WO2023125433A2 - 一种加热控制电路及呼吸机 - Google Patents
一种加热控制电路及呼吸机 Download PDFInfo
- Publication number
- WO2023125433A2 WO2023125433A2 PCT/CN2022/142002 CN2022142002W WO2023125433A2 WO 2023125433 A2 WO2023125433 A2 WO 2023125433A2 CN 2022142002 W CN2022142002 W CN 2022142002W WO 2023125433 A2 WO2023125433 A2 WO 2023125433A2
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- output
- heating
- value
- signal
- control circuit
- Prior art date
Links
- 238000010438 heat treatment Methods 0.000 title claims abstract description 241
- 230000029058 respiratory gaseous exchange Effects 0.000 title abstract 2
- 230000008859 change Effects 0.000 claims abstract description 8
- 230000003044 adaptive effect Effects 0.000 claims abstract description 6
- 238000004364 calculation method Methods 0.000 claims description 12
- 238000002955 isolation Methods 0.000 claims description 9
- 238000005070 sampling Methods 0.000 claims description 2
- 238000000034 method Methods 0.000 description 49
- 238000009423 ventilation Methods 0.000 description 47
- 238000002560 therapeutic procedure Methods 0.000 description 45
- 238000010586 diagram Methods 0.000 description 13
- 230000008569 process Effects 0.000 description 12
- 230000001186 cumulative effect Effects 0.000 description 5
- 238000009825 accumulation Methods 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 238000001514 detection method Methods 0.000 description 3
- 230000005611 electricity Effects 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 238000002640 oxygen therapy Methods 0.000 description 2
- 230000002159 abnormal effect Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000008878 coupling Effects 0.000 description 1
- 238000010168 coupling process Methods 0.000 description 1
- 238000005859 coupling reaction Methods 0.000 description 1
- 238000003745 diagnosis Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000010292 electrical insulation Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000013021 overheating Methods 0.000 description 1
- 230000004044 response Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D23/00—Control of temperature
- G05D23/19—Control of temperature characterised by the use of electric means
- G05D23/20—Control of temperature characterised by the use of electric means with sensing elements having variation of electric or magnetic properties with change of temperature
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M16/00—Devices for influencing the respiratory system of patients by gas treatment, e.g. mouth-to-mouth respiration; Tracheal tubes
- A61M16/10—Preparation of respiratory gases or vapours
Definitions
- the invention relates to the technical field of electronic circuits, in particular to a heating control circuit and a ventilator.
- the existing heating circuit for the heating plate achieves constant power by assuming a known voltage and directly detecting the zero-crossing point or duty cycle of the mains power supply.
- the calculated constant power is often not accurate enough, which will cause certain damage to the heating circuit and the heating plate.
- the object of the embodiments of the present invention is to provide a heating control circuit and a ventilator, the heating control circuit can at least solve the above existing technical problems.
- an embodiment of the present invention provides a heating control circuit
- the heating control circuit includes a control device and a switching device, the input end of the control device is connected to an AC power supply, and the output end is connected to the switching device The control terminal of the switching device, and the output terminal of the switching device is connected to the heating element; wherein, the control device is configured to generate a signal for controlling the adaptive change of the duty cycle of the switching device according to the different output voltages of the AC power supply A driving signal, wherein the duty cycle is adaptively changed so that the power output by the switching device to the heating element remains constant.
- the switching device is a MOS transistor
- the gate of the MOS transistor is connected to the control device
- the source is connected to the ground terminal of the power supply
- the drain is connected to the input terminal of the heating element, wherein the gate of the MOS transistor Extremely the control terminal.
- the heating control circuit further includes a voltage dividing circuit connected in parallel with the series circuit formed by the heating element and the switching device, and the voltage dividing circuit includes a first resistor and a second resistor connected in series.
- the heating control circuit further includes an isolation device arranged between the output terminal of the control device and the control terminal of the switching device.
- the heating control circuit further includes a third resistor disposed between the isolation device and the switching device.
- the heating control circuit further includes a rectifying device, which is connected between the AC power supply and the heating element, and is used to convert the output voltage signal of the AC power supply into a DC voltage to provide for the heating pieces.
- a rectifying device which is connected between the AC power supply and the heating element, and is used to convert the output voltage signal of the AC power supply into a DC voltage to provide for the heating pieces.
- the heating control circuit further includes a transformer connected between the AC power supply and the control device for sampling the output voltage signal of the AC power supply to provide to the control device.
- the voltage acquisition device is a transformer, the input terminal of the transformer is connected to the AC power supply, and the output terminal is connected to the input terminal of the control device.
- control device is a power computing chip.
- an embodiment of the present invention provides a ventilator, comprising: a heating element; and the heating control circuit described in any one of the first aspect.
- a method for maintaining power stability includes: determining a target power value and an actual maximum power value, the target power value representing the power value that the heating plate of the ventilation therapy device needs to output stably; according to the The target power value and the actual maximum power value output a total control signal, the total control signal includes: a start signal and a close signal, wherein, each time the start signal is output, the heating plate of the ventilation therapy device continues to work for a predetermined time duration, the heating plate stops working for a predetermined duration each time the shutdown signal is output.
- outputting a total control signal according to the target power value and the actual maximum power value includes: determining a duty cycle according to the target power value and the actual maximum power value; , outputting the overall control signal.
- outputting the total control signal according to the duty cycle includes: determining the output times of the total control signal according to the duty cycle; The number of outputs is to determine the output times of the opening signal and the output times of the closing signal; output the opening signal according to the output times of the opening signal, and output the closing signal according to the output times of the closing signal.
- outputting a total control signal according to the target power value and the actual maximum power value includes: using the target power value as an increment value; outputting the total control signal according to the increment value and the actual maximum power value The overall control signal.
- outputting the total control signal according to the increment value and the actual maximum power value includes: accumulating the increment value once in each preset period on the basis of 0, and accumulating the increment value once in each preset period, and Set the period to compare the accumulated value after accumulating the incremental value once with the actual maximum power value; if the accumulated value in any preset period is less than the actual maximum power value, then the preset period outputs a shutdown signal , wherein, each time the shutdown signal is output, the heating plate stops working for a predetermined period of time; if the accumulated value in any preset period is not less than the actual maximum power value, then the preset period outputs the startup signal; In the next preset period after the opening signal is output, based on the difference value, perform the step of: accumulating the increment value once in each preset period, and accumulating the increment value once in each preset period The accumulated value after the incremental value is compared with the actual maximum power value, wherein the difference is a preset period corresponding to outputting the opening signal
- determining the actual maximum power value includes: acquiring a working power value of the ventilation therapy device; and determining the actual maximum power value according to the working power value and the resistance value of the heating plate.
- the basis for selecting the resistance value is: based on the standard voltage range of international civil electricity, it is ensured that the ventilation therapy device can continuously output the target power value during operation, and the actual maximum power value is not less than the target power value.
- the method further includes: receiving a temperature signal from a temperature sensor, the temperature signal representing the real-time temperature of the heating plate; when the real-time temperature is less than a preset temperature, performing the step of: according to the The target power value and the actual maximum power value, output the total control signal; in the case of the real-time temperature is not less than the preset temperature, continue to output the shutdown signal until the real-time temperature drops to less than When the temperature is preset, the step of: outputting the overall control signal according to the target power value and the actual maximum power value is performed.
- a device for maintaining stable power includes: a determination module, configured to determine a target power value and an actual maximum power value, the target power value represents the power value that the ventilation therapy device needs to output stably; output A module, configured to output a total control signal according to the target power value and the actual maximum power value, the total control signal includes: a start signal and a close signal, wherein, each time the start signal is output, the ventilation therapy The heating plate of the device continues to work for a predetermined period of time, and each time the shutdown signal is output, the heating plate stops working for a predetermined period of time.
- the output module includes: a determining duty cycle subunit, configured to determine a duty cycle according to the target power value and the actual maximum power value; a first output master control signal subunit, configured to The duty ratio is used to output the overall control signal.
- the first output master control signal subunit is specifically configured to: determine the output times of the total control signal according to the duty ratio; determine the output times of the total control signal according to the duty ratio and the output times of the total control signal , determining the output times of the opening signal and the output times of the closing signal; outputting the opening signal according to the output times of the opening signal, and outputting the closing signal according to the output times of the closing signal.
- the output module includes: an increment subunit, configured to use the target power value as an increment value; a second output master control signal subunit, configured to, according to the increment value and the actual maximum power value, outputting the overall control signal.
- the second output master control signal subunit is specifically configured to: based on 0, accumulate the increment value once in each preset period, and accumulate the increment value once in each preset period The accumulated value after the value is compared with the actual maximum power value; if the accumulated value in any preset cycle is less than the actual maximum power value, the preset cycle outputs a shutdown signal, wherein the shutdown signal is output once, the heating plate stops working for a predetermined period of time; if the accumulated value in any preset period is not less than the actual maximum power value, then the preset period outputs the start signal; after outputting the start signal In the next preset cycle, based on the difference value, the step of executing: accumulating the incremental value once in each preset cycle, and accumulating the incremental value once in each preset cycle, and The actual maximum power value is compared, wherein the difference is a value obtained by making a difference between the accumulated value and the actual maximum power value in the preset period corresponding to the preset period for outputting the start signal.
- the determining module includes: an acquiring subunit, configured to acquire a working power value of the ventilation therapy device; a determining subunit, configured to determine the value of the operating power supply and the resistance value of the heating plate Describe the actual maximum power value.
- the device further includes: a temperature receiving module, configured to receive a temperature signal from a temperature sensor, the temperature signal representing the real-time temperature of the heating plate; a first execution module, configured to When the temperature is lower than the preset temperature, the execution step: output the total control signal according to the target power value and the actual maximum power value; the second execution module is used for when the real-time temperature is not lower than the preset temperature In the case of temperature, continue to output the shutdown signal until the real-time temperature drops to less than the preset temperature, perform the step of: output the total control signal according to the target power value and the actual maximum power value .
- a temperature receiving module configured to receive a temperature signal from a temperature sensor, the temperature signal representing the real-time temperature of the heating plate
- a first execution module configured to When the temperature is lower than the preset temperature, the execution step: output the total control signal according to the target power value and the actual maximum power value
- the second execution module is used for when the real-time temperature is not lower than the preset temperature In the case of temperature,
- a ventilation therapy device which includes: a main control board; the main control board is configured to execute the method for maintaining power stability as described in any one of the third aspects.
- the heating control circuit of the present invention can be externally connected with AC power sources of different AC voltages to realize constant power output of the heating element, and its structure is simple.
- the method for maintaining power stability provided by the present invention firstly determines the target power value and the actual maximum power value, and then outputs a total control signal according to the target power value and the actual maximum power value.
- the total control signal includes a start signal and a close signal. Every time the heating plate is output once, the heating plate will continue to work for a predetermined period of time, and every time the shutdown signal is output, the heating plate will stop working for a predetermined period of time. In this way, the goal of maintaining the stable output of the heating plate power is achieved.
- the invention does not need to consider the standard voltage range of civilian AC voltage, but uses two power values to control the output of the opening signal and the closing signal, and realizes the goal of stable power output of the heating plate. Since there is no need to design and manufacture heating plates with different resistance values, the cost of ventilation therapy equipment is indirectly reduced. And when the voltage of the working power supply fluctuates, it does not affect the output power of the heating plate. Based on the resistance value of the same heating plate, it is within the standard voltage range of 100V to 240V worldwide, and when the voltage of the working power supply fluctuates. , can maintain the target of stable output of heating plate power, and has high practical value.
- Fig. 1 is a schematic block diagram of a heating control circuit shown according to an exemplary embodiment
- Fig. 2 is a schematic diagram showing the connection of a heating control circuit according to an exemplary embodiment
- Fig. 3 is a schematic diagram showing a 110V AC voltage signal change according to an exemplary embodiment
- Fig. 4 is a schematic diagram showing a 220V AC voltage signal change according to an exemplary embodiment
- Fig. 5 is a flowchart of a method for maintaining power stability according to an embodiment of the present invention.
- Fig. 6 is a schematic diagram of outputting the opening signal when using the (2) cumulative method to output the opening signal method in the embodiment of the present invention
- Fig. 7 is a schematic structural diagram of a ventilation therapy device according to an embodiment of the present invention.
- Fig. 8 is a block diagram of an apparatus for maintaining power stability according to an embodiment of the present invention.
- Fig. 1 is a schematic block diagram of a heating control circuit according to an exemplary embodiment.
- the heating control circuit includes a control device 110 and a switching device 120, and the input end of the control device 110 is connected to an AC power supply 130, the output terminal is connected to the control terminal of the switching device 120, and the output terminal of the switching device 120 is connected to the heating element 140; wherein, the control device 110 is configured to generate different output voltages according to the AC power supply 130.
- the driving signal is used to control the adaptive change of the duty cycle of the switching device 120 , wherein the duty cycle is adaptively changed so that the power output from the switching device 120 to the heating element 140 remains constant.
- the heating control circuit provided by the embodiment of the present invention can be externally connected with AC power sources of different AC voltages to realize constant power heating of the heating element, and has a simple structure and low cost.
- the switching device 120 is a MOS transistor
- the gate of the MOS transistor is connected to the control device 110
- the source is connected to the power ground terminal
- the drain is connected to the input terminal of the heating element 140, wherein
- the gate of the MOS transistor is configured as a control terminal.
- the MOS transistor can be adaptively turned on and off in response to a driving signal of the control device 110 based on the basic working principle of forward conduction and reverse cutoff. Specifically, when the MOS tube is in the on state, the heating element 140 connected to it starts to perform heating operation, and when the MOS tube is in the off state, the heating element 140 connected to it stops the heating operation. Therefore, through the regular turn-on and cut-off of the MOS tube within a certain period, the heating element 140 can meet the requirement of constant power output within a certain period.
- the switching device 120 is a MOS transistor, the gate of the MOS transistor is connected to the control device 110, the source is connected to the ground terminal of the power supply, and the drain is connected to the input end of the heating element 140, wherein the gate of the MOS transistor Configured as the console.
- MOS transistors such as N-channel and P-channel can be selected according to actual needs, and no limitation is made here.
- the heating control circuit further includes a voltage dividing circuit connected in parallel with the series circuit formed by the heating element 140 and the switching device 110, and the voltage dividing circuit includes a first resistor and a second resistor.
- the voltage divider circuit formed by the first resistor and the second resistor in series can effectively control the shunt voltage, prevent excessive voltage from breaking down the MOS tube, and avoid damage to the heating element.
- the resistance values of the first resistor and the second resistor can be set according to the actual application of the circuit, and the types of the first resistor and the second resistor are not limited.
- the first resistor and the second resistor can use sliding rheostats, and the control and adjustment of the shunt voltage can be realized by changing the size of the resistors.
- the heating control circuit further includes an isolation device arranged between the output terminal of the control device 110 and the control terminal of the switching device 120 .
- the isolation device effectively isolates the input and output, prevents interference signals from affecting the circuit, and has good electrical insulation capability.
- an optocoupler can be used as the isolation device, for example, the model of the optocoupler is MOC3063.
- the heating control circuit further includes a third resistor arranged between the isolation device and the switching device.
- the third resistor can limit the signal current output by the isolation device, effectively protect the switching device, and prevent damage to the switching device caused by excessive current.
- the heating control circuit further includes a rectifying device, which is connected between the AC power supply and the heating element, and is used to convert the output voltage signal of the AC power supply into a DC voltage to provide the heating element.
- the AC voltage is converted into a DC voltage through a rectifier device, which can meet the requirement of the heating element for the DC voltage.
- a filter device can also be set between the voltage conversion device and the heating device to filter the converted DC voltage signal, effectively remove the interference signal in the DC voltage signal, and ensure the use of the heating device Safety.
- the rectifier device may adopt a full-wave rectifier bridge, a half-wave rectifier bridge or other types of rectifier circuits according to actual application requirements, which are not limited here.
- the heating control circuit further includes a voltage acquisition device, which is connected between the AC power supply 130 and the control device 110, and is used to sample the output voltage signal of the AC power supply 130 to provide The control device 110 .
- the voltage acquisition device is a transformer, the input terminal of the transformer is connected to the AC power supply, and the output terminal is connected to the input terminal of the control device. It can reduce the AC voltage according to a certain ratio to meet the use of the control device.
- control device is a power computing chip.
- the power calculation chip can be built with different power calculation formulas according to actual application needs, so as to meet the various needs of users for constant power output.
- models of computing power chips include HLW8012 and the like.
- the heating control circuit of the present application can be externally connected with AC power sources of different AC voltages, and on the basis of realizing constant power, it can further meet the demand of wide voltage, so that it can be adapted to different application occasions.
- Fig. 2 is a schematic diagram showing the connection of a heating control circuit according to an exemplary embodiment. Firstly, the connection of each unit and device in Fig. 2 will be briefly described. As shown in FIG. 2 , the rectifier bridge D1 includes an AC voltage input terminal AC, and the input terminal AC is used to connect to an AC power supply J1. The positive output terminal 1 of the rectifier bridge D1 is connected to the input terminal 1 of the heating element. One input end of the transformer L1 is connected to the AC power source J1, and the other input end is connected to the power ground terminal GNDP. One output end of the transformer is connected to the input end VIN of the computing power chip U2, and the other output end is connected to the common ground end.
- the rectifier bridge D1 includes an AC voltage input terminal AC, and the input terminal AC is used to connect to an AC power supply J1.
- the positive output terminal 1 of the rectifier bridge D1 is connected to the input terminal 1 of the heating element.
- One input end of the transformer L1 is connected to the AC power source J1, and the other
- the input terminal 1 of the photocoupler U1 is connected to the output terminal VOUT of the computing power chip U2, the output terminal 4 is connected to the gate of the MOS transistor through the third resistor R3, and the output terminal 6 is connected to the first resistor R1 and the second resistor R1 in the voltage divider circuit. between resistor R2.
- One end of the first resistor R1 is connected to the input terminal 1 of the heating element, and one end of the second resistor R2 is connected to the source of the MOS transistor and connected to the power ground terminal GNDP.
- the drain of the MOS tube is connected to the input terminal 2 of the heating element.
- the working process of the heating control circuit is as follows:
- the rectifier bridge converts the AC voltage signal of the AC power supply into a DC voltage and outputs it to the heating element.
- the transformer L1 collects the AC voltage of the AC power supply, and transmits the collected voltage to the power calculation chip, so that the power calculation chip performs power calculation according to the collected voltage.
- the built-in power calculation formula in the power chip calculates the built-in power calculation formula in the power chip. Specifically, an integral operation method is used to calculate the output power of the AC voltage. Moreover, the calculation power chip also has a built-in power judgment condition to judge whether the output power exceeds the preset power threshold, which is the preset adaptive power of the heating element mentioned above.
- FIG. 3 and FIG. 4 are schematic diagrams of 110V AC voltage and 220V AC voltage respectively.
- the following is an example of 110V AC voltage and a power threshold of 200W.
- the calculation power chip detects that the AC voltage crosses zero, it starts to calculate the output power of the AC voltage. As time goes by, the AC voltage rises, and the power chip calculates the power corresponding to the voltage value collected at a certain moment and performs an integral operation to obtain the output power at that moment. As shown in FIG. 3 , the output power obtained by integrating the corresponding voltage V1 at time T1 is 200W.
- the output drive signal is a start signal.
- the photocoupler outputs a corresponding output signal according to the start signal, so that the MOS transistor is turned on.
- the heating control circuit and the heating element form a closed loop, and the heating element can be heated.
- the generated driving signal is an off signal. Based on the principle of photoelectric coupling, the photocoupler outputs a corresponding output signal after receiving the off signal, so that the MOS tube is in the cut-off state. At this time, the formed closed circuit is disconnected, and the heating element stops heating.
- the constant power output of the heating element is realized by controlling the on-time and off-time of the MOS tube, that is, controlling the duty ratio of the MOS tube.
- the shutdown signal output by the computing power chip is a slow shutdown process for the MOS tube. Compared with the fast process, it can effectively reduce the EMI of the circuit and avoid the interference signal generated by the fast shutdown to other components of the circuit. make an impact.
- the heating control circuit of the embodiment of the present application has the following advantages: 1) The circuit structure is simple and easy to apply; 2) It can be externally connected to AC power sources of different AC voltages to meet the requirements of wide voltages and is suitable for different AC power applications; 3. ) No need to lower the voltage operation, saving costs; 4) Realize the constant power output of the heating element, and improve the safety of the heating element.
- An embodiment of the present invention also provides a ventilator, which includes: a heating element; and the heating control circuit described in the above embodiments.
- the heating control circuit controls the output power of the heating element, so that the heating element can perform heating work in the form of constant power.
- the heating element preferably adopts a heating plate.
- the voltage of the working power supply will also fluctuate, which will also cause the output power of the heating plate to fluctuate accordingly, which will also affect the treatment effect of the ventilation therapy equipment.
- FIG. 5 shows a flowchart of a method for maintaining power stability according to an embodiment of the present invention.
- the method includes:
- Step S101 Determine the target power value and the actual maximum power value.
- the target power value represents the power value that the ventilation therapy device needs to output stably.
- the so-called target power value is the power value that represents the stable output of the heating plate of the ventilation therapy device.
- the heating plate needs a stable output power value of 100W, then the target power value is 100W.
- the actual maximum power value refers to the maximum power value that the heating plate of the ventilation therapy equipment can achieve in actual work.
- the resistance value of the heating plate is determined, its value changes according to the value of the working power supply. Therefore, when the ventilation therapy device is actually working, the methods for determining the actual maximum power value specifically include:
- Step S1 Obtain the working power value of the ventilation therapy equipment
- Step S2 Determine the actual maximum power value according to the working power value and the resistance value of the heating plate.
- the calculation method of the actual maximum power value can be:
- the basis for the value of the resistance value of the heating plate is:
- the ventilation therapy equipment can continuously output the target power value when it is working, and the actual maximum power value is not less than the target power value.
- the standard voltage range of international civil electricity is: 100 ⁇ 240V
- the resistance value of the heating plate can be selected from any value not greater than 50 ⁇ and greater than 0 ⁇ .
- the resistance value of the heating plate is selected too small, the actual maximum power value will be much greater than the target power value under the same operating power value, and then the current flowing through the heating plate will be too large, which may shorten the service life of the heating plate. shorten.
- a better resistance value is selected as 50 ⁇ .
- Step S102 According to the target power value and the actual maximum power value, output a total control signal, the total control signal includes: a start signal and a close signal, wherein, each time the start signal is output, the heating plate of the ventilation therapy device continues to work for a predetermined period of time, and the close signal Each output, the heating plate stops working for a predetermined period of time.
- the total control signal can be output according to the target power value and the actual maximum power value.
- the total control signal includes: opening signal and closing signal.
- the main control board generates a total control signal
- the total control signal includes: open signal and close signal, the so-called open signal is the signal that makes the heating plate start to work; the so-called close signal is the signal that makes the heating plate Signal to stop working.
- the concrete method that the present invention outputs total control signal can be divided into two kinds:
- Step T1 Determine the duty cycle according to the target power value and the actual maximum power value.
- Step T2 Outputting a total control signal according to the duty cycle.
- the output times of the total control signal can be determined according to the duty ratio, and the total output times of the control signal is the value of the denominator in the duty ratio.
- the total control signal includes: a start signal and a close signal, wherein, each time the close signal is output, the heating plate stops working for a predetermined period of time; and then the output times of the open signal are determined according to the duty cycle and the output times of the total control signal and the number of times the output signal is turned off. The number of times the signal is turned on is the value of the numerator in the duty cycle. Finally, the ON signal is output according to the output times of the ON signal, and the OFF signal is output according to the output times of the OFF signal.
- the open signal is continuously output multiple times after all the close signals are output; if the output frequency of the open signal is one, the open signal is output once after all the close signals are output.
- the resistance value of the heating plate is 50 ⁇
- the target power value is 100W
- the working power value is 200V.
- the main control board sends a signal to the heating control board every 0.1 second with a period of 0.1 second, then starting from 0 second, the first 0.7 seconds will send a shutdown signal to the heating control board, and the heating control board will control the heating board to stop working for 0.7 seconds. Second. Send a turn-on signal to the heating control board at 0.8 seconds. After the heating control board is received, the heating board is controlled to continue working for 0.1 seconds.
- the main control board sends a shutdown signal to the heating control board, and after receiving it, the heating control board controls the heating board to stop working again for 0.7 seconds.
- the main control board sends a start signal to the heating control board in 1.6 seconds, and the heating control board controls the heating board to continue working for 0.1 second after receiving it.
- the above process is repeated until the ventilation therapy equipment stops working. During the above process, the power of the heating plate is always kept at 100W.
- the main control board sends a signal to the heating control board every 0.1 second with a period of 0.1 second, then starting from 0 second, the first 0.5 seconds will send a shutdown signal to the heating control board, and the heating control board will control the heating board to stop working for 0.5 seconds. Second. At 0.6 seconds and 0.7 seconds, a turn-on signal is sent to the heating control board. After the heating control board is received, the heating board is controlled to continue working for 0.2 seconds.
- the power of the heating plate is also kept stable at the target power value. It can be understood that when the value of the working power fluctuates, the actual maximum power value also changes, the duty cycle changes, and the number of times the output signal is turned on changes, but the power of the heating plate remains stable at the target power value.
- Step V1 take the target power value as the incremental value
- Step V2 output the total control signal according to the incremental value and the actual maximum power value.
- the target power value is directly used as the incremental value, and the total control signal is output according to the incremental value and the actual maximum power value.
- an incremental value is accumulated in each preset cycle, and the accumulated value after the incremental value is accumulated once in each preset cycle is compared with the actual maximum power value. That is, in the first preset cycle, add 0 once to the target power value to obtain an accumulated value, which is equal to the target power value, and compare the accumulated value with the actual maximum power value after accumulation.
- the second preset cycle use the accumulated value of the first preset cycle to add an incremental value again, that is, during the second preset cycle, the size of the accumulated value is equal to twice the target power value, and the accumulated value (twice The target power value) is compared with the actual maximum power value.
- the third preset period use the accumulated value of the second preset period to add an incremental value again, that is, during the third preset period, the size of the accumulated value is equal to three times the target power value, and the accumulated value (three times The target power value) is compared with the actual maximum power value, and so on.
- the preset period If the accumulated value in any preset period is less than the actual maximum power value, then the preset period outputs a shutdown signal, wherein, each time the shutdown signal is output, the heating plate stops working for a predetermined period of time. If the accumulated value in any preset period is not less than the actual maximum power value, then the preset period outputs an on signal. Assuming the third preset period, the accumulated value (three times the target power value) is less than the actual maximum power value, then the first three preset periods will output the shutdown signal; assuming the third preset period, the accumulated value (three times the target power value) value) is not less than the actual maximum power value, then the first two preset periods will output an off signal, and the third preset period will output an on signal.
- the steps are repeated: the incremental value is accumulated once in each preset period, and the incremental value is accumulated once in each preset period
- the accumulated value after the value is compared with the actual maximum power value, wherein the so-called difference is the value obtained by making the difference between the accumulated value and the actual maximum power value within the preset period corresponding to the preset period of the output open signal.
- the cumulative value (three times the target power value) is 130W and not less than the actual maximum power value of 120W, then the first two preset periods output the off signal, and the third preset period outputs the on signal.
- the target power value of the heating plate is 100W
- the working power value is 200V.
- the target power value of 100W is accumulated every 0.1 seconds
- the cumulative value of 0.1 second cycle is 100W, which is less than the actual maximum power value of 800W.
- the main control board sends a shutdown signal to the heating control board in 0.1 second cycle, and the heating control board receives Then control the heating plate to stop working for 0.1 seconds.
- the main control board will send a shutdown signal to the heating control board in 0.2 second period, and the heating control board will control the heating board to stop working for 0.1 second after receiving it.
- the main control board sends a start signal to the heating control board in the 0.8 second cycle, and the heating control board controls the heating board to continue working for 0.1 second after receiving it.
- the above process is repeated until the ventilation therapy device stops working. During the above process, the power of the heating plate is always kept at 100W.
- FIG. 6 it shows a schematic diagram of outputting the enabling signal in the (2) method of outputting the enabling signal by using the accumulation method.
- the upper part of Fig. 6 is the output of the opening signal
- the horizontal axis is the time
- the unit is second
- the vertical axis is the switching value
- 1 represents the output opening signal.
- the lower part of Figure 6 shows the accumulated value in each preset period.
- the horizontal axis is time in seconds
- the vertical axis is incremental value, which can be intuitively known. Taking 0.8 seconds as a regular period, the accumulation in the first 0.7 seconds When the value increases from 100 to 700, an off signal is output, and the cumulative value is 800 at 0.8 seconds, and the difference is 0, an on signal is output.
- the present invention makes an extremely simple change in the hardware equipment of the ventilation therapy device, that is, a voltage detection unit 101 is added to the working power supply module 10 of the ventilation therapy device.
- a voltage detection unit 101 is added to the working power supply module 10 of the ventilation therapy device.
- the ventilation therapy device shown in Figure 7 it includes: a working power supply module 10, a main control board 20, a heating control board 30, a heating board 40, a temperature sensor 401, and an AC power supply 50 (i.e., the working power supply adopts civilian AC standard voltage) and DC power supply 60.
- the main control board 20 outputs a general control signal S to the heating control board 30 and at the same time receives the temperature value of the heating board fed back by the temperature sensor 401 .
- the main control board 20 needs to continuously receive the temperature signal from the temperature sensor 401, which represents the real-time temperature of the heating plate 40; when the real-time temperature is less than the preset temperature, the main control board 20 executes the aforementioned step S102: The target power value and the actual maximum power value output the total control signal. That is, a preset temperature is set, and the actual temperature of the heating plate 40 cannot exceed the preset temperature during operation. When the actual temperature of the heating plate 40 is lower than the preset temperature, the main control board 20 controls the working state of the heating plate 40 according to the method of step S102.
- step S102 output a total control signal according to the target power value and the actual maximum power value. That is, when the actual temperature of the heating plate 40 is not lower than the preset temperature, the main control board 20 does not control the working state of the heating plate 40 according to the method of step S102, but controls the heating plate 40 to temporarily stop heating. Until the real-time temperature of the heating plate 40 drops below the preset temperature, the main control board 20 controls the working state of the heating plate 40 according to the method of step S102.
- the present invention only adds a voltage detection unit 101 to the working power supply module 10 of the current ventilation therapy equipment, and the voltage detection unit 101 feeds back the detected voltage value of the AC power supply 50 to the main control board 20, so that the main control board 20 obtains The value of the working power supply of the ventilation therapy device, and then implement the method for maintaining power stability in the above steps S101 to S102.
- the resistance value of the heating plate of the ventilation treatment equipment does not need to be designed and manufactured differently, and all adopt the same resistance value, without considering the standard voltage range of the civilian AC voltage, using two power values Control the output of the opening signal and the closing signal.
- the opening signal By outputting the opening signal once, the heating plate continues to work for a predetermined period of time, and every time the closing signal is output, the heating plate stops working for a predetermined period of time. In this way, the goal of maintaining the stable output of the heating plate power is achieved. . The goal of stable power output of the heating plate is realized.
- the ventilation treatment equipment referred to in the present invention includes equipment such as ventilators and high-flow humidified oxygen therapy instruments.
- the present invention also provides a device for maintaining stable power.
- FIG. 8 it shows a block diagram of a device for maintaining stable power according to an embodiment of the present invention.
- the device includes: a determining module 410, configured to determine a target power value and an actual maximum power value, the target power value representing the power value that the ventilation therapy device needs to output stably; an output module 420, configured to determine the target power value and the actual maximum power value;
- the actual maximum power value outputs a total control signal, and the total control signal includes: a start signal and a close signal, wherein, each time the start signal is output, the heating plate of the ventilation therapy device continues to work for a predetermined period of time, and the Each time the shutdown signal is output, the heating plate stops working for a predetermined period of time.
- the output module 420 includes: a determining duty ratio subunit, configured to determine a duty ratio according to the target power value and the actual maximum power value; a first output master control signal subunit, configured to According to the duty ratio, the overall control signal is output.
- the first output master control signal subunit is specifically configured to: determine the output times of the total control signal according to the duty ratio; determine the output times of the total control signal according to the duty ratio and the output times of the total control signal , determining the output times of the opening signal and the output times of the closing signal; outputting the opening signal according to the output times of the opening signal, and outputting the closing signal according to the output times of the closing signal.
- the output module 420 includes: an increment subunit, configured to use the target power value as an increment value; a second output master control signal subunit, configured to , outputting the overall control signal.
- the second output master control signal subunit is specifically configured to: based on 0, accumulate the increment value once in each preset period, and accumulate the increment value once in each preset period The accumulated value after the value is compared with the actual maximum power value; if the accumulated value in any preset cycle is less than the actual maximum power value, the preset cycle outputs a shutdown signal, wherein the shutdown signal is output once, the heating plate stops working for a predetermined period of time; if the accumulated value in any preset period is not less than the actual maximum power value, then the preset period outputs the start signal; after outputting the start signal In the next preset cycle, based on the difference value, the step of executing: accumulating the incremental value once in each preset cycle, and accumulating the incremental value once in each preset cycle, and The actual maximum power value is compared, wherein the difference is a value obtained by making a difference between the accumulated value and the actual maximum power value in the preset period corresponding to the preset period for outputting the start signal.
- the determining module 410 includes: an acquiring subunit, configured to acquire a working power value of the ventilation therapy device; a determining subunit, configured to determine according to the working power value and the resistance value of the heating plate The actual maximum power value.
- the device further includes: a temperature receiving module, configured to receive a temperature signal from a temperature sensor, the temperature signal representing the real-time temperature of the heating plate; a first execution module, configured to When the temperature is lower than the preset temperature, the execution step: output the total control signal according to the target power value and the actual maximum power value; the second execution module is used for when the real-time temperature is not lower than the preset temperature In the case of temperature, continue to output the shutdown signal until the real-time temperature drops to less than the preset temperature, perform the step of: output the total control signal according to the target power value and the actual maximum power value .
- a temperature receiving module configured to receive a temperature signal from a temperature sensor, the temperature signal representing the real-time temperature of the heating plate
- a first execution module configured to When the temperature is lower than the preset temperature, the execution step: output the total control signal according to the target power value and the actual maximum power value
- the second execution module is used for when the real-time temperature is not lower than the preset temperature In the case of temperature,
- the present invention also provides a ventilation therapy device, which includes: a main control board; stable method.
- Ventilation therapy equipment can be a ventilator or a high-flow humidified oxygen therapy device.
Landscapes
- Health & Medical Sciences (AREA)
- Engineering & Computer Science (AREA)
- Biomedical Technology (AREA)
- Heart & Thoracic Surgery (AREA)
- General Physics & Mathematics (AREA)
- Emergency Medicine (AREA)
- Pulmonology (AREA)
- Anesthesiology (AREA)
- Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Hematology (AREA)
- Life Sciences & Earth Sciences (AREA)
- Animal Behavior & Ethology (AREA)
- General Health & Medical Sciences (AREA)
- Public Health (AREA)
- Veterinary Medicine (AREA)
- Control Of Resistance Heating (AREA)
Abstract
本发明实施例提供一种加热控制电路及呼吸机,属于电子电路技术领域。所述加热控制电路包括控制器件和开关器件,所述控制器件的输入端连接交流电源,输出端连接所述开关器件的控制端,而所述开关器件的输出端连接加热件;其中,所述控制器件被配置为根据所述交流电源的不同输出电压生成用于控制所述开关器件的占空比适应性变化的驱动信号,其中所述占空比适应性变化以使得所述开关器件输出至所述加热件的功率维持恒定。本发明的加热控制电路直接连接不同交流电压的交流电源上,实现加热件恒功率输出。
Description
相关申请的交叉引用
本申请要求2021年12月31日提交的中国专利申请202123441555.4和202111674664.2的权益,该申请的内容通过引用被合并于本文。
本发明涉及电子电路技术领域,具体地涉及一种加热控制电路及呼吸机。
现有技术中,对于加热盘需要实现恒功率加热。但是由于加热盘所销往的国家不同,其所外接的交流电压也不相同。例如,有的国家所采用的网电源是110V,有的国家所采用的网电源是220V。而现有的对于加热盘的加热电路是通过假设已知的电压,直接检测网电源的过零点或者占空比来实现恒功率。但是采用该种加热电路,当外接的网电源电压发生变化时,其所计算出的恒功率往往不够准确,进而对加热电路以及加热盘造成一定的损坏。
发明内容
本发明实施例的目的是提供一种加热控制电路及呼吸机,该加热控制电路能够至少解决上述存在的技术问题。
为了实现上述目的,第一方面,本发明实施例提供一种加热控制电路,所述加热控制电路包括控制器件和开关器件,所述控制器件的输入端连接交流电源,输出端连接所述开关器件的控制端,而所述开关器件的输出端连接加热件;其中,所述控制器件被配置为根据所述交流电源的不同输出电压生成用于控制所述开关器件的占空比适应性变化的驱动信号,其中所述占空比适应性变化以使得所述开关器件输出至所述加热件的功率维持恒定。
可选的,所述开关器件为MOS管,所述MOS管的栅极连接所述控制器件,源极连接电源接地端,漏极连接所述加热件的输入端,其中所述MOS管的栅极为所述控制端。
可选的,所述加热控制电路还包括与所述加热件和所述开关器件形成的串联电路相并联的分压电路,且该分压电路包括相互串联的第一电阻和第二电阻。
可选的,所述加热控制电路还包括设置在所述控制器件的输出端和所述开关器件的控制端之间的隔离器件。
可选的,所述加热控制电路还包括设置于所述隔离器件和所述开关器件之间的第三电阻。
可选的,所述加热控制电路还包括整流器件,其连接在所述交流电源和所述加热件之间,用于将所述交流电源的输出电压信号转换为直流电压以提供给所述加热件。
可选的,所述加热控制电路还包括互感器,其连接在所述交流电源和所述控制器件之间,用于采样所述交流电源的输出电压信号以提供给所述控制器件。
可选的,所述电压采集器件为互感器,所述互感器的输入端连接所述交流电源,输出端连接所述控制器件的输入端。
可选的,所述控制器件为功率计算芯片。
第二方面,本发明实施例提供一种呼吸机,包括:加热件;以及第一方面任一项所述的加热控制电路。
第三方面,提供一种保持功率稳定的方法,所述方法包括:确定目标功率值和实际最大功率值,所述目标功率值表征通气治疗设备的加热板需要稳定输出的功率值;根据所述目标功率值和所述实际最大功率值,输出总控制信号,所述总控制信号包括:开启信号和关闭信号,其中,所述开启信号每输出一次,所述通气治疗设备的加热板持续工作预定时长,所述关闭信号每输出一次,所述加热板停止工作预定时长。
可选地,根据所述目标功率值和所述实际最大功率值,输出总控制信号,包括:根据所述目标功率值和所述实际最大功率值,确定占 空比;根据所述占空比,输出所述总控制信号。
可选地,根据所述占空比,输出所述总控制信号,包括:根据所述占空比,确定所述总控制信号的输出次数;根据所述占空比和所述总控制信号的输出次数,确定所述开启信号的输出次数和所述关闭信号的输出次数;按照所述开启信号的输出次数输出所述开启信号,并且按照所述关闭信号的输出次数输出所述关闭信号。
可选地,根据所述目标功率值和所述实际最大功率值,输出总控制信号,包括:以所述目标功率值作为递增值;根据所述递增值和所述实际最大功率值,输出所述总控制信号。
可选地,根据所述递增值和所述实际最大功率值,输出所述总控制信号,包括:以0为基础,在每一个预设周期均累加一次所述递增值,且在每一个预设周期对累加一次所述递增值后的累加值,与所述实际最大功率值进行比较;若任一预设周期时的累加值小于所述实际最大功率值,则该预设周期输出关闭信号,其中,所述关闭信号每输出一次,所述加热板停止工作预定时长;若任一预设周期时的累加值不小于所述实际最大功率值,则该预设周期输出所述开启信号;在输出所述开启信号后的下一预设周期内,以差值为基础,执行步骤:在每一个预设周期均累加一次所述递增值,且在每一个预设周期对累加一次所述递增值后的累加值,与所述实际最大功率值进行比较,其中,所述差值为对应输出所述开启信号的预设周期,该预设周期内累加值与实际最大功率值两者作差得到的值。
可选地,确定实际最大功率值,包括:获取所述通气治疗设备的工作电源值;根据所述工作电源值和所述加热板的电阻值,确定所述实际最大功率值。
可选地,所述电阻值的取值依据为:基于国际民用电的标准电压范围,保证所述通气治疗设备在工作时可持续输出所述目标功率值,且使得所述实际最大功率值不小于所述目标功率值。
可选地,所述方法还包括:接收来自于温度传感器的温度信号,所述温度信号表征所述加热板的实时温度;在所述实时温度小于预设温度的情况下,执行步骤:根据所述目标功率值和所述实际最大功 率值,输出所述总控制信号;在所述实时温度不小于所述预设温度的情况下,持续输出所述关闭信号,直至所述实时温度降低至小于所述预设温度时,执行步骤:根据所述目标功率值和所述实际最大功率值,输出所述总控制信号。
第四方面,提供一种保持功率稳定的装置,所述装置包括:确定模块,用于确定目标功率值和实际最大功率值,所述目标功率值表征通气治疗设备需要稳定输出的功率值;输出模块,用于根据所述目标功率值和所述实际最大功率值,输出总控制信号,所述总控制信号包括:开启信号和关闭信号,其中,所述开启信号每输出一次,所述通气治疗设备的加热板持续工作预定时长,所述关闭信号每输出一次,所述加热板停止工作预定时长。
可选地,所述输出模块包括:确定占空比子单元,用于根据所述目标功率值和所述实际最大功率值,确定占空比;第一输出总控信号子单元,用于根据所述占空比,输出所述总控制信号。
可选地,所述第一输出总控信号子单元具体用于:根据所述占空比,确定所述总控制信号的输出次数;根据所述占空比和所述总控制信号的输出次数,确定所述开启信号的输出次数和所述关闭信号的输出次数;按照所述开启信号的输出次数输出所述开启信号,并且按照所述关闭信号的输出次数输出所述关闭信号。
可选地,所述输出模块包括:递增子单元,用于以所述目标功率值作为递增值;第二输出总控信号子单元,用于根据所述递增值和所述实际最大功率值,输出所述总控制信号。
可选地,所述第二输出总控信号子单元具体用于:以0为基础,在每一个预设周期均累加一次所述递增值,且在每一个预设周期对累加一次所述递增值后的累加值,与所述实际最大功率值进行比较;若任一预设周期时的累加值小于所述实际最大功率值,则该预设周期输出关闭信号,其中,所述关闭信号每输出一次,所述加热板停止工作预定时长;若任一预设周期时的累加值不小于所述实际最大功率值,则该预设周期输出所述开启信号;在输出所述开启信号后的下一预设周期内,以差值为基础,执行步骤:在每一个预设周期均累加一次所 述递增值,且在每一个预设周期对累加一次所述递增值后的累加值,与所述实际最大功率值进行比较,其中,所述差值为对应输出所述开启信号的预设周期,该预设周期内累加值与实际最大功率值两者作差得到的值。
可选地,所述确定模块包括:获取子单元,用于获取所述通气治疗设备的工作电源值;确定子单元,用于根据所述工作电源值和所述加热板的电阻值,确定所述实际最大功率值。
可选地,所述装置还包括:接收温度模块,用于接收来自于温度传感器的温度信号,所述温度信号表征所述加热板的实时温度;第一执行模块,用于在所述实时温度小于预设温度的情况下,执行步骤:根据所述目标功率值和所述实际最大功率值,输出所述总控制信号;第二执行模块,用于在所述实时温度不小于所述预设温度的情况下,持续输出所述关闭信号,直至所述实时温度降低至小于所述预设温度时,执行步骤:根据所述目标功率值和所述实际最大功率值,输出所述总控制信号。
第五方面,提供一种通气治疗设备,所述通气治疗设备包括:主控制板;所述主控制板用于执行如第三方面任一所述的保持功率稳定的方法。
通过上述技术方案,本发明的加热控制电路可以外接不同交流电压的交流电源,以实现加热件的恒功率输出,且其结构简单。
本发明提供的保持功率稳定的方法,首先确定目标功率值和实际最大功率值,再根据目标功率值和实际最大功率值,输出总控制信号,总控制信号包括开启信号和关闭信号,通过开启信号每输出一次,加热板持续工作预定时长,而关闭信号每输出一次,加热板停止工作预定时长这样一种方式,实现保持加热板功率稳定输出的目标。
本发明基于同一加热板的电阻值,无需考虑民用交流电压的标准电压范围,而是利用两个功率值控制开启信号和关闭信号的输出,实现了加热板功率稳定输出的目标。由于不需要设计并制作不同电阻值的加热板,间接降低了通气治疗设备的成本。并且当工作电源的电压出现波动时,也不影响加热板的输出功率,实现了基于同一加热板 电阻值,在全球范围内的标准电压100V~240V范围内,以及当工作电源的电压出现波动时,都能保持加热板功率的稳定输出的目标,具有较高的实用性价值。
本发明实施例的其它特征和优点将在随后的具体实施方式部分予以详细说明。
附图是用来提供对本发明实施例的进一步理解,并且构成说明书的一部分,与下面的具体实施方式一起用于解释本发明实施例,但并不构成对本发明实施例的限制。在附图中:
图1是根据一示例性实施例示出的一种加热控制电路示意框图;
图2是根据一示例性实施例示出的一种加热控制电路连接示意图;
图3是根据一示例性实施例示出的一种110V交流电压信号变化示意图;
图4是根据一示例性实施例示出的一种220V交流电压信号变化示意图;
图5是本发明实施例一种保持功率稳定的方法的流程图;
图6是本发明实施例中以第(2)种采用累加法输出开启信号方法时的输出开启信号的示意图;
图7是本发明实施例一种通气治疗设备的结构示意图;
图8是本发明实施例一种保持功率稳定的装置的框图。
以下结合附图对本发明实施例的具体实施方式进行详细说明。应当理解的是,此处所描述的具体实施方式仅用于说明和解释本发明实施例,并不用于限制本发明实施例。
图1是根据一示例性实施例示出的一种加热控制电路示意框图,如图1所示,所述加热控制电路包括控制器件110和开关器件120,所述控制器件110的输入端连接交流电源130,输出端连接所述开关器件120的控制端,而所述开关器件120的输出端连接加热件140;其中,所述控制器件110被配置为根据所述交流电源130的不同输出 电压生成用于控制所述开关器件120的占空比适应性变化的驱动信号,其中所述占空比适应性变化以使得所述开关器件120输出至所述加热件140的功率维持恒定。
本发明实施例所提供的加热控制电路,能够外接不同交流电压的交流电源,实现加热件的恒功率加热,且结构简单,成本较低。
在一优选实施例中,所述开关器件120为MOS管,所述MOS管的栅极连接所述控制器件110,源极连接电源接地端,漏极连接所述加热件140的输入端,其中所述MOS管的栅极被配置作为控制端。
举例而言,所述MOS管可以基于正向导通反向截止的基本工作原理,响应控制器件110的驱动信号以适应性地导通和截止。具体的,当MOS管处于导通状态时,其所连接的加热件140开始进行加热工作,而当MOS管处于截止状态时,其所连接的加热件140停止加热工作。因此,通过MOS管在一定周期内的规律性导通和截止,使得加热件140满足在一定周期内处于恒功率输出。
所述开关器件120为MOS管,所述MOS管的栅极连接所述控制器件110,源极连接电源接地端,漏极连接所述加热件140的输入端,其中所述MOS管的栅极被配置作为控制端。
本申请实施例可以根据实际需要选用N沟道、P沟道等不同类型的MOS管,在此不作过多限定。
在一优选实施例中,所述加热控制电路还包括与所述加热件140和所述开关器件110形成的串联电路相并联的分压电路,且该分压电路包括相互串联的第一电阻和第二电阻。
第一电阻和第二电阻串联形成的分压电路能够有效地控制分路电压,防止过高的电压击穿MOS管,避免加热件的损坏。另外,本申请实施例可以根据电路实际应用情况设定第一电阻和第二电阻的阻值,并且不限定第一电阻和第二电阻的种类。例如,第一电阻和第二电阻可以采用滑动变阻器,通过改变电阻的大小实现对于分路电压的控制调节。
在一优选实施例中,所述加热控制电路还包括设置在所述控制器件110的输出端和所述开关器件120的控制端之间的隔离器件。
具体的,隔离器件将输入输出进行有效的隔离,防止干扰信号对于电路的影响以及具有良好的电绝缘能力。举例而言,隔离器件可以采用光电耦合器,如光电耦合器的型号为MOC3063。
在一优选实施例中,所述加热控制电路还包括设置于所述隔离器件和所述开关器件之间的第三电阻。
具体的,第三电阻能够对于隔离器件所输出的信号电流起到限流作用,有效保护开关器件,防止过高的电流造成开关器件的损坏。
在一优选实施例中,所述加热控制电路还包括整流器件,其连接在所述交流电源和所述加热件之间,用于将所述交流电源的输出电压信号转换为直流电压以提供给所述加热件。
本申请实施例通过整流器件将交流电压转换为直流电压,能够满足加热件对于直流电压的需要。更为优选的,本申请实施例还可以在电压转换器件和加热设件之间设置滤波器件,将转换后的直流电压信号进行滤波,有效去除直流电压信号中的干扰信号,保证加热件的使用安全。
其中,整流器件可以根据实际应用需要采用全波整流桥、半波整流桥或者其他类型的整流电路,在此不作过多限定。
在一优选实施例中,所述加热控制电路还包括电压采集器件,其连接在所述交流电源130和所述控制器件110之间,用于采样所述交流电源130的输出电压信号以提供给所述控制器件110。
在一优选实施例中,所述电压采集器件为互感器,所述互感器的输入端连接所述交流电源,输出端连接所述控制器件的输入端。其能够按照一定比例将交流电压降低,以满足控制器件的使用。
在一优选实施例中,所述控制器件为功率计算芯片。该功率计算芯片内置可以根据实际应用需要内置不同功率计算公式,以满足用户对于恒功率输出的多种需求。举例而言,计算功率芯片的型号包括HLW8012等。
通过上述实施例可知,本申请加热控制电路可以外接不同交流电压的交流电源,在实现恒功率的是基础上,进一步满足宽电压的需求,使其能够适应不同的应用场合。
下面以更为具体的实施例来详细说明加热控制电路实现恒功率输出的过程。
图2是根据一示例性实施例示出的一种加热控制电路连接示意图。首先对于图2中的各个单元和器件的连接加以简单说明。如图2所示,整流桥D1包括交流电压输入端AC,输入端AC用于连接交流电源J1。整流桥D1的正极输出端1连接加热件的输入端1。互感器L1的一输入端连接交流电源J1,另一输入端连接电源接地端GNDP。互感器的一输出端连接计算功率芯片U2的输入端VIN,另一输出端连接公共接地端。光电耦合器U1的输入端1连接计算功率芯片U2的输出端VOUT,输出端4经由第三电阻R3连接MOS管的栅极,输出端6连接至分压电路中的第一电阻R1和第二电阻R2之间。第一电阻R1的一端连接加热件的输入端1,第二电阻R2的一端连接MOS管的源极,且连接至电源接地端GNDP。MOS管的漏极连接加热件的输入端2。
该加热控制电路的工作过程如下:
首先,当加热控制电路连接交流电源时,整流桥将交流电源的交流电压信号转换为直流电压输出至加热件。互感器L1对于交流电源的交流电压进行采集,将采集的电压传输至功率计算芯片,以便于功率计算芯片根据采集的电压进行功率计算。
其次,根据本申请关于加热件的恒功率的输出需求,计算功率芯片中内置功率计算公式。其具体采用积分运算方式,计算交流电压的输出功率。并且计算功率芯片还内置功率判断条件,判断输出功率是否超出所预设的功率阈值,该功率阈值即为上述提到的加热件的预设适配功率。
具体的,参照图3和图4所示,图3和图4分别为110V交流电压示意图和220V交流电压示意图。下面以110V交流电压,功率阈值为200W举例说明,当计算功率芯片检测到交流电压过零点时,即开始计算交流电压的输出功率。随着时间推移,交流电压上升,计算功率芯片基于采集的某一时刻的电压值所对应的功率并进行积分运算以得到该时刻下的输出功率。如图3中,在T1时刻对应的电压V1 所积分得到的输出功率为200W。在图4中,与110V相比,220V交流电压在相同时间的电压上升速度比110V交流电压快,因此图4中,在T2时刻对应的电压V2所积分得到的输出功率为200W,且T2<T1。基于功率计算公式W=U
2/R可知,若110V为100%输出,那么采用220V电压只需要输出25%输出即可实现与110V相同的功率输出。以图3和图4为例,图3中的白色区域面积与图4中的白色区域面积相同,且图4中的白色区域面积占220V交流电源半周期所形成的半圆面积的1/4。
进一步,当计算功率芯片判断输出功率未超出功率阈值时,则输出的驱动信号为启动信号。光电耦合器根据该启动信号输出对应的输出信号,使得MOS管导通。此时,加热控制电路和加热件形成闭合回路,加热件得以进行加热。而当计算功率芯片判断输出功率超出功率阈值时,所产生的驱动信号为关闭信号。光电耦合器基于光电耦合原理,在接收到关闭信号后输出相应的输出信号,使得MOS管处于截止状态。此时,所形成闭合回路断开,加热件停止继续加热。
因此,通过控制MOS管的导通时间和截止时间,即控制MOS管的占空比实现加热件的恒功率输出。
另外需要说明的是,计算功率芯片所输出的关闭信号对于MOS管来说为缓慢关闭过程,相比于快速过程,能够有效降低电路的EMI,避免快速关闭所产生的干扰信号对电路的其他器件造成影响。
综上,本申请实施例的加热控制电路具有如下优点:1)电路结构简单,易于应用;2)可外接不同交流电压的交流电源,满足宽电压的需求,适合应用不同的交流电源场合;3)无需进行降低电压操作,节省成本;4)实现加热件的恒功率输出,提高加热件的使用安全性。
本发明实施例还提供一种呼吸机,该呼吸机包括:加热件;以及上述实施例所述的加热控制电路。加热控制电路控制加热件的输出功率,使得加热件能够以恒功率的形式进行加热工作。加热件优选采用加热盘。
发明人发现,目前通气治疗设备在国内外使用的是不同规格的加 热板,以稳定输出功率200W的加热板为例,在民用交流标准电压为110V的国家,加热板的电阻值为60.5Ω(欧姆),在中国国内和其他民用交流标准电压为220V的国家,加热板的电阻值为242Ω。
基于上述原因,在通气治疗设备生产装配时,需要提前确认通气治疗设备将要销往的国家和地区,确保加热板和配套的软件与其他硬件匹配。
发明人进一步研究发现,采用上述方案的主要原因有两个:
1)、不同电阻值规格的加热板混用会有较大风险。例如:将110V规格的电阻值为60.5Ω的加热板在220V电压下使用,加热板的加热功率会变为正常情况下的4倍,很容易因为功率过大导致温度异常上升,影响加热控制和相关的故障判断。
2)、而如果将220V规格的电阻值为242Ω的加热板在110V电压下使用,则加热板的加热功率仅为正常额定功率的1/4,该加热功率会严重不足,无法满足通气治疗设备加温湿化的需求。
由于上述第1)个原因引起的后果很严重,因此通气治疗设备在不同国家进行注册时都需要分别区分通气治疗设备的规格,加大了注册的难度。但由于民用交流标准电压不只是中国国内和国外有区别,在国外的不同国家也有区别,无法排除通气治疗设备会在电压不同的国家使用的可能性,即使区分注册,仍然有风险。
另外,在某些电网质量不稳定的国家或者地区,工作电源的电压也会出现波动,随之也会造成加热板的输出功率随之产生波动,这同样会影响通气治疗设备的治疗效果。
针对上述问题,发明人创造性的提出了本发明的保持功率稳定的方法,以下对本发明提出的方法进行详细说明。
参照图5,示出了本发明实施例一种保持功率稳定的方法的流程图,该方法包括:
步骤S101:确定目标功率值和实际最大功率值,目标功率值表征通气治疗设备需要稳定输出的功率值。
在通气治疗设备上电准备开始工作时,首先确定目标功率值和实际最大功率值,所谓目标功率值是表征通气治疗设备的加热板需要 稳定输出的功率值。例如:加热板需要稳定输出的功率值为100W,那么目标功率值就为100W。
而实际最大功率值是指通气治疗设备的加热板在实际工作中,可以达到的最大功率值,该值在加热板的电阻值确定时,其大小根据工作电源值的大小而发生变化。因此通气治疗设备在实际工作时,确定实际最大功率值的方法具体包括:
步骤S1:获取通气治疗设备的工作电源值;
步骤S2:根据工作电源值和加热板的电阻值,确定实际最大功率值。
首先获取通气治疗设备的工作电源值,该值即为使用该通气治疗设备的国家或者地区的民用交流电标准值,之后再根据该工作电源值和加热板的电阻值,确定实际最大功率值。实际最大功率值的计算方式可以为:
实际最大功率值=工作电源值
2/加热板的电阻值。
本发明提出的保持功率稳定的方法中,为了实现该目标,加热板的电阻值的取值依据为:
基于国际民用电的标准电压范围,保证通气治疗设备在工作时可持续输出目标功率值,且使得实际最大功率值不小于目标功率值。例如:国际民用电的标准电压范围为:100~240V,若目标功率值为200W,则加热板的电阻值可以选取不大于50Ω且大于0Ω的任意值。50Ω得来的依据是:假若加热板的电阻值选取大于50Ω,假设为50.5Ω,那么当通气治疗设备的工作电源值为100V时,实际最大功率值为100
2/50.5=198W,其小于目标功率值200W。当然,若是加热板的电阻值选取的过小,则相同工作电源值下,会导致实际最大功率值远大于目标功率值,进而使得流经加热板的电流过大,可能导致加热板使用寿命的缩短。综合上述多种因素,一种较优的电阻值选择为50Ω。
步骤S102:根据目标功率值和实际最大功率值,输出总控制信号,总控制信号包括:开启信号和关闭信号,其中,开启信号每输出一次,通气治疗设备的加热板持续工作预定时长,关闭信号每输出一 次,加热板停止工作预定时长。
在确定目标功率值和实际最大功率值之后,即可根据目标功率值和实际最大功率值,输出总控制信号。总控制信号包括:开启信号和关闭信号。当加热控制板接收到开启信号后,即可控制加热板持续工作预定时长。
一般情况下,通气治疗设备中由主控制板产生总控制信号,该总控制信号包括:开启信号和关闭信号,所谓开启信号即为使得加热板开始工作的信号;所谓关闭信号即为使得加热板停止工作的信号。
本发明输出总控制信号的具体方法可以分为两种:
(1)依据占空比输出总控制信号;
(2)采用累加法输出总控制信号。
针对第(1)种依据占空比输出总控制信号方法,具体有如下步骤:
步骤T1:根据目标功率值和实际最大功率值,确定占空比。
为了运算的简洁,可以直接以目标功率值与实际最大功率值的比值作为占空比,即占空比=目标功率值/实际最大功率值
步骤T2:根据占空比,输出总控制信号。
得到占空比之后,即可根据占空比,确定总控制信号的输出次数,该总控制信号的输出次数即为占空比中分母的值。如前所述,总控制信号包括:开启信号和关闭信号,其中,关闭信号每输出一次,加热板停止工作预定时长;再根据占空比和总控制信号的输出次数,确定开启信号的输出次数和关闭信号的输出次数。开启信号的输出次数即为占空比中分子的值。最后按照开启信号的输出次数输出开启信号,并且按照关闭信号的输出次数输出关闭信号。
若开启信号的输出次数为多次,则开启信号在关闭信号全部输出完成后连续多次输出;若开启信号的输出次数为一次,则开启信号在关闭信号全部输出完成后输出一次。
为了更清楚的说明上述方法,举一具体示例:假设加热板电阻值为50Ω,目标功率值为100W,工作电源值为200V。则实际最大功率值为200
2/50=800W,则占空比为100/800=1/8。即,总控制信号的 输出次数为8次,开启信号的输出次数为1次,关闭信号的输出次数为7次。若主控制板以0.1秒为周期,每0.1秒向加热控制板发送一次信号,则从0秒开始,前0.7秒均向加热控制板发送关闭信号,加热控制板接收后控制加热板停止工作0.7秒。第0.8秒向加热控制板发送开启信号。加热控制板接收后控制加热板持续工作0.1秒。
之后第0.9秒至第1.5秒主控制板向加热控制板发送关闭信号,加热控制板接收后控制加热板再次停止工作0.7秒。主控制板在第1.6秒向加热控制板发送开启信号,加热控制板接收后再次控制加热板持续工作0.1秒。上述过程反复进行,直至通气治疗设备停止工作,而在上述过程中,加热板的功率始终稳定保持在100W。
可以理解的是,假若占空比为2/7,那么总控制信号的输出次数为7次,开启信号的输出次数为2次,关闭信号的输出次数为5次。若主控制板以0.1秒为周期,每0.1秒向加热控制板发送一次信号,则从0秒开始,前0.5秒均向加热控制板发送关闭信号,加热控制板接收后控制加热板停止工作0.5秒。第0.6秒、0.7秒向加热控制板发送开启信号。加热控制板接收后控制加热板持续工作0.2秒。依次类推,同样使得加热板的功率始终稳定保持在目标功率值。可以理解的是,当工作电源值出现波动时,实际最大功率值也随之变动,则占空比变化,输出开启信号的次数变化,但加热板的功率依然稳定保持在目标功率值。
针对上述第(2)种采用累加法输出总控制信号方法,具体有如下步骤:
步骤V1:以目标功率值作为递增值;
步骤V2:根据递增值和实际最大功率值,输出总控制信号。
该种方法,不用求取占空比,而是直接以目标功率值作为递增值,根据递增值和实际最大功率值,输出总控制信号。一种较优的方式为:
以0为基础,在每一个预设周期均累加一次递增值,且在每一个预设周期对累加一次递增值后的累加值,与实际最大功率值进行比较。即第一预设周期时,用0加一次目标功率值,得到累加值,该累加值的大小等于目标功率值,累加后对累加值与实际最大功率值进行比较。 第二预设周期时,用第一预设周期的累加值,再累加一次递增值,即第二预设周期时,累加值的大小等于两倍的目标功率值,对该累加值(两倍的目标功率值)与实际最大功率值进行比较。第三预设周期时,用第二预设周期的累加值,再累加一次递增值,即第三预设周期时,累加值的大小等于三倍的目标功率值,对该累加值(三倍的目标功率值)与实际最大功率值进行比较,以此类推。
若任一预设周期时的累加值小于实际最大功率值,则该预设周期输出关闭信号,其中,关闭信号每输出一次,加热板停止工作预定时长。若任一预设周期时的累加值不小于实际最大功率值,则该预设周期输出开启信号。假设第三预设周期,累加值(三倍的目标功率值)小于实际最大功率值,则前三个预设周期均输出关闭信号;假设第三预设周期,累加值(三倍的目标功率值)不小于实际最大功率值,则前两个预设周期均输出关闭信号,第三个预设周期输出开启信号。
而在输出开启信号后的下一预设周期内,以差值为基础,再重复执行步骤:在每一个预设周期均累加一次递增值,且在每一个预设周期对累加一次所述递增值后的累加值,与实际最大功率值进行比较,其中,所谓差值为对应输出开启信号的预设周期,该预设周期内累加值与实际最大功率值两者作差得到的值。假设第三预设周期,累加值(三倍的目标功率值)为130W不小于实际最大功率值120W,则前两个预设周期均输出关闭信号,第三个预设周期输出开启信号。而第四个周期时,以差值10W(130-120=10W)为基础,再重复执行步骤:在第四个预设周期累加一次递增值,即10W加上目标功率值得到累加值,且第四个预设周期对该累加值与实际最大功率值进行比较。重复前述步骤,直至通气治疗设备停止工作。
沿用前述具体示例:假设加热板电阻值为50Ω,目标功率值为100W,工作电源值为200V。则实际最大功率值为200
2/50=800W,以目标功率值100W为递增值,0.1秒为预设周期。从0秒开始,每0.1秒累加一次目标功率值100W,则0.1秒周期累加值为100W,小于实际最大功率值800W,则主控制板0.1秒周期向加热控制板发送关闭信号,加热控制板接收后控制加热板停止工作0.1秒。0.2秒周 期累加值为200W,小于实际最大功率值800W,则主控制板0.2秒周期向加热控制板发送关闭信号,加热控制板接收后控制加热板停止工作0.1秒。以此类推,直至第0.8秒周期累加值为800W,等于实际最大功率值800W,则主控制板第0.8秒周期向加热控制板发送开启信号,加热控制板接收后控制加热板持续工作0.1秒。第0.9秒周期,以差值0为基础,再次重复上述过程,直至通气治疗设备停止工作,而在上述过程中,加热板的功率始终稳定保持在100W。
参照图6,示出了以第(2)种采用累加法输出开启信号方法时的输出开启信号的示意图。图6中上半部分为开启信号的输出,横轴为时间,单位为秒,纵轴为开关量,以1表示输出开启信号。图6中下半部分为每个预设周期内的累加值情况,横轴为时间,单位为秒,纵轴为递增值,可以直观的知晓,以0.8秒为一个规律周期,前0.7秒累加值从100开始增加到700,均输出关闭信号,第0.8秒累加值为800,差值为0,输出开启信号。可以理解的是,当工作电源值出现波动时,实际最大功率值也随之变动,则累加值出现不小于实际最大功率值的预设周期不同,输出开启信号的周期也变化,但加热板的功率依然稳定保持在目标功率值。
基于上述保持功率稳定的方法,本发明在通气治疗设备的硬件设备上,作了极为简单的变动,即,在通气治疗设备的工作电源模块10中增加了一个电压检测单元101。参照图7所示的通气治疗设备的结构示意图,其包括:工作电源模块10、主控制板20、加热控制板30、加热板40、温度传感器401、交流电源50(即工作电源,采用民用交流标准电压)以及直流电源60。主控制板20向加热控制板30输出总控制信号S,同时接收温度传感器401反馈的加热板的温度值。
在通气治疗设备实际工作过程中,加热板40的实际温度过高时,继续加热可能存在一定风险,例如:加热板40过热损伤其使用寿命,加热板40实际温度过高,干扰其它元器件的正常工作等。因此,主控制板20需要持续接收来自于温度传感器401的温度信号,该温度信号表征加热板40的实时温度;在实时温度小于预设温度的情况下, 主控制板20执行前述步骤S102:根据目标功率值和实际最大功率值,输出总控制信号。即,设定一个预设温度,加热板40在工作过程中,其实际温度不可以超过该预设温度。当加热板40的实际温度小于预设温度时,主控制板20按照步骤S102的方法控制加热板40的工作状态。
而在加热板40的实时温度不小于预设温度的情况下,主控制板20持续输出关闭信号,使得加热板40暂时停止加热,直至加热板40的实时温度降低至小于预设温度时,再次执行步骤S102:根据目标功率值和实际最大功率值,输出总控制信号。即,当加热板40的实际温度不小于预设温度时,主控制板20并不按照步骤S102的方法控制加热板40的工作状态,而是控制加热板40暂时停止加热。直至加热板40的实时温度降低至小于预设温度时,主控制板20再按照步骤S102的方法控制加热板40的工作状态。
本发明仅在目前通气治疗设备工作电源模块10中增加了一个电压检测单元101,该电压检测单元101将检测到的交流电源50的电压值反馈至主控制板20,以使得主控制板20获取通气治疗设备的工作电源值,进而实现上述步骤S101~步骤S102的保持功率稳定的方法。
通过上述实施例,本发明的保持功率稳定的方法,通气治疗设备加热板的电阻值无需区别设计并制作,全部统一采用同一电阻值,无需考虑民用交流电压的标准电压范围,利用两个功率值控制开启信号和关闭信号的输出,通过开启信号每输出一次,加热板持续工作预定时长,而关闭信号每输出一次,加热板停止工作预定时长这样一种方式,实现保持加热板功率稳定输出的目标。实现了加热板功率稳定输出的目标。
由于不需要设计并制作不同电阻值的加热板,间接降低了通气治疗设备的成本。并且当工作电源的电压出现波动时,也不影响加热板的输出功率,实现了基于同一加热板电阻值,在全球范围内的标准电压100V~240V范围内,以及当工作电源的电压出现波动时,都能保持加热板功率的稳定输出的目标,具有较高的实用性价值。
需要说明的是,本发明所称的通气治疗设备,包括:呼吸机以及高流量湿化氧疗仪等设备。
基于上述保持功率稳定的方法,本发明还提供一种保持功率稳定的装置,参照图8,示出了本发明实施例一种保持功率稳定的装置的框图。
所述装置包括:确定模块410,用于确定目标功率值和实际最大功率值,所述目标功率值表征通气治疗设备需要稳定输出的功率值;输出模块420,用于根据所述目标功率值和所述实际最大功率值,输出总控制信号,所述总控制信号包括:开启信号和关闭信号,其中,所述开启信号每输出一次,所述通气治疗设备的加热板持续工作预定时长,所述关闭信号每输出一次,所述加热板停止工作预定时长。
可选地,所述输出模块420包括:确定占空比子单元,用于根据所述目标功率值和所述实际最大功率值,确定占空比;第一输出总控信号子单元,用于根据所述占空比,输出所述总控制信号。
可选地,所述第一输出总控信号子单元具体用于:根据所述占空比,确定所述总控制信号的输出次数;根据所述占空比和所述总控制信号的输出次数,确定所述开启信号的输出次数和所述关闭信号的输出次数;按照所述开启信号的输出次数输出所述开启信号,并且按照所述关闭信号的输出次数输出所述关闭信号。
可选地,所述输出模块420包括:递增子单元,用于以所述目标功率值作为递增值;第二输出总控信号子单元,用于根据所述递增值和所述实际最大功率值,输出所述总控制信号。
可选地,所述第二输出总控信号子单元具体用于:以0为基础,在每一个预设周期均累加一次所述递增值,且在每一个预设周期对累加一次所述递增值后的累加值,与所述实际最大功率值进行比较;若任一预设周期时的累加值小于所述实际最大功率值,则该预设周期输出关闭信号,其中,所述关闭信号每输出一次,所述加热板停止工作预定时长;若任一预设周期时的累加值不小于所述实际最大功率值,则该预设周期输出所述开启信号;在输出所述开启信号后的下一预设周期内,以差值为基础,执行步骤:在每一个预设周期均累加一次所 述递增值,且在每一个预设周期对累加一次所述递增值后的累加值,与所述实际最大功率值进行比较,其中,所述差值为对应输出所述开启信号的预设周期,该预设周期内累加值与实际最大功率值两者作差得到的值。
可选地,所述确定模块410包括:获取子单元,用于获取所述通气治疗设备的工作电源值;确定子单元,用于根据所述工作电源值和所述加热板的电阻值,确定所述实际最大功率值。
可选地,所述装置还包括:接收温度模块,用于接收来自于温度传感器的温度信号,所述温度信号表征所述加热板的实时温度;第一执行模块,用于在所述实时温度小于预设温度的情况下,执行步骤:根据所述目标功率值和所述实际最大功率值,输出所述总控制信号;第二执行模块,用于在所述实时温度不小于所述预设温度的情况下,持续输出所述关闭信号,直至所述实时温度降低至小于所述预设温度时,执行步骤:根据所述目标功率值和所述实际最大功率值,输出所述总控制信号。
基于上述保持功率稳定的方法,本发明还提供一种通气治疗设备,所述通气治疗设备包括:主控制板;所述主控制板用于执行如步骤S101~步骤S102任一所述的保持功率稳定的方法。通气治疗设备可以是呼吸机,也可以是高流量湿化氧疗仪。
还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、商品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、商品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括要素的过程、方法、商品或者设备中还存在另外的相同要素。
以上仅为本申请的实施例而已,并不用于限制本申请。对于本领域技术人员来说,本申请可以有各种更改和变化。凡在本申请的精神和原理之内所作的任何修改、等同替换、改进等,均应包含在本申请的权利要求范围之内。
Claims (10)
- 一种加热控制电路,其特征在于,所述加热控制电路包括控制器件和开关器件,所述控制器件的输入端连接交流电源,输出端连接所述开关器件的控制端,而所述开关器件的输出端连接加热件;其中,所述控制器件被配置为根据所述交流电源的不同输出电压生成用于控制所述开关器件的占空比适应性变化的驱动信号,其中所述占空比适应性变化以使得所述开关器件输出至所述加热件的功率维持恒定。
- 根据权利要求1所述的加热控制电路,其特征在于,所述开关器件为MOS管,所述MOS管的栅极连接所述控制器件,源极连接电源接地端,漏极连接所述加热件的输入端,其中所述MOS管的栅极被配置作为控制端。
- 根据权利要求1或2所述的加热控制电路,其特征在于,所述加热控制电路还包括与所述加热件和所述开关器件形成的串联电路相并联的分压电路,且该分压电路包括相互串联的第一电阻和第二电阻。
- 根据权利要求1至3任一项所述的加热控制电路,其特征在于,所述加热控制电路还包括设置在所述控制器件的输出端和所述开关器件的控制端之间的隔离器件。
- 根据权利要求4所述的加热控制电路,其特征在于,所述加热控制电路还包括设置于所述隔离器件和所述开关器件之间的第三电阻。
- 根据权利要求1至5任一项所述的加热控制电路,其特征在于,所述加热控制电路还包括整流器件,其连接在所述交流电源和所 述加热件之间,用于将所述交流电源的输出电压信号转换为直流电压以提供给所述加热件。
- 根据权利要求1至6任一项所述的加热控制电路,其特征在于,所述加热控制电路还包括电压采集器件,其连接在所述交流电源和所述控制器件之间,用于采样所述交流电源的输出电压信号以提供给所述控制器件。
- 根据权利要求7所述的加热控制电路,其特征在于,所述电压采集器件为互感器,所述互感器的输入端连接所述交流电源,输出端连接所述控制器件的输入端。
- 根据权利要求1至8任一项所述的加热控制电路,其特征在于,所述控制器件为功率计算芯片。
- 一种呼吸机,其特征在于,包括:加热件;以及权利要求1-9任一项所述的加热控制电路。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP22914687.3A EP4428649A2 (en) | 2021-12-31 | 2022-12-26 | Heating control circuit and breathing machine |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111674664.2 | 2021-12-31 | ||
CN202123441555.4 | 2021-12-31 | ||
CN202111674664.2A CN114209942B (zh) | 2021-12-31 | 2021-12-31 | 保持功率稳定的方法、装置及通气治疗设备 |
CN202123441555.4U CN216596042U (zh) | 2021-12-31 | 2021-12-31 | 一种加热控制电路及呼吸机 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2023125433A2 true WO2023125433A2 (zh) | 2023-07-06 |
WO2023125433A3 WO2023125433A3 (zh) | 2023-08-24 |
Family
ID=86997834
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2022/142002 WO2023125433A2 (zh) | 2021-12-31 | 2022-12-26 | 一种加热控制电路及呼吸机 |
Country Status (2)
Country | Link |
---|---|
EP (1) | EP4428649A2 (zh) |
WO (1) | WO2023125433A2 (zh) |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2004327104A (ja) * | 2003-04-22 | 2004-11-18 | Mitsubishi Electric Corp | 誘導加熱調理器 |
CN106579560A (zh) * | 2016-12-15 | 2017-04-26 | 深圳市合元科技有限公司 | 电子烟驱动方法、组件及电子烟具 |
CN107569753B (zh) * | 2017-08-22 | 2021-02-19 | 天津怡和嘉业医疗科技有限公司 | 呼吸管路、呼吸机及传感器数据传输方法 |
CN108273174A (zh) * | 2017-12-29 | 2018-07-13 | 北京怡和嘉业医疗科技股份有限公司 | 功率调节方法、装置及呼吸机加湿器 |
CN110121219B (zh) * | 2018-02-05 | 2024-10-01 | 小牛科技河北有限公司 | 一种基于加热器的加热控制装置 |
CN111638747B (zh) * | 2020-06-16 | 2021-10-15 | 中微半导体(深圳)股份有限公司 | 一种恒功率输出的pwm控制电路及其实现方法 |
CN216596042U (zh) * | 2021-12-31 | 2022-05-24 | 天津怡和嘉业医疗科技有限公司 | 一种加热控制电路及呼吸机 |
-
2022
- 2022-12-26 EP EP22914687.3A patent/EP4428649A2/en active Pending
- 2022-12-26 WO PCT/CN2022/142002 patent/WO2023125433A2/zh active Application Filing
Also Published As
Publication number | Publication date |
---|---|
WO2023125433A3 (zh) | 2023-08-24 |
EP4428649A2 (en) | 2024-09-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9214854B2 (en) | Total harmonic current distortion control circuit and method thereof | |
CN107769567A (zh) | 谐振转换器中的突发模式控制 | |
US20120262950A1 (en) | Power supply adaptor | |
CN105529799B (zh) | 基于次级控制的充电系统及其次级控制装置 | |
WO2016123897A1 (zh) | 电磁加热控制电路及电磁加热设备 | |
CN204597768U (zh) | 开关式并联调节器电路 | |
CN114336532B (zh) | 一种采样电阻短路保护方法 | |
CN203026918U (zh) | 一种智能电网终端电源输入过压保护电路 | |
CN104980021A (zh) | 用于开关模式电源的系统和方法 | |
CN105978340B (zh) | 电源转换器、开关控制电路及电流感测电阻短路侦测方法 | |
CN101419434A (zh) | 具有微功耗待机功能的容开电源 | |
WO2007087756A1 (fr) | Alimentation électrique commutée par condensateur possédant une fonction d'attente économe en consommation de courant | |
TW201125271A (en) | Power factor correction device | |
TW201230650A (en) | Switching rectifier circuit and battery charger using same | |
JP2016163438A (ja) | スイッチング電源装置 | |
CN104113200A (zh) | 用于变频空调的无桥apfc系统及其控制方法 | |
EP2955528A1 (en) | Near-infrared reading device and ammeter | |
WO2011026424A1 (zh) | 用于空调辅助电加热的控制方法和装置 | |
CN201118197Y (zh) | 一种交流电压欠压脱扣器控制电路 | |
CN104113199A (zh) | 一种有源pfc电路及其控制方法 | |
TW201108576A (en) | Apparatus and method for changing operation mode according to load | |
WO2021127957A1 (zh) | 一种反激式转换器恒流控制电路 | |
WO2023125433A2 (zh) | 一种加热控制电路及呼吸机 | |
TWI416862B (zh) | 風扇及馬達控制裝置 | |
CN216596042U (zh) | 一种加热控制电路及呼吸机 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22914687 Country of ref document: EP Kind code of ref document: A2 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2022914687 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2022914687 Country of ref document: EP Effective date: 20240605 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |