[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2023125680A1 - Electrically heated aerosol generating system - Google Patents

Electrically heated aerosol generating system Download PDF

Info

Publication number
WO2023125680A1
WO2023125680A1 PCT/CN2022/142889 CN2022142889W WO2023125680A1 WO 2023125680 A1 WO2023125680 A1 WO 2023125680A1 CN 2022142889 W CN2022142889 W CN 2022142889W WO 2023125680 A1 WO2023125680 A1 WO 2023125680A1
Authority
WO
WIPO (PCT)
Prior art keywords
aerosol generating
air flow
inner shell
shell assembly
flow passage
Prior art date
Application number
PCT/CN2022/142889
Other languages
French (fr)
Inventor
Siwen Li
Xiaosong FU
Zhiqiang Tang
Zhengyong LI
Xiaobo Wang
Jinbo MIAO
Hui RONG
Xiaochi JIN
Original Assignee
Shenzhen Huabao Collaborative Innovation Technology Research Institute Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenzhen Huabao Collaborative Innovation Technology Research Institute Co., Ltd. filed Critical Shenzhen Huabao Collaborative Innovation Technology Research Institute Co., Ltd.
Priority to EP22854507.5A priority Critical patent/EP4456747A1/en
Publication of WO2023125680A1 publication Critical patent/WO2023125680A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • A24F40/48Fluid transfer means, e.g. pumps
    • A24F40/485Valves; Apertures
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/40Constructional details, e.g. connection of cartridges and battery parts
    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/20Devices using solid inhalable precursors

Definitions

  • the present application relates to the technical field of electronic cigarettes, and in particular to an electrically heated aerosol generating system.
  • a heating non-burning atomization system is an aerosol generating system in which the aerosol generation material is heated with low temperature but is not burnt, so that an aerosol that can be inhaled is generated.
  • the aerosol generating system usually has a heating mode of either a tubular peripheral type heating or a central insertion type heating.
  • the tubular peripheral heating means that the heating tube surrounds outside of the aerosol generating substrate.
  • the heating temperature for the heating and non-burning system is generally 220°C to 450°C.
  • the high-temperature heat inside the aerosol generating system will be transferred to the outer shell of the aerosol generating system, resulting in a hot sensation on the hand.
  • the residual heat of the internal heating body of the electrically heated aerosol generating system in the related technology is conducted to the housing and then dissipated to the outside via the housing, such that its heat energy cannot be well utilized and the heating efficiency of its heating body is reduced.
  • the electrically heated aerosol generating system presents a good taste when the smoker takes his/her first puff of cigarettes, but as the suctioning continues, the electrically heated aerosol generating system has a problem where a poor taste reproduction occurs due to small amount of smoke caused by the insufficient heating amount generated by the electrically heated aerosol generating system.
  • the present application provides an electrically heated aerosol generating system to solve the technical problem of a low utilization efficiency of the residual heat in the electrically heated aerosol generating system in related technology.
  • the present application provides:
  • an electrically heated aerosol generating system which may comprise:
  • an inner shell assembly which may have a mounting cavity and an accommodating portion for accommodating an aerosol generating article, wherein the mounting cavity may be located below the accommodating portion;
  • a heating element which may be provided in the mounting cavity for heating the aerosol generating article accommodated in the accommodating portion
  • an outer shell which may be sleeved on the outside of the inner shell assembly, wherein a bottom of the outer shell is connected in a sealed manner to a bottom of the inner shell assembly, a top of the outer shell and a top of the inner shell assembly are configured to form an air inlet channel (for example, the air inlet channel may be provided at the top of the outer shell and at the top of the inner shell assembly) , and an air flow passage may be provided between the outer shell and the inner shell assembly, one end of the air flow passage is in communication with the mounting cavity and the other end of the air flow passage is in communication with the air inlet channel.
  • an air inlet channel for example, the air inlet channel may be provided at the top of the outer shell and at the top of the inner shell assembly
  • an air flow passage may be provided between the outer shell and the inner shell assembly, one end of the air flow passage is in communication with the mounting cavity and the other end of the air flow passage is in communication with the air inlet channel.
  • the inner shell assembly may be provided thereon with a venting hole allowing the mounting cavity to be in communication with the air flow passage, and the venting hole may be located below the heating element, so that external gases flows sequentially from the air inlet channel to the air flow passage, and flows into the mounting cavity via the venting hole, thereby being transferred to the heating element.
  • the electrically heated aerosol generating system may further comprise an insulating member which is provided between the outer shell and the inner shell assembly, and the air flow passage is positioned between the insulating member and the outer shell.
  • each of the two ends of the insulating member is recessed towards the inner shell assembly to form an arc-shaped part.
  • the venting hole provided on the inner shell assembly and being in communication with the air flow passage, is partially shielded by the portion of the arc-shaped part that is adjacent to the bottom of the inner shell assembly.
  • the insulating member may be a sleeve which may comprise a first structural layer and a second structural layer, wherein the first structural layer may surround the inner shell assembly peripherally, the second structural layer may surround the first structural layer peripherally, and defines a sealed annular cavity with the first structural layer.
  • the annular cavity may be a vacuum cavity; or the annular cavity may be filled with an inert gas; or the annular cavity is filled with liquid.
  • a coating that reduces heat radiation is provided on a side of the second structural layer that is away from the first structural layer.
  • an annular baffle plate is provided on a bottom of the inner shell assembly, the insulating member is clamped between a top of the inner shell assembly and the annular baffle plate, a gap is provided between the bottom of the insulating member and the annular baffle plate to allow the gas to pass through the gap and flow into the mounting cavity via the venting hole.
  • the annular baffle plate may be provided with a padding block (e.g., at least two padding blocks) on the side of the annular baffle plate facing the insulating member, and the bottom of the insulating member may be abutted against the padding block so that the gap is formed.
  • a padding block e.g., at least two padding blocks
  • the air flow passage may be defined by an inner wall of the outer shell and an outer wall of the insulating member.
  • a spiral groove is circumferentially provided in an inner wall of the outer shell, and the air flow passage may be defined between the spiral groove and the outer wall of the insulating member; or a spiral groove is circumferentially provided in an outer wall of the insulating member, and the air flow passage may be defined between the spiral groove and the inner wall of the outer shell.
  • each of the air flow passages there are at least two air flow passages extending in an axial direction of the outer shell, and the orthographic projection area of each of the air flow passages may be not less than 0.5 square millimeters.
  • a sealing ring may be provided at the portion of the inner shell assembly that is adjacent to the bottom thereof, and the inner wall of the outer shell may be abutted against the sealing ring so as to connect the bottom of the outer shell with the bottom of the inner shell assembly in a sealed manner.
  • the present application proposes an electrically heated aerosol generating system comprising an inner shell assembly, a heating element, and an outer shell.
  • the heating element is mounted in a mounting cavity of the inner shell assembly, and an air flow passage is provided between the outer shell and the inner shell assembly, and the air flow passage is in communication with the mounting cavity.
  • the heating element is made of metal, ceramics or other heat-resistant materials.
  • the heating element may be configured with a porous structure to allow gas to pass through.
  • the hot gas flowing from the heating element is drawn to the air flow passage from the inner shell assembly, so that high-temperature gas is formed in the air flow passage and is retained in the air flow passage.
  • the external gas with the room-temperature enters the air flow passage from the air inlet channel arranged in the outer shell and the inner shell assembly, and the high-temperature gas in the air flow passage is replaced with the room-temperature gas.
  • the high-temperature gas enters the mounting cavity from the air flow passage, thereby transferring the heat to the heating element.
  • the heating efficiency of the heating element is improved and the residual heat of the heating element is effectively utilized.
  • the temperature of the inner shell assembly and the outer shell may be decreased, and thus cooling and heat dissipation can be achieved. That is, the effect of heat dissipation can be brought about at the same time.
  • FIG. 1 illustrates a schematic view showing an assembling and using state of an electrically heated aerosol generating system with an aerosol generating article in some embodiments of the present application
  • FIG. 2 illustrates a perspective schematic view of an electrically heated aerosol generating system in some embodiments of the present application
  • FIG. 3 illustrates a schematic cross-section view of the structure taken along a line A-A in FIG. 2;
  • FIG. 4 illustrates an enlarged, structural schematic view of a portion B shown in FIG. 3;
  • FIG. 5 illustrates a structural schematic view of an electrically heated aerosol generating system with the outer shell removed in some embodiments of the present application
  • FIG. 6 illustrates a structural schematic view of an electrically heated aerosol generating system in FIG. 5 with the insulating member removed in some embodiments of the present application;
  • FIG. 7 illustrates an exploded, structural schematic view of an electrically heated aerosol generating system in some embodiments of the present application
  • FIG. 8 illustrates a partial sectional view of an electrically heated aerosol generating system in some embodiments of the present application
  • FIG. 9 illustrates a structural schematic view of the insulating member of an electrically heated aerosol generating system in some embodiments of the present application.
  • FIG. 10 illustrates a schematic cross-section view of the structure taken along a line C-C in FIG. 9.
  • 100-electrically heated aerosol generating system 10-inner shell assembly; 11-mounting cavity; 12-accommodating portion; 13-venting hole; 14-annular baffle plate; 141-padding block; 20-outer shell; 21-air inlet channel; 22-spiral groove; 30-heating element; 40-air flow passage; 50-insulating member; 51-arc-shaped part; 52-sleeve; 521-first structural layer; 522-second structural layer; 523-annular cavity; 60-sealing ring; 200-aerosol generating article.
  • orientation or positional relations indicated by terms such as “upper” , “lower” , “horizontal” , “top” , “bottom” , “inside” , “outside” , “axial” , and “circumferential” are based on the orientation or positional relations as shown in the figures, only for facilitating description of the present application and simplifying the description, rather than indicating or implying that the referred devices or elements must be in a particular orientation or constructed or heated in the particular orientation, and therefore they should not be construed as limiting the present application.
  • an embodiment of the present application provides an electrically heated aerosol generating system 100 primarily used for heating non-burning tobaccos (aerosol generating articles 200) to be inhaled by a user.
  • the electrically heated aerosol generating system 100 comprises an inner shell assembly 10, a heating element 30 and an outer shell 20.
  • the inner shell assembly 10 has a mounting cavity 11 and an accommodating portion 12 for accommodating an aerosol generating article 200, wherein the mounting cavity 11 is located below the accommodating portion 12.
  • the heating element 30 is provided in the mounting cavity 11 for heating the aerosol generating article 200 placed in the accommodating portion 12.
  • an annular plate may be provided between the accommodating portion 12 and the mounting cavity 11, and above the annular plate there is an accommodating space for accommodating the aerosol generating article 200.
  • An edge of the top of the heating element 30 abuts against the bottom of the annular plate, and the aerosol generating article 200 is placed on the accommodating portion 12 so that the bottom of the aerosol generating article 200 abuts against the top of the annular plate.
  • the accommodating portion 12 may also be designed into a tray-like structure for supporting the aerosol generating article.
  • the outer shell 20 is sleeved on the outside of the inner shell assembly 10, and a bottom of the outer shell 20 is connected in a sealed manner to a bottom of the inner shell assembly 10.
  • An air inlet channel 21 is provided at the top of the outer shell 20 and the top of the inner shell assembly 10,
  • An air flow passage 40 is provided between the outer shell 20 and the inner shell assembly 10, one end of the air flow passage 40 is in communication with the mounting cavity 11 and the other end thereof is in communication with the air inlet channel 21.
  • the air inlet channel 21 may be formed by a gap between an inner wall of the through-hole provided on the top of the outer shell 20 and an outer wall of the inner shell assembly 10 on the top thereof.
  • the electrically heated aerosol generating system 100 provided by an embodiment of the present application comprises an inner shell assembly 10, a heating element 30 and an outer shell 20.
  • the heating element 30 is mounted in a mounting cavity 11 of the inner shell assembly 10, and an air flow passage 40 is provided between the outer shell 20 and the inner shell assembly 10, and the air flow passage 40 is in communication with the mounting cavity 11.
  • the heating element is made of metal, ceramics or other heat-resistant materials. It is configured with a porous structure to allow gas to pass through. As heat is generated by the heating element 30 connected to a power supply, the hot gas flowing from the heating element 30 is drawn to the air flow passage 40 from the inner shell assembly 10, so that high-temperature gas is formed in the air flow passage 40 and is retained in the air flow passage 40.
  • the gas with the room-temperature from the outside flows into the air flow passage 40 via the air inlet channel 21 of the outer shell 20 and the inner shell assembly 10, and the high-temperature gas in the air flow passage 40 is replaced with the room-temperature gas.
  • the high-temperature gas flows into the mounting cavity 11 from the air flow passage 40, thereby transferring the heat to the heating element 30. Therefore, the heating efficiency of the heating element 30 is improved and the residual heat of the heating element 30 is effectively utilized.
  • the problem of a poor taste caused by insufficient heat of the heating body may be avoided.
  • the high-temperature gas in the air flow passage 40 is replaced with the external room-temperature gas, for example, the cool air flowing from the air inlet channel 21 takes heat away from the outer shell 20 through the air flow passage 40, the temperature of the inner shell assembly 10 and the outer shell 20 may be decreased, and thus cooling and heat dissipation can be achieved. That is, the effect of heat dissipation can be brought about at the same time.
  • the inner shell assembly 10 is provided thereon with a venting hole 13 configured to allow the mounting cavity 11 to be in communication with the air flow passage 40, and the venting hole 13 is located below the heating element 30, so that high-temperature gases in the air flow passage 40 flows into the mounting cavity 11 via the venting hole 13, and then are transferred to the heating element 30.
  • the high-temperature gas in the air flow passage 40 flows into the mounting cavity 11 via the venting hole 13, and thus the temperature of the heating body is increased.
  • the venting hole 13 is provided adjacent to the bottom of the inner shell assembly 10.
  • the venting hole 13 can have a shape of circular or polygonal.
  • venting holes 13 may be provided, and the plurality of venting holes 13 are circumferentially provided on the inner shell assembly 10.
  • the two opposite venting holes 13 may be provided on the inner shell assembly 10 in a manner of facing to each other.
  • the number of the venting holes 13 may be set to three, four or six, etc., and the arrangement of the venting holes may be designed upon actual requirements.
  • the electrically heated aerosol generating system 100 further comprises an insulating member 50 which is provided between the outer shell 20 and the inner shell assembly 10, and the air flow passage 40 is provided between the insulating member 50 and the outer shell 20.
  • the insulating member 50 is provided between the outer shell 20 and the inner shell assembly 10.
  • the heating element 30 is activated to generate heat, a part of the heat is used to directly heat the aerosol generating article 200, and the other part of the heat will be transferred to the insulating member 50, which is heated accordingly.
  • the insulating member 50 performs functions to absorb heat and store heat. Since the air flow passage 40 is located between the insulating member 50 and the outer shell 20, the heat absorbed by the insulating member 50 can be transferred to the air flow passage 40.
  • the insulating member 50 is a vacuum tube.
  • the cavity formed in the vacuum tube has a low thermal conductivity due to the special characteristics of the vacuum tube, and a large amount of heat will be conducted through the stainless-steel material, so that the inner and outer walls of the vacuum tube of the insulating member will generate heat.
  • the insulating member 50 can also be configured as other components capable of absorbing and transferring heat.
  • the insulating member 50 may be a sleeve made of phase change materials, etc.
  • the insulating member 50 may be selected as a sleeve 52 which comprises a first structural layer 521 and a second structural layer 522, wherein the first structural layer 521 surrounds the inner shell assembly 10 peripherally, the second structural layer 522 surrounds the first structural layer 521 peripherally, and defines a sealed annular cavity 523 with the first structural layer 521, and the sealed annular cavity 523 is a sealed cavity.
  • the annular cavity 523 may be designed to have a vacuum state, in which the heat conduction of the overall insulating member may be advanced and heat is quickly absorbed in a very short period of time, thereby achieving temperature reduction and heat dissipation.
  • the annular cavity 523 may also be filled with a liquid that is capable of quickly transferring heat from a side of the insulating member 50 that is adjacent to the inner shell assembly 10 to the other side of the insulating member 50 that is adjacent to the outer shell 20, for transferring heat rapidly and reducing temperature.
  • the annular cavity 523 may also be filled with inert gas.
  • a coating for reducing heat radiation is provided on a side of the second structural layer 522 that is away from the first structural layer 521.
  • the sleeve may be integrally formed of a metal material.
  • a coating is provided on the second structural layer 522, that is, the coating is applied to the outermost surface of the sleeve, thus the heat radiation may be reduced and the temperature of the outer shell 20 is reduced accordingly.
  • each of the two ends of the insulating member 50 is recessed towards the inner shell assembly 10 to form an arc-shaped part 51.
  • the arc-shaped parts 51 are provided at two ends of the insulating member 50, and the arc-shaped part 51 has a diameter gradually decreasing in an axial direction away from the insulating member 50.
  • the gap between the two ends of the insulating member 50 and the outer shell 20 increases, which allows the gas to flow into the air flow passage 40 at one end thereof from the air inlet channel 21 between the inner shell assembly 10 and the outer shell 20, and allows the high-temperature gas at the other end of the air flow passage 40 to enter the mounting cavity 11. Further, the length of the airflow passage 40 is extended.
  • an engaging part e.g., a position-limiting portion
  • a position-limiting portion is formed in the case that the insulating member 50 and the outer shell 20 are assembled, thereby facilitating the assembling between the insulating member 50 and the outer shell 20 in a restricted position and improving the reliability of the connection between them.
  • the venting hole 13 is partially shielded by the portion of the arc-shaped part 51 that is adjacent to the bottom of the inner shell assembly 10.
  • the arc-shaped part 51 near the inner shell assembly 10 is the arc-shaped part 51 at the bottom of the insulating member 50.
  • the venting hole 13 is partially shielded by the arc-shaped part 51, which allows the high-temperature gas in the air flow passage 40 to flow into the mounting cavity 11 via the venting hole 13.
  • the venting hole 13 is partially shielded by the arc-shaped part 51, the heat absorbed by the insulating member 50 can be dissipated directly from the arc-shaped part 51 for shielding the venting hole 13 into the mounting cavity 11 via the venting hole 13, thereby reducing the heat loss.
  • annular baffle plate 14 is provided at a bottom of the inner shell assembly 10,and the annular baffle plate 14 is provided with at least two padding blocks 141 on a side of the annular baffle plate 14 facing the insulating member 50, and the bottom of the insulating member 50 is abutted against the padding block 141.
  • an annular baffle plate 14 is provided at the bottom of the inner shell assembly 10 along the circumference of the inner shell assembly 10. At least two padding blocks 141 are provided on one side of the annular baffle plate 14, and two adjacent padding blocks 141 are spaced apart from each other. Optionally, the two padding blocks 141 may be oppositely provided on two sides of the inner shell assembly 10, so that the bottom of the insulating member 50 is abutted against the padding blocks 141 which prevents the insulating member 50 from moving down.
  • the number of the padding block 141 may be set as three, four or five, etc., and the plurality of padding block 141 are provided on the annular baffle plate 14 in a manner of being spaced part from one another in the circumferential direction of the inner shell assembly 10.
  • the air flow passage 40 is defined by an inner wall of the outer shell 20 and an outer wall of the insulating member 50.
  • the air flow passage 40 is configured as a spiral groove 22 circumferentially provided at the inner wall of the outer shell 20.
  • the air flow passage 40 may also be configured as a spiral groove circumferentially provided at the outer wall of the insulating member 50(not shown in the figures) . In this way, the air flow passage 40 may be provided spirally so that the gas flows within the air flow passage 40 that circumferentially provided at the inner wall of the outer shell 20, thereby improving the uniformity of heat dissipation and temperature decreasing.
  • each of the air flow passages 40 there are at least two air flow passages 40 extending in an axial direction of the outer shell 20, and the orthographic projection area of each of the air flow passages 40 is not less than 0.5 square millimeters.
  • the number of the spiral air flow passage 40 is set as four, and the four air flow passages 40 are distributed symmetrically in pairs.
  • the air flow passages 40 may also be provided in the number of three, five, six, etc.
  • each air flow passages 40 may have an equal or unequal projection area on the horizontal plane, which is designed upon actual requirements.
  • a sealing ring 60 is provided at a part of the inner shell assembly 10 that is adjacent to a bottom of the inner shell assembly, and the inner wall of the outer shell 20 is abutted against the sealing ring 60 so as to connect the bottom of the outer shell 20 with the bottom of the inner shell assembly 10 in a sealed manner.
  • the bottom of the outer shell 20 is connected in a sealed manner to the bottom of the inner shell assembly 10.
  • a sealing ring 60 is provided on the inner shell assembly 10.
  • the outer shell 20 is sleeved on the inner shell assembly 10, a part of the outer shell 20 that is adjacent to the bottom of the outer shell 20 is abutted against the sealing ring 60, so as to connect the bottom of the outer shell 20 with the bottom of the inner shell assembly 10 in a sealed manner.
  • the sealing ring 60 may be made of a resilient rubber material.
  • bottom of the outer shell 20 and the bottom of the inner shell assembly 10 may also be secured and sealed with a sealant.
  • other sealing modes may also be chosen to seal the bottom of the outer shell 20 to the bottom of the inner shell assembly 10, which will not be exemplified here.
  • the present application provides an electrically heated aerosol generating system 100 comprising an inner shell assembly 10, a heating element 30 and an outer shell 20.
  • the heating element 30 is mounted in a mounting cavity 11 of the inner shell assembly 10, and an air flow passage 40 is provided between the outer shell 20 and the inner shell assembly 10, and the air flow passage 40 is in communication with the mounting cavity 11.
  • the heating element is made of metal, ceramics or other heat-resistant materials.
  • the heating element may be configured with a porous structure to allow gas to pass through.
  • the hot gas flowing from the heating element 30 is drawn from the inner shell assembly 10 to the air flow passage 40, so that high-temperature gas is generated in the air flow passage 40 and is retained in the air flow passage 40.
  • the external room-temperature gas flows into the air flow passage 40 from the air inlet channel 21 arranged in the outer shell 20 and the inner shell assembly 10, and the high-temperature gas in the air flow passage 40 is replaced with the room-temperature gas.
  • the high-temperature gas enters the mounting cavity 11 from the air flow passage 40, thereby transferring the heat to the heating element 30.
  • the heating efficiency of the heating element 30 is improved and the residual heat of the heating element 30 is effectively utilized.
  • the residual heat is utilized more effectively, and the problem that the user has a poor taste after his/her first puffing of cigarettes is avoided.
  • the temperature of the inner shell assembly 10 and the outer shell 20 may be decreased, and thus a heat dissipation and cooling is achieved. That is, the effect of heat dissipation can be brought about at the same time.
  • the present application provides an electrically heated aerosol generating system, and relates to the technical field of electronic cigarettes.
  • the electrically heated aerosol generating system comprises an inner shell assembly, a heating element and an outer shell.
  • the heating element is provided in a mounting cavity of the inner shell assembly for heating the aerosol generating article in the accommodating portion.
  • the outer shell is sleeved on the outside of the inner shell assembly, and a bottom of the outer shell is connected in a sealed manner to a bottom of the inner shell assembly.
  • An air inlet channel is defined between the outer shell and the inner shell assembly and an air flow passage is provided between the outer shell and the inner shell assembly. The air flow passage is in communication with the mounting cavity and the air inlet channel, respectively.
  • the electrically heated aerosol generating system provided by the present application, when a user is inhaling aerosol generated by an aerosol generating article, the external room-temperature gas flows into the air flow passage, and the high-temperature gas in the air flow passage is replaced with the room-temperature gas. Under the action of the sucking airflow, the high-temperature gas flows into the mounting cavity from the air flow passage, thereby transferring the heat to the heating element. Therefore, the heating efficiency of the heating element is improved and the residual heat of the heating element is effectively utilized.
  • the electrically heated aerosol generating system, the heating assembly, etc. of the present application are reproducible and are applied in a variety of industrial applications.
  • the electrically heated aerosol generating system of the present application is applied in the technical field of electronic cigarettes.

Landscapes

  • Resistance Heating (AREA)
  • Manipulator (AREA)

Abstract

The present application discloses an electrically heated aerosol generating system, and relates to the technical field of electronic cigarettes. The electrically heated aerosol generating system comprises an inner shell assembly, a heating element and an outer shell. The heating element is provided in a mounting cavity of the inner shell assembly for heating the aerosol generating article in the accommodating portion. The outer shell is sleeved on the outside of the inner shell assembly, and a bottom of the outer shell is connected in a sealed manner to a bottom of the inner shell assembly. An air inlet channel is defined by the outer shell and the inner shell assembly, and an air flow passage is provided between the outer shell and the inner shell assembly, and the air flow passage is in communication with the mounting cavity and the air inlet channel, respectively. With the electrically heated aerosol generating system provided by the present application, when a user is inhaling aerosol generated by an aerosol generating article, the external room-temperature gas flows into the air flow passage, and the high-temperature gas in the air flow passage is replaced with the room-temperature gas, and under the action of the sucking airflow, the high-temperature gas enters the mounting cavity from the air flow passage, thereby transferring the heat to the heating element. Therefore, the heating efficiency of the heating element is improved and the residual heat of the heating element is effectively utilized.

Description

Electrically Heated Aerosol Generating System
Cross-reference to related applications
The present application claims priority to Chinese patent application No. 2021234511405, entitled “Electrically heated aerosol generating system” , filed with China National Intellectual Property Administration (CNIPA) on December 31, 2021, the entire contents of which are incorporated by reference in the present application.
Technical Field
The present application relates to the technical field of electronic cigarettes, and in particular to an electrically heated aerosol generating system.
Background Art
Currently, as electronic products become popular in the cigarette technology, more and more smokers are using electrically heated aerosol generating systems. Among them, there is a conventional electrically heated aerosol generating system in which cigarettes are not burned, wherein the main principle thereof is to bake the low-temperature non-burning cigarettes through a heating body, and to produce smoke by baking, which smoke is then inhaled by a smoker. A heating non-burning atomization system is an aerosol generating system in which the aerosol generation material is heated with low temperature but is not burnt, so that an aerosol that can be inhaled is generated. Currently, the aerosol generating system usually has a heating mode of either a tubular peripheral type heating or a central insertion type heating. The tubular peripheral heating means that the heating tube surrounds outside of the aerosol generating substrate. The heating temperature for the heating and non-burning system is generally 220℃ to 450℃. When a user holds the aerosol generating device in his hand for smoking, the high-temperature heat inside the aerosol generating system will be transferred to the outer shell of the aerosol generating system, resulting in a hot sensation on the hand. On the other hand, the residual heat of the internal heating body of the electrically heated aerosol generating system in the related technology is conducted to the housing and then dissipated to the outside via the housing, such that its heat energy cannot be well utilized and the heating efficiency of its heating body is reduced. In this way, when in use, the electrically heated aerosol generating system presents a good taste when the smoker takes his/her first puff of cigarettes, but as the suctioning continues, the electrically heated aerosol generating system has a problem where a poor taste reproduction occurs due to small amount of smoke caused by the insufficient heating amount generated by the electrically heated aerosol generating system.
Summary
In view of the above, the present application provides an electrically heated aerosol generating system to solve the technical problem of a low utilization efficiency of the residual heat in the electrically heated aerosol generating system in related technology.
The present application provides:
an electrically heated aerosol generating system which may comprise:
an inner shell assembly which may have a mounting cavity and an accommodating portion for accommodating an aerosol generating article, wherein the mounting cavity may be located below the accommodating portion;
a heating element which may be provided in the mounting cavity for heating the aerosol generating article accommodated in the accommodating portion; and
an outer shell which may be sleeved on the outside of the inner shell assembly, wherein a bottom of the outer shell is connected in a sealed manner to a bottom of the inner shell assembly, a top of the outer shell and a top of the inner shell assembly are configured to form an air inlet channel (for example, the air inlet channel may be provided at the top of the outer shell and at the top of the inner shell assembly) , and an air flow passage may be provided between the outer shell and the inner shell assembly, one end of the air flow passage is in communication with the mounting cavity and the other end of the air flow passage is in communication with the air inlet channel.
In some embodiments of the present application, the inner shell assembly may be provided thereon with a venting hole allowing the mounting cavity to be in communication with the air flow passage, and the venting hole may be located below the heating element, so that external gases flows sequentially from the air inlet channel to the air flow passage, and flows into the mounting cavity via the venting hole, thereby being transferred to the heating element.
In some embodiments of the present application, the electrically heated aerosol generating system may further comprise an insulating member which is provided between the outer shell and the inner shell assembly, and the air flow passage is positioned between the insulating member and the outer shell.
In some embodiments of the present application, each of the two ends of the insulating member is recessed towards the inner shell assembly to form an arc-shaped part.
In some embodiments of the present application, the venting hole, provided on the inner shell assembly and being in communication with the air flow passage, is partially shielded by the portion of the arc-shaped part that is adjacent to the bottom of the inner shell assembly.
In some embodiments of the present application, the insulating member may be a sleeve which may comprise a first structural layer and a second structural layer, wherein the first structural layer may surround the inner shell assembly peripherally, the second structural layer may surround the first structural layer peripherally, and defines a sealed annular cavity with the first structural layer.
In some embodiments of the present application, the annular cavity may be a vacuum cavity; or the annular cavity may be filled with an inert gas; or the annular cavity is filled with liquid.
In some embodiments of the present application, a coating that reduces heat radiation is provided on a side of the second structural layer that is away from the first structural layer.
In some embodiments of the present application, an annular baffle plate is provided on a bottom of the inner shell assembly, the insulating member is clamped between a top of the inner shell assembly and the annular baffle plate, a gap is provided between the bottom of the insulating member and the annular baffle plate to allow the gas to pass through the gap and flow into the mounting cavity via the venting hole.
In some embodiments of the present application, the annular baffle plate may be provided with a padding block (e.g., at least two padding blocks) on the side of the annular baffle plate facing the insulating member, and the bottom of the insulating member may be abutted against the padding block so that the gap is formed.
In some embodiments of the present application, the air flow passage may be defined by an inner wall of the outer shell and an outer wall of the insulating member.
In some embodiments of the present application, a spiral groove is circumferentially provided in an inner wall of the outer shell, and the air flow passage may be defined between the spiral groove and the outer wall of the insulating member; or a spiral groove is circumferentially provided in an outer wall of the insulating member, and the air flow passage may be defined between the spiral groove and the inner wall of the outer shell.
In some embodiments of the present application, there are at least two air flow passages extending in an axial direction of the outer shell, and the orthographic projection area of each of the air flow passages may be not less than 0.5 square millimeters.
In some embodiments of the present application, a sealing ring may be provided at the portion of the inner shell assembly that is adjacent to the bottom thereof, and the inner wall of the outer shell may be abutted against the sealing ring so as to connect the bottom of the outer shell with the bottom of the inner shell assembly in a sealed manner.
Compared with the related technology, the present application brings about at least the following  advantageous effects. The present application proposes an electrically heated aerosol generating system comprising an inner shell assembly, a heating element, and an outer shell. The heating element is mounted in a mounting cavity of the inner shell assembly, and an air flow passage is provided between the outer shell and the inner shell assembly, and the air flow passage is in communication with the mounting cavity. In the present application, the heating element is made of metal, ceramics or other heat-resistant materials. The heating element may be configured with a porous structure to allow gas to pass through. In the case that heat is generated by the heating element 30 connected to a power supply, the hot gas flowing from the heating element is drawn to the air flow passage from the inner shell assembly, so that high-temperature gas is formed in the air flow passage and is retained in the air flow passage. In this way, when a user is inhaling the aerosol generated by an aerosol generating article, the external gas with the room-temperature enters the air flow passage from the air inlet channel arranged in the outer shell and the inner shell assembly, and the high-temperature gas in the air flow passage is replaced with the room-temperature gas. Under the action of sucking airflow, the high-temperature gas enters the mounting cavity from the air flow passage, thereby transferring the heat to the heating element. Therefore, the heating efficiency of the heating element is improved and the residual heat of the heating element is effectively utilized. In addition, in the case that the high-temperature gas in the air flow passage is replaced with the the room-temperature gas, the temperature of the inner shell assembly and the outer shell may be decreased, and thus cooling and heat dissipation can be achieved. That is, the effect of heat dissipation can be brought about at the same time.
Brief Description of the Drawings
To illustrate the technical solution of the embodiment of the present application more clearly, drawings required for use in the embodiments will be introduced briefly below. It should be understood that the following drawings show only some embodiments of the present application and therefore should not be considered as a limitation to the protection scope, and those ordinarily skilled in the art may obtain other related drawings in the light of the drawings without any inventive efforts.
FIG. 1 illustrates a schematic view showing an assembling and using state of an electrically heated aerosol generating system with an aerosol generating article in some embodiments of the present application;
FIG. 2 illustrates a perspective schematic view of an electrically heated aerosol generating system in some embodiments of the present application;
FIG. 3 illustrates a schematic cross-section view of the structure taken along a line A-A in FIG.  2;
FIG. 4 illustrates an enlarged, structural schematic view of a portion B shown in FIG. 3;
FIG. 5 illustrates a structural schematic view of an electrically heated aerosol generating system with the outer shell removed in some embodiments of the present application;
FIG. 6 illustrates a structural schematic view of an electrically heated aerosol generating system in FIG. 5 with the insulating member removed in some embodiments of the present application;
FIG. 7 illustrates an exploded, structural schematic view of an electrically heated aerosol generating system in some embodiments of the present application;
FIG. 8 illustrates a partial sectional view of an electrically heated aerosol generating system in some embodiments of the present application;
FIG. 9 illustrates a structural schematic view of the insulating member of an electrically heated aerosol generating system in some embodiments of the present application; and
FIG. 10 illustrates a schematic cross-section view of the structure taken along a line C-C in FIG. 9.
Illustration of Reference Signs of main elements:
100-electrically heated aerosol generating system; 10-inner shell assembly; 11-mounting cavity; 12-accommodating portion; 13-venting hole; 14-annular baffle plate; 141-padding block; 20-outer shell; 21-air inlet channel; 22-spiral groove; 30-heating element; 40-air flow passage; 50-insulating member; 51-arc-shaped part; 52-sleeve; 521-first structural layer; 522-second structural layer; 523-annular cavity; 60-sealing ring; 200-aerosol generating article.
Detailed Description of the Embodiments
The embodiments of the present application are described in detail below, and examples of the embodiments are shown in the accompanying drawings, wherein the same or similar reference signs throughout indicate the same or similar elements or elements having the same or similar functions. The embodiments described below by reference to the accompanying drawings are exemplary and are intended only to explain the present application and are not to be construed as limiting the present application.
In the description of the present application, it is to be understood that orientation or positional relations indicated by terms such as “upper” , “lower” , “horizontal” , “top” , “bottom” , “inside” , “outside” , “axial” , and “circumferential” are based on the orientation or positional relations as shown in the figures, only for facilitating description of the present application and simplifying the description, rather than indicating or implying that the referred devices or elements must be in a  particular orientation or constructed or heated in the particular orientation, and therefore they should not be construed as limiting the present application.
As shown in FIGS. 1 to 4, an embodiment of the present application provides an electrically heated aerosol generating system 100 primarily used for heating non-burning tobaccos (aerosol generating articles 200) to be inhaled by a user. The electrically heated aerosol generating system 100 comprises an inner shell assembly 10, a heating element 30 and an outer shell 20.
Reference is made to Fig. 6, specifically the inner shell assembly 10 has a mounting cavity 11 and an accommodating portion 12 for accommodating an aerosol generating article 200, wherein the mounting cavity 11 is located below the accommodating portion 12. In this way, the heating element 30 is provided in the mounting cavity 11 for heating the aerosol generating article 200 placed in the accommodating portion 12. When a user inhales aerosol generated from an aerosol generating article by the electrically heated aerosol generating system 100, the accommodating portion 12 is primarily used to receive the aerosol generating article 200, and the heating element 30 directly heats the aerosol generating article 200.
It is noted that an annular plate may be provided between the accommodating portion 12 and the mounting cavity 11, and above the annular plate there is an accommodating space for accommodating the aerosol generating article 200. An edge of the top of the heating element 30 abuts against the bottom of the annular plate, and the aerosol generating article 200 is placed on the accommodating portion 12 so that the bottom of the aerosol generating article 200 abuts against the top of the annular plate. In this way, as the heating element 30 generates heat, the heat is transferred through the hollow portion of the annular plate to directly heat the aerosol generating article 200. In addition, the accommodating portion 12 may also be designed into a tray-like structure for supporting the aerosol generating article.
The outer shell 20 is sleeved on the outside of the inner shell assembly 10, and a bottom of the outer shell 20 is connected in a sealed manner to a bottom of the inner shell assembly 10. An air inlet channel 21 is provided at the top of the outer shell 20 and the top of the inner shell assembly 10, An air flow passage 40 is provided between the outer shell 20 and the inner shell assembly 10, one end of the air flow passage 40 is in communication with the mounting cavity 11 and the other end thereof is in communication with the air inlet channel 21.
It is noted that the air inlet channel 21 may be formed by a gap between an inner wall of the through-hole provided on the top of the outer shell 20 and an outer wall of the inner shell assembly 10 on the top thereof.
The electrically heated aerosol generating system 100 provided by an embodiment of the present application comprises an inner shell assembly 10, a heating element 30 and an outer shell 20. The heating element 30 is mounted in a mounting cavity 11 of the inner shell assembly 10, and an air flow passage 40 is provided between the outer shell 20 and the inner shell assembly 10, and the air flow passage 40 is in communication with the mounting cavity 11. In the present application, the heating element is made of metal, ceramics or other heat-resistant materials. It is configured with a porous structure to allow gas to pass through. As heat is generated by the heating element 30 connected to a power supply, the hot gas flowing from the heating element 30 is drawn to the air flow passage 40 from the inner shell assembly 10, so that high-temperature gas is formed in the air flow passage 40 and is retained in the air flow passage 40. In this way, when a user is inhaling aerosol generated by the aerosol generating article 200, the gas with the room-temperature from the outside flows into the air flow passage 40 via the air inlet channel 21 of the outer shell 20 and the inner shell assembly 10, and the high-temperature gas in the air flow passage 40 is replaced with the room-temperature gas. Under the action of the sucking airflow, the high-temperature gas flows into the mounting cavity 11 from the air flow passage 40, thereby transferring the heat to the heating element 30. Therefore, the heating efficiency of the heating element 30 is improved and the residual heat of the heating element 30 is effectively utilized. In this way, when the smoker puffs continuously the aerosol by using the electrically heated aerosol generating system, the problem of a poor taste caused by insufficient heat of the heating body may be avoided. In addition, in the case that the high-temperature gas in the air flow passage 40 is replaced with the external room-temperature gas, for example, the cool air flowing from the air inlet channel 21 takes heat away from the outer shell 20 through the air flow passage 40, the temperature of the inner shell assembly 10 and the outer shell 20 may be decreased, and thus cooling and heat dissipation can be achieved. That is, the effect of heat dissipation can be brought about at the same time.
As shown in FIGS. 3 and 8, optionally, the inner shell assembly 10 is provided thereon with a venting hole 13 configured to allow the mounting cavity 11 to be in communication with the air flow passage 40, and the venting hole 13 is located below the heating element 30, so that high-temperature gases in the air flow passage 40 flows into the mounting cavity 11 via the venting hole 13, and then are transferred to the heating element 30.
Specifically, the high-temperature gas in the air flow passage 40 flows into the mounting cavity 11 via the venting hole 13, and thus the temperature of the heating body is increased. Optionally, the venting hole 13 is provided adjacent to the bottom of the inner shell assembly 10. The venting hole  13 can have a shape of circular or polygonal.
In addition, it is noted that a plurality of venting holes 13 may be provided, and the plurality of venting holes 13 are circumferentially provided on the inner shell assembly 10. In the case that two venting holes 13 are provided, the two opposite venting holes 13 may be provided on the inner shell assembly 10 in a manner of facing to each other. Of course, the number of the venting holes 13 may be set to three, four or six, etc., and the arrangement of the venting holes may be designed upon actual requirements.
As shown in FIGS. 3 to 5, in some embodiments of the present application, optionally, the electrically heated aerosol generating system 100 further comprises an insulating member 50 which is provided between the outer shell 20 and the inner shell assembly 10, and the air flow passage 40 is provided between the insulating member 50 and the outer shell 20.
In the present embodiment, the insulating member 50 is provided between the outer shell 20 and the inner shell assembly 10. In this way, the heating element 30 is activated to generate heat, a part of the heat is used to directly heat the aerosol generating article 200, and the other part of the heat will be transferred to the insulating member 50, which is heated accordingly. Once the insulating member 50 is heated, heat collection is implemented, the insulating member 50 performs functions to absorb heat and store heat. Since the air flow passage 40 is located between the insulating member 50 and the outer shell 20, the heat absorbed by the insulating member 50 can be transferred to the air flow passage 40.
Optionally, the insulating member 50 is a vacuum tube. The cavity formed in the vacuum tube has a low thermal conductivity due to the special characteristics of the vacuum tube, and a large amount of heat will be conducted through the stainless-steel material, so that the inner and outer walls of the vacuum tube of the insulating member will generate heat. Of course, the insulating member 50 can also be configured as other components capable of absorbing and transferring heat. For example, the insulating member 50 may be a sleeve made of phase change materials, etc.
As shown in FIGS. 9 and 10, optionally, in the present embodiment, the insulating member 50 may be selected as a sleeve 52 which comprises a first structural layer 521 and a second structural layer 522, wherein the first structural layer 521 surrounds the inner shell assembly 10 peripherally, the second structural layer 522 surrounds the first structural layer 521 peripherally, and defines a sealed annular cavity 523 with the first structural layer 521, and the sealed annular cavity 523 is a sealed cavity. With such a design, the annular cavity 523 may be designed to have a vacuum state, in which the heat conduction of the overall insulating member may be advanced and heat is quickly  absorbed in a very short period of time, thereby achieving temperature reduction and heat dissipation. Of course, the annular cavity 523 may also be filled with a liquid that is capable of quickly transferring heat from a side of the insulating member 50 that is adjacent to the inner shell assembly 10 to the other side of the insulating member 50 that is adjacent to the outer shell 20, for transferring heat rapidly and reducing temperature. Alternatively, the annular cavity 523 may also be filled with inert gas.
Optionally, a coating for reducing heat radiation is provided on a side of the second structural layer 522 that is away from the first structural layer 521. Optionally, the sleeve may be integrally formed of a metal material. A coating is provided on the second structural layer 522, that is, the coating is applied to the outermost surface of the sleeve, thus the heat radiation may be reduced and the temperature of the outer shell 20 is reduced accordingly.
As shown in FIGS. 4, 9 and 10, in some embodiments of the present application, optionally, each of the two ends of the insulating member 50 is recessed towards the inner shell assembly 10 to form an arc-shaped part 51.
In the present embodiment, the arc-shaped parts 51 are provided at two ends of the insulating member 50, and the arc-shaped part 51 has a diameter gradually decreasing in an axial direction away from the insulating member 50. Thus, the gap between the two ends of the insulating member 50 and the outer shell 20 increases, which allows the gas to flow into the air flow passage 40 at one end thereof from the air inlet channel 21 between the inner shell assembly 10 and the outer shell 20, and allows the high-temperature gas at the other end of the air flow passage 40 to enter the mounting cavity 11. Further, the length of the airflow passage 40 is extended. In addition, with the provision of the arc-shaped part 51, an engaging part (e.g., a position-limiting portion) is formed in the case that the insulating member 50 and the outer shell 20 are assembled, thereby facilitating the assembling between the insulating member 50 and the outer shell 20 in a restricted position and improving the reliability of the connection between them.
As shown in FIG. 5, in some embodiments of the present application, optionally, the venting hole 13 is partially shielded by the portion of the arc-shaped part 51 that is adjacent to the bottom of the inner shell assembly 10.
In the present embodiment, the arc-shaped part 51 near the inner shell assembly 10 is the arc-shaped part 51 at the bottom of the insulating member 50. The venting hole 13 is partially shielded by the arc-shaped part 51, which allows the high-temperature gas in the air flow passage 40 to flow into the mounting cavity 11 via the venting hole 13. With the provision that the venting hole  13 is partially shielded by the arc-shaped part 51, the heat absorbed by the insulating member 50 can be dissipated directly from the arc-shaped part 51 for shielding the venting hole 13 into the mounting cavity 11 via the venting hole 13, thereby reducing the heat loss.
As shown in FIGS. 6 and 7, in some embodiments of the insulating member 50 of the present application, optionally, an annular baffle plate 14 is provided at a bottom of the inner shell assembly 10,and the annular baffle plate 14 is provided with at least two padding blocks 141 on a side of the annular baffle plate 14 facing the insulating member 50, and the bottom of the insulating member 50 is abutted against the padding block 141.
In the present embodiment, in order to facilitate the mounting and fixing of the insulating member 50, an annular baffle plate 14 is provided at the bottom of the inner shell assembly 10 along the circumference of the inner shell assembly 10. At least two padding blocks 141 are provided on one side of the annular baffle plate 14, and two adjacent padding blocks 141 are spaced apart from each other. Optionally, the two padding blocks 141 may be oppositely provided on two sides of the inner shell assembly 10, so that the bottom of the insulating member 50 is abutted against the padding blocks 141 which prevents the insulating member 50 from moving down. Moreover, with the configuration of the padding block 141, there is a gap between the annular baffle plate 14 and the bottom of the insulating member 50, and thus the gas is allowed to pass through the gap and then flow into the mounting cavity 11 via the venting hole 13. Such a design prevents from a risk that the venting hole 13 is completely blocked by the insulating member 50 in the case that the insulating member 50 is mounted.
It is noted that the number of the padding block 141 may be set as three, four or five, etc., and the plurality of padding block 141 are provided on the annular baffle plate 14 in a manner of being spaced part from one another in the circumferential direction of the inner shell assembly 10.
As shown in FIGS. 3 and 8, an additional further improved embodiment of the electrically heated aerosol generating system 100 is provided based on the embodiments described above. In such an embodiment, optionally, the air flow passage 40 is defined by an inner wall of the outer shell 20 and an outer wall of the insulating member 50.
Specifically, the air flow passage 40 is configured as a spiral groove 22 circumferentially provided at the inner wall of the outer shell 20. In addition, the air flow passage 40 may also be configured as a spiral groove circumferentially provided at the outer wall of the insulating member 50(not shown in the figures) . In this way, the air flow passage 40 may be provided spirally so that the gas flows within the air flow passage 40 that circumferentially provided at the inner wall of the  outer shell 20, thereby improving the uniformity of heat dissipation and temperature decreasing.
As shown in FIG. 8, optionally, there are at least two air flow passages 40 extending in an axial direction of the outer shell 20, and the orthographic projection area of each of the air flow passages 40 is not less than 0.5 square millimeters.
In the present embodiment, the number of the spiral air flow passage 40 is set as four, and the four air flow passages 40 are distributed symmetrically in pairs. Of course, the air flow passages 40 may also be provided in the number of three, five, six, etc. In addition, each air flow passages 40 may have an equal or unequal projection area on the horizontal plane, which is designed upon actual requirements.
As shown in FIGS. 4 to 7, another further improved embodiment of the electrically heated aerosol generating system 100 is provided based on the embodiments described above. In the embodiment, optionally, a sealing ring 60 is provided at a part of the inner shell assembly 10 that is adjacent to a bottom of the inner shell assembly, and the inner wall of the outer shell 20 is abutted against the sealing ring 60 so as to connect the bottom of the outer shell 20 with the bottom of the inner shell assembly 10 in a sealed manner.
In the present embodiment, the bottom of the outer shell 20 is connected in a sealed manner to the bottom of the inner shell assembly 10. A sealing ring 60 is provided on the inner shell assembly 10.The outer shell 20 is sleeved on the inner shell assembly 10, a part of the outer shell 20 that is adjacent to the bottom of the outer shell 20 is abutted against the sealing ring 60, so as to connect the bottom of the outer shell 20 with the bottom of the inner shell assembly 10 in a sealed manner. Optionally, the sealing ring 60 may be made of a resilient rubber material.
It is appreciated that the bottom of the outer shell 20 and the bottom of the inner shell assembly 10 may also be secured and sealed with a sealant. Of course, other sealing modes may also be chosen to seal the bottom of the outer shell 20 to the bottom of the inner shell assembly 10, which will not be exemplified here.
In summary, the present application provides an electrically heated aerosol generating system 100 comprising an inner shell assembly 10, a heating element 30 and an outer shell 20. The heating element 30 is mounted in a mounting cavity 11 of the inner shell assembly 10, and an air flow passage 40 is provided between the outer shell 20 and the inner shell assembly 10, and the air flow passage 40 is in communication with the mounting cavity 11. In the present application, the heating element is made of metal, ceramics or other heat-resistant materials. The heating element may be configured with a porous structure to allow gas to pass through. In the case that heat is generated by  the heating element 30 connected to a power supply, the hot gas flowing from the heating element 30 is drawn from the inner shell assembly 10 to the air flow passage 40, so that high-temperature gas is generated in the air flow passage 40 and is retained in the air flow passage 40. In this way, when a user is inhaling aerosol generated by an aerosol generating article 200, the external room-temperature gas flows into the air flow passage 40 from the air inlet channel 21 arranged in the outer shell 20 and the inner shell assembly 10, and the high-temperature gas in the air flow passage 40 is replaced with the room-temperature gas. Under the action of the sucking airflow, the high-temperature gas enters the mounting cavity 11 from the air flow passage 40, thereby transferring the heat to the heating element 30. Therefore, the heating efficiency of the heating element 30 is improved and the residual heat of the heating element 30 is effectively utilized. In this way, with respect to the defect that the heating body has a low heating efficiency in the later stage in the related technology, the residual heat is utilized more effectively, and the problem that the user has a poor taste after his/her first puffing of cigarettes is avoided. In addition, in the case that the high-temperature gas in the air flow passage 40 is replaced with the external room-temperature gas, the temperature of the inner shell assembly 10 and the outer shell 20 may be decreased, and thus a heat dissipation and cooling is achieved. That is, the effect of heat dissipation can be brought about at the same time.
Although embodiments of the present application have been shown and described above, it is understood that the above embodiments are exemplary and are not to be construed as limiting the present application, and variations, modifications, replacements and variants of the above embodiments may be made by those ordinarily skilled in the art within the scope of the present application.
Industrial Applicability
The present application provides an electrically heated aerosol generating system, and relates to the technical field of electronic cigarettes. The electrically heated aerosol generating system comprises an inner shell assembly, a heating element and an outer shell. The heating element is provided in a mounting cavity of the inner shell assembly for heating the aerosol generating article in the accommodating portion. The outer shell is sleeved on the outside of the inner shell assembly, and a bottom of the outer shell is connected in a sealed manner to a bottom of the inner shell assembly. An air inlet channel is defined between the outer shell and the inner shell assembly and an air flow passage is provided between the outer shell and the inner shell assembly. The air flow passage is in communication with the mounting cavity and the air inlet channel, respectively. With the electrically heated aerosol generating system provided by the present application, when a user is inhaling aerosol  generated by an aerosol generating article, the external room-temperature gas flows into the air flow passage, and the high-temperature gas in the air flow passage is replaced with the room-temperature gas. Under the action of the sucking airflow, the high-temperature gas flows into the mounting cavity from the air flow passage, thereby transferring the heat to the heating element. Therefore, the heating efficiency of the heating element is improved and the residual heat of the heating element is effectively utilized.
In addition, it is understood that the electrically heated aerosol generating system, the heating assembly, etc. of the present application are reproducible and are applied in a variety of industrial applications. For example, the electrically heated aerosol generating system of the present application is applied in the technical field of electronic cigarettes.

Claims (12)

  1. An electrically heated aerosol generating system, characterized in that the electrically heated aerosol generating system (100) comprises:
    an inner shell assembly (10) which has a mounting cavity (11) and an accommodating portion (12) for accommodating an aerosol generating article (200) , wherein the mounting cavity (11) is located below the accommodating portion (12) ;
    a heating element (30) which is provided in the mounting cavity (11) for heating the aerosol generating article (200) received in the accommodating portion (12) ; and
    an outer shell (20) which is sleeved on the outside of the inner shell assembly (10) , wherein a bottom of the outer shell (20) is connected to a bottom of the inner shell assembly (10) in a sealed manner, a top of the outer shell (20) and a top of the inner shell assembly (10) are configured to form an air inlet channel (21) , and an air flow passage (40) is provided between the outer shell (20) and the inner shell assembly (10) , one end of the air flow passage (40) is in communication with the mounting cavity (11) and the other end of the air flow passage (40) is in communication with the air inlet channel (21) .
  2. The electrically heated aerosol generating system according to claim 1, wherein the electrically heated aerosol generating system further comprises an insulating member (50) which is provided between the outer shell (20) and the inner shell assembly (10) , and the air flow passage (40) is positioned between the insulating member (50) and the outer shell (20) .
  3. The electrically heated aerosol generating system according to claim 2, wherein a spiral groove (22) is circumferentially provided on an inner wall of the outer shell (20) , and the air flow passage (40) is defined by the spiral groove (22) and an outer wall of the insulating member (50) ; or
    a spiral groove (22) is circumferentially provided on an outer wall of the insulating member (50) , and the air flow passage (40) is defined by the spiral groove (22) and the inner wall of the outer shell (20) .
  4. The electrically heated aerosol generating system according to claim 2, wherein the air flow passage (40) is defined by an inner wall of the outer shell (20) and an outer wall of the insulating member (50) .
  5. The electrically heated aerosol generating system according to any of claims 2 to  4, wherein there are at least two air flow passages (40) extending in an axial direction of the outer shell (20) , and the orthographic projection area of each of the air flow passages (40) on a horizontal plane is not less than 0.5 square millimeters.
  6. The electrically heated aerosol generating system according to any of claims 2 to 5, wherein the inner shell assembly (10) is provided thereon with a venting hole (13) for allowing the mounting cavity (11) to be in communication with the air flow passage (40) , and the venting hole (13) is located below the heating element (30) , so that external gas flows sequentially through the air inlet channel (21) and the air flow passage (40) , and flows into the mounting cavity (11) via the venting hole (13) , thereby being transferred to the heating element (30) .
  7. The electrically heated aerosol generating system according to claim 6, wherein each of the two ends of the insulating member (50) is recessed towards the inner shell assembly (10) to form an arc-shaped part (51) .
  8. The electrically heated aerosol generating system according to claim 7, wherein the venting hole (13) , provided on the inner shell assembly (10) and being in communication with the air flow passage (40) , is partially shielded by the portion of the arc-shaped part (51) that is adjacent to the bottom of the inner shell assembly (10) .
  9. The electrically heated aerosol generating system according to any of claims 6 to 8, wherein an annular baffle plate (14) is provided at the bottom of the inner shell assembly (10) , the insulating member (50) is clamped between a top of the inner shell assembly (10) and the annular baffle plate (14) , a gap is provided between the bottom of the insulating member (50) and the annular baffle plate (14) to allow gas to pass through the gap and flow into the mounting cavity (11) via the venting hole (13) .
  10. The electrically heated aerosol generating system according to claim 9, wherein the annular baffle plate (14) is provided with a padding block (141) on the side of the annular baffle plate facing the insulating member (50) , and the bottom of the insulating member (50) is abutted against the padding block (141) to form the gap.
  11. The electrically heated aerosol generating system according to any of claims 2 to 10, wherein the insulating member (50) is a sleeve (52) which comprises a first structural layer (521) and a second structural layer (522) , the first structural layer (521) surrounds the inner shell assembly (10) peripherally, the second structural layer (522) surrounds the first structural layer (521) peripherally and defines a sealed annular cavity  (523) with the first structural layer (521) .
  12. The electrically heated aerosol generating system according to any of claims 1 to 11, wherein a sealing ring (60) is provided at the portion of the inner shell assembly (10) that is adjacent to the bottom thereof, and an inner wall of the outer shell (20) is abutted against the sealing ring (60) so as to connect the bottom of the outer shell (20) with the bottom of the inner shell assembly (10) in a sealed manner.
PCT/CN2022/142889 2021-12-31 2022-12-28 Electrically heated aerosol generating system WO2023125680A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22854507.5A EP4456747A1 (en) 2021-12-31 2022-12-28 Electrically heated aerosol generating system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202123451140.5U CN216601677U (en) 2021-12-31 2021-12-31 Electrically operated aerosol generating system
CN202123451140.5 2021-12-31

Publications (1)

Publication Number Publication Date
WO2023125680A1 true WO2023125680A1 (en) 2023-07-06

Family

ID=81687275

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/142889 WO2023125680A1 (en) 2021-12-31 2022-12-28 Electrically heated aerosol generating system

Country Status (3)

Country Link
EP (1) EP4456747A1 (en)
CN (1) CN216601677U (en)
WO (1) WO2023125680A1 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024008162A1 (en) * 2022-07-08 2024-01-11 深圳市合元科技有限公司 Heating device, aerosol generating device, and aerosol generating system
EP4454494A1 (en) * 2022-07-12 2024-10-30 Shenzhen Huabao Collaborative Innovation Technology Research Institute Co. Ltd Heating assembly for aerosol generation device, and aerosol generation device
CN115226957B (en) * 2022-08-05 2024-09-17 深圳市赛尔美电子科技有限公司 Heating element and atomizing device

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018149117A1 (en) * 2017-02-16 2018-08-23 深圳市赛尔美电子科技有限公司 Electronic cigarette device and method for calculating puff count
WO2018223563A1 (en) * 2017-06-07 2018-12-13 常州市派腾电子技术服务有限公司 Atomization device, and electronic cigarette having same
CN208676375U (en) * 2018-07-11 2019-04-02 威滔电子科技(深圳)有限公司 The aerosol generating device and system for having energy regenerating
WO2021189799A1 (en) * 2020-09-28 2021-09-30 云南中烟工业有限责任公司 Smoking apparatus for induction heating at front end of cigarette
WO2021190011A1 (en) * 2020-03-25 2021-09-30 深圳麦时科技有限公司 Heating device and aerosol forming device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018149117A1 (en) * 2017-02-16 2018-08-23 深圳市赛尔美电子科技有限公司 Electronic cigarette device and method for calculating puff count
WO2018223563A1 (en) * 2017-06-07 2018-12-13 常州市派腾电子技术服务有限公司 Atomization device, and electronic cigarette having same
CN208676375U (en) * 2018-07-11 2019-04-02 威滔电子科技(深圳)有限公司 The aerosol generating device and system for having energy regenerating
WO2021190011A1 (en) * 2020-03-25 2021-09-30 深圳麦时科技有限公司 Heating device and aerosol forming device
WO2021189799A1 (en) * 2020-09-28 2021-09-30 云南中烟工业有限责任公司 Smoking apparatus for induction heating at front end of cigarette

Also Published As

Publication number Publication date
EP4456747A1 (en) 2024-11-06
CN216601677U (en) 2022-05-27

Similar Documents

Publication Publication Date Title
WO2023125680A1 (en) Electrically heated aerosol generating system
US11147128B2 (en) Atomizer and electronic cigarette
WO2022063233A1 (en) Aerosol generating device
WO2016154792A1 (en) Electronic cigarette
CN210726699U (en) Heating element, atomizing head, atomizer and electronic cigarette
WO2023035854A1 (en) Heating assembly and aerosol generating device
WO2022083697A1 (en) Atomizer and electronic atomization device
US20230218005A1 (en) E-cigarette vaporizer and e-cigarette
WO2023035852A1 (en) Guide component, heating assembly and aerosol generating device
TW202137896A (en) Heater arrangement
WO2023035853A1 (en) Heating element and aerosol generating device
EP4399984A1 (en) Aerosol generating device
WO2018214065A1 (en) Liquid storage component and atomizer
JP7543412B2 (en) Heating assembly and electrically heated smoking device
JP2023520438A (en) Electric heating aerosol generator
WO2023125717A1 (en) Heating assembly for aerosol generating device and aerosol generating system
KR102626583B1 (en) Cigarette heaters and electrically heated smoking devices
KR102543802B1 (en) cigarette heating device
KR20230158106A (en) Heating appliances and aerosol generating devices
WO2022027799A1 (en) Heating module and smoke generating device
CN216875000U (en) Electronic atomization device
WO2022027801A1 (en) Heating module and smoke generating device
CN115226957B (en) Heating element and atomizing device
CN112205669A (en) Low temperature smoking set with cooling member
WO2020124696A1 (en) Heating and non-combustion type cigarette cartridge

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22854507

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2024119612

Country of ref document: RU

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022854507

Country of ref document: EP

Effective date: 20240731