WO2023120229A1 - 基板処理装置および基板処理方法 - Google Patents
基板処理装置および基板処理方法 Download PDFInfo
- Publication number
- WO2023120229A1 WO2023120229A1 PCT/JP2022/045398 JP2022045398W WO2023120229A1 WO 2023120229 A1 WO2023120229 A1 WO 2023120229A1 JP 2022045398 W JP2022045398 W JP 2022045398W WO 2023120229 A1 WO2023120229 A1 WO 2023120229A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- substrate
- liquid
- immersion
- processing
- treatment
- Prior art date
Links
- 239000000758 substrate Substances 0.000 title claims abstract description 518
- 238000012545 processing Methods 0.000 title claims abstract description 304
- 238000003672 processing method Methods 0.000 title claims description 14
- 239000007788 liquid Substances 0.000 claims abstract description 261
- 238000007654 immersion Methods 0.000 claims abstract description 189
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 78
- 238000012546 transfer Methods 0.000 claims description 56
- 239000007789 gas Substances 0.000 claims description 40
- 230000005587 bubbling Effects 0.000 claims description 38
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 36
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 36
- 239000001301 oxygen Substances 0.000 claims description 36
- 229910052760 oxygen Inorganic materials 0.000 claims description 36
- 239000001257 hydrogen Substances 0.000 claims description 35
- 229910052739 hydrogen Inorganic materials 0.000 claims description 35
- 238000000034 method Methods 0.000 claims description 35
- 230000008569 process Effects 0.000 claims description 28
- 239000011248 coating agent Substances 0.000 claims description 16
- 238000000576 coating method Methods 0.000 claims description 16
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 claims description 14
- VTVVPPOHYJJIJR-UHFFFAOYSA-N carbon dioxide;hydrate Chemical compound O.O=C=O VTVVPPOHYJJIJR-UHFFFAOYSA-N 0.000 claims description 9
- 229910002092 carbon dioxide Inorganic materials 0.000 claims description 7
- WGTYBPLFGIVFAS-UHFFFAOYSA-M tetramethylammonium hydroxide Chemical compound [OH-].C[N+](C)(C)C WGTYBPLFGIVFAS-UHFFFAOYSA-M 0.000 claims description 7
- 238000007599 discharging Methods 0.000 claims description 6
- QGZKDVFQNNGYKY-UHFFFAOYSA-N Ammonia Chemical compound N QGZKDVFQNNGYKY-UHFFFAOYSA-N 0.000 claims description 3
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 3
- 239000001569 carbon dioxide Substances 0.000 claims description 3
- CBENFWSGALASAD-UHFFFAOYSA-N Ozone Chemical compound [O-][O+]=O CBENFWSGALASAD-UHFFFAOYSA-N 0.000 claims description 2
- 239000012670 alkaline solution Substances 0.000 claims description 2
- 239000003945 anionic surfactant Substances 0.000 claims description 2
- JEGUKCSWCFPDGT-UHFFFAOYSA-N h2o hydrate Chemical compound O.O JEGUKCSWCFPDGT-UHFFFAOYSA-N 0.000 claims 2
- 229910021529 ammonia Inorganic materials 0.000 claims 1
- 229910001873 dinitrogen Inorganic materials 0.000 claims 1
- QOSATHPSBFQAML-UHFFFAOYSA-N hydrogen peroxide;hydrate Chemical compound O.OO QOSATHPSBFQAML-UHFFFAOYSA-N 0.000 claims 1
- 230000032258 transport Effects 0.000 description 62
- 239000007921 spray Substances 0.000 description 21
- 235000012431 wafers Nutrition 0.000 description 20
- 230000007246 mechanism Effects 0.000 description 17
- 238000005530 etching Methods 0.000 description 13
- 239000000126 substance Substances 0.000 description 13
- 210000000078 claw Anatomy 0.000 description 12
- WFKWXMTUELFFGS-UHFFFAOYSA-N tungsten Chemical compound [W] WFKWXMTUELFFGS-UHFFFAOYSA-N 0.000 description 12
- 229910052721 tungsten Inorganic materials 0.000 description 12
- 239000010937 tungsten Substances 0.000 description 12
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 11
- 239000002245 particle Substances 0.000 description 11
- 229910052710 silicon Inorganic materials 0.000 description 11
- 239000010703 silicon Substances 0.000 description 11
- 238000000352 supercritical drying Methods 0.000 description 11
- NBIIXXVUZAFLBC-UHFFFAOYSA-N Phosphoric acid Chemical compound OP(O)(O)=O NBIIXXVUZAFLBC-UHFFFAOYSA-N 0.000 description 10
- 230000003647 oxidation Effects 0.000 description 10
- 238000007254 oxidation reaction Methods 0.000 description 10
- 238000007598 dipping method Methods 0.000 description 9
- 238000003860 storage Methods 0.000 description 9
- 238000001035 drying Methods 0.000 description 8
- 238000002474 experimental method Methods 0.000 description 8
- 238000004519 manufacturing process Methods 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 7
- 239000002184 metal Substances 0.000 description 7
- 239000004065 semiconductor Substances 0.000 description 7
- 238000004090 dissolution Methods 0.000 description 6
- 239000000243 solution Substances 0.000 description 6
- 229910000147 aluminium phosphate Inorganic materials 0.000 description 5
- 238000012993 chemical processing Methods 0.000 description 5
- 238000004140 cleaning Methods 0.000 description 5
- 239000012636 effector Substances 0.000 description 5
- 230000033116 oxidation-reduction process Effects 0.000 description 5
- 238000005406 washing Methods 0.000 description 5
- 229910004298 SiO 2 Inorganic materials 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 238000011068 loading method Methods 0.000 description 4
- 238000005192 partition Methods 0.000 description 4
- 230000002093 peripheral effect Effects 0.000 description 4
- 230000009471 action Effects 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 230000006866 deterioration Effects 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000002209 hydrophobic effect Effects 0.000 description 3
- 239000000463 material Substances 0.000 description 3
- 238000005507 spraying Methods 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 239000011534 wash buffer Substances 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000009835 boiling Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000001514 detection method Methods 0.000 description 2
- 230000003028 elevating effect Effects 0.000 description 2
- 239000012530 fluid Substances 0.000 description 2
- 230000006870 function Effects 0.000 description 2
- 230000007723 transport mechanism Effects 0.000 description 2
- VHUUQVKOLVNVRT-UHFFFAOYSA-N Ammonium hydroxide Chemical compound [NH4+].[OH-] VHUUQVKOLVNVRT-UHFFFAOYSA-N 0.000 description 1
- 229910003893 H2WO4 Inorganic materials 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- 238000010306 acid treatment Methods 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000001914 filtration Methods 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- 239000012510 hollow fiber Substances 0.000 description 1
- 150000002500 ions Chemical class 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 238000002844 melting Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000007935 neutral effect Effects 0.000 description 1
- 230000003287 optical effect Effects 0.000 description 1
- 238000010979 pH adjustment Methods 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000002035 prolonged effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 238000004904 shortening Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- QAOWNCQODCNURD-UHFFFAOYSA-N sulfuric acid Substances OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 1
- -1 sulfuric acid peroxide Chemical class 0.000 description 1
- CMPGARWFYBADJI-UHFFFAOYSA-L tungstic acid Chemical compound O[W](O)(=O)=O CMPGARWFYBADJI-UHFFFAOYSA-L 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
- 238000001039 wet etching Methods 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67017—Apparatus for fluid treatment
- H01L21/67028—Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
- H01L21/6704—Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing
- H01L21/67057—Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing with the semiconductor substrates being dipped in baths or vessels
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67017—Apparatus for fluid treatment
- H01L21/67063—Apparatus for fluid treatment for etching
- H01L21/67075—Apparatus for fluid treatment for etching for wet etching
- H01L21/67086—Apparatus for fluid treatment for etching for wet etching with the semiconductor substrates being dipped in baths or vessels
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/02041—Cleaning
- H01L21/02057—Cleaning during device manufacture
- H01L21/0206—Cleaning during device manufacture during, before or after processing of insulating layers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/302—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
- H01L21/304—Mechanical treatment, e.g. grinding, polishing, cutting
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/31—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
- H01L21/3105—After-treatment
- H01L21/311—Etching the insulating layers by chemical or physical means
- H01L21/31105—Etching inorganic layers
- H01L21/31111—Etching inorganic layers by chemical means
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67011—Apparatus for manufacture or treatment
- H01L21/67017—Apparatus for fluid treatment
- H01L21/67028—Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like
- H01L21/6704—Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing
- H01L21/67051—Apparatus for fluid treatment for cleaning followed by drying, rinsing, stripping, blasting or the like for wet cleaning or washing using mainly spraying means, e.g. nozzles
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/67005—Apparatus not specifically provided for elsewhere
- H01L21/67242—Apparatus for monitoring, sorting or marking
- H01L21/67253—Process monitoring, e.g. flow or thickness monitoring
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/677—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/677—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations
- H01L21/67703—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations between different workstations
- H01L21/67721—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations between different workstations the substrates to be conveyed not being semiconductor wafers or large planar substrates, e.g. chips, lead frames
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/683—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
- H01L21/687—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches
- H01L21/68714—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support
- H01L21/68785—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping using mechanical means, e.g. chucks, clamps or pinches the wafers being placed on a susceptor, stage or support characterised by the mechanical construction of the susceptor, stage or support
Definitions
- the present disclosure relates to a substrate processing apparatus and a substrate processing method.
- Patent Literature 1 describes a substrate processing system that applies such liquid processing to a substrate.
- the substrate processing system includes a chemical bath, a washing bath, a washing buffer bath, a transfer section, and a rotary drying section.
- batch-type chemical treatment was applied to multiple substrates
- water washing tank batch-type water washing treatment was applied to multiple substrates after chemical treatment
- rotary drying section water washing treatment was applied.
- a single-wafer type shaking-off drying process is applied to each one of the plurality of substrates.
- the washing buffer tank temporarily stores a plurality of substrates after washing in water.
- the transport unit transports the plurality of substrates stored in the washing buffer tank one by one to the rotary drying unit.
- the present disclosure provides a technique capable of preventing deterioration of the surface condition of substrates when transferring the substrates from the batch processing unit to the single wafer processing unit.
- a substrate processing apparatus is a batch processing section having a plurality of batch processing units, each of the batch processing units having a processing tank for storing a processing liquid, and the batch processing unit configured to immerse the plurality of substrates in the processing liquid stored in the batch processing unit and perform liquid processing on the plurality of substrates collectively; and the plurality of substrates processed by the batch processing unit a single-wafer processing unit having a single-wafer processing unit that processes the substrates one by one; and a transport system for transporting the plurality of substrates from the standby part to the single-wafer processing part, wherein the substrates are immersed in the immersion liquid in the immersion tank.
- the transport system including a first substrate transport unit that takes out the plurality of substrates one by one from the immersion liquid, and the waiting section performs the first liquid treatment and the second liquid treatment on the substrates.
- the first liquid treatment is liquid treatment for making the surface of the substrate hydrophilic, or liquid treatment for improving or maintaining the hydrophilicity of the surface of the substrate.
- the second liquid treatment is a liquid treatment for making the zeta potential of the surface of the substrate negative.
- FIG. 1 is a schematic cross-sectional view of a substrate processing system according to one embodiment of a substrate processing apparatus;
- FIG. FIG. 2 is a schematic side view showing one configuration example of a standby unit and devices related thereto;
- FIG. 2 is a schematic plan view showing one configuration example of a standby unit and devices related thereto;
- FIG. 10 is a schematic front view for explaining the action of the third substrate transport robot taking out the substrate from the substrate holding portion of the standby unit;
- FIG. 10 is a schematic front view for explaining the action when the substrate holder of the standby unit receives the substrate from the second substrate transport robot;
- 1 is a schematic longitudinal sectional view showing one configuration example of a single-wafer liquid processing unit;
- FIG. 4 is a schematic vertical cross-sectional view showing one configuration example of a substrate transfer unit
- FIG. 2 is a schematic cross-sectional view showing the structure of an etching object in Specific Example 1 of the substrate processing method
- FIG. 10 is a schematic cross-sectional view showing the structure of an etching object in specific examples 2 and 3 of the substrate processing method
- FIG. 10 is a schematic longitudinal sectional view of an immersion tank showing a first configuration example of a standby section as another embodiment of the substrate processing apparatus
- FIG. 10 is a schematic vertical cross-sectional view of an immersion tank showing a second configuration example of a waiting section as another embodiment of the substrate processing apparatus
- FIG. 4 is a schematic vertical cross-sectional view showing one configuration example of a substrate transfer unit
- FIG. 2 is a schematic cross-sectional view showing the structure of an etching object in Specific Example 1 of the substrate processing method
- FIG. 10 is a schematic cross-sectional view showing the structure of an etching object in specific examples 2 and 3 of the substrate processing
- FIG. 11 is a schematic vertical cross-sectional view of an immersion tank showing a third configuration example of a standby section as another embodiment of the substrate processing apparatus;
- FIG. 11 is a schematic vertical cross-sectional view of an immersion tank showing a fourth configuration example of a standby section as another embodiment of the substrate processing apparatus;
- FIG. 2 is a Pourbaix diagram for explaining the metal loss of tungsten;
- a substrate processing system 1 according to an embodiment of the substrate processing apparatus of the present disclosure will be described below with reference to the accompanying drawings.
- an XYZ orthogonal coordinate system is set and displayed in the lower left part of FIG.
- the Z direction is the vertical direction
- the positive Z direction is the upward direction.
- a substrate processing system 1 includes a container loading/unloading section 2, a first interface section 3, a batch processing section 4, a second A face section 5 and a sheet processing section 6 are provided.
- the substrate processing system 1 includes a control device 100 .
- the control device 100 is composed of a computer and includes an arithmetic processing section 101 and a storage section 102 .
- the storage unit 102 stores programs (including processing recipes) for controlling various types of processing executed in the substrate processing system 1 .
- the arithmetic processing unit 101 reads out and executes a program stored in the storage unit 102 to control the operation of each component of the substrate processing system 1 to be described later and to execute a series of processes to be described later.
- the control device 100 may include user interfaces such as a keyboard, touch panel, and display.
- the above program may be recorded in a computer-readable storage medium and installed in storage unit 102 of control device 100 from the storage medium. Examples of computer-readable storage media include hard disks (HD), flexible disks (FD), compact disks (CD), magnet optical disks (MO), and memory cards.
- the container loading/unloading unit 2 has a stage unit 21 for placing a substrate transfer container F such as a FOUP (hereinafter simply referred to as “container F” for simplicity) and a container stock unit 22 for storing the container F. are doing.
- a plurality of (four in the illustrated example) movable tables 211 are arranged in the Y direction on the stage section 21 .
- a partition wall 212 is provided between the stage portion 21 and the container stock portion 22 .
- An opening (not shown) with a shutter is provided at a position corresponding to each movable table 211 of the partition wall 212 .
- the container F placed on the movable table 211 can be moved into the container stock section 22 through the opening with the shutter opened.
- the container stock section 22 is provided with a plurality of container holding stages 221 and a container transport robot (container transport mechanism) 222 .
- the container transport robot 222 can transport the container F between the movable table 211 located inside the container stock section 22 and an arbitrary container holding stage 221 .
- one (or two) on the first interface section 3 side is a substrate unloading stage 221A, and the other one is a substrate storing stage 221B.
- a partition wall 223 is provided between the container stock section 22 and the first interface section 3 .
- an opening with a shutter (not shown) and a lid opening/closing mechanism (not shown) of the container F are provided.
- a first substrate transfer robot (first transfer mechanism) 31 is provided in the first interface section 3 .
- the first substrate transport robot 31 has a plurality of (for example, 5 to 25) substrate holders 32 as end effectors.
- the first substrate transport robot 31 collectively takes out a plurality of (for example, 5 to 25) substrates W from the container F placed on the substrate take-out stage 221A, and waits in the delivery area 33. 2 to the second substrate transport robot 41 (second transport mechanism) (indicated by a dashed line).
- the first substrate transport robot 31 takes out the substrate W stored in the container F in a horizontal posture, converts it into a vertical posture after taking it out of the container F, and then transfers it to the second substrate transport robot 41 .
- the batch processing unit 4 may process 50 substrates (for two containers) at once.
- the end effector of the first substrate transport robot 31 may be provided with a pitch change mechanism for changing the spacing between the substrate holders 32 , or the transfer area 33 may be provided with a pitch change mechanism.
- the pitch change mechanism is, for example, a mechanism that sets the arrangement interval (pitch) of the substrates W to 1/2 of the arrangement interval when the substrates W are stored in the container F, and is well known in the art.
- a plurality of batch processing units 42 are provided in the batch processing section 4 . Although four batch processing units 42 are depicted in FIG. 1, the number of batch processing units 42 is not limited to this. be done.
- the basic configuration of the plurality of batch processing units 42 is generally the same, and includes a processing bath for storing processing liquid, a substrate holder (called a wafer boat or the like) for holding substrates in the processing bath, and a substrate holder. It has an elevating mechanism for elevating.
- the substrate holder can hold, for example, 25 substrates W in a vertical posture at regular intervals in the horizontal direction.
- a plurality of batch processing units 42 are arranged in the X direction.
- the plurality of batch processing units 42 may include general-purpose batch processing units that can handle a wide variety of processes, and batch processing units dedicated to specific processes.
- the latter is exemplified by a batch processing unit for phosphoric acid (H 3 PO 4 ) processing.
- a batch processing unit for phosphoric acid processing In the phosphoric acid treatment, the treatment solution in the treatment tank is usually at a high temperature and in a substantially boiling state, and bubbling may occur.
- a batch processing unit for phosphoric acid processing includes, for example, a lid for closing the upper opening of the processing tank, a mechanism for monitoring and maintaining the boiling state of the processing liquid, a bubbling nozzle, and a substrate holder. A mechanism for pressing the substrate against the substrate is additionally provided.
- the plurality of batch processing units 42 includes, for example, a first chemical processing unit, a first rinse processing unit, a second chemical processing unit, and a second rinse processing unit.
- the substrates W are successively introduced into the first chemical processing unit, the first rinse processing unit, the second chemical processing unit, and the second rinse processing unit.
- a treatment chemical solution treatment or DIW rinse treatment
- a specific example of the processing performed by the batch processing unit 42 will be described later.
- a cleaning unit 43 is provided at a position closest to the first interface section 3 of the batch processing section 4 to clean the substrate holding section 413 of the second substrate transport robot 41 and, if necessary, dry it. ing.
- a standby unit (standby section) 44 is provided at the farthest position from the first interface section 3 of the batch processing section 4 .
- the standby unit 44 includes an immersion tank 441 that stores an immersion liquid for immersing the substrate W, a substrate holder 442 (called a wafer boat or the like) that holds the substrate in the immersion tank 441, and a substrate holder 442 that can be raised and lowered. and a moving mechanism 443 for moving in the horizontal direction (see FIGS. 2 and 3).
- the substrate holder 442 can hold, for example, 25 substrates W in a vertical posture at regular intervals in the horizontal direction.
- processing for changing the surface state of the substrate W is performed in preparation for subsequent single-wafer transport.
- this treatment includes, for example, a hydrophilization treatment to prevent the surface of the substrate W from running out of liquid, or a zeta potential of the surface of the substrate W to prevent particles from adhering to the surface of the substrate W. This is a process to make it negative. A detailed configuration of the standby unit 44 will be described later.
- the processing liquid stored in the batch processing unit 42 into which the substrates W are loaded immediately before being loaded into the standby unit 44 should not interfere with the processing performed in the standby unit 44.
- a rinse liquid specifically DIW, for example.
- the batch processing section 4 is provided with the second substrate transport robot 41 described above.
- the second substrate transport robot 41 includes a guide rail 411 extending along the arrangement direction (X direction) of the plurality of batch processing units 42 , a traveling body 412 capable of traveling along the guide rail 411 , and attached to the traveling body 412 . and a substrate holding portion 413 .
- the substrate holding part 413 has, for example, three substrate holding bars 414 extending in the Y direction.
- Each substrate holding bar 414 has substrate holding grooves (not shown) arranged at regular intervals along the Y direction. Twenty-five substrates W are vertically held by the substrate holders 413 at regular intervals along the Y direction by fitting the peripheral edges of the substrates W into the respective substrate holding grooves.
- One end of the guide rail 411 extends to the front of the transfer area 33 within the first interface section 3 . Therefore, as described above, it is possible to transfer substrates between the first substrate transfer robot 31 and the second substrate transfer robot 41 at the transfer area 33 .
- the other end of the guide rail 411 extends up to the front of the standby unit 44 . Therefore, the second substrate transport robot 41 can transfer substrates between the standby unit 44 and any batch processing unit 42 . Also, the substrate holding part 413 of the second substrate transport robot 41 can access the cleaning unit 43 for cleaning the substrate holding part 413 .
- a third substrate transfer robot 51 and one or more (for example, two) substrate transfer units 52 are provided in the second interface section 5 .
- a plurality of substrate transfer units 52 are provided, they can be stacked vertically, for example.
- the third substrate transport robot 51 takes out the substrates W held by the substrate holders 442 in the dipping bath 441 of the standby unit 44 one by one, and after converting the substrates W from the vertical posture to the horizontal posture, It can be placed on the transfer unit 52 .
- the single-wafer processing unit 6 includes one or more single-wafer liquid processing units (single-wafer processing units) 61 and one or more supercritical drying units for supercritically drying the substrates W processed by the single-wafer liquid processing units 61.
- a supercritical drying unit 62 and a fourth substrate transfer robot 63 are provided.
- the single-wafer liquid processing unit 61 and the supercritical drying unit 62 are single-wafer processing units that process one substrate W at a time.
- the fourth substrate transport robot 63 has, for example, an end effector that can move in the X and Y directions, can move up and down in the Z direction, and can be rotated around a vertical axis by a multi-axis drive mechanism 631 .
- the end effector is, for example, a fork-shaped substrate holder 632 capable of holding a single substrate.
- the fourth substrate transfer robot 63 includes the substrate transfer unit 52 in the second interface section 5, the single-wafer liquid processing unit 61, the supercritical drying unit 62, and the substrate transfer unit in the first interface section 3. 35, substrates can be carried in and out. While being transported by the fourth substrate transport robot 63, the substrate W is always maintained in a horizontal posture.
- the single-wafer type liquid processing unit 61 includes a spin chuck 611 that can hold a substrate W in a horizontal position and rotate it around a vertical axis, and a processing liquid 1 that discharges a processing liquid onto the substrate W that is held by the spin chuck 611 and rotated. and one or more nozzles 612 .
- Nozzle 612 is carried on arm 613 for moving nozzle 612 .
- the single-wafer type liquid processing unit 61 has a liquid receiving cup 614 that collects the processing liquid scattered from the rotating substrate W. As shown in FIG.
- the liquid receiving cup 614 has a drain port 615 for discharging the recovered processing liquid to the outside of the single-wafer type liquid processing unit 61 and an exhaust port 616 for discharging the atmosphere inside the liquid receiving cup 614 .
- Clean gas (clean air) is blown downward from a fan filter unit 618 provided on the ceiling of a chamber 617 of the single-wafer processing unit 61 , is drawn into the liquid receiving cup 614 , and is discharged to the exhaust port 616 . .
- the fourth substrate transport robot 63 takes out the substrate W from the substrate transfer unit 52 in the second interface section 5 and carries it into the single-wafer liquid processing unit 61 .
- a DIW rinse process In the DIW rinsing process, DIW is supplied from the nozzle 612 to the surface of the rotating substrate W, and the liquid adhering to the surface of the substrate W up to that point is washed away with the DIW.
- the IPA replacement process IPA is supplied from the nozzle 612 to the surface of the continuously rotating substrate W, and DIW on the surface of the substrate W is replaced with IPA.
- the rotation speed of the substrate is greatly reduced to form a relatively thick IPA liquid film on the surface of the substrate W, and then the rotation of the substrate is stopped.
- the supercritical drying unit 62 has a supercritical chamber 621 and a substrate support tray 622 that can move back and forth with respect to the supercritical chamber 621 .
- FIG. 1 shows the substrate support tray 622 withdrawn from the supercritical chamber 621 , and in this state, the fourth substrate transport robot 63 transfers the substrate W to and from the substrate support tray 622 .
- the substrate W on which the IPA paddle is formed is taken out from the single-wafer liquid processing unit 61 by the fourth substrate transfer robot 63 and placed on the substrate support tray 622 of the supercritical drying unit 62 .
- a substrate support tray 622 is then received within the supercritical chamber 621 and a lid 625 integral with the substrate support tray 622 seals the supercritical chamber 621 .
- a supercritical fluid for example, supercritical carbon dioxide (CO 2 )
- CO 2 supercritical carbon dioxide
- CO 2 may be supplied through another supply port (not shown) that opens toward the lower surface of the substrate support tray 622 until the pressure inside the supercritical chamber 621 is increased.
- the IPA on the substrate W is displaced by supercritical CO 2 flowing in its vicinity.
- the inside of the supercritical chamber 621 is returned to normal pressure.
- the supercritical CO 2 is vaporized and the surface of the substrate W is dried. In this manner, the substrate W can be dried while preventing the pattern formed on the surface of the substrate W from collapsing.
- the dried substrate is taken out from the supercritical drying unit 62 by the fourth substrate transfer robot 63 and carried into the substrate transfer unit 35 provided inside the first interface section 3 .
- the first substrate transport robot 31 of the first interface section 3 takes out the substrate W from the substrate transfer unit 35 and stores the processed substrate W in the container F placed on the substrate storage stage 221B.
- the container F containing the processed substrates W is placed on the movable table 211 by the container transport robot 222 of the container stock section 22 and carried out to the stage section 21 .
- the standby unit 44 has an immersion bath 441 as described above.
- the immersion tank 441 has an inner tank 441A that stores the immersion liquid and an outer tank 441B that receives the immersion liquid overflowing from the inner tank 441A.
- the immersion liquid flowing out to the outer bath 441B flows into the circulation line 444 and is discharged toward the substrate W from the nozzle 445 provided inside the inner bath 441A.
- the nozzle 445 may be a bar nozzle having ejection openings arranged at regular intervals along the direction in which the substrates W are arranged in the inner tank 441A.
- the circulation line 444 is provided with a pump for forming a circulation flow, a filter for removing particles, and a temperature controller such as a heater for controlling the temperature of the immersion liquid.
- the standby unit 44 has the substrate holder 442 that holds the substrate in the immersion bath 441 .
- the substrate holder 442 has a flat base portion 442A extending in the vertical direction (Z direction) and two sets of support members 442B extending in the horizontal direction (Y direction) from the base portion 442A.
- Each set of support members 442B has two support rods 442C whose proximal ends are fixed to the base portion 442A, and a fixing member 442D that fixes the distal ends of the two support rods 442C.
- Substrate holding grooves (not shown) for positioning the substrate W in the Y direction by receiving the peripheral portion of the substrate W are formed in each support rod 442C at regular intervals in the Y direction.
- the substrate holder 442 can hold a plurality of, for example, 25 substrates W in a vertical posture at equal intervals in the Y direction.
- the standby unit 44 has a moving mechanism 446 capable of moving the substrate holder 442 in the Y and Z directions.
- the moving mechanism 446 moves the substrate holder 442 to a transfer position (indicated by a chain double-dashed line in FIG. 2) at which the substrate can be transferred to and from the second substrate transport robot 41, and to the dipping tank 441. It can be moved to and from an immersion position (indicated by a solid line in FIG. 3) at which it is immersed in the immersion liquid stored therein.
- the two sets of support members 442B of the substrate holder 442 of the standby unit 44 are arranged in the gap between the three substrate holding rods 414 forming the substrate holding portion 413 of the second substrate transport robot 41. can pass through. Therefore, by relatively moving the substrate holder 442 (supporting member 442B) and the substrate holding part 413 (substrate holding bar 414) in the Z direction, the plurality of substrates W can be held between the supporting member 442B and the substrate holding bar 414. can be transferred collectively between
- Arrows in FIG. 5 mean vertical relative movement between the support member 442B and the holding rod 413A.
- the substrate holding rods 414 indicated by solid circles in FIG. 5 are positioned further upward with respect to the supporting members 442B, the substrate W held by the supporting members 442B is held by the substrate holding rods 414. Become. By performing the relative movement opposite to the above, the substrate W held by the substrate holding bar 414 is held by the support member 442B.
- the configuration of the standby unit 44 is the same as that of batch-type liquid processing apparatuses known in the technical field.
- the configuration of the batch processing unit 42 in this embodiment may be the same as the configuration of the standby unit 44, and the transfer of the substrate W between the batch processing unit 42 and the second substrate transport robot 41 should also be performed in the same manner. can be done. Therefore, description of the configuration of the batch processing unit 42 is omitted.
- the main differences between the batch processing unit 42 and the standby unit 44 are that not only the second substrate transport robot 41 but also the third substrate transport robot 51 can access the standby unit 44, and that the standby unit 44 is stored in a tank. Liquid.
- the third substrate transport robot 51 is configured as a single wafer transport robot.
- the end effector of the third substrate transport robot 51 is configured as a single thin plate-shaped substrate holder 511 .
- the substrate holder 511 has a base portion 511A and a pair of elongated tip portions 511B connected to the base portion 511A.
- Each tip portion 511B has a dimension that allows it to be inserted between two support rods 442C that constitute each support member 442B of the substrate holder 442 (see FIG. 4).
- substrate holder 511 has a plurality of (three in the illustrated example) gripping claws 512A and 512B (schematically indicated by dotted circles in FIG. 4).
- a movable gripping claw 512A is provided at the tip of the base portion 511A of the substrate holder 511
- a fixed gripping claw 512B is provided at the tip of each tip portion 511B.
- the gripping claws 512A and 512B have a shape that can be engaged with the peripheral portion of the substrate W (area near APEX).
- the substrate holder 511 is brought close to the substrate W in the Y direction, and the movable gripping claws 512A and the fixed gripping claws 512B are held by the substrate W while the movable gripping claws 512A are kept away from the fixed gripping claws 512B. positioned slightly away from the perimeter of the From this state, the substrate W can be clamped by the movable gripping claws 512A and the fixed gripping claws 512B by moving the movable gripping claws 512A closer to the fixed gripping claws 512B. Next, by moving the substrate holder 511 right up (in the positive Z direction), the substrate W can be taken out while extracting the peripheral portion of the substrate W from the substrate holding groove (not shown) of the support rod 442C of the substrate holder 442. can.
- the third substrate transport robot 51 is configured as a multi-axis robot (for example, having X, Y, Z, and ⁇ axes) if it is configured to satisfy the following functions (1) and (2). It may be configured as an articulated robot.
- Any substrate W held by the substrate holder 442 in the inner tank 441A is removed from the inner tank 441A by moving it in the vertical direction (positive Z direction) while being clamped by the substrate holder 511. what you can do.
- 1 to 3 schematically show the third substrate transport robot 51 configured as an articulated robot.
- the immersion tank 441 may be provided with a spray nozzle 447 .
- the spray nozzle 447 can be moved in the Y direction slightly above the surface of the immersion liquid stored in the inner tank 441A by the Y direction moving mechanism 448 (shown only in FIG. 3).
- the spray nozzle 447 can spray a spray liquid onto the surface of the substrate W during or immediately after being pulled up from the immersion liquid by the third substrate transport robot 51 .
- the spray nozzle 447 is preferably configured to spray the surface of the substrate W with the spray liquid evenly.
- the spray nozzle 447 can be configured, for example, as a bar nozzle having ejection openings arranged at regular intervals along the X direction. In this case, the spray nozzle 447 sprays the spray liquid onto the surface of the substrate W while being positioned by the Y-direction moving mechanism 448 at a position facing the surface of the substrate W being lifted up by the third substrate transport robot 51 . spray on.
- the third substrate transport robot 51 transports the substrate W taken out from the immersion tank 441 into the substrate transfer unit 52 after converting it into a horizontal posture.
- the substrate transfer unit 52 is a unit that mediates transfer of the substrate W between the third substrate transfer robot 51 and the fourth substrate transfer robot 63 .
- a configuration example of the substrate transfer unit 52 is schematically shown in FIG.
- the third substrate transport robot 51, the substrate transfer unit 52, and the fourth substrate transport robot 63 constitute a transport system for transporting the substrate W from the batch processing section 4 (standby unit 44) to the single substrate processing section 6. there is
- the substrate transfer unit 52 has a plurality of (for example, three) support pins 521 as substrate support members.
- the third substrate transport robot 51 loads the substrate W into the substrate transfer unit 52 from the loading port 522 and places the substrate W on the support pins 521 in a horizontal posture.
- a coating liquid nozzle 523 for discharging a coating liquid onto the surface of the substrate W is provided on the ceiling of the substrate transfer unit 52 .
- the coating liquid nozzle 523 supplies the coating liquid so that a puddle (liquid film) of the coating liquid is formed on the entire surface of the substrate W.
- the coating liquid is, for example, DIW, but is not limited to this, and may be a processing liquid for zeta potential negative processing, which will be described later.
- a liquid film thickness sensor (not shown) or a camera (not shown) is provided on the ceiling of the substrate transfer unit 52, and the coating liquid is detected only when the liquid film on the surface of the substrate W is about to break due to drying or the like.
- the coating liquid may be supplied to the surface of the substrate W from the nozzle 523 .
- the coating liquid nozzle A coating liquid may be supplied to the surface of the substrate W from 523 .
- the residence time of the substrate W within the substrate transfer unit 52 may be measured by a timer.
- the control device 100 discharges the coating liquid from the coating liquid nozzle 523 onto the substrate W based on the detection result of the sensor or camera or the timing result of the timer.
- the substrate W placed in the substrate transfer unit 52 is moved to the carry-out port by the fourth substrate transport robot 63 when the single-wafer type liquid processing unit 61 to which the substrate W is to be loaded becomes ready for the substrate loading. 524 and carried into the single-wafer liquid processing unit 61 . After that, the path followed by the substrate W is as described above.
- the liquid will run out while the substrate is conveyed from the batch processing section 4 to the single wafer processing section 6 .
- part of the surface of the substrate may be exposed.
- the exposure of the substrate surface can lead to the collapse of the pattern on the substrate surface or the generation of defects such as particles and watermarks on the substrate surface (Problem 1).
- liquid processing is performed in the standby unit 44 to solve at least one of the above problems 1 and 2.
- the liquid treatment for solving the above problem 1 is a treatment for making the surface of the substrate hydrophilic (hereinafter referred to as "hydrophilic treatment” for simplicity). Since the hydrophilization process requires a relatively long time, the substrate is immersed in an immersion liquid (treatment liquid for hydrophilization process) stored in the immersion tank 441 of the standby unit 44 . Any one of the following, for example, can be used as the treatment liquid for the hydrophilic treatment.
- the treatment liquid for the hydrophilization treatment should not etch the surface of the substrate to a problematic level.
- the temperature of the treatment liquid for hydrophilization is preferably normal temperature from the viewpoint of suppressing etching (however, it is not limited to normal temperature).
- the liquid treatment for solving the above problem 2 is a process of attaching a liquid (liquid film) that can make the zeta potential of the surface of the substrate negative to the surface of the substrate W (hereinafter, for simplicity, "zeta potential negative treatment"). ). Since the zeta potential negative treatment produces an effect in a short time compared to the hydrophilization treatment, it may be performed by immersion in the immersion liquid (treatment liquid for zeta potential negative treatment) in the immersion tank 441, or by spraying. It may be carried out by spraying a spray liquid (processing liquid for zeta potential negative processing) onto the surface of the substrate from the nozzle 447 .
- any one of the following can be used as the treatment liquid for the zeta potential negative treatment.
- - functional water e.g. DIW containing trace amounts of aqueous ammonia
- TMAH tetramethylammonium hydroxide
- Organic alkaline solution e.g. Anionic surfactant
- the temperature of the treatment liquid for the zeta potential negative treatment is preferably normal temperature from the viewpoint of suppressing etching (however, it is not limited to normal temperature).
- the surface of the substrate W is may be sufficiently hydrophilized.
- the waiting unit 44 may perform only the zeta potential negative processing.
- the immersion liquid in the immersion tank 441 should be an appropriate non-reactive liquid such as DIW, and the substrate should be kept waiting in the immersion liquid. can be considered.
- the zeta potential negative treatment may be performed using the immersion liquid (treatment liquid for zeta potential negative treatment) in the immersion bath 441 .
- the treatment liquid for the hydrophilic treatment is stored in the immersion tank 441 to further increase the hydrophilicity.
- treatment may be performed to at least maintain hydrophilicity.
- the surface of the substrate W is made hydrophilic when leaving the standby unit 44, and the zeta potential of the surface of the substrate W is negative, so that the following advantageous effects can be obtained.
- the surface of the substrate W is hydrophilized when leaving the standby unit 44, when the substrate W is lifted out of the immersion liquid in the immersion bath 441, the liquid on the surface of the substrate W is depleted. loss of liquid film) can be prevented. Further, it is possible to prevent the liquid from running out on the surface of the substrate W while the substrate W is being transported from the batch processing section 4 to the single wafer processing section 6 . Therefore, it is possible to prevent defects such as particles or watermarks on the surface of the substrate W from being exposed to the air, or collapse of the pattern.
- the zeta potential of the surface of the substrate W is negative when leaving the standby unit 44, during the transfer of the substrate W from the batch processing section 4 to the single wafer processing section 6, the Adhesion of particles contained in a certain liquid film to the surface of the substrate W can be prevented or greatly suppressed. This also eliminates the need to adopt an unreasonable layout in order to shorten the transportation distance or the time required for transportation, and improves the flexibility of setting the transportation schedule and processing schedule (particles caused by zeta potential). adhesion also tends to increase over time).
- the surface of the substrate after the treatment is mostly hydrophilic SiO 2 , and the treatment with SC1 in the third batch processing unit 42 further increases the hydrophilicity. Therefore, hydrophilization treatment in the standby unit 44 is not necessary. Therefore, the standby unit 44 only needs to perform the zeta potential negative processing.
- the substrate may be immersed in an immersion bath 441 in which a processing liquid for zeta-potential negative processing (for example, weakly alkaline functional water) is stored. In this case, the spray nozzle 447 may not be used.
- the substrate transfer unit 52 may also supply the substrate W with the processing liquid for the zeta potential negative processing.
- the batch processing unit 4 partially selects the SiN film of the substrate W having the laminated structure of Si/SiO 2 /SiN constituting the cell transistor module of the 3D-DRAM. Etching is performed (the left side of FIG. 10 is before etching and the right side is after etching). In this case, the first batch processing unit 42 performs selective etching of the SiN film using high-temperature phosphoric acid, and then the second batch processing unit 42 performs DIW rinsing.
- the substrates are transported to the standby unit 44 and immersed in the standby liquid, taken out one by one by the third substrate transport robot 51 and transported to the single wafer processing unit 6, where they are dried according to the procedure described above. applied.
- the etching residue removal processing by SC1 may be performed in the third batch processing unit 42, and then the DIW rinse processing may be performed in the fourth batch processing unit 42. However, it is assumed here that such processing is not performed.
- hydrophobic Si, hydrophilic SiO 2 , and semi-hydrophobic SiN are mixed on the surface of the substrate after the treatment (including the surface inside the recess).
- Si makes the entire surface of the substrate seemingly hydrophobic to semi-hydrophobic. For this reason, it is in a state where the liquid is likely to run out. Therefore, hydrophilic treatment is performed in the standby unit 44 .
- a treatment liquid for hydrophilic treatment for example, ozone water
- the substrate W may be immersed therein.
- Specific example 3 is a modification of specific example 2, and the structure of the substrate to be processed is the same as that of specific example 2.
- the zeta potential negative treatment can be performed by spraying the treatment liquid for the zeta potential negative treatment onto the substrate W from the spray nozzle 447 .
- Both the hydrophilic treatment and the zeta potential negative treatment may be performed in the standby unit 44 .
- the substrates W are taken out one by one from the immersion bath 441 for transportation to the single-wafer processing unit 6 .
- the substrate W first taken out from the immersion bath 441 and the substrate W taken out lastly have a considerably different retention time in the immersion bath 441 (for example, there is a difference of several hours).
- the immersion liquid is DIW
- dissolved oxygen in DIW may oxidize or dissolve the surface of the substrate W (for example, bare silicon constituting the substrate W, or a metal layer such as tungsten wiring exposed on the surface of the substrate W).
- Example 1 The bare silicon substrate is cleaned with a DHF chemical solution to remove the natural oxide film, then DIW rinsed. After that, the bare silicon substrate is subjected to DIW ( Dissolved oxygen concentration (DO) is about 5000 ppb) was immersed test.
- DIW Dissolved oxygen concentration
- the film thickness of the native oxide film on the surface of the bare silicon substrate was about 4 ⁇ without DIW immersion (immediately after DIW rinsing), about 6.4 ⁇ with DIW immersion for 3 hours, and about 7 ⁇ with DIW immersion for 5 hours. It can be seen that when bare silicon is immersed in DIW for a long time, a native oxide film gradually grows.
- DIW with a DO of about 5000 ppb can be obtained by continuously supplying DIW with a low DO into the dipping tank 441 at a low flow rate (for example, about 1 to 2 L/min), as described in Configuration Example 1 below. can get.
- a low flow rate for example, about 1 to 2 L/min
- the bare silicon substrate was cleaned with a DHF chemical to remove the natural oxide film, then DIW rinsed, and finally dried.
- the film thickness of the native oxide film on the surface of the bare silicon substrate was about 4 ⁇ immediately after the FOUP was housed, and about 4.8 ⁇ after 6.2 hours had passed since the FOUP was housed.
- Example 2 A test was conducted in which a substrate having a tungsten film formed on its surface was immersed in DIW (DO about 5000 ppb) using the same immersion tank as in Experiment 1.
- the decrease in film thickness of the tungsten film was about 1.5 to 2.5 ⁇ when the DIW immersion time was 3 hours, and about 2.5 to 4.2 ⁇ when the DIW immersion time was 5 hours. It can be seen that prolonged immersion in DIW causes a non-negligible dissolution of the tungsten film.
- the DIW that is provided as factory power usually has a dissolved oxygen concentration (DO) of about 5 ppb. If such low DO DIW is stored in the immersion tank 441 and left alone, oxygen contained in the air around the immersion tank 441 dissolves into the DIW, and the DO may increase to over 10000 ppb. In addition, when the DIW is overflowed from the dipping tank 441 and circulated so as to be returned to the dipping tank 441 again, there is a tendency for the dissolution of oxygen in the DIW to be accelerated. DIW in which a relatively large amount of dissolved oxygen can be oxidized or dissolved (metal loss) by the above mechanism. The configuration of the standby unit 44 that can solve this problem will be described below with reference to FIGS. 11 to 14. FIG.
- a configuration example 1 of the standby unit 44 and the immersion tank 441 will be described with reference to FIG. 11 . See also FIG. 2 for the configuration of the standby unit 44 and the immersion bath 441 . Components that are the same as those shown in FIG. 2 are labeled with the same reference numerals.
- a liquid supply nozzle 74 for supplying DIW is provided in the inner tank 411A of the immersion tank 441 .
- DIW is supplied to the liquid supply nozzle 74 through a liquid supply line 72 whose upstream end is connected to a DIW supply source 71 as factory power.
- a flow adjuster 73 is interposed in the liquid supply line 72 .
- the flow regulator 73 can be composed of, for example, a single on-off valve, or can be composed of a combination of on-off valves, flow control valves, flow meters, and the like.
- DIW with a low DO (for example, less than 5 ppb) is supplied from a DIW supply source as factory power provided in a semiconductor device manufacturing factory. For this reason, it is usually not necessary to provide a dedicated low DO-DIW supply device in order to realize configuration example 1.
- a low DO-DIW feeder dedicated to the substrate processing system 1 may be provided.
- a DO sensor 75 for detecting the DO value of the DIW stored in the inner tank 411A is provided inside the inner tank 411A of the immersion tank 441.
- a drainage line 76 is connected to the bottom of the outer tank 411B of the immersion tank 441 . Drain line 76 is connected to the factory waste system. A plurality of drainage lines 76 may be provided at different locations in the outer tank 411B.
- the threshold value of the DO value is set so that the substrate W finally taken out of the dipping tank 441 (the inner tank 441A) out of the wafers W collectively put into the dipping tank 441 (the inner tank 441A) is not oxidized to cause a problem. is a reasonable DO value, for example 100 ppb.
- the threshold may be decreased (increased) as the longest residence time of the substrates W in the inner tank 441A increases (shortens).
- Feedback control is based on the deviation between the DO value (measured value) detected by the DO sensor 75 and the target DO value here, for example 100 ppb, from the DIW supply source 71 through the liquid supply nozzle 74 to the immersion bath 441 (internal This can be done by controlling the supply of low DO DIW into tank 441A). Since the inner tank 441A is filled with DIW during normal operation, the same amount of DIW as the low DO DIW supplied from the liquid supply nozzle 74 overflows from the inner tank 441A to the outer tank 441B. This now replaces some of the relatively high DO DIW with relatively low DO (eg, less than 5 ppb) DIW. As a result, the DO of DIW in the inner tank 441A can be lowered. As the supply flow rate of the low DO DIW is increased, the DO of the DIW in the inner tank 441A can be rapidly reduced.
- the feedback control may be PID control, for example.
- the supply flow rate of the low DO DIW to the immersion bath 441 (inner bath 441A) may be controlled by duty control of an on-off valve provided in the flow adjusting section 73.
- the opening of the flow control valve may be controlled by PID control to control the supply flow rate of the low DO DIW.
- Feedback control may be, for example, HIGH/LOW control (binary control).
- a predetermined threshold value eg, 100 ppb
- LOW predetermined low flow rate
- low DO DIW is supplied to the dipping tank 441 (inner tank 441A).
- HIGH high flow rate
- the DIW supply at high flow rate (HIGH) can be performed for a predetermined time determined by preliminary experiments.
- DIW may be supplied at a high flow rate (HIGH) until the DO value (measured value) detected by the DO sensor 75 drops to a predetermined value (for example, about 50 ppb).
- the DO increases over time.
- an excessively high state eg, about 10000 ppb
- the above threshold value eg, 100 ppb
- the dipping tank 441 (the inner tank 441A) is in a standby state (a state in which no substrate W is loaded), low DO DIW is supplied at a low flow rate (for example, about 1 to 2 L/min). Therefore, it is preferable to suppress DO to, for example, about 5000 ppb. Then, the time required to lower the DO to the above threshold value (for example, 100 ppb) is about 2 to 4 minutes (depending on the capacity of the inner tank 441A) (when the low DO DIW supply flow rate is 40 to 80 L/ min) is sufficient. Thereby, oxidation damage to the substrate W can be further suppressed.
- the feedback control described above may be started after the substrates W are put into the immersion tank 441 (the inner tank 441A), or may be started before the substrates W are put into the inner tank 441A.
- the consumption of low DO DIW can be reduced.
- oxidation damage to the substrate W can be further suppressed.
- low DO DIW is supplied to the inner tank 441A, and the DIW in the inner tank 441A overflows to the outer tank 441B. Since oxygen dissolves in DIW at the liquid surface of the DIW stored in the inner tank 441A, the overflow method in which the DIW near the liquid surface flows out to the outer tank 441B is considered to be the most preferable from the viewpoint of reducing DO.
- the method of discharging DIW in the immersion bath 441 is not limited to the overflow method. If the relatively high DO DIW in the inner tank 441A is replaced with the relatively low DO DIW, any means for achieving this is optional.
- a drainage line may be connected to the immersion tank 441 (inner tank 441A), and DIW may be discharged from this drainage line.
- a circulation line 444 as shown in FIG. 2 is connected to the immersion tank 441, a drainage line may be connected in the middle of the circulation line, and DIW may be discharged from this drainage line.
- FIG. 12 A configuration example 1 of the standby unit 44 and the immersion tank 441 will be described with reference to FIG. 12 .
- the same reference numerals are given to the same members as the constituent elements shown in FIG.
- the configuration of FIG. 12 has one or more (two in the illustrated example) bubbling nozzles 80 at the bottom of the immersion bath 441 (inner bath 441A).
- the bubbling nozzle 80 can be formed, for example, by a tube provided with a large number of gas discharge ports along the direction in which the substrates W are arranged.
- the bubbling nozzle 80 is supplied with N 2 gas through a gas supply line 82 from a nitrogen (N 2 ) gas supply source 81 provided as factory power, for example.
- a flow adjuster 83 is interposed in the gas supply line 82 .
- the flow regulator 83 can be composed of, for example, a single on-off valve, or can be composed of a combination of on-off valves, flow control valves, flow meters, and the like.
- Nitrogen (N 2 ) gas is discharged from the bubbling nozzle 80 so that fine bubbles derived from the N 2 gas rise while being generally evenly distributed in the DIW in the inner tank 441A. Bubbling with N2 gas expels dissolved oxygen from the DIW, and as a result, the DO value of the DIW can be lowered.
- the N 2 gas bubbling is preferably continuously performed at least while the substrates W are accommodated in the immersion tank 441 (inner tank 441A).
- the N 2 gas bubbling may be started before the substrates W are put into the immersion bath 441 .
- Configuration Example 2 shown in FIG. 12 is obtained by adding a configuration for N 2 gas bubbling to Configuration Example 1, whereby dissolved oxygen in DIW can be reduced more efficiently.
- feedback control of the DO value is performed only by controlling the supply amount (overflow amount) of the low DO DIW, and N 2 gas bubbling is performed while the substrate W is accommodated in the immersion tank 441 (inner tank 441A). It may be performed continuously under certain conditions.
- the N 2 gas bubbling condition (for example, N 2 gas discharge amount) may be changed based on the detected value of the DO sensor 75 .
- N2 gas bubbling it is also possible to control the DO value only by N2 gas bubbling.
- the conditions of N2 gas bubbling for example, flow rate of N2 gas
- DIW may be continuously supplied from the liquid supply nozzle 74 at a low flow rate, for example, in order to prevent DIW from staying in the immersion tank 441 (inner tank 441A).
- FIG. 13 A configuration example 3 of the standby unit 44 and the immersion tank 441 will be described with reference to FIG. In FIG. 13, the same members as those shown in FIGS. 11 and 12 are given the same reference numerals.
- the bubbling nozzle 80 is connected to a CO 2 supply source 84 and CO 2 (carbon dioxide) gas is discharged from the bubbling nozzle 80 . Bubbling with CO 2 gas drives dissolved oxygen out of the DIW, thereby lowering the DO.
- CO 2 carbon dioxide
- an electric conductivity meter 85 for measuring the electric conductivity of DIW in the immersion tank 441 (inner tank 441A) is provided, and based on the detection value of this electric conductivity meter 85, the desired The conditions of CO 2 gas bubbling (for example, the amount of CO 2 gas discharged) may be controlled so as to obtain electrical conductivity (for example, 1 ⁇ S/cm or more).
- the pH (dissolved amount of CO 2 ) can be controlled by the electrical conductivity meter 85 because pH and electrical conductivity correspond one-to-one.
- CO 2 gas bubbling is preferably performed continuously at least while the substrates W are accommodated in the immersion bath 441 (inner bath 441A). CO 2 gas bubbling may be started before the substrate W is put into the immersion bath 441 .
- the CO 2 gas bubbling conditions for example, CO 2 gas discharge amount
- the condition of CO 2 gas bubbling may be controlled based on only one. However, in this case, it is preferable to monitor the other of the DO value and the electrical conductivity. Also in this case, it is not preferable for DIW to stay in the immersion tank 441 (inner tank 441A), so it is preferable to continue supplying DIW from the liquid supply nozzle 74 at a low flow rate, for example.
- CO 2 water is generated outside the inner tank 441A and supplied to the inner tank 441A via the liquid supply line 72 and the liquid supply nozzle 74. can be supplied inside.
- a known CO 2 water production device may be used to produce CO 2 water outside the inner tank 441A.
- a hollow fiber membrane module provided in the liquid supply line 72 may dissolve CO 2 in DIW supplied from the DIW supply source and supply this into the inner tank 441A.
- the CO2 concentration of the CO2 water will decrease because the CO2 will be released into the air around the inner tank 441A.
- a new CO 2 water may be supplied, and the CO 2 water in the inner tank 441A may be discharged to the outer tank 441B by overflow.
- the amount of fresh CO 2 water to be supplied may be adjusted by feedback control based on the deviation between the value detected by the electrical conductivity meter 85 and the target value (for example, 0.5 M ⁇ cm). Feedback control can be performed by PID control or HIGH/LOW control (binary control) as described in Configuration Example 1.
- FIG. 14 A configuration example 4 of the standby unit 44 and the immersion tank 441 will be described with reference to FIG. In FIG. 14, the same members as those shown in FIG. 11 are denoted by the same reference numerals.
- the liquid supply nozzle 74 is supplied with hydrogen water (H 2 -DIW) from the hydrogen water supply source 90 via the liquid supply line 72 .
- An ORP sensor 92 for measuring the oxidation-reduction potential (ORP) of hydrogen water ( H2 water) is provided inside the immersion tank 441 (inner tank 441A).
- ORP oxidation-reduction potential
- H2 water oxidation-reduction potential
- the hydrogen water supply source 90 a known and commercially available hydrogen water supply device can be used. If the hydrogen water supply source 90 is provided as factory power, it may be used.
- the hydrogen water supplied from the hydrogen water supply source 90 can be obtained by dissolving hydrogen in DIW at a concentration of about 1 to 2 ppm.
- the oxidation-reduction potential of pure water is about +700 mV, while the oxidation-reduction potential of hydrogen water with a hydrogen concentration of about 1 to 2 ppm is about -200 mV to -300 mV.
- the metal film for example, W (tungsten) film
- DO is also lowered by the manufacturing process of hydrogen water, oxidation is also suppressed by this.
- the thickness of the oxide film after step (5) was 3.263 ⁇ .
- the oxide film thickness after step (5) was 4.201 ⁇ . From the above, it can be seen that immersion in CO2 water and hydrogen water is more effective in suppressing the growth of natural oxide films than immersion in DIW.
- the spray nozzle 447 (see FIGS. 2 and 3) is used to spray the substrate W taken out of the immersion bath 441 with a hydrophilizing treatment liquid or A treatment liquid for zeta potential negative treatment may be supplied.
- a material such as silicon (Si), etc.
- Si silicon
- a material that causes a problem of oxidation and/or a material that causes a problem of melting (metal loss) is beneficial for substrates W that have exposed surfaces (including surfaces within recesses of the pattern).
- the substrate is not limited to a semiconductor wafer, and may be other types of substrates used in the manufacture of semiconductor devices such as glass substrates and ceramic substrates.
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Physics & Mathematics (AREA)
- Power Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Inorganic Chemistry (AREA)
- Cleaning Or Drying Semiconductors (AREA)
- Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
- Weting (AREA)
Abstract
Description
(1)内槽441A内において基板保持具442により保持されている任意の基板Wを、基板保持具511によりクランプした状態で鉛直方向(Z正方向)に移動させることにより内槽441Aから取り出すことができること。
(2)内槽441A内において鉛直姿勢であった基板Wを水平姿勢に変換して基板受け渡しユニット52に載置することができること。
なお、図1~図3では、多関節ロボットとして構成された第3基板搬送ロボット51が概略的に示されている。
- SC2
- オゾン水
- 過酸化水素水(H2O2)
- SPM(硫酸過水)
これらのうちのいずれを用いるかについては、バッチ処理部4で実行される最後の薬液処理(最終工程であるDIWリンス処理は除く)で使用される処理液および処理後の基板Wの表面状態(露出している表面の材質、化学的な状態(末端に親水基を有するか否か等))等を考慮して決定することができる。後述した処理の具体例を参照されたい。
- 機能水(例えば微量のアンモニア水を含有するDIW)
- TMAH(テトラメチルアンモニウムヒドロキシド)
- 有機アルカリ溶液
- アニオン界面活性剤
ゼータ電位負化処理用の処理液の温度は、エッチング抑制の観点から常温が好ましい(但し、常温に限定されるものではない)。
具体例1では、バッチ処理部4において、図9に示すように、3D-NANDのSiO2/SiNの積層構造を備えた基板WのSiN膜の選択エッチングが行われる(図9の左側がエッチング前、右側がエッチング後である。)。この場合、まず、第1のバッチ処理ユニット42において高温リン酸によるSiN膜の選択エッチング処理が行われ、次に第2のバッチ処理ユニット42においてDIWリンス処理が行われる。次に、第3のバッチ処理ユニット42でSC1によるエッチング残渣の除去処理が行われ、最後に第4のバッチ処理ユニット42でDIWリンス処理が行われる。その後、基板は待機ユニット44に搬送されて待機液中に浸漬され、第3基板搬送ロボット51により1枚ずつ取り出されて枚葉処理部6に搬送され、そこで先に説明した手順に従い乾燥処理が施される。
具体例2では、バッチ処理部4において、図10に示すように、3D-DRAMのセルトランジスタモジュールを構成するSi/SiO2/SiNの積層構造を備えた基板WのSiN膜の部分的な選択エッチングが行われる(図10の左側がエッチング前、右側がエッチング後である。)。この場合、まず、第1のバッチ処理ユニット42において高温リン酸によるSiN膜の選択エッチング処理が行われ、次に第2のバッチ処理ユニット42においてDIWリンス処理が行われる。その後、基板は待機ユニット44に搬送されて待機液中に浸漬され、第3基板搬送ロボット51により1枚ずつ取り出されて枚葉処理部6に搬送され、そこで先に説明した手順に従い乾燥処理が施される。なお、第2バッチ処理ユニット42における処理の後に、第3のバッチ処理ユニット42でSC1によるエッチング残渣の除去処理が行われ、その後に第4のバッチ処理ユニット42でDIWリンス処理が行われることもあるが、ここではそのような処理が行われないものとする。
具体例3は具体例2の変形例であり、処理対象の基板の構造は具体例2と同じである。つまり、基板Wの表面(凹部の表面も含む)にはSiNも露出している。SiNの表面はDIW(pHは6~7)であり表面電位は中性に近いため、パーティクルを吸着し易い状況である。このため、SiNの表面とパーティクルが反発しあうように両者の電位を同じ符号にするため、待機ユニット44でゼータ電位負化処理を行う。ゼータ電位負化処理は、スプレーノズル447よりゼータ電位負化処理用の処理液を基板Wに噴射することにより行うことができる。待機ユニット44で親水化処理とゼータ電位負化処理の両方を行ってもよい。この場合、浸漬槽441内で親水化処理を行い、スプレーノズル447によりゼータ電位負化処理を行うことが好ましい。待機ユニット44で親水化処理を行わない場合には、浸漬槽441内でゼータ電位負化処理を行うことも可能である。
ベアシリコン基板に対して、DHF薬液洗浄により自然酸化膜の除去を行い、次いでDIWリンスを行い、その後ベアシリコン基板を図11記載の浸漬槽441と概ね同様の構成を有する浸漬槽内でDIW(溶存酸素濃度(DO)が5000ppb程度)中に浸漬する試験を行った。ベアシリコン基板表面の自然酸化膜の膜厚は、DIW浸漬無し(DIWリンス終了直後)で約4Å、DIW浸漬時間3hrで約6.4Å、DIW浸漬時間5hrで約7Å程度であった。DIW中に長時間ベアシリコンを浸漬すると、自然酸化膜が徐々に成長してゆくことがわかる。なお、DOが5000ppb程度のDIWは、後述の構成例1において説明されているように、浸漬槽441内に少流量(例えば1~2L/min程度)で低DOのDIWを供給し続けることにより得られる。
タングステン膜を表面に形成した基板を、実験1と同じ浸漬槽を用いてDIW(DOが5000ppb程度)中に浸漬する試験を行った。タングステン膜の膜厚減少はDIW浸漬時間3hrで約1.5~2.5Å、DIW浸漬時間5hrで約2.5~4.2Å程度であった。DIW中に長時間浸漬するとタングステン膜に無視できない程度の溶解が生じることがわかる。
<酸化>
W + 2H2O ⇒ WO2 + 2H2
W + O2 ⇒ WO2
更に酸化が進むと、WO2がWO3になる
<溶解>
WO3 + H2O ⇒ H2WO4
H2WO4 + H2O ⇒ H3O+ + HWO4 -
HWO4 - + OH- ⇒ WO4 2-
待機ユニット44および浸漬槽441の構成例1について図11を参照して説明する。待機ユニット44および浸漬槽441の構成については図2も参照されたい。図2に示した構成要素と同じ構成要素には同一符号が付けられている。
待機ユニット44および浸漬槽441の構成例1について図12を参照して説明する。図12においては、図11に示した構成要素と同一の部材には同一の参照符号を付してある。図12の構成は、図11の構成に加えて、浸漬槽441(内槽441A)の底部に、1つ以上(図示例では2つ)のバブリングノズル80を設けたものである。バブリングノズル80は例えば、基板Wの配列方向に沿って多数のガス吐出口が設けられた管により形成することができる。バブリングノズル80には、例えば工場用力として提供される窒素(N2)ガス供給源81から、ガス供給ライン82を介してN2ガスが供給される。ガス供給ライン82には、流れ調整部83が介設されている。流れ調整部83は、例えば、単一の開閉弁から構成することができ、あるいは、開閉弁、流量制御弁、流量計などの組み合わせから構成することもできる。
待機ユニット44および浸漬槽441の構成例3について図13を参照して説明する。図13においては、図11および図12に示した構成要素と同一の部材には同一の参照符号を付してある。この構成例3では、バブリングノズル80をCO2供給源84に接続して、バブリングノズル80からCO2(二酸化炭素)ガスを吐出する。CO2ガスによるバブリングを行うことにより、DIWから溶存酸素が追い出され、これによりDOを低くすることができる。
待機ユニット44および浸漬槽441の構成例4について図14を参照して説明する。図14においては、図11に示した構成要素と同一の部材には同一の参照符号を付してある。この構成例4においては、液供給ノズル74には、水素水供給源90から、液供給ライン72を介して、水素水(H2-DIW)が供給される。浸漬槽441(内槽441A)の内部には、水素水(H2水)の酸化還元電位(ORP)を測定するためのORPセンサ92が設けられている。水素水供給源90としては、公知かつ商業的に入手可能な水素水供給装置を用いることができる。水素水供給源90が工場用力として提供されるのであれば、それを利用してもよい。
(1)DHF(HF:DIW=1:100)による洗浄処理:25℃、60秒
(2)CO2水リンス: 30秒
(3)スピン乾燥:40秒
(4)各種試験液(CO2水、水素水、DIW(27℃、DO約5ppb))を供給:60秒
(5)スピン乾燥:40秒
工程(3)および工程(5)の終了後に分光エリプソメータを用いて酸化膜の膜厚を測定した。
工程(3)の終了直後の酸化膜膜厚は、2.669Åであった。
工程(4)でCO2水を用いた場合、工程(5)の終了後の酸化膜膜厚は2.608Åであって。
工程(4)で水素水を用いた場合、工程(5)の終了後の酸化膜膜厚は3.263Åであった。
工程(4)でDIWを用いた場合、工程(5)の終了後の酸化膜膜厚は4.201Åであった。
以上より、CO2水および水素水に浸漬することにより、DIWに浸漬する場合と比較して、自然酸化膜の成長の抑制効果が高いことがわかる。
4 バッチ処理部
42 バッチ処理ユニット
44 待機部(待機ユニット)
441 浸漬槽
51,63 搬送システム
51 第1基板搬送ユニット(第3基板搬送ロボット)
6 枚葉処理部
61,62 枚葉処理ユニット
Claims (28)
- 複数のバッチ処理ユニットを有するバッチ処理部であって、前記バッチ処理ユニットの各々が、処理液を貯留する処理槽を有し、前記処理槽内に貯留された処理液中に複数の基板を浸漬させて前記複数の基板に一括して液処理を施すように構成されている、前記バッチ処理部と、
前記バッチ処理部により処理された前記複数の基板に対して1枚ずつ処理を施す枚葉処理ユニットを備えた枚葉処理部と、
浸漬液を貯留する浸漬槽を有し、前記バッチ処理部により処理された前記複数の基板を、前記浸漬液に浸漬させた状態で待機させる待機部と、
前記待機部から前記枚葉処理部へと前記複数の基板を搬送する搬送システムであって、前記浸漬槽内の前記浸漬液に浸漬されている前記複数の基板を前記浸漬液から1枚ずつ取り出す第1基板搬送ユニットを含む、前記搬送システムと、
を備え、
前記待機部は、前記基板に対して、第1液処理および第2液処理のうちの少なくとも1つを行うことができるように構成され、
前記第1液処理は、前記基板の表面を親水化させる液処理、または前記基板の表面の親水性を向上させるか若しくは維持する液処理であり、
前記第2液処理は、前記基板の表面のゼータ電位を負にする液処理である、
基板処理装置。 - 複数のバッチ処理ユニットを有するバッチ処理部であって、前記バッチ処理ユニットの各々が、処理液を貯留する処理槽を有し、前記処理槽内に貯留された処理液中に複数の基板を浸漬させて前記複数の基板に一括して液処理を施すように構成されている、前記バッチ処理部と、
前記バッチ処理部により処理された前記複数の基板に対して1枚ずつ処理を施す枚葉処理ユニットを備えた枚葉処理部と、
浸漬液を貯留する浸漬槽を有し、前記バッチ処理部により処理された前記複数の基板を、前記浸漬液に浸漬させた状態で待機させる待機部と、
前記待機部から前記枚葉処理部へと前記複数の基板を搬送する搬送システムであって、前記浸漬槽内の前記浸漬液に浸漬されている前記複数の基板を前記浸漬液から1枚ずつ取り出す第1基板搬送ユニットを含む、前記搬送システムと、
を備え、
前記待機部は、前記基板に対して、第1浸漬処理および第2浸漬処理のうちの少なくとも1つを行うことができるように構成され、
前記第1浸漬処理は、前記浸漬槽に貯留された溶存酸素濃度が予め定められた値以下となるように制御された前記浸漬液としての水に前記基板を浸漬させる液処理であり、
前記第2浸漬処理は、前記浸漬液に貯留された前記浸漬液としての水素水またはCO2水に前記基板を浸漬させる液処理である、
基板処理装置。 - 前記待機部は、前記第1液処理および前記第2液処理の両方を行うことができるように構成され、
前記第1液処理は、前記浸漬槽内に貯留された前記浸漬液としての第1処理液に、前記複数の基板を浸漬することにより行われ、前記第1処理液は前記基板の表面を親水化させるか、または前記基板の表面の親水性を向上させるか若しくは維持することができる液であり、
前記待機部は処理液ノズルをさらに有しており、前記第2液処理は、前記第1基板搬送ユニットにより前記基板が前記浸漬液から取り出されている時又は取り出された直後に、前記処理液ノズルから、前記基板の表面のゼータ電位を負にすることができる第2処理液を基板に供給することにより行われる、請求項1に記載の基板処理装置。 - 前記待機部は、前記第1液処理を行うことができるように構成され、
前記第1液処理は、前記浸漬槽内に貯留された前記浸漬液としての第1処理液に、前記複数の基板を浸漬することにより行われ、前記第1処理液は前記基板の表面を親水化させるか、または前記基板の表面の親水性を向上させるか若しくは維持することができる液である、請求項1に記載の基板処理装置。 - 前記待機部は、前記第2液処理を行うことができるように構成され、
前記第2液処理は、前記浸漬槽内に貯留された前記浸漬液としての第2処理液に、前記複数の基板を浸漬することにより行われ、前記第2処理液は前記基板の表面のゼータ電位を負にすることができる液である請求項1に記載の基板処理装置。 - 前記待機部は、前記第2液処理を行うことができるように構成され、
前記浸漬槽は、純水を貯留しており、
前記待機部は処理液ノズルをさらに有しており、前記第2液処理は、前記第1基板搬送ユニットにより前記浸漬液から取り出されている時又は取り出された直後に、前記処理液ノズルから、前記基板の表面のゼータ電位を負にすることができる第2処理液を基板に供給することにより行われる、請求項1に記載の基板処理装置。 - 前記第1処理液は、オゾン水、SC2、SPMまたは過酸化水素水である、請求項3または4記載の基板処理装置。
- 前記第2処理液は、アルカリ性液である、請求項3、5および6のうちのいずれか一項に記載の基板処理装置。
- 前記アルカリ性液は、アンモニアを含有する機能水、TMAH(テトラメチルアンモニウムヒドロキシド)、または有機アルカリ溶液である、請求項8に記載の基板処理装置。
- 前記第2処理液は、アニオン系界面活性剤である、請求項3、5および6のうちのいずれか一項に記載の基板処理装置。
- 前記待機部は、前記第1浸漬処理を行うことができるように構成され、
前記第1浸漬処理は、前記浸漬槽内に貯留された溶存酸素濃度が100ppb以下の純水に、前記複数の基板を浸漬することにより行われる、請求項2に記載の基板処理装置。 - 前記待機部は、前記浸漬槽内に貯留された純水中の溶存酸素を除去するためのガスをバブルの形態で吐出するバブリングノズルを備えている、請求項11に記載の基板処理装置。
- 前記浸漬槽内に貯留された純水中の溶存酸素濃度を計測する溶存酸素濃度センサと、
前記浸漬槽内に貯留された純水の溶存酸素濃度が100ppb以下に維持されるように、前記バブリングノズルからのガス吐出動作の制御を行う制御部と、
をさらに備えた請求項12に記載の基板処理装置。 - 前記待機部は、溶存酸素濃度が100ppbより低い純水である低溶存酸素濃度純水を前記浸漬槽内に貯留された純水中に供給し、供給した低溶存酸素濃度純水により前記浸漬槽内に貯留された純水の一部を置換する低溶存酸素濃度純水供給装置を備えている、請求項11に記載の基板処理装置。
- 前記浸漬槽内に貯留された純水中の溶存酸素濃度を計測する溶存酸素濃度センサと、
前記浸漬槽内に貯留された純水の溶存酸素濃度が100ppb以下に維持されるように、前記浸漬槽への低溶存酸素濃度純水の供給の制御を行う制御部と、
をさらに備えた請求項14に記載の基板処理装置。 - 前記待機部は、前記第2浸漬処理を行うことができるように構成され、
前記第2浸漬処理は、前記浸漬槽内に貯留された電気伝導度が1MΩ・cm未満のCO2水、または溶存水素濃度が1ppmより大きな水素水に、前記複数の基板を浸漬することにより行われる、請求項2に記載の基板処理装置。 - 前記搬送システムは、前記第1基板搬送ユニットにより前記浸漬液から取り出された前記基板を一時的に保持する基板受け渡しユニットと、前記基板受け渡しユニットから前記基板を取り出して前記枚葉処理部に搬送する第2基板搬送ユニットとをさらに含み、
前記基板受け渡しユニットは、前記基板を水平姿勢で載置する載置部と、前記載置部に載置された前記基板に被覆液を供給して前記基板の少なくとも表面が液で覆われた状態を維持する被覆液ノズルと、を有している、請求項1または2に記載の基板処理装置。 - 前記第1基板搬送ユニットは、前記浸漬槽内の前記浸漬液の中に鉛直姿勢で浸漬されている前記基板を、鉛直姿勢のまま前記浸漬液から取り出した後に、水平姿勢に変換し、前記基板受け渡しユニットに水平姿勢で搬入し、
前記第2基板搬送ユニットは、水平姿勢で前記基板受け渡しユニットの前記載置部に載置されている前記基板を、水平姿勢を維持したまま、前記枚葉処理部の前記枚葉処理ユニットに搬入する、請求項17に記載の基板処理装置。 - 前記待機部の前記浸漬槽に接続された循環路と、前記循環路に介設されたポンプおよび温調器をさらに備え、前記浸漬槽内に貯留された前記浸漬液は前記循環路を循環しながら温調されている、請求項3から6のうちいずれか一項に記載の基板処理装置。
- 複数のバッチ処理ユニットを有するバッチ処理部であって、前記バッチ処理ユニットの各々が、処理液を貯留する処理槽を有し、前記処理槽内に貯留された処理液中に複数の基板を浸漬させて前記複数の基板に一括して液処理を施すように構成されている、前記バッチ処理部と、
前記バッチ処理部により処理された前記複数の基板に対して1枚ずつ処理を施す枚葉処理ユニットを備えた枚葉処理部と、
浸漬液を貯留する浸漬槽を有し、前記バッチ処理部により処理された前記複数の基板を、前記浸漬液に浸漬させた状態で待機させる待機部と、
前記待機部から前記枚葉処理部へと前記複数の基板を搬送する搬送システムであって、前記浸漬槽内の前記浸漬液に浸漬されている前記複数の基板を前記浸漬液から1枚ずつ取り出す第1基板搬送ユニットを含む、前記搬送システムと、
を備えた基板処理装置を用いて実行される基板処理方法であって、
前記待機部において、前記基板に対して、
前記基板の表面を親水化させる液処理、または前記基板の表面の親水性を向上させるか若しくは維持する液処理である第1液処理、
前記基板の表面のゼータ電位を負にする第2液処理、
のうちの少なくとも1つを実行する、基板処理方法。 - 複数のバッチ処理ユニットを有するバッチ処理部であって、前記バッチ処理ユニットの各々が、処理液を貯留する処理槽を有し、前記処理槽内に貯留された処理液中に複数の基板を浸漬させて前記複数の基板に一括して液処理を施すように構成されている、前記バッチ処理部と、
前記バッチ処理部により処理された前記複数の基板に対して1枚ずつ処理を施す枚葉処理ユニットを備えた枚葉処理部と、
浸漬液を貯留する浸漬槽を有し、前記バッチ処理部により処理された前記複数の基板を、前記浸漬液に浸漬させた状態で待機させる待機部と、
前記待機部から前記枚葉処理部へと前記複数の基板を搬送する搬送システムであって、前記浸漬槽内の前記浸漬液に浸漬されている前記複数の基板を前記浸漬液から1枚ずつ取り出す第1基板搬送ユニットを含む、前記搬送システムと、
を備えた基板処理装置を用いて実行される基板処理方法であって、
前記待機部において、前記基板に対して、
溶存酸素濃度が予め定められた値以下となるように制御された水を前記浸漬液として用い、当該浸漬液に前記基板を浸漬させる第1浸漬処理、または
前記基板を、前記浸漬液としての水素水またはCO2水中に浸漬させる第2浸漬処理、
を実行する、基板処理方法。 - 前記待機部において、前記第1液処理および前記第2液処理の両方が実行され、
前記第1液処理は、前記浸漬槽内に貯留された、前記基板の表面を親水化させるか、または前記基板の表面の親水性を向上させるか若しくは維持することができる第1処理液に、前記複数の基板を浸漬させることにより行われ、
前記第2液処理は、前記第1基板搬送ユニットにより前記浸漬液から取り出されている時又は取り出された直後に、前記待機部に設けられた処理液ノズルから、前記基板の表面のゼータ電位を負にすることができる第2処理液を基板に向けて吐出することにより行われる、請求項20に記載の基板処理方法。 - 前記待機部において、前記第1液処理が実行され、
前記第1液処理は、前記浸漬槽内に貯留された、前記基板の表面を親水化させるか、または前記基板の表面の親水性を向上させるか若しくは維持することができる第1処理液に、前記複数の基板を浸漬させることにより行われる、請求項20に記載の基板処理方法。 - 前記待機部において、前記第2液処理が実行され、
前記第2液処理は、前記浸漬槽内に貯留された、前記基板の表面のゼータ電位を負にすることができる第2処理液に、前記複数の基板を浸漬させることにより行われる、請求項20に記載の基板処理方法。 - 前記待機部において、前記第2液処理が実行され、
前記浸漬槽は、前記浸漬液としての純水を貯留しており、
前記第2液処理は、前記第1基板搬送ユニットにより前記浸漬液から取り出されている時又は取り出された直後に、前記待機部に設けられた処理液ノズルから、前記基板の表面のゼータ電位を負にすることができる第2処理液を基板に供給することにより行われる、請求項20に記載の基板処理方法。 - 前記待機部において、前記第1浸漬処理が実行され、
前記第1浸漬処理は、前記浸漬槽内に貯留された溶存酸素濃度が100ppb以下の純水に、前記複数の基板を浸漬することにより行われる、請求項21に記載の基板処理方法。 - 前記浸漬槽内に貯留された純水の溶存酸素濃度を100ppb以下にするために、
窒素ガス、水素ガス、または二酸化炭素ガスによるバブリングを行って前記純水中の溶存酸素を除去すること、および、
溶存酸素濃度が100ppbより低い純水である低溶存酸素濃度純水を前記浸漬槽内に貯留された純水中に供給し、供給した低溶存酸素濃度純水により前記浸漬槽内に貯留された純水の一部を置換すること
のうちの少なくとも一方が行われる、請求項26に記載の基板処理方法。 - 前記待機部において、前記第2浸漬処理が実行され、
前記第2浸漬処理は、前記浸漬槽内に貯留された電気伝導度が1MΩ・cm未満のCO2水、または溶存水素濃度が1ppmより大きな水素水に前記複数の基板を浸漬することにより行われる、請求項21に記載の基板処理方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023569304A JPWO2023120229A1 (ja) | 2021-12-21 | 2022-12-09 | |
CN202280082834.4A CN118402046A (zh) | 2021-12-21 | 2022-12-09 | 基板处理装置和基板处理方法 |
KR1020247023267A KR20240116943A (ko) | 2021-12-21 | 2022-12-09 | 기판 처리 장치 및 기판 처리 방법 |
US18/720,641 US20250054783A1 (en) | 2021-12-21 | 2022-12-09 | Substrate processing apparatus and substrate processing method |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021-207500 | 2021-12-21 | ||
JP2021207500 | 2021-12-21 | ||
JP2022164972 | 2022-10-13 | ||
JP2022-164972 | 2022-10-13 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023120229A1 true WO2023120229A1 (ja) | 2023-06-29 |
Family
ID=86902353
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/045398 WO2023120229A1 (ja) | 2021-12-21 | 2022-12-09 | 基板処理装置および基板処理方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20250054783A1 (ja) |
JP (1) | JPWO2023120229A1 (ja) |
KR (1) | KR20240116943A (ja) |
TW (1) | TW202331909A (ja) |
WO (1) | WO2023120229A1 (ja) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011151283A (ja) * | 2010-01-25 | 2011-08-04 | Renesas Electronics Corp | 半導体装置の製造方法 |
JP2015026814A (ja) * | 2013-06-21 | 2015-02-05 | 東京エレクトロン株式会社 | 基板液処理装置及び基板液処理方法 |
JP2016012645A (ja) * | 2014-06-27 | 2016-01-21 | 東京エレクトロン株式会社 | 基板液処理装置、基板液処理方法及び記憶媒体 |
JP2017195416A (ja) * | 2013-04-19 | 2017-10-26 | 株式会社荏原製作所 | 基板処理装置 |
JP2020194842A (ja) * | 2019-05-27 | 2020-12-03 | 東京エレクトロン株式会社 | 基板処理方法および基板処理装置 |
JP2021064652A (ja) * | 2019-10-10 | 2021-04-22 | 東京エレクトロン株式会社 | 基板処理システム、及び基板処理方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3192951U (ja) | 2014-06-27 | 2014-09-11 | 大友千里デザイン株式会社 | 日本髪の髪結い補助具 |
-
2022
- 2022-12-07 TW TW111146925A patent/TW202331909A/zh unknown
- 2022-12-09 KR KR1020247023267A patent/KR20240116943A/ko unknown
- 2022-12-09 WO PCT/JP2022/045398 patent/WO2023120229A1/ja active Application Filing
- 2022-12-09 JP JP2023569304A patent/JPWO2023120229A1/ja active Pending
- 2022-12-09 US US18/720,641 patent/US20250054783A1/en active Pending
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011151283A (ja) * | 2010-01-25 | 2011-08-04 | Renesas Electronics Corp | 半導体装置の製造方法 |
JP2017195416A (ja) * | 2013-04-19 | 2017-10-26 | 株式会社荏原製作所 | 基板処理装置 |
JP2015026814A (ja) * | 2013-06-21 | 2015-02-05 | 東京エレクトロン株式会社 | 基板液処理装置及び基板液処理方法 |
JP2016012645A (ja) * | 2014-06-27 | 2016-01-21 | 東京エレクトロン株式会社 | 基板液処理装置、基板液処理方法及び記憶媒体 |
JP2020194842A (ja) * | 2019-05-27 | 2020-12-03 | 東京エレクトロン株式会社 | 基板処理方法および基板処理装置 |
JP2021064652A (ja) * | 2019-10-10 | 2021-04-22 | 東京エレクトロン株式会社 | 基板処理システム、及び基板処理方法 |
Also Published As
Publication number | Publication date |
---|---|
US20250054783A1 (en) | 2025-02-13 |
JPWO2023120229A1 (ja) | 2023-06-29 |
KR20240116943A (ko) | 2024-07-30 |
TW202331909A (zh) | 2023-08-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7511728B2 (ja) | 基板処理システム、及び基板処理方法 | |
JP5454108B2 (ja) | 基板処理装置、基板処理方法及び記憶媒体 | |
JP6472726B2 (ja) | 基板液処理装置、基板液処理方法及び記憶媒体 | |
JP7550589B2 (ja) | 基板処理システム | |
JP7558020B2 (ja) | 基板処理システム、および基板搬送方法 | |
JP2021530859A (ja) | 半導体ウェハの洗浄装置及び洗浄方法 | |
US6656321B2 (en) | Liquid processing apparatus and liquid processing method | |
JP7224117B2 (ja) | 基板処理装置および処理液再利用方法 | |
KR20230019312A (ko) | 기판 처리 장치 | |
JP2017117938A (ja) | 基板液処理装置および基板液処理方法 | |
JP5400735B2 (ja) | 基板処理方法、その基板処理方法を実行させるためのプログラムを記録した記録媒体及び基板処理装置 | |
WO2023120229A1 (ja) | 基板処理装置および基板処理方法 | |
JPH09199468A (ja) | 処理方法と装置 | |
JP2024013455A (ja) | 基板処理装置 | |
CN118402046A (zh) | 基板处理装置和基板处理方法 | |
TWI808112B (zh) | 基板處理方法及基板處理裝置 | |
JP7142461B2 (ja) | 基板処理方法、基板処理装置および基板処理システム | |
JP6548787B2 (ja) | 基板液処理装置及び基板液処理方法並びに基板液処理プログラムを記憶したコンピュータ読み取り可能な記憶媒体 | |
JP6552687B2 (ja) | 基板液処理装置及び基板液処理方法並びに基板液処理プログラムを記憶したコンピュータ読み取り可能な記憶媒体 | |
JP2022173634A (ja) | 基板処理装置および基板処理方法 | |
WO2023282064A1 (ja) | 基板処理システム、及び基板処理方法 | |
US11958087B2 (en) | Substrate processing method and substrate processing apparatus | |
TWI871360B (zh) | 基板處理系統及基板處理方法 | |
JP2024079047A (ja) | 基板処理装置および基板処理方法 | |
US20240066715A1 (en) | Substrate treating apparatus |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22910940 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280082834.4 Country of ref document: CN Ref document number: 2023569304 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18720641 Country of ref document: US |
|
ENP | Entry into the national phase |
Ref document number: 20247023267 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22910940 Country of ref document: EP Kind code of ref document: A1 |