WO2023127420A1 - Optical fiber assembly, optical fiber cable, and method for manufacturing optical fiber assembly - Google Patents
Optical fiber assembly, optical fiber cable, and method for manufacturing optical fiber assembly Download PDFInfo
- Publication number
- WO2023127420A1 WO2023127420A1 PCT/JP2022/044824 JP2022044824W WO2023127420A1 WO 2023127420 A1 WO2023127420 A1 WO 2023127420A1 JP 2022044824 W JP2022044824 W JP 2022044824W WO 2023127420 A1 WO2023127420 A1 WO 2023127420A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- optical fiber
- longitudinal direction
- intermittently fixed
- fiber assembly
- tape core
- Prior art date
Links
- 239000013307 optical fiber Substances 0.000 title claims abstract description 204
- 238000000034 method Methods 0.000 title claims description 24
- 238000004519 manufacturing process Methods 0.000 title claims description 9
- 239000013598 vector Substances 0.000 claims abstract description 53
- 239000000835 fiber Substances 0.000 claims description 17
- 230000005484 gravity Effects 0.000 claims description 16
- 230000002194 synthesizing effect Effects 0.000 claims description 5
- 239000010410 layer Substances 0.000 description 32
- 239000000463 material Substances 0.000 description 18
- KAATUXNTWXVJKI-UHFFFAOYSA-N cypermethrin Chemical compound CC1(C)C(C=C(Cl)Cl)C1C(=O)OC(C#N)C1=CC=CC(OC=2C=CC=CC=2)=C1 KAATUXNTWXVJKI-UHFFFAOYSA-N 0.000 description 11
- 238000004804 winding Methods 0.000 description 10
- 239000003822 epoxy resin Substances 0.000 description 5
- 229920000647 polyepoxide Polymers 0.000 description 5
- 239000011241 protective layer Substances 0.000 description 5
- 229920002430 Fibre-reinforced plastic Polymers 0.000 description 4
- 239000004743 Polypropylene Substances 0.000 description 4
- 239000011151 fibre-reinforced plastic Substances 0.000 description 4
- 239000011295 pitch Substances 0.000 description 4
- -1 polyethylene Polymers 0.000 description 4
- 229920001155 polypropylene Polymers 0.000 description 4
- 229920005989 resin Polymers 0.000 description 4
- 239000011347 resin Substances 0.000 description 4
- 230000005540 biological transmission Effects 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000002184 metal Substances 0.000 description 3
- 229910052751 metal Inorganic materials 0.000 description 3
- 230000002093 peripheral effect Effects 0.000 description 3
- 238000003825 pressing Methods 0.000 description 3
- 239000004698 Polyethylene Substances 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 239000005038 ethylene vinyl acetate Substances 0.000 description 2
- 229920006244 ethylene-ethyl acrylate Polymers 0.000 description 2
- 239000003365 glass fiber Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 229920001200 poly(ethylene-vinyl acetate) Polymers 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 239000004677 Nylon Substances 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 238000005253 cladding Methods 0.000 description 1
- 239000011247 coating layer Substances 0.000 description 1
- 239000003086 colorant Substances 0.000 description 1
- 238000004040 coloring Methods 0.000 description 1
- 229920001577 copolymer Polymers 0.000 description 1
- 239000005042 ethylene-ethyl acrylate Substances 0.000 description 1
- 239000003063 flame retardant Substances 0.000 description 1
- 239000011256 inorganic filler Substances 0.000 description 1
- 229910003475 inorganic filler Inorganic materials 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000098 polyolefin Polymers 0.000 description 1
- 239000004800 polyvinyl chloride Substances 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000012209 synthetic fiber Substances 0.000 description 1
- 229920002994 synthetic fiber Polymers 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/44—Mechanical structures for providing tensile strength and external protection for fibres, e.g. optical transmission cables
Definitions
- the present invention relates to an optical fiber assembly, an optical fiber cable, and a method for manufacturing an optical fiber assembly.
- Patent Document 1 discloses a technique for preventing untwisting of SZ by unidirectionally twisting a plurality of second optical fiber ribbons onto a plurality of SZ-twisted first optical fiber ribbons.
- the present invention has been made in consideration of such circumstances, and an object of the present invention is to provide an optical fiber assembly and an optical fiber cable capable of suppressing untwisting.
- an optical fiber assembly provides a plurality of intermittently fixed optical fibers including a plurality of optical fibers and a plurality of fixing portions for intermittently fixing the plurality of optical fibers in a longitudinal direction.
- a normal twisted portion in which the plurality of intermittently fixed tape fibers are twisted together, and a reverse twisted portion in which the plurality of intermittently fixed tape fibers are twisted in a direction opposite to the normal twisted portion.
- a method for manufacturing an optical fiber assembly includes a plurality of intermittently fixed tape core wires including a plurality of optical fibers and a plurality of fixing portions for intermittently fixing the plurality of optical fibers in a longitudinal direction. and a period including a forward twisted portion in which the plurality of intermittently fixed tape core wires are twisted together and a reverse twisted portion in which the plurality of intermittently fixed tape core wires are twisted in a direction opposite to the normal twisted portion
- M be the midpoint of the two optical fibers located at both ends of one intermittently fixed tape core wire
- G be the center of gravity
- MG be a vector starting from the midpoint M and ending at the center of gravity G
- the vector When MG is a sum of vectors obtained by synthesizing all of the plurality of intermittently fixed tape core wires, the position in the longitudinal direction of the reversal portion where the forward twist portion and the reverse twist portion are switched, and the direction of the vector sum. The position in the longitudinal direction of the switching portion where the change is switched is shifted.
- FIG. 1 is a cross-sectional view showing an optical fiber assembly and an optical fiber cable according to an embodiment of the invention
- FIG. 1 is a perspective view showing an optical fiber unit according to an embodiment of the invention
- FIG. 1 is a perspective view showing an intermittently fixed tape core wire according to an embodiment of the present invention
- FIG. It is a figure explaining SZ twist structure concerning the embodiment of the present invention.
- 1 is a cross-sectional view showing an optical fiber unit according to an embodiment of the invention
- FIG. It is a figure explaining vector MG. It is a figure explaining a vector sum.
- 4 is a diagram showing the phase of SZ twist and the phase of vector sum according to Example 1.
- FIG. FIG. 10 is a diagram showing the phase of SZ twist and the phase of vector sum according to Example 2;
- the optical fiber cable 100 includes an optical fiber aggregate 1 including a plurality of optical fiber units U.
- each optical fiber unit U has a plurality of intermittently fixed fiber ribbons 10 .
- the plurality of intermittently fixed fiber ribbons 10 constitute the plurality of optical fiber units U.
- each intermittent fixing tape core wire 10 includes a plurality of optical fibers 11 .
- the plurality of optical fibers 11 constitute the plurality of intermittently fixed tape core wires 10 .
- the outer diameter of each optical fiber 11 is, for example, 250 ⁇ m. However, the outer diameter of the optical fiber 11 may be 200 ⁇ m, or may be another value.
- the longitudinal direction of the optical fiber assembly 1 (optical fiber cable 100) is simply referred to as the longitudinal direction Z.
- the longitudinal direction Z is also a direction parallel to the central axis O of the optical fiber assembly 1 (optical fiber cable 100).
- One orientation along the longitudinal direction Z is referred to as the +Z orientation or forward.
- the orientation opposite to the +Z orientation is referred to as the -Z orientation or back.
- a section perpendicular to the longitudinal direction Z is called a transverse section. Viewing a cross section from the longitudinal direction Z is called a cross section view.
- a direction perpendicular to the central axis O of the optical fiber assembly 1 (optical fiber cable 100) is referred to as a radial direction.
- the direction approaching the central axis O is referred to as the radial inner side, and the direction away from the central axis O is referred to as the radial outer side.
- the direction of rotation around the central axis O when viewed from the longitudinal direction Z is called the circumferential direction.
- the optical fiber cable 100 according to this embodiment is a so-called slotless optical cable. That is, the optical fiber cable 100 according to this embodiment does not have a slot rod in which a groove (slot groove) for accommodating the optical fiber 11 (the intermittent fixing tape core wire 10) is formed.
- the optical fiber cable 100 may be a slot type optical cable having a slot rod.
- the optical fiber assembly 1 according to this embodiment may be accommodated in the slot groove of the optical fiber cable 100 .
- the optical fiber cable 100 includes the optical fiber assembly 1 described above, a pressure wrap 120 covering the optical fiber assembly 1, and the optical fiber assembly 1 via the pressure wrap 120. and a jacket 110 that covers and houses the .
- the optical fiber assembly 1 can be regarded as a portion of the optical fiber cable 100 excluding the jacket 110, the pressure wrap 120, and the like.
- the optical fiber assembly 1 and the pressure winding 120 may be collectively referred to as a core.
- the pressure wrap 120 is a tape-shaped member that bundles the plurality of optical fiber units U. As shown in FIG. The type of the pressing wrap 120 is not particularly limited as long as the optical fiber units U can be bundled.
- the press wrap 120 may have water absorbency.
- the pressure winding 120 may be wound vertically or horizontally with respect to the optical fiber assembly 1, for example.
- the pressure wrap 120 when the pressure wrap 120 is a tape extending in the longitudinal direction Z, the pressure wrap 120 may be formed in a cylindrical shape that wraps the optical fiber unit U. In this case, both ends in the circumferential direction of the pressure winding 120 may overlap each other to form a wrap portion.
- the pressing wrap 120 may be a tube forming body that wraps the optical fiber unit U instead of the tape.
- the optical fiber 11 By wrapping the optical fiber unit U with the pressing wrap 120 in the longitudinal direction Z, the optical fiber 11 can be protected. Note that there may be a portion in the longitudinal direction Z where the optical fiber 11 is not wrapped by the pressure wrap 120 , and the optical fiber cable 100 may not have the pressure wrap 120 .
- Polyolefins such as polyethylene (PE), polypropylene (PP), ethylene ethyl acrylate copolymer (EEA), ethylene vinyl acetate copolymer (EVA), ethylene propylene copolymer (EP), etc. PO) resin, polyvinyl chloride (PVC), and the like can be used.
- the jacket 110 may be formed using a mixture (alloy, mixture) of the above resins.
- additives may be added to the jacket 110 depending on the purpose. Examples of additives include flame retardants, colorants, antidegradants, inorganic fillers, and the like.
- the jacket 110 may have a two-layer structure or other multi-layer structure.
- a protective layer covering the outer cover 110 is provided outside the outer cover 110 (first outer cover) in the illustrated example, and a second outer cover covering the protective layer is provided outside the protective layer.
- the protective layer may be made of, for example, metal or fiber reinforced plastic (FRP).
- jacket 110 may have no protective layer and may simply be formed by multiple layers of jacket.
- the external shape of the jacket 110 according to the present embodiment is substantially circular in cross-sectional view, except for projections 110a, which will be described later. However, the shape of the jacket 110 can be changed as appropriate. As shown in FIG. 1, a plurality of (four in the illustrated example) tensile strength members 130 and a pair of ripcords 140 are arranged on the jacket 110 according to the present embodiment.
- the tensile strength member 130 is a member having a higher spring constant or tensile strength in the longitudinal direction Z than the jacket 110 .
- a metal wire steel wire or the like
- a material in which metal wires are bundled, a glass fiber, a material in which glass fibers are bundled, or the like can be used.
- fiber reinforced plastic (FRP) or the like may be used as the tensile member 130 .
- the tensile member 130 has a role of receiving the tension and protecting the optical fibers 11 when the tension along the longitudinal direction Z is applied to the optical fiber assembly 1 (optical fiber cable 100).
- a plurality of strength members 130 are disposed on the jacket 110 .
- a plurality of tensile members 130 are arranged so as to sandwich the optical fiber assembly 1 in the radial direction.
- the plurality of tensile members 130 may be isotropically arranged on the jacket 110 so as to surround the optical fiber assembly 1 (core).
- the tensile strength member 130 may not be embedded in the jacket.
- strength member 130 may be included in the center or core of optical fiber assembly 1 .
- the optical fiber cable 100 may not have the strength member 130.
- a ripcord 140 is a member used to tear the jacket 110 .
- synthetic fiber (polyester or the like) thread, polypropylene (PP) or nylon cylindrical rod, or the like can be used.
- a ripcord 140 is disposed on the jacket 110 . Note that, in a cross-sectional view, the ripcord 140 may be arranged so that the entire circumference is embedded in the outer cover 110, or may be partially exposed from the outer peripheral surface or the inner peripheral surface of the outer cover 110. may be placed.
- a pair of ripcords 140 according to this embodiment are arranged so as to sandwich the optical fiber assembly 1 in the radial direction.
- each tensile strength member 130 and the position of each ripcord 140 are shifted from each other in the circumferential direction.
- the number of ripcords 140 may be one, or three or more.
- the ripcord 140 may not be embedded in the jacket 110 .
- the ripcord 140 may be tandemly attached to the optical fiber assembly 1 .
- fiber optic cable 100 may not have ripcord 140 .
- a pair of protrusions 110a projecting radially outward from the outer peripheral surface of the outer cover 110 are provided on the outer cover 110 according to the present embodiment.
- the position of the projection 110a in the circumferential direction and the position of the ripcord 140 correspond to each other.
- the protrusion 110 a serves as a mark that makes it easier for the user to recognize the position of the ripcord 140 from the outside of the optical fiber cable 100 .
- the outer cover 110 may not have the projections 110a.
- the protrusions 110a may be replaced by linear coloring on the jacket 110.
- the outer cover 110 does not have to have the projections 110a, and the outer cover 110 may not be colored.
- the optical fiber assembly 1 has a plurality of (12 in the example shown in FIG. 1) optical fiber units U.
- an optical fiber assembly 1 including a plurality of optical fiber units U has a two-layer structure. That is, the multiple optical fiber units U include multiple (nine in the illustrated example) outer layer units Uout and multiple (three in the illustrated example) inner layer units Uin. Each outer layer unit Uout is located on the outer circumference of the optical fiber assembly 1 .
- the plurality of inner layer units Uin are surrounded from the radially outer side by the plurality of outer layer units Uout. That is, the plurality of inner layer units Uin are positioned at the center of the optical fiber assembly 1 in a cross-sectional view.
- the number of inner layer units Uin and the number of outer layer units Uout can be changed as appropriate.
- the optical fiber assembly 1 does not have to have a two-layer structure.
- the optical fiber unit U includes the above-described multiple intermittently fixed tape core wires 10 and a bundle material 20 that bundles the multiple intermittently fixed tape core wires 10 .
- the number of intermittently fixed tape core wires 10 included in one optical fiber unit U may be two or more, and may be six, for example.
- the bundle material 20 is a member capable of bundling a plurality of intermittently fixed tape core wires 10 .
- the bundle material 20 for example, a thread-like, string-like, tape-like member, or the like can be used.
- the intermittently fixed fiber ribbon 10 according to the present embodiment is bundled by winding a bundle material 20 thereon.
- the configuration in which the bundle material 20 bundles the intermittently fixed tape core wires 10 is not limited to the illustrated example.
- the bundle material 20 may be spirally wound around the intermittent fixing ribbon 10 .
- the optical fiber unit U may not have the bundle material 20 .
- the intermittently fixed tape core wires 10 may be bundled by twisting a plurality of the intermittently fixed tape core wires 10 in the optical fiber unit U.
- the optical fiber assembly 1 may not have the optical fiber unit U.
- the plurality of intermittently fixed ribbon core wires 10 may not constitute the optical fiber unit U. That is, the optical fiber assembly 1 may have a structure in which the pressure wrap 120 and the jacket 110 directly cover the intermittently fixed tape cable core 10 .
- the inner layer unit Uin is formed in a fan shape
- the outer layer unit Uout is formed in a square shape.
- the cross-sectional shape of the optical fiber unit U is not limited to the illustrated example, and may be circular, elliptical, or polygonal. Further, even when the optical fiber 11 is bundled with the bundle material 20 , the bundle material 20 is deformed, and the optical fiber 11 appropriately moves to an empty space inside the jacket 110 . Therefore, for example, as shown in FIG. 5, the cross-sectional shape of the optical fiber unit U may be deformed.
- each intermittently fixed ribbon core 10 includes a plurality of (12 in the illustrated example) optical fibers 11 and a plurality of fixing portions 12 .
- Each optical fiber 11 has a core and a cladding.
- a coating layer such as resin is provided on the outer periphery of the clad.
- the plurality of optical fibers 11 in the intermittently fixed tape cable core 10 are arranged in a row.
- the intermittently fixed tape core wire 10 has a tape-like shape.
- the direction in which the optical fibers 11 are arranged in the intermittently fixed fiber ribbon 10 may be referred to as the tape width direction W for ease of explanation.
- Each fixing portion 12 fixes two optical fibers 11 adjacent in the tape width direction W to each other.
- a gap may be provided between two adjacent optical fibers 11 .
- a plurality of fixing portions 12 are intermittently arranged in the longitudinal direction Z in the gap.
- two optical fibers 11 may be continuously fixed in the longitudinal direction Z to form an optical fiber set, and a plurality of optical fiber sets may be intermittently fixed by a plurality of fixing portions 12 .
- the plurality of fixing portions 12 are two-dimensionally intermittently arranged in the longitudinal direction Z and the tape width direction W.
- the arrangement of the fixing portion 12 is not limited to the example in FIG. 3, and can be changed as appropriate.
- the arrangement pattern of the fixed portions 12 may not be a constant pattern in the longitudinal direction Z or the tape width direction W.
- the arrangement pattern of the fixing portions 12 does not have to be a constant pattern between different intermittently fixed tape core wires 10 .
- the material of the fixed part 12 for example, a UV curable resin may be adopted.
- the material of the fixing portion 12 is not particularly limited as long as the adjacent optical fibers can be fixed, and can be changed as appropriate.
- the plurality of optical fiber units U and the plurality of intermittently fixed tape core wires 10 included therein are twisted in an SZ shape. More specifically, the optical fiber assembly 1 has an SZ-twisted structure in which a period 30 including forward-twisted portions 31 and reverse-twisted portions 32 is repeated in the longitudinal direction Z.
- Period 30 is also referred to as twist pitch.
- the longitudinal dimension of period 30 is denoted herein as P.
- a plurality of optical fiber units U and a plurality of intermittently fixed fiber ribbons 10 included therein are twisted together.
- each optical fiber unit U (intermittently fixed tape core wire 10 ) is wound around the central axis O of the optical fiber assembly 1 in each of the forward twisted portion 31 and the reverse twisted portion 32 .
- the direction in which the optical fiber assembly 1 is twisted in the forward twisting portion 31 and the direction in which the optical fiber assembly 1 is twisted in the reverse twisting portion 32 are opposite to each other.
- the twist angle (winding angle) of the inner layer unit Uin and the twist angle (winding angle) of the outer layer unit Uout may be equal or different.
- reversal portion B the position in the longitudinal direction where the forward twisted portion 31 and the reverse twisted portion 32 of the SZ twist structure are switched is referred to as a "reversal portion B".
- Two reversals B appear per period 30 (dimension P in the longitudinal direction) in the SZ twist structure.
- the plurality of intermittently fixed tape core wires 10 are stacked in a collapsed state when viewed in cross section.
- the optical fibers 11 belonging to the same intermittent fixing ribbon 10 are connected by solid lines.
- the “collapsed state” means a state in which at least one intermittent fixing tape core wire 10 included in the optical fiber assembly 1 is curved.
- FIG. 6 is a cross-sectional view of the optical fiber assembly 1 (optical fiber unit U) shown in FIG. 5 plotted on the xy plane.
- each of the six intermittently fixed tape core wires 10 included in the optical fiber unit U is called a first tape to a sixth tape.
- the vector MG is a vector quantity defined for each intermittently fixed tape core wire 10 at each position in the longitudinal direction Z of the optical fiber assembly 1 .
- M be the middle point of the two optical fibers 11 positioned at both ends of the optical fibers 11 forming the intermittent fixing tape core wire 10 in the cross section
- G be the center of gravity of the intermittent fixing tape core wire 10 .
- the vector MG is a vector starting at the midpoint M and ending at the center of gravity G.
- the vector MG defined for the first tape is called vector MG1
- the vector MG defined for the second tape is called vector MG2.
- the vector sum MGtotal is defined as follows.
- the vector sum MGtotal is obtained by synthesizing the vectors MG for all the intermittently fixed tape fibers 10 included in the optical fiber assembly 1 .
- the vector of each intermittently fixed fiber ribbon 10 is represented as MGn.
- a vector sum MGtotal is obtained by synthesizing these vectors MGn.
- the angle formed by the vector sum MGtotal with respect to the Y-axis is called the phase ⁇ of the vector sum.
- phase ⁇ of the vector sum will be described below using a specific example.
- present invention is not limited to the following examples.
- Example 1 An optical fiber assembly 1 having three inner layer units Uin and nine outer layer units Uout was prepared. Each of the inner layer unit Uin and the outer layer unit Uout is obtained by binding six intermittently fixed tape core wires 10 with a bundle material. Each intermittent fixing tape core wire 10 has 12 optical fibers 11 respectively. That is, the optical fiber assembly 1 in Example 1 has a total of 864 optical fibers 11 . The outer diameter of each optical fiber 11 was set to 250 ⁇ m.
- An optical fiber cable 100 was produced by wrapping this optical fiber assembly 1 with a pressure wrap 120 and covering it with a jacket 110 . The outer diameter of the jacket 110 was 18.2 mm, and the inner diameter of the jacket 110 was 11.5 mm. The thickness of the pressure winding 120 was set to 0.2 mm. The outer diameter of the optical fiber assembly 1 was approximately 11.1 mm.
- the above optical fiber cable 100 was cut at equal intervals in the longitudinal direction to obtain a total of nine cross sections. More specifically, the optical fiber cable 100 was cut every P/8. After cutting in this way, the optical fiber assembly 1 was hardened with an epoxy resin, the hardened optical fiber assembly 1 was polished so that the cross section became clear, and an image of the cross section was taken with a microscope. The position of each optical fiber 11 was plotted on the xy plane on the image obtained by the microscope.
- the optical fiber assembly 1 may be fixed with epoxy resin, and then the optical fiber cable 100 may be cut at each position in the longitudinal direction.
- the sheath 110 may be filled with the epoxy resin, for example, by injecting the epoxy resin from one end in the longitudinal direction of the optical fiber cable 100 and sucking the epoxy resin from the other end.
- the SZ twist phase may be the angle at which each optical fiber unit U (intermittently fixed tape cable core 10 ) is wound around the central axis O of the optical fiber assembly 1 .
- the horizontal axis of FIG. 8 represents the position in the longitudinal direction. For example, between “0.1" and "0.2" on the horizontal axis, there is a distance of 0.1P in the longitudinal direction.
- a sine curve as an approximation curve is indicated by a solid line
- X is the position in the longitudinal direction where the sine curve is minimum.
- phase ⁇ of the vector sum based on the plot of the phase ⁇ of the vector sum, the sine curve as an approximate curve is indicated by a dashed line, and Y is the position in the longitudinal direction where the sine curve is minimum.
- An optimum approximation curve (sine curve) can be obtained using, for example, the method of least squares.
- a specific numerical value of the phase ⁇ of the vector sum may be obtained from the recurrence formula of the approximate curve.
- phase ⁇ of the vector sum transitions in the longitudinal direction so as to draw a substantially sine curve is that the cross-sectional shape collapse of the intermittently fixed fiber ribbon 10 follows the SZ twist.
- each intermittently fixed tape core wire 10 changes its position in the circumferential direction so as to swing around the central axis O.
- each of the intermittently fixed ribbon cords 10 is often twisted around its own center of gravity when viewed macroscopically.
- the former is similar to “revolution” and the latter is similar to “rotation”, so they are called “revolution” and “rotation” in this specification.
- each intermittently fixed tape core wire 10 is not continuously twisted in one direction, but the twisting direction is switched at predetermined intervals in the longitudinal direction.
- the position in the longitudinal direction where the twisting direction of the intermittently fixed ribbon core 10 is switched in this manner can be regarded as the position Y shown in FIG.
- the position X in the longitudinal direction is the position of the inverted portion B itself. That is, the normal twisted portion 31 and the reverse twisted portion 32 are switched with the position X as a boundary, and the twisting direction of each intermittently fixed ribbon core 10 is switched with the position Y as a boundary.
- the untwisting force at the reversal portion B increases.
- the force to cancel the twist increases at the portion (switching portion) where the twisting direction is switched.
- the latter also acts as a force to undo the SZ twist.
- the position X and the position Y are shifted in the longitudinal direction. In other words, the point (position X) where the untwisting force caused by "revolution” is maximized and the point (position Y) where the untwisted force caused by "rotation” is maximized are shifted in the longitudinal direction.
- Table 1 shows the result of considering how much the position X and the position Y should deviate.
- the "judgment” shown in Table 1 indicates the magnitude of the risk of untwisting of the SZ twist. If the determination is "C”, it means that untwisting is likely to occur. If the determination is “B”, it means that untwisting is less likely to occur. If the determination is "A”, it means that the risk of untwisting is remarkably small. As shown in Table 1, by setting the distance in the longitudinal direction between the position X and the position Y to P/128 or more, an effect of suppressing untwisting can be expected. Furthermore, by setting the distance in the longitudinal direction between the position X and the position Y to P/64 or more, the effect of suppressing untwisting can be further increased.
- Example 2 In Example 1, each intermittently fixed tape core wire 10 is bundled with a bundle material 20, and the optical fiber assembly 1 is divided into an inner layer and an outer layer.
- the intermittently fixed tape cord 10 was SZ-twisted without being bundled with the bundle material 20 and without being divided into an inner layer and an outer layer.
- the number of the intermittently fixed tape core wires 10 included in the optical fiber assembly 1 was 24, and the number of the optical fibers 11 included in each intermittently fixed tape core wire 10 was 12 pieces.
- the optical fiber assembly 1 of Example 2 has a total of 288 optical fibers 11 .
- a jacket 110 was applied to this optical fiber assembly 1 to prepare an optical fiber cable 100 .
- the outer diameter of the jacket 110 was 11.8 mm
- the inner diameter of the jacket 110 was 7.0 mm.
- the thickness of the pressure winding 120 was set to 0.2 mm.
- the outer diameter of the optical fiber assembly 1 was approximately 6.6 mm.
- FIG. 9 was created by the same method as in the first embodiment. Also in FIG. 9, the position X and the position Y are shifted in the longitudinal direction. Therefore, an effect similar to that of the first embodiment can be obtained.
- the optical fiber assembly 1 includes a plurality of optical fibers 11 and a plurality of fixing members for intermittently fixing the plurality of optical fibers 11 in the longitudinal direction Z.
- a plurality of intermittently fixed fiber ribbons 10 including portions 12 are provided, and a forward twisted portion 31 in which the plurality of intermittently fixed fiber ribbons 10 are twisted together, and the plurality of intermittently fixed fiber ribbons 10 are oriented in a direction opposite to that of the forward twisted portion 31. and an SZ-twisted structure in which the cycle is repeated in the longitudinal direction, and one of the plurality of intermittently fixed tape core wires 10 is intermittently fixed in a cross section perpendicular to the longitudinal direction.
- M be the midpoint of the two optical fibers 11 positioned at both ends of the optical fiber 10
- G be the center of gravity
- MG be a vector starting from the midpoint M and ending at the center of gravity G
- the vector MG is intermittent.
- the vector sum MGtotal is the vector synthesized for all of the fixed ribbon cores 10
- the position X in the longitudinal direction of the reversing portion B where the forward twisting portion 31 and the reverse twisting portion 32 are switched, and the change in the direction of the vector sum MGtotal are switched.
- the position Y in the longitudinal direction of the switching portion is displaced. This makes it possible to reduce the maximum value of the untwisting force acting on the optical fiber assembly 1 as a whole, and suppress the occurrence of a phenomenon in which the SZ twist is canceled (untwisting).
- the plurality of intermittently fixed tape core wires 10 form a plurality of optical fiber units U, and in each of the plurality of optical fiber units U, at least two or more of the plurality of intermittently fixed tape core wires 10 are intermittently
- the fixing tape cable core 10 may be bundled. According to this configuration, concentration of strain on a specific optical fiber unit U can be suppressed, and an increase in the maximum transmission loss of the optical fiber assembly 1 can be suppressed.
- the position X of the reversing portion B and the position Y of the switching portion may be shifted by P/128 or more in the longitudinal direction. According to this configuration, untwisting of the intermittently fixed ribbon cable 10 can be suppressed.
- the optical fiber cable 100 includes the above-described optical fiber assembly 1 and a jacket 110 that accommodates the optical fiber assembly 1 . According to this configuration, it is possible to suppress an increase in the maximum transmission loss of the optical fiber cable 100 .
- the position X in the longitudinal direction of the reversing portion B at which the normal twist portion 31 and the reverse twist portion 32 are switched the position Y in the longitudinal direction of the switching portion at which the change in the direction of the vector sum MGtotal is switched,
- a method for manufacturing an optical fiber assembly 1 or an optical fiber cable 100 is proposed.
- the following technique is used in the manufacturing process of the optical fiber assembly 1 .
- the first method is to change the tension applied to the intermittently fixed tape core wires 10 with time in the process of twisting the intermittently fixed tape core wires 10 in an SZ shape.
- a second technique is to change the rotational speed of battens used when intermittently fixing ribbon cords 10 are twisted in an SZ shape with time.
- a third method is a method of varying the distance between each through-hole and the center of the batten plate for a plurality of through-holes formed in the batten plate and through which the intermittent fixing tape core wires 10 are inserted.
- a fourth technique is to vary the shape and size of each of the plurality of through holes.
- a fifth technique is to adjust the length of the pause time (the rotation of the battens) when reversing the twisting direction.
- a sixth method is a method of arranging optical fiber units having different numbers of cores adjacent to each other.
- the vector sum MGtotal can also be changed, and eventually the position Y shown in FIGS. 8 and 9 can be controlled. Since the position X is exactly the position of the reversal portion B of the SZ twist, the position Y should be shifted with respect to this position X.
- the fifth technique is considered effective for shifting the position Y from the position X. For example, it is possible to adjust the temporary stop time of the battens when forming the reversal area so that the position X and the position Y have an appropriate amount of deviation.
- the pause times in the two reversed regions may be different from each other.
- first to sixth methods are examples, and other methods may be used as long as the optical fiber assembly 1 that satisfies the above relationship can be manufactured. Also, some of the methods described above may be used in combination.
- the optical fiber assembly 1 may contain inclusions.
- the structures other than the optical fiber assembly 1, such as the jacket 110, the pressure wrap 120, the tension member 130, the ripcord 140, etc., in the above embodiment are all examples, and can be changed as appropriate.
- the optical fiber assembly 1 according to this embodiment may be applied to a loose tube cable or the like.
- the above configuration other than the optical fiber assembly 1 may be omitted. In other words, the optical fiber assembly 1 does not have to constitute the optical fiber cable 100 .
- the twist angle (winding angle) of the inner layer unit Uin and the twist angle (winding angle) of the outer layer unit Uout are equal, and the cycle (twist pitch) of the inner layer unit Uin and the outer layer unit Uin are equal.
- the cycles (twisting pitches) of the units Uout may be the same, and the positions in the longitudinal direction Z of the reversal portions B of the forward twisted portion 31 and the reverse twisted portion 32 of the inner layer unit Uin and the outer layer unit Uout may be the same.
- the configuration is not limited to this, and for example, the twist angle, the twist pitch, or the position of the reversal portion B may be different between the inner layer unit Uin and the outer layer unit Uout.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Mechanical Coupling Of Light Guides (AREA)
- Surface Treatment Of Glass Fibres Or Filaments (AREA)
- Manufacture, Treatment Of Glass Fibers (AREA)
Abstract
This optical fiber assembly comprises a plurality of optical fibers, and a plurality of intermittently fixed optical fiber ribbons including a plurality of fixing portions for intermittently fixing the plurality of optical fibers in the longitudinal direction thereof. The position in the longitudinal direction of a reversal portion and the position in the longitudinal direction of a switching portion in which the change of direction of a vector sum is switched are displaced from each other.
Description
本発明は、光ファイバ集合体、光ファイバケーブル、および光ファイバ集合体の製造方法に関する。
本願は、2021年12月27日に、日本に出願された特願2021-212159号に基づき優先権を主張し、その内容をここに援用する。 The present invention relates to an optical fiber assembly, an optical fiber cable, and a method for manufacturing an optical fiber assembly.
This application claims priority based on Japanese Patent Application No. 2021-212159 filed in Japan on December 27, 2021, the contents of which are incorporated herein.
本願は、2021年12月27日に、日本に出願された特願2021-212159号に基づき優先権を主張し、その内容をここに援用する。 The present invention relates to an optical fiber assembly, an optical fiber cable, and a method for manufacturing an optical fiber assembly.
This application claims priority based on Japanese Patent Application No. 2021-212159 filed in Japan on December 27, 2021, the contents of which are incorporated herein.
特許文献1には、SZ撚りした複数の第1光ファイバテープ心線上に一方向撚りで複数の第2光ファイバテープ心線を撚ることで、SZの撚り戻りを防止する技術が開示されている。
Patent Document 1 discloses a technique for preventing untwisting of SZ by unidirectionally twisting a plurality of second optical fiber ribbons onto a plurality of SZ-twisted first optical fiber ribbons. there is
本願発明者らが鋭意検討したところ、複数の光ファイバテープ心線をSZ撚りした場合に、光ファイバテープ心線は自身の重心付近を中心として捻回され、その捻回方向が長手方向において切り替わることがわかった。さらに、その捻回方向の切り替わりの位置において、捻回を解消しようとする力が大きくなり、これが光ファイバテープ心線同士のSZ撚りを戻そうとする現象(いわゆる撚り戻り)を引き起こす可能性があることが判った。撚り戻りが生じると、光ファイバケーブルが曲げられたときの伝送損失の増大につながる。
As a result of intensive studies by the inventors of the present application, when a plurality of optical fiber tape core wires are SZ-twisted, the optical fiber tape core wires are twisted around their center of gravity, and the twisting direction is switched in the longitudinal direction. I understand. Furthermore, at the position where the twist direction is switched, the force that tries to cancel the twist increases, and this may cause a phenomenon (so-called untwisting) that tries to untwist the SZ strands of the optical fiber tape core wires. It turns out there is something. Untwisting leads to increased transmission loss when the optical fiber cable is bent.
本発明はこのような事情を考慮してなされ、撚り戻りを抑制することが可能な光ファイバ集合体および光ファイバケーブルを提供することを目的とする。
The present invention has been made in consideration of such circumstances, and an object of the present invention is to provide an optical fiber assembly and an optical fiber cable capable of suppressing untwisting.
上記課題を解決するために、本発明の一態様に係る光ファイバ集合体は、複数の光ファイバおよび前記複数の光ファイバを長手方向において間欠的に固定する複数の固定部を含む複数の間欠固定テープ心線を備え、前記複数の間欠固定テープ心線が撚り合わされた順撚り部と、前記複数の間欠固定テープ心線が前記順撚り部とは逆向きに撚り合わされた逆撚り部と、を含む周期が前記長手方向において繰り返されるSZ撚り構造を有し、前記長手方向に垂直な断面において、前記複数の間欠固定テープ心線のうちの1つの間欠固定テープ心線における、両端に位置する2つの前記光ファイバの中点をMとし、重心をGとし、前記中点Mを始点とし前記重心Gを終点とするベクトルをMGとし、前記ベクトルMGを前記複数の間欠固定テープ心線の全てについて合成したベクトルをベクトル和とするとき、前記順撚り部および前記逆撚り部が切り替わる反転部の前記長手方向における位置と、前記ベクトル和の向きの変化が切り替わる切替部の前記長手方向における位置とがずれている。
In order to solve the above-described problems, an optical fiber assembly according to one aspect of the present invention provides a plurality of intermittently fixed optical fibers including a plurality of optical fibers and a plurality of fixing portions for intermittently fixing the plurality of optical fibers in a longitudinal direction. A normal twisted portion in which the plurality of intermittently fixed tape fibers are twisted together, and a reverse twisted portion in which the plurality of intermittently fixed tape fibers are twisted in a direction opposite to the normal twisted portion. 2 located at both ends of one of the plurality of intermittently fixed tape core wires in a cross section perpendicular to the longitudinal direction, and having an SZ twist structure in which a period including Let M be the midpoint of the two optical fibers, G be the center of gravity, MG be a vector starting from the midpoint M and ending at the center of gravity G, and let MG be the vector MG for all of the plurality of intermittently fixed tape core wires. When the synthesized vector is a vector sum, the position in the longitudinal direction of the reversal portion where the forward twist portion and the reverse twist portion are switched, and the position in the longitudinal direction of the switching portion where the change in direction of the vector sum is switched. out of alignment.
また、本発明の一態様に係る光ファイバ集合体の製造方法は、複数の光ファイバおよび前記複数の光ファイバを長手方向において間欠的に固定する複数の固定部を含む複数の間欠固定テープ心線を備え、前記複数の間欠固定テープ心線が撚り合わされた順撚り部と、前記複数の間欠固定テープ心線が前記順撚り部とは逆向きに撚り合わされた逆撚り部と、を含む周期が前記長手方向において繰り返されるSZ撚り構造を有する光ファイバ集合体を製造する光ファイバ集合体の製造方法であって、前記長手方向に垂直な断面において、前記複数の間欠固定テープ心線のうちの1つの間欠固定テープ心線における、両端に位置する2つの前記光ファイバの中点をMとし、重心をGとし、前記中点Mを始点とし前記重心Gを終点とするベクトルをMGとし、前記ベクトルMGを前記複数の間欠固定テープ心線の全てについて合成したベクトルをベクトル和とするとき、前記順撚り部および前記逆撚り部が切り替わる反転部の前記長手方向における位置と、前記ベクトル和の向きの変化が切り替わる切替部の前記長手方向における位置と、をずらす。
In addition, a method for manufacturing an optical fiber assembly according to an aspect of the present invention includes a plurality of intermittently fixed tape core wires including a plurality of optical fibers and a plurality of fixing portions for intermittently fixing the plurality of optical fibers in a longitudinal direction. and a period including a forward twisted portion in which the plurality of intermittently fixed tape core wires are twisted together and a reverse twisted portion in which the plurality of intermittently fixed tape core wires are twisted in a direction opposite to the normal twisted portion An optical fiber assembly manufacturing method for manufacturing an optical fiber assembly having an SZ twist structure repeated in the longitudinal direction, wherein one of the plurality of intermittently fixed tape core wires is observed in a cross section perpendicular to the longitudinal direction. Let M be the midpoint of the two optical fibers located at both ends of one intermittently fixed tape core wire, let G be the center of gravity, let MG be a vector starting from the midpoint M and ending at the center of gravity G, and the vector When MG is a sum of vectors obtained by synthesizing all of the plurality of intermittently fixed tape core wires, the position in the longitudinal direction of the reversal portion where the forward twist portion and the reverse twist portion are switched, and the direction of the vector sum. The position in the longitudinal direction of the switching portion where the change is switched is shifted.
本発明の上記態様によれば、撚り戻りを抑制することが可能な光ファイバ集合体および光ファイバケーブルを提供することができる。
According to the above aspect of the present invention, it is possible to provide an optical fiber assembly and an optical fiber cable capable of suppressing untwisting.
以下、本発明の実施形態に係る光ファイバ集合体1および光ファイバケーブル100について図面に基づいて説明する。
図1に示すように、本実施形態に係る光ファイバケーブル100は、複数の光ファイバユニットUを含む光ファイバ集合体1を備える。図2に示すように、各光ファイバユニットUは、複数の間欠固定テープ心線10を有する。言い換えれば、複数の間欠固定テープ心線10は、複数の光ファイバユニットUを構成している。また、各間欠固定テープ心線10は、複数の光ファイバ11を含む。言い換えれば、複数の光ファイバ11は、複数の間欠固定テープ心線10を構成している。各光ファイバ11の外径は、例えば250μmである。ただし、光ファイバ11の外径は200μmであってもよいし、その他の値であってもよい。 Anoptical fiber assembly 1 and an optical fiber cable 100 according to embodiments of the present invention will be described below with reference to the drawings.
As shown in FIG. 1, theoptical fiber cable 100 according to this embodiment includes an optical fiber aggregate 1 including a plurality of optical fiber units U. As shown in FIG. As shown in FIG. 2, each optical fiber unit U has a plurality of intermittently fixed fiber ribbons 10 . In other words, the plurality of intermittently fixed fiber ribbons 10 constitute the plurality of optical fiber units U. As shown in FIG. Also, each intermittent fixing tape core wire 10 includes a plurality of optical fibers 11 . In other words, the plurality of optical fibers 11 constitute the plurality of intermittently fixed tape core wires 10 . The outer diameter of each optical fiber 11 is, for example, 250 μm. However, the outer diameter of the optical fiber 11 may be 200 μm, or may be another value.
図1に示すように、本実施形態に係る光ファイバケーブル100は、複数の光ファイバユニットUを含む光ファイバ集合体1を備える。図2に示すように、各光ファイバユニットUは、複数の間欠固定テープ心線10を有する。言い換えれば、複数の間欠固定テープ心線10は、複数の光ファイバユニットUを構成している。また、各間欠固定テープ心線10は、複数の光ファイバ11を含む。言い換えれば、複数の光ファイバ11は、複数の間欠固定テープ心線10を構成している。各光ファイバ11の外径は、例えば250μmである。ただし、光ファイバ11の外径は200μmであってもよいし、その他の値であってもよい。 An
As shown in FIG. 1, the
(方向定義)
ここで、本実施形態では、光ファイバ集合体1(光ファイバケーブル100)の長手方向を単に長手方向Zと称する。長手方向Zは、光ファイバ集合体1(光ファイバケーブル100)の中心軸線Oと平行な方向でもある。長手方向Zに沿う一つの向きを、+Zの向きまたは前方と称する。+Zの向きとは反対の向きを、-Zの向きまたは後方と称する。長手方向Zに垂直な断面を、横断面と称する。横断面を長手方向Zから見ることを横断面視と称する。光ファイバ集合体1(光ファイバケーブル100)の中心軸線Oに直交する方向を、径方向と称する。径方向に沿って、中心軸線Oに接近する向きを、径方向内側と称し、中心軸線Oから離反する向きを、径方向外側と称する。長手方向Zから見て、中心軸線Oまわりに周回する方向を、周方向と称する。 (direction definition)
Here, in this embodiment, the longitudinal direction of the optical fiber assembly 1 (optical fiber cable 100) is simply referred to as the longitudinal direction Z. As shown in FIG. The longitudinal direction Z is also a direction parallel to the central axis O of the optical fiber assembly 1 (optical fiber cable 100). One orientation along the longitudinal direction Z is referred to as the +Z orientation or forward. The orientation opposite to the +Z orientation is referred to as the -Z orientation or back. A section perpendicular to the longitudinal direction Z is called a transverse section. Viewing a cross section from the longitudinal direction Z is called a cross section view. A direction perpendicular to the central axis O of the optical fiber assembly 1 (optical fiber cable 100) is referred to as a radial direction. Along the radial direction, the direction approaching the central axis O is referred to as the radial inner side, and the direction away from the central axis O is referred to as the radial outer side. The direction of rotation around the central axis O when viewed from the longitudinal direction Z is called the circumferential direction.
ここで、本実施形態では、光ファイバ集合体1(光ファイバケーブル100)の長手方向を単に長手方向Zと称する。長手方向Zは、光ファイバ集合体1(光ファイバケーブル100)の中心軸線Oと平行な方向でもある。長手方向Zに沿う一つの向きを、+Zの向きまたは前方と称する。+Zの向きとは反対の向きを、-Zの向きまたは後方と称する。長手方向Zに垂直な断面を、横断面と称する。横断面を長手方向Zから見ることを横断面視と称する。光ファイバ集合体1(光ファイバケーブル100)の中心軸線Oに直交する方向を、径方向と称する。径方向に沿って、中心軸線Oに接近する向きを、径方向内側と称し、中心軸線Oから離反する向きを、径方向外側と称する。長手方向Zから見て、中心軸線Oまわりに周回する方向を、周方向と称する。 (direction definition)
Here, in this embodiment, the longitudinal direction of the optical fiber assembly 1 (optical fiber cable 100) is simply referred to as the longitudinal direction Z. As shown in FIG. The longitudinal direction Z is also a direction parallel to the central axis O of the optical fiber assembly 1 (optical fiber cable 100). One orientation along the longitudinal direction Z is referred to as the +Z orientation or forward. The orientation opposite to the +Z orientation is referred to as the -Z orientation or back. A section perpendicular to the longitudinal direction Z is called a transverse section. Viewing a cross section from the longitudinal direction Z is called a cross section view. A direction perpendicular to the central axis O of the optical fiber assembly 1 (optical fiber cable 100) is referred to as a radial direction. Along the radial direction, the direction approaching the central axis O is referred to as the radial inner side, and the direction away from the central axis O is referred to as the radial outer side. The direction of rotation around the central axis O when viewed from the longitudinal direction Z is called the circumferential direction.
図1に示すように、本実施形態に係る光ファイバケーブル100は、いわゆるスロットレス型の光ケーブルである。すなわち、本実施形態に係る光ファイバケーブル100は、光ファイバ11(間欠固定テープ心線10)を収容する溝(スロット溝)が形成されるスロットロッドを有さない。ただし、光ファイバケーブル100はスロットロッドを有するスロット型の光ケーブルであってもよい。この場合、本実施形態に係る光ファイバ集合体1は、光ファイバケーブル100のスロット溝に収容されていてもよい。
As shown in FIG. 1, the optical fiber cable 100 according to this embodiment is a so-called slotless optical cable. That is, the optical fiber cable 100 according to this embodiment does not have a slot rod in which a groove (slot groove) for accommodating the optical fiber 11 (the intermittent fixing tape core wire 10) is formed. However, the optical fiber cable 100 may be a slot type optical cable having a slot rod. In this case, the optical fiber assembly 1 according to this embodiment may be accommodated in the slot groove of the optical fiber cable 100 .
図1に示すように、本実施形態に係る光ファイバケーブル100は、上述した光ファイバ集合体1と、光ファイバ集合体1を覆う押さえ巻き120と、押さえ巻き120を介して光ファイバ集合体1を被覆して収容する外被110と、を備える。つまり、光ファイバ集合体1は、光ファイバケーブル100のうち外被110や押さえ巻き120等を除いた部分とみなすことができる。また、光ファイバ集合体1および押さえ巻き120を総称して、コアと称する場合がある。
As shown in FIG. 1, the optical fiber cable 100 according to the present embodiment includes the optical fiber assembly 1 described above, a pressure wrap 120 covering the optical fiber assembly 1, and the optical fiber assembly 1 via the pressure wrap 120. and a jacket 110 that covers and houses the . In other words, the optical fiber assembly 1 can be regarded as a portion of the optical fiber cable 100 excluding the jacket 110, the pressure wrap 120, and the like. Also, the optical fiber assembly 1 and the pressure winding 120 may be collectively referred to as a core.
押さえ巻き120は、テープ状の部材であり、複数の光ファイバユニットUを束ねている。光ファイバユニットUを束ねることができれば押さえ巻き120の種類は特に限定されないが、押さえ巻き120としては、例えば不織布やポリエステルテープ等が採用されてもよい。押さえ巻き120は、吸水性を有していてもよい。押さえ巻き120は、光ファイバ集合体1に対して例えば縦添え巻きや横巻きされていてもよい。
例えば、押さえ巻き120が長手方向Zに延びるテープである場合、押さえ巻き120は光ファイバユニットUを包む円筒状に形成されていてもよい。この場合、押さえ巻き120の周方向における両端部は、互いに重ねられており、ラップ部を形成していてもよい。また、押さえ巻き120はテープ状ではなく、光ファイバユニットUを包むチューブ形成体であってもよい。長手方向Zにおいて、光ファイバユニットUが押さえ巻き120により包まれていることで、光ファイバ11を保護することができる。
なお、長手方向Zにおいて押さえ巻き120により光ファイバ11が包まれていない箇所があってもよし、光ファイバケーブル100は押さえ巻き120を有していなくてもよい。 Thepressure wrap 120 is a tape-shaped member that bundles the plurality of optical fiber units U. As shown in FIG. The type of the pressing wrap 120 is not particularly limited as long as the optical fiber units U can be bundled. The press wrap 120 may have water absorbency. The pressure winding 120 may be wound vertically or horizontally with respect to the optical fiber assembly 1, for example.
For example, when thepressure wrap 120 is a tape extending in the longitudinal direction Z, the pressure wrap 120 may be formed in a cylindrical shape that wraps the optical fiber unit U. In this case, both ends in the circumferential direction of the pressure winding 120 may overlap each other to form a wrap portion. Also, the pressing wrap 120 may be a tube forming body that wraps the optical fiber unit U instead of the tape. By wrapping the optical fiber unit U with the pressing wrap 120 in the longitudinal direction Z, the optical fiber 11 can be protected.
Note that there may be a portion in the longitudinal direction Z where theoptical fiber 11 is not wrapped by the pressure wrap 120 , and the optical fiber cable 100 may not have the pressure wrap 120 .
例えば、押さえ巻き120が長手方向Zに延びるテープである場合、押さえ巻き120は光ファイバユニットUを包む円筒状に形成されていてもよい。この場合、押さえ巻き120の周方向における両端部は、互いに重ねられており、ラップ部を形成していてもよい。また、押さえ巻き120はテープ状ではなく、光ファイバユニットUを包むチューブ形成体であってもよい。長手方向Zにおいて、光ファイバユニットUが押さえ巻き120により包まれていることで、光ファイバ11を保護することができる。
なお、長手方向Zにおいて押さえ巻き120により光ファイバ11が包まれていない箇所があってもよし、光ファイバケーブル100は押さえ巻き120を有していなくてもよい。 The
For example, when the
Note that there may be a portion in the longitudinal direction Z where the
外被110の材質としては、ポリエチレン(PE)、ポリプロピレン(PP)、エチレンエチルアクリレート共重合体(EEA)、エチレン酢酸ビニル共重合体(EVA)、エチレンプロピレン共重合体(EP)等のポリオレフィン(PO)樹脂、ポリ塩化ビニル(PVC)等を用いることができる。また、上記の樹脂の混和物(アロイ、ミクスチャー)を用いて外被110が形成されていてもよい。また、目的に応じて、外被110に対して種々の添加剤が添加されていてもよい。添加剤の例としては、難燃剤、着色剤、劣化防止剤、無機フィラー等が挙げられる。また、外被110は、2層構造、またはその他の複層構造を有していてもよい。例えば、図示の例における外被110(第1の外被)の外側に外被110を覆う保護層が設けられ、当該保護層の外側に当該保護層を覆う第2の外被が設けられていてもよい。保護層は、例えば、金属製であってもよいし、繊維強化プラスチック(FRP)製であってもよい。あるいは、外被110は、保護層を有さず、単に複数層の外被によって形成されていてもよい。
Polyolefins such as polyethylene (PE), polypropylene (PP), ethylene ethyl acrylate copolymer (EEA), ethylene vinyl acetate copolymer (EVA), ethylene propylene copolymer (EP), etc. PO) resin, polyvinyl chloride (PVC), and the like can be used. Moreover, the jacket 110 may be formed using a mixture (alloy, mixture) of the above resins. Moreover, various additives may be added to the jacket 110 depending on the purpose. Examples of additives include flame retardants, colorants, antidegradants, inorganic fillers, and the like. Also, the jacket 110 may have a two-layer structure or other multi-layer structure. For example, a protective layer covering the outer cover 110 is provided outside the outer cover 110 (first outer cover) in the illustrated example, and a second outer cover covering the protective layer is provided outside the protective layer. may The protective layer may be made of, for example, metal or fiber reinforced plastic (FRP). Alternatively, jacket 110 may have no protective layer and may simply be formed by multiple layers of jacket.
本実施形態に係る外被110の外形は、後述する突起110aを除いて、横断面視において略円形状である。ただし、外被110の形状は適宜変更可能である。図1に示すように、本実施形態に係る外被110には、複数(図示の例において4つ)の抗張力体130および一対のリップコード140が配置されている。
The external shape of the jacket 110 according to the present embodiment is substantially circular in cross-sectional view, except for projections 110a, which will be described later. However, the shape of the jacket 110 can be changed as appropriate. As shown in FIG. 1, a plurality of (four in the illustrated example) tensile strength members 130 and a pair of ripcords 140 are arranged on the jacket 110 according to the present embodiment.
抗張力体130は、外被110よりも長手方向Zにおけるばね定数または引張強度が高い部材である。抗張力体130の材質としては、例えば、金属線(鋼線等)、金属線を束ねた材料、ガラス繊維、またはガラス繊維を束ねた材料等を用いることができる。あるいは、抗張力体130として繊維強化プラスチック(FRP)等を用いてもよい。抗張力体130は、光ファイバ集合体1(光ファイバケーブル100)に対して長手方向Zに沿った張力が印加された場合に、当該張力を受けて光ファイバ11を保護する役割を有する。
複数の抗張力体130は、外被110に配置されている。本実施形態に係る複数の抗張力体130は、径方向において光ファイバ集合体1を間に挟むように配されている。ただし、複数の抗張力体130は、光ファイバ集合体1(コア)を囲むよう、等方的に外被110に配置されていてもよい。なお、抗張力体130は外被に埋設されていなくてもよい。例えば、抗張力体130は光ファイバ集合体1の中心やコアに含まれていてもよい。あるいは、光ファイバケーブル100の用途によっては、光ファイバケーブル100は抗張力体130を有していなくてもよい。 Thetensile strength member 130 is a member having a higher spring constant or tensile strength in the longitudinal direction Z than the jacket 110 . As the material of the tensile strength member 130, for example, a metal wire (steel wire or the like), a material in which metal wires are bundled, a glass fiber, a material in which glass fibers are bundled, or the like can be used. Alternatively, fiber reinforced plastic (FRP) or the like may be used as the tensile member 130 . The tensile member 130 has a role of receiving the tension and protecting the optical fibers 11 when the tension along the longitudinal direction Z is applied to the optical fiber assembly 1 (optical fiber cable 100).
A plurality ofstrength members 130 are disposed on the jacket 110 . A plurality of tensile members 130 according to this embodiment are arranged so as to sandwich the optical fiber assembly 1 in the radial direction. However, the plurality of tensile members 130 may be isotropically arranged on the jacket 110 so as to surround the optical fiber assembly 1 (core). Note that the tensile strength member 130 may not be embedded in the jacket. For example, strength member 130 may be included in the center or core of optical fiber assembly 1 . Alternatively, depending on the application of the optical fiber cable 100, the optical fiber cable 100 may not have the strength member 130. FIG.
複数の抗張力体130は、外被110に配置されている。本実施形態に係る複数の抗張力体130は、径方向において光ファイバ集合体1を間に挟むように配されている。ただし、複数の抗張力体130は、光ファイバ集合体1(コア)を囲むよう、等方的に外被110に配置されていてもよい。なお、抗張力体130は外被に埋設されていなくてもよい。例えば、抗張力体130は光ファイバ集合体1の中心やコアに含まれていてもよい。あるいは、光ファイバケーブル100の用途によっては、光ファイバケーブル100は抗張力体130を有していなくてもよい。 The
A plurality of
リップコード140は、外被110を引裂くために用いられる部材である。リップコード140の材質としては、例えば合成繊維(ポリエステル等)の糸やポリプロピレン(PP)やナイロン製の円柱状のロッド等を用いることができる。
リップコード140は、外被110に配置されている。なお、横断面視において、リップコード140は外被110内に全周が埋設されるように配置されていてもよいし、外被110の外周面または内周面から一部が露出するように配置されていてもよい。本実施形態に係る一対のリップコード140は、径方向において光ファイバ集合体1を間に挟むように配されている。また、周方向において、各抗張力体130の位置と各リップコード140の位置とは、互いにずれている。なお、リップコード140の数は1つであってもよいし、3つ以上であってもよい。また、リップコード140は外被110に埋設されていなくてもよい。例えば、リップコード140は光ファイバ集合体1に縦添えされていてもよい。あるいは、光ファイバケーブル100はリップコード140を有していなくてもよい。 Aripcord 140 is a member used to tear the jacket 110 . As a material of the rip cord 140, for example, synthetic fiber (polyester or the like) thread, polypropylene (PP) or nylon cylindrical rod, or the like can be used.
Aripcord 140 is disposed on the jacket 110 . Note that, in a cross-sectional view, the ripcord 140 may be arranged so that the entire circumference is embedded in the outer cover 110, or may be partially exposed from the outer peripheral surface or the inner peripheral surface of the outer cover 110. may be placed. A pair of ripcords 140 according to this embodiment are arranged so as to sandwich the optical fiber assembly 1 in the radial direction. In addition, the position of each tensile strength member 130 and the position of each ripcord 140 are shifted from each other in the circumferential direction. Note that the number of ripcords 140 may be one, or three or more. Also, the ripcord 140 may not be embedded in the jacket 110 . For example, the ripcord 140 may be tandemly attached to the optical fiber assembly 1 . Alternatively, fiber optic cable 100 may not have ripcord 140 .
リップコード140は、外被110に配置されている。なお、横断面視において、リップコード140は外被110内に全周が埋設されるように配置されていてもよいし、外被110の外周面または内周面から一部が露出するように配置されていてもよい。本実施形態に係る一対のリップコード140は、径方向において光ファイバ集合体1を間に挟むように配されている。また、周方向において、各抗張力体130の位置と各リップコード140の位置とは、互いにずれている。なお、リップコード140の数は1つであってもよいし、3つ以上であってもよい。また、リップコード140は外被110に埋設されていなくてもよい。例えば、リップコード140は光ファイバ集合体1に縦添えされていてもよい。あるいは、光ファイバケーブル100はリップコード140を有していなくてもよい。 A
A
本実施形態に係る外被110には、外被110の外周面から径方向外側に向けて突出する一対の突起110aが設けられている。周方向における突起110aの位置と、リップコード140の位置とは、互いに対応している。突起110aは、使用者が光ファイバケーブル100の外部からリップコード140の位置を認識しやすくする目印の役割を有する。なお、外被110は突起110aを有していなくてもよい。この場合、突起110aを、外被110に対する線状の着色で代用してもよい。ただし、外被110が突起110aを有さず、かつ、外被110に着色が施されていなくてもよい。
A pair of protrusions 110a projecting radially outward from the outer peripheral surface of the outer cover 110 are provided on the outer cover 110 according to the present embodiment. The position of the projection 110a in the circumferential direction and the position of the ripcord 140 correspond to each other. The protrusion 110 a serves as a mark that makes it easier for the user to recognize the position of the ripcord 140 from the outside of the optical fiber cable 100 . Note that the outer cover 110 may not have the projections 110a. In this case, the protrusions 110a may be replaced by linear coloring on the jacket 110. FIG. However, the outer cover 110 does not have to have the projections 110a, and the outer cover 110 may not be colored.
上述したように、光ファイバ集合体1は、複数(図1に示す例において12個)の光ファイバユニットUを有する。図1に示すように、本実施形態に係る複数の光ファイバユニットUを含む光ファイバ集合体1は、2層構造を有している。つまり、複数の光ファイバユニットUは、複数(図示の例において9つ)の外層ユニットUoutおよび複数(図示の例において3つ)の内層ユニットUinを含む。各外層ユニットUoutは、光ファイバ集合体1の外周に位置する。複数の内層ユニットUinは、複数の外層ユニットUoutによって径方向外側から取り囲まれている。つまり、複数の内層ユニットUinは、横断面視において光ファイバ集合体1の中心部に位置する。ただし、内層ユニットUinの数および外層ユニットUoutの数は適宜変更可能である。また、光ファイバ集合体1は2層構造を有していなくてもよい。
As described above, the optical fiber assembly 1 has a plurality of (12 in the example shown in FIG. 1) optical fiber units U. As shown in FIG. 1, an optical fiber assembly 1 including a plurality of optical fiber units U according to this embodiment has a two-layer structure. That is, the multiple optical fiber units U include multiple (nine in the illustrated example) outer layer units Uout and multiple (three in the illustrated example) inner layer units Uin. Each outer layer unit Uout is located on the outer circumference of the optical fiber assembly 1 . The plurality of inner layer units Uin are surrounded from the radially outer side by the plurality of outer layer units Uout. That is, the plurality of inner layer units Uin are positioned at the center of the optical fiber assembly 1 in a cross-sectional view. However, the number of inner layer units Uin and the number of outer layer units Uout can be changed as appropriate. Also, the optical fiber assembly 1 does not have to have a two-layer structure.
図2に示すように、本実施形態に係る光ファイバユニットUは、上述した複数の間欠固定テープ心線10と、複数の間欠固定テープ心線10を束ねるバンドル材20と、を備える。1つの光ファイバユニットUに含まれる間欠固定テープ心線10の数は、2つ以上であればよく、例えば6つ等であってもよい。
As shown in FIG. 2, the optical fiber unit U according to the present embodiment includes the above-described multiple intermittently fixed tape core wires 10 and a bundle material 20 that bundles the multiple intermittently fixed tape core wires 10 . The number of intermittently fixed tape core wires 10 included in one optical fiber unit U may be two or more, and may be six, for example.
バンドル材20は、複数の間欠固定テープ心線10を結束可能な部材である。バンドル材20としては、例えば、糸状、紐状、またはテープ状の部材等を採用できる。本実施形態に係る間欠固定テープ心線10は、バンドル材20が巻き付けられることによって束ねられている。ただし、バンドル材20が間欠固定テープ心線10を束ねる構成は図示の例に限られない。例えば、バンドル材20は間欠固定テープ心線10に対して螺旋状に巻き付けられていてもよい。あるいは、光ファイバユニットUはバンドル材20を有していなくてもよい。この場合、例えば、光ファイバユニットUにおいて複数の間欠固定テープ心線10が撚り合わされることで間欠固定テープ心線10が束ねられていてもよい。
The bundle material 20 is a member capable of bundling a plurality of intermittently fixed tape core wires 10 . As the bundle material 20, for example, a thread-like, string-like, tape-like member, or the like can be used. The intermittently fixed fiber ribbon 10 according to the present embodiment is bundled by winding a bundle material 20 thereon. However, the configuration in which the bundle material 20 bundles the intermittently fixed tape core wires 10 is not limited to the illustrated example. For example, the bundle material 20 may be spirally wound around the intermittent fixing ribbon 10 . Alternatively, the optical fiber unit U may not have the bundle material 20 . In this case, for example, the intermittently fixed tape core wires 10 may be bundled by twisting a plurality of the intermittently fixed tape core wires 10 in the optical fiber unit U.
なお、光ファイバ集合体1は、光ファイバユニットUを有していなくてもよい。言い換えれば、複数の間欠固定テープ心線10は、光ファイバユニットUを構成していなくてもよい。つまり、光ファイバ集合体1は、押さえ巻き120や外被110が直接的に間欠固定テープ心線10を覆う構造を有していてもよい。
また、図1に示す例では、内層ユニットUinは扇形に形成され、外層ユニットUoutは四角形に形成されている。図示の例に限られず、光ファイバユニットUの断面形状が円形、楕円形、若しくは多角形となっていてもよい。また、光ファイバ11は、バンドル材20で束ねられた状態であっても、バンドル材20を変形させながら外被110の内部において空いている空間に適宜移動する。このため、例えば図5に示すように、光ファイバユニットUの断面形状が崩れていてもよい。 Theoptical fiber assembly 1 may not have the optical fiber unit U. In other words, the plurality of intermittently fixed ribbon core wires 10 may not constitute the optical fiber unit U. That is, the optical fiber assembly 1 may have a structure in which the pressure wrap 120 and the jacket 110 directly cover the intermittently fixed tape cable core 10 .
Further, in the example shown in FIG. 1, the inner layer unit Uin is formed in a fan shape, and the outer layer unit Uout is formed in a square shape. The cross-sectional shape of the optical fiber unit U is not limited to the illustrated example, and may be circular, elliptical, or polygonal. Further, even when theoptical fiber 11 is bundled with the bundle material 20 , the bundle material 20 is deformed, and the optical fiber 11 appropriately moves to an empty space inside the jacket 110 . Therefore, for example, as shown in FIG. 5, the cross-sectional shape of the optical fiber unit U may be deformed.
また、図1に示す例では、内層ユニットUinは扇形に形成され、外層ユニットUoutは四角形に形成されている。図示の例に限られず、光ファイバユニットUの断面形状が円形、楕円形、若しくは多角形となっていてもよい。また、光ファイバ11は、バンドル材20で束ねられた状態であっても、バンドル材20を変形させながら外被110の内部において空いている空間に適宜移動する。このため、例えば図5に示すように、光ファイバユニットUの断面形状が崩れていてもよい。 The
Further, in the example shown in FIG. 1, the inner layer unit Uin is formed in a fan shape, and the outer layer unit Uout is formed in a square shape. The cross-sectional shape of the optical fiber unit U is not limited to the illustrated example, and may be circular, elliptical, or polygonal. Further, even when the
図3に示すように、各間欠固定テープ心線10は、複数(図示の例において12個)の光ファイバ11および複数の固定部12を含む。各光ファイバ11は、コアおよびクラッドを有する。クラッドの外周には、例えば樹脂等の被覆層が設けられている。光ファイバ集合体1を構成する前の状態では、間欠固定テープ心線10における複数の光ファイバ11は一列に並んでいる。これにより、間欠固定テープ心線10はテープ状の形状を有する。以下、説明を容易とするために、間欠固定テープ心線10において光ファイバ11が並ぶ方向をテープ幅方向Wと称する場合がある。
As shown in FIG. 3 , each intermittently fixed ribbon core 10 includes a plurality of (12 in the illustrated example) optical fibers 11 and a plurality of fixing portions 12 . Each optical fiber 11 has a core and a cladding. A coating layer such as resin is provided on the outer periphery of the clad. Before the optical fiber assembly 1 is formed, the plurality of optical fibers 11 in the intermittently fixed tape cable core 10 are arranged in a row. Thereby, the intermittently fixed tape core wire 10 has a tape-like shape. Hereinafter, the direction in which the optical fibers 11 are arranged in the intermittently fixed fiber ribbon 10 may be referred to as the tape width direction W for ease of explanation.
各固定部12は、テープ幅方向Wにおいて隣接する2つの光ファイバ11を互いに固定する。隣接する2つの光ファイバ11同士の間には、隙間が設けられていてもよい。この場合、その隙間には複数の固定部12が長手方向Zに間欠的に配置される。あるいは、隣接する2つの光ファイバ11同士の間に隙間が無くてもよい。また、2つの光ファイバ11が長手方向Zにおいて連続的に固定されて光ファイバ組を構成しており、複数の光ファイバ組が複数の固定部12によって間欠的に固定されていてもよい。
図3に示すように、複数の固定部12は、長手方向Zおよびテープ幅方向Wに2次元的に間欠的に配置されている。なお、固定部12の配置は、図3の例に限定されず、適宜変更可能である。また、固定部12の配置パターンは、長手方向Zもしくはテープ幅方向Wにおいて、一定のパターンでなくてもよい。固定部12の配置パターンは、異なる間欠固定テープ心線10間において、一定のパターンでなくてもよい。固定部12の材質としては、例えばUV硬化型樹脂を採用してもよい。ただし、隣接する光ファイバを固定可能であれば、固定部12の材質は特に限定されず、適宜変更可能である。 Each fixingportion 12 fixes two optical fibers 11 adjacent in the tape width direction W to each other. A gap may be provided between two adjacent optical fibers 11 . In this case, a plurality of fixing portions 12 are intermittently arranged in the longitudinal direction Z in the gap. Alternatively, there may be no gap between two adjacent optical fibers 11 . Alternatively, two optical fibers 11 may be continuously fixed in the longitudinal direction Z to form an optical fiber set, and a plurality of optical fiber sets may be intermittently fixed by a plurality of fixing portions 12 .
As shown in FIG. 3, the plurality of fixingportions 12 are two-dimensionally intermittently arranged in the longitudinal direction Z and the tape width direction W. As shown in FIG. Note that the arrangement of the fixing portion 12 is not limited to the example in FIG. 3, and can be changed as appropriate. Also, the arrangement pattern of the fixed portions 12 may not be a constant pattern in the longitudinal direction Z or the tape width direction W. The arrangement pattern of the fixing portions 12 does not have to be a constant pattern between different intermittently fixed tape core wires 10 . As the material of the fixed part 12, for example, a UV curable resin may be adopted. However, the material of the fixing portion 12 is not particularly limited as long as the adjacent optical fibers can be fixed, and can be changed as appropriate.
図3に示すように、複数の固定部12は、長手方向Zおよびテープ幅方向Wに2次元的に間欠的に配置されている。なお、固定部12の配置は、図3の例に限定されず、適宜変更可能である。また、固定部12の配置パターンは、長手方向Zもしくはテープ幅方向Wにおいて、一定のパターンでなくてもよい。固定部12の配置パターンは、異なる間欠固定テープ心線10間において、一定のパターンでなくてもよい。固定部12の材質としては、例えばUV硬化型樹脂を採用してもよい。ただし、隣接する光ファイバを固定可能であれば、固定部12の材質は特に限定されず、適宜変更可能である。 Each fixing
As shown in FIG. 3, the plurality of fixing
図4に示すように、光ファイバ集合体1において、複数の光ファイバユニットUおよびそれらに含まれる複数の間欠固定テープ心線10は、SZ状に撚り合わされている。より詳細には、光ファイバ集合体1は、順撚り部31および逆撚り部32を含む周期30が長手方向Zにおいて繰り返されるSZ撚り構造を有する。周期30は、撚りピッチとも称される。本明細書では、周期30の長手方向における寸法をPと表す。順撚り部31および逆撚り部32の各々においては、複数の光ファイバユニットUおよびそれらに含まれる複数の間欠固定テープ心線10が、互いに撚り合わされている。
As shown in FIG. 4, in the optical fiber assembly 1, the plurality of optical fiber units U and the plurality of intermittently fixed tape core wires 10 included therein are twisted in an SZ shape. More specifically, the optical fiber assembly 1 has an SZ-twisted structure in which a period 30 including forward-twisted portions 31 and reverse-twisted portions 32 is repeated in the longitudinal direction Z. FIG. Period 30 is also referred to as twist pitch. The longitudinal dimension of period 30 is denoted herein as P. As shown in FIG. In each of the forward-twisted portion 31 and the reverse-twisted portion 32, a plurality of optical fiber units U and a plurality of intermittently fixed fiber ribbons 10 included therein are twisted together.
より詳細には、順撚り部31および逆撚り部32の各々において、各光ファイバユニットU(間欠固定テープ心線10)は、光ファイバ集合体1の中心軸線Oまわりに巻回されている。図4に示すように、順撚り部31において光ファイバ集合体1が撚り合わされる向きと、逆撚り部32において光ファイバ集合体1が撚り合わされる向きとは、互いに逆向きである。なお、順撚り部31および逆撚り部32において、内層ユニットUinの撚り角(巻回角)と外層ユニットUoutの撚り角(巻回角)とは等しくてもよいし、異なっていてもよい。
本明細書では、SZ撚り構造の順撚り部31と逆撚り部32とが切り替わる長手方向における位置を、「反転部B」と称する。SZ撚り構造における1つの周期30(長手方向における寸法P)につき、2つの反転部Bが出現する。 More specifically, each optical fiber unit U (intermittently fixed tape core wire 10 ) is wound around the central axis O of theoptical fiber assembly 1 in each of the forward twisted portion 31 and the reverse twisted portion 32 . As shown in FIG. 4, the direction in which the optical fiber assembly 1 is twisted in the forward twisting portion 31 and the direction in which the optical fiber assembly 1 is twisted in the reverse twisting portion 32 are opposite to each other. In the normal twisted portion 31 and the reverse twisted portion 32, the twist angle (winding angle) of the inner layer unit Uin and the twist angle (winding angle) of the outer layer unit Uout may be equal or different.
In this specification, the position in the longitudinal direction where the forward twistedportion 31 and the reverse twisted portion 32 of the SZ twist structure are switched is referred to as a "reversal portion B". Two reversals B appear per period 30 (dimension P in the longitudinal direction) in the SZ twist structure.
本明細書では、SZ撚り構造の順撚り部31と逆撚り部32とが切り替わる長手方向における位置を、「反転部B」と称する。SZ撚り構造における1つの周期30(長手方向における寸法P)につき、2つの反転部Bが出現する。 More specifically, each optical fiber unit U (intermittently fixed tape core wire 10 ) is wound around the central axis O of the
In this specification, the position in the longitudinal direction where the forward twisted
図5に示すように、本実施形態に係る光ファイバ集合体1において、複数の間欠固定テープ心線10は、横断面視において崩れた状態で積層されている。図5において、同一の間欠固定テープ心線10に属する光ファイバ11は、実線によって結ばれている。なお、「崩れた状態」とは、光ファイバ集合体1に含まれる少なくとも1つの間欠固定テープ心線10が湾曲している状態を意味する。
As shown in FIG. 5, in the optical fiber assembly 1 according to the present embodiment, the plurality of intermittently fixed tape core wires 10 are stacked in a collapsed state when viewed in cross section. In FIG. 5, the optical fibers 11 belonging to the same intermittent fixing ribbon 10 are connected by solid lines. In addition, the “collapsed state” means a state in which at least one intermittent fixing tape core wire 10 included in the optical fiber assembly 1 is curved.
本明細書では、間欠固定テープ心線10の崩れ状態を評価するために、以下のように定義されるベクトルMGを導入する。ここで、図6は、図5に示す光ファイバ集合体1(光ファイバユニットU)の横断面図を、xy平面上にプロットした図である。図6においては、光ファイバユニットUに含まれる6つの間欠固定テープ心線10の各々を、第1テープ~第6テープと称している。
In this specification, a vector MG defined as follows is introduced in order to evaluate the state of collapse of the intermittent fixation ribbon core 10 . Here, FIG. 6 is a cross-sectional view of the optical fiber assembly 1 (optical fiber unit U) shown in FIG. 5 plotted on the xy plane. In FIG. 6, each of the six intermittently fixed tape core wires 10 included in the optical fiber unit U is called a first tape to a sixth tape.
ベクトルMGは、光ファイバ集合体1の長手方向Zにおける各位置について、間欠固定テープ心線10ごとに定義されるベクトル量である。横断面において、間欠固定テープ心線10を構成する光ファイバ11のうち両端に位置する2つの光ファイバ11の中点をMとし、間欠固定テープ心線10の重心をGとする。図6に示すように、ベクトルMGは、中点Mを始点とし、重心Gを終点とするベクトルである。図6においては、第1テープについて定義されるベクトルMGをベクトルMG1と称し、第2テープについて定義されるベクトルMGをベクトルMG2と称している。第3テープ~第6テープについても同様である。なお、間欠固定テープ心線10が崩れている(湾曲している)状態において、中点Mと重心Gとが一致することは極めて稀である。
The vector MG is a vector quantity defined for each intermittently fixed tape core wire 10 at each position in the longitudinal direction Z of the optical fiber assembly 1 . Let M be the middle point of the two optical fibers 11 positioned at both ends of the optical fibers 11 forming the intermittent fixing tape core wire 10 in the cross section, and let G be the center of gravity of the intermittent fixing tape core wire 10 . As shown in FIG. 6, the vector MG is a vector starting at the midpoint M and ending at the center of gravity G. As shown in FIG. In FIG. 6, the vector MG defined for the first tape is called vector MG1, and the vector MG defined for the second tape is called vector MG2. The same applies to the third to sixth tapes. It is extremely rare for the midpoint M and the center of gravity G to coincide with each other when the intermittent fixing tape cord 10 is collapsed (curved).
ここで、本明細書では、以下のようにベクトル和MGtotalを定義する。ベクトル和MGtotalとは、光ファイバ集合体1に含まれるすべての間欠固定テープ心線10についてのベクトルMGを、合成したものである。図7では、各々の間欠固定テープ心線10のベクトルをMGnと表している。これらのベクトルMGnを合成することでベクトル和MGtotalが得られる。さらに、図7に示すように、ベクトル和MGtotalがY軸に対してなす角度を、ベクトル和の位相φという。
Here, in this specification, the vector sum MGtotal is defined as follows. The vector sum MGtotal is obtained by synthesizing the vectors MG for all the intermittently fixed tape fibers 10 included in the optical fiber assembly 1 . In FIG. 7, the vector of each intermittently fixed fiber ribbon 10 is represented as MGn. A vector sum MGtotal is obtained by synthesizing these vectors MGn. Furthermore, as shown in FIG. 7, the angle formed by the vector sum MGtotal with respect to the Y-axis is called the phase φ of the vector sum.
以下、具体的な実施例を用いて、ベクトル和の位相φについて説明する。なお、本発明は以下の実施例に限定されない。
The phase φ of the vector sum will be described below using a specific example. In addition, the present invention is not limited to the following examples.
(実施例1)
3つの内層ユニットUinと、9つの外層ユニットUoutと、を有する光ファイバ集合体1を用意した。内層ユニットUinおよび外層ユニットUoutはそれぞれ、6つの間欠固定テープ心線10をバンドル材で結束したものである。各間欠固定テープ心線10は、12本の光ファイバ11をそれぞれ有する。すなわち、実施例1における光ファイバ集合体1は合計864本の光ファイバ11を有する。各光ファイバ11の外径は250μmとした。この光ファイバ集合体1を押さえ巻き120で包み、さらに外被110を被覆して、光ファイバケーブル100を作成した。外被110の外径は18.2mm、外被110の内径は11.5mmとした。押さえ巻き120の厚みは0.2mmとした。光ファイバ集合体1の外径は約11.1mmとなった。 (Example 1)
Anoptical fiber assembly 1 having three inner layer units Uin and nine outer layer units Uout was prepared. Each of the inner layer unit Uin and the outer layer unit Uout is obtained by binding six intermittently fixed tape core wires 10 with a bundle material. Each intermittent fixing tape core wire 10 has 12 optical fibers 11 respectively. That is, the optical fiber assembly 1 in Example 1 has a total of 864 optical fibers 11 . The outer diameter of each optical fiber 11 was set to 250 μm. An optical fiber cable 100 was produced by wrapping this optical fiber assembly 1 with a pressure wrap 120 and covering it with a jacket 110 . The outer diameter of the jacket 110 was 18.2 mm, and the inner diameter of the jacket 110 was 11.5 mm. The thickness of the pressure winding 120 was set to 0.2 mm. The outer diameter of the optical fiber assembly 1 was approximately 11.1 mm.
3つの内層ユニットUinと、9つの外層ユニットUoutと、を有する光ファイバ集合体1を用意した。内層ユニットUinおよび外層ユニットUoutはそれぞれ、6つの間欠固定テープ心線10をバンドル材で結束したものである。各間欠固定テープ心線10は、12本の光ファイバ11をそれぞれ有する。すなわち、実施例1における光ファイバ集合体1は合計864本の光ファイバ11を有する。各光ファイバ11の外径は250μmとした。この光ファイバ集合体1を押さえ巻き120で包み、さらに外被110を被覆して、光ファイバケーブル100を作成した。外被110の外径は18.2mm、外被110の内径は11.5mmとした。押さえ巻き120の厚みは0.2mmとした。光ファイバ集合体1の外径は約11.1mmとなった。 (Example 1)
An
上記の光ファイバケーブル100を、長手方向において等間隔で切断し、合計で9つの横断面を得た。より具体的には、P/8ごとに光ファイバケーブル100を切断した。このように切断したのち、光ファイバ集合体1をエポキシ樹脂で固め、当該固めた光ファイバ集合体1を横断面が明瞭になるように研磨し、横断面の画像をマイクロスコープで撮影した。マイクロスコープによって得られた画像上で、各光ファイバ11の位置をxy平面上にプロットした。なお、エポキシ樹脂で光ファイバ集合体1を固定してから、光ファイバケーブル100を長手方向における各位置で切断してもよい。この場合、例えば光ファイバケーブル100の長手方向における一方の端部からエポキシ樹脂を注入し、他方の端部からエポキシ樹脂を吸引することで、外被110内にエポキシ樹脂を充填してもよい。
The above optical fiber cable 100 was cut at equal intervals in the longitudinal direction to obtain a total of nine cross sections. More specifically, the optical fiber cable 100 was cut every P/8. After cutting in this way, the optical fiber assembly 1 was hardened with an epoxy resin, the hardened optical fiber assembly 1 was polished so that the cross section became clear, and an image of the cross section was taken with a microscope. The position of each optical fiber 11 was plotted on the xy plane on the image obtained by the microscope. The optical fiber assembly 1 may be fixed with epoxy resin, and then the optical fiber cable 100 may be cut at each position in the longitudinal direction. In this case, the sheath 110 may be filled with the epoxy resin, for example, by injecting the epoxy resin from one end in the longitudinal direction of the optical fiber cable 100 and sucking the epoxy resin from the other end.
切断して得られた各横断面に対して、SZ撚りの位相と、先述のベクトル和の位相φとを得て、図8のようにプロットした。SZ撚りの位相とは、各光ファイバユニットU(間欠固定テープ心線10)が、光ファイバ集合体1の中心軸線Oまわりに巻回された角度であってもよい。図8の横軸は、長手方向における位置を表している。たとえば横軸が「0.1」と「0.2」との間では、長手方向において0.1Pの距離がある。さらに、SZ撚りの位相についてのプロットに基づき、近似曲線となるサインカーブを実線で表記し、そのサインカーブが極小となる長手方向の位置をXとした。同様に、ベクトル和の位相φについてのプロットに基づき、近似曲線となるサインカーブを破線で表記し、そのサインカーブが極小となる長手方向の位置をYとした。最適な近似曲線(サインカーブ)は、例えば最小二乗法を用いて求めることができる。その近似曲線の漸化式から、ベクトル和の位相φの具体的な数値を求めてもよい。
For each cross-section obtained by cutting, the SZ twist phase and the above-mentioned vector sum phase φ were obtained and plotted as shown in FIG. The SZ twist phase may be the angle at which each optical fiber unit U (intermittently fixed tape cable core 10 ) is wound around the central axis O of the optical fiber assembly 1 . The horizontal axis of FIG. 8 represents the position in the longitudinal direction. For example, between "0.1" and "0.2" on the horizontal axis, there is a distance of 0.1P in the longitudinal direction. Further, based on the plot of the phase of the SZ twist, a sine curve as an approximation curve is indicated by a solid line, and X is the position in the longitudinal direction where the sine curve is minimum. Similarly, based on the plot of the phase φ of the vector sum, the sine curve as an approximate curve is indicated by a dashed line, and Y is the position in the longitudinal direction where the sine curve is minimum. An optimum approximation curve (sine curve) can be obtained using, for example, the method of least squares. A specific numerical value of the phase φ of the vector sum may be obtained from the recurrence formula of the approximate curve.
図8のように、ベクトル和の位相φが長手方向において略サインカーブを描くように推移する理由は、間欠固定テープ心線10の断面形状の崩れ状態が、SZ撚りに追従するためである。以下、より詳しく説明する。
As shown in FIG. 8, the reason why the phase φ of the vector sum transitions in the longitudinal direction so as to draw a substantially sine curve is that the cross-sectional shape collapse of the intermittently fixed fiber ribbon 10 follows the SZ twist. A more detailed description will be given below.
間欠固定テープ心線10をSZ撚りすると、各間欠固定テープ心線10は、中心軸線Oを中心として揺動するように周方向における位置が変化する。これと同時に、各間欠固定テープ心線10は、巨視的にみると自身の重心付近を中心として捻回させられる場合が多い。概念的には、前者が「公転」に似ており、後者が「自転」に似ているため、本明細書ではそれぞれを「公転」「自転」と称する。
When the intermittently fixed tape core wires 10 are SZ-twisted, each intermittently fixed tape core wire 10 changes its position in the circumferential direction so as to swing around the central axis O. At the same time, each of the intermittently fixed ribbon cords 10 is often twisted around its own center of gravity when viewed macroscopically. Conceptually, the former is similar to "revolution" and the latter is similar to "rotation", so they are called "revolution" and "rotation" in this specification.
「自転」についても、各間欠固定テープ心線10は一方向に捻回させられ続けるわけではなく、捻回方向が長手方向において所定の間隔で切り替わる。このように間欠固定テープ心線10の捻回方向が切り替わる長手方向における位置が、図8に示す位置Yであるとみなすことができる。これに対して、長手方向の位置Xは、反転部Bの位置そのものである。つまり、位置Xを境界として先述の順撚り部31および逆撚り部32が切り替わり、位置Yを境界として各間欠固定テープ心線10の捻回方向が切り替わる。
As for "rotation", each intermittently fixed tape core wire 10 is not continuously twisted in one direction, but the twisting direction is switched at predetermined intervals in the longitudinal direction. The position in the longitudinal direction where the twisting direction of the intermittently fixed ribbon core 10 is switched in this manner can be regarded as the position Y shown in FIG. On the other hand, the position X in the longitudinal direction is the position of the inverted portion B itself. That is, the normal twisted portion 31 and the reverse twisted portion 32 are switched with the position X as a boundary, and the twisting direction of each intermittently fixed ribbon core 10 is switched with the position Y as a boundary.
間欠固定テープ心線10をSZ撚りした場合、反転部Bにおいて、撚り戻ろうとする力が大きくなる。同様に、間欠固定テープ心線10が捻回させられると、その捻回方向が切り替わる部分(切替部)において、捻回を解消しようとする力が大きくなる。後者の「捻回を解消しようとする力」についても、SZ撚りを戻そうとする力として作用する。ここで本実施例では、位置Xと位置Yとが長手方向においてずれている。言い換えると、「公転」によって生じる撚り戻り力が極大になるポイント(位置X)と、「自転」によって生じる撚り戻り力が極大になるポイント(位置Y)と、が長手方向においてずれている。これにより、両者の力が1つのポイントで極大となることが抑えられ、光ファイバ集合体1の全体として作用する撚り戻り力の最大値を小さくすることが可能となる。したがって、SZ撚りが解消されてしまう現象(撚り戻り)の発生を抑制することができる。
When the intermittently fixed tape cord 10 is SZ-twisted, the untwisting force at the reversal portion B increases. Similarly, when the intermittent fixing tape core wire 10 is twisted, the force to cancel the twist increases at the portion (switching portion) where the twisting direction is switched. The latter "force to untwist" also acts as a force to undo the SZ twist. Here, in this embodiment, the position X and the position Y are shifted in the longitudinal direction. In other words, the point (position X) where the untwisting force caused by "revolution" is maximized and the point (position Y) where the untwisted force caused by "rotation" is maximized are shifted in the longitudinal direction. As a result, it is possible to prevent the two forces from becoming maximum at one point, and to reduce the maximum value of the untwisting force acting on the optical fiber assembly 1 as a whole. Therefore, it is possible to suppress the occurrence of a phenomenon in which the SZ twist is canceled (untwist).
表1は、位置Xと位置Yとがどの程度ずれていると好ましいかを考察した結果である。
Table 1 shows the result of considering how much the position X and the position Y should deviate.
表1に示す「判定」は、SZ撚りの撚り戻りに対するリスクの大きさを示している。判定が「C」の場合、撚り戻りが生じやすいことを意味する。判定が「B」の場合、撚り戻りが生じにくいことを意味する。判定が「A」の場合、撚り戻りのリスクが顕著に小さいことを意味する。表1の通り、位置Xと位置Yとの間の長手方向における距離を、P/128以上とすることで、撚り戻りの抑制効果が期待できる。さらに、位置Xと位置Yとの間の長手方向における距離を、P/64以上とすることで、撚り戻りの抑制効果をさらに大きくすることができる。
The "judgment" shown in Table 1 indicates the magnitude of the risk of untwisting of the SZ twist. If the determination is "C", it means that untwisting is likely to occur. If the determination is "B", it means that untwisting is less likely to occur. If the determination is "A", it means that the risk of untwisting is remarkably small. As shown in Table 1, by setting the distance in the longitudinal direction between the position X and the position Y to P/128 or more, an effect of suppressing untwisting can be expected. Furthermore, by setting the distance in the longitudinal direction between the position X and the position Y to P/64 or more, the effect of suppressing untwisting can be further increased.
(実施例2)
実施例1では、各間欠固定テープ心線10がバンドル材20で束ねられており、さらに光ファイバ集合体1が内層と、外層とに分かれていた。実施例2では、間欠固定テープ心線10をバンドル材20で束ねずに、かつ、内層、外層に分けて配置せずに、SZ撚りした。光ファイバ集合体1が有する間欠固定テープ心線10の数は24とし、各間欠固定テープ心線10に含まれる光ファイバ11の数は12本とした。つまり、本実施例2の光ファイバ集合体1は、合計で288本の光ファイバ11を有する。この光ファイバ集合体1に外被110を施し、光ファイバケーブル100を作成した。外被110の外径は11.8mm、外被110の内径は7.0mmとした。押さえ巻き120の厚みは0.2mmとした。光ファイバ集合体1の外径は約6.6mmとなった。 (Example 2)
In Example 1, each intermittently fixedtape core wire 10 is bundled with a bundle material 20, and the optical fiber assembly 1 is divided into an inner layer and an outer layer. In Example 2, the intermittently fixed tape cord 10 was SZ-twisted without being bundled with the bundle material 20 and without being divided into an inner layer and an outer layer. The number of the intermittently fixed tape core wires 10 included in the optical fiber assembly 1 was 24, and the number of the optical fibers 11 included in each intermittently fixed tape core wire 10 was 12 pieces. In other words, the optical fiber assembly 1 of Example 2 has a total of 288 optical fibers 11 . A jacket 110 was applied to this optical fiber assembly 1 to prepare an optical fiber cable 100 . The outer diameter of the jacket 110 was 11.8 mm, and the inner diameter of the jacket 110 was 7.0 mm. The thickness of the pressure winding 120 was set to 0.2 mm. The outer diameter of the optical fiber assembly 1 was approximately 6.6 mm.
実施例1では、各間欠固定テープ心線10がバンドル材20で束ねられており、さらに光ファイバ集合体1が内層と、外層とに分かれていた。実施例2では、間欠固定テープ心線10をバンドル材20で束ねずに、かつ、内層、外層に分けて配置せずに、SZ撚りした。光ファイバ集合体1が有する間欠固定テープ心線10の数は24とし、各間欠固定テープ心線10に含まれる光ファイバ11の数は12本とした。つまり、本実施例2の光ファイバ集合体1は、合計で288本の光ファイバ11を有する。この光ファイバ集合体1に外被110を施し、光ファイバケーブル100を作成した。外被110の外径は11.8mm、外被110の内径は7.0mmとした。押さえ巻き120の厚みは0.2mmとした。光ファイバ集合体1の外径は約6.6mmとなった。 (Example 2)
In Example 1, each intermittently fixed
本実施例2においても、実施例1と同様の手法により、図9を作成した。図9においても、位置Xと位置Yとが長手方向においてずれている。したがって、実施例1と同様の効果が得られる。
Also in this second embodiment, FIG. 9 was created by the same method as in the first embodiment. Also in FIG. 9, the position X and the position Y are shifted in the longitudinal direction. Therefore, an effect similar to that of the first embodiment can be obtained.
以上説明したように、本実施形態(例えば実施例1、2)に係る光ファイバ集合体1は、複数の光ファイバ11および複数の光ファイバ11を長手方向Zにおいて間欠的に固定する複数の固定部12を含む複数の間欠固定テープ心線10を備え、複数の間欠固定テープ心線10が撚り合わされた順撚り部31と、複数の間欠固定テープ心線10が順撚り部31とは逆向きに撚り合わされた逆撚り部32と、を含む周期が長手方向において繰り返されるSZ撚り構造を有し、長手方向に垂直な横断面において、複数の間欠固定テープ心線10のうちの1つの間欠固定テープ心線10における、両端に位置する2つの光ファイバ11の中点をMとし、重心をGとし、中点Mを始点とし重心Gを終点とするベクトルをMGとし、ベクトルMGを複数の間欠固定テープ心線10の全てについて合成したベクトルをベクトル和MGtotalとするとき、順撚り部31および逆撚り部32が切り替わる反転部Bの長手方向における位置Xと、ベクトル和MGtotalの向きの変化が切り替わる切替部の長手方向における位置Yと、がずれている。これにより、光ファイバ集合体1の全体として作用する撚り戻り力の最大値を小さくすることが可能となり、SZ撚りが解消されてしまう現象(撚り戻り)の発生を抑制することができる。
As described above, the optical fiber assembly 1 according to the present embodiment (for example, Examples 1 and 2) includes a plurality of optical fibers 11 and a plurality of fixing members for intermittently fixing the plurality of optical fibers 11 in the longitudinal direction Z. A plurality of intermittently fixed fiber ribbons 10 including portions 12 are provided, and a forward twisted portion 31 in which the plurality of intermittently fixed fiber ribbons 10 are twisted together, and the plurality of intermittently fixed fiber ribbons 10 are oriented in a direction opposite to that of the forward twisted portion 31. and an SZ-twisted structure in which the cycle is repeated in the longitudinal direction, and one of the plurality of intermittently fixed tape core wires 10 is intermittently fixed in a cross section perpendicular to the longitudinal direction. Let M be the midpoint of the two optical fibers 11 positioned at both ends of the optical fiber 10, G be the center of gravity, and MG be a vector starting from the midpoint M and ending at the center of gravity G, and the vector MG is intermittent. Assuming that the vector sum MGtotal is the vector synthesized for all of the fixed ribbon cores 10, the position X in the longitudinal direction of the reversing portion B where the forward twisting portion 31 and the reverse twisting portion 32 are switched, and the change in the direction of the vector sum MGtotal are switched. The position Y in the longitudinal direction of the switching portion is displaced. This makes it possible to reduce the maximum value of the untwisting force acting on the optical fiber assembly 1 as a whole, and suppress the occurrence of a phenomenon in which the SZ twist is canceled (untwisting).
また、複数の間欠固定テープ心線10は、複数の光ファイバユニットUを形成しており、複数の光ファイバユニットUの各々において、複数の間欠固定テープ心線10のうち少なくとも二つ以上の間欠固定テープ心線10が束ねられていてもよい。この構成によれば、特定の光ファイバユニットUに歪みが集中することを抑制し、光ファイバ集合体1の最大伝送損失の増大を抑制することができる。
Further, the plurality of intermittently fixed tape core wires 10 form a plurality of optical fiber units U, and in each of the plurality of optical fiber units U, at least two or more of the plurality of intermittently fixed tape core wires 10 are intermittently The fixing tape cable core 10 may be bundled. According to this configuration, concentration of strain on a specific optical fiber unit U can be suppressed, and an increase in the maximum transmission loss of the optical fiber assembly 1 can be suppressed.
また、長手方向Zにおける周期の寸法をPとするとき、反転部Bの位置Xと切替部の位置Yとが、前記長手方向においてP/128以上ずれていてもよい。この構成によれば、間欠固定テープ心線10の撚り戻りを抑制することができる。
Further, when the period dimension in the longitudinal direction Z is P, the position X of the reversing portion B and the position Y of the switching portion may be shifted by P/128 or more in the longitudinal direction. According to this configuration, untwisting of the intermittently fixed ribbon cable 10 can be suppressed.
また、本実施形態に係る光ファイバケーブル100は、上記した光ファイバ集合体1と、光ファイバ集合体1を収容する外被110と、を備える。この構成によれば、光ファイバケーブル100の最大伝送損失の増大を抑制することができる。
Further, the optical fiber cable 100 according to this embodiment includes the above-described optical fiber assembly 1 and a jacket 110 that accommodates the optical fiber assembly 1 . According to this configuration, it is possible to suppress an increase in the maximum transmission loss of the optical fiber cable 100 .
以上を踏まえて本実施形態では、順撚り部31および逆撚り部32が切り替わる反転部Bの長手方向における位置Xと、ベクトル和MGtotalの向きの変化が切り替わる切替部の長手方向における位置Yと、をずらす、光ファイバ集合体1または光ファイバケーブル100の製造方法を提案する。
なお、位置Xと位置Yとが長手方向においてずれるようにするためには、光ファイバ集合体1の製造過程において、例えば以下に示す手法が用いられる。第1の手法は、間欠固定テープ心線10をSZ状に撚り合わせる過程において、間欠固定テープ心線10に加えられる張力を時間的に変化させる手法である。第2の手法は、間欠固定テープ心線10をSZ状に撚り合わせる際に用いる目板の回転速度を時間的に変化させる手法である。第3の手法は、上記目板に形成され、各々に間欠固定テープ心線10が挿通される複数の貫通孔について、各貫通孔と目板の中心との間の距離を異ならせる手法である。第4の手法は、上記複数の貫通孔について、各貫通孔の形状や大きさを異ならせる手法である。第5の手法は、撚り合わせの向きを反転させる際の(上記目板の回転の)一時停止の時間の長さを調整する手法である。第6の手法は、互いに心数の異なる光ファイバユニット同士を隣接させて配置する手法である。 Based on the above, in the present embodiment, the position X in the longitudinal direction of the reversing portion B at which thenormal twist portion 31 and the reverse twist portion 32 are switched, the position Y in the longitudinal direction of the switching portion at which the change in the direction of the vector sum MGtotal is switched, A method for manufacturing an optical fiber assembly 1 or an optical fiber cable 100 is proposed.
In order to shift the position X and the position Y in the longitudinal direction, for example, the following technique is used in the manufacturing process of theoptical fiber assembly 1 . The first method is to change the tension applied to the intermittently fixed tape core wires 10 with time in the process of twisting the intermittently fixed tape core wires 10 in an SZ shape. A second technique is to change the rotational speed of battens used when intermittently fixing ribbon cords 10 are twisted in an SZ shape with time. A third method is a method of varying the distance between each through-hole and the center of the batten plate for a plurality of through-holes formed in the batten plate and through which the intermittent fixing tape core wires 10 are inserted. . A fourth technique is to vary the shape and size of each of the plurality of through holes. A fifth technique is to adjust the length of the pause time (the rotation of the battens) when reversing the twisting direction. A sixth method is a method of arranging optical fiber units having different numbers of cores adjacent to each other.
なお、位置Xと位置Yとが長手方向においてずれるようにするためには、光ファイバ集合体1の製造過程において、例えば以下に示す手法が用いられる。第1の手法は、間欠固定テープ心線10をSZ状に撚り合わせる過程において、間欠固定テープ心線10に加えられる張力を時間的に変化させる手法である。第2の手法は、間欠固定テープ心線10をSZ状に撚り合わせる際に用いる目板の回転速度を時間的に変化させる手法である。第3の手法は、上記目板に形成され、各々に間欠固定テープ心線10が挿通される複数の貫通孔について、各貫通孔と目板の中心との間の距離を異ならせる手法である。第4の手法は、上記複数の貫通孔について、各貫通孔の形状や大きさを異ならせる手法である。第5の手法は、撚り合わせの向きを反転させる際の(上記目板の回転の)一時停止の時間の長さを調整する手法である。第6の手法は、互いに心数の異なる光ファイバユニット同士を隣接させて配置する手法である。 Based on the above, in the present embodiment, the position X in the longitudinal direction of the reversing portion B at which the
In order to shift the position X and the position Y in the longitudinal direction, for example, the following technique is used in the manufacturing process of the
これらの手法によれば、横断面における各間欠固定テープ心線10の崩れ状態を長手方向において変化させることができる。したがって、ベクトル和MGtotalも変化させることができ、結局、図8、図9に示す位置Yを制御することができる。位置Xは、SZ撚りの反転部Bの位置そのものであるから、この位置Xに対して位置Yをずらすようにすればよい。特に、位置Xから位置Yをずらすためには、第5の手法が有効であると考えられる。例えば、位置Xと位置Yとが適切なずれ量となるように、反転領域を形成する際の目板の一時停止時間を調整することができる。また、長手方向に隣接する2つの反転領域を形成する際に、2つの反転領域における一時停止時間を互いに異ならせてもよい。これにより、横断面における各間欠固定テープ心線10の崩れ状態を長手方向において好適に変化させることが可能となり、より容易に長手方向における位置Xと位置Yとをずらすことができる。
According to these methods, it is possible to change the collapsed state of each intermittently fixed ribbon cable 10 in the cross section in the longitudinal direction. Therefore, the vector sum MGtotal can also be changed, and eventually the position Y shown in FIGS. 8 and 9 can be controlled. Since the position X is exactly the position of the reversal portion B of the SZ twist, the position Y should be shifted with respect to this position X. In particular, the fifth technique is considered effective for shifting the position Y from the position X. For example, it is possible to adjust the temporary stop time of the battens when forming the reversal area so that the position X and the position Y have an appropriate amount of deviation. Also, when forming two reversed regions adjacent in the longitudinal direction, the pause times in the two reversed regions may be different from each other. As a result, it is possible to suitably change the collapsed state of each intermittent fixing ribbon 10 in the cross section in the longitudinal direction, and to more easily shift the position X and the position Y in the longitudinal direction.
なお、上記した第1の手法~第6の手法は一例であり、上記した関係が成立する光ファイバ集合体1を製造できれば、他の手法が用いられてもよい。また、上記した手法のうちいくつかの手法が組み合わされて用いられてもよい。
The above-described first to sixth methods are examples, and other methods may be used as long as the optical fiber assembly 1 that satisfies the above relationship can be manufactured. Also, some of the methods described above may be used in combination.
なお、本発明の技術的範囲は前記実施形態に限定されず、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
例えば、光ファイバ集合体1に、介在物が含まれていてもよい。
また、前記実施形態における、外被110、押さえ巻き120、抗張力体130、リップコード140等の光ファイバ集合体1以外の構成については全て一例であり、適宜変更可能である。例えば、本実施形態に係る光ファイバ集合体1を、ルースチューブケーブル等に適用してもよい。また、光ファイバ集合体1以外の上記構成はなくてもよい。つまり、光ファイバ集合体1は光ファイバケーブル100を構成していなくてもよい。 The technical scope of the present invention is not limited to the above embodiments, and various modifications can be made without departing from the scope of the present invention.
For example, theoptical fiber assembly 1 may contain inclusions.
Also, the structures other than theoptical fiber assembly 1, such as the jacket 110, the pressure wrap 120, the tension member 130, the ripcord 140, etc., in the above embodiment are all examples, and can be changed as appropriate. For example, the optical fiber assembly 1 according to this embodiment may be applied to a loose tube cable or the like. Moreover, the above configuration other than the optical fiber assembly 1 may be omitted. In other words, the optical fiber assembly 1 does not have to constitute the optical fiber cable 100 .
例えば、光ファイバ集合体1に、介在物が含まれていてもよい。
また、前記実施形態における、外被110、押さえ巻き120、抗張力体130、リップコード140等の光ファイバ集合体1以外の構成については全て一例であり、適宜変更可能である。例えば、本実施形態に係る光ファイバ集合体1を、ルースチューブケーブル等に適用してもよい。また、光ファイバ集合体1以外の上記構成はなくてもよい。つまり、光ファイバ集合体1は光ファイバケーブル100を構成していなくてもよい。 The technical scope of the present invention is not limited to the above embodiments, and various modifications can be made without departing from the scope of the present invention.
For example, the
Also, the structures other than the
また、順撚り部31および逆撚り部32において内層ユニットUinの撚り角(巻回角)と外層ユニットUoutの撚り角(巻回角)とは等しく、内層ユニットUinの周期(撚りピッチ)と外層ユニットUoutの周期(撚りピッチ)は等しく、内層ユニットUinと外層ユニットUoutとにおける順撚り部31と逆撚り部32との反転部Bの長手方向Zにおける位置が同等であってもよい。さらにこの構成に限られず、例えば、内層ユニットUinと外層ユニットUoutとにおける撚り角、撚りピッチ、または反転部Bの位置は異なっていてもよい。
Further, in the forward twisted portion 31 and the reverse twisted portion 32, the twist angle (winding angle) of the inner layer unit Uin and the twist angle (winding angle) of the outer layer unit Uout are equal, and the cycle (twist pitch) of the inner layer unit Uin and the outer layer unit Uin are equal. The cycles (twisting pitches) of the units Uout may be the same, and the positions in the longitudinal direction Z of the reversal portions B of the forward twisted portion 31 and the reverse twisted portion 32 of the inner layer unit Uin and the outer layer unit Uout may be the same. Further, the configuration is not limited to this, and for example, the twist angle, the twist pitch, or the position of the reversal portion B may be different between the inner layer unit Uin and the outer layer unit Uout.
その他、本発明の趣旨を逸脱しない範囲で、上記した実施形態における構成要素を周知の構成要素に置き換えることは適宜可能であり、また、上記した実施形態や変形例を適宜組み合わせてもよい。
In addition, it is possible to appropriately replace the components in the above-described embodiments with well-known components within the scope of the present invention, and the above-described embodiments and modifications may be combined as appropriate.
1 光ファイバ集合体 10…間欠固定テープ心線 11…光ファイバ 12…固定部 31…順撚り部 32…逆撚り部 B…反転部 G…重心 M…中点 MG…ベクトル MGtotal…ベクトル和 U…光ファイバユニット
1 Optical fiber assembly 10 Intermittent fixing tape core wire 11 Optical fiber 12 Fixing part 31 Normal twist part 32 Reverse twist part B... Inverted part G... Center of gravity M... Middle point MG... Vector MGtotal... Vector sum U... fiber optic unit
Claims (5)
- 複数の光ファイバおよび前記複数の光ファイバを長手方向において間欠的に固定する複数の固定部を含む複数の間欠固定テープ心線を備え、
前記複数の間欠固定テープ心線が撚り合わされた順撚り部と、前記複数の間欠固定テープ心線が前記順撚り部とは逆向きに撚り合わされた逆撚り部と、を含む周期が前記長手方向において繰り返されるSZ撚り構造を有し、
前記長手方向に垂直な断面において、
前記複数の間欠固定テープ心線のうちの1つの間欠固定テープ心線における、両端に位置する2つの前記光ファイバの中点をMとし、重心をGとし、前記中点Mを始点とし前記重心Gを終点とするベクトルをMGとし、
前記ベクトルMGを前記複数の間欠固定テープ心線の全てについて合成したベクトルをベクトル和とするとき、
前記順撚り部および前記逆撚り部が切り替わる反転部の前記長手方向における位置と、前記ベクトル和の向きの変化が切り替わる切替部の前記長手方向における位置とがずれている、光ファイバ集合体。 A plurality of intermittently fixed ribbon core wires including a plurality of optical fibers and a plurality of fixing portions for intermittently fixing the plurality of optical fibers in the longitudinal direction,
A period including a forward twisted portion in which the plurality of intermittently fixed tape core wires are twisted together and a reverse twisted portion in which the plurality of intermittently fixed tape core wires are twisted in a direction opposite to the normal twisted portion is defined in the longitudinal direction. has an SZ twist structure repeated in
In a cross section perpendicular to the longitudinal direction,
In one intermittently fixed tape core wire among the plurality of intermittently fixed tape core wires, the midpoint of the two optical fibers located at both ends is M, the center of gravity is G, and the center of gravity is set with the midpoint M as the starting point. Let MG be a vector with G as the end point,
When the sum of vectors obtained by synthesizing the vector MG with respect to all of the plurality of intermittently fixed tape fibers,
An optical fiber assembly, wherein a position in the longitudinal direction of a reversal portion at which the forward twist portion and the reverse twist portion are switched is shifted from a position in the longitudinal direction of a switching portion at which the change in direction of the vector sum is switched. - 前記複数の間欠固定テープ心線は、複数の光ファイバユニットを形成しており、
前記複数の光ファイバユニットの各々において、前記複数の間欠固定テープ心線のうち少なくとも二つ以上の前記間欠固定テープ心線が束ねられている、請求項1に記載の光ファイバ集合体。 The plurality of intermittently fixed tape core wires form a plurality of optical fiber units,
2. The optical fiber assembly according to claim 1, wherein at least two of said plurality of intermittently fixed tape core wires are bundled in each of said plurality of optical fiber units. - 前記長手方向における前記周期の寸法をPとするとき、
前記反転部の位置と前記切替部の位置とが、前記長手方向においてP/128以上ずれている、請求項1または2に記載の光ファイバ集合体。 When the dimension of the period in the longitudinal direction is P,
3. The optical fiber assembly according to claim 1, wherein a position of said reversing portion and a position of said switching portion are deviated from each other by P/128 or more in said longitudinal direction. - 請求項1から3のいずれか1項に記載の光ファイバ集合体と、
前記光ファイバ集合体を収容する外被と、を備える、光ファイバケーブル。 an optical fiber assembly according to any one of claims 1 to 3;
and a jacket that houses the assembly of optical fibers. - 複数の光ファイバおよび前記複数の光ファイバを長手方向において間欠的に固定する複数の固定部を含む複数の間欠固定テープ心線を備え、前記複数の間欠固定テープ心線が撚り合わされた順撚り部と、前記複数の間欠固定テープ心線が前記順撚り部とは逆向きに撚り合わされた逆撚り部と、を含む周期が前記長手方向において繰り返されるSZ撚り構造を有する光ファイバ集合体を製造する光ファイバ集合体の製造方法であって、
前記長手方向に垂直な断面において、
前記複数の間欠固定テープ心線のうちの1つの間欠固定テープ心線における、両端に位置する2つの前記光ファイバの中点をMとし、重心をGとし、前記中点Mを始点とし前記重心Gを終点とするベクトルをMGとし、
前記ベクトルMGを前記複数の間欠固定テープ心線の全てについて合成したベクトルをベクトル和とするとき、
前記順撚り部および前記逆撚り部が切り替わる反転部の前記長手方向における位置と、前記ベクトル和の向きの変化が切り替わる切替部の前記長手方向における位置と、をずらす、光ファイバ集合体の製造方法。 A plurality of intermittently fixed tape core wires including a plurality of optical fibers and a plurality of fixing portions for intermittently fixing the plurality of optical fibers in a longitudinal direction, wherein the intermittently fixed tape core wires are twisted together in a normal twisted portion. and a counter-twisted portion in which the plurality of intermittently fixed tape core wires are twisted in a direction opposite to the forward-twisted portion. A method for manufacturing an optical fiber assembly,
In a cross section perpendicular to the longitudinal direction,
In one intermittently fixed tape core wire among the plurality of intermittently fixed tape core wires, the midpoint of the two optical fibers located at both ends is M, the center of gravity is G, and the center of gravity is set with the midpoint M as the starting point. Let MG be a vector with G as the end point,
When the sum of vectors obtained by synthesizing the vector MG with respect to all of the plurality of intermittently fixed tape fibers,
A method for manufacturing an optical fiber assembly, wherein a position in the longitudinal direction of a reversing portion where the forward twisting portion and the reverse twisting portion are switched is shifted from a position in the longitudinal direction of the switching portion where the change in direction of the vector sum is switched. .
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021212159 | 2021-12-27 | ||
JP2021-212159 | 2021-12-27 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023127420A1 true WO2023127420A1 (en) | 2023-07-06 |
Family
ID=86998587
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/044824 WO2023127420A1 (en) | 2021-12-27 | 2022-12-06 | Optical fiber assembly, optical fiber cable, and method for manufacturing optical fiber assembly |
Country Status (2)
Country | Link |
---|---|
TW (1) | TWI839996B (en) |
WO (1) | WO2023127420A1 (en) |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4496214A (en) * | 1981-03-05 | 1985-01-29 | Siemens Aktiengesellschaft | Optical cable |
JPH02157806A (en) * | 1988-12-12 | 1990-06-18 | Sumitomo Electric Ind Ltd | Collecting method for sz-type loose tube cable |
US6049648A (en) * | 1998-08-26 | 2000-04-11 | Sumitomo Electric Lightwave Corp. | S-Z stranded optical cable with optimized short ROL pitch |
JP2017058593A (en) * | 2015-09-18 | 2017-03-23 | 株式会社フジクラ | Optical fiber cable, and manufacturing method and manufacturing apparatus of optical fiber cable |
JP2020042175A (en) * | 2018-09-11 | 2020-03-19 | 株式会社フジクラ | Optical fiber cable |
JP2020106734A (en) * | 2018-12-28 | 2020-07-09 | 株式会社フジクラ | Method of manufacturing optical fiber unit, and optical fiber unit manufacturing device |
WO2022004362A1 (en) * | 2020-07-01 | 2022-01-06 | 株式会社フジクラ | Optical cable and optical-cable manufacturing method |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN108463757A (en) * | 2016-01-13 | 2018-08-28 | 住友电气工业株式会社 | The preparation method of discontinuity connection type optical fiber core, optical cable and discontinuity connection type optical fiber core |
JPWO2021157394A1 (en) * | 2020-02-06 | 2021-08-12 |
-
2022
- 2022-12-06 WO PCT/JP2022/044824 patent/WO2023127420A1/en unknown
- 2022-12-06 TW TW111146704A patent/TWI839996B/en active
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4496214A (en) * | 1981-03-05 | 1985-01-29 | Siemens Aktiengesellschaft | Optical cable |
JPH02157806A (en) * | 1988-12-12 | 1990-06-18 | Sumitomo Electric Ind Ltd | Collecting method for sz-type loose tube cable |
US6049648A (en) * | 1998-08-26 | 2000-04-11 | Sumitomo Electric Lightwave Corp. | S-Z stranded optical cable with optimized short ROL pitch |
JP2017058593A (en) * | 2015-09-18 | 2017-03-23 | 株式会社フジクラ | Optical fiber cable, and manufacturing method and manufacturing apparatus of optical fiber cable |
JP2020042175A (en) * | 2018-09-11 | 2020-03-19 | 株式会社フジクラ | Optical fiber cable |
JP2020106734A (en) * | 2018-12-28 | 2020-07-09 | 株式会社フジクラ | Method of manufacturing optical fiber unit, and optical fiber unit manufacturing device |
WO2022004362A1 (en) * | 2020-07-01 | 2022-01-06 | 株式会社フジクラ | Optical cable and optical-cable manufacturing method |
Also Published As
Publication number | Publication date |
---|---|
TWI839996B (en) | 2024-04-21 |
TW202334680A (en) | 2023-09-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5224403B2 (en) | Optical fiber unit and optical fiber cable | |
JP7307859B2 (en) | fiber optic cable | |
WO2011043324A1 (en) | Optical fiber cable | |
AU2022202391B2 (en) | Optical fiber cable | |
JP7151727B2 (en) | fiber optic cable | |
JP2022100376A (en) | Optical fiber cable | |
CN110662992B (en) | Optical fiber cable | |
JP7479533B2 (en) | Slotless optical fiber cable and method for manufacturing slotless optical cable core | |
WO2023127420A1 (en) | Optical fiber assembly, optical fiber cable, and method for manufacturing optical fiber assembly | |
WO2023127418A1 (en) | Optical fiber assembly, optical fiber cable, and method for manufacturing optical fiber assembly | |
WO2023127419A1 (en) | Optical fiber assembly, optical fiber cable, and method for manufacturing optical fiber assembly | |
WO2023079932A1 (en) | Optical fiber cable and method for laying optical fiber cable | |
JP2020042175A (en) | Optical fiber cable | |
WO2019059251A1 (en) | Optical fiber cable | |
WO2023127421A1 (en) | Optical fiber assembly, optical fiber cable, and method for manufacturing optical fiber assembly | |
JP2020064098A (en) | Optical fiber cable | |
JP3859463B2 (en) | Fiber optic cable | |
WO2023007881A1 (en) | Optical cable and optical cable manufacturing method | |
JP2023114328A (en) | Optical fiber cable | |
JP2004144960A (en) | Optical fiber cable | |
JP2001201675A (en) | Optical fiber cable | |
JPH11231186A (en) | Manufacture of optical cable | |
JPH09197216A (en) | Aerial optical cable | |
JP2005301159A (en) | Optical fiber cable and manufacturing method of same | |
JPH11271583A (en) | Manufacture of optical unit |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22915651 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |