state list may be different between the CSI measurement configuration associated with the P (S) Cell and the CSI measurement configuration associated with the SCell. The UE may determine the CSI report configuration, the report trigger size, and the aperiodic trigger state of a corresponding P (S) Cell or SCell depending on which of the P (S) Cell or the SCell the UE detects the uplink DCI triggering the A-CSI report using the uplink channel of the P (S) Cell.
As shown by reference number 508, the UE may transmit, to the base station and via the uplink channel (e.g., a PUSCH) of the P (S) Cell, the A-CSI report based at least in part on the uplink DCI and one or more of the CSI measurement configuration associated with the P (S) Cell or the CSI measurement configuration associated with the SCell. The A-CSI report may indicate one or more CSI-RS measurements, where each of the CSI-RS measurements may be received via different cells (e.g., P (S) Cell and/or SCell, or other cells associated with different component carriers) .
In some aspects, the uplink DCI may be a first uplink DCI and the A-CSI report may be a first A-CSI report. The UE may receive, from the base station and via the SCell, a second uplink DCI that schedules a second A-CSI report in an uplink channel of the SCell based at least in part on a self-scheduling or an uplink channel of a third cell based at least in part on the cross-carrier scheduling. The P (S) Cell, the SCell, and the third cell may be associated with different CSI measurement configuration parameters. The SCell may correspond to a scheduling cell, and one or more of the P (S) Cell, the SCell, or the third cell may be associated with scheduled cells. In some aspects, the CSI measurement configuration associated with the P (S) Cell may support a first set of CSI measurement configuration parameters and the CSI measurement configuration associated with the SCell may support a second set of CSI measurement configuration parameters, where each of the first set of CSI measurement configuration parameters and the second set of CSI measurement configuration parameters may indicate a CSI report configuration, a report trigger size, and an aperiodic trigger state list. In some aspects, the P (S) Cell, the SCell, and the third cell may be associated with different CSI measurement configuration parameters based at least in part on CSI measurement configuration parameters being associated with a scheduled cell in which the A-CSI report is transmitted instead of the scheduling cell.
As indicated above, Fig. 5 is provided as an example. Other examples may differ from what is described with regard to Fig. 5.
Fig. 6 is a diagram illustrating an example 600 associated with A-CSI reporting for cross-carrier scheduling, in accordance with the present disclosure.
As shown in Fig. 6, a UE may measure a CSI on a plurality of component carriers, such as a first component carrier (CC#1) associated with a P (S) Cell, a second component carrier (CC#2) associated with an SCell, a third component carrier (CC#3) , and a fourth component carrier (CC#4) , based at least in part on CSI-RSs associated with each of the four component carriers. A cross-carrier scheduling may be configured from the SCell to the P (S) Cell. A base station may transmit, to the UE, an uplink DCI triggering the A-CSI report on either the P (S) Cell or the SCell. In other words, the uplink DCI triggering the A-CSI report may be transmitted on either the P (S) Cell associated with the first component carrier or the SCell associated with the second component carrier. The uplink DCI may schedule the A-CSI report for transmission on the P (S) Cell based at least in part on the cross-carrier scheduling from the SCell to the P (S) Cell. In other words, the UE may transmit the A-CSI report using a PUSCH on the P (S) Cell, where the A-CSI report may be scheduled by the uplink DCI received from the base station on either the P (S) Cell or the SCell. The PUSCH may or may not carry uplink data. The A-CSI report may indicate CSI measurements of the CSI-RSs associated with each of the four component carriers (e.g., four CSI measurements corresponding to four CSI-RSs, respectively) .
In some aspects, the UE may receive, from the base station, a CSI measurement configuration that configures the CSI-RSs associated with each of the four component carriers. The UE may receive, from the base station, a separate CSI measurement configuration in each of the first component carrier (e.g., the P (S) Cell) , the second component carrier (e.g., the SCell) , the third component carrier, and the fourth component carrier.
In some aspects, when the cross-carrier scheduling from the SCell to the P (S) Cell is configured, the CSI measurement configuration on either the P (S) Cell or the SCell may indicate a CSI report configuration (e.g., csi-ReportConfigToAddModList) , a report trigger size (e.g., reportTriggerSize) , and/or an aperiodic trigger state list (e.g., aperiodicTriggerStateList) . In this case, a CSI measurement configuration on only one of the P (S) Cell or the SCell may indicate the CSI report configuration, the report trigger size, and/or the aperiodic trigger state list.
In some aspects, when the uplink DCI triggers the A-CSI report on a P (S) Cell PUSCH, regardless of on which of the P (S) Cell or SCell the UE monitors/detects the UL DCI, the UE may refer to the CSI report configuration, the report trigger size, and/or the aperiodic trigger state list indicated in the CSI measurement configuration on either the P (S) Cell or the SCell. For example, when the CSI report configuration, the report trigger size, and/or the aperiodic trigger state list are indicated in the CSI measurement configuration on the SCell but are not indicated in the CSI measurement configuration on the P (S) Cell, the uplink DCI received on the P (S) Cell and the SCell triggering the A-CSI report on a PUSCH on the P (S) Cell  may be based at least in part on the CSI report configuration, the report trigger size, and/or the aperiodic trigger state list indicated in the CSI measurement configuration on the SCell.
In some aspects, when the cross-carrier scheduling from the SCell to the P (S) Cell is configured, the CSI measurement configuration on the P (S) Cell and the CSI measurement configuration on the SCell may each indicate a same CSI report configuration, a same report trigger size, and/or a same aperiodic trigger state list. In this case, the CSI measurement configuration on both the P (S) Cell and the SCell may indicate the same parameters, such as the same CSI report configuration, the same report trigger size, and/or the same aperiodic trigger state list. The P (S) Cell and the SCell may be associated with the same report trigger sizes, the same CSI report configurations, and/or the same aperiodic trigger state lists. In some aspects, the UE may use a CSI report configuration, a report trigger size, and/or an aperiodic trigger state list indicated in a CSI measurement configuration of a serving cell (e.g., the P (S) Cell or the SCell) in which the uplink DCI triggering the A-CSI report is detected. However, regardless of whether the UE detects the uplink DCI triggering the A-CSI report on the P (S) Cell or the SCell, the CSI report configuration, the report trigger size, and/or the aperiodic trigger state list may be the same.
In some aspects, when the cross-carrier scheduling from the SCell to the P (S) Cell is configured, the CSI measurement configuration on the P (S) Cell and the CSI measurement configuration on the SCell may each indicate a same report trigger size. The CSI measurement configuration on the P (S) Cell and the CSI measurement configuration on the SCell may indicate different CSI report configurations and different aperiodic trigger state lists. In other words, the report trigger size may be the same between the CSI measurement configuration on the P (S) Cell and the CSI measurement configuration on the SCell, but the CSI report configuration and the aperiodic trigger state list may be different between the CSI measurement configuration on the P (S) Cell and the CSI measurement configuration on the SCell. The P (S) Cell and the SCell may be associated with the same report trigger sizes, but different CSI report configurations and different aperiodic trigger state lists. In some aspects, depending on which of the P (S) Cell or the SCell the UE monitors/detects the uplink DCI triggering the A-CSI report, a trigger state pointed by an A-CSI request field value and a CSI measurement and/or reporting procedure may be different. However, the report trigger size (or trigger field size) may be aligned between uplink DCIs in the P (S) Cell and the SCell, which may simplify a UE PDCCH decoding procedure.
In some aspects, when the cross-carrier scheduling from the SCell to the P (S) Cell is configured, the CSI measurement configuration on the P (S) Cell and the CSI measurement configuration on the SCell may indicate different report trigger sizes, different CSI report configurations, and/or different aperiodic trigger state lists. In other words, the report trigger size, the CSI report configuration, and/or the aperiodic trigger state list may be different  between the CSI measurement configuration on the P (S) Cell and the CSI measurement configuration on the SCell. The P (S) Cell and the SCell may be associated with different report trigger sizes, different CSI report configurations, and/or different aperiodic trigger state lists. In some aspects, depending on which of the P (S) Cell or the SCell the UE monitors/detects the uplink DCI triggering the A-CSI report, a CSI measurement and/or reporting procedure may be different. In some aspects, with respect to a DCI payload size, different uplink DCIs triggering A-CSI reports may have different sizes, where a more optimized DCI size (e.g., a larger DCI size) may increase a complexity at the UE and/or the base station. For example, the uplink DCI on the P (S) Cell for the P (S) Cell PUSCH may have a 2-bit A-CSI request field, whereas the uplink DCI on the SCell for the P (S) Cell PUSCH may have a 4-bit A-CSI request field.
As indicated above, Fig. 6 is provided as an example. Other examples may differ from what is described with regard to Fig. 6.
Fig. 7 is a diagram illustrating an example 700 associated with A-CSI reporting for cross-carrier scheduling, in accordance with the present disclosure.
As shown in Fig. 7, a UE may measure a CSI on a plurality of component carriers, such as a first component carrier (CC#1) , a second component carrier (CC#2) , a third component carrier (CC#3) , and a fourth component carrier (CC#4) , based at least in part on CSI-RSs associated with each of the four component carriers. The first component carrier may be associated with a P (S) Cell, and the second component carrier may be associated with an SCell. A cross-carrier scheduling may be configured from the SCell to the P (S) Cell, and a cross-carrier scheduling may be configured from the SCell to the third component carrier. A self-scheduling may be configured for the SCell. A base station may transmit, to the UE, a first uplink DCI triggering a first A-CSI report on either the P (S) Cell or the SCell. The base station may transmit, to the UE, a second uplink DCI triggering a second A-CSI report on the SCell. The base station may transmit, to the UE, a third uplink DCI triggering a third A-CSI report on the SCell. The UE may transmit a PUSCH associated with the first A-CSI report on the PS (S) Cell. The UE may transmit a PUSCH associated with the second A-CSI report on the SCell. The UE may transmit a PUSCH associated with the third A-CSI report on the third component carrier. The first A-CSI report, the second A-CSI report, and the third A-CSI report may indicate CSI measurements of the CSI-RSs associated with each of the four component carriers.
In some aspects, for cross-carrier scheduling, one scheduling cell may be configured to cross-carrier schedule to more than one carrier. For example, the SCell (the scheduling cell) may cross-carrier schedule to the P (S) Cell and the third component carrier. Further, self-scheduling may be configured to the scheduling carrier. For example, the SCell (the scheduling cell) may self-schedule the SCell itself. In this example, the SCell may schedule three cells including itself.
Using past approaches, CSI report parameters may be configured for a scheduling cell and may be common for different scheduled cells from the same scheduling cell. For example, CSI report parameters may be configured for the SCell (the scheduling cell) , and these CSI report parameters may be common for both the P (S) Cell and the third component carrier (the different scheduled cells) . In other words, the same CSI report parameters may be used by the SCell, the P (S) Cell, and the third component carrier. However, uplink DCIs for different scheduled cells may be monitored/detected using different PDCCH decoding procedures. As a result, having common CSI report parameters for the different scheduled cells from the same scheduling cell may not be useful, but rather may be restrictive and result in less flexibility.
In some aspects, different CSI measurement configuration parameters may be enabled for different scheduled cells from the same scheduling cell. In some aspects, multiple sets of parameters may be supported in a CSI measurement configuration of a cell in which uplink DCI is monitored, where each set of parameters may be associated with each scheduled cell from the same scheduling cell. In other words, different sets of parameters may be associated with different scheduled cells from the same scheduling cell. Each set of parameters may include a report trigger size, a CSI report configuration, and/or an aperiodic trigger state list.
As an example, the SCell (the scheduling cell) may be configured with a first set of parameters in a CSI measurement configuration, where the first set of parameters may include the report trigger size, the CSI report configuration, and/or the aperiodic trigger state list. The P (S) Cell and the third component carrier (the different scheduled cells) may be configured with a second set of parameters in a CSI measurement configuration and a third set of parameters in a CSI measurement configuration, respectively, where the second set of parameters and the third set of parameters each include the report trigger size, the CSI report configuration, and/or the aperiodic trigger state list. The SCell may also be a scheduled cell due to self-scheduling. The first set of parameters associated with the SCell, the second set of parameters associated with the P (S) Cell, and the third set of parameters associated with the third component carrier may be different with respect to each other. In other words, parameters associated with the scheduling cell may not be common with parameters associated with the scheduled cells.
In some aspects, a CSI measurement configuration may be used to configure CSI-RSs belonging to a serving cell in which the CSI measurement configuration is included, CSI reports to be transmitted on a PUCCH on the serving cell in which the CSI measurement configuration is included, and DCI-triggered CSI reports on a PUSCH on the serving cell in which the CSI measurement configuration is included. In other words, a set of parameters (e.g., report trigger size, CSI report configuration, and/or aperiodic trigger state list) in a CSI measurement configuration used to configure the CSI-RSs may be based at least in part on a CSI measurement configuration of a scheduled cell in which an A-CSI report (e.g., the DCI- triggered CSI report) is transmitted (e.g., the P (S) Cell, the SCell, or the third component carrier) instead of a scheduling cell (e.g., the SCell) .
As indicated above, Fig. 7 is provided as an example. Other examples may differ from what is described with regard to Fig. 7.
Fig. 8 is a diagram illustrating an example process 800 performed, for example, by a UE, in accordance with the present disclosure. Example process 800 is an example where the UE (e.g., UE 120) performs operations associated with A-CSI reporting for cross-carrier scheduling.
As shown in Fig. 8, in some aspects, process 800 may include receiving, from a base station, a CSI measurement configuration via a P (S) Cell (block 810) . For example, the UE (e.g., using reception component 1002, depicted in Fig. 10) may receive, from a base station, a CSI measurement configuration via a P (S) Cell, as described above.
As further shown in Fig. 8, in some aspects, process 800 may include receiving, from the base station, a CSI measurement configuration via an SCell (block 820) . For example, the UE (e.g., using reception component 1002, depicted in Fig. 10) may receive, from the base station, a CSI measurement configuration via an SCell, as described above.
As further shown in Fig. 8, in some aspects, process 800 may include receiving, from the base station and via the SCell, uplink DCI that schedules an A-CSI report in an uplink channel of the P (S) Cell based at least in part on a cross-carrier scheduling (block 830) . For example, the UE (e.g., using reception component 1002, depicted in Fig. 10) may receive, from the base station and via the SCell, uplink DCI that schedules an A-CSI report in an uplink channel of the P (S) Cell based at least in part on a cross-carrier scheduling, as described above.
As further shown in Fig. 8, in some aspects, process 800 may include transmitting, to the base station and via the uplink channel of the P (S) Cell, the A-CSI report based at least in part on the uplink DCI and one or more of the CSI measurement configuration associated with the P (S) Cell or the CSI measurement configuration associated with the SCell (block 840) . For example, the UE (e.g., using transmission component 1004, depicted in Fig. 10) may transmit, to the base station and via the uplink channel of the P (S) Cell, the A-CSI report based at least in part on the uplink DCI and one or more of the CSI measurement configuration associated with the P (S) Cell or the CSI measurement configuration associated with the SCell, as described above.
Process 800 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
In a first aspect, the CSI measurement configuration associated with the P (S) Cell or the CSI measurement configuration associated with the SCell indicates a CSI report  configuration, a report trigger size, and an aperiodic trigger state list, and process 800 further includes determining the CSI report configuration, the report trigger size, and the aperiodic trigger state based at least in part on the CSI measurement configuration associated with the P (S) Cell or the CSI measurement configuration regardless of which of the P (S) Cell or the SCell the UE monitors for the uplink DCI that triggers the A-CSI report using the uplink channel of the P (S) Cell.
In a second aspect, alone or in combination with the first aspect, the CSI measurement configuration associated with the P (S) Cell and the CSI measurement configuration associated with the SCell each indicate a CSI report configuration, a report trigger size, and an aperiodic trigger state list, wherein parameter values associated with the CSI report configuration, the report trigger size, and the aperiodic trigger state list are identical between the CSI measurement configuration associated with the P (S) Cell and the CSI measurement configuration associated with the SCell.
In a third aspect, alone or in combination with one or more of the first and second aspects, the CSI measurement configuration associated with the P (S) Cell and the CSI measurement configuration associated with the SCell each indicate a CSI report configuration, a report trigger size, and an aperiodic trigger state list, wherein a parameter value associated with the report trigger size is identical between the CSI measurement configuration associated with the P (S) Cell and the CSI measurement configuration associated with the SCell, and parameter values associated with the CSI report configuration and the aperiodic trigger state list are potentially different between the CSI measurement configuration associated with the P (S) Cell and the CSI measurement configuration associated with the SCell.
In a fourth aspect, alone or in combination with one or more of the first through third aspects, the CSI measurement configuration associated with the P (S) Cell and the CSI measurement configuration associated with the SCell each indicate a CSI report configuration, a report trigger size, and an aperiodic trigger state list, wherein parameter values associated with the CSI report configuration, the report trigger size, and the aperiodic trigger state list are potentially different between the CSI measurement configuration associated with the P (S) Cell and the CSI measurement configuration associated with the SCell.
In a fifth aspect, alone or in combination with one or more of the first through fourth aspects, process 800 includes receiving the uplink DCI via the SCell or the P (S) Cell, wherein the uplink DCI received via the SCell is associated with a first DCI payload size, and the uplink DCI received via the P (S) Cell is associated with a second DCI payload size that is different from the first DCI payload size.
In a sixth aspect, alone or in combination with one or more of the first through fifth aspects, the uplink DCI is a first uplink DCI and the A-CSI report is a first A-CSI report, and  process 800 further includes receiving, from the base station and via the SCell, a second uplink DCI that schedules a second A-CSI report in an uplink channel of the SCell based at least in part on a self-scheduling or an uplink channel of a third cell based at least in part on the cross-carrier scheduling, wherein the P (S) Cell, the SCell, and the third cell are associated with different CSI measurement configuration parameters, wherein the SCell corresponds to a scheduling cell, and one or more of the P (S) Cell, the SCell, or the third cell are associated with scheduled cells.
In a seventh aspect, alone or in combination with one or more of the first through sixth aspects, process 800 includes the CSI measurement configuration associated with the P (S) Cell supports a first set of CSI measurement configuration parameters and the CSI measurement configuration associated with the SCell supports a second set of CSI measurement configuration parameters, wherein each of the first set of CSI measurement configuration parameters and the second set of CSI measurement configuration parameters indicates a CSI report configuration, a report trigger size, and an aperiodic trigger state list, or the P (S) Cell, the SCell, and the third cell are associated with different CSI measurement configuration parameters based at least in part on CSI measurement configuration parameters being associated with a scheduled cell in which the A-CSI report is transmitted instead of the scheduling cell.
Although Fig. 8 shows example blocks of process 800, in some aspects, process 800 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 8. Additionally, or alternatively, two or more of the blocks of process 800 may be performed in parallel.
Fig. 9 is a diagram illustrating an example process 900 performed, for example, by a base station, in accordance with the present disclosure. Example process 900 is an example where the base station (e.g., base station 110) performs operations associated with A-CSI reporting for cross-carrier scheduling.
As shown in Fig. 9, in some aspects, process 900 may include transmitting, to a UE, a CSI measurement configuration via a P (S) Cell (block 910) . For example, the base station (e.g., using transmission component 1104, depicted in Fig. 11) may transmit, to a UE, a CSI measurement configuration via a P (S) Cell, as described above.
As further shown in Fig. 9, in some aspects, process 900 may include transmitting, to the UE, a CSI measurement configuration via an SCell (block 920) . For example, the base station (e.g., using transmission component 1104, depicted in Fig. 11) may transmit, to the UE, a CSI measurement configuration via an SCell, as described above.
As further shown in Fig. 9, in some aspects, process 900 may include transmitting, to the UE and via the SCell, uplink DCI that schedules an A-CSI report in an uplink channel of the P (S) Cell based at least in part on a cross-carrier scheduling (block 930) . For example, the base station (e.g., using transmission component 1104, depicted in Fig. 11) may transmit, to the UE  and via the SCell, uplink DCI that schedules an A-CSI report in an uplink channel of the P (S) Cell based at least in part on a cross-carrier scheduling, as described above.
As further shown in Fig. 9, in some aspects, process 900 may include receiving, from the UE and via the uplink channel of the P (S) Cell, the A-CSI report based at least in part on the uplink DCI and one or more of the CSI measurement configuration associated with the P (S) Cell or the CSI measurement configuration associated with the SCell (block 940) . For example, the base station (e.g., using reception component 1102, depicted in Fig. 11) may receive, from the UE and via the uplink channel of the P (S) Cell, the A-CSI report based at least in part on the uplink DCI and one or more of the CSI measurement configuration associated with the P (S) Cell or the CSI measurement configuration associated with the SCell, as described above.
Process 900 may include additional aspects, such as any single aspect or any combination of aspects described below and/or in connection with one or more other processes described elsewhere herein.
In a first aspect, the CSI measurement configuration associated with the P (S) Cell or the CSI measurement configuration associated with the SCell indicates a CSI report configuration, a report trigger size, and an aperiodic trigger state list.
In a second aspect, alone or in combination with the first aspect, the CSI measurement configuration associated with the P (S) Cell and the CSI measurement configuration associated with the SCell each indicate a CSI report configuration, a report trigger size, and an aperiodic trigger state list, wherein parameter values associated with the CSI report configuration, the report trigger size, and the aperiodic trigger state list are identical between the CSI measurement configuration associated with the P (S) Cell and the CSI measurement configuration associated with the SCell.
In a third aspect, alone or in combination with one or more of the first and second aspects, the CSI measurement configuration associated with the P (S) Cell and the CSI measurement configuration associated with the SCell each indicate a CSI report configuration, a report trigger size, and an aperiodic trigger state list, wherein a parameter value associated with the report trigger size is identical between the CSI measurement configuration associated with the P (S) Cell and the CSI measurement configuration associated with the SCell, and parameter values associated with the CSI report configuration and the aperiodic trigger state list are potentially different between the CSI measurement configuration associated with the P (S) Cell and the CSI measurement configuration associated with the SCell.
In a fourth aspect, alone or in combination with one or more of the first through third aspects, the CSI measurement configuration associated with the P (S) Cell and the CSI measurement configuration associated with the SCell each indicate a CSI report configuration, a report trigger size, and an aperiodic trigger state list, wherein parameter values associated with  the CSI report configuration, the report trigger size, and the aperiodic trigger state list are potentially different between the CSI measurement configuration associated with the P (S) Cell and the CSI measurement configuration associated with the SCell.
In a fifth aspect, alone or in combination with one or more of the first through fourth aspects, the uplink DCI is a first uplink DCI and the A-CSI report is a first A-CSI report, and process 900 further includes transmitting, to the UE and via the SCell, a second uplink DCI that schedules a second A-CSI report in an uplink channel of the SCell based at least in part on a self-scheduling or an uplink channel of a third cell based at least in part on the cross-carrier scheduling, wherein the P (S) Cell, the SCell, and the third cell are associated with different CSI measurement configuration parameters, wherein the SCell corresponds to a scheduling cell, and one or more of the P (S) Cell, the SCell, or the third cell are associated with scheduled cells.
Although Fig. 9 shows example blocks of process 900, in some aspects, process 900 may include additional blocks, fewer blocks, different blocks, or differently arranged blocks than those depicted in Fig. 9. Additionally, or alternatively, two or more of the blocks of process 900 may be performed in parallel.
Fig. 10 is a diagram of an example apparatus 1000 for wireless communication. The apparatus 1000 may be a UE, or a UE may include the apparatus 1000. In some aspects, the apparatus 1000 includes a reception component 1002 and a transmission component 1004, which may be in communication with one another (for example, via one or more buses and/or one or more other components) . As shown, the apparatus 1000 may communicate with another apparatus 1006 (such as a UE, a base station, or another wireless communication device) using the reception component 1002 and the transmission component 1004.
In some aspects, the apparatus 1000 may be configured to perform one or more operations described herein in connection with Figs. 5-7. Additionally, or alternatively, the apparatus 1000 may be configured to perform one or more processes described herein, such as process 800 of Fig. 8. In some aspects, the apparatus 1000 and/or one or more components shown in Fig. 10 may include one or more components of the UE described in connection with Fig. 2. Additionally, or alternatively, one or more components shown in Fig. 10 may be implemented within one or more components described in connection with Fig. 2. Additionally, or alternatively, one or more components of the set of components may be implemented at least in part as software stored in a memory. For example, a component (or a portion of a component) may be implemented as instructions or code stored in a non-transitory computer-readable medium and executable by a controller or a processor to perform the functions or operations of the component.
The reception component 1002 may receive communications, such as reference signals, control information, data communications, or a combination thereof, from the apparatus  1006. The reception component 1002 may provide received communications to one or more other components of the apparatus 1000. In some aspects, the reception component 1002 may perform signal processing on the received communications (such as filtering, amplification, demodulation, analog-to-digital conversion, demultiplexing, deinterleaving, de-mapping, equalization, interference cancellation, or decoding, among other examples) , and may provide the processed signals to the one or more other components of the apparatus 1000. In some aspects, the reception component 1002 may include one or more antennas, a modem, a demodulator, a MIMO detector, a receive processor, a controller/processor, a memory, or a combination thereof, of the UE described in connection with Fig. 2.
The transmission component 1004 may transmit communications, such as reference signals, control information, data communications, or a combination thereof, to the apparatus 1006. In some aspects, one or more other components of the apparatus 1000 may generate communications and may provide the generated communications to the transmission component 1004 for transmission to the apparatus 1006. In some aspects, the transmission component 1004 may perform signal processing on the generated communications (such as filtering, amplification, modulation, digital-to-analog conversion, multiplexing, interleaving, mapping, or encoding, among other examples) , and may transmit the processed signals to the apparatus 1006. In some aspects, the transmission component 1004 may include one or more antennas, a modem, a modulator, a transmit MIMO processor, a transmit processor, a controller/processor, a memory, or a combination thereof, of the UE described in connection with Fig. 2. In some aspects, the transmission component 1004 may be co-located with the reception component 1002 in a transceiver.
The reception component 1002 may receive, from a base station, a CSI measurement configuration via a P (S) Cell. The reception component 1002 may receive, from the base station, a CSI measurement configuration via an SCell. The reception component 1002 may receive, from the base station and via the SCell, uplink DCI that schedules an A-CSI report in an uplink channel of the P (S) Cell based at least in part on a cross-carrier scheduling. The transmission component 1004 may transmit, to the base station and via the uplink channel of the P (S) Cell, the A-CSI report based at least in part on the uplink DCI and one or more of the CSI measurement configuration associated with the P (S) Cell or the CSI measurement configuration associated with the SCell.
The number and arrangement of components shown in Fig. 10 are provided as an example. In practice, there may be additional components, fewer components, different components, or differently arranged components than those shown in Fig. 10. Furthermore, two or more components shown in Fig. 10 may be implemented within a single component, or a single component shown in Fig. 10 may be implemented as multiple, distributed components. Additionally, or alternatively, a set of (one or more) components shown in Fig. 10 may perform  one or more functions described as being performed by another set of components shown in Fig. 10.
Fig. 11 is a diagram of an example apparatus 1100 for wireless communication. The apparatus 1100 may be a base station, or a base station may include the apparatus 1100. In some aspects, the apparatus 1100 includes a reception component 1102 and a transmission component 1104, which may be in communication with one another (for example, via one or more buses and/or one or more other components) . As shown, the apparatus 1100 may communicate with another apparatus 1106 (such as a UE, a base station, or another wireless communication device) using the reception component 1102 and the transmission component 1104.
In some aspects, the apparatus 1100 may be configured to perform one or more operations described herein in connection with Figs. 5-7. Additionally, or alternatively, the apparatus 1100 may be configured to perform one or more processes described herein, such as process 900 of Fig. 9. In some aspects, the apparatus 1100 and/or one or more components shown in Fig. 11 may include one or more components of the base station described in connection with Fig. 2. Additionally, or alternatively, one or more components shown in Fig. 11 may be implemented within one or more components described in connection with Fig. 2. Additionally, or alternatively, one or more components of the set of components may be implemented at least in part as software stored in a memory. For example, a component (or a portion of a component) may be implemented as instructions or code stored in a non-transitory computer-readable medium and executable by a controller or a processor to perform the functions or operations of the component.
The reception component 1102 may receive communications, such as reference signals, control information, data communications, or a combination thereof, from the apparatus 1106. The reception component 1102 may provide received communications to one or more other components of the apparatus 1100. In some aspects, the reception component 1102 may perform signal processing on the received communications (such as filtering, amplification, demodulation, analog-to-digital conversion, demultiplexing, deinterleaving, de-mapping, equalization, interference cancellation, or decoding, among other examples) , and may provide the processed signals to the one or more other components of the apparatus 1100. In some aspects, the reception component 1102 may include one or more antennas, a modem, a demodulator, a MIMO detector, a receive processor, a controller/processor, a memory, or a combination thereof, of the base station described in connection with Fig. 2.
The transmission component 1104 may transmit communications, such as reference signals, control information, data communications, or a combination thereof, to the apparatus 1106. In some aspects, one or more other components of the apparatus 1100 may generate communications and may provide the generated communications to the transmission component  1104 for transmission to the apparatus 1106. In some aspects, the transmission component 1104 may perform signal processing on the generated communications (such as filtering, amplification, modulation, digital-to-analog conversion, multiplexing, interleaving, mapping, or encoding, among other examples) , and may transmit the processed signals to the apparatus 1106. In some aspects, the transmission component 1104 may include one or more antennas, a modem, a modulator, a transmit MIMO processor, a transmit processor, a controller/processor, a memory, or a combination thereof, of the base station described in connection with Fig. 2. In some aspects, the transmission component 1104 may be co-located with the reception component 1102 in a transceiver.
The transmission component 1104 may transmit, to a UE, a CSI measurement configuration via a P (S) Cell. The transmission component 1104 may transmit, to the UE, a CSI measurement configuration via an SCell. The transmission component 1104 may transmit, to the UE and via the SCell, uplink DCI that schedules an A-CSI report in an uplink channel of the P (S) Cell based at least in part on a cross-carrier scheduling. The reception component 1102 may receive, from the UE and via the uplink channel of the P (S) Cell, the A-CSI report based at least in part on the uplink DCI and one or more of the CSI measurement configuration associated with the P (S) Cell or the CSI measurement configuration associated with the SCell.
The number and arrangement of components shown in Fig. 11 are provided as an example. In practice, there may be additional components, fewer components, different components, or differently arranged components than those shown in Fig. 11. Furthermore, two or more components shown in Fig. 11 may be implemented within a single component, or a single component shown in Fig. 11 may be implemented as multiple, distributed components. Additionally, or alternatively, a set of (one or more) components shown in Fig. 11 may perform one or more functions described as being performed by another set of components shown in Fig. 11.
The following provides an overview of some Aspects of the present disclosure:
Aspect 1: A method of wireless communication performed by a user equipment (UE) , comprising: receiving, from a base station, a channel state information (CSI) measurement configuration via a primary cell (PCell) or a primary secondary cell (PSCell) (P (S) Cell) ; receiving, from the base station, a CSI measurement configuration via a secondary cell (SCell) ; receiving, from the base station and via the SCell, uplink downlink control information (DCI) that schedules an aperiodic CSI (A-CSI) report in an uplink channel of the P (S) Cell based at least in part on a cross-carrier scheduling; and transmitting, to the base station and via the uplink channel of the P (S) Cell, the A-CSI report based at least in part on the uplink DCI and one or more of the CSI measurement configuration associated with the P (S) Cell or the CSI measurement configuration associated with the SCell.
Aspect 2: The method of Aspect 1, wherein the CSI measurement configuration associated with the P (S) Cell or the CSI measurement configuration associated with the SCell indicates: a CSI report configuration, a report trigger size, and an aperiodic trigger state list, and further comprising determining the CSI report configuration, the report trigger size, and the aperiodic trigger state based at least in part on the CSI measurement configuration associated with the P (S) Cell or the CSI measurement configuration regardless of which of the P (S) Cell or the SCell the UE monitors for the uplink DCI that triggers the A-CSI report using the uplink channel of the P (S) Cell.
Aspect 3: The method of any of Aspects 1 through 2, wherein the CSI measurement configuration associated with the P (S) Cell and the CSI measurement configuration associated with the SCell each indicate: a CSI report configuration, a report trigger size, and an aperiodic trigger state list, wherein parameter values associated with the CSI report configuration, the report trigger size, and the aperiodic trigger state list are identical between the CSI measurement configuration associated with the P (S) Cell and the CSI measurement configuration associated with the SCell.
Aspect 4: The method of any of Aspects 1 through 3, wherein the CSI measurement configuration associated with the P (S) Cell and the CSI measurement configuration associated with the SCell each indicate: a CSI report configuration, a report trigger size, and an aperiodic trigger state list, wherein a parameter value associated with the report trigger size is identical between the CSI measurement configuration associated with the P (S) Cell and the CSI measurement configuration associated with the SCell, and wherein parameter values associated with the CSI report configuration and the aperiodic trigger state list are potentially different between the CSI measurement configuration associated with the P (S) Cell and the CSI measurement configuration associated with the SCell.
Aspect 5: The method of any of Aspects 1 through 4, wherein the CSI measurement configuration associated with the P (S) Cell and the CSI measurement configuration associated with the SCell each indicate: a CSI report configuration, a report trigger size, and an aperiodic trigger state list, wherein parameter values associated with the CSI report configuration, the report trigger size, and the aperiodic trigger state list are potentially different between the CSI measurement configuration associated with the P (S) Cell and the CSI measurement configuration associated with the SCell.
Aspect 6: The method of any of Aspects 1 through 5, wherein the CSI measurement configuration associated with the P (S) Cell and the CSI measurement configuration associated with the SCell each indicate: a CSI report configuration, a report trigger size, and an aperiodic trigger state list, wherein one or more parameter values associated with the CSI report configuration, the report trigger size, and the aperiodic trigger state list are potentially different  between the CSI measurement configuration associated with the P (S) Cell and the CSI measurement configuration associated with the SCell, and wherein the one or more processors are further configured to determine the CSI report configuration, the report trigger size, and the aperiodic trigger state of a corresponding P (S) Cell or SCell depending on which of the P (S) Cell or the SCell the UE detects the uplink DCI triggering the A-CSI report using the uplink channel of the P (S) Cell.
Aspect 7: The method of any of Aspects 1 through 6, wherein receiving the uplink DCI comprises receiving the uplink DCI via the SCell or the P (S) Cell, wherein the uplink DCI received via the SCell is associated with a first DCI payload size, and wherein the uplink DCI received via the P (S) Cell is associated with a second DCI payload size that is different from the first DCI payload size.
Aspect 8: The method of any of Aspects 1 through 7, wherein the uplink DCI is a first uplink DCI and the A-CSI report is a first A-CSI report, and further comprising: receiving, from the base station and via the SCell, a second uplink DCI that schedules a second A-CSI report in an uplink channel of the SCell based at least in part on a self-scheduling or an uplink channel of a third cell based at least in part on the cross-carrier scheduling, wherein the P (S) Cell, the SCell, and the third cell are associated with different CSI measurement configuration parameters, wherein the SCell corresponds to a scheduling cell, and one or more of the P (S) Cell, the SCell, or the third cell are associated with scheduled cells.
Aspect 9: The method of any of Aspects 1 through 8, wherein: the CSI measurement configuration associated with the P (S) Cell supports a first set of CSI measurement configuration parameters and the CSI measurement configuration associated with the SCell supports a second set of CSI measurement configuration parameters, wherein each of the first set of CSI measurement configuration parameters and the second set of CSI measurement configuration parameters indicates: a CSI report configuration, a report trigger size, and an aperiodic trigger state list.
Aspect 10: The method of any of Aspects 1 through 9, wherein the P (S) Cell, the SCell, and the third cell are associated with different CSI measurement configuration parameters based at least in part on CSI measurement configuration parameters being associated with a scheduled cell in which the A-CSI report is transmitted instead of the scheduling cell.
Aspect 11: A method of wireless communication performed by a base station, comprising: transmitting, to a user equipment (UE) , a channel state information (CSI) measurement configuration via a primary cell (PCell) or a primary secondary cell (PSCell) (P (S) Cell) ; transmitting, to the UE, a CSI measurement configuration via a secondary cell (SCell) ; transmitting, to the UE and via the SCell, uplink downlink control information (DCI) that schedules an aperiodic CSI (A-CSI) report in an uplink channel of the P (S) Cell based at  least in part on a cross-carrier scheduling; and receiving, from the UE and via the uplink channel of the P (S) Cell, the A-CSI report based at least in part on the uplink DCI and one or more of the CSI measurement configuration associated with the P (S) Cell or the CSI measurement configuration associated with the SCell.
Aspect 12: The method of Aspect 11, wherein the CSI measurement configuration associated with the P (S) Cell or the CSI measurement configuration associated with the SCell indicates: a CSI report configuration, a report trigger size, and an aperiodic trigger state list.
Aspect 13: The method of any of Aspects 11 through 12, wherein the CSI measurement configuration associated with the P (S) Cell and the CSI measurement configuration associated with the SCell each indicate: a CSI report configuration, a report trigger size, and an aperiodic trigger state list, wherein parameter values associated with the CSI report configuration, the report trigger size, and the aperiodic trigger state list are identical between the CSI measurement configuration associated with the P (S) Cell and the CSI measurement configuration associated with the SCell.
Aspect 14: The method of any of Aspects 11 through 13, wherein the CSI measurement configuration associated with the P (S) Cell and the CSI measurement configuration associated with the SCell each indicate: a CSI report configuration, a report trigger size, and an aperiodic trigger state list, wherein a parameter value associated with the report trigger size is identical between the CSI measurement configuration associated with the P (S) Cell and the CSI measurement configuration associated with the SCell, and wherein parameter values associated with the CSI report configuration and the aperiodic trigger state list are potentially different between the CSI measurement configuration associated with the P (S) Cell and the CSI measurement configuration associated with the SCell.
Aspect 15: The method of any of Aspects 11 through 14, wherein the CSI measurement configuration associated with the P (S) Cell and the CSI measurement configuration associated with the SCell each indicate: a CSI report configuration, a report trigger size, and an aperiodic trigger state list, wherein parameter values associated with the CSI report configuration, the report trigger size, and the aperiodic trigger state list are potentially different between the CSI measurement configuration associated with the P (S) Cell and the CSI measurement configuration associated with the SCell.
Aspect 16: The method of any of Aspects 11 through 15, wherein the uplink DCI is a first uplink DCI and the A-CSI report is a first A-CSI report, and further comprising: transmitting, to the UE and via the SCell, a second uplink DCI that schedules a second A-CSI report in an uplink channel of the SCell based at least in part on a self-scheduling or an uplink channel of a third cell based at least in part on the cross-carrier scheduling, wherein the P (S) Cell, the SCell, and the third cell are associated with different CSI measurement  configuration parameters, wherein the SCell corresponds to a scheduling cell, and wherein one or more of the P (S) Cell, the SCell, or the third cell are associated with scheduled cells.
Aspect 17: An apparatus for wireless communication at a device, comprising a processor; memory coupled with the processor; and instructions stored in the memory and executable by the processor to cause the apparatus to perform the method of one or more of Aspects 1-10.
Aspect 18: A device for wireless communication, comprising a memory and one or more processors coupled to the memory, the one or more processors configured to perform the method of one or more of Aspects 1-10.
Aspect 19: An apparatus for wireless communication, comprising at least one means for performing the method of one or more of Aspects 1-10.
Aspect 20: A non-transitory computer-readable medium storing code for wireless communication, the code comprising instructions executable by a processor to perform the method of one or more of Aspects 1-10.
Aspect 21: A non-transitory computer-readable medium storing a set of instructions for wireless communication, the set of instructions comprising one or more instructions that, when executed by one or more processors of a device, cause the device to perform the method of one or more of Aspects 1-10.
Aspect 22: An apparatus for wireless communication at a device, comprising a processor; memory coupled with the processor; and instructions stored in the memory and executable by the processor to cause the apparatus to perform the method of one or more of Aspects 11-15.
Aspect 23: A device for wireless communication, comprising a memory and one or more processors coupled to the memory, the one or more processors configured to perform the method of one or more of Aspects 11-15.
Aspect 24: An apparatus for wireless communication, comprising at least one means for performing the method of one or more of Aspects 11-15.
Aspect 25: A non-transitory computer-readable medium storing code for wireless communication, the code comprising instructions executable by a processor to perform the method of one or more of Aspects 11-15.
Aspect 26: A non-transitory computer-readable medium storing a set of instructions for wireless communication, the set of instructions comprising one or more instructions that, when executed by one or more processors of a device, cause the device to perform the method of one or more of Aspects 11-15.
The foregoing disclosure provides illustration and description but is not intended to be exhaustive or to limit the aspects to the precise forms disclosed. Modifications and variations may be made in light of the above disclosure or may be acquired from practice of the aspects.
As used herein, the term “component” is intended to be broadly construed as hardware and/or a combination of hardware and software. “Software” shall be construed broadly to mean instructions, instruction sets, code, code segments, program code, programs, subprograms, software modules, applications, software applications, software packages, routines, subroutines, objects, executables, threads of execution, procedures, and/or functions, among other examples, whether referred to as software, firmware, middleware, microcode, hardware description language, or otherwise. As used herein, a “processor” is implemented in hardware and/or a combination of hardware and software. It will be apparent that systems and/or methods described herein may be implemented in different forms of hardware and/or a combination of hardware and software. The actual specialized control hardware or software code used to implement these systems and/or methods is not limiting of the aspects. Thus, the operation and behavior of the systems and/or methods are described herein without reference to specific software code, since those skilled in the art will understand that software and hardware can be designed to implement the systems and/or methods based, at least in part, on the description herein.
As used herein, “satisfying a threshold” may, depending on the context, refer to a value being greater than the threshold, greater than or equal to the threshold, less than the threshold, less than or equal to the threshold, equal to the threshold, not equal to the threshold, or the like.
Even though particular combinations of features are recited in the claims and/or disclosed in the specification, these combinations are not intended to limit the disclosure of various aspects. Many of these features may be combined in ways not specifically recited in the claims and/or disclosed in the specification. The disclosure of various aspects includes each dependent claim in combination with every other claim in the claim set. As used herein, a phrase referring to “at least one of” a list of items refers to any combination of those items, including single members. As an example, “at least one of: a, b, or c” is intended to cover a, b, c, a + b, a + c, b + c, and a + b + c, as well as any combination with multiples of the same element (e.g., a + a, a + a + a, a + a + b, a + a + c, a + b + b, a + c + c, b + b, b + b + b, b + b + c, c + c, and c + c + c, or any other ordering of a, b, and c) .
No element, act, or instruction used herein should be construed as critical or essential unless explicitly described as such. Also, as used herein, the articles “a” and “an” are intended to include one or more items and may be used interchangeably with “one or more. ” Further, as used herein, the article “the” is intended to include one or more items referenced in connection  with the article “the” and may be used interchangeably with “the one or more. ” Furthermore, as used herein, the terms “set” and “group” are intended to include one or more items and may be used interchangeably with “one or more. ” Where only one item is intended, the phrase “only one” or similar language is used. Also, as used herein, the terms “has, ” “have, ” “having, ” or the like are intended to be open-ended terms that do not limit an element that they modify (e.g., an element “having” A may also have B) . Further, the phrase “based on” is intended to mean “based, at least in part, on” unless explicitly stated otherwise. Also, as used herein, the term “or” is intended to be inclusive when used in a series and may be used interchangeably with “and/or, ” unless explicitly stated otherwise (e.g., if used in combination with “either” or “only one of” ) .

Claims (30)

  1. An apparatus for wireless communication at a user equipment (UE) , comprising:
    a memory; and
    one or more processors, coupled to the memory, configured to:
    receive, from a base station, a channel state information (CSI) measurement configuration via a primary cell (PCell) or a primary secondary cell (PSCell) (P (S) Cell) ;
    receive, from the base station, a CSI measurement configuration via a secondary cell (SCell) ;
    receive, from the base station and via the SCell, uplink downlink control information (DCI) that schedules an aperiodic CSI (A-CSI) report in an uplink channel of the P (S) Cell based at least in part on a cross-carrier scheduling; and
    transmit, to the base station and via the uplink channel of the P (S) Cell, the A-CSI report based at least in part on the uplink DCI and one or more of the CSI measurement configuration associated with the P (S) Cell or the CSI measurement configuration associated with the SCell.
  2. The apparatus of claim 1, wherein the CSI measurement configuration associated with the P (S) Cell or the CSI measurement configuration associated with the SCell indicates: a CSI report configuration, a report trigger size, and an aperiodic trigger state list, and wherein the one or more processors are configured to determine the CSI report configuration, the report trigger size, and the aperiodic trigger state based at least in part on the CSI measurement configuration associated with the P (S) Cell or the CSI measurement configuration regardless of which of the P (S) Cell or the SCell the UE monitors for the uplink DCI that triggers the A-CSI report using the uplink channel of the P (S) Cell.
  3. The apparatus of claim 1, wherein the CSI measurement configuration associated with the P (S) Cell and the CSI measurement configuration associated with the SCell each indicate: a CSI report configuration, a report trigger size, and an aperiodic trigger state list, wherein parameter values associated with the CSI report configuration, the report trigger size, and the aperiodic trigger state list are identical between the CSI measurement configuration associated with the P (S) Cell and the CSI measurement configuration associated with the SCell.
  4. The apparatus of claim 1, wherein the CSI measurement configuration associated with the P (S) Cell and the CSI measurement configuration associated with the SCell each indicate: a CSI report configuration, a report trigger size, and an aperiodic trigger state list, wherein a parameter value associated with the report trigger size is identical between the CSI  measurement configuration associated with the P (S) Cell and the CSI measurement configuration associated with the SCell, and wherein parameter values associated with the CSI report configuration and the aperiodic trigger state list are potentially different between the CSI measurement configuration associated with the P (S) Cell and the CSI measurement configuration associated with the SCell.
  5. The apparatus of claim 1, wherein the CSI measurement configuration associated with the P (S) Cell and the CSI measurement configuration associated with the SCell each indicate: a CSI report configuration, a report trigger size, and an aperiodic trigger state list, wherein parameter values associated with the CSI report configuration, the report trigger size, and the aperiodic trigger state list are potentially different between the CSI measurement configuration associated with the P (S) Cell and the CSI measurement configuration associated with the SCell.
  6. The apparatus of claim 1, wherein the CSI measurement configuration associated with the P (S) Cell and the CSI measurement configuration associated with the SCell each indicate: a CSI report configuration, a report trigger size, and an aperiodic trigger state list, wherein one or more parameter values associated with the CSI report configuration, the report trigger size, and the aperiodic trigger state list are potentially different between the CSI measurement configuration associated with the P (S) Cell and the CSI measurement configuration associated with the SCell, and wherein the one or more processors are further configured to determine the CSI report configuration, the report trigger size, and the aperiodic trigger state of a corresponding P (S) Cell or SCell depending on which of the P (S) Cell or the SCell the UE detects the uplink DCI triggering the A-CSI report using the uplink channel of the P (S) Cell.
  7. The apparatus of claim 1, wherein the one or more processors, to receive the uplink DCI, are configured to receive the uplink DCI via the SCell or the P (S) Cell, wherein the uplink DCI received via the SCell is associated with a first DCI payload size, and wherein the uplink DCI received via the P (S) Cell is associated with a second DCI payload size that is different from the first DCI payload size.
  8. The apparatus of claim 1, wherein the uplink DCI is a first uplink DCI and the A-CSI report is a first A-CSI report, and wherein the one or more processors are further configured to:
    receive, from the base station and via the SCell, a second uplink DCI that schedules a second A-CSI report in an uplink channel of the SCell based at least in part on a self-scheduling or an uplink channel of a third cell based at least in part on the cross-carrier scheduling, wherein the P (S) Cell, the SCell, and the third cell are associated with different CSI measurement  configuration parameters, wherein the SCell corresponds to a scheduling cell, and one or more of the P (S) Cell, the SCell, or the third cell are associated with scheduled cells.
  9. The apparatus of claim 8, wherein the CSI measurement configuration associated with the P (S) Cell supports a first set of CSI measurement configuration parameters and the CSI measurement configuration associated with the SCell supports a second set of CSI measurement configuration parameters, wherein each of the first set of CSI measurement configuration parameters and the second set of CSI measurement configuration parameters indicates: a CSI report configuration, a report trigger size, and an aperiodic trigger state list.
  10. The apparatus of claim 8, wherein the P (S) Cell, the SCell, and the third cell are associated with different CSI measurement configuration parameters based at least in part on CSI measurement configuration parameters being associated with a scheduled cell in which the A-CSI report is transmitted instead of the scheduling cell.
  11. An apparatus for wireless communication at a base station, comprising:
    a memory; and
    one or more processors, coupled to the memory, configured to:
    transmit, to a user equipment (UE) , a channel state information (CSI) measurement configuration via a primary cell (PCell) or a primary secondary cell (PSCell) (P (S) Cell) ;
    transmit, to the UE, a CSI measurement configuration via a secondary cell (SCell) ;
    transmit, to the UE and via the SCell, uplink downlink control information (DCI) that schedules an aperiodic CSI (A-CSI) report in an uplink channel of the P (S) Cell based at least in part on a cross-carrier scheduling; and
    receive, from the UE and via the uplink channel of the P (S) Cell, the A-CSI report based at least in part on the uplink DCI and one or more of the CSI measurement configuration associated with the P (S) Cell or the CSI measurement configuration associated with the SCell.
  12. The apparatus of claim 11, wherein the CSI measurement configuration associated with the P (S) Cell or the CSI measurement configuration associated with the SCell indicates: a CSI report configuration, a report trigger size, and an aperiodic trigger state list.
  13. The apparatus of claim 11, wherein the CSI measurement configuration associated with the P (S) Cell and the CSI measurement configuration associated with the SCell each indicate: a  CSI report configuration, a report trigger size, and an aperiodic trigger state list, wherein parameter values associated with the CSI report configuration, the report trigger size, and the aperiodic trigger state list are identical between the CSI measurement configuration associated with the P (S) Cell and the CSI measurement configuration associated with the SCell.
  14. The apparatus of claim 11, wherein the CSI measurement configuration associated with the P (S) Cell and the CSI measurement configuration associated with the SCell each indicate: a CSI report configuration, a report trigger size, and an aperiodic trigger state list, wherein a parameter value associated with the report trigger size is identical between the CSI measurement configuration associated with the P (S) Cell and the CSI measurement configuration associated with the SCell, and wherein parameter values associated with the CSI report configuration and the aperiodic trigger state list are potentially different between the CSI measurement configuration associated with the P (S) Cell and the CSI measurement configuration associated with the SCell.
  15. The apparatus of claim 11, wherein the CSI measurement configuration associated with the P (S) Cell and the CSI measurement configuration associated with the SCell each indicate: a CSI report configuration, a report trigger size, and an aperiodic trigger state list, wherein parameter values associated with the CSI report configuration, the report trigger size, and the aperiodic trigger state list are potentially different between the CSI measurement configuration associated with the P (S) Cell and the CSI measurement configuration associated with the SCell.
  16. The apparatus of claim 11, wherein the uplink DCI is a first uplink DCI and the A-CSI report is a first A-CSI report, and wherein the one or more processors are further configured to:
    transmit, to the UE and via the SCell, a second uplink DCI that schedules a second A-CSI report in an uplink channel of the SCell based at least in part on a self-scheduling or an uplink channel of a third cell based at least in part on the cross-carrier scheduling, wherein the P (S) Cell, the SCell, and the third cell are associated with different CSI measurement configuration parameters, wherein the SCell corresponds to a scheduling cell, and wherein one or more of the P (S) Cell, the SCell, or the third cell are associated with scheduled cells.
  17. A method of wireless communication performed by a user equipment (UE) , comprising:
    receiving, from a base station, a channel state information (CSI) measurement configuration via a primary cell (PCell) or a primary secondary cell (PSCell) (P (S) Cell) ;
    receiving, from the base station, a CSI measurement configuration via a secondary cell (SCell) ;
    receiving, from the base station and via the SCell, uplink downlink control information (DCI) that schedules an aperiodic CSI (A-CSI) report in an uplink channel of the P (S) Cell based at least in part on a cross-carrier scheduling; and
    transmitting, to the base station and via the uplink channel of the P (S) Cell, the A-CSI report based at least in part on the uplink DCI and one or more of the CSI measurement configuration associated with the P (S) Cell or the CSI measurement configuration associated with the SCell.
  18. The method of claim 17, wherein the CSI measurement configuration associated with the P (S) Cell or the CSI measurement configuration associated with the SCell indicates: a CSI report configuration, a report trigger size, and an aperiodic trigger state list, and further comprising determining the CSI report configuration, the report trigger size, and the aperiodic trigger state based at least in part on the CSI measurement configuration associated with the P (S) Cell or the CSI measurement configuration regardless of which of the P (S) Cell or the SCell the UE monitors for the uplink DCI that triggers the A-CSI report using the uplink channel of the P (S) Cell.
  19. The method of claim 17, wherein the CSI measurement configuration associated with the P (S) Cell and the CSI measurement configuration associated with the SCell each indicate: a CSI report configuration, a report trigger size, and an aperiodic trigger state list, wherein parameter values associated with the CSI report configuration, the report trigger size, and the aperiodic trigger state list are identical between the CSI measurement configuration associated with the P (S) Cell and the CSI measurement configuration associated with the SCell.
  20. The method of claim 17, wherein the CSI measurement configuration associated with the P (S) Cell and the CSI measurement configuration associated with the SCell each indicate: a CSI report configuration, a report trigger size, and an aperiodic trigger state list, wherein a parameter value associated with the report trigger size is identical between the CSI measurement configuration associated with the P (S) Cell and the CSI measurement configuration associated with the SCell, and wherein parameter values associated with the CSI report configuration and the aperiodic trigger state list are potentially different between the CSI measurement configuration associated with the P (S) Cell and the CSI measurement configuration associated with the SCell.
  21. The method of claim 17, wherein the CSI measurement configuration associated with the P (S) Cell and the CSI measurement configuration associated with the SCell each indicate: a CSI report configuration, a report trigger size, and an aperiodic trigger state list, wherein  parameter values associated with the CSI report configuration, the report trigger size, and the aperiodic trigger state list are potentially different between the CSI measurement configuration associated with the P (S) Cell and the CSI measurement configuration associated with the SCell.
  22. The method of claim 17, wherein receiving the uplink DCI comprises receiving the uplink DCI via the SCell or the P (S) Cell, wherein the uplink DCI received via the SCell is associated with a first DCI payload size, and wherein the uplink DCI received via the P (S) Cell is associated with a second DCI payload size that is different from the first DCI payload size.
  23. The method of claim 17, wherein the uplink DCI is a first uplink DCI and the A-CSI report is a first A-CSI report, and further comprising:
    receiving, from the base station and via the SCell, a second uplink DCI that schedules a second A-CSI report in an uplink channel of the SCell based at least in part on a self-scheduling or an uplink channel of a third cell based at least in part on the cross-carrier scheduling, wherein the P (S) Cell, the SCell, and the third cell are associated with different CSI measurement configuration parameters, wherein the SCell corresponds to a scheduling cell, and one or more of the P (S) Cell, the SCell, or the third cell are associated with scheduled cells.
  24. The method of claim 23, wherein:
    the CSI measurement configuration associated with the P (S) Cell supports a first set of CSI measurement configuration parameters and the CSI measurement configuration associated with the SCell supports a second set of CSI measurement configuration parameters, wherein each of the first set of CSI measurement configuration parameters and the second set of CSI measurement configuration parameters indicates: a CSI report configuration, a report trigger size, and an aperiodic trigger state list; or
    the P (S) Cell, the SCell, and the third cell are associated with different CSI measurement configuration parameters based at least in part on CSI measurement configuration parameters being associated with a scheduled cell in which the A-CSI report is transmitted instead of the scheduling cell.
  25. A method of wireless communication performed by a base station, comprising:
    transmitting, to a user equipment (UE) , a channel state information (CSI) measurement configuration via a primary cell (PCell) or a primary secondary cell (PSCell) (P (S) Cell) ;
    transmitting, to the UE, a CSI measurement configuration via a secondary cell (SCell) ;
    transmitting, to the UE and via the SCell, uplink downlink control information (DCI) that schedules an aperiodic CSI (A-CSI) report in an uplink channel of the P (S) Cell based at least in part on a cross-carrier scheduling; and
    receiving, from the UE and via the uplink channel of the P (S) Cell, the A-CSI report based at least in part on the uplink DCI and one or more of the CSI measurement configuration associated with the P (S) Cell or the CSI measurement configuration associated with the SCell.
  26. The method of claim 25, wherein the CSI measurement configuration associated with the P (S) Cell or the CSI measurement configuration associated with the SCell indicates: a CSI report configuration, a report trigger size, and an aperiodic trigger state list.
  27. The method of claim 25, wherein the CSI measurement configuration associated with the P (S) Cell and the CSI measurement configuration associated with the SCell each indicate: a CSI report configuration, a report trigger size, and an aperiodic trigger state list, wherein parameter values associated with the CSI report configuration, the report trigger size, and the aperiodic trigger state list are identical between the CSI measurement configuration associated with the P (S) Cell and the CSI measurement configuration associated with the SCell.
  28. The method of claim 25, wherein the CSI measurement configuration associated with the P (S) Cell and the CSI measurement configuration associated with the SCell each indicate: a CSI report configuration, a report trigger size, and an aperiodic trigger state list, wherein a parameter value associated with the report trigger size is identical between the CSI measurement configuration associated with the P (S) Cell and the CSI measurement configuration associated with the SCell, and wherein parameter values associated with the CSI report configuration and the aperiodic trigger state list are potentially different between the CSI measurement configuration associated with the P (S) Cell and the CSI measurement configuration associated with the SCell.
  29. The method of claim 25, wherein the CSI measurement configuration associated with the P (S) Cell and the CSI measurement configuration associated with the SCell each indicate: a CSI report configuration, a report trigger size, and an aperiodic trigger state list, wherein parameter values associated with the CSI report configuration, the report trigger size, and the aperiodic trigger state list are potentially different between the CSI measurement configuration associated with the P (S) Cell and the CSI measurement configuration associated with the SCell.
  30. The method of claim 25, wherein the uplink DCI is a first uplink DCI and the A-CSI report is a first A-CSI report, and further comprising:
    transmitting, to the UE and via the SCell, a second uplink DCI that schedules a second A-CSI report in an uplink channel of the SCell based at least in part on a self-scheduling or an uplink channel of a third cell based at least in part on the cross-carrier scheduling, wherein the  P (S) Cell, the SCell, and the third cell are associated with different CSI measurement configuration parameters, wherein the SCell corresponds to a scheduling cell, and wherein one or more of the P (S) Cell, the SCell, or the third cell are associated with scheduled cells.
PCT/CN2022/070503 2022-01-06 2022-01-06 Aperiodic channel state information reporting for cross-carrier scheduling WO2023130312A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/070503 WO2023130312A1 (en) 2022-01-06 2022-01-06 Aperiodic channel state information reporting for cross-carrier scheduling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/070503 WO2023130312A1 (en) 2022-01-06 2022-01-06 Aperiodic channel state information reporting for cross-carrier scheduling

Publications (1)

Publication Number Publication Date
WO2023130312A1 true WO2023130312A1 (en) 2023-07-13

Family

ID=87072938

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/070503 WO2023130312A1 (en) 2022-01-06 2022-01-06 Aperiodic channel state information reporting for cross-carrier scheduling

Country Status (1)

Country Link
WO (1) WO2023130312A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104365136A (en) * 2012-06-15 2015-02-18 Lg电子株式会社 Method and user equipment for transmitting channel state information and method and base station for receiving channel state information
CN107231825A (en) * 2015-01-30 2017-10-03 摩托罗拉移动有限责任公司 The method and apparatus for indicating reference signal for the aperiodicity channel status of LTE operation are sent with signal
US20190357238A1 (en) * 2018-05-18 2019-11-21 Comcast Cable Communications, Llc Cross-Carrier Scheduling with Multiple Active Bandwidth Parts
CN112470517A (en) * 2018-07-20 2021-03-09 夏普株式会社 User equipment, base station and method for CSI reporting
WO2021194123A1 (en) * 2020-03-27 2021-09-30 삼성전자 주식회사 Cross-carrier scheduling method and apparatus in next-generation mobile communication system
WO2021207391A1 (en) * 2020-04-08 2021-10-14 Ofinno, Llc Radio link monitoring
CN113711659A (en) * 2019-03-29 2021-11-26 中兴通讯股份有限公司 Bandwidth portion specific scheduling configuration

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104365136A (en) * 2012-06-15 2015-02-18 Lg电子株式会社 Method and user equipment for transmitting channel state information and method and base station for receiving channel state information
CN107231825A (en) * 2015-01-30 2017-10-03 摩托罗拉移动有限责任公司 The method and apparatus for indicating reference signal for the aperiodicity channel status of LTE operation are sent with signal
US20190357238A1 (en) * 2018-05-18 2019-11-21 Comcast Cable Communications, Llc Cross-Carrier Scheduling with Multiple Active Bandwidth Parts
CN112470517A (en) * 2018-07-20 2021-03-09 夏普株式会社 User equipment, base station and method for CSI reporting
CN113711659A (en) * 2019-03-29 2021-11-26 中兴通讯股份有限公司 Bandwidth portion specific scheduling configuration
WO2021194123A1 (en) * 2020-03-27 2021-09-30 삼성전자 주식회사 Cross-carrier scheduling method and apparatus in next-generation mobile communication system
WO2021207391A1 (en) * 2020-04-08 2021-10-14 Ofinno, Llc Radio link monitoring

Similar Documents

Publication Publication Date Title
US11877293B2 (en) Skipping occasions in semi-persistent scheduling
WO2022053011A1 (en) Uplink transmit switching for two frequency bands
WO2022166377A1 (en) Transmission configuration indicator indication for non-serving cell information
US20220330165A1 (en) Configuring separate power control adjustment states for sounding reference signal transmissions
US11910378B2 (en) Downlink control information size configuration in cross-carrier scheduling scenarios
EP4214886A1 (en) Transmission configuration indicator states in downlink control information format 1_2
EP4470144A1 (en) Applying unified transmission configuration indication states to signals or channels associated with control resource set pool index values
WO2023123187A1 (en) Quasi co-location configuration for energy harvest powered device
WO2023077401A1 (en) Techniques for transmitting two-part uplink control information for group-based beam reporting
US20230041404A1 (en) Determining a beam failure instance count for beam failure detection
WO2022212990A1 (en) Handling of conditional handover and conditional primary secondary cell change
US20230354267A1 (en) Sounding reference signal resource configuration
US20220225314A1 (en) Association of channel reference signals with a common beam transmission configuration indicator
WO2023130312A1 (en) Aperiodic channel state information reporting for cross-carrier scheduling
US12069682B2 (en) Transmission configuration indicator states for subbands
US12095707B2 (en) Beam switch timing for a periodic channel state information reference signals
US20240298219A1 (en) Beam reporting for inter-cell beam management
US20230239884A1 (en) Applying a unified transmission configuration indicator state indication to channels or signals associated with a control resource set pool index value
WO2023279232A1 (en) Beam indications for single transmit receive point and multiple transmit receive point communications
WO2023035211A1 (en) Receiving a plurality of physical downlink shared channels using quasi co-location assumptions
WO2023050442A1 (en) Multiple transmission configuration indicator states for serving cells not configured for single frequency network transmissions
US20230216646A1 (en) Sub-band channel quality indicator fallback
WO2022257039A1 (en) Implicit beam switch
US20230064591A1 (en) Adaptive codebook configuration for dynamic time division duplexing
WO2023050441A1 (en) Discontinuous reception timer configurations for joint channel estimation

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22917787

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22917787

Country of ref document: EP

Kind code of ref document: A1