[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2023127634A1 - 通信装置、基地局、及び通信方法 - Google Patents

通信装置、基地局、及び通信方法 Download PDF

Info

Publication number
WO2023127634A1
WO2023127634A1 PCT/JP2022/047083 JP2022047083W WO2023127634A1 WO 2023127634 A1 WO2023127634 A1 WO 2023127634A1 JP 2022047083 W JP2022047083 W JP 2022047083W WO 2023127634 A1 WO2023127634 A1 WO 2023127634A1
Authority
WO
WIPO (PCT)
Prior art keywords
switching
bwp
pdcch
timer
sssg
Prior art date
Application number
PCT/JP2022/047083
Other languages
English (en)
French (fr)
Inventor
正幸 星野
秀明 ▲高▼橋
Original Assignee
株式会社デンソー
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社デンソー, トヨタ自動車株式会社 filed Critical 株式会社デンソー
Publication of WO2023127634A1 publication Critical patent/WO2023127634A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0457Variable allocation of band or rate
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • H04W72/231Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal the control data signalling from the layers above the physical layer, e.g. RRC or MAC-CE signalling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present disclosure relates to communication devices, base stations, and communication methods used in mobile communication systems.
  • PDCCH monitoring related to monitoring the physical downlink control channel A process of switching states (hereinafter referred to as switching process) is under consideration.
  • the communication device switches the PDCCH monitoring state to a state in which the PDCCH monitoring cycle is lengthened or PDCCH monitoring is skipped (hereinafter referred to as a PDCCH monitoring skipping state).
  • PDCCH monitoring skipping state a state in which the PDCCH monitoring cycle is lengthened or PDCCH monitoring is skipped.
  • DRX discontinuous reception
  • Such an operation of skipping PDCCH monitoring and an operation of switching PDCCH monitoring states may be referred to as PDCCH monitoring adaptation.
  • a communication device that performs wireless communication in a predetermined bandwidth part (BWP), which is part of the total bandwidth of a cell of a base station, is in a PDCCH monitoring skipping state.
  • the communication device switches the PDCCH monitoring state, specifically, PDCCH monitoring, triggered by the switching of the predetermined BWP based on the expiration of the BWP switching timer due to no data communication occurring in the predetermined BWP for a certain period of time.
  • PDCCH monitoring state specifically, PDCCH monitoring
  • a communication device is a communication device that performs wireless communication in a bandwidth portion that is a portion of the total bandwidth of a cell of a base station.
  • the communication device switches the bandwidth portion based on expiration of a BWP switching timer for switching the bandwidth portion, and switches a PDCCH monitoring state regarding monitoring of a physical downlink control channel (PDCCH).
  • the control unit controls the switching process caused by the BWP timer based on the switching control information.
  • RRC radio resource control
  • a communication device is a communication device that performs wireless communication in a bandwidth portion that is a portion of the total bandwidth of a cell of a base station.
  • the communication device controls a switching process for switching a PDCCH monitoring state related to monitoring of a physical downlink control channel (PDCCH) in a predetermined bandwidth portion among one or more bandwidth portions set in the communication device. and a receiver for receiving a radio resource control (RRC) message including switching control information for controlling the switching process.
  • the control unit performs the switching process in the predetermined bandwidth portion using switching settings for the predetermined bandwidth portion based on the switching control information when the predetermined bandwidth portion is activated. and suspends the switching setting when the predetermined bandwidth portion is deactivated.
  • a base station is the base station that performs wireless communication with a communication device in a bandwidth portion that is a portion of the total bandwidth of a cell of the base station.
  • the base station includes a control unit that generates a radio resource control (RRC) message including switching control information for controlling BWP timer-based switching processing in the communication device, and a transmission unit that transmits the RRC message to the communication device. And prepare.
  • RRC radio resource control
  • the communication device switches the bandwidth portion based on expiration of a BWP switching timer for switching the bandwidth portion, and a PDCCH for monitoring a physical downlink control channel (PDCCH). Switch the monitoring state.
  • PDCCH physical downlink control channel
  • a communication method is a communication method performed by a communication device that performs wireless communication in a bandwidth portion that is a portion of the total bandwidth of a cell of a base station.
  • the communication method switches the bandwidth portion based on expiration of a BWP switching timer for switching the bandwidth portion, and switches a PDCCH monitoring state for monitoring a physical downlink control channel (PDCCH). and receiving a radio resource control (RRC) message containing switching control information for controlling said BWP timer triggered switching process.
  • RRC radio resource control
  • the switching process caused by the BWP timer is controlled based on the switching control information.
  • a communication method is a communication method performed by a communication device that performs wireless communication in a bandwidth portion that is a portion of the total bandwidth of a cell of a base station.
  • PDCCH physical downlink control channel
  • RRC radio resource control
  • the method further comprises controlling the switching process and suspending the switching setting when the predetermined bandwidth portion is deactivated.
  • FIG. 1 is a diagram showing the configuration of a mobile communication system according to an embodiment.
  • FIG. 2 is a diagram illustrating a configuration example of a protocol stack according to the embodiment;
  • FIG. 3 is a sequence diagram showing an overview of radio communication operations in the mobile communication system according to the embodiment.
  • FIG. 4 is a diagram showing an overview of PDCCH skipping according to the embodiment.
  • FIG. 5 is a diagram showing an overview of search space set (SSSG) switching according to the embodiment.
  • FIG. 6 is a diagram illustrating DRX and power saving states according to an embodiment.
  • FIG. 7 is a sequence diagram illustrating an example of SSSG switching according to the embodiment.
  • FIG. 1 is a diagram showing the configuration of a mobile communication system according to an embodiment.
  • FIG. 2 is a diagram illustrating a configuration example of a protocol stack according to the embodiment;
  • FIG. 3 is a sequence diagram showing an overview of radio communication operations in the mobile communication system according to the embodiment.
  • FIG. 4 is a diagram showing
  • FIG. 8 is a diagram illustrating an example of timer-based SSSG switching according to an embodiment.
  • FIG. 9 is a sequence diagram showing an overview of BWP switching based on expiration of the BWP switching timer according to the embodiment.
  • FIG. 10 is a diagram showing the configuration of a UE according to the embodiment.
  • FIG. 11 is a diagram showing the configuration of a base station according to the embodiment.
  • FIG. 12 is a sequence diagram for explaining the first operation example of the mobile communication system according to the embodiment.
  • FIG. 13 is a diagram for explaining a first operation example of the mobile communication system according to the embodiment.
  • FIG. 14 is a sequence diagram for explaining a second operation example of the mobile communication system according to the embodiment.
  • FIG. 15 is a diagram for explaining a second operation example of the mobile communication system according to the embodiment.
  • FIG. 16 is a flowchart for explaining a third operation example of the mobile communication system according to the embodiment.
  • 17 is a flowchart (part 1) for explaining a fourth operation example of the mobile communication system according to the embodiment;
  • FIG. 18 is a flowchart (part 2) for explaining a fourth operation example of the mobile communication system according to the embodiment;
  • FIG. FIG. 19 is a flowchart for explaining a fifth operation example of the mobile communication system according to the embodiment.
  • the present disclosure enables appropriate wireless communication even when switching the BWP based on the expiration of the BWP switching timer in a mobile communication system in which the PDCCH monitoring state is switched based on the expiration of the BWP switching timer.
  • One of the objects is to provide a communication device, a base station, and a communication method.
  • the mobile communication system 1 is, for example, a system conforming to the 3GPP Technical Specification (TS).
  • TS Technical Specification
  • a mobile communication system based on the 3GPP standard 5th Generation System (5GS), that is, NR (New Radio) will be described as an example.
  • the mobile communication system 1 has a network 10 and user equipment (UE) 100 communicating with the network 10 .
  • the network 10 includes an NG-RAN (Next Generation Radio Access Network) 20, which is a 5G radio access network, and a 5GC (5G Core Network) 30, which is a 5G core network.
  • NG-RAN Next Generation Radio Access Network
  • 5G Core Network 5G Core Network
  • the UE 100 is an example of a communication device.
  • the UE 100 may be a mobile wireless communication device.
  • UE 100 may be a device used by a user.
  • the UE 100 may be a user equipment defined by 3GPP technical specifications.
  • the UE 100 is, for example, a portable device such as a mobile phone terminal such as a smart phone, a tablet terminal, a notebook PC, a communication module, or a communication card.
  • the UE 100 may be a vehicle (eg, car, train, etc.) or a device provided therein (eg, Vehicle UE).
  • the UE 100 may be a transport body other than a vehicle (eg, a ship, an airplane, etc.) or a device provided thereon (eg, an Aerial UE).
  • the UE 100 may be a sensor or a device attached thereto.
  • the UE 100 includes a mobile station, a mobile terminal, a mobile device, a mobile unit, a subscriber station, a subscriber terminal, a subscriber device, a subscriber unit, a wireless station, a wireless terminal, a wireless device, a wireless unit, a remote station, and a remote terminal. , remote device, or remote unit.
  • NG-RAN 20 includes multiple base stations 200 .
  • Each base station 200 manages at least one cell.
  • a cell constitutes the minimum unit of a communication area.
  • One cell belongs to one frequency (carrier frequency) and is composed of one component carrier.
  • the term “cell” may represent a radio communication resource and may also represent a communication target of UE 100 .
  • Each base station 200 can perform radio communication with the UE 100 residing in its own cell.
  • the base station 200 communicates with the UE 100 using the RAN protocol stack.
  • Base station 200 provides NR user plane and control plane protocol termination towards UE 100 and is connected to 5GC 30 via NG interface.
  • Such an NR base station 200 is sometimes referred to as a gNodeB (gNB).
  • gNodeB gNodeB
  • the 5GC 30 includes a core network device 300.
  • the core network device 300 includes, for example, AMF (Access and Mobility Management Function) and/or UPF (User Plane Function).
  • AMF Access and Mobility Management Function
  • UPF User Plane Function
  • AMF performs mobility management of UE100.
  • UPF provides functions specialized for user plane processing.
  • the AMF and UPF are connected with the base station 200 via the NG interface.
  • the protocol of the wireless section between the UE 100 and the base station 200 includes a physical (PHY) layer, a MAC (Medium Access Control) layer, an RLC (Radio Link Control) layer, a PDCP (Packet Data Convergence Protocol) layer, RRC layer.
  • PHY physical
  • MAC Medium Access Control
  • RLC Radio Link Control
  • PDCP Packet Data Convergence Protocol
  • the PHY layer performs encoding/decoding, modulation/demodulation, antenna mapping/demapping, and resource mapping/demapping. Data and control information are transmitted between the PHY layer of the UE 100 and the PHY layer of the base station 200 via physical channels.
  • the MAC layer performs data priority control, retransmission processing by hybrid ARQ (Hybrid Automatic Repeat Quest: HARQ), random access procedures, and the like. Data and control information are transmitted between the MAC layer of the UE 100 and the MAC layer of the base station 200 via transport channels.
  • the MAC layer of base station 200 includes a scheduler. The scheduler determines uplink and downlink transport formats (transport block size, modulation and coding scheme (MCS)) and allocation resources to UE 100 .
  • MCS modulation and coding scheme
  • the RLC layer uses the functions of the MAC layer and PHY layer to transmit data to the RLC layer on the receiving side. Data and control information are transmitted between the RLC layer of the UE 100 and the RLC layer of the base station 200 via logical channels.
  • the PDCP layer performs header compression/decompression and encryption/decryption.
  • An SDAP (Service Data Adaptation Protocol) layer may be provided as an upper layer of the PDCP layer.
  • the SDAP (Service Data Adaptation Protocol) layer performs mapping between IP flows, which are the units in which the core network performs QoS control, and radio bearers, which are the units in which the AS (Access Stratum) performs QoS (Quality of Service) control.
  • the RRC layer controls logical channels, transport channels and physical channels according to radio bearer establishment, re-establishment and release.
  • RRC signaling for various settings is transmitted between the RRC layer of UE 100 and the RRC layer of base station 200 .
  • UE 100 When there is an RRC connection between the RRC of UE 100 and the RRC of base station 200, UE 100 is in the RRC connected state. If there is no RRC connection between the RRC of the UE 100 and the RRC of the base station 200, the UE 100 is in RRC idle state. When the RRC connection between the RRC of UE 100 and the RRC of base station 200 is suspended, UE 100 is in RRC inactive state.
  • the NAS layer located above the RRC layer performs session management and mobility management for UE100.
  • NAS signaling is transmitted between the NAS layer of the UE 100 and the NAS layer of the core network device 300 (AMF).
  • AMF core network device 300
  • the UE 100 has an application layer and the like in addition to the radio interface protocol.
  • BWP Bandwidth part
  • UE 100 and base station 200 communicate using BWP (Bandwidth Part), which is part of the total bandwidth of the cell.
  • the base station 200 configures one or more BWPs for the UE100.
  • the base station 200 can notify the UE 100 of the BWP used for communication with the base station 200 (that is, the active BWP) among one or more set BWPs.
  • the base station 200 can transmit to the UE 100 an identifier indicating the BWP to be activated when executing the setting, that is, the BWP that is first used in communication with the base station 200 .
  • inactive BWP for controlling switching from an active BWP to a BWP that is not an active BWP (hereinafter, inactive BWP) and switching from an inactive BWP to an active BWP (so-called BWP switching), for example, a physical downlink control channel (e.g., downlink link assignment, uplink grant), timers (ie bwp-InactivityTimer), RRC signaling, or MAC entities are used.
  • RRC message used for RRC signaling may be broadcasted system information or a dedicated RRC message transmitted to each UE.
  • the BWP includes initial BWP and individual BWP.
  • the initial BWP is used at least for initial access of the UE 100 .
  • the initial BWP is commonly used by multiple UEs 100 .
  • the initial BWP includes an initial BWP for downlink communication (hereinafter, initial downlink BWP (Initial DL BWP)) and an initial BWP for uplink communication (hereinafter, initial uplink BWP (Initial UL BWP)).
  • initial downlink BWP Initial DL BWP
  • initial uplink BWP Initial UL BWP
  • the value of the identifier (ie, bwp-id) indicating each of the initial downlink BWP and the initial uplink BWP is 0.
  • the UE 100 can determine the initial BWP (that is, the initial downlink BWP and the initial uplink BWP) using two methods.
  • the UE 100 determines the initial BWP based on CORESET#0, which is set using information contained in the master information block (MIB) within the physical broadcast channel (PBCH).
  • the UE 100 determines the initial BWP based on the location and bandwidth in the frequency domain configured using information contained in system information blocks (SIBs).
  • SIBs system information blocks
  • UE 100 may apply the BWP determined by the first method to communication with base station 200, for example, until reception of message 4 in the random access procedure. For example, after receiving message 4, UE 100 may apply the BWP determined by the second method to communication with base station 200 .
  • the individual BWP is individually set for the UE 100.
  • the dedicated BWP includes a dedicated BWP for downlink communication (hereinafter referred to as a dedicated downlink BWP (UE dedicated DL BWP)) and a dedicated BWP for uplink communication (hereinafter referred to as a dedicated uplink BWP (UE dedicated UL BWP)).
  • UE dedicated DL BWP a dedicated downlink BWP
  • UE dedicated uplink BWP UE dedicated UL BWP
  • the value of the identifier indicating each individual downlink BWP and individual uplink BWP is other than zero.
  • the UE 100 for example, based on information (eg, information for downlink BWP (ie, BWP-Downlink) and information for uplink BWP (ie, BWP-Uplink)) included in the RRC message, individual BWP is set.
  • information for downlink BWP and the information for individual uplink BWP for example, information indicating the position and bandwidth in the frequency domain (eg, locationAndBadwidth), information indicating subcarrier spacing (eg, subcarrierSpacing), and At least one of information indicating whether to use an extended cyclic prefix (eg, cyclicPrefix) may be included.
  • information for downlink BWP and the information for individual uplink BWP for example, information indicating the position and bandwidth in the frequency domain (eg, locationAndBadwidth), information indicating subcarrier spacing (eg, subcarrierSpacing), and At least one of information indicating whether to use an extended cyclic prefix (eg, cyclicPrefix)
  • the BWP for downlink communication may be referred to as downlink BWP (or DL BWP), and the BWP for uplink communication may be referred to as uplink BWP (or UL BWP).
  • downlink BWP or DL BWP
  • uplink BWP or UL BWP
  • the base station 200 configures the UE 100 with a search space corresponding to the candidate timing at which the PDCCH is provided.
  • UE 100 in the RRC connected state monitors PDCCH in the set search space, receives downlink control information (Downlink Control Information: DCI) carried by PDCCH, and assigns resources (scheduling) indicated by DCI.
  • DCI Downlink Control Information
  • PDSCH physical downlink shared channel
  • PUSCH physical uplink shared channel
  • the UE 100 may monitor a set of PDCCH candidates according to the corresponding search space.
  • UE 100 may monitor a set of PDCCH candidates in a downlink BWP control resource set (CORESET) in a serving cell in which PDCCH monitoring is configured, according to the corresponding search space.
  • monitoring may refer to decoding each of the PDCCH candidates according to the monitored DCI format.
  • the base station 200 transmits an RRC message including PDCCH settings (PDCCH settings) to the UE 100, and performs various PDCCH settings for the UE 100.
  • This RRC message is a UE-specific RRC message, and may be, for example, an RRC Reconfiguration message.
  • the search space settings include a search space period (also referred to as a PDCCH monitoring period), a search space offset (also referred to as a PDCCH monitoring offset), a search space duration (for example, the number of consecutive slots), and PDCCH monitoring. symbols for, aggregation level, search space type, DCI format, etc.
  • each search space (each set of search spaces) may be associated with one CORESET.
  • the search space setting may be set for each of one or more DL BWPs.
  • the search space type may include a UE-specific search space (USS) and/or a UE common search space (CSS).
  • DCI formats include scheduling DCI formats used for PDSCH or PUSCH scheduling and non-scheduling DCI formats not used for such scheduling.
  • DCI transmitted in a scheduling DCI format is called scheduling DCI
  • DCI transmitted in a non-scheduling DCI format is called non-scheduling DCI.
  • Scheduling DCI formats include a downlink DCI format used for PDSCH scheduling (eg, DCI format 1_0, DCI format 1_1, DCI format 1_2) and an uplink DCI format used for PUSCH scheduling (eg, DCI format 0_0, DCI format 0_1 and DCI format 0_2).
  • the scheduling DCI may be UE-specific DCI that is sent for each UE.
  • the scheduling DCI may be transmitted by applying an RNTI (Radio Network Temporary Identifier) assigned to each UE.
  • the downlink DCI format used for PDSCH scheduling is also called downlink assignment.
  • the uplink DCI format used for PUSCH scheduling is also called an uplink grant.
  • non-scheduling DCI formats include, for example, DCI format 2_0 and DCI format 2_6.
  • the non-scheduling DCI may be a DCI that can be transmitted to multiple UEs 100 at once.
  • non-scheduling DCI may be transmitted by applying a common RNTI to multiple UEs 100 .
  • step S2 the UE 100 starts monitoring PDCCH in the search space set by the base station 200.
  • DCI format 1_0, DCI format 0_0, DCI format 1_1, DCI format 0_1, DCI format 1_2, and DCI format 0_2 are configured in the UE 100, and the UE 100 monitors the PDCCH (DCI) based on the configuration.
  • base station 200 may configure UE 100 to monitor DCI format 1_0 and DCI format 0_0 in a certain search space.
  • base station 200 may configure UE 100 to monitor DCI format 1_1 and DCI format 0_1 in a certain search space.
  • base station 200 may configure UE 100 to monitor DCI format 1_2 and DCI format 0_2 in a certain search space. That is, for example, base station 200 may configure UE 100 to monitor PDCCH candidates for DCI format 1_0 and DCI format 0_0 when CSS is configured for a certain search space. Also, base station 200 may configure UE 100 to monitor PDCCH candidates for DCI format 2_0 when CSS is configured for a certain search space. In addition, base station 200 instructs UE 100 to monitor PDCCH candidates for DCI format 1_0 and DCI format 0_0 or DCI format 1_1 and DCI format 0_1 when USS is configured for a certain search space.
  • base station 200 instructs UE 100 to monitor PDCCH candidates for DCI format 1_0 and DCI format 0_0 or DCI format 1_2 and DCI format 0_2 when USS is configured for a certain search space. can be set to
  • the UE 100 receives and detects DCI or PDCCH addressed to itself from the base station 200.
  • the UE 100 is assigned a C-RNTI (Cell-Radio Network Temporary Identifier (RNTI)), an MCS-C-RNTI (Modulation and Coding Scheme-C-RNTI), or a CS-RNTI ( Blind decoding of PDCCH is performed using Configured Scheduling-RNTI), and successfully decoded DCI is acquired as DCI addressed to its own UE.
  • CRC Cyclic Redundancy Check
  • parity bits scrambled by C-RNTI, MCS-C-RNTI, or CS-RNTI are added to the DCI (that is, DCI format) transmitted from the base station 200.
  • the downlink assignment is appended with CRC parity bits scrambled by C-RNTI, MCS-C-RNTI, or CS-RNTI. Also, CRC parity bits scrambled by C-RNTI, MCS-C-RNTI, or CS-RNTI are added to the uplink grant.
  • step S4 the UE 100 receives downlink data from the base station 200 on the scheduled PDSCH. If the DCI indicates PUSCH scheduling, the UE 100 transmits uplink data to the base station 200 on the scheduled PUSCH in step S5.
  • downlink data is also referred to as downlink shared channel (DL-SCH) data.
  • Uplink data is also referred to as uplink-shared channel (UL-SCH) data.
  • the downlink shared channel and the uplink shared channel are transport channels
  • PDSCH and PUSCH are physical channels. For example, downlink data (DL-SCH data) is mapped to PDSCH, and uplink data (UL-SCH data) is mapped to PUSCH.
  • the UE 100 monitors the PDCCH provided at predetermined intervals in the search space based on the search space setting set by the base station 200 .
  • a PDCCH monitoring state regarding PDCCH monitoring in UE 100 may be referred to as a PDCCH monitoring execution state for monitoring PDCCH.
  • the base station 200 transmits to the UE 100 a skip instruction DCI that instructs PDCCH skipping.
  • Skip instruction DCI is an example of switching instruction DCI.
  • a skip indication DCI may be a scheduling DCI or a non-scheduling DCI.
  • the UE 100 skips PDCCH monitoring for a predetermined period in response to receiving the skip instruction DCI from the base station 200 .
  • the predetermined period for skipping PDCCH monitoring may be set by higher layer signaling (RRC message).
  • the predetermined period may be determined by a timer value (that is, a setting value of a switching timer), or may be determined by the number of consecutive slots or the number of consecutive search spaces.
  • the predetermined period may be referred to as a skipping period.
  • Such PDCCH skipping reduces the power consumption required for the UE 100 to monitor the PDCCH, and can achieve dynamic power saving.
  • PDCCH skipping may mean skipping PDCCH monitoring, and PDCCH skipping may be referred to as PDCCH monitoring skipping. In this embodiment, such a PDCCH monitoring state in the UE 100 may be referred to as a PDCCH skipping state.
  • the base station 200 configures multiple search space sets, which are sets of settings related to search spaces, in the UE 100 through higher layer signaling (RRC messages).
  • a set of settings related to such a search space is called a Search Space Set (SSS) or a Search Space Set Group (SSSG), but in the following it will be mainly called SSSG.
  • One SSSG includes one or more search space settings and is identified by an SSSG index.
  • base station 200 has SSSG#0 (first search space set) in which search spaces are provided at a predetermined cycle, and SSSG#1 (second search space set) in which search spaces are provided at a cycle longer than the predetermined cycle. space set) shall be set in the UE 100.
  • the base station 200 sets two SSSGs, SSSG#0 and SSSG#1, to the UE 100.
  • Three or more SSSGs are set for each of one or more BWPs (for example, DL BWP). You may set to UE100.
  • setting a plurality of SSSGs (or three or more SSSGs) in the UE 100 may mean setting a plurality of SSSGs (or three or more SSSGs) for one BWP, or a plurality of may mean setting multiple SSSGs (or three or more SSSGs) for each BWP.
  • search spaces include UE-specific search spaces and/or UE-common search spaces as described above
  • a set of settings related to UE-specific search spaces may be referred to as a UE-specific search space set.
  • the set of configurations for UE-common search spaces may be referred to as a UE-common search space set.
  • the UE 100 monitors the PDCCH provided at predetermined intervals in the search space based on SSSG#0.
  • the base station 200 transmits to the UE 100 a switching instruction DCI that instructs SSSG switching.
  • the switching instruction DCI may be a scheduling DCI or a non-scheduling DCI. That is, the base station 200 uses DCI to instruct the UE 100 to switch from SSSG#0 to SSSG#1.
  • the UE 100 starts switching to SSSG#1 in response to receiving the switching instruction DCI.
  • UE 100 performs switching to SSSG#1 in a symbol after a switching delay time (Switch delay) from the last symbol of PDCCH in SSSG#0.
  • Switch delay may be set from the base station 200 to the UE 100 by higher layer signaling (RRC message).
  • UE 100 monitors PDCCHs provided in a cycle longer than a predetermined cycle in search spaces.
  • Such search space set switching reduces the power consumption required for UE 100 to monitor the PDCCH, and can achieve dynamic power saving.
  • switching from SSSG#1 to SSSG#0 may be instructed by the base station 200 using DCI in the same manner as switching from SSSG#0 to SSSG#1, or the UE 100 may switch from SSSG#1 using a timer. You may switch to SSSG#0.
  • the timer value of such a switching timer (Switching timer) is set from the base station 200 to the UE 100 by higher layer signaling (RRC message).
  • the UE 100 starts monitoring the PDCCH in SSSG#1 in response to detection of the switching instruction DCI to SSSG#1, sets the value of the switching timer to the value set by the upper layer, and activates the switching timer.
  • UE 100 decrements the value of the switching timer, stops monitoring PDCCH in SSSG#1 when the switching timer expires, and starts monitoring PDCCH in SSSG#0 after a switch delay time.
  • indexes also called search space group IDs
  • base station 200 may configure a set (group) of search spaces for UE 100 by configuring an index associated with the one or more search space sets.
  • the name SSSG is merely an example, and any name may be used as long as it is a set (group) of search spaces to which one or more search space sets are associated.
  • one SSSG set in the UE 100 is set to have no search space, and switching to the one SSSG is indicated by DCI, thereby realizing the same operation as the PDCCH skipping described above.
  • a search space is set in one SSSG set in the UE 100, and no monitoring opportunity for the search space is set (or a parameter related to the monitoring opportunity is set to a predetermined value (e.g., "0" or "Null”). ), an operation similar to the PDCCH skipping described above may be realized.
  • UE 100 is configured with a total of three SSSGs: an SSSG with a normal search space period, an SSSG with no search space period, and an SSSG with a long search space period. Flexible power saving can be realized by setting such various SSSGs in the UE 100 and instructing switching of SSSGs by DCI.
  • the UE 100 discontinuously monitors the PDCCH using the DRX operation.
  • the DRX operation is controlled by the following DRX parameters.
  • - DRX cycle Defines the cycle in which the UE 100 wakes up.
  • On duration On-duration: This is the period during which the UE 100 waits to receive the PDCCH after waking up. If the UE 100 successfully decodes the PDCCH, the UE 100 remains awake and starts an inactivity-timer.
  • Inactivity timer Defines the time period during which the UE 100 waits after the last successful PDCCH decoding and sleeps again when the PDCCH decoding fails.
  • the ON duration may be started.
  • FIG. 6 corresponds to the operation with the set value of DRX-SlotOffset set to zero.
  • Retransmission timer defines the time interval during which retransmissions are expected.
  • the UE 100 configured with DRX does not need to monitor the PDCCH in the sleep state (that is, the reception off period), so the power consumption of the UE 100 can be reduced.
  • the UE 100 waits to receive the PDCCH and monitors the PDCCH in the search space during the active time.
  • the active time is any of the on duration timer (drx-onDurationTimer), the inactivity timer (drx-InactivityTimer), the downlink retransmission timer (drx-RetransmissionTimerDL), and the uplink retransmission timer (drx-RetransmissionTimerUL) is in operation. It's time.
  • PDCCH supervisory adaptation is a generic term for PDCCH skipping and SSSG switching. That is, in this embodiment, PDCCH monitoring adaptation may be replaced by PDCCH skipping and/or SSSG switching. In PDCCH monitoring adaptation, a process of switching the PDCCH monitoring state for PDCCH monitoring may be performed.
  • a plurality of SSSGs having different search space cycles (different PDCCH cycles) will be described, but it is possible to set the same search space cycle (different PDCCH cycles) for a plurality of SSSGs. is of course.
  • the base station 200 generates one or more RRC messages and transmits the generated RRC messages to the UE100.
  • the one or more RRC messages may include a dedicated RRC message (eg, RRCReconfiguration message) sent for each UE.
  • UE 100 receives the RRC message.
  • the RRC message includes PDCCH monitoring adaptation settings (hereinafter referred to as PMA settings).
  • the PMA settings may be settings for performing PDCCH monitoring adaptation.
  • PMA setting includes information for setting SSSG, information for setting a switching timer for switching SSSG, information for setting a duration related to PDCCH monitoring, and setting cases related to PDCCH monitoring state switching. may include at least one of information for
  • the information for setting the case may be information for setting the case (also referred to as operation) of PDCCH monitoring adaptation. As described below, it may be specified to perform PDCCH skipping (ie PDCCH skipping only), for example for the case of PDCCH monitoring adaptation. It may also be specified to perform SSSG switching (ie SSSG switching only) as a case of PDCCH monitoring adaptation. It may also be specified to perform PDCCH skipping and SSSG switching as a case of PDCCH monitoring adaptation. That is, cases may be defined corresponding to operations performed as PDCCH monitoring adaptation.
  • Information for setting SSSG includes, for example, information for setting SSSG to which PDCCH skipping is applied, and information for setting SSSG to which SSSG switching is applied. At least one may be included.
  • the SSSG setting information may also include information for setting at least one of a default SSSG (eg, SSSG#0) and a non-default SSSG that is not the default SSSG. That is, SSSG configuration information may be configured for default SSSG and/or non-default SSSG.
  • the SSSG configuration information may include SSSG information configured for each downlink BWP, and may include SSSG information configured for each downlink serving cell. That is, the SSSG configuration information may be configured for the downlink BWP and/or the downlink serving cell.
  • the SSSG configuration information may further include a search space configuration associated with each SSSG index (which may be referred to as a group index) corresponding to each SSSG.
  • a search space setting includes one or more search space settings.
  • Each search space configuration includes at least one of search space period, search space offset, search space duration (e.g., number of consecutive slots), symbols for PDCCH monitoring, aggregation level, search space type, and DCI format. OK.
  • the switch timer information may include switch timer information for the default SSSG and may include switch timer information for the non-default SSSG. That is, switching timer information may be configured for default SSSG and/or non-default SSSG. Note that the switching timer may not be set for the default SSSG.
  • the switching timer information may include switching timer information configured for each downlink BWP, and may include switching timer information configured for each downlink serving cell. That is, the switching timer information may be configured for the downlink BWP and/or the downlink serving cell.
  • the switching timer information may include a timer set value of the switching timer.
  • Information for setting a period related to PDCCH monitoring may include information on a period set for each SSSG.
  • the monitoring period information may include period information for the default SSSG and may include period information for the non-default SSSG. That is, monitoring period information may be set for default SSSGs and/or non-default SSSGs.
  • the monitoring period information may include information on a period set for each downlink BWP, or may include information on a period set for each downlink serving cell. That is, the monitoring period information may be configured for the downlink BWP and/or the downlink serving cell.
  • the set period may be a skipping period during which PDCCH monitoring is skipped.
  • a case related to PDCCH monitoring state switching specifically, information for setting a case of PDCCH monitoring adaptation (hereinafter referred to as case setting information as appropriate) includes case information set for each downlink BWP. Alternatively, it may include case information configured for each downlink serving cell. That is, the case configuration information may be configured for the downlink BWP and/or the downlink serving cell.
  • case setting information includes case information set for each downlink BWP.
  • the case configuration information may be configured for the downlink BWP and/or the downlink serving cell.
  • Table 1 shows an example of DCI notification contents in each case.
  • PDCCH skipping that is, execution of PDCCH skipping only
  • the configuration for case #2 configures two different durations of SSSG switching (ie performing SSSG switching only) as PDCCH monitoring adaptation.
  • the configuration for case #3 configures SSSG switching for three different durations (ie performing SSSG switching only) as a PDCCH monitoring adaptation.
  • two different periods of SSSG switching and PDCCH skipping are configured as PDCCH monitoring adaptations.
  • M (set to 1 or 2) indicates the number of periods set based on the monitoring period information. That is, M corresponds to period X. Period X may be referred to as a skipping period.
  • the value set in the information field (hereinafter referred to as the PDCCH monitoring adaptation notification field) in the switching instruction DCI that indicates the PDCCH monitoring adaptation (that is, SSSG switching and/or PDCCH skipping) applied by the UE 100 is indicated. It is associated with the operation (behavior) of the UE 100. Operations of the UE 100 may be defined as follows. • PDCCH skipping is not activated on Beh1. • For Beh1A, PDCCH skipping means stopping PDCCH monitoring for period X. • Beh2 stops monitoring the search space sets associated with SSSG#1 and SSSG#2 (if configured) and monitors the search space set associated with SSSG#0.
  • Beh2A stops monitoring the search space sets associated with SSSG#0 and SSSG#2 (if configured) and monitors the search space set associated with SSSG#1.
  • Beh2B stop monitoring the search space set associated with SSSG#0 and SSSG#1 (if configured) and monitor the search space set associated with SSSG#2.
  • the information indicating the correspondence relationship in Table 1 may be stored in advance in each of the UE 100 and the base station 200, or may be notified from the base station 200 to the UE 100 by an RRC message.
  • the UE 100 When case #1 is configured in the UE 100, the UE 100 has one for PDCCH monitoring for each of one or more downlink BWPs (or each of one or more SSSGs) in a serving cell. Alternatively, multiple periods (including skipping periods) may be set.
  • the UE 100 When case #2 or case #3 is configured in the UE 100, the UE 100 has one serving cell for each of one or more downlink BWPs (or each of one or more SSSGs).
  • One or more group indices may be configured.
  • the UE 100 When case #4 is configured in the UE 100, the UE 100 has PDCCH for each of one or more downlink BWPs (or each of one or more SSSGs) in a certain serving cell, in a certain serving cell. One or more time periods (including skipping periods) for monitoring may be set. Also, in the UE 100, one or more group indexes (SSSG indexes) are set for each of one or more downlink BWPs (or each of one or more SSSGs) in a serving cell. you can Note that the PDCCH monitoring adaptation notification field in DCI for PDCCH monitoring is defined as 2 bits.
  • the RRC message may include field settings indicating the presence or absence of the PDCCH monitoring adaptation notification field for each of one or more DCI formats.
  • the switching indication DCI is a DCI having a DCI format indicating that there is a PDCCH monitoring adaptation notification field by field setting.
  • the presence/absence of the PDCCH monitoring adaptation notification field may be configured commonly or independently for non-scheduling DCI and/or scheduling DCI.
  • the presence/absence of the PDCCH monitoring adaptation notification field (presence/absence) may be set commonly for DCI format 1_1 and DCI format 0_1, and commonly for DCI format 1_2 and DCI format 0_2.
  • the presence or absence (presence/absence) of the PDCCH monitoring adaptation notification field may be set commonly for DCI format 1_1 and DCI format 1_2, and commonly for DCI format 0_1 and DCI format 0_2.
  • the field setting indicating presence/absence of the PDCCH monitoring adaptation notification field may be replaced with the PMA setting. That is, the presence of the PDCCH monitoring adaptation notification field in one or more DCI formats may be indicated by configuring the PMA settings for the UE 100 . For example, UE 100 may identify that one or more DCI formats have a PDCCH monitoring adaptation notification field based on the PMA configuration being configured.
  • the RRC message may include a bit number setting that indicates the number of bits in the PDCCH supervisory adaptation notification field for each of one or more DCI formats.
  • the number of bits of the PDCCH monitoring adaptation notification field may be directly configured commonly or independently.
  • the number of bits of the PDCCH monitoring adaptation notification field may be configured commonly for DCI format 1_1 and DCI format 0_1 and/or commonly for DCI format 1_2 and DCI format 0_2.
  • a PDCCH supervisory adaptation notification field of up to 2 bits is configured for DCI format 1_1 and/or DCI format 0_1, and/or a PDCCH supervisory adaptation notification field of 1 bit is configured for DCI format 1_2 and DCI format 0_2.
  • the number of bits of the PDCCH monitoring adaptation notification field may be configured commonly for DCI format 1_1 and DCI format 1_2, and commonly for DCI format 0_1 and DCI format 0_2.
  • the number of bits setting indicating the number of bits of the PDCCH supervisory adaptation notification field may be replaced with the PMA setting.
  • the number of bits of the PDCCH monitoring adaptation notification field included in one or more DCI formats may be determined by configuring the PMA settings for the UE 100 .
  • UE 100 may determine the number of bits of the PDCCH monitoring adaptation notification field included in one or more DCI formats according to the number of SSSGs configured based on information for configuring SSSGs.
  • UE 100 may determine the number of bits of the PDCCH monitoring adaptation notification field included in one or more DCI formats according to the number of periods set based on the monitoring period information.
  • UE 100 may determine the number of bits of the PDCCH monitoring adaptation notification field included in one or more DCI formats, depending on the case set based on the case setting information (for example, shown in Table 1. may determine the number of bits to be stored).
  • step S12 the UE 100 stores the information set by the base station 200.
  • the base station 200 transmits a switching instruction DCI having a PDCCH monitoring adaptation notification field to the UE 100 on the PDCCH.
  • UE 100 receives the switching instruction DCI on the PDCCH.
  • the UE 100 may determine whether or not the DCI format of the detected DCI corresponds to the switching instruction DCI, based on field settings set by the base station 200 .
  • step S14 the UE 100 acquires the value set in the PDCCH monitoring adaptation notification field of the switching instruction DCI received in step S13.
  • UE 100 may specify the number of bits in the PDCCH monitoring adaptation notification field based on the bit number setting set by base station 200 and then acquire the value set in the PDCCH monitoring adaptation notification field.
  • the UE 100 is based on the number of SSSG indexes set in the UE 100 (i.e., the number of entries in the set SSSG index (list)), and the number of bits of the PDCCH monitoring adaptation notification field is specified.
  • the value set in the PDCCH supervisory adaptation notification field may be obtained.
  • UE 100 calculates and identifies the number of bits of the PDCCH monitoring adaptation notification field by an integer value rounded up after the decimal point of log2 (I). good too.
  • step S15 the UE 100 changes the PDCCH monitoring state to the state corresponding to the value set in the PDCCH monitoring adaptation notification field (hereinafter referred to as the PDCCH monitoring adaptation notification field value) in the received switching instruction DCI based on the set case. switch.
  • the PDCCH monitoring adaptation notification field value the PDCCH monitoring adaptation notification field value
  • An operation example of the UE 100 according to the number of bits of the PDCCH monitoring adaptation notification field in each case is shown below.
  • Case #1 PDCCH Supervisory Adaptation Notification field in DCI for PDCCH Monitoring is 1 bit If the PDCCH Supervisory Adaptation Notification field value is '0', no PDCCH skipping is performed. If the PDCCH monitoring adaptation notification field value is '1', PDCCH skipping is performed during the configured period (the period of the first value).
  • PDCCH supervisory adaptation notification field in DCI for PDCCH supervision is 2 bits If the PDCCH supervisory adaptation notification field value is '00', no PDCCH skipping is performed. If the PDCCH monitoring adaptation notification field value is '01', PDCCH skipping is performed during the configured period (the period of the first value). If the PDCCH monitoring adaptation notification field value is '10', PDCCH skipping is performed during the configured period (second value period). If the PDCCH monitoring adaptation notification field value is '11', PDCCH skipping is performed during the configured period (the period of the third value).
  • Case #2 If the PDCCH supervisory adaptation notification field in the DCI for PDCCH supervision is 1 bit If the PDCCH supervisory adaptation notification field value is '0', the PDCCH according to the search space set corresponding to group index #0 Start monitoring and stop monitoring the PDCCH according to the search space set corresponding to the other group index value. If the PDCCH monitoring adaptation notification field value is '1', start monitoring PDCCH according to the search space set corresponding to group index #1, and start monitoring PDCCH according to the search space set corresponding to other group index values. Stop monitoring.
  • Case #3 If the PDCCH supervisory adaptation notification field in the DCI for PDCCH supervision is 2 bits If the PDCCH supervisory adaptation notification field value is '00', the PDCCH according to the search space set corresponding to group index #0 Start monitoring and stop monitoring the PDCCH according to the search space set corresponding to the other group index value. If the PDCCH monitoring adaptation notification field value is '01', start monitoring PDCCH according to the search space set corresponding to group index #1, and start monitoring PDCCH according to the search space set corresponding to other group index values. Stop monitoring.
  • PDCCH monitoring adaptation notification field value is '10'
  • start monitoring the PDCCH according to the search space set corresponding to group index #2 and start monitoring the PDCCH according to the search space set corresponding to the other group index value. Stop monitoring.
  • the definition of when the PDCCH Supervisory Adaptation Notification field value is '11' is reserved.
  • Case #4 If the number of periods for PDCCH monitoring is set to '1' If the PDCCH Monitoring Adaptation Notification field value is '00', PDCCH monitoring according to the search space set corresponding to group index #0. and stop monitoring the PDCCH according to the search space set corresponding to the other group index value. If the PDCCH monitoring adaptation notification field value is '01', start monitoring PDCCH according to the search space set corresponding to group index #1, and start monitoring PDCCH according to the search space set corresponding to other group index values. Stop monitoring. If the PDCCH monitoring adaptation notification field value is '10', PDCCH skipping is performed during the configured period (the period of the first value). The definition of when the PDCCH Supervisory Adaptation Notification field value is '11' is reserved.
  • Case #4 If the number of periods for PDCCH monitoring is set to '2' If the PDCCH Monitoring Adaptation Notification field value is '00', PDCCH monitoring according to the search space set corresponding to group index #0. and stop monitoring the PDCCH according to the search space set corresponding to the other group index value. If the PDCCH monitoring adaptation notification field value is '01', start monitoring PDCCH according to the search space set corresponding to group index #1, and start monitoring PDCCH according to the search space set corresponding to other group index values. Stop monitoring. If the PDCCH monitoring adaptation notification field value is '10', PDCCH skipping is performed during the configured period (the period of the first value). If the PDCCH monitoring adaptation notification field value is '11', PDCCH skipping is performed during the configured period (second value period).
  • timer-based SSSG switching according to this embodiment will be described with reference to FIG.
  • the UE 100 switches between SSSGs on a timer basis and three or more SSSGs can be configured in the UE 100 .
  • the base station 200 may set one of the SSSGs set in the UE 100 as a default SSSG in the UE 100.
  • the base station 200 may specify one of the SSSG indices set in the UE 100 as "defaultSSSG-Id".
  • the base station 200 may set the 'defaultSSSG-Id' using an RRC message. That is, the base station 200 may configure the default SSSG for the UE 100 using information included in the RRC message.
  • the default SSSG may be an SSSG determined according to a predetermined rule shared in advance by the base station 200 and the UE 100 among SSSGs set in the UE 100 .
  • the default SSSG may be the SSSG set in the UE 100 by the base station 200 as the default SSSG.
  • step S21 the UE 100 for which multiple SSSGs have been set by the base station 200 monitors the PDCCH using one of the multiple SSSGs.
  • step S22 the UE 100 receives a switching instruction DCI that instructs switching to another SSSG from the base station 200 on the PDCCH.
  • step S23 the UE 100 switches to the SSSG specified by the switching instruction DCI and activates the timer (switching timer) associated with the SSSG.
  • step S24 the UE 100 determines whether the switching timer has expired.
  • step S25 the UE 100 switches to the default SSSG among the multiple set SSSGs.
  • the base station 200 can grasp the SSSG to which the UE 100 is switched. Since the switching timer is a value set by the base station 200, the base station 200 manages the switching timer in the same manner as the UE 100, and can recognize that the switching timer has expired in the UE 100.
  • the UE 100 determines the default SSSG according to a predetermined rule. do. For example, if the RRC message does not contain information for setting the default SSSG, the UE 100 may determine the default SSSG according to a predetermined rule.
  • the predetermined rule is, for example, a rule defined by 3GPP technical specifications, and a rule shared in advance by the base station 200 and the UE 100 .
  • the predetermined rule is the SSSG corresponding to the SSSG index with the smallest value among the SSSG indexes set in the UE 100, or the SSSG corresponding to the SSSG index with the largest value. good. For example, if the rule is to set the SSSG corresponding to the SSSG index with the smallest value as the default SSSG, the UE 100 determines the SSSG with SSSG index #0 as the default SSSG. If the rule is to set the SSSG corresponding to the SSSG index with the largest value as the default SSSG, the UE 100 determines the SSSG of SSSG index #4 as the default SSSG.
  • the UE 100 may receive from the base station 200 correspondence information indicating the correspondence between the SSSG index set in the UE 100 and the value set in the SSSG information field in the switching instruction DCI.
  • the predetermined rule may be a rule for determining, as the default SSSG, the SSSG corresponding to the SSSG index indicated by a specific value (eg, "0") set in the SSSG information field in the switching instruction DCI.
  • the UE 100 determines, as the default SSSG, an SSSG having an SSSG index in which the value set in the SSSG information field in the switching instruction DCI is "0".
  • the predetermined rule may be a rule that determines the SSSG corresponding to the SSSG index (for example, index #0) having a predetermined value among the SSSG indices set in the UE 100 as the default SSSG.
  • the predetermined rule may be a rule for determining, among the SSSGs set in the UE 100, SSSGs other than SSSGs skipping PDCCH monitoring as default SSSGs. That is, UE 100 may assume that the SSSG index corresponding to PDCCH skipping is not set as the default SSSG.
  • the UE 100 may apply a specific SSSG when switching from a DRX reception off period to a reception on period (active time).
  • the predetermined rule may be a rule that determines that particular SSSG as the default SSSG. That is, the UE 100 may determine the first SSSG to monitor the PDCCH after the DRX reception off period has elapsed as the default SSSG.
  • the base station 200 may transmit an RRC message including information for setting the specific SSSG, and the UE 100 may determine the specific SSSG as the default SSSG.
  • the base station 200 transmits an RRC message including information for setting the default SSSG, and the UE 100 uses the default SSSG as the first SSSG to monitor the PDCCH after the DRX reception off period has passed. good too.
  • the UE 100 may receive a scheduling DCI indicating radio resources allocated to the UE 100 as a switching instruction DCI. After receiving the scheduling DCI as the switching instruction DCI, the UE 100 may start the switching timer at the timing of switching to one SSSG (specifically, the slot for performing SSSG switching).
  • the UE 100 may use a common value as the switching timer value applied to two or more of the three or more SSSGs set in the UE 100 .
  • the base station 200 may set a common value as the switching timer value applied to two or more SSSGs among the three or more SSSGs set in the UE 100 .
  • the UE 100 may use an individual value for each SSSG as the switching timer value applied to each SSSG set in the UE 100 .
  • the base station 200 may set an individual switching timer setting value in the UE 100 for each SSSG.
  • the UE 100 may activate the switching timer associated with the SSSG at the timing (slot) at which switching to the SSSG is started.
  • the timing (slot) at which switching to the SSSG is started.
  • resources used for PDCCH monitoring are not dedicated, and switching to the relevant SSSG can be started at any timing. Taking advantage of this advantage, it is possible to minimize the effect of the switching delay time without disturbing the PDCCH monitoring operation. Note that the UE 100 may monitor the PDDCH assuming the default SSSG after the switching timer expires.
  • step S31 the base station 200 transmits an RRC message to the UE100.
  • UE 100 receives the RRC message from base station 200 .
  • UE 100 stores the information set by the RRC message.
  • the RRC message may include BWP settings for setting BWP to the UE 100.
  • the RRC message may also include BWP switching timer information for setting a BWP switching timer for switching BWP.
  • the BWP configuration may include, for example, information for downlink BWP (ie BWP-Downlink) and/or information for uplink BWP (ie BWP-Uplink).
  • the BWP setting may include BWP switching timer information.
  • the BWP switching timer information may include a timer value for setting the BWP switching timer.
  • the BWP switching timer may be set for each cell (or for each frequency) set in the UE 100.
  • the BWP switching timer information may be included in the serving cell configuration (ServingCellConfig) used to configure (add or modify) the serving cell to the UE 100. That is, the BWP switching timer may be set for the serving cell.
  • a BWP switching timer is, for example, a BWP inactivity timer (bwp-InactivityTimer).
  • the BWP inactivity timer indicates the duration in ms before the UE 100 falls back to default BWP.
  • the UE 100 switches (that is, falls back) from the active BWP to the default BWP based on the expiration of the BWP inactivity timer.
  • the UE 100 switches to the initial BWP when the default BWP is not set.
  • the serving cell in the case of UE 100 in an RRC connected state in which carrier aggregation (CA) or dual connectivity (DC) is not set, the serving cell consists of a primary cell (PCell).There is only one serving cell.
  • the serving cell is a set of cells configured with a special cell (SpCell) and all secondary cells (SCell).
  • the special cell is the primary cell (PCell) of the master cell group (MCG) or the secondary primary cell (PSCell) of the secondary cell group. Otherwise, the special cell is the primary cell.
  • the secondary cell (SCell) is a cell that provides additional radio resources to the top of the special cell in the case of UE 100 configured with carrier aggregation (CA).
  • step S32 the UE 100 starts the BWP switching timer.
  • UE 100 specifically starts a BWP switching timer associated with the active BWP.
  • UE 100 starts a BWP switching timer for a serving cell configured with a BWP indicated as an active BWP.
  • step S33 the BWP switching timer expires.
  • step S34 the UE 100 switches the BWP (specifically, the active BWP) based on the expiration of the BWP switching timer.
  • the BWP switching timer expires and the default BWP is set
  • the UE 100 may switch the BWP to the default BWP as the active BWP.
  • the BWP switching timer expires and the default BWP is not set
  • the UE 100 may switch the BWP to the initial BWP as the active BWP.
  • the BWP (eg, active BWP, default BWP, and/or initial BWP) is the downlink BWP (specifically, active downlink BWP, default downlink BWP, and/or initial downlink BWP) may be Also, the BWP (for example, active BWP, default BWP, and/or initial BWP) is an uplink BWP (specifically, active uplink BWP, default uplink BWP, and/or initial uplink BWP). There may be.
  • the UE 100 switches the BWP based on the expiration of the BWP switching timer.
  • Such a BWP switch may occur in a power saving state (that is, in a state of lengthening the PDCCH monitoring period or skipping PDCCH monitoring) by performing PDCCH monitoring adaptation.
  • the "PDCCH monitoring state" in this embodiment may include skipping PDCCH monitoring and/or performing PDCCH monitoring in the configured SSSG.
  • switching the PDCCH monitoring state may include switching the operation from skipping PDCCH monitoring to monitoring PDCCH with the configured SSSG.
  • switching the PDCCH monitoring state may include switching the operation from the operation of monitoring the PDCCH in the configured SSSG to the operation of skipping the monitoring of the PDCCH.
  • switching the PDCCH monitoring state includes switching the operation from the operation of monitoring the PDCCH in the set first SSSG to the operation of monitoring the PDCCH in the set second SSSG. good too.
  • switching the PDCCH monitoring state may include switching the SSSG used for PDCCH monitoring.
  • switching the PDCCH monitoring state may include switching the SSSG from the SSSG configured for PDCCH skipping to the SSSG configured for PDCCH monitoring.
  • switching the PDCCH monitoring state may include switching the SSSG from the SSSG configured for PDCCH monitoring to the SSSG configured for PDCCH skipping.
  • switching the PDCCH monitoring state may include switching the SSSG from the first SSSG set for PDCCH monitoring to the second SSSG set for PDCCH monitoring.
  • switching the PDCCH monitoring state may correspond to execution of PDCCH monitoring adaptation.
  • the SSSG used for PDCCH monitoring is also referred to as a PDCCH monitoring state for ease of explanation.
  • the set SSSG includes a default SSSG.
  • UE 100 includes communication unit 110 and control unit 120 .
  • the communication unit 110 performs wireless communication with the base station 200 by transmitting and receiving wireless signals to and from the base station 200 .
  • the communication unit 110 has at least one transmitter 111 and at least one receiver 112 .
  • the transmitting section 111 and the receiving section 112 may be configured including an antenna and an RF circuit.
  • the antenna converts a signal into radio waves and radiates the radio waves into space. Also, the antenna receives radio waves in space and converts the radio waves into signals.
  • the RF circuitry performs analog processing of signals transmitted and received through the antenna.
  • the RF circuitry may include high frequency filters, amplifiers, modulators, low pass filters, and the like.
  • the control unit 120 performs various controls in the UE 100.
  • Control unit 120 controls communication with base station 200 via communication unit 110 .
  • the operations of the UE 100 described above and below may be operations under the control of the control unit 120 .
  • the control unit 120 may include at least one processor capable of executing a program and a memory that stores the program.
  • the processor may execute a program to operate the control unit 120 .
  • the control unit 120 may include a digital signal processor that performs digital processing of signals transmitted and received through the antenna and RF circuitry.
  • the digital processing includes processing of the protocol stack of the RAN. Note that the memory stores programs executed by the processor, parameters related to the programs, and data related to the programs.
  • the memory is ROM (Read Only Memory), EPROM (Erasable Programmable Read Only Memory), EEPROM (Electrically Erasable Programmable Read Only Memory), RAM (Random Access Mem ory) and flash memory. All or part of the memory may be included within the processor.
  • the UE 100 performs wireless communication in a bandwidth portion that is part of the total bandwidth of the cell of the base station 200.
  • the control unit 120 switches the bandwidth portion based on the expiry of the BWP switching timer for switching the bandwidth portion, and switches the PDCCH monitoring state regarding monitoring of the physical downlink control channel (PDCCH). may be processed.
  • the receiving unit 112 receives a radio resource control (RRC) message including switching control information for controlling the BWP timer-based switching process.
  • RRC radio resource control
  • the control unit 120 controls the switching process caused by the BWP timer based on the switching control information.
  • the switching control information may be information regarding whether to enable execution of the BWP timer-based switching process.
  • the control unit 120 may perform the switching process caused by the BWP timer based on the switching control information indicating that the execution of the switching process caused by the BWP timer is enabled.
  • the base station 200 explicitly indicates the validity/invalidity of execution of the switching process caused by the BWP timer, causing a discrepancy between the actual PDCCH monitoring state in the UE 100 and the PDCCH monitoring state recognized by the base station 200. can be further reduced.
  • the switching control information may be included in the PDCCH configuration for configuring UE-specific PDCCH parameters. For example, compared to the case where the switching control information is included in an information element different from the PDCCH setting, when changing the switching control information included in the PDCCH setting and another parameter, the switching control information ( change) can be notified to the UE 100.
  • the base station 200 can also control switching of the PDCCH monitoring state based on expiration of the BWP switching timer when changing settings based on the PDCCH settings.
  • the switching control information may include information for setting a search space set group (SSSG) for monitoring the PDCCH in the switched bandwidth portion based on the expiration of the BWP switching timer.
  • SSSG search space set group
  • the receiving unit 112 may receive from the base station 200 an instruction to switch to the PDCCH skipping state in which PDCCH monitoring is skipped as the PDCCH monitoring state.
  • the control unit 120 may stop the BWP switching timer based on switching to the PDCCH skipping state according to the instruction. That is, the control unit 120 stops the BWP switching timer based on the reception (detection) of the switching instruction DCI that instructs PDCCH skipping (that is, the PDCCH monitoring adaptation notification field set to a value that instructs PDCCH skipping). good. This makes it possible to perform control so that the BWP switching timer does not expire while UE 100 is performing PDCCH skipping.
  • the control unit 120 does not switch the BWP based on the expiration of the BWP switching timer during PDCCH monitoring adaptation. For example, even when the UE 100 switches the PDCCH monitoring state so that the PDCCH monitoring state switching process differs for each BWP, the UE 100 can appropriately switch the PDCCH monitoring state.
  • control unit 120 may start or restart the BWP switching timer based on switching from the PDCCH skipping state to the PDCCH monitoring state. For example, the control unit 120 starts or restarts the BWP switching timer based on the reception (detection) of the switching instruction DCI that instructs SSSG switching (that is, the PDCCH monitoring adaptation notification field set to a value that instructs SSSG switching). You can Also, the control unit 120 may start or restart the BWP switching timer based on expiration of the skipping period timer. As a result, control section 120 switches the BWP based on the expiration of the BWP switching timer only when monitoring the PDCCH, so UE 100 can avoid the continuous unusability of the BWP switching timer. can.
  • the control unit 120 may switch the PDCCH monitoring state to the PDCCH monitoring state in the special cell set in the UE 100. For example, in a special cell, the control unit 120 may switch the PDCCH monitoring state to a state in which the PDCCH is monitored using the SSSG set for PDCCH monitoring. That is, the control unit 120 monitors the PDCCH in the special cell based on expiration of the BWP switching timer associated with the secondary cell (for example, based on expiration of all BWP switching timers associated with the secondary cell). good too.
  • the SSSG used to monitor the PDCCH may be the SSSG configured for the special cell (downlink BWP in the special cell). This enables UE 100 to monitor the PDCCH in the special cell, so base station 200 can control UE 100 even if BWP in all secondary cells is deactivated.
  • the BWP (eg, downlink BWP) in the special cell may be the default BWP (eg, default downlink BWP) set as default by the base station 200 or the initial BWP (eg, initial downlink BWP).
  • the control unit 120 may monitor the PDCCH in the default BWP or initial BWP based on the switching control information. Thereby, the base station 200 can grasp that the UE 100 is monitoring the PDCCH in the default BWP or the initial BWP, and there is no discrepancy between the actual PDCCH monitoring state in the UE 100 and the PDCCH monitoring state recognized by the base station 200. What happens can be further reduced.
  • the switching control information may include information for setting a search space set group (SSSG) for monitoring PDCCH in the default BWP or initial BWP.
  • the control unit 120 may monitor the PDCCH based on the SSSG set by the switching control information in the default BWP or initial BWP.
  • the base station 200 can grasp the SSSG in which the UE 100 monitors the PDCCH in the default BWP or the initial BWP, and the actual PDCCH monitoring state in the UE 100 and the PDCCH monitoring state recognized by the base station 200 do not match. Further reduction is possible.
  • control unit 120 controls switching processing for switching the PDCCH monitoring state related to monitoring of the physical downlink control channel (PDCCH) in a predetermined BWP out of one or a plurality of BWPs set in the UE 100 .
  • the receiving unit 112 receives a radio resource control (RRC) message including switching control information for controlling switching processing.
  • RRC radio resource control
  • the controller 120 controls the switching process in a given bandwidth portion using switching settings for the given bandwidth portion based on the switching control information when the given bandwidth portion is activated.
  • the control unit 120 suspends switching settings when a predetermined bandwidth portion is deactivated. As a result, when the predetermined BWP is deactivated, the UE 100 suspends the switching setting for the predetermined BWP, thereby discarding (or clearing) the switching setting. control can be started earlier.
  • the control unit 120 restores (starts, resumes, (re- ) and the restored switching settings may be used to control the switching process. Thereby, the UE 100 can hasten the start of control of the switching process at the predetermined BWP.
  • the predetermined bandwidth portion may be a portion of the total bandwidth of the secondary cell.
  • the control unit 120 discards (or clears) the suspended switching setting when the secondary cell is deactivated based on the expiration of the timer for deactivating the secondary cell (that is, the serving cell). good.
  • the processing of UE 100 (control unit 120) It can reduce the load.
  • Base station 200 has communication unit 210 , network interface 220 , and control unit 230 .
  • the communication unit 210 receives radio signals from the UE 100 and transmits radio signals to the UE 100.
  • the communication unit 210 has at least one transmitter 211 and at least one receiver 212 .
  • the transmitting section 211 and the receiving section 212 may be configured including an antenna and an RF circuit.
  • the antenna converts a signal into radio waves and radiates the radio waves into space.
  • the antenna receives radio waves in space and converts the radio waves into signals.
  • the RF circuitry performs analog processing of signals transmitted and received through the antenna.
  • the RF circuitry may include high frequency filters, amplifiers, modulators, low pass filters, and the like.
  • the network interface 220 transmits and receives signals to and from the network.
  • the network interface 220 receives signals from adjacent base stations connected via an Xn interface, which is an interface between base stations, and transmits signals to adjacent base stations. Also, the network interface 220 receives signals from the core network device 300 connected via the NG interface, for example, and transmits signals to the core network device 300 .
  • the control unit 230 performs various controls in the base station 200.
  • the control unit 230 controls communication with the UE 100 via the communication unit 210, for example.
  • the control unit 230 controls communication with nodes (for example, adjacent base stations, core network device 300) via the network interface 220, for example.
  • the operations of the base station 200 described above and below may be operations under the control of the control unit 230 .
  • the control unit 230 may include at least one processor capable of executing programs and a memory storing the programs.
  • the processor may execute a program to operate the controller 230 .
  • Control unit 230 may include a digital signal processor that performs digital processing of signals transmitted and received through the antenna and RF circuitry.
  • the digital processing includes processing of the protocol stack of the RAN.
  • the memory stores programs executed by the processor, parameters related to the programs, and data related to the programs. All or part of the memory may be included within the processor.
  • the base station 200 performs radio communication with the UE 100 in a bandwidth portion that is part of the total bandwidth of the cell of the base station 200.
  • the control unit 230 generates a radio resource control (RRC) message including switching control information for controlling the BWP timer-based switching process in the UE 100 .
  • Transmission section 211 transmits the RRC message to UE 100 .
  • the UE 100 switches the bandwidth part and switches the PDCCH monitoring state for monitoring the physical downlink control channel (PDCCH) based on the expiration of the BWP switching timer for switching the bandwidth part.
  • PDCCH physical downlink control channel
  • step S101 the base station 200 (transmitting section 211) transmits an RRC message to the UE100.
  • the RRC message may be a dedicated RRC message (eg, RRCReconfiguration message) sent for each UE.
  • UE 100 (receiving unit 112) receives the RRC message.
  • the RRC message includes switching control information for controlling switching processing for switching the PDCCH monitoring state based on the expiration of the BWP switching timer for switching BWP (hereinafter referred to as BWP timer-induced switching processing as appropriate).
  • the switching control information may be included, for example, in a PDCCH configuration (PDCCH-Config) for configuring user equipment-specific PDCCH parameters.
  • the switching control information may include common parameters (for example, common settings) commonly applied to switching processing triggered by a trigger different from expiration of the BWP switching timer and different switching processing. Therefore, the common parameters are, for example, BWP timer-induced switching processing, CG-induced switching processing for switching the PDCCH monitoring state in response to CG transmission, which is uplink transmission based on the configuration grant (CG) from the base station 200, scheduling request (SR ), and RACH-induced switching processing for switching the PDCCH monitoring state according to RACH (Random Access Channel) transmission (or PRACH (Physical RACH) transmission).
  • the UE 100 control unit 120
  • multiple types of spontaneous uplink transmission may include transmission of a scheduling request (SR).
  • multiple types of spontaneous uplink transmission may include RACH transmission (or PRACH transmission).
  • multiple types of spontaneous uplink transmission may include CG transmission.
  • the switching control information may include individual parameters (for example, individual settings) individually applied to each switching process. Therefore, the individual parameters are, for example, parameters that are applied only to control the BWP timer-based switching process, parameters that are applied only to control the CG-based switching process, and parameters that are applied only to control the SR-based switching process. and/or parameters that only apply to control the RACH-triggered handover process.
  • Individual parameters may indicate settings that are not set by common parameters. Alternatively, individual parameters may indicate settings that are prioritized over common parameters. Also, the individual parameter may indicate whether to enable (or set) execution of the BWP timer-based switching process (BWP timer-based switching). For example, the individual parameter may include information (eg, 1-bit flag information) indicating whether to enable or disable execution of the BWP timer-triggered switching process (BWP timer-triggered switching). good. In addition, the individual parameter includes information (for example, 1-bit flag information) indicating whether to enable or disable execution of each other switching process (or each switching described above). It's okay.
  • the UE 100 (control unit 120) can execute various effective switching processes based on the individual parameter and triggered by at least one of the above-described triggers.
  • the common parameter may include 1-bit flag information indicating whether to enable or disable each switching process.
  • the RRC message may include BWP settings.
  • the BWP configuration may contain individual parameters that only apply to control the BWP timer triggered switching process.
  • the PDCCH configuration may include common parameters and individual parameters.
  • the BWP configuration may include individual parameters that are not included in the PDCCH configuration.
  • the PDCCH configuration may contain only common parameters and the BWP configuration may contain dedicated parameters. Note that the switching control information may be included in an information element different from the PDCCH setting.
  • the UE 100 determines (or identifies) that execution of the BWP timer-induced switching process (or BWP timer-induced switching) is enabled (or set). good too.
  • the UE 100 may determine that execution of the BWP timer-based switching process (or BWP timer-based switching) is enabled (or set).
  • the switching control information may, for example, configure PDCCH monitoring adaptation (or execution of the PDCCH monitoring adaptation) based on expiration of the BWP switching timer.
  • the switching control information may include PDCCH monitoring adaptation settings (PMA settings). Therefore, the switching control information may include at least one of SSSG configuration information, switching timer information, monitoring period information, and case configuration information.
  • the UE 100 (control unit 120) may determine that execution of the BWP timer-based switching process is enabled (set) when the RRC message includes the PMA setting.
  • the switching control information may include at least one of the information included in the PMA settings. Accordingly, the switching control information may be at least part of the information included in the PMA configuration, for example.
  • the switch control information may include, for example, information to configure a search space set group (SSSG) for monitoring PDCCH in a switched BWP based on expiry of a BWP switch timer.
  • SSSG search space set group
  • the switching control information may be information for controlling the BWP timer-based switching process in each cell, each frequency, or each BWP set in the UE 100. Therefore, the BWP timer-based switching process may differ for each cell, each frequency, or each BWP.
  • the switching control information may be included only in the BWP configuration without being included in the PDCCH configuration.
  • the switching control information may be information for controlling the switching process caused by the BWP timer.
  • the switching control information included in the BWP settings may not include information for controlling other switching processes.
  • the switching control information may be information regarding whether to enable (or set) execution of the BWP timer-based switching process.
  • the UE 100 (control unit 120) may perform the switching process caused by the BWP timer based on the switching control information indicating that the switching process caused by the BWP timer is enabled.
  • the UE 100 may perform control so that the BWP timer-based switching process is not performed when the RRC message does not include switching control information. For example, the UE 100 (control unit 120) is not set to enable execution of the BWP timer-induced switching process, and/or the PDCCH monitoring state of the switching destination when performing the BWP timer-induced switching process (for example, SSSG ) is not set, even if the BWP is switched based on the expiration of the BWP switching timer, the BWP timer-based switching process is not performed. This can prevent the actual PDCCH monitoring state in UE 100 and the PDCCH monitoring state recognized by base station 200 from being inconsistent.
  • the PDCCH monitoring state of the switching destination when performing the BWP timer-induced switching process for example, SSSG
  • the RRC message may include information indicating the setting for switching the PDCCH monitoring state in step S104 (that is, the setting for switching the PDCCH monitoring state at a trigger other than the expiration of the BWP switching timer).
  • the UE 100 (control unit 120) switches a predetermined BWP (for example, BWP#1) out of one or a plurality of BWPs set in the UE 100 to the active BWP, and performs wireless communication with the base station 200.
  • a predetermined BWP for example, BWP#1
  • step S102 the UE 100 (control unit 120) starts the BWP switching timer based on the BWP switching timer information. As shown in FIG. 13, at time t11, the UE 100 (control unit 120) starts the BWP switching timer.
  • step S103 the base station 200 (transmitting section 211) transmits a switching instruction DCI that instructs PDCCH skipping or SSSG switching to the UE 100 on the PDCCH.
  • UE 100 receives the switching instruction DCI.
  • FIG. 13 illustrates a case where switching instruction DCI instructing PDCCH skipping is transmitted to UE 100 on PDCCH.
  • the switching instruction DCI may be an instruction for switching to the PDCCH skipping state in which PDCCH monitoring is skipped as the PDCCH monitoring state.
  • UE 100 when receiving a switching instruction DCI that instructs PDCCH skipping, UE 100 (control unit 120) detects a PDCCH monitoring adaptation notification field set to a value that instructs PDCCH skipping, based on the received switching instruction DCI. you can In addition, when the UE 100 (control unit 120) receives a switching instruction DCI that instructs SSSG switching, the UE 100 detects the PDCCH monitoring adaptation notification field set to a value that instructs SSSG switching based on the received switching instruction DCI. may
  • step S104 the UE 100 (control unit 120) switches the PDCCH monitoring state in response to receiving the switching instruction DCI.
  • UE 100 control unit 120
  • the switching instruction DCI skip instruction DCI
  • monitoring of the PDCCH may be skipped for a predetermined period of time (a set predetermined period of time).
  • SSSG switching the UE 100 (control unit 120) may switch to the SSSG indicated by the switching instruction DCI according to the value set in the switching instruction DCI.
  • UE 100 enters a power saving state in which power consumption required for PDCCH monitoring is reduced.
  • step S105 the BWP switching timer expires.
  • the BWP switching timer expires.
  • step S106 the UE 100 (control unit 120) switches the BWP based on the expiration of the BWP switching timer.
  • UE 100 (control unit 120) switches the active BWP to the default BWP (for example, BWP#0).
  • the UE 100 (control unit 120) switches to the initial BWP when the default BWP is not set. As a result, the default BWP is activated, and BWP#1 used by the UE 100 for wireless communication is deactivated.
  • step S107 the UE 100 (control unit 120) switches the PDCCH monitoring state in the post-switching BWP based on the expiration of the BWP switching timer (BWP timer-induced switching processing).
  • the UE 100 (control unit 120) controls the switching process caused by the BWP timer based on the switching control information.
  • the BWP timer-based switching process is a process of switching the PDCCH monitoring state from the first monitoring state to the second monitoring state.
  • the first monitoring state may correspond to the power saving state described above.
  • the second monitoring state may be a state in which the PDCCH is monitored more frequently than in the first monitoring state. This makes it easier to cope with wireless communication (data communication) that occurs after switching the BWP based on the expiration of the BWP switching timer. That is, UE 100 (control unit 120) may perform the above-described PDCCH skipping and/or SSSG switching based on expiration of the BWP switching timer.
  • the BWP timer triggered switching process may correspond to a process related to PDCCH skipping and/or SSSG switching based on expiration of the BWP switching timer.
  • the first monitoring state may be a state in which PDCCH is monitored in a first period
  • the second monitoring state may be a state in which PDCCH is monitored in a second period shorter than the first period. That is, in the second monitoring state, the search space period interval may be shorter than in the first monitoring state.
  • UE 100 control unit 120
  • SSSG switching is set, after DCI instructs switching to SSSG having a long PDCCH monitoring cycle, based on the expiration of the BWP switching timer, a short PDCCH monitoring cycle Switch to SSSG with
  • the first monitoring state may be a PDCCH skipping state in which PDCCH is not monitored (that is, PDCCH skipping)
  • the second monitoring state may be a state in which PDCCH is periodically monitored. Therefore, the BWP timer-based switching process may be a process of switching the PDCCH monitoring state from the PDCCH skipping state to the PDCCH monitoring state (that is, the PDCCH monitoring execution state).
  • the UE 100 (control unit 120) is set to PDCCH skipping, and after being instructed by the DCI to perform PDCCH skipping, switches to the state of monitoring the PDCCH according to CG transmission. Note that the UE 100 (control unit 120) may stop or cancel execution of PDCCH skipping as a process of switching to the PDCCH monitoring execution state.
  • the UE 100 may perform the BWP timer-based switching process only when performing BWP switching based on the expiration of the BWP switching timer when the UE 100 (control unit 120) itself is in the power saving state. That is, UE 100 (control unit 120), in the period during which PDCCH skipping is performed (predetermined period that is set), only when performing BWP switching based on the expiration of the BWP switching timer, the BWP timer caused switching process. you can go That is, the UE 100 (control unit 120) does not need to perform the BWP timer-based switching process when switching the BWP based on the expiration of the BWP switching timer when the UE 100 (control unit 120) itself is not in the power saving state.
  • the UE 100 may perform the CG-induced switching process only when performing BWP switching based on the expiration of the BWP switching timer in a state where PDCCH skipping and/or SSSG switching are set. That is, UE 100 (control unit 120) does not need to perform the BWP timer-based switching process when PDCCH skipping and/or SSSG switching are not set. In this way, when the UE 100 (control unit 120) performs BWP switching based on the expiration of the BWP switching timer, if the PDCCH monitoring state is the PDCCH skipping state, the BWP timer-induced switching process is performed based on the switching control information. You can control it.
  • the PDCCH monitoring state indicates that among a plurality of search space set groups (SSSG) having different search space cycles, the search space cycle is
  • the BWP timer-based switching process may be controlled based on the switching control information.
  • the switching control information may contain information indicating a predetermined value.
  • the UE 100 may perform the BWP timer-based switching process only when the switching control information indicates that the execution of the BWP timer-based switching process (or the BWP timer-based switching) is enabled.
  • the UE 100 performs the BWP timer-induced switching process based on the switching control information indicating that the execution of the BWP timer-induced switching process (or the BWP timer-induced switching) is enabled, the BWP timer-induced switching is performed.
  • the process may switch to a predetermined PDCCH monitoring state.
  • the predetermined PDCCH monitoring state may be the default SSSG described above or a non-default SSSG different from the default SSSG.
  • the UE 100 when the PDCCH monitoring state (for example, SSSG) of the switching destination by the BWP timer-based switching process is specified (set) by switching control information, PDCCH monitoring specified (set) by switching control information You can switch to state. For example, if the switching control information specifies (sets) an index indicating the SSSG after switching by the switching process caused by the BWP timer, the UE 100 (control unit 120) switches to the SSSG indicated by the index.
  • the PDCCH monitoring state for example, SSSG
  • the switching control information specifies (sets) an index indicating the SSSG after switching by the switching process caused by the BWP timer
  • the UE 100 switches to the SSSG indicated by the index.
  • the UE 100 controls the switching process caused by the BWP timer based on the switching control information transmitted from the base station 200.
  • the PDCCH monitoring state based on the expiration of the BWP switching timer under the control of the base station 200, and even if the PDCCH monitoring state is switched based on the expiration of the BWP switching timer, wireless communication can be performed. can be done properly.
  • Steps S201 and S202 are the same as steps S101 and S102.
  • the UE 100 (control unit 120) starts the BWP switching timer.
  • the switching control information may include information indicating a timer value for setting a predetermined period for skipping PDCCH monitoring.
  • a timer that counts a predetermined period of time will be referred to as a skipping period timer.
  • UE 100 may maintain the PDCCH monitoring skipping state while the skipping period timer is in operation.
  • UE 100 uses BWP #1 as an active BWP for wireless communication with base station 200.
  • BWP #1 an active BWP for wireless communication with base station 200.
  • Steps S203 and S204 are the same as steps S103 and S104.
  • step S205 the UE 100 (control unit 120) switches the PDCCH monitoring state to the PDCCH skipping state (first monitoring state) based on the switching instruction DCI.
  • the UE 100 starts the skipping period timer based on the switching of the PDCCH monitoring state according to the switching instruction DCI. Also, the UE 100 (control unit 120) stops the BWP switching timer based on the switching of the PDCCH monitoring state according to the switching instruction DCI.
  • UE 100 (control unit 120) for example, based on the reception (and detection) of the switching instruction DCI indicating PDCCH skipping (that is, the PDCCH monitoring adaptation notification field set to a value indicating PDCCH skipping), the BWP switching timer can be stopped. In FIG. 15, at time t22, the UE 100 (control unit 120) starts the skipping period timer and stops the BWP switching timer.
  • step S206 the UE 100 (control unit 120) switches the PDCCH monitoring state from the PDCCH skipping state (first monitoring state) to the PDCCH monitoring execution state (second monitoring state) based on the expiration of the skipping period timer.
  • the UE 100 starts or restarts the BWP switching timer based on switching from the PDCCH skipping state to the PDCCH monitoring execution state.
  • UE 100 starts or restarts the BWP switching timer based on the expiration of the skipping period timer. In FIG. 15, at time t23, the skipping period timer expires, and UE 100 (control unit 120) starts or restarts the BWP switching timer.
  • the UE 100 when the UE 100 (control unit 120) is in the PDCCH skipping state, the BWP switching timer does not expire because the BWP switching timer is stopped. As a result, the UE 100 (control unit 120) does not switch the BWP based on the expiration of the BWP switching timer during execution of PDCCH monitoring adaptation. As a result, for example, even when the UE 100 switches the PDCCH monitoring state so that the switching process of the PDCCH monitoring state differs for each BWP, the UE 100 can appropriately switch the PDCCH monitoring state.
  • the UE 100 is configured with a special cell and one or more secondary cells by the base station 200 .
  • the UE 100 is performing radio communication with the base station 200 (and other base stations 200) by carrier aggregation or dual connectivity with the set special cell and secondary cell.
  • the BWP in the special cell may be the default BWP set as the default BWP by the base station 200, or may be the initial BWP.
  • the base station 200 transmits switching control information to the UE 100.
  • UE 100 receives the switching control information.
  • the switching control information may include BWP switching timer information for setting a BWP switching timer (eg, BWP inactivity timer) associated with each secondary cell.
  • BWP switching timer eg, BWP inactivity timer
  • UE 100 manages a BWP switching timer associated with each secondary cell.
  • the switching control information may include SSSG setting information for setting the SSSG for monitoring the PDCCH in the default BWP or the initial BWP.
  • the SSSG configuration information may be applied when the BWP switching timer expires in all secondary cells.
  • step S301 the UE 100 (control unit 120) determines whether or not the BWP switching timer has expired in the secondary cell set in the UE 100.
  • UE 100 (control unit 120) may determine whether or not all BWP switching timers associated with any secondary cell among the secondary cells configured in UE 100 have expired.
  • UE 100 (control unit 120) executes the process of step S302 when the BWP switching timer expires in the secondary cell.
  • the UE 100 (control unit 120) executes the process of step S301.
  • step S302 the UE 100 (control unit 120) determines whether or not the BWP switching timers have expired in all the secondary cells set in the UE 100. Therefore, UE 100 (control unit 120) may determine whether or not all BWP switching timers associated with each secondary cell have expired. The UE 100 (control unit 120) executes the process of step S303 when the BWP switching timers expire in all secondary cells. On the other hand, UE 100 (control unit 120) executes the process of step S301 when the BWP switching timer has not expired in at least one of the one or more secondary cells configured in UE 100.
  • step S303 the UE 100 (control unit 120) determines whether or not the special cell is in the PDCCH skipping state. UE 100 (control unit 120) executes the process of step S304 when the special cell is in the PDCCH skipping state. UE 100 (control unit 120) may terminate the process if the special cell is not in the PDCCH skipping state.
  • UE 100 may determine whether or not PDCCH monitoring adaptation is being executed in a special cell. UE 100 (control unit 120) may perform the process of step S304 when PDCCH monitoring adaptation is being performed in a special cell. UE 100 (control unit 120) may end the process when PDCCH monitoring adaptation is not being executed in the special cell.
  • UE 100 in a special cell, PDCCH monitoring state, among a plurality of SSSGs having different search space cycles, when the SSSG search space cycle is a predetermined value or more is applied. , the process of step S304 may be executed. The UE 100 (control unit 120) may end the process when SSSG with a search space period less than a predetermined value is applied.
  • step S304 the UE 100 (control unit 120) switches the PDCCH monitoring state to the PDCCH monitoring execution state.
  • the UE 100 (control unit 120) may switch the PDCCH monitoring state to a PDCCH monitoring execution state in which SSSG with a search space period less than a predetermined value is applied.
  • the UE 100 (control unit 120) may switch the PDCCH monitoring state to a state of monitoring the PDCCH using the SSSG set for PDCCH monitoring in the special cell configured in the UE 100.
  • the SSSG used to perform PDCCH monitoring may be the SSSG configured for the special cell (downlink BWP in the special cell).
  • the UE 100 can switch the PDCCH monitoring state to the PDCCH monitoring execution state based on the switching control information.
  • UE 100 may monitor PDCCH based on SSSG set by switching control information in default BWP or initial BWP. Note that UE 100 (control section 120) may monitor PDCCH in non-default BWP.
  • the UE 100 (control unit 120) cannot monitor the PDCCH in the secondary cells when the BWP switching timer in the secondary cells expires and the BWPs in all the secondary cells are deactivated. However, if the special cell is not in the PDCCH skipping state, the UE 100 can monitor the PDCCH, so even if the BWP in all secondary cells is deactivated, the base station 200 can control the UE 100. .
  • PDCCH monitoring state switching processing (specifically, PDCCH monitoring adaptation) is set for each BWP in the UE 100 . Therefore, based on the switching control information from the base station 200, the UE 100 performs switching settings (specifically, PDCCH monitoring adaptation settings) for each of one or a plurality of BWPs.
  • step S401 the UE 100 (control unit 120) activates a predetermined BWP.
  • step S402 the UE 100 (control unit 120) controls PDCCH monitoring state switching processing (specifically, PDCCH monitoring adaptation) using switching settings for a predetermined BWP.
  • PDCCH monitoring state switching processing specifically, PDCCH monitoring adaptation
  • the UE 100 determines whether or not the predetermined BWP has been deactivated.
  • the UE 100 performs the process of step S404 when the predetermined BWP is deactivated (that is, the predetermined BWP is an inactive BWP).
  • the UE 100 performs the process of step S402 when the predetermined BWP is not deactivated (that is, the predetermined BWP is the active BWP).
  • step S404 the UE 100 (control unit 120) suspends the switching setting for the predetermined BWP.
  • the UE 100 (control unit 120) may suspend the value of the predetermined BWP parameter set by the switching control information included in the RRC message.
  • the UE 100 (control unit 120) may hold the values of the parameters for the predetermined BWP without discarding (or clearing) them.
  • the UE 100 uses the switching setting for the predetermined BWP based on the switching control information to control the switching process in the predetermined BWP.
  • the UE 100 suspends the switching setting for the predetermined BWP when the predetermined BWP is deactivated.
  • Step S411 is the same as step S404.
  • step S412 the UE 100 (control unit 120) determines whether or not the predetermined BWP has been activated again after the predetermined BWP has been deactivated.
  • the UE 100 (control unit 120) executes the process of step S413 when the predetermined BWP is activated again.
  • the UE 100 (control unit 120) executes the process of step S412 when the predetermined BWP is not activated again (that is, the predetermined BWP is an inactive BWP).
  • step S413 the UE 100 (control unit 120) restores the suspended switching settings.
  • the UE 100 (control unit 120) may reinitialize the suspended switching setting.
  • step S414 the UE 100 (control unit 120) uses the restored switching settings to control switching processing in a predetermined BWP.
  • the UE 100 suspends the switching setting for the predetermined BWP, thereby speeding up the start of control of the switching process in the predetermined BWP as compared with the case of discarding the switching setting. be able to.
  • the UE 100 (control unit 120) suspends the switching setting, as in the fourth operation example. Note that the UE 100 (control unit 120) may perform the operation of the fourth operation example together with the operation of this operation example.
  • Step S421 is the same as step S404.
  • step S422 the UE 100 (control unit 120) determines whether or not the predetermined BWP is the BWP of the secondary cell.
  • the UE 100 (control unit 120) executes the process of step S423 when the predetermined BWP is the BWP of the secondary cell.
  • the UE 100 (control unit 120) may end the processing of this operation example.
  • step S423 the UE 100 (control unit 120) determines whether or not the secondary cell deactivation timer (specifically, sCellDeactivationTimer) of the predetermined BWP has expired.
  • the UE 100 (control unit 120) executes the process of step S424 when the deactivation timer of the secondary cell of the predetermined BWP has expired.
  • UE 100 (control unit 120) executes the process of step S423 when the deactivation timer of the secondary cell of the predetermined BWP has not expired (that is, the deactivation timer is in operation or stopped). do.
  • the deactivation timer (sCellDeactivationTimer) is used to determine whether to deactivate the secondary cell associated with the timer.
  • UE 100 (control unit 120) deactivates the secondary cell associated with the timer based on the expiration of the deactivation timer.
  • the set value (timer value) for setting the deactivation timer is included in the serving cell configuration (ServingCellConfig). If the field for setting the deactivation timer in the serving cell setting is blank (absent), the UE 100 (control unit 120) may apply an infinite value as the timer value of the deactivation timer.
  • step S424 the UE 100 (control unit 120) deactivates the secondary cell.
  • step S425 the UE 100 (control unit 120) stops the BWP switching timer associated with the predetermined BWP.
  • step S426 the UE 100 (control unit 120) discards the switching setting for the predetermined BWP.
  • the UE 100 (control unit 120) may clear the switching setting for the predetermined BWP.
  • UE 100 when the secondary cell is deactivated based on the expiration of the timer for deactivating the secondary cell, by clearing the switch setting set for the secondary cell, UE 100 ( The processing load on the control unit 120) can be reduced.
  • control unit 120 starts or restarts the BWP switching timer based on the switching instruction DCI.
  • the control unit 120 may start or restart the BWP switching timer based on expiration of the skipping period timer.
  • the BWP switching timer is an inactivity timer (inactivity-timer), but it is not limited to this.
  • the BWP switching timer may be another timer.
  • the operation sequences (and operation flows) in the above-described embodiments do not necessarily have to be executed in chronological order according to the order described in the flow diagrams or sequence diagrams. For example, the steps in the operations may be performed out of order or in parallel with the order illustrated in the flow diagrams or sequence diagrams. Also, some steps in the operation may be omitted and additional steps may be added to the process. Further, the operation sequences (and operation flows) in the above-described embodiments may be implemented independently, or two or more operation sequences (and operation flows) may be combined and implemented. For example, some steps of one operation flow may be added to another operation flow, or some steps of one operation flow may be replaced with some steps of another operation flow.
  • the base station 200 may include multiple units.
  • the plurality of units may include a first unit hosting a higher layer included in the protocol stack and a second unit hosting a lower layer included in the protocol stack.
  • the upper layers may include the RRC layer, the SDAP layer and the PDCP layer, and the lower layers may include the RLC layer, the MAC layer and the PHY layer.
  • the first unit may be a CU (central unit), and the second unit may be a DU (Distributed Unit).
  • the plurality of units may include a third unit that performs processing below the PHY layer.
  • the second unit may perform processing above the PHY layer.
  • the third unit may be an RU (Radio Unit).
  • Base station 200 may be one of a plurality of units, and may be connected to other units of the plurality of units. Also, the base station 200 may be an IAB (Integrated Access and Backhaul) donor or an IAB node.
  • IAB Integrated Access and Backhaul
  • the mobile communication system 1 based on NR has been described as an example.
  • the mobile communication system 1 is not limited to this example.
  • the mobile communication system 1 may be a TS-compliant system of either LTE (Long Term Evolution) or another generation system (for example, 6th generation) of the 3GPP standards.
  • Base station 200 may be an eNB that provides E-UTRA user plane and control plane protocol termination towards UE 100 in LTE.
  • the mobile communication system 1 may be a system conforming to a TS of a standard other than the 3GPP standard.
  • a program that causes a computer to execute each process performed by the UE 100 or the base station 200 may be provided.
  • the program may be recorded on a computer readable medium.
  • a computer readable medium allows the installation of the program on the computer.
  • the computer-readable medium on which the program is recorded may be a non-transitory recording medium.
  • the non-transitory recording medium is not particularly limited, but may be, for example, a recording medium such as CD-ROM (Compact Disk Read Only Memory) or DVD-ROM (Digital Versatile Disc Read Only Memory). good.
  • circuits that execute each process performed by the UE 100 or the base station 200 may be integrated, and at least a part of the UE 100 or the base station 200 may be configured as a semiconductor integrated circuit (chipset, SoC (System On Chip)).
  • “transmit” may mean performing at least one layer of processing in the protocol stack used for transmission, or physically transmitting the signal wirelessly or by wire. It may mean sending to Alternatively, “transmitting” may mean a combination of performing the at least one layer of processing and physically transmitting the signal wirelessly or by wire.
  • “receive” may mean performing processing of at least one layer in the protocol stack used for reception, or physically receiving a signal wirelessly or by wire. may mean that Alternatively, “receiving” may mean a combination of performing the at least one layer of processing and physically receiving the signal wirelessly or by wire.
  • “obtain/acquire” may mean obtaining information among stored information, and may mean obtaining information among information received from other nodes.
  • references to "based on” and “depending on/in response to” are used unless otherwise specified. does not mean The phrase “based on” means both “based only on” and “based at least in part on.” Similarly, the phrase “depending on” means both “only depending on” and “at least partially depending on.” Similarly, “include” and “comprise” are not meant to include only the recited items, and may include only the recited items or in addition to the recited items. Means that it may contain further items. Similarly, in the present disclosure, “or” does not mean exclusive OR, but means logical OR. Furthermore, any references to elements using the "first,” “second,” etc.
  • RRC radio resource control
  • the switching control information is information regarding whether to enable execution of the switching process caused by the BWP timer,
  • the switching control information includes information for setting a search space set group (SSSG) for monitoring the PDCCH in the bandwidth portion after switching based on expiration of the BWP switching timer. communication device (100).
  • SSSG search space set group
  • the receiving unit (112) receives from the base station (200) an instruction for switching to a PDCCH skipping state in which monitoring of the PDCCH is skipped as the PDCCH monitoring state,
  • the communication device (100) according to claim 1 or 2 wherein the control unit (120) stops the BWP switching timer based on switching to the PDCCH skipping state according to the instruction.
  • control unit (120) controls the PDCCH monitoring state in the special cell set in the communication device (100). to a state of monitoring the PDCCH.
  • the bandwidth portion in the special cell is a default bandwidth portion or an initial bandwidth portion set as a default by the base station (200),
  • the communication device (100) according to appendix 7, wherein the control unit (120) monitors the PDCCH in the default bandwidth portion or the initial bandwidth portion based on the switching control information.
  • the switching control information includes information for setting a search space set group (SSSG) for monitoring the PDCCH in the default bandwidth portion or the initial bandwidth portion,
  • SSSG search space set group
  • the control unit (120) restores the suspended switching settings when the predetermined bandwidth portion is deactivated and then activated again, and uses the restored switching settings to 11.
  • the communication device (100) according to appendix 10, which controls the switching process.
  • the predetermined bandwidth portion is a portion of the total bandwidth of a secondary cell;
  • the control unit (120) discards the suspended switching setting when the secondary cell is deactivated based on the expiration of the timer for deactivating the secondary cell.
  • a base station (200) that performs wireless communication with a communication device (100) in a bandwidth portion that is a portion of the total bandwidth of a cell of the base station (200), a control unit (230) that generates a radio resource control (RRC) message including switching control information for controlling a BWP timer-based switching process in the communication device (100); a transmission unit (211) for transmitting the RRC message to the communication device (100);
  • RRC radio resource control
  • the communication device (100) switches the bandwidth portion based on expiration of a BWP switching timer for switching the bandwidth portion, and switches the physical downlink control channel (PDCCH).
  • PDCCH physical downlink control channel
  • RRC radio resource control
  • RRC Radio Resource Control
  • the communication method further comprising suspending the switching setting when the predetermined bandwidth portion is deactivated.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

基地局(200)のセルの全帯域幅の一部分である帯域幅部分において無線通信を行う通信装置(100)は、前記帯域幅部分を切り替えるためのBWP切り替えタイマの満了に基づいて、前記帯域幅部分を切り替えると共に、物理下りリンク制御チャネル(PDCCH)の監視に関するPDCCH監視状態を切り替えるBWPタイマ起因切り替え処理を行う制御部(120)と、前記BWPタイマ起因切り替え処理を制御するための切り替え制御情報を含む無線リソース制御(RRC)メッセージを受信する受信部(112)と、を備え、前記制御部(120)は、前記切り替え制御情報に基づいて、前記BWPタイマ起因切り替え処理を制御する。

Description

通信装置、基地局、及び通信方法 関連出願への相互参照
 本出願は、2021年12月28日に出願された特許出願番号2021-214683号に基づくものであって、その優先権の利益を主張するものであり、その特許出願のすべての内容が、参照により本明細書に組み入れられる。
 本開示は、移動通信システムで用いる通信装置、基地局、及び通信方法に関する。
 近年、移動通信システムの標準化プロジェクトである3GPP(登録商標。以下同じ)(3rd Generation Partnership Project)において、無線リソース制御(Radio Resource Control:RRC)コネクティッド状態にある通信装置の消費電力を低減するパワーセービング技術を第5世代(5G)システムに導入することが検討されている。
 例えば、パワーセービング技術の一つとして、通信装置における物理下りリンク制御チャネル(Physical Downlink Control Channel:PDCCH)の監視に必要な消費電力を低減するために、物理下りリンク制御チャネルの監視に関するPDCCHの監視状態を切り替える処理(以下、切り替え処理)を行うことが検討されている。例えば、通信装置は、切り替え処理によって、PDCCHの監視状態を、PDCCHの監視周期を長くする又はPDCCHの監視をスキップする状態(以下、PDCCH監視スキッピング状態)に切り替える。特に、通信装置において、RRCコネクティッド状態の間欠受信(Discontinuous Reception:DRX)におけるアクティブ時間内において動的にPDCCH監視状態を切り替えることにより、DRXによる低消費電力化よりも大きな消費電力低減の効果を得ることができる。このようなPDCCHの監視をスキップする動作及びPDCCHの監視状態を切り替える動作は、PDCCH監視アダプテーション(PDCCH monitoring adaptation)と称されることがある。
 ここで、基地局のセルの全帯域幅の一部分である所定の帯域幅部分(Bandwidth Part:BWP)において無線通信を行う通信装置がPDCCH監視スキッピング状態であるケースを想定する。通信装置が、所定のBWPにおいて一定期間データ通信が発生しないことによるBWP切り替えタイマの満了に基づいて、所定のBWPが切り替えることを契機として、PDCCH監視状態を切り替える、具体的には、PDCCHの監視を行う方法が提案されている。(非特許文献1参照)。
3GPP寄書:R1-2110840
 第1の態様に係る通信装置は、基地局のセルの全帯域幅の一部分である帯域幅部分において無線通信を行う通信装置である。前記通信装置は、前記帯域幅部分を切り替えるためのBWP切り替えタイマの満了に基づいて、前記帯域幅部分を切り替えると共に、物理下りリンク制御チャネル(PDCCH)の監視に関するPDCCH監視状態を切り替えるBWPタイマ起因切り替え処理を行う制御部と、前記BWPタイマ起因切り替え処理を制御するための切り替え制御情報を含む無線リソース制御(RRC)メッセージを受信する受信部と、を備える。前記制御部は、前記切り替え制御情報に基づいて、前記BWPタイマ起因切り替え処理を制御する。
 第2の態様に係る通信装置は、基地局のセルの全帯域幅の一部分である帯域幅部分において無線通信を行う通信装置である。前記通信装置は、前記通信装置に設定された1又は複数の帯域幅部分のうち所定の帯域幅部分において、物理下りリンク制御チャネル(PDCCH)の監視に関するPDCCH監視状態を切り替える切り替え処理を制御する制御部と、前記切り替え処理を制御するための切り替え制御情報を含む無線リソース制御(RRC)メッセージを受信する受信部と、を備える。前記制御部は、前記所定の帯域幅部分がアクティブ化されている場合、前記切り替え制御情報に基づく前記所定の帯域幅部分用の切り替え設定を用いて、前記所定の帯域幅部分における前記切り替え処理を制御し、前記所定の帯域幅部分が非アクティブ化された場合、前記切り替え設定をサスペンドする。
 第3の態様に係る基地局は、基地局のセルの全帯域幅の一部分である帯域幅部分において通信装置と無線通信を行う前記基地局である。前記基地局は、前記通信装置におけるBWPタイマ起因切り替え処理を制御するための切り替え制御情報を含む無線リソース制御(RRC)メッセージを生成する制御部と、前記RRCメッセージを前記通信装置へ送信する送信部と、を備える。前記BWPタイマ起因切り替え処理では、前記通信装置が、前記帯域幅部分を切り替えるためのBWP切り替えタイマの満了に基づいて、前記帯域幅部分を切り替えると共に、物理下りリンク制御チャネル(PDCCH)の監視に関するPDCCH監視状態を切り替える。
 第4の態様に係る通信方法は、基地局のセルの全帯域幅の一部分である帯域幅部分において無線通信を行う通信装置で実行される通信方法ある。前記通信方法は、前記帯域幅部分を切り替えるためのBWP切り替えタイマの満了に基づいて、前記帯域幅部分を切り替えると共に、物理下りリンク制御チャネル(PDCCH)の監視に関するPDCCH監視状態を切り替えるBWPタイマ起因切り替え処理を行うステップと、前記BWPタイマ起因切り替え処理を制御するための切り替え制御情報を含む無線リソース制御(RRC)メッセージを受信するステップと、を備える。前記BWPタイマ起因切り替え処理を行うステップでは、前記切り替え制御情報に基づいて、前記BWPタイマ起因切り替え処理を制御する。
 第5の態様に係る通信方法は、基地局のセルの全帯域幅の一部分である帯域幅部分において無線通信を行う通信装置で実行される通信方法ある。前記通信方法は、前記通信装置に設定された1又は複数の帯域幅部分のうち所定の帯域幅部分において、物理下りリンク制御チャネル(PDCCH)の監視に関するPDCCH監視状態を切り替える切り替え処理を制御するステップと、前記切り替え処理を制御するための切り替え制御情報を含む無線リソース制御(RRC)メッセージを受信するステップと、を備える。前記切り替え処理を制御するステップでは、前記所定の帯域幅部分がアクティブ化されている場合、前記切り替え制御情報に基づく前記所定の帯域幅部分用の切り替え設定を用いて、前記所定の帯域幅部分における前記切り替え処理を制御し、前記所定の帯域幅部分が非アクティブ化された場合、前記切り替え設定をサスペンドするステップをさらに備える。
 本開示についての目的、特徴、及び利点等は、添付の図面を参照しながら下記の詳細な記述により、より明確になる。
図1は、実施形態に係る移動通信システムの構成を示す図である。 図2は、実施形態に係るプロトコルスタックの構成例を示す図である。 図3は、実施形態に係る移動通信システムにおける無線通信動作の概要を示すシーケンス図である。 図4は、実施形態に係るPDCCHスキッピングの概要を示す図である。 図5は、実施形態に係るサーチスペースセット(SSSG)切り替えの概要を示す図である。 図6は、実施形態に係るDRX及びパワーセービング状態を示す図である。 図7は、実施形態に係るSSSG切り替えの一例を示すシーケンス図である。 図8は、実施形態に係るタイマベースのSSSG切り替えの一例を示す図である。 図9は、実施形態に係るBWP切り替えタイマの満了に基づくBWP切り替えの概要を示すシーケンス図である。 図10は、実施形態に係るUEの構成を示す図である。 図11は、実施形態に係る基地局の構成を示す図である。 図12は、実施形態に係る移動通信システムの第1動作例を説明するためのシーケンス図である。 図13は、実施形態に係る移動通信システムの第1動作例を説明するための図である。 図14は、実施形態に係る移動通信システムの第2動作例を説明するためのシーケンス図である。 図15は、実施形態に係る移動通信システムの第2動作例を説明するための図である。 図16は、実施形態に係る移動通信システムの第3動作例を説明するためのフローチャートである。 図17は、実施形態に係る移動通信システムの第4動作例を説明するためのフローチャート(その1)である。 図18は、実施形態に係る移動通信システムの第4動作例を説明するためのフローチャート(その2)である。 図19は、実施形態に係る移動通信システムの第5動作例を説明するためのフローチャートである。
 図面を参照しながら、実施形態に係る移動通信システムについて説明する。図面の記載において、同一又は類似の部分には同一又は類似の符号を付している。
 通信装置が、BWP切り替えタイマの満了に基づいてBWPを切り替える場合において、通信装置における実際のPDCCH監視状態と基地局が認識しているPDCCH監視状態とに不一致が生じる可能性がある。そのため、通信装置がBWP切り替えタイマの満了に基づいてBWPを切り替えた後、基地局が通信装置との無線通信を適切に行うことができない懸念がある。
 そこで、本開示は、BWP切り替えタイマの満了に基づいてPDCCH監視状態が切り替えられる移動通信システムにおいて、BWP切り替えタイマの満了に基づいてBWPを切り替える場合であっても無線通信を適切に行うことを可能とする通信装置、基地局、及び通信方法を提供することを目的の一つとする。
 (1)移動通信システム
 本実施形態に係る移動通信システムについて説明する。
 まず、図1を参照して、本実施形態に係る移動通信システム1の構成について説明する。移動通信システム1は、例えば、3GPPの技術仕様(Technical Specification:TS)に準拠したシステムである。以下において、移動通信システム1として、3GPP規格の第5世代システム(5th Generation System:5GS)、すなわち、NR(New Radio)に基づく移動通信システムを例に挙げて説明する。
 移動通信システム1は、ネットワーク10と、ネットワーク10と通信するユーザ装置(User Equipment:UE)100とを有する。ネットワーク10は、5Gの無線アクセスネットワークであるNG-RAN(Next Generation Radio Access Network)20と、5Gのコアネットワークである5GC(5G Core Network)30とを含む。
 UE100は、通信装置の一例である。UE100は、移動可能な無線通信装置であってよい。UE100は、ユーザにより利用される装置であってよい。UE100は、3GPPの技術仕様で規定されるユーザ装置であってよい。UE100は、例えば、スマートフォンなどの携帯電話端末、タブレット端末、ノートPC、通信モジュール、又は通信カードなどの移動可能な装置である。UE100は、車両(例えば、車、電車など)又はこれに設けられる装置(例えば、Vehicle UE)であってよい。UE100は、車両以外の輸送機体(例えば、船、飛行機など)又はこれに設けられる装置(例えば、Aerial UE)であってよい。UE100は、センサ又はこれに設けられる装置であってよい。なお、UE100は、移動局、移動端末、移動装置、移動ユニット、加入者局、加入者端末、加入者装置、加入者ユニット、ワイヤレス局、ワイヤレス端末、ワイヤレス装置、ワイヤレスユニット、リモート局、リモート端末、リモート装置、又はリモートユニット等の別の名称で呼ばれてもよい。
 NG-RAN20は、複数の基地局200を含む。各基地局200は、少なくとも1つのセルを管理する。セルは、通信エリアの最小単位を構成する。1つのセルは、1つの周波数(キャリア周波数)に属し、1つのコンポーネントキャリアにより構成される。用語「セル」は、無線通信リソースを表すことがあり、UE100の通信対象を表すこともある。各基地局200は、自セルに在圏するUE100との無線通信を行うことができる。基地局200は、RANのプロトコルスタックを使用してUE100と通信する。基地局200は、UE100へ向けたNRユーザプレーン及び制御プレーンプロトコル終端を提供し、NGインターフェイスを介して5GC30に接続される。このようなNRの基地局200は、gNodeB(gNB)と称されることがある。
 5GC30は、コアネットワーク装置300を含む。コアネットワーク装置300は、例えば、AMF(Access and Mobility Management Function)及び/又はUPF(User Plane Function)を含む。AMFは、UE100のモビリティ管理を行う。UPFは、ユーザプレーン処理に特化した機能を提供する。AMF及びUPFは、NGインターフェイスを介して基地局200と接続される。
 次に、図2を参照して、本実施形態に係るプロトコルスタックの構成例について説明する。
 UE100と基地局200との間の無線区間のプロトコルは、物理(PHY)レイヤと、MAC(Medium Access Control)レイヤと、RLC(Radio Link Control)レイヤと、PDCP(Packet Data Convergence Protocol)レイヤと、RRCレイヤとを有する。
 PHYレイヤは、符号化・復号、変調・復調、アンテナマッピング・デマッピング、及びリソースマッピング・デマッピングを行う。UE100のPHYレイヤと基地局200のPHYレイヤとの間では、物理チャネルを介してデータ及び制御情報が伝送される。
 MACレイヤは、データの優先制御、ハイブリッドARQ(Hybrid Automatic Repeat reQuest:HARQ)による再送処理、及びランダムアクセスプロシージャ等を行う。UE100のMACレイヤと基地局200のMACレイヤとの間では、トランスポートチャネルを介してデータ及び制御情報が伝送される。基地局200のMACレイヤはスケジューラを含む。スケジューラは、上下リンクのトランスポートフォーマット(トランスポートブロックサイズ、変調・符号化方式(Modulation and Coding Scheme:MCS))及びUE100への割当リソースを決定する。
 RLCレイヤは、MACレイヤ及びPHYレイヤの機能を利用してデータを受信側のRLCレイヤに伝送する。UE100のRLCレイヤと基地局200のRLCレイヤとの間では、論理チャネルを介してデータ及び制御情報が伝送される。
 PDCPレイヤは、ヘッダ圧縮・伸張、及び暗号化・復号化を行う。
 PDCPレイヤの上位レイヤとしてSDAP(Service Data Adaptation Protocol)レイヤが設けられていてもよい。SDAP(Service Data Adaptation Protocol)レイヤは、コアネットワークがQoS制御を行う単位であるIPフローとAS(Access Stratum)がQoS(Quality of Service)制御を行う単位である無線ベアラとのマッピングを行う。
 RRCレイヤは、無線ベアラの確立、再確立及び解放に応じて、論理チャネル、トランスポートチャネル、及び物理チャネルを制御する。UE100のRRCレイヤと基地局200のRRCレイヤとの間では、各種設定のためのRRCシグナリングが伝送される。UE100のRRCと基地局200のRRCとの間にRRC接続がある場合、UE100はRRCコネクティッド状態にある。UE100のRRCと基地局200のRRCとの間にRRC接続がない場合、UE100はRRCアイドル状態にある。UE100のRRCと基地局200のRRCとの間のRRC接続がサスペンドされている場合、UE100はRRCインアクティブ状態にある。
 RRCレイヤの上位に位置するNASレイヤは、UE100のセッション管理及びモビリティ管理を行う。UE100のNASレイヤとコアネットワーク装置300(AMF)のNASレイヤとの間では、NASシグナリングが伝送される。なお、UE100は、無線インターフェイスのプロトコル以外にアプリケーションレイヤ等を有する。
 (2)BWP(帯域幅部分)
 UE100と基地局200とは、セルの全帯域幅の一部分であるBWP(帯域幅部分)を用いて通信を行う。具体的には、基地局200は、1つ又は複数のBWPをUE100に設定する。基地局200は、設定された1つ又は複数のBWPのうち、基地局200との通信に用いるBWP(すなわち、アクティブBWP)をUE100へ通知できる。具体的には、基地局200は、設定の実行時にアクティブにするBWP、すなわち、基地局200との通信で最初に用いるBWPを示す識別子をUE100へ送信できる。また、アクティブBWPからアクティブBWPでないBWP(以下、非アクティブBWP)への切り替え及び非アクティブBWPからアクティブBWPへの切り替え(いわゆる、BWPスイッチング)の制御には、例えば、物理下り制御チャネル(例えば、下りリンクアサインメント、上りリンクグラント)、タイマ(すなわち、bwp-InactivityTimer)、RRCシグナリング、又はMACエンティティなどが用いられる。なお、RRCシグナリングに用いられる上位レイヤシグナリング(RRCメッセージ)は、報知されるシステム情報や、UE個別に送信される専用RRCメッセージであってもよい。
 BWPは、初期BWPと個別BWPとを含む。初期BWPは、少なくともUE100の初期アクセスに用いられる。初期BWPは、複数のUE100に共通に用いられる。初期BWPは、下り通信用の初期BWP(以下、初期下りリンクBWP(Initial DL BWP))と上り通信用の初期BWP(以下、初期上りリンクBWP(Initial UL BWP))とを含む。初期下りリンクBWP及び初期上りリンクBWPのそれぞれを示す識別子(すなわち、bwp-id)の値は、0である。
 UE100は、例えば、2つの方法で、初期BWP(すなわち、初期下りリンクBWP及び初期上りリンクBWP)を決定できる。第1の方法では、UE100は、物理ブロードキャストチャネル(PBCH)内のマスター情報ブロック(MIB)に含まれる情報を用いて設定されるCORESET#0に基づいて、初期BWPを決定する。第2の方法では、UE100は、システム情報ブロック(SIB)に含まれる情報を用いて設定される周波数ドメインにおける位置及び帯域幅に基づいて、初期BWPを決定する。UE100は、例えば、ランダムアクセス手順におけるメッセージ4の受信までは、第1の方法により決定されたBWPを、基地局200との通信に適用してよい。UE100は、例えば、メッセージ4の受信後は、第2の方法により決定されたBWPを、基地局200との通信に適用してよい。
 個別BWPは、UE100に個別に設定される。個別BWPは、下り通信用の個別BWP(以下、個別下りリンクBWP(UE dedicated DL BWP))と上り通信用の個別BWP(以下、個別上りリンクBWP(UE dedicated UL BWP))とを含む。個別下りリンクBWP及び個別上りリンクBWPのそれぞれを示す識別子の値は0以外である。
 UE100には、例えば、RRCメッセージに含まれる情報(例えば、下りリンクBWP用の情報(すなわち、BWP-Downlink)及び上りリンクBWP用の情報(すなわち、BWP-Uplink))に基づいて、個別BWPが設定される。下りリンクBWP用の情報及び個別上りリンクBWP用の情報のそれぞれに、例えば、周波数ドメインにおける位置及び帯域幅を示す情報(例えば、locationAndBadwidth)、サブキャリア間隔を示す情報(例えば、subcarrierSpacing)、及び、拡張サイクリックプレフィックスを使用するかを示す情報(例えば、cyclicPrefix)の少なくともいずれかの情報が含まれてよい。
 以下において、下り通信用のBWPを下りリンクBWP(又はDL BWP)と適宜称し、上り通信用のBWPを上りリンクBWP(又はUL BWP)と、適宜称することがある。
 次に、図3を参照して、本実施形態に係る移動通信システム1における無線通信動作の概要について説明する。
 基地局200は、PDCCHが設けられる候補タイミングに相当するサーチスペースをUE100に設定する。RRCコネクティッド状態にあるUE100は、設定されたサーチスペースにおいてPDCCHを監視(モニタ)し、PDCCHで運ばれる下りリンク制御情報(Downlink Control Information:DCI)を受信し、DCIが示すリソース割当(スケジューリング)に従って物理下りリンク共有チャネル(Physical Downlink Shared Channel:PDSCH)の受信及び/又は物理上りリンク共有チャネル(Physical Uplink Shared Channel:PUSCH)の送信を行う。例えば、UE100は、対応するサーチスペースに従って、PDCCHの候補のセットを監視してもよい。すなわち、UE100は、対応するサーチスペースに従って、PDCCHの監視が設定されたサービングセルにおける下りリンクBWPでの制御リソースセット(Control Resource Set:CORESET)で、PDCCHの候補のセットを監視してもよい。ここで、モニタとは、モニタされるDCIフォーマットに従って、PDCCHの候補のそれぞれをデコードすることを示していてもよい。
 図3に示すように、ステップS1において、基地局200は、PDCCHに関する設定(PDCCH設定)を含むRRCメッセージをUE100に送信し、PDCCHに関する各種設定をUE100に対して行う。このRRCメッセージは、UE固有のRRCメッセージであって、例えばRRC Reconfigurationメッセージであってもよい。ここで、PDCCHに関する設定のうちサーチスペース設定は、サーチスペース周期(PDCCH監視周期とも称する)、サーチスペースオフセット(PDCCH監視オフセットとも称する)、サーチスペース持続時間(例えば連続するスロットの数)、PDCCH監視に対するシンボル、アグリゲーションレベル、サーチスペースのタイプ、及びDCIフォーマット等を含む。ここで、サーチスペースのそれぞれ(サーチスペースの設定のそれぞれ)は、1つのCORESETに関連してもよい。また、サーチスペースの設定は、1以上のDL BWPのそれぞれに対して設定されてもよい。ここで、サーチスペースのタイプは、UE固有のサーチスペース(UE-specific Search Space:USS)及び/又はUE共通のサーチスペース(Common Search Space:CSS)を含んでもよい。
 DCIフォーマットには、PDSCH又はPUSCHのスケジューリングに用いられるスケジューリングDCIフォーマットと、このようなスケジューリングに用いられない非スケジューリングDCIフォーマットとがある。スケジューリングDCIフォーマットで送信されるDCIをスケジューリングDCIと称し、非スケジューリングDCIフォーマットで送信されるDCIを非スケジューリングDCIと称する。
 スケジューリングDCIフォーマットには、PDSCHのスケジューリングに用いられる下りリンクDCIフォーマット(例えば、DCIフォーマット1_0、DCIフォーマット1_1、DCIフォーマット1_2)と、PUSCHスケジューリングに用いられる上りリンクDCIフォーマット(例えば、DCIフォーマット0_0、DCIフォーマット0_1、DCIフォーマット0_2)とがある。スケジューリングDCIは、UE個別に送信されるUE固有のDCIであってもよい。例えば、スケジューリングDCIは、UE個別に割り当てられるRNTI(Radio Network Temporary Identifier)を適用して送信されてもよい。ここで、PDSCHのスケジューリングに用いられる下りリンクDCIフォーマットは、下りリンクアサインメントとも称される。また、PUSCHスケジューリングに用いられる上りリンクDCIフォーマットは、上りリンクグラントとも称される。
 一方、非スケジューリングDCIフォーマットには、例えば、DCIフォーマット2_0、DCIフォーマット2_6がある。非スケジューリングDCIは、複数のUE100に一斉に送信可能なDCIであってもよい。例えば、非スケジューリングDCIは、複数のUE100に共通のRNTIを適用して送信されてもよい。
 ステップS2において、UE100は、基地局200から設定されたサーチスペースにおけるPDCCHの監視を開始する。例えば、DCIフォーマット1_0、DCIフォーマット0_0、DCIフォーマット1_1、DCIフォーマット0_1、DCIフォーマット1_2、及びDCIフォーマット0_2のそれぞれがUE100に設定されており、UE100は設定に基づいてPDCCH(DCI)を監視する。例えば、基地局200は、UE100に対して、あるサーチスペースにおいて、DCIフォーマット1_0及びDCIフォーマット0_0を監視するように設定してもよい。また、基地局200は、UE100に対して、あるサーチスペースにおいて、DCIフォーマット1_1及びDCIフォーマット0_1を監視するように設定してもよい。また、基地局200は、UE100に対して、あるサーチスペースにおいて、DCIフォーマット1_2及びDCIフォーマット0_2を監視するように設定してもよい。すなわち、例えば、基地局200は、あるサーチスペースに対してCSSを設定した場合において、UE100に対して、DCIフォーマット1_0及びDCIフォーマット0_0に対するPDCCHの候補を監視するように設定してもよい。また、基地局200は、あるサーチスペースに対してCSSを設定した場合において、UE100に対して、DCIフォーマット2_0に対するPDCCHの候補を監視するように設定してもよい。また、基地局200は、あるサーチスペースに対してUSSを設定した場合において、UE100に対して、DCIフォーマット1_0及びDCIフォーマット0_0、又は、DCIフォーマット1_1及びDCIフォーマット0_1に対するPDCCHの候補を監視するように設定してもよい。また、基地局200は、あるサーチスペースに対してUSSを設定した場合において、UE100に対して、DCIフォーマット1_0及びDCIフォーマット0_0、又は、DCIフォーマット1_2及びDCIフォーマット0_2に対するPDCCHの候補を監視するように設定してもよい。
 ステップS3において、UE100は、自UE宛てのDCI又はPDCCHを基地局200から受信及び検出する。例えば、UE100は、基地局200からUE100に割り当てられたC-RNTI(Cell-Radio Network Temporary Identifier(RNTI))、MCS-C-RNTI(Modulation and Coding Scheme-C-RNTI)、又はCS-RNTI(Configured Scheduling-RNTI)を用いてPDCCHのブラインド復号を行い、復号に成功したDCIを自UE宛てのDCIとして取得する。ここで、基地局200から送信されるDCI(すなわち、DCIフォーマット)には、C-RNTI、MCS-C-RNTI、又はCS-RNTIによってスクランブルされたCRC(Cyclic Redundancy Check)パリティビットが付加されている。すなわち、下りリンクアサインメントには、C-RNTI、又はMCS-C-RNTI、又はCS-RNTIによってスクランブルされたCRCパリティビットが付加されている。また、上りリンクグラントには、C-RNTI、又はMCS-C-RNTI、又はCS-RNTIによってスクランブルされたCRCパリティビットが付加されている。
 DCIがPDSCHのスケジューリングを示す場合、ステップS4において、UE100は、スケジューリングされたPDSCHで基地局200から下りリンクデータを受信する。DCIがPUSCHのスケジューリングを示す場合、ステップS5において、UE100は、スケジューリングされたPUSCHで基地局200に上りリンクデータを送信する。ここで、下りリンクデータは、下りリンク共用チャネル(Downlink-Shared Channel:DL-SCH)のデータとも称される。また、上りリンクデータは、上りリンク共有チャネル(Uplink-Shared Channel:UL-SCH)のデータとも称される。ここで、下りリンク共用チャネル及び上りリンク共有チャネルはトランスポートチャネルであり、PDSCH及びPUSCHは物理チャネルである。例えば、下りリンクデータ(DL-SCHのデータ)はPDSCHにマップされ、上りリンクデータ(UL-SCHのデータ)はPUSCHにマップされる。
 (3)パワーセービング技術の概要
 本実施形態に係るパワーセービング技術の概要について説明する。
 まず、図4を参照して、本実施形態に係るPDCCHスキッピングの概要について説明する。以下において、UE100はRRCコネクティッド状態にあるものとする。
 第1に、UE100は、基地局200から設定されたサーチスペース設定に基づいて、所定周期で設けられたPDCCHをサーチスペースにおいて監視する。本実施形態において、このようなUE100におけるPDCCHの監視に関するPDCCH監視状態は、PDCCHを監視するPDCCH監視実行状態と称することがある。
 第2に、基地局200は、PDCCHスキッピングを指示するスキップ指示DCIをUE100に送信する。スキップ指示DCIは、切り替え指示DCIの一例である。スキップ指示DCIは、スケジューリングDCIであってもよいし、非スケジューリングDCIであってもよい。
 第3に、UE100は、基地局200からのスキップ指示DCIの受信に応じて、PDCCHの監視を所定期間にわたってスキップする。PDCCHの監視をスキップする所定期間は、上位レイヤシグナリング(RRCメッセージ)により設定されてもよい。所定期間は、タイマ値(すなわち、切り替えタイマの設定値)により定められてもよいし、連続するスロット数又は連続するサーチスペース数により定められてもよい。当該所定期間は、スキッピング期間と称されてもよい。このようなPDCCHスキッピングにより、UE100がPDCCHを監視するために必要な消費電力が低減され、動的なパワーセービングを実現できる。なお、PDCCHスキッピングはPDCCHの監視をスキップすることを意味してもよく、PDCCHスキッピングをPDCCH監視スキッピングと称しても良い。本実施形態において、このようなUE100におけるPDCCH監視状態は、PDCCHスキッピング状態と称することがある。
 次に、図5を参照して、本実施形態に係るサーチスペースセットグループ切り替え(SSSG switching)の概要について説明する。
 第1に、基地局200は、サーチスペースに関する設定のセットであるサーチスペースセットを上位レイヤシグナリング(RRCメッセージ)によってUE100に複数設定する。このようなサーチスペースに関する設定のセットはサーチスペースセット(Search Space Set:SSS)又はサーチスペースセットグループ(Search Space Set Group:SSSG)と称されるが、以下においては、主としてSSSGと称することとする。1つのSSSGは、1つ又は複数のサーチスペース設定を含み、SSSGのインデックスにより識別される。図5の例において、基地局200は、所定周期でサーチスペースが設けられるSSSG#0(第1サーチスペースセット)と、所定周期よりも長い周期でサーチスペースが設けられるSSSG#1(第2サーチスペースセット)とをUE100に設定するものとする。ここでは基地局200がSSSG#0及びSSSG#1の2つのSSSGをUE100に設定する一例を示しているが、1以上のBWP(例えば、DL BWP)のそれぞれに対して3つ以上のSSSGをUE100に設定してもよい。なお、UE100に複数のSSSG(若しくは3つ以上のSSSG)を設定するとは、1つのBWPに対して複数のSSSG(若しくは3つ以上のSSSG)を設定することを意味してもよいし、複数のBWPに対して複数のSSSG(若しくは3つ以上のSSSG)を設定することを意味してもよい。また、前述のとおりサーチスペースがUE固有のサーチスペース及び/又はUE共通のサーチスペースを含む点を勘案すると、UE固有のサーチスペースに関する設定のセットはUE固有のサーチスペースセットと称されてもよく、UE共通のサーチスペースに関する設定のセットはUE共通のサーチスペースセットと称されてもよい。
 第2に、UE100は、SSSG#0に基づいて、所定周期で設けられたPDCCHをサーチスペースにおいて監視する。
 第3に、基地局200は、SSSG切り替えを指示する切り替え指示DCIをUE100に送信する。切り替え指示DCIは、スケジューリングDCIであってもよいし、非スケジューリングDCIであってもよい。すなわち、基地局200は、DCIを用いて、SSSG#0からSSSG#1への切り替えをUE100に指示する。
 第4に、UE100は、切り替え指示DCIの受信に応じてSSSG#1への切り替えを開始する。UE100は、SSSG#0におけるPDCCHの最後のシンボルから切り替え遅延時間(Switch delay)後のシンボルでSSSG#1への切り替えを実施する。このような切り替え遅延時間は、上位レイヤシグナリング(RRCメッセージ)により基地局200からUE100に設定されてもよい。
 第5に、UE100は、SSSG#1に基づいて、所定周期よりも長い周期で設けられたPDCCHをサーチスペースにおいて監視する。このようなサーチスペースセット切り替えにより、UE100がPDCCHを監視するために必要な消費電力が低減され、動的なパワーセービングを実現できる。
 なお、SSSG#1からSSSG#0への切り替えは、SSSG#0からSSSG#1への切り替えと同様に基地局200がDCIにより指示してもよいし、タイマを用いてUE100がSSSG#1からSSSG#0へ切り替えてもよい。このような切り替えタイマ(Switching timer)のタイマ値は、上位レイヤシグナリング(RRCメッセージ)で基地局200からUE100に設定される。UE100は、SSSG#1への切り替え指示DCIの検出に応じてSSSG#1におけるPDCCHの監視を開始するとともに、切り替えタイマの値を上位レイヤによって設定された値にセットして切り替えタイマを起動する。UE100は、切り替えタイマの値をデクリメントし、切り替えタイマが満了した場合にはSSSG#1におけるPDCCHの監視を停止し、切り替え遅延時間(Switch delay)後にSSSG#0におけるPDCCHの監視を開始する。
 なお、SSSG#0における“#0”及びSSSG#1における“#1”は、サーチスペースのセット(グループ)に対するインデックス(サーチスペースグループIDとも称される)を示している。すなわち、インデックスによって識別されるサーチスペースのセット(グループ)に、1以上のサーチスペースセットが関連付けられてもよい。例えば、基地局200は、当該1以上のサーチスペースセットに関連するインデックスを設定することによって、UE100に対してサーチスペースのセット(グループ)を設定してもよい。本実施形態において、SSSGという名称は単なる一例であり、1以上のサーチスペースセットが関連付けられるサーチスペースのセット(グループ)であれば、その名称は問わない。
 サーチスペースセット切り替えにおいて、UE100に設定する1つのSSSGにおいてサーチスペースを有しない設定とし、当該1つのSSSGへの切り替えをDCIで指示することにより、上述のPDCCHスキッピングと同様な動作を実現できる。また、UE100に設定する1つのSSSGにおいてサーチスペースを設定し、当該サーチスペースに対するモニタリング機会を設定しない(又は、モニタリング機会に関するパラメータを所定の値(例えば、“0”又は“Null”)に設定する)ことにより、上述のPDCCHスキッピングと同様な動作を実現してもよい。以下、説明を容易とするために、上述のPDCCHスキッピングと同様な動作を実現するための設定として、1つのSSSGにおいてサーチスペースを有しないことについて記載するが、モニタリング機会を設定しない(又は、モニタリング機会に関するパラメータを所定の値に設定する)ことに置き換えられてもよいことは勿論である。また、UE100に設定する他のSSSGにおいて、長いサーチスペース周期を有する設定とし、当該1つのSSSGへの切り替えをDCIで指示することもできる。このような動作を実現するためには、通常のサーチスペース周期を有するSSSGと、サーチスペースを有しないSSSGと、長いサーチスペース周期を有するSSSGとの合計3つのSSSGをUE100に設定する。このような様々なSSSGをUE100に設定し、SSSGの切り替えをDCIで指示することにより、柔軟なパワーセービングを実現できる。
 次に本実施形態に関し、図6を参照して、間欠受信(DRX)について説明するとともに、パワーセービング状態について説明する。
 UE100にDRXが設定される場合、UE100は、DRX動作を利用して不連続的にPDCCHを監視する。具体的には、次のDRXパラメータによりDRX動作が制御される。
 ・DRXサイクル:UE100がウェイクアップする周期を規定する。
 ・オン持続時間(on-duration):ウェイクアップ後に、PDCCHを受信するためにUE100が待機する区間である。UE100がPDCCHの復号に成功した場合、UE100は、ウェイクアップした状態を維持し、非アクティブタイマ(inactivity-timer)を開始する。
 ・非アクティブタイマ:最後のPDCCH復号の成功からUE100が待機する時間区間であって、PDCCH復号失敗時にUE100が再びスリープする区間を規定する。なお、これに加え非アクティブタイマが満了した後に所定の設定値DRXスロットオフセット(DRX-SlotOffset)を経過した後にオン持続時間を開始する動作としてもよい。図6はDRX-SlotOffsetの設定値をゼロとした動作に相当する。
 ・再送タイマ:再送が予想される間の時間区間を規定する。
 このように、DRXが設定されたUE100は、スリープ状態(すなわち、受信オフ期間)においてPDCCHを監視する必要が無いため、UE100の消費電力を低減できる。一方、UE100は、アクティブ時間にある間は、PDCCHを受信するために待機し、PDCCHをサーチスペースにおいて監視する。アクティブ時間は、オン持続時間タイマ(drx-onDurationTimer)、非アクティブタイマ(drx-InactivityTimer)、下りリンク再送タイマ(drx-RetransmissionTimerDL)、上りリンク再送タイマ(drx-RetransmissionTimerUL)のいずれかが動作中である時間である。
 上述のPDCCHスキッピング又はサーチスペースセット切り替えをDRXのアクティブ時間内で実施することにより、アクティブ時間内において動的にパワーセービング状態に切り替えることが可能であり、DRXによる低消費電力化よりも大きな消費電力低減の効果を得ることができる。
 次に、図7を参照して、本実施形態に係るPDCCH監視アダプテーション(PDCCH monitoring adaptation)の一例について説明する。PDCCH監視アダプテーションは、PDCCHスキッピングとSSSG切り替えとの総称である。すなわち、本実施形態において、PDCCH監視アダプテーションは、PDCCHスキッピング及び/又はSSSG切り替えに置き換えられてもよい。PDCCH監視アダプテーションでは、PDCCHの監視に関するPDCCH監視状態を切り替える処理が実行されてよい。
 ここでは、異なるサーチスペース周期(異なるPDCCH周期)を有する複数のSSSGと、サーチスペースを有しないSSSGとを含む様々なSSSGの中から、1つ又は複数のSSSGをUE100に設定可能とし、SSSGの切り替え(すなわち、PDCCH監視状態の切り替え)をDCIで指示することによって柔軟なパワーセービングを実現することを想定する。ここで、本実施形態において、異なるサーチスペース周期(異なるPDCCH周期)を有する複数のSSSGについて記載するが、複数のSSSGに対して同じ値のサーチスペース周期(異なるPDCCH周期)を設定可能であることは勿論である。
 図7に示すように、ステップS11において、基地局200は、1つ又は複数のRRCメッセージを生成し、生成したRRCメッセージをUE100に送信する。1つ又は複数のRRCメッセージは、UE個別に送信される専用RRCメッセージ(例えば、RRCReconfigurationメッセージ)を含んでもよい。UE100は、RRCメッセージを受信する。
 RRCメッセージは、PDCCH監視アダプテーションの設定(以下、PMA設定と称する)を含む。PMA設定は、PDCCH監視アダプテーションを実行するための設定であってよい。PMA設定は、SSSGを設定するための情報、SSSGを切り替える切り替えタイマを設定するための情報、PDCCHの監視に関する期間(duration)を設定するための情報、及び、PDCCH監視状態の切り替えに関するケースを設定するための情報の少なくともいずれかを含んでよい。
 なお、当該ケースを設定するための情報は、PDCCH監視アダプテーションのケース(動作とも称される)を設定するための情報であってよい。以下に記載するように、例えば、PDCCH監視アダプテーションのケースとして、PDCCHスキッピング(すなわち、PDCCHスキッピングのみ)を実行することが規定されてもよい。また、PDCCH監視アダプテーションのケースとして、SSSG切り替え(すなわち、SSSG切り替えのみ)を実行することが規定されてもよい。また、PDCCH監視アダプテーションのケースとして、PDCCHスキッピング且つSSSG切り替えを実行することが規定されてもよい。すなわち、PDCCH監視アダプテーションとして実行される動作に対応して、ケースが規定されてもよい。
 SSSGを設定するための情報(以下、SSSG設定情報と適宜称する)は、例えば、PDCCHスキッピングが適用されるSSSGを設定するための情報、及びSSSG切り替えが適用されるSSSGを設定するための情報の少なくとも一方を含んでよい。また、SSSG設定情報は、デフォルトSSSG(例えば、SSSG#0)、及び、デフォルトSSSGではない非デフォルト(non-default)SSSGの少なくとも一方を設定するための情報を含んでよい。すなわち、SSSG設定情報は、デフォルトSSSG及び/又は非デフォルトSSSGに対して設定されてもよい。SSSG設定情報は、下りリンクBWP毎に設定されるSSSGの情報を含んでよいし、下りリンクサービングセル毎に設定されるSSSGの情報を含んでよい。すなわち、SSSG設定情報は、下りリンクBWP及び/又は下りリンクサービングセルに対して設定されてもよい。
 SSSG設定情報は、各SSSGに対応するSSSGインデックス(グループインデックスと称されてもよい)のそれぞれと対応付けられたサーチスペース設定をさらに含んでよい。サーチスペース設定は、1つ又は複数のサーチスペース設定を含む。各サーチスペース設定は、サーチスペース周期、サーチスペースオフセット、サーチスペース持続時間(例えば連続するスロットの数)、PDCCH監視に対するシンボル、アグリゲーションレベル、サーチスペースのタイプ、及びDCIフォーマット、の少なくともいずれかを含んでよい。
 SSSGを切り替える切り替えタイマを設定するための情報(以下、切り替えタイマ情報と適宜称する)は、SSSG毎に設定される切り替えタイマの情報を含んでよい。切り替えタイマ情報は、デフォルトSSSG用の切り替えタイマの情報を含んでよいし、非デフォルトSSSG用の切り替えタイマの情報を含んでよい。すなわち、切り替えタイマ情報は、デフォルトSSSG及び/又は非デフォルトSSSGに対して設定されてもよい。なお、デフォルトSSSGに対して、切り替えタイマが設定されなくてもよい。また、切り替えタイマ情報は、下りリンクBWP毎に設定される切り替えタイマの情報を含んでよいし、下りリンクサービングセル毎に設定される切り替えタイマの情報を含んでよい。すなわち、切り替えタイマ情報は、下りリンクBWP及び/又は下りリンクサービングセルに対して設定されてもよい。切り替えタイマ情報は、切り替えタイマのタイマ設定値を含んでよい。
 PDCCHの監視に関する期間を設定するための情報(以下、監視期間情報と適宜称する)は、SSSG毎に設定される期間の情報を含んでよい。監視期間情報は、デフォルトSSSG用の期間の情報を含んでよいし、非デフォルトSSSG用の期間の情報を含んでよい。すなわち、監視期間情報は、デフォルトSSSG及び/又は非デフォルトSSSGに対して設定されてもよい。監視期間情報は、下りリンクBWP毎に設定される期間の情報を含んでよいし、下りリンクサービングセル毎に設定される期間の情報を含んでよい。すなわち、監視期間情報は、下りリンクBWP及び/又は下りリンクサービングセルに対して設定されてもよい。設定される期間は、PDCCHの監視をスキップするスキッピング期間であってもよい。
 PDCCH監視状態の切り替えに関するケース、具体的には、PDCCH監視アダプテーションのケースを設定するための情報(以下、ケース設定情報と適宜称する)は、下りリンクBWP毎に設定されるケースの情報を含んでよいし、下りリンクサービングセル毎に設定されるケースの情報を含んでよい。すなわち、ケース設定情報は、下りリンクBWP及び/又は下りリンクサービングセルに対して設定されてもよい。ケースと、PDCCH監視アダプテーション(すなわち、PDCCH監視状態)の動作との対応関係の一例を表1に示す。また、表1に各ケースでのDCI通知内容の一例を示す。
Figure JPOXMLDOC01-appb-T000001
 ケース#1の設定によって、PDCCH監視アダプテーションとして、PDCCHスキッピング(すなわち、PDCCHスキッピングのみの実行)が設定される。ケース#2の設定によって、PDCCH監視アダプテーションとして、2つの異なる期間のSSSG切り替え(すなわち、SSSG切り替えのみの実行)が設定される。ケース#3の設定によって、PDCCH監視アダプテーションとして、3つの異なる期間のSSSG切り替え(すなわち、SSSG切り替えのみの実行)が設定される。ケース#4の設定によって、PDCCH監視アダプテーションとして、2つの異なる期間のSSSG切り替えとPDCCHスキッピング(すなわち、PDCCHスキッピング且つSSSG切り替えの実行)とが設定される。ケース#4において、M(1又は2に設定されている)は、監視期間情報に基づいて設定される期間の個数を示している。すなわち、Mは、期間Xに対応する。期間Xは、スキッピング期間と称されてもよい。
 また、各ケースは、UE100が適用するPDCCH監視アダプテーション(すなわち、SSSG切り替え及び/又はPDCCHスキッピング)を指示する切り替え指示DCI中の情報フィールド(以下、PDCCH監視アダプテーション通知フィールド)にセットされる値が示すUE100の動作(振る舞い)と対応付けられている。UE100の動作は、以下のように定義されてよい。
 ・Beh1では、PDCCHスキッピングがアクティブ化されない。
 ・Beh1Aでは、PDCCHスキッピングが、期間Xの間PDCCH監視を停止することを意味する。
 ・Beh2では、(設定されている場合に)SSSG#1及びSSSG#2に対応付けられているサーチスペースセットの監視を停止し、SSSG#0に対応付けられているサーチスペースセットを監視する。
 ・Beh2Aでは、(設定されている場合に)SSSG#0及びSSSG#2に対応付けられているサーチスペースセットの監視を停止し、SSSG#1に対応付けられているサーチスペースセットを監視する。
 ・Beh2Bでは、(設定されている場合に)SSSG#0及びSSSG#1に対応付けられているサーチスペースセットの監視を停止し、SSSG#2に対応付けられているサーチスペースセットを監視する。
 なお、表1の対応関係を示す情報は、UE100及び基地局200のそれぞれで予め記憶されていてもよいし、RRCメッセージにより基地局200からUE100へ通知されてもよい。
 ケース#1がUE100に設定される場合、UE100には、あるサービングセルにおいて、1つ又は複数の下りリンクBWPのそれぞれ(又は、1つ又は複数のSSSGのそれぞれ)に対して、PDCCH監視に対する1つ又は複数の期間(スキッピング期間を含む)が設定されてよい。
 ケース#2又はケース#3がUE100に設定される場合、UE100には、あるサービングセルにおいて、1つ又は複数の下りリンクBWPのそれぞれ(又は、1つ又は複数のSSSGのそれぞれ)に対して、1つ又は複数のグループインデックス(SSSGインデックス)が設定されてよい。
 ケース#4がUE100に設定される場合、UE100には、あるサービングセルにおいて、あるサービングセルにおいて、1つ又は複数の下りリンクBWPのそれぞれ(又は、1つ又は複数のSSSGのそれぞれ)に対して、PDCCH監視に対する1つ又は複数の期間(スキッピング期間を含む)が設定されてよい。また、UE100には、あるサービングセルにおいて、1つ又は複数の下りリンクBWPのそれぞれ(又は、1つ又は複数のSSSGのそれぞれ)に対して、1つ又は複数のグループインデックス(SSSGインデックス)が設定されてよい。なお、PDCCH監視に対するDCI中のPDCCH監視アダプテーション通知フィールドは、2ビットとして規定される。
 RRCメッセージは、1つ又は複数のDCIフォーマットごとにPDCCH監視アダプテーション通知フィールドの有無を示すフィールド設定を含んでもよい。切り替え指示DCIは、フィールド設定によりPDCCH監視アダプテーション通知フィールドが有ることが示されたDCIフォーマットを有するDCIである。非スケジューリングDCI及び/又はスケジューリングDCIに対して、共通又は独立に、PDCCH監視アダプテーション通知フィールドの有無(presence/absence)が設定されてもよい。DCIフォーマット1_1及びDCIフォーマット0_1に対して共通に、DCIフォーマット1_2及びDCIフォーマット0_2に対して共通に、PDCCH監視アダプテーション通知フィールドの有無(presence/absence)が設定されてもよい。DCIフォーマット1_1及びDCIフォーマット1_2に対して共通に、DCIフォーマット0_1及びDCIフォーマット0_2に対して共通に、PDCCH監視アダプテーション通知フィールドの有無(presence/absence)が設定されてもよい。ここで、PDCCH監視アダプテーション通知フィールドの有無を示すフィールド設定は、PMA設定と置き換えられてもよい。すなわち、UE100に対してPMA設定が設定されることによって、1つ又は複数のDCIフォーマットにPDCCH監視アダプテーション通知フィールドが有ることが示されてもよい。例えば、UE100は、PMA設定が設定されたことに基づいて、1つ又は複数のDCIフォーマットにPDCCH監視アダプテーション通知フィールドが有ることを識別してもよい。
 RRCメッセージは、1つ又は複数のDCIフォーマットごとにPDCCH監視アダプテーション通知フィールドのビット数を示すビット数設定を含んでもよい。非スケジューリングDCI、及び/又はスケジューリングDCIに対して、共通又は独立に、PDCCH監視アダプテーション通知フィールドのビット数が直接設定されてもよい。DCIフォーマット1_1及びDCIフォーマット0_1に対して共通に、及び/又は、DCIフォーマット1_2及びDCIフォーマット0_2に対して共通に、PDCCH監視アダプテーション通知フィールドのビット数が設定されてもよい。例えば、DCIフォーマット1_1及び/又はDCIフォーマット0_1に対して2ビットまでのPDCCH監視アダプテーション通知フィールドが設定され、及び/又は、DCIフォーマット1_2及びDCIフォーマット0_2に対して1ビットのPDCCH監視アダプテーション通知フィールドが設定されてもよい。DCIフォーマット1_1及びDCIフォーマット1_2に対して共通に、DCIフォーマット0_1及びDCIフォーマット0_2に対して共通に、PDCCH監視アダプテーション通知フィールドのビット数が設定されてもよい。ここで、PDCCH監視アダプテーション通知フィールドのビット数を示すビット数設定は、PMA設定と置き換えられてもよい。すなわち、UE100に対してPMA設定が設定されることによって、1つ又は複数のDCIフォーマットに含まれるPDCCH監視アダプテーション通知フィールドのビット数が決定されてもよい。例えば、UE100は、SSSGを設定するための情報に基づいて設定されたSSSGの数に応じて、1つ又は複数のDCIフォーマットに含まれるPDCCH監視アダプテーション通知フィールドのビット数を決定してもよい。また、UE100は、監視期間情報に基づいて設定された期間の数に応じて、1つ又は複数のDCIフォーマットに含まれるPDCCH監視アダプテーション通知フィールドのビット数を決定してもよい。また、UE100は、ケース設定情報に基づいて設定されたケースに応じて、1つ又は複数のDCIフォーマットに含まれるPDCCH監視アダプテーション通知フィールドのビット数を決定してもよい(例えば、表1に示されるビット数を決定してもよい)。
 ステップS12において、UE100は、基地局200から設定された情報を記憶する。
 ステップS13において、基地局200は、PDCCH監視アダプテーション通知フィールドを有する切り替え指示DCIをPDCCH上でUE100に送信する。UE100は、切り替え指示DCIをPDCCH上で受信する。UE100は、基地局200から設定されたフィールド設定に基づいて、検出したDCIのDCIフォーマットが切り替え指示DCIに該当するか否かを判定してもよい。
 ステップS14において、UE100は、ステップS13で受信した切り替え指示DCIのPDCCH監視アダプテーション通知フィールドにセットされた値を取得する。UE100は、基地局200から設定されたビット数設定に基づいて、PDCCH監視アダプテーション通知フィールドのビット数を特定したうえで、PDCCH監視アダプテーション通知フィールドにセットされた値を取得してもよい。ここで、上述のとおり、例えば、UE100は、UE100に設定されたSSSGインデックスの数(すなわち、設定されたSSSGインデックス(リスト)のエントリ数)に基づいてPDCCH監視アダプテーション通知フィールドのビット数を特定したうえで、PDCCH監視アダプテーション通知フィールドにセットされた値を取得してもよい。例えば、UE100に設定されたSSSGインデックスの数を「I」とした場合、UE100は、PDCCH監視アダプテーション通知フィールドのビット数を、log2(I)の小数点以下を切り上げた整数値により算出及び特定してもよい。
 ステップS15において、UE100は、設定されたケースに基づいて、受信した切り替え指示DCI中のPDCCH監視アダプテーション通知フィールドにセットされた値(以下、PDCCH監視アダプテーション通知フィールド値)に対応する状態へPDCCH監視状態を切り替える。以下に、各ケースにおけるPDCCH監視アダプテーション通知フィールドのビット数に応じたUE100の動作例を示す。
 ・ケース#1:PDCCH監視に対するDCI中のPDCCH監視アダプテーション通知フィールドが1ビットの場合
 PDCCH監視アダプテーション通知フィールド値が「0」である場合、PDCCHスキッピングを実行しない。
 PDCCH監視アダプテーション通知フィールド値が「1」である場合、設定された期間(第1の値の期間)においてPDCCHスキッピングを実行する。
 ・ケース#1:PDCCH監視に対するDCI中のPDCCH監視アダプテーション通知フィールドが2ビットの場合
 PDCCH監視アダプテーション通知フィールド値が「00」である場合、PDCCHスキッピングを実行しない。
 PDCCH監視アダプテーション通知フィールド値が「01」である場合、設定された期間(第1の値の期間)においてPDCCHスキッピングを実行する。
 PDCCH監視アダプテーション通知フィールド値が「10」である場合、設定された期間(第2の値の期間)においてPDCCHスキッピングを実行する。
 PDCCH監視アダプテーション通知フィールド値が「11」である場合、設定された期間(第3の値の期間)においてPDCCHスキッピングを実行する。
 ・ケース#2:PDCCH監視に対するDCI中のPDCCH監視アダプテーション通知フィールドが1ビットの場合
 PDCCH監視アダプテーション通知フィールド値が「0」である場合、グループインデックス#0に対応するサーチスペースセットに従ったPDCCHの監視を開始し、他のグループインデックス値に対応するサーチスペースセットに従ったPDCCHの監視を停止する。
 PDCCH監視アダプテーション通知フィールド値が「1」である場合、グループインデックス#1に対応するサーチスペースセットに従ったPDCCHの監視を開始し、他のグループインデックス値に対応するサーチスペースセットに従ったPDCCHの監視を停止する。
 ・ケース#3:PDCCH監視に対するDCI中のPDCCH監視アダプテーション通知フィールドが2ビットの場合
 PDCCH監視アダプテーション通知フィールド値が「00」である場合、グループインデックス#0に対応するサーチスペースセットに従ったPDCCHの監視を開始し、他のグループインデックス値に対応するサーチスペースセットに従ったPDCCHの監視を停止する。
 PDCCH監視アダプテーション通知フィールド値が「01」である場合、グループインデックス#1に対応するサーチスペースセットに従ったPDCCHの監視を開始し、他のグループインデックス値に対応するサーチスペースセットに従ったPDCCHの監視を停止する。
 PDCCH監視アダプテーション通知フィールド値が「10」である場合、グループインデックス#2に対応するサーチスペースセットに従ったPDCCHの監視を開始し、他のグループインデックス値に対応するサーチスペースセットに従ったPDCCHの監視を停止する。
 PDCCH監視アダプテーション通知フィールド値が「11」である場合の規定は、留保されている。
 ・ケース#4:PDCCH監視に対する期間の数として「1」が設定された場合
 PDCCH監視アダプテーション通知フィールド値が「00」である場合、グループインデックス#0に対応するサーチスペースセットに従ったPDCCHの監視を開始し、他のグループインデックス値に対応するサーチスペースセットに従ったPDCCHの監視を停止する。
 PDCCH監視アダプテーション通知フィールド値が「01」である場合、グループインデックス#1に対応するサーチスペースセットに従ったPDCCHの監視を開始し、他のグループインデックス値に対応するサーチスペースセットに従ったPDCCHの監視を停止する。
 PDCCH監視アダプテーション通知フィールド値が「10」である場合、設定された期間(第1の値の期間)においてPDCCHスキッピングを実行する。
 PDCCH監視アダプテーション通知フィールド値が「11」である場合の規定は、留保されている。
 ・ケース#4:PDCCH監視に対する期間の数として「2」が設定された場合
 PDCCH監視アダプテーション通知フィールド値が「00」である場合、グループインデックス#0に対応するサーチスペースセットに従ったPDCCHの監視を開始し、他のグループインデックス値に対応するサーチスペースセットに従ったPDCCHの監視を停止する。
 PDCCH監視アダプテーション通知フィールド値が「01」である場合、グループインデックス#1に対応するサーチスペースセットに従ったPDCCHの監視を開始し、他のグループインデックス値に対応するサーチスペースセットに従ったPDCCHの監視を停止する。
 PDCCH監視アダプテーション通知フィールド値が「10」である場合、設定された期間(第1の値の期間)においてPDCCHスキッピングを実行する。
 PDCCH監視アダプテーション通知フィールド値が「11」である場合、設定された期間(第2の値の期間)においてPDCCHスキッピングを実行する。
 次に、図8を参照して、本実施形態に係るタイマベースのSSSG切り替えの一例について説明する。ここでは、UE100がタイマベースでSSSGの切り替えを行う場合で、UE100に3つ以上のSSSGが設定され得る場合を想定する。
 基地局200は、UE100に設定するSSSGのうち1つをデフォルトSSSGとしてUE100に設定してもよい。例えば、基地局200は、UE100に設定するSSSGインデックスのうち1つを「defaultSSSG-Id」として指定してもよい。例えば、基地局200は、RRCメッセージを用いて「defaultSSSG-Id」を設定してもよい。すなわち、基地局200は、RRCメッセージに含まれる情報を用いて、UE100に対してデフォルトSSSGを設定してもよい。デフォルトSSSGは、UE100に設定されたSSSGのうち、基地局200及びUE100が予め共有している所定規則によって決定されるSSSGであってもよい。デフォルトSSSGは、基地局200によりデフォルトSSSGとしてUE100に設定されたSSSGであってもよい。
 図8に示すように、ステップS21において、基地局200により複数のSSSGが設定されたUE100は、当該複数のSSSGのうち1つのSSSGを用いてPDCCHを監視する。
 ステップS22において、UE100は、他のSSSGへの切り替えを指示する切り替え指示DCIをPDCCH上で基地局200から受信する。
 ステップS23において、UE100は、切り替え指示DCIで指定されたSSSGへの切り替えを行うとともに、当該SSSGと対応付けられたタイマ(切り替えタイマ)を起動する。
 ステップS24において、UE100は、切り替えタイマが満了したか否かを判定する。
 切り替えタイマが満了した場合(ステップS24:YES)、ステップS25において、UE100は、設定された複数のSSSGのうちデフォルトSSSGに切り替える。ここで、基地局200から「defaultSSSG-Id」として指定されたSSSGに切り替えることにより、基地局200は、UE100の切り替え先のSSSGを把握できる。なお、切り替えタイマは基地局200が設定した値であるため、基地局200は、UE100と同様に切り替えタイマを管理し、UE100において切り替えタイマが満了したことを把握できる。
 UE100は、デフォルトSSSGが基地局200により設定されていない場合、具体的には、「defaultSSSG-Id」としてデフォルトSSSGが基地局200から明示的に指定されていない場合、所定規則に従ってデフォルトSSSGを決定する。例えば、UE100は、RRCメッセージにデフォルトSSSGを設定するための情報が含まれていない場合には、所定規則に従ってデフォルトSSSGを決定してもよい。所定規則は、例えば3GPPの技術仕様で規定される規則であり、基地局200及びUE100が予め共有している規則である。
 ここで、所定規則は、UE100に設定されたSSSGインデックスのうち、最も値が小さいSSSGインデックスに対応するSSSG、又は最も値が大きいSSSGインデックスに対応するSSSGをデフォルトSSSGとして決定する規則であってもよい。例えば、最も値が小さいSSSGインデックスに対応するSSSGをデフォルトSSSGとする規則である場合、UE100は、SSSGインデックス#0のSSSGをデフォルトSSSGとして決定する。最も値が大きいSSSGインデックスに対応するSSSGをデフォルトSSSGとする規則である場合、UE100は、SSSGインデックス#4のSSSGをデフォルトSSSGとして決定する。
 上述のように、UE100は、UE100に設定するSSSGインデックスと、切り替え指示DCI中のSSSG情報フィールドにセットされる値との対応関係を示す対応関係情報を基地局200から受信してもよい。所定規則は、切り替え指示DCI中のSSSG情報フィールドにセットされる値として特定の値(例えば、「0」)で示されるSSSGインデックスに対応するSSSGをデフォルトSSSGとして決定する規則であってもよい。例えば、UE100は、切り替え指示DCI中のSSSG情報フィールドにセットされる値が「0」で示されるSSSGインデックスを有するSSSGをデフォルトSSSGとして決定する。
 所定規則は、UE100に設定されたSSSGインデックスのうち、予め定められた値を有するSSSGインデックス(例えば、インデックス#0)に対応するSSSGをデフォルトSSSGとして決定する規則であってもよい。
 所定規則は、UE100に設定されたSSSGのうち、PDCCHの監視をスキップするSSSG以外のSSSGをデフォルトSSSGとして決定する規則であってもよい。すなわち、UE100は、デフォルトSSSGとして、PDCCHスキッピングに対応するSSSGインデックスは設定されないと想定してもよい。
 UE100にDRXが設定されている場合、UE100は、DRXの受信オフ期間から受信オン期間(アクティブ時間)に切り替わる際に特定のSSSGを適用してもよい。所定規則は、当該特定のSSSGをデフォルトSSSGとして決定する規則であってもよい。すなわち、UE100は、DRXの受信オフ期間の経過後にPDCCHをモニタする最初のSSSGをデフォルトSSSGとして決定してもよい。例えば、基地局200は、RRCメッセージに当該特定のSSSGを設定するための情報を含めて送信し、UE100は、当該特定のSSSGをデフォルトSSSGとして決定してもよい。また、基地局200は、RRCメッセージにデフォルトSSSGを設定するための情報を含めて送信し、UE100は、当該デフォルトSSSGを、DRXの受信オフ期間の経過後にPDCCHをモニタする最初のSSSGとして用いてもよい。
 UE100は、UE100に割り当てられた無線リソースを示すスケジューリングDCIを切り替え指示DCIとして受信してもよい。UE100は、切り替え指示DCIとしてスケジューリングDCIを受信した後、1つのSSSGへの切り替えを行うタイミング(具体的には、SSSG切り替えを実行するスロット)で切り替えタイマを起動してもよい。
 UE100は、UE100に設定される3つ以上のSSSGのうち2以上のSSSGに適用する切り替えタイマの値として共通の値を用いてもよい。基地局200は、UE100に設定する3つ以上のSSSGのうち2以上のSSSGに適用する切り替えタイマの値として共通の値を設定してもよい。
 UE100は、UE100に設定されるSSSGのそれぞれに適用する切り替えタイマの値として、SSSGごとに個別の値を用いてもよい。基地局200は、SSSGごとに個別の切り替えタイマ設定値をUE100に設定してもよい。
 UE100は、切り替え先のSSSGがPDCCHスキッピングに対応するSSSGである場合、当該SSSGへの切り替えを開始するタイミング(スロット)で、当該SSSGと対応付けられた切り替えタイマを起動してもよい。PDCCHスキッピング状態にある場合、すなわちPDCCHの監視をスキップする所定期間においては、PDCCH監視に用いるリソースが専有されておらず、任意のタイミングで切り替え当該SSSGへの切り替えを開始できる。この利点を活用し、PDCCH監視の動作を阻害することなく切り替え遅延時間の影響を最小化することが可能となる。なお、UE100は、当該切り替えタイマの満了後、デフォルトSSSGを想定してPDDCHを監視してもよい。
 (4)BWP切り替えタイマの満了に基づくBWP切り替えの概要
 本実施形態に係るBWP切り替えタイマの満了に基づくBWP切り替えの概要について説明する。
 図9を参照して、本実施形態に係るBWP切り替えタイマの満了に基づくBWP切り替えの概要について説明する。
 ステップS31において、基地局200は、RRCメッセージをUE100に送信する。UE100は、RRCメッセージを基地局200から受信する。UE100は、RRCメッセージにより設定された情報を記憶する。
 RRCメッセージは、UE100へBWPを設定するためのBWP設定を含んでよい。また、RRCメッセージは、BWPを切り替えるためのBWP切り替えタイマを設定するためのBWP切り替えタイマ情報を含んでよい。
 BWP設定は、例えば、下りリンクBWP用の情報(すなわち、BWP-Downlink)及び/又は上りリンクBWP用の情報(すなわち、BWP-Uplink)を含んでよい。なお、BWP設定が、BWP切り替えタイマ情報を含んでいてもよい。
 BWP切り替えタイマ情報は、BWP切り替えタイマを設定するためのタイマ値を含んでよい。BWP切り替えタイマは、UE100に設定されるセル毎(又は周波数毎)に設定されてよい。BWP切り替えタイマ情報は、サービングセルをUE100へ設定(追加又は修正)するために用いられるサービングセル設定(ServingCellConfig)に含まれてもよい。すなわち、BWP切り替えタイマは、サービングセルに対して設定されてもよい。
 BWP切り替えタイマは、例えば、BWPインアクティビティタイマ(bwp-InactivityTimer)である。BWPインアクティビティタイマは、UE100がデフォルトBWPにフォールバックするまでのms単位の期間を示す。UE100は、BWPインアクティビティタイマの満了に基づいて、アクティブBWPをデフォルトBWPに切り替える(すなわち、フォールバックする)。UE100は、デフォルトBWPが設定されていない場合、初期BWPに切り替える。
 なお、サービングセルは、キャリアアグリゲーション(CA)又はデュアルコネクティビティ(DC)が設定されていないRRCコネクティッド状態にあるUE100の場合、プライマリセル(PCell)で構成されるサービングセルは1つだけである。CA又はDCが設定されているRRCコネクティッド状態にあるUE100の場合、サービングセルは、スペシャルセル(SpCell)と全てのセカンダリセル(SCell)で設定されたセルのセットである。デュアルコネクティビティ動作の場合、スペシャルセルは、マスターセルグループ(MCG)のプライマリセル(PCell)又はセカンダリセルグループのセカンダリプライマリセル(PSCell)である。それ以外の動作の場合、スペシャルセルは、プライマリセルである。セカンダリセル(SCell)は、キャリアアグリゲーション(CA)が設定されたUE100の場合、スペシャルセルのトップに追加の無線リソースを提供するセルである。
 ステップS32において、UE100は、BWP切り替えタイマを開始する。UE100は、具体的には、アクティブBWPに関連付けられたBWP切り替えタイマを開始する。例えば、UE100は、アクティブBWPとして指示されたBWPが設定されたサービングセルに対するBWP切り替えタイマを開始する。
 ステップS33において、BWP切り替えタイマが満了する。
 ステップS34において、UE100は、BWP切り替えタイマの満了に基づいて、BWP(具体的には、アクティブBWP)を切り替える。上述のとおり、例えば、UE100は、BWP切り替えタイマが満了し、且つ、デフォルトBWPが設定されている場合には、アクティブBWPとしてデフォルトBWPにBWPを切り替えてもよい。また、UE100は、BWP切り替えタイマが満了し、且つ、デフォルトBWPが設定されていない場合には、アクティブBWPとして初期BWPにBWPを切り替えてもよい。ここで、BWP(例えば、アクティブBWP、デフォルトBWP、及び/又は、初期BWP)は、下りリンクBWP(具体的には、アクティブ下りリンクBWP、デフォルト下りリンクBWP、及び/又は、初期下りリンクBWP)であってもよい。また、BWP(例えば、アクティブBWP、デフォルトBWP、及び/又は、初期BWP)は、上りリンクBWP(具体的には、アクティブ上りリンクBWP、デフォルト上りリンクBWP、及び/又は、初期上りリンクBWP)であってもよい。
 以上のように、UE100は、BWP切り替えタイマの満了に基づいて、BWPを切り替える。このようなBWPの切り替えは、PDCCH監視アダプテーションの実行によって、パワーセービング状態(すなわち、PDCCHの監視周期を長くする又はPDCCHの監視をスキップする状態)において発生し得る。
 ここで、UE100がBWP切り替えタイマの満了に基づいてBWPを切り替える場合において、UE100における実際のPDCCH監視状態と基地局200が認識しているPDCCH監視状態とに不一致が生じる可能性がある。そのため、UE100がPDCCH監視状態を切り替えた後、基地局200がUE100との無線通信を適切に行うことができない懸念がある。また、UE100が、BWPを切り替える前にPDCCH監視アダプテーションを実行していたとしても、切り替え後のBWPにおいて、どのようにPDCCH監視アダプテーションを実行するかどうか不明である。よって、本実施形態では、BWP切り替えタイマの満了に基づいてPDCCH監視状態が切り替えられる移動通信システムにおいて、BWP切り替えタイマの満了に基づいてBWPを切り替える場合であっても無線通信を適切に行うことを可能とする。
 ここで、本実施形態における「PDCCH監視状態」は、PDCCHの監視をスキップすること、及び/又は、設定されたSSSGでPDCCHの監視を実行することが含まれてもよい。例えば、PDCCH監視状態の切り替えとは、PDCCHの監視をスキップする動作から、設定されたSSSGでPDCCHの監視をする動作に、動作を切り替えることが含まれてもよい。また、PDCCH監視状態の切り替えとは、設定されたSSSGでPDCCHの監視をする動作から、PDCCHの監視をスキップする動作に、動作を切り替えることが含まれてもよい。また、PDCCH監視状態の切り替えとは、設定された第1のSSSGでPDCCHの監視をする動作から、設定された第2のSSSGでPDCCHの監視をする動作に、動作を切り替えることが含まれてもよい。
 また、PDCCH監視状態の切り替えとは、PDCCHの監視に用いられるSSSGを切り替えることが含まれてもよい。例えば、PDCCH監視状態の切り替えとは、PDCCHスキッピング用に設定されたSSSGから、PDCCHの監視用に設定されたSSSGに、SSSGを切り替えることが含まれてもよい。また、PDCCH監視状態の切り替えとは、PDCCHの監視用に設定されたSSSGから、PDCCHスキッピング用に設定されたSSSGに、SSSGを切り替えることが含まれてもよい。また、PDCCH監視状態の切り替えとは、PDCCHの監視用に設定された第1のSSSGから、PDCCHの監視用に設定された第2のSSSGに、SSSGを切り替えることが含まれてもよい。
 すなわち、本実施形態において、PDCCH監視状態の切り替えとは、PDCCH監視アダプテーションの実行に対応してもよい。ここで、本実施形態において、説明を容易するために、PDCCHの監視に用いられるSSSGをPDCCH監視状態とも記載する。また、上述のとおり、設定されたSSSGには、デフォルトSSSG(Default SSSG)が含まれる。
 (5)ユーザ装置の構成
 図10を参照して、本実施形態に係るUE100の構成について説明する。UE100は、通信部110及び制御部120を備える。
 通信部110は、無線信号を基地局200と送受信することによって基地局200との無線通信を行う。通信部110は、少なくとも1つの送信部111及び少なくとも1つの受信部112を有する。送信部111及び受信部112は、アンテナ及びRF回路を含んで構成されてもよい。アンテナは、信号を電波に変換し、当該電波を空間に放射する。また、アンテナは、空間における電波を受信し、当該電波を信号に変換する。RF回路は、アンテナを介して送受信される信号のアナログ処理を行う。RF回路は、高周波フィルタ、増幅器、変調器及びローパスフィルタ等を含んでもよい。
 制御部120は、UE100における各種の制御を行う。制御部120は、通信部110を介した基地局200との通信を制御する。上述及び後述のUE100の動作は、制御部120の制御による動作であってよい。制御部120は、プログラムを実行可能な少なくとも1つのプロセッサ及びプログラムを記憶するメモリを含んでよい。プロセッサは、プログラムを実行して、制御部120の動作を行ってもよい。制御部120は、アンテナ及びRF回路を介して送受信される信号のデジタル処理を行うデジタル信号プロセッサを含んでもよい。当該デジタル処理は、RANのプロトコルスタックの処理を含む。なお、メモリは、プロセッサにより実行されるプログラム、当該プログラムに関するパラメータ、及び、当該プログラムに関するデータを記憶する。メモリは、ROM(Read Only Memory)、EPROM(Erasable Programmable Read Only Memory)、EEPROM(Electrically Erasable Programmable Read Only Memory)、RAM(Random Access Memory)及びフラッシュメモリの少なくとも1つを含んでよい。メモリの全部又は一部は、プロセッサ内に含まれていてよい。
 本実施形態に係るUE100は、基地局200のセルの全帯域幅の一部分である帯域幅部分において無線通信を行う。制御部120は、帯域幅部分を切り替えるためのBWP切り替えタイマが満了したことに基づいて、帯域幅部分を切り替えると共に、物理下りリンク制御チャネル(PDCCH)の監視に関するPDCCH監視状態を切り替えるBWPタイマ起因切り替え処理を行ってよい。受信部112は、BWPタイマ起因切り替え処理を制御するための切り替え制御情報を含む無線リソース制御(RRC)メッセージを受信する。制御部120は、切り替え制御情報に基づいて、BWPタイマ起因切り替え処理を制御する。これにより、BWP切り替えタイマの満了に基づくPDCCH監視状態の切り替えを基地局200の制御下で行うことが可能になり、BWP切り替えタイマの満了に基づいてBWPを切り替える場合であっても無線通信を適切に行うことが可能になる。
 また、切り替え制御情報は、BWPタイマ起因切り替え処理の実行を有効にするか否かに関する情報であってよい。制御部120は、BWPタイマ起因切り替え処理の実行を有効にすることを切り替え制御情報が示すことに基づいてBWPタイマ起因切り替え処理を行ってよい。これにより、基地局200がBWPタイマ起因切り替え処理の実行の有効/無効を明示的に示すことで、UE100における実際のPDCCH監視状態と基地局200が認識しているPDCCH監視状態とに不一致が生じることをさらに低減可能となる。
 切り替え制御情報は、UE固有のPDCCHパラメータを設定するためのPDCCH設定に含まれてよい。例えば、PDCCH設定と異なる情報要素に切り替え制御情報が含まれる場合と比較して、PDCCH設定に含まれる切り替え制御情報と別のパラメータを変更する場合に、当該パラメータの変更と併せて切り替え制御情報(の変更)をUE100へ通知することができる。基地局200は、PDCCH設定に基づく設定の変更を行う際に、併せてBWP切り替えタイマの満了に基づくPDCCH監視状態の切り替えを制御できる。
 切り替え制御情報は、BWP切り替えタイマの満了に基づく切り替え後の帯域幅部分においてPDCCHを監視するためのサーチスペースセットグループ(SSSG)を設定するための情報を含んでよい。これにより、基地局200は、BWP切り替えタイマの満了に基づく切り替え後のSSSGを設定でき、BWP切り替えタイマの満了に基づくPDCCH監視状態の切り替えを制御できる。
 受信部112は、PDCCH監視状態としてPDCCHの監視をスキップするPDCCHスキッピング状態に切り替えるための指示を基地局200から受信してよい。制御部120は、指示に応じたPDCCHスキッピング状態への切り替えに基づいて、BWP切り替えタイマを停止してよい。すなわち、制御部120は、PDCCHスキッピングを指示する切り替え指示DCI(すなわち、PDCCHスキッピングを指示する値にセットされたPDCCH監視アダプテーション通知フィールド)の受信(検出)に基づいて、BWP切り替えタイマを停止してよい。これにより、UE100が、PDCCHスキッピングを実行している間は、BWP切り替えタイマを満了しないように制御することが可能となり。その結果、制御部120は、PDCCH監視アダプテーションの実行中に、BWP切り替えタイマの満了に基づいてBWPを切り替えない。例えば、BWP毎にPDCCH監視状態の切り替え処理が異なるように、UE100がPDCCH監視状態を切り替える場合であっても、UE100は、PDCCH監視状態を適切に切り替えることが可能となる。
 また、制御部120は、PDCCHスキッピング状態からPDCCHを監視する状態への切り替えに基づいて、BWP切り替えタイマを開始又は再開してよい。例えば、制御部120は、SSSG切り替えを指示する切り替え指示DCI(すなわち、SSSG切り替えを指示する値にセットされたPDCCH監視アダプテーション通知フィールド)の受信(検出)に基づいて、BWP切り替えタイマを開始又は再開してよい。また、制御部120は、スキッピング期間タイマの満了に基づいて、BWP切り替えタイマを開始又は再開してよい。これにより、制御部120は、PDCCHの監視を実行する場合に限り、BWP切り替えタイマの満了に基づいてBWPを切り替えるため、UE100が、BWP切り替えタイマが継続的に使用不能となることを避けることができる。
 制御部120は、UE100に設定された全てのセカンダリセルでBWP切り替えタイマが満了した場合、UE100に設定されたスペシャルセルにおいて、PDCCH監視状態をPDCCHを監視する状態へと切り替えてよい。例えば、制御部120は、スペシャルセルにおいて、PDCCH監視状態を、PDCCHの監視用に設定されたSSSGを用いてPDCCHを監視する状態へと切り替えてよい。すなわち、制御部120は、セカンダリセルに関連するBWP切り替えタイマの満了に基づいて(例えば、セカンダリセルに関連する全てのBWP切り替えタイマの満了に基づいて)、スペシャルセルにおいてPDCCHの監視を実行してもよい。ここで、PDCCHの監視の実行に用いられるSSSGは、スペシャルセル(スペシャルセルにおける下りリンクBWP)に対して設定されたSSSGであってもよい。これにより、UE100は、スペシャルセルにおいてPDCCHの監視が可能となるため、全てのセカンダリセルにおけるBWPが非アクティブ化されたとしても、基地局200がUE100を制御することができる。
 スペシャルセルにおけるBWP(例えば、下りリンクBWP)は、基地局200によりデフォルトとして設定されたデフォルトBWP(例えば、デフォルト下りリンクBWP)又は初期BWP(例えば、初期下りリンクBWP)であってよい。制御部120は、切り替え制御情報に基づいて、デフォルトBWP又は初期BWPにおいてPDCCHを監視してよい。これにより、基地局200は、UE100がデフォルトBWP又は初期BWPにおいてPDCCHを監視していることを把握でき、UE100における実際のPDCCH監視状態と基地局200が認識しているPDCCH監視状態とに不一致が生じることをさらに低減可能となる。
 切り替え制御情報は、デフォルトBWP又は初期BWPにおいてPDCCHを監視するためのサーチスペースセットグループ(SSSG)を設定するための情報を含んでよい。制御部120は、デフォルトBWP又は初期BWPにおいて、切り替え制御情報により設定されたSSSGに基づいてPDCCHを監視してよい。基地局200は、UE100がデフォルトBWP又は初期BWPにおけるPDCCHを監視しているSSSGを把握でき、UE100における実際のPDCCH監視状態と基地局200が認識しているPDCCH監視状態とに不一致が生じることをさらに低減可能となる。
 また、制御部120は、UE100に設定された1又は複数のBWPのうち所定のBWPにおいて、物理下りリンク制御チャネル(PDCCH)の監視に関するPDCCH監視状態を切り替える切り替え処理を制御する。受信部112は、切り替え処理を制御するための切り替え制御情報を含む無線リソース制御(RRC)メッセージを受信する。制御部120は、所定の帯域幅部分がアクティブ化されている場合、切り替え制御情報に基づく所定の帯域幅部分用の切り替え設定を用いて、所定の帯域幅部分における切り替え処理を制御する。制御部120は、所定の帯域幅部分が非アクティブ化された場合、切り替え設定をサスペンドする。これにより、UE100は、所定BWPが非アクティブ化された場合に、所定BWP用の切り替え設定をサスペンドすることによって、切り替え設定を破棄(又は、クリア)する場合と比較して、所定BWPにおける切り替え処理の制御の開始を早めることができる。
 制御部120は、所定の帯域幅部分がアクティブ化された場合(例えば、非アクティブ化された後、再度アクティブ化された場合)に、サスペンドされた切り替え設定を復旧(開始、再開、(re-)initiateとも称される)させるとともに、復旧させた切り替え設定を用いて、切り替え処理を制御してよい。これにより、UE100は、所定BWPにおける切り替え処理の制御の開始を早めることができる。
 所定の帯域幅部分は、セカンダリセルの全帯域幅の一部分であってよい。制御部120は、セカンダリセル(すなわち、サービングセル)を非アクティブ化するためのタイマの満了に基づいて、セカンダリセルが非アクティブ化された場合、サスペンドされた切り替え設定を破棄(又は、クリア)してよい。セカンダリセルを非アクティブ化するためのタイマの満了に基づいてセカンダリセルが非アクティブ化された場合、当該セカンダリセルに対して設定された切り替え設定をクリアすることによって、UE100(制御部120)の処理負荷を軽減できる。
 (6)基地局の構成
 図11を参照して、本実施形態に係る基地局200の構成について説明する。基地局200は、通信部210と、ネットワークインターフェイス220と、制御部230とを有する。
 通信部210は、例えば、UE100からの無線信号を受信し、UE100への無線信号を送信する。通信部210は、少なくとも1つの送信部211及び少なくとも1つの受信部212を有する。送信部211及び受信部212は、アンテナ及びRF回路を含んで構成されてもよい。アンテナは、信号を電波に変換し、当該電波を空間に放射する。また、アンテナは、空間における電波を受信し、当該電波を信号に変換する。RF回路は、アンテナを介して送受信される信号のアナログ処理を行う。RF回路は、高周波フィルタ、増幅器、変調器及びローパスフィルタ等を含んでもよい。
 ネットワークインターフェイス220は、信号をネットワークと送受信する。ネットワークインターフェイス220は、例えば、基地局間インターフェイスであるXnインターフェイスを介して接続された隣接基地局から信号を受信し、隣接基地局へ信号を送信する。また、ネットワークインターフェイス220は、例えば、NGインターフェイスを介して接続されたコアネットワーク装置300から信号を受信し、コアネットワーク装置300へ信号を送信する。
 制御部230は、基地局200における各種の制御を行う。制御部230は、例えば、通信部210を介したUE100との通信を制御する。また、制御部230は、例えば、ネットワークインターフェイス220を介したノード(例えば、隣接基地局、コアネットワーク装置300)との通信を制御する。上述及び後述の基地局200の動作は、制御部230の制御による動作であってよい。制御部230は、プログラムを実行可能な少なくとも1つのプロセッサ及びプログラムを記憶するメモリを含んでよい。プロセッサは、プログラムを実行して、制御部230の動作を行ってもよい。制御部230は、アンテナ及びRF回路を介して送受信される信号のデジタル処理を行うデジタル信号プロセッサを含んでもよい。当該デジタル処理は、RANのプロトコルスタックの処理を含む。なお、メモリは、プロセッサにより実行されるプログラム、当該プログラムに関するパラメータ、及び、当該プログラムに関するデータを記憶する。メモリの全部又は一部は、プロセッサ内に含まれていてよい。
 本実施形態に係る基地局200は、当該基地局200のセルの全帯域幅の一部分である帯域幅部分においてUE100と無線通信を行う。制御部230は、UE100におけるBWPタイマ起因切り替え処理を制御するための切り替え制御情報を含む無線リソース制御(RRC)メッセージを生成する。送信部211は、RRCメッセージをUE100へ送信する。BWPタイマ起因切り替え処理では、UE100が、帯域幅部分を切り替えるためのBWP切り替えタイマの満了に基づいて、帯域幅部分を切り替えると共に、物理下りリンク制御チャネル(PDCCH)の監視に関するPDCCH監視状態を切り替える。これにより、BWP切り替えタイマの満了に基づくPDCCH監視状態の切り替えを基地局200の制御下で行うことが可能になり、PDCCH監視状態を切り替える場合であっても無線通信を適切に行うことが可能になる。
 (7)移動通信システムの動作
 (7.1)第1動作例
 上述の構成及び動作を前提として、移動通信システム1の第1動作例について、図12及び図13を用いて、説明する。なお、上述の説明との相違点を主として説明する。
 ステップS101において、基地局200(送信部211)は、RRCメッセージをUE100に送信する。RRCメッセージは、UE個別に送信される専用RRCメッセージ(例えば、RRCReconfigurationメッセージ)であってもよい。UE100(受信部112)は、RRCメッセージを受信する。
 RRCメッセージは、BWPを切り替えるためのBWP切り替えタイマの満了に基づいてPDCCH監視状態を切り替える切り替え処理(以下、BWPタイマ起因切り替え処理と適宜称する)を制御するための切り替え制御情報を含む。切り替え制御情報は、例えば、ユーザ装置固有のPDCCHパラメータを設定するためのPDCCH設定(PDCCH-Config)に含まれてよい。
 切り替え制御情報は、BWP切り替えタイマの満了と異なるトリガを契機とした切り替え処理と異なる切り替え処理に共通に適用される共通パラメータ(例えば、共通の設定)を含んでよい。従って、共通パラメータは、例えば、BWPタイマ起因切り替え処理、基地局200からの設定グラント(CG)に基づく上りリンク送信であるCG送信に応じてPDCCH監視状態を切り替えるCG起因切り替え処理、スケジューリング要求(SR)に応じてPDCCH監視状態を切り替えるSR起因切り替え処理、及びRACH(Random Access Channel)送信(又はPRACH(Physical RACH)送信)に応じてPDCCH監視状態を切り替えるRACH起因切り替え処理を制御するために共通に適用されてよい。これにより、UE100(制御部120)は、共通パラメータに基づいて、複数のトリガを契機として、各種切り替え処理を実行できる。本実施形態において、BWP切り替えタイマの満了に基づく切り替え処理に加えて、複数種別の自発的な上りリンク送信に基づく切り替え処理が実行されてよい。なお、複数種別の自発的な上りリンク送信は、スケジューリング要求(SR)の送信を含んでもよい。また、複数種別の自発的な上りリンク送信は、RACH送信(又はPRACH送信)を含んでもよい。また、複数種別の自発的な上りリンク送信は、CG送信を含んでもよい。
 切り替え制御情報は、各切り替え処理のそれぞれに個別に適用される個別パラメータ(例えば、個別の設定)を含んでよい。従って、個別パラメータは、例えば、BWPタイマ起因切り替え処理を制御するためにのみ適用されるパラメータ、CG起因切り替え処理を制御するためにのみ適用されるパラメータ、SR起因切り替え処理を制御するためにのみ適用されるパラメータ、及びRACH起因切り替え処理を制御するためにのみ適用されるパラメータの少なくともいずれかを含んでよい。
 個別パラメータは、共通パラメータにより設定されない設定を示してよい。或いは、個別パラメータは、共通パラメータよりも優先される設定を示してよい。また、個別パラメータは、BWPタイマ起因切り替え処理の実行(BWPタイマ起因切り替え)を有効にするか(又は設定するか)否かを示してよい。例えば、個別パラメータは、BWPタイマ起因切り替え処理の実行(BWPタイマ起因切り替え)を有効(enable)にするか又は無効(disable)にするかを示す情報(例えば、1ビットのフラグ情報)を含んでもよい。また、個別パラメータは、他の各切り替え処理の実行(又は上述の各切り替え)を有効(enable)にするか又は無効(disable)にするかを示す情報(例えば、1ビットのフラグ情報)を含んでもよい。これにより、UE100(制御部120)は、個別パラメータに基づいて、上述のトリガの少なくともいずれかを契機として、有効である各種切り替え処理を実行できる。なお、共通パラメータが、各切り替え処理を有効(enable)にするか又は無効(disable)にするかを示す1ビットのフラグ情報を含んでいてもよい。
 また、RRCメッセージは、BWP設定を含んでよい。BWP設定は、BWPタイマ起因切り替え処理を制御するためにのみ適用される個別パラメータを含んでいてもよい。
 従って、PDCCH設定は、共通パラメータと個別パラメータとを含んでいてよい。また、BWP設定は、PDCCH設定に含まれない個別パラメータを含んでいてもよい。また、PDCCH設定は、共通パラメータのみを含み、BWP設定は個別パラメータを含んでいてもよい。なお、切り替え制御情報は、PDCCH設定と異なる情報要素に含まれていてもよい。
 UE100(制御部120)は、切り替え制御情報を受信した場合、BWPタイマ起因切り替え処理の実行(又は、BWPタイマ起因切り替え)が有効化された(又は設定された)と判定(又は識別)してもよい。UE100(制御部120)は、切り替え制御情報を受信した場合、BWPタイマ起因切り替え処理の実行(又はBWPタイマ起因切り替え)が有効化された(又は設定された)と判定してもよい。
 切り替え制御情報は、例えば、BWP切り替えタイマの満了に基づくPDCCH監視アダプテーション(又は当該PDCCH監視アダプテーションの実行)を設定するものであってよい。
 上述のとおり、切り替え制御情報は、PDCCH監視アダプテーションの設定(PMA設定)を含んでよい。従って、切り替え制御情報は、SSSG設定情報、切り替えタイマ情報、監視期間情報、及び、ケース設定情報の少なくともいずれかの情報を含んでよい。UE100(制御部120)は、RRCメッセージがPMA設定を含む場合に、BWPタイマ起因切り替え処理の実行が有効化(設定)されたと判定してもよい。
 なお、切り替え制御情報は、PMA設定に含まれる情報の少なくともいずれかを含んでよい。従って、切り替え制御情報は、例えば、PMA設定に含まれる情報の少なくとも一部であってもよい。切り替え制御情報は、例えば、BWP切り替えタイマの満了に基づく切り替え後のBWPにおいてPDCCHを監視するためのサーチスペースセットグループ(SSSG)を設定するための情報を含んでよい。
 切り替え制御情報は、UE100に設定される各セル、各周波数、又は、各BWPにおいてBWPタイマ起因切り替え処理を制御する情報であってよい。従って、セル毎に、周波数毎に、又はBWP毎に、BWPタイマ起因切り替え処理が異なってよい。
 また、切り替え制御情報は、PDCCH設定に含まれずに、BWP設定のみに含まれてもよい。この場合、切り替え制御情報は、BWPタイマ起因切り替え処理を制御するための情報であってよい。BWP設定に含まれる切り替え制御情報は、他の各切り替え処理を制御するための情報を含まなくてよい。
 また、切り替え制御情報は、BWPタイマ起因切り替え処理の実行を有効にするか(又は設定するか)否かに関する情報であってよい。UE100(制御部120)は、BWPタイマ起因切り替え処理を有効にすることを切り替え制御情報が示すことに基づいてBWPタイマ起因切り替え処理を行ってよい。
 また、UE100(制御部120)は、RRCメッセージが切り替え制御情報を含まない場合、BWPタイマ起因切り替え処理を行わないように制御してもよい。例えば、UE100(制御部120)は、BWPタイマ起因切り替え処理の実行を有効にすることが設定されていない、及び/又は、BWPタイマ起因切り替え処理を行うときの切り替え先のPDCCH監視状態(例えばSSSG)が設定されていない場合、BWP切り替えタイマの満了に基づいてBWPの切り替えを行ってもBWPタイマ起因切り替え処理を行わない。これにより、UE100における実際のPDCCH監視状態と基地局200が認識しているPDCCH監視状態とに不一致が生じることを防止できる。
 なお、RRCメッセージは、ステップS104におけるPDCCH監視状態を切り替える設定(すなわち、BWP切り替えタイマの満了と異なる契機でPDCCH監視状態を切り替える設定)を示す情報を含んでいてよい。
 UE100(制御部120)は、BWP設定に基づいて、UE100に設定された1又は複数のBWPのうち、所定BWP(例えば、BWP#1)をアクティブBWPに切り替えて、基地局200との無線通信に用いる。
 ステップS102において、UE100(制御部120)は、BWP切り替えタイマ情報に基づいて、BWP切り替えタイマを開始する。図13に示すように、時刻t11において、UE100(制御部120)は、BWP切り替えタイマを開始する。
 ステップS103において、基地局200(送信部211)は、PDCCHスキッピング又はSSSG切り替えを指示する切り替え指示DCIをPDCCH上でUE100に送信する。UE100(受信部112)は、切り替え指示DCIを受信する。図13には、PDCCHスキッピングを指示する切り替え指示DCIをPDCCH上でUE100に送信しているケースが例示されている。切り替え指示DCIは、PDCCH監視状態としてPDCCHの監視をスキップするPDCCHスキッピング状態に切り替えるための指示であってよい。UE100(制御部120)は、例えば、PDCCHスキッピングを指示する切り替え指示DCIを受信した場合、受信した切り替え指示DCIに基づいて、PDCCHスキッピングを指示する値にセットされたPDCCH監視アダプテーション通知フィールドを検出してよい。また、UE100(制御部120)は、SSSG切り替えを指示する切り替え指示DCIを受信した場合、受信した切り替え指示DCIに基づいて、SSSG切り替えを指示する値にセットされたPDCCH監視アダプテーション通知フィールドを検出してもよい。
 ステップS104において、UE100(制御部120)は、切り替え指示DCIの受信に応じて、PDCCH監視状態を切り替える。例えば、PDCCHスキッピングが設定されている場合、UE100(制御部120)は、切り替え指示DCI(スキップ指示DCI)にセットされている値(具体的には、検出したPDCCH監視アダプテーション通知フィールド)に応じて、PDCCHの監視を所定期間(設定された所定期間)にわたってスキップしてもよい。SSSG切り替えが設定されている場合、UE100(制御部120)は、切り替え指示DCIにセットされている値に応じて、当該切り替え指示DCIで指示されたSSSGに切り替えてもよい。その結果、UE100は、PDCCHの監視に必要な消費電力が低減されたパワーセービング状態になる。
 ステップS105において、BWP切り替えタイマが満了する。図13において、時刻t12において、BWP切り替えタイマが満了する。
 ステップS106において、UE100(制御部120)は、BWP切り替えタイマの満了に基づいて、BWPを切り替える。UE100(制御部120)は、アクティブBWPをデフォルトBWP(例えば、BWP#0)に切り替える。UE100(制御部120)は、デフォルトBWPが設定されていない場合には、初期BWPに切り替える。これにより、デフォルトBWPがアクティブ化され、UE100が無線通信に用いていたBWP#1が非アクティブ化される。
 ステップS107において、UE100(制御部120)は、BWP切り替えタイマの満了に基づいて、切り替え後のBWPにおけるPDCCH監視状態を切り替える(BWPタイマ起因切り替え処理)。UE100(制御部120)は、切り替え制御情報に基づいて、BWPタイマ起因切り替え処理を制御する。
 BWPタイマ起因切り替え処理は、PDCCH監視状態を第1監視状態から第2監視状態へ切り替える処理である。第1監視状態は、上述のパワーセービング状態に相当してよい。第2監視状態は、第1監視状態に比べてPDCCHを頻繁に監視する状態であってよい。これにより、BWP切り替えタイマの満了に基づくBWPの切り替え後に生じる無線通信(データ通信)に対応しやすくなる。すなわち、UE100(制御部120)は、BWP切り替えタイマの満了に基づいて、上述のPDCCHスキッピング及び/又はSSSG切り替えを実行してもよい。また、BWPタイマ起因切り替え処理は、BWP切り替えタイマの満了に基づくPDCCHスキッピング及び/又はSSSG切り替えに関する処理に対応してもよい。
 例えば、第1監視状態は、第1周期でPDCCHの監視を行う状態であって、第2監視状態は、第1周期よりも短い第2周期でPDCCHの監視を行う状態であってもよい。すなわち、第2監視状態は、第1監視状態に比べてサーチスペース周期間隔が短い状態であってよい。例えば、UE100(制御部120)は、SSSG切り替えが設定されており、長いPDCCH監視周期を有するSSSGへの切り替えがDCIにより指示された後、BWP切り替えタイマの満了に基づいて、短いPDCCH監視周期を有するSSSGに切り替える。
 また、第1監視状態は、PDCCHの監視を行わないPDCCHスキッピング状態(すなわち、PDCCHスキッピング)であって、第2監視状態は、周期的にPDCCHの監視を行う状態であってもよい。従って、BWPタイマ起因切り替え処理は、PDCCH監視状態をPDCCHスキッピング状態からPDCCHを監視する状態(すなわち、PDCCH監視実行状態)へ切り替える処理であってよい。例えば、UE100(制御部120)は、PDCCHスキッピングが設定されており、PDCCHスキッピングを行うようDCIにより指示された後、CG送信に応じて、PDCCHを監視する状態に切り替える。なお、UE100(制御部120)は、PDCCH監視実行状態へ切り替える処理として、PDCCHスキッピングの実行を停止又はキャンセルしてもよい。
 UE100(制御部120)は、自身がパワーセービング状態にあるときにBWP切り替えタイマの満了に基づくBWPの切り替えを行う場合に限り、BWPタイマ起因切り替え処理を行ってもよい。すなわち、UE100(制御部120)は、PDCCHスキッピングを実行している期間(設定された所定期間)において、BWP切り替えタイマの満了に基づくBWPの切り替えを実行した場合に限り、BWPタイマ起因切り替え処理を行ってもよい。すなわち、UE100(制御部120)は、自身がパワーセービング状態にないときにBWP切り替えタイマの満了に基づくBWPの切り替えを行う場合には、BWPタイマ起因切り替え処理を行わなくてもよい。或いは、UE100(制御部120)は、PDCCHスキッピング及び/又はSSSG切り替えが設定された状態においてBWP切り替えタイマの満了に基づくBWPの切り替えを行う場合に限り、CG起因切り替え処理を行ってもよい。すなわち、UE100(制御部120)は、PDCCHスキッピング及び/又はSSSG切り替えが設定されていない場合には、BWPタイマ起因切り替え処理を行わなくてもよい。このように、UE100(制御部120)は、BWP切り替えタイマの満了に基づくBWPの切り替えを行う際に、PDCCH監視状態がPDCCHスキッピング状態である場合、切り替え制御情報に基づいてBWPタイマ起因切り替え処理を制御してよい。
 UE100(制御部120)は、BWP切り替えタイマの満了に基づくBWPの切り替えを行う際に、PDCCH監視状態が、異なるサーチスペース周期を有する複数のサーチスペースセットグループ(SSSG)のうち、サーチスペース周期が所定値以上であるSSSGが適用されている状態である場合、切り替え制御情報に基づいてBWPタイマ起因切り替え処理を制御してよい。切り替え制御情報は、所定値を示す情報を含んでいてよい。
 UE100(制御部120)は、BWPタイマ起因切り替え処理の実行(又はBWPタイマ起因切り替え)を有効にすることを切り替え制御情報が示す場合に限り、BWPタイマ起因切り替え処理を行ってもよい。UE100(制御部120)は、BWPタイマ起因切り替え処理の実行(又はBWPタイマ起因切り替え)を有効にすることを切り替え制御情報が示すことに基づいてBWPタイマ起因切り替え処理を行う場合、BWPタイマ起因切り替え処理において、予め定められたPDCCH監視状態に切り替えてもよい。予め定められたPDCCH監視状態は、上述のデフォルトSSSGであってもよいし、デフォルトSSSGと異なる非デフォルトSSSGであってもよい。
 UE100(制御部120)は、BWPタイマ起因切り替え処理による切り替え先のPDCCH監視状態(例えばSSSG)が切り替え制御情報により指定(設定)されている場合、切り替え制御情報により指定(設定)されたPDCCH監視状態に切り替えてもよい。例えば、切り替え制御情報によってBWPタイマ起因切り替え処理による切り替え後のSSSGを示すインデックスが指定(設定)されている場合、UE100(制御部120)は、当該インデックスが示すSSSGに切り替える。
 以上のように、UE100(制御部120)は、基地局200から送信された切り替え制御情報に基づいて、BWPタイマ起因切り替え処理を制御する。これにより、BWP切り替えタイマの満了に基づくPDCCH監視状態の切り替えを基地局200の制御下で行うことが可能になり、BWP切り替えタイマの満了に基づいてPDCCH監視状態を切り替える場合であっても無線通信を適切に行うことが可能になる。
 (7.2)第2動作例
 移動通信システム1の第2動作例について、図14及び図15を用いて、説明する。なお、上述の説明との相違点を主として説明する。第2動作例では、UE100(制御部120)は、PDCCHスキッピング状態への切り替えに基づいて、BWP切り替えタイマを停止する。
 ステップS201及びS202は、ステップS101及びS102と同様である。
 図15に示すように、時刻t21において、UE100(制御部120)は、BWP切り替えタイマを開始する。
 なお、切り替え制御情報は、PDCCHの監視をスキップする所定期間を設定するためのタイマ値を示す情報を含んでよい。以下、所定期間を計時するタイマをスキッピング期間タイマと称する。UE100は、スキッピング期間タイマが動作中の間、PDCCH監視スキッピング状態を維持してよい。
 なお、図15に示すように、UE100(制御部120)は、アクティブBWPとしてBWP#1を基地局200との無線通信に用いている。
 ステップS203及びS204は、ステップS103及びS104と同様である。
 ステップS205において、UE100(制御部120)は、切り替え指示DCIに基づいて、PDCCH監視状態をPDCCHスキッピング状態(第1監視状態)へ切り替える。
 UE100(制御部120)は、切り替え指示DCIに応じたPDCCH監視状態の切り替えに基づいて、スキッピング期間タイマを開始する。また、UE100(制御部120)は、切り替え指示DCIに応じたPDCCH監視状態の切り替えに基づいて、BWP切り替えタイマを停止する。UE100(制御部120)は、例えば、PDCCHスキッピングを指示する切り替え指示DCI(すなわち、PDCCHスキッピングを指示する値にセットされたPDCCH監視アダプテーション通知フィールド)の受信(及び検出)に基づいて、BWP切り替えタイマを停止してよい。図15において、時刻t22において、UE100(制御部120)は、スキッピング期間タイマを開始し、BWP切り替えタイマを停止する。
 ステップS206において、UE100(制御部120)は、スキッピング期間タイマの満了に基づいて、PDCCH監視状態をPDCCHスキッピング状態(第1監視状態)からPDCCH監視実行状態(第2監視状態)へ切り替える。
 UE100(制御部120)は、PDCCHスキッピング状態からPDCCH監視実行状態への切り替えに基づいて、BWP切り替えタイマを開始又は再開する。UE100(制御部120)は、スキッピング期間タイマの満了に基づいて、BWP切り替えタイマを開始又は再開する。図15において、時刻t23において、スキッピング期間タイマが満了し、UE100(制御部120)は、BWP切り替えタイマを開始又は再開する。
 これにより、UE100(制御部120)は、PDCCHスキッピング状態である場合、BWP切り替えタイマが停止しているため、BWP切り替えタイマが満了しない。その結果、UE100(制御部120)は、PDCCH監視アダプテーションの実行中に、BWP切り替えタイマの満了に基づいてBWPを切り替えない。これにより、例えば、BWP毎にPDCCH監視状態の切り替え処理が異なるように、UE100がPDCCH監視状態を切り替える場合であっても、UE100は、PDCCH監視状態を適切に切り替えることが可能となる。
 (7.3)第3動作例
 移動通信システム1の第3動作例について、図16を用いて説明する。なお、上述の説明との相違点を主として説明する。第3動作例では、UE100(制御部120)は、全てのセカンダリセルでBWP切り替えタイマが満了した場合、スペシャルセルにおいてPDCCH監視状態をPDCCH監視実行状態へ切り替える。
 本動作例では、UE100には、基地局200によって、スペシャルセルと1又は複数のセカンダリセルとが設定されている。UE100は、設定されたスペシャルセルとセカンダリセルと、キャリアアグリゲーション又はデュアルコネクティビティによって基地局200(及び他の基地局200)と無線通信を行っている。
 なお、スペシャルセルにおけるBWPは、基地局200によりデフォルトBWPとして設定されたデフォルトBWPであってもよいし、初期BWPであってもよい。
 基地局200(送信部211)は、切り替え制御情報をUE100へ送信している。UE100(受信部112)は、切り替え制御情報を受信している。
 切り替え制御情報は、各セカンダリセルのそれぞれに関連付けられたBWP切り替えタイマ(例えば、BWPインアクティビティタイマ)を設定するためのBWP切り替えタイマ情報を含んでいてよい。UE100は、各セカンダリセルのそれぞれに関連付けられたBWP切り替えタイマを管理している。
 また、切り替え制御情報は、デフォルトBWP又は初期BWPにおいてPDCCHを監視するためのSSSGを設定するためのSSSG設定情報を含んでよい。SSSG設定情報は、全てのセカンダリセルでBWP切り替えタイマが満了した場合に適用されるものであってもよい。
 ステップS301において、UE100(制御部120)は、UE100に設定されたセカンダリセルでBWP切り替えタイマが満了したか否かを判定する。UE100(制御部120)は、UE100に設定されたセカンダリセルのうちいずれかのセカンダリセルに関連する全てのBWP切り替えタイマが満了したか否かを判定してよい。UE100(制御部120)は、セカンダリセルでBWP切り替えタイマが満了した場合、ステップS302の処理を実行する。一方で、UE100(制御部120)は、セカンダリセルでBWP切り替えタイマが満了していない場合、ステップS301の処理を実行する。
 ステップS302において、UE100(制御部120)は、UE100に設定された全てのセカンダリセルでBWP切り替えタイマが満了したか否かを判定する。従って、UE100(制御部120)は、各セカンダリセルに関連する全てのBWP切り替えタイマが満了したか否かを判定してよい。UE100(制御部120)は、全てのセカンダリセルでBWP切り替えタイマが満了した場合、ステップS303の処理を実行する。一方で、UE100(制御部120)は、UE100に設定された1又は複数のセカンダリセルのうち、少なくともいずれかのセカンダリセルでBWP切り替えタイマが満了していない場合、ステップS301の処理を実行する。
 ステップS303において、UE100(制御部120)は、スペシャルセルにおいて、PDCCHスキッピング状態であるか否かを判定する。UE100(制御部120)は、スペシャルセルにおいてPDCCHスキッピング状態である場合、ステップS304の処理を実行する。UE100(制御部120)は、スペシャルセルにおいて、PDCCHスキッピング状態でない場合、処理を終了してもよい。
 なお、UE100(制御部120)は、スペシャルセルにおいて、PDCCH監視アダプテーションを実行中か否かを判定してもよい。UE100(制御部120)は、スペシャルセルにおいてPDCCH監視アダプテーションを実行中である場合、ステップS304の処理を実行してよい。UE100(制御部120)は、スペシャルセルにおいてPDCCH監視アダプテーションを実行中でない場合、処理を終了してもよい。
 また、UE100(制御部120)は、スペシャルセルにおいて、PDCCH監視状態が、異なるサーチスペース周期を有する複数のSSSGのうち、サーチスペース周期が所定値以上であるSSSGが適用されている状態である場合、ステップS304の処理を実行してよい。UE100(制御部120)は、サーチスペース周期が所定値未満であるSSSGが適用されている状態である場合、処理を終了してもよい。
 ステップS304において、UE100(制御部120)は、PDCCH監視状態をPDCCH監視実行状態へ切り替える。UE100(制御部120)は、PDCCH監視状態を、サーチスペース周期が所定値未満であるSSSGが適用されるPDCCH監視実行状態へ切り替えてもよい。UE100(制御部120)は、UE100に設定されたスペシャルセルにおいて、PDCCH監視状態を、PDCCHの監視用に設定されたSSSGを用いてPDCCHを監視する状態へと切り替えてよい。PDCCHの監視の実行に用いられるSSSGは、スペシャルセル(スペシャルセルにおける下りリンクBWP)に対して設定されたSSSGであってもよい。
 UE100(制御部120)は、切り替え制御情報に基づいて、PDCCH監視状態をPDCCH監視実行状態へ切り替えることができる。UE100(制御部120)は、デフォルトBWP又は初期BWPにおいて、切り替え制御情報により設定されたSSSGに基づいてPDCCHを監視してよい。なお、UE100(制御部120)は、非デフォルトBWPにおいて、PDCCHを監視してもよい。
 以上により、UE100(制御部120)は、セカンダリセルでBWP切り替えタイマが満了したことにより、全てのセカンダリセルにおけるBWPが非アクティブ化された場合、セカンダリセルにおいてPDCCHの監視ができなくなる。しかしながら、スペシャルセルにおいてPDCCHスキッピング状態でなければ、UE100は、PDCCHの監視が可能となるため、全てのセカンダリセルにおけるBWPが非アクティブ化されたとしても、基地局200がUE100を制御することができる。
 (7.4)第4動作例
 移動通信システム1の第4動作例について、図17及び図18を用いて説明する。なお、上述の説明との相違点を主として説明する。第4動作例では、UE100(制御部120)は、所定BWPが非アクティブ化された場合、切り替え制御情報に基づく所定BWP用の切り替え設定をサスペンドする。
 本動作例では、UE100には、PDCCH監視状態の切り替え処理(具体的には、PDCCH監視アダプテーション)がBWP毎に設定される。従って、UE100は、基地局200からの切り替え制御情報に基づいて、1又は複数のBWPのそれぞれの切り替え設定(具体的には、PDCCH監視アダプテーションの設定)を行う。
 ステップS401において、UE100(制御部120)は、所定BWPをアクティブ化する。
 ステップS402において、UE100(制御部120)は、所定BWP用の切り替え設定を用いて、PDCCH監視状態の切り替え処理(具体的には、PDCCH監視アダプテーション)を制御する。
 ステップ403において、UE100(制御部120)は、所定BWPが非アクティブ化されたか否かを判定する。UE100(制御部120)は、所定BWPが非アクティブ化された(すなわち、所定BWPが非アクティブBWPである)場合、ステップS404の処理を行う。一方で、UE100(制御部120)は、所定BWPが非アクティブ化されていない(すなわち、所定BWPがアクティブBWPである)場合、ステップS402の処理を行う。
 ステップS404において、UE100(制御部120)は、所定BWP用の切り替え設定をサスペンドする。UE100(制御部120)は、RRCメッセージに含まれる切り替え制御情報より設定された所定BWP用のパラメータの値をサスペンドしてもよい。UE100(制御部120)は、所定BWP用のパラメータの値を破棄(又はクリア)せずに、保持してよい。
 従って、UE100(制御部120)は、所定BWPがアクティブ化されている場合、切り替え制御情報に基づく所定BWP用の切り替え設定を用いて、所定BWPにおける切り替え処理を制御する。一方で、UE100(制御部120)は、所定BWPが非アクティブ化された場合、所定BWP用の切り替え設定をサスペンドする。
 次に、UE100(制御部120)が、所定BWP用の切り替え設定をサスペンドした場合の動作例を、図18を用いて説明する。
 ステップS411は、ステップS404と同様である。
 ステップS412において、UE100(制御部120)は、所定BWPが非アクティブ化された後、所定BWPが再度アクティブ化されたか否かを判定する。UE100(制御部120)は、所定BWPが再度アクティブ化された場合、ステップS413の処理を実行する。一方で、UE100(制御部120)は、所定BWPが再度アクティブ化されていない(すなわち、所定BWPが非アクティブBWPである)場合、ステップS412の処理を実行する。
 ステップS413において、UE100(制御部120)は、サスペンドされた切り替え設定を復旧させる。UE100(制御部120)は、サスペンドされた切り替え設定を再初期化してもよい。
 ステップS414において、UE100(制御部120)は、復旧させた切り替え設定を用いて、所定BWPにおける切り替え処理を制御する。
 以上により、UE100は、所定BWPが非アクティブ化された場合、所定BWP用の切り替え設定をサスペンドすることによって、切り替え設定を破棄する場合と比較して、所定BWPにおける切り替え処理の制御の開始を早めることができる。
 (7.5)第5動作例
 移動通信システム1の第5動作例について、図19を用いて説明する。なお、上述の説明との相違点を主として説明する。第5動作例では、UE100(制御部120)は、サスペンドされた切り替え設定を破棄する。
 UE100(制御部120)は、第4動作例と同様に、切り替え設定をサスペンドする。なお、UE100(制御部120)は、本動作例の動作と共に第4動作例の動作を実行してもよい。
 ステップS421は、ステップS404と同様である。
 ステップS422において、UE100(制御部120)は、所定BWPがセカンダリセルのBWPであるか否かを判定する。UE100(制御部120)は、所定BWPがセカンダリセルのBWPである場合、ステップS423の処理を実行する。一方で、UE100(制御部120)は、所定BWPがセカンダリセルのBWPでない(具体的には、所定BWPがスペシャルセルのBWPである)場合、本動作例の処理を終了してよい。
 ステップS423において、UE100(制御部120)は、所定BWPのセカンダリセルの非アクティブ化タイマ(具体的には、sCellDeactivationTimer)が満了したか否かを判定する。UE100(制御部120)は、所定BWPのセカンダリセルの非アクティブ化タイマが満了した場合、ステップS424の処理を実行する。一方で、UE100(制御部120)は、所定BWPのセカンダリセルの非アクティブ化タイマが満了していない(すなわち、非アクティブ化タイマが動作中又は停止している)場合、ステップS423の処理を実行する。
 非アクティブ化タイマ(sCellDeactivationTimer)は、当該タイマに関連付けられたセカンダリセルを非アクティブ化するか否かの判定に用いられる。UE100(制御部120)は、非アクティブ化タイマの満了に基づいて、当該タイマに関連付けられたセカンダリセルを非アクティブ化する。
 なお、非アクティブ化タイマを設定するための設定値(タイマ値)は、サービングセル設定(ServingCellConfig)に含まれる。サービングセル設定が、非アクティブ化タイマを設定するためのフィールドが空欄(アブセント)である場合、UE100(制御部120)は、非アクティブ化タイマのタイマ値として無限の値を適用してもよい。
 ステップS424において、UE100(制御部120)は、セカンダリセルを非アクティブ化する。
 ステップS425において、UE100(制御部120)は、所定BWPに関連付けられたBWP切り替えタイマを停止する。
 ステップS426において、UE100(制御部120)は、所定BWP用の切り替え設定を破棄する。UE100(制御部120)は、所定BWP用の切り替え設定をクリアしてもよい。
 以上により、UE100は、セカンダリセルを非アクティブ化するためのタイマの満了に基づいてセカンダリセルが非アクティブ化された場合、当該セカンダリセルに対して設定された切り替え設定をクリアすることによって、UE100(制御部120)の処理負荷を軽減できる。
 (8)その他の実施形態
 上述の第2動作例(図14参照)では、制御部120は、切り替え指示DCIに基づいて、BWP切り替えタイマを開始又は再開するケースを例に挙げて説明していたが、これに限られない。制御部120は、スキッピング期間タイマの満了に基づいて、BWP切り替えタイマを開始又は再開してよい。
 上述の実施形態では、BWP切り替えタイマが非アクティブタイマ(inactivity-timer)であるケースを例示していたが、これに限られない。BWP切り替えタイマは他のタイマであってもよい。
 上述の実施形態における動作シーケンス(及び動作フロー)は、必ずしもフロー図又はシーケンス図に記載された順序に沿って時系列に実行されなくてよい。例えば、動作におけるステップは、フロー図又はシーケンス図として記載した順序と異なる順序で実行されても、並列的に実行されてもよい。また、動作におけるステップの一部が削除されてもよく、さらなるステップが処理に追加されてもよい。また、上述の実施形態における動作シーケンス(及び動作フロー)は、別個独立に実施してもよいし、2以上の動作シーケンス(及び動作フロー)を組み合わせて実施してもよい。例えば、1つの動作フローの一部のステップを他の動作フローに追加してもよいし、1つの動作フローの一部のステップを他の動作フローの一部のステップと置換してもよい。
 上述の実施形態において、基地局200は、複数のユニットを含んでもよい。複数のユニットは、プロトコルスタックに含まれる上位レイヤ(higher layer)をホストする第1のユニットと、プロトコルスタックに含まれる下位レイヤ(lower layer)をホストする第2のユニットとを含んでよい。上位レイヤは、RRCレイヤ、SDAPレイヤ及びPDCPレイヤを含んでよく、下位レイヤは、RLCレイヤ、MACレイヤ及びPHYレイヤを含んでよい。第1のユニットは、CU(central unit)であってよく、第2のユニットは、DU(Distributed Unit)であってよい。複数のユニットは、PHYレイヤの下位の処理を行う第3のユニットを含んでよい。第2のユニットは、PHYレイヤの上位の処理を行ってよい。第3のユニットは、RU(Radio Unit)であってよい。基地局200は、複数のユニットのうちの1つであってよく、複数のユニットのうちの他のユニットと接続されていてよい。また、基地局200は、IAB(Integrated Access and Backhaul)ドナー又はIABノードであってよい。
 上述の実施形態において、移動通信システム1としてNRに基づく移動通信システムを例に挙げて説明した。しかしながら、移動通信システム1は、この例に限定されない。移動通信システム1は、LTE(Long Term Evolution)又は3GPP規格の他の世代システム(例えば、第6世代)のいずれかのTSに準拠したシステムであってよい。基地局200は、LTEにおいてUE100へ向けたE-UTRAユーザプレーン及び制御プレーンプロトコル終端を提供するeNBであってよい。移動通信システム1は、3GPP規格以外の規格のTSに準拠したシステムであってよい。
 UE100又は基地局200が行う各処理をコンピュータに実行させるプログラムが提供されてもよい。プログラムは、コンピュータ読取り可能媒体に記録されていてもよい。コンピュータ読取り可能媒体を用いれば、コンピュータにプログラムをインストールすることが可能である。ここで、プログラムが記録されたコンピュータ読取り可能媒体は、非一過性の記録媒体であってもよい。非一過性の記録媒体は、特に限定されるものではないが、例えば、CD-ROM(Compact Disk Read Only Memory)やDVD-ROM(Digital Versatile Disc Read Only Memory)等の記録媒体であってもよい。また、UE100又は基地局200が行う各処理を実行する回路を集積化し、UE100又は基地局200の少なくとも一部を半導体集積回路(チップセット、SoC(System On Chip))として構成してもよい。
 上述の実施形態において、「送信する(transmit)」は、送信に使用されるプロトコルスタック内の少なくとも1つのレイヤの処理を行うことを意味してもよく、又は、無線又は有線で信号を物理的に送信することを意味してもよい。或いは、「送信する」は、上記少なくとも1つのレイヤの処理を行うことと、無線又は有線で信号を物理的に送信することとの組合せを意味してもよい。同様に、「受信する(receive)」は、受信に使用されるプロトコルスタック内の少なくとも1つのレイヤの処理を行うことを意味してもよく、又は、無線又は有線で信号を物理的に受信することを意味してもよい。或いは、「受信する」は、上記少なくとも1つのレイヤの処理を行うことと、無線又は有線で信号を物理的に受信することとの組合せを意味してもよい。同様に、「取得する(obtain/acquire)」は、記憶されている情報の中から情報を取得することを意味してもよく、他のノードから受信した情報の中から情報を取得することを意味してもよく、又は、情報を生成することにより当該情報を取得することを意味してもよい。同様に、「に基づいて(based on)」、「に応じて(depending on/in response to)」という記載は、別段に明記されていない限り、「のみに基づいて」、「のみに応じて」を意味しない。「に基づいて」という記載は、「のみに基づいて」及び「に少なくとも部分的に基づいて」の両方を意味する。同様に、「に応じて」という記載は、「のみに応じて」及び「に少なくとも部分的に応じて」の両方を意味する。同様に、「~を含む(include)」及び「~を備える(comprise)」は、列挙する項目のみを含むことを意味せず、列挙する項目のみを含んでもよいし、列挙する項目に加えてさらなる項目を含んでもよいことを意味する。同様に、本開示において、「又は(or)」は、排他的論理和を意味せず、論理和を意味する。さらに、本開示で使用した「第1」、「第2」などの呼称を使用した要素へのいかなる参照も、それらの要素の量又は順序を全般的に限定するものではない。これらの呼称は、2つ以上の要素間を区別する便利な方法として本開示で使用され得る。したがって、第1及び第2の要素への参照は、2つの要素のみがそこで採用され得ること、又は何らかの形で第1の要素が第2の要素に先行しなければならないことを意味しない。本開示において、例えば、英語でのa,an,及びtheのように、翻訳により冠詞が追加された場合、これらの冠詞は、文脈から明らかにそうではないことが示されていなければ、複数のものを含むものとする。
 本開示は、実施例に準拠して記述されたが、本開示は当該実施例や構造に限定されるものではないと理解される。本開示は、様々な変形例や均等範囲内の変形をも包含する。加えて、様々な組み合わせや形態、さらには、それらに一要素のみ、それ以上、あるいはそれ以下、を含む他の組み合わせや形態をも、本開示の範疇や思想範囲に入るものである。
 (付記)
 上述の実施形態に関する特徴について付記する。
 (付記1)
 基地局(200)のセルの全帯域幅の一部分である帯域幅部分において無線通信を行う通信装置(100)であって、
 前記帯域幅部分を切り替えるためのBWP切り替えタイマの満了に基づいて、前記帯域幅部分を切り替えると共に、物理下りリンク制御チャネル(PDCCH)の監視に関するPDCCH監視状態を切り替えるBWPタイマ起因切り替え処理を行う制御部(120)と、
 前記BWPタイマ起因切り替え処理を制御するための切り替え制御情報を含む無線リソース制御(RRC)メッセージを受信する受信部(112)と、を備え、
 前記制御部(120)は、前記切り替え制御情報に基づいて、前記BWPタイマ起因切り替え処理を制御する
 通信装置(100)。
 (付記2)
 前記切り替え制御情報は、前記BWPタイマ起因切り替え処理の実行を有効にするか否かに関する情報であり、
 前記制御部(120)は、前記BWPタイマ起因切り替え処理の実行を有効にすることを前記切り替え制御情報が示すことに基づいて前記BWPタイマ起因切り替え処理を行う
 付記1に記載の通信装置(100)。
 (付記3)
 前記切り替え制御情報は、前記通信装置(100)固有のPDCCHパラメータを設定するためのPDCCH設定に含まれている
 付記1又は2に記載の通信装置(100)。
 (付記4)
 前記切り替え制御情報は、前記BWP切り替えタイマの満了に基づく切り替え後の前記帯域幅部分において前記PDCCHを監視するためのサーチスペースセットグループ(SSSG)を設定するための情報を含む
 付記1又は2に記載の通信装置(100)。
 (付記5)
 前記受信部(112)は、前記PDCCH監視状態として前記PDCCHの監視をスキップするPDCCHスキッピング状態に切り替えるための指示を前記基地局(200)から受信し、
 前記制御部(120)は、前記指示に応じた前記PDCCHスキッピング状態への切り替えに基づいて、前記BWP切り替えタイマを停止する
 請求項1又は2に記載の通信装置(100)。
 (付記6)
 前記制御部(120)は、前記PDCCHスキッピング状態から前記PDCCHを監視する状態への切り替えに基づいて、前記BWP切り替えタイマを開始又は再開する
 付記5に記載の通信装置(100)。
 (付記7)
 前記制御部(120)は、前記通信装置(100)に設定された全てのセカンダリセルで前記BWP切り替えタイマが満了した場合、前記通信装置(100)に設定されたスペシャルセルにおいて、前記PDCCH監視状態を、前記PDCCHを監視する状態へ切り替える
 付記1又は2に記載の通信装置(100)。
 (付記8)
 前記スペシャルセルにおける前記帯域幅部分は、前記基地局(200)によりデフォルトとして設定されたデフォルト帯域幅部分又は初期帯域幅部分であり、
 前記制御部(120)は、前記切り替え制御情報に基づいて、前記デフォルト帯域幅部分又は前記初期帯域幅部分において前記PDCCHを監視する
 付記7に記載の通信装置(100)。
 (付記9)
 前記切り替え制御情報は、前記デフォルト帯域幅部分又は前記初期帯域幅部分において前記PDCCHを監視するためのサーチスペースセットグループ(SSSG)を設定するための情報を含み、
 前記制御部(120)は、前記デフォルト帯域幅部分又は前記初期帯域幅部分において、前記切り替え制御情報により設定されたSSSGに基づいて前記PDCCHを監視する
 付記8に記載の通信装置(100)。
 (付記10)
 基地局(200)のセルの全帯域幅の一部分である帯域幅部分において無線通信を行う通信装置(100)であって、
 前記通信装置(100)に設定された1又は複数の帯域幅部分のうち所定の帯域幅部分において、物理下りリンク制御チャネル(PDCCH)の監視に関するPDCCH監視状態を切り替える切り替え処理を制御する制御部(120)と、
 前記切り替え処理を制御するための切り替え制御情報を含む無線リソース制御(RRC)メッセージを受信する受信部(112)と、を備え、
 前記制御部(120)は、
  前記所定の帯域幅部分がアクティブ化されている場合、前記切り替え制御情報に基づく前記所定の帯域幅部分用の切り替え設定を用いて、前記所定の帯域幅部分における前記切り替え処理を制御し、
  前記所定の帯域幅部分が非アクティブ化された場合、前記切り替え設定をサスペンドする
 通信装置(100)。
 (付記11)
 前記制御部(120)は、前記所定の帯域幅部分が非アクティブ化された後、再度アクティブ化された場合に、前記サスペンドされた切り替え設定を復旧させるとともに、復旧させた切り替え設定を用いて、前記切り替え処理を制御する
 付記10に記載の通信装置(100)。
 (付記12)
 前記所定の帯域幅部分は、セカンダリセルの全帯域幅の一部分であり、
 前記制御部(120)は、前記セカンダリセルを非アクティブ化するためのタイマの満了に基づいて、前記セカンダリセルが非アクティブ化された場合、前記サスペンドされた切り替え設定を破棄する
 付記10又は11に記載の通信装置(100)。
 (付記13)
 基地局(200)のセルの全帯域幅の一部分である帯域幅部分において通信装置(100)と無線通信を行う前記基地局(200)であって、
 前記通信装置(100)におけるBWPタイマ起因切り替え処理を制御するための切り替え制御情報を含む無線リソース制御(RRC)メッセージを生成する制御部(230)と、
 前記RRCメッセージを前記通信装置(100)へ送信する送信部(211)と、を備え、
 前記BWPタイマ起因切り替え処理では、前記通信装置(100)が、前記帯域幅部分を切り替えるためのBWP切り替えタイマの満了に基づいて、前記帯域幅部分を切り替えると共に、物理下りリンク制御チャネル(PDCCH)の監視に関するPDCCH監視状態を切り替える
 基地局(200)。
 (付記14)
 基地局(200)のセルの全帯域幅の一部分である帯域幅部分において無線通信を行う通信装置(100)で実行される通信方法あって、
 前記帯域幅部分を切り替えるためのBWP切り替えタイマの満了に基づいて、前記帯域幅部分を切り替えると共に、物理下りリンク制御チャネル(PDCCH)の監視に関するPDCCH監視状態を切り替えるBWPタイマ起因切り替え処理を行うステップと、
 前記BWPタイマ起因切り替え処理を制御するための切り替え制御情報を含む無線リソース制御(RRC)メッセージを受信するステップと、を備え、
 前記BWPタイマ起因切り替え処理を行うステップでは、前記切り替え制御情報に基づいて、前記BWPタイマ起因切り替え処理を制御する
 通信方法。
 (付記15)
 基地局(200)のセルの全帯域幅の一部分である帯域幅部分において無線通信を行う通信装置(100)で実行される通信方法あって、
 前記通信装置(100)に設定された1又は複数の帯域幅部分のうち所定の帯域幅部分において、物理下りリンク制御チャネル(PDCCH)の監視に関するPDCCH監視状態を切り替える切り替え処理を制御するステップと、
 前記切り替え処理を制御するための切り替え制御情報を含む無線リソース制御(RRC)メッセージを受信するステップと、を備え、
 前記切り替え処理を制御するステップでは、前記所定の帯域幅部分がアクティブ化されている場合、前記切り替え制御情報に基づく前記所定の帯域幅部分用の切り替え設定を用いて、前記所定の帯域幅部分における前記切り替え処理を制御し、
 前記所定の帯域幅部分が非アクティブ化された場合、前記切り替え設定をサスペンドするステップをさらに備える
 通信方法。

Claims (15)

  1.  基地局(200)のセルの全帯域幅の一部分である帯域幅部分において無線通信を行う通信装置(100)であって、
     前記帯域幅部分を切り替えるためのBWP切り替えタイマの満了に基づいて、前記帯域幅部分を切り替えると共に、物理下りリンク制御チャネル(PDCCH)の監視に関するPDCCH監視状態を切り替えるBWPタイマ起因切り替え処理を行う制御部(120)と、
     前記BWPタイマ起因切り替え処理を制御するための切り替え制御情報を含む無線リソース制御(RRC)メッセージを受信する受信部(112)と、を備え、
     前記制御部(120)は、前記切り替え制御情報に基づいて、前記BWPタイマ起因切り替え処理を制御する
     通信装置(100)。
  2.  前記切り替え制御情報は、前記BWPタイマ起因切り替え処理の実行を有効にするか否かに関する情報であり、
     前記制御部(120)は、前記BWPタイマ起因切り替え処理の実行を有効にすることを前記切り替え制御情報が示すことに基づいて前記BWPタイマ起因切り替え処理を行う
     請求項1に記載の通信装置(100)。
  3.  前記切り替え制御情報は、前記通信装置(100)固有のPDCCHパラメータを設定するためのPDCCH設定に含まれている
     請求項1又は2に記載の通信装置(100)。
  4.  前記切り替え制御情報は、前記BWP切り替えタイマの満了に基づく切り替え後の前記帯域幅部分において前記PDCCHを監視するためのサーチスペースセットグループ(SSSG)を設定するための情報を含む
     請求項1又は2に記載の通信装置(100)。
  5.  前記受信部(112)は、前記PDCCH監視状態として前記PDCCHの監視をスキップするPDCCHスキッピング状態に切り替えるための指示を前記基地局(200)から受信し、
     前記制御部(120)は、前記指示に応じた前記PDCCHスキッピング状態への切り替えに基づいて、前記BWP切り替えタイマを停止する
     請求項1又は2に記載の通信装置(100)。
  6.  前記制御部(120)は、前記PDCCHスキッピング状態から前記PDCCHを監視する状態への切り替えに基づいて、前記BWP切り替えタイマを開始又は再開する
     請求項5に記載の通信装置(100)。
  7.  前記制御部(120)は、前記通信装置(100)に設定された全てのセカンダリセルで前記BWP切り替えタイマが満了した場合、前記通信装置(100)に設定されたスペシャルセルにおいて、前記PDCCH監視状態を、前記PDCCHを監視する状態へ切り替える
     請求項1又は2に記載の通信装置(100)。
  8.  前記スペシャルセルにおける前記帯域幅部分は、前記基地局(200)によりデフォルトとして設定されたデフォルト帯域幅部分又は初期帯域幅部分であり、
     前記制御部(120)は、前記切り替え制御情報に基づいて、前記デフォルト帯域幅部分又は前記初期帯域幅部分において前記PDCCHを監視する
     請求項7に記載の通信装置(100)。
  9.  前記切り替え制御情報は、前記デフォルト帯域幅部分又は前記初期帯域幅部分において前記PDCCHを監視するためのサーチスペースセットグループ(SSSG)を設定するための情報を含み、
     前記制御部(120)は、前記デフォルト帯域幅部分又は前記初期帯域幅部分において、前記切り替え制御情報により設定されたSSSGに基づいて前記PDCCHを監視する
     請求項8に記載の通信装置(100)。
  10.  基地局(200)のセルの全帯域幅の一部分である帯域幅部分において無線通信を行う通信装置(100)であって、
     前記通信装置(100)に設定された1又は複数の帯域幅部分のうち所定の帯域幅部分において、物理下りリンク制御チャネル(PDCCH)の監視に関するPDCCH監視状態を切り替える切り替え処理を制御する制御部(120)と、
     前記切り替え処理を制御するための切り替え制御情報を含む無線リソース制御(RRC)メッセージを受信する受信部(112)と、を備え、
     前記制御部(120)は、
      前記所定の帯域幅部分がアクティブ化されている場合、前記切り替え制御情報に基づく前記所定の帯域幅部分用の切り替え設定を用いて、前記所定の帯域幅部分における前記切り替え処理を制御し、
      前記所定の帯域幅部分が非アクティブ化された場合、前記切り替え設定をサスペンドする
     通信装置(100)。
  11.  前記制御部(120)は、前記所定の帯域幅部分が非アクティブ化された後、再度アクティブ化された場合に、前記サスペンドされた切り替え設定を復旧させるとともに、復旧させた切り替え設定を用いて、前記切り替え処理を制御する
     請求項10に記載の通信装置(100)。
  12.  前記所定の帯域幅部分は、セカンダリセルの全帯域幅の一部分であり、
     前記制御部(120)は、前記セカンダリセルを非アクティブ化するためのタイマの満了に基づいて、前記セカンダリセルが非アクティブ化された場合、前記サスペンドされた切り替え設定を破棄する
     請求項10又は11に記載の通信装置(100)。
  13.  基地局(200)のセルの全帯域幅の一部分である帯域幅部分において通信装置(100)と無線通信を行う前記基地局(200)であって、
     前記通信装置(100)におけるBWPタイマ起因切り替え処理を制御するための切り替え制御情報を含む無線リソース制御(RRC)メッセージを生成する制御部(230)と、
     前記RRCメッセージを前記通信装置(100)へ送信する送信部(211)と、を備え、
     前記BWPタイマ起因切り替え処理では、前記通信装置(100)が、前記帯域幅部分を切り替えるためのBWP切り替えタイマの満了に基づいて、前記帯域幅部分を切り替えると共に、物理下りリンク制御チャネル(PDCCH)の監視に関するPDCCH監視状態を切り替える
     基地局(200)。
  14.  基地局(200)のセルの全帯域幅の一部分である帯域幅部分において無線通信を行う通信装置(100)で実行される通信方法あって、
     前記帯域幅部分を切り替えるためのBWP切り替えタイマの満了に基づいて、前記帯域幅部分を切り替えると共に、物理下りリンク制御チャネル(PDCCH)の監視に関するPDCCH監視状態を切り替えるBWPタイマ起因切り替え処理を行うステップと、
     前記BWPタイマ起因切り替え処理を制御するための切り替え制御情報を含む無線リソース制御(RRC)メッセージを受信するステップと、を備え、
     前記BWPタイマ起因切り替え処理を行うステップでは、前記切り替え制御情報に基づいて、前記BWPタイマ起因切り替え処理を制御する
     通信方法。
  15.  基地局(200)のセルの全帯域幅の一部分である帯域幅部分において無線通信を行う通信装置(100)で実行される通信方法あって、
     前記通信装置(100)に設定された1又は複数の帯域幅部分のうち所定の帯域幅部分において、物理下りリンク制御チャネル(PDCCH)の監視に関するPDCCH監視状態を切り替える切り替え処理を制御するステップと、
     前記切り替え処理を制御するための切り替え制御情報を含む無線リソース制御(RRC)メッセージを受信するステップと、を備え、
     前記切り替え処理を制御するステップでは、前記所定の帯域幅部分がアクティブ化されている場合、前記切り替え制御情報に基づく前記所定の帯域幅部分用の切り替え設定を用いて、前記所定の帯域幅部分における前記切り替え処理を制御し、
     前記所定の帯域幅部分が非アクティブ化された場合、前記切り替え設定をサスペンドするステップをさらに備える
     通信方法。
     
PCT/JP2022/047083 2021-12-28 2022-12-21 通信装置、基地局、及び通信方法 WO2023127634A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-214683 2021-12-28
JP2021214683 2021-12-28

Publications (1)

Publication Number Publication Date
WO2023127634A1 true WO2023127634A1 (ja) 2023-07-06

Family

ID=86998978

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/047083 WO2023127634A1 (ja) 2021-12-28 2022-12-21 通信装置、基地局、及び通信方法

Country Status (1)

Country Link
WO (1) WO2023127634A1 (ja)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200100179A1 (en) * 2018-09-21 2020-03-26 Comcast Cable Communications, Llc Activation and Deactivation of Power Saving Operation
JP2021503231A (ja) * 2017-11-16 2021-02-04 オフィノ, エルエルシー 帯域幅部分に関するチャネル状態情報レポート

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021503231A (ja) * 2017-11-16 2021-02-04 オフィノ, エルエルシー 帯域幅部分に関するチャネル状態情報レポート
US20200100179A1 (en) * 2018-09-21 2020-03-26 Comcast Cable Communications, Llc Activation and Deactivation of Power Saving Operation

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Extensions to Rel-16 DCI-based power saving adaptation for an active BWP", 3GPP DRAFT; R1-2110840, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. e-Meeting; 20211111 - 20211119, 6 November 2021 (2021-11-06), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052074621 *
QUALCOMM INCORPORATED (RAPPORTEUR): "Miscellaneous corrections for NR-U", 3GPP DRAFT; R2-2002847, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. 20200420 - 20200430, 13 April 2020 (2020-04-13), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051875803 *

Similar Documents

Publication Publication Date Title
JP6401854B2 (ja) 通信方法、無線端末及びプロセッサ
US20180167917A1 (en) Terminal device, communication method, and integrated circuit
WO2017009053A1 (en) Communications terminal, infrastructure equipment and methods for discontinuous reception, drx
WO2016136960A1 (ja) 無線端末
US10973080B2 (en) Radio terminal, processor, and base station
US20240107518A1 (en) Communication apparatus, base station, and communication method
US20240137973A1 (en) Communication apparatus, base station, and communication method
US20240064774A1 (en) Communication apparatus, base station, and communication method
WO2023127634A1 (ja) 通信装置、基地局、及び通信方法
WO2023112959A1 (ja) 通信装置、基地局、及び通信方法
WO2023127636A1 (ja) 通信装置及び通信方法
WO2023112961A1 (ja) 通信装置、基地局、及び通信方法
WO2022260103A1 (ja) 通信装置、基地局、及び通信方法
WO2023112960A1 (ja) 通信装置、基地局、及び通信方法
WO2024071076A1 (ja) 通信装置及び通信方法
WO2023048183A1 (ja) ユーザ装置、基地局、及び通信方法
WO2024071078A1 (ja) 通信装置、基地局及び通信方法
WO2022234801A1 (ja) 通信装置、基地局、及び通信方法
WO2023120434A1 (ja) 基地局及び通信方法
WO2022234834A1 (ja) 通信装置、基地局、及び方法
WO2022234838A1 (ja) 通信装置、基地局、及び方法
WO2022234835A1 (ja) ユーザ装置、基地局、及び通信制御方法
WO2023153312A1 (ja) 通信装置及び通信方法
JP2022172972A (ja) ユーザ装置及び通信方法
CN118056415A (zh) 通信方法、用户设备和基站

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22915857

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE