[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2023120089A1 - 活性エネルギー線硬化性樹脂組成物、硬化塗膜及び物品 - Google Patents

活性エネルギー線硬化性樹脂組成物、硬化塗膜及び物品 Download PDF

Info

Publication number
WO2023120089A1
WO2023120089A1 PCT/JP2022/044315 JP2022044315W WO2023120089A1 WO 2023120089 A1 WO2023120089 A1 WO 2023120089A1 JP 2022044315 W JP2022044315 W JP 2022044315W WO 2023120089 A1 WO2023120089 A1 WO 2023120089A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
meth
acrylate
active energy
mass
Prior art date
Application number
PCT/JP2022/044315
Other languages
English (en)
French (fr)
Inventor
理恵 桐澤
直人 井上
隆 向井
Original Assignee
Dic株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dic株式会社 filed Critical Dic株式会社
Priority to KR1020247010310A priority Critical patent/KR20240051227A/ko
Priority to JP2023562742A priority patent/JP7495016B2/ja
Priority to CN202280070665.2A priority patent/CN118234768A/zh
Publication of WO2023120089A1 publication Critical patent/WO2023120089A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/04Acids; Metal salts or ammonium salts thereof
    • C08F220/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/12Esters of monohydric alcohols or phenols
    • C08F220/14Methyl esters, e.g. methyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/10Esters
    • C08F220/26Esters containing oxygen in addition to the carboxy oxygen
    • C08F220/32Esters containing oxygen in addition to the carboxy oxygen containing epoxy radicals
    • C08F220/325Esters containing oxygen in addition to the carboxy oxygen containing epoxy radicals containing glycidyl radical, e.g. glycidyl (meth)acrylate
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F299/00Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers
    • C08F299/02Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates
    • C08F299/08Macromolecular compounds obtained by interreacting polymers involving only carbon-to-carbon unsaturated bond reactions, in the absence of non-macromolecular monomers from unsaturated polycondensates from polysiloxanes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G77/00Macromolecular compounds obtained by reactions forming a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon in the main chain of the macromolecule
    • C08G77/42Block-or graft-polymers containing polysiloxane sequences
    • C08G77/442Block-or graft-polymers containing polysiloxane sequences containing vinyl polymer sequences
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D155/00Coating compositions based on homopolymers or copolymers, obtained by polymerisation reactions only involving carbon-to-carbon unsaturated bonds, not provided for in groups C09D123/00 - C09D153/00

Definitions

  • the present invention relates to active energy ray-curable resin compositions, cured coating films, and articles.
  • thermoplastic resin materials typified by plastics have been widely used in the construction field, as well as in the automotive field, due to their lightness, impact resistance, workability, and recyclability.
  • plastics since it has problems such as poor weather resistance, stain resistance, heat resistance, solvent resistance, and yellowing resistance, it is often used to supplement performance by providing a coating layer.
  • This UV-curable resin composition contains a composite resin having a polysiloxane segment and a vinyl polymer segment. Due to its poor durability, there were problems such as cracks during processing with high designability and processing after painting.
  • the problem to be solved by the present invention is an active energy ray-curable resin capable of forming a coating film having excellent coating film appearance, adhesion, solvent resistance, scratch resistance, weather resistance, stain resistance, and workability. To provide compositions, cured coatings and articles.
  • an active energy ray-curable resin composition containing a specific composite resin, a specific acrylic (meth)acrylate resin, and a photopolymerization initiator can be used.
  • the inventors have found that the above problems can be solved, and have completed the present invention.
  • the present invention provides an active energy ray-curable resin composition containing a composite resin (A), an acrylic (meth)acrylate resin (B), and a photopolymerization initiator (C), wherein the composite resin (A ) has a structural unit represented by the general formula (1) and / or general formula (2), a polysiloxane segment (a1) having a silanol group and / or a hydrolyzable silyl group, and a vinyl polymer segment (a2) is bonded by a bond represented by general formula (3), and the acrylic (meth)acrylate resin (B) has a weight average molecular weight of 10,000 to 70,000. It relates to an active energy ray-curable resin composition, a cured coating film and an article characterized by
  • the active energy ray-curable resin composition of the present invention can form a cured coating film having excellent coating film appearance, adhesion, solvent resistance, scratch resistance, weather resistance, stain resistance, and workability, It can be used as a coating agent or an adhesive, and can be particularly preferably used as a coating agent.
  • the active energy ray-curable resin composition of the present invention is an active energy ray-curable resin composition containing a composite resin (A), an acrylic (meth)acrylate resin (B), and a photopolymerization initiator (C).
  • the composite resin (A) is a polysiloxane segment (a1) having a structural unit represented by general formula (1) and / or general formula (2) and a silanol group and / or a hydrolyzable silyl group and the vinyl polymer segment (a2) are bonded by the bond represented by the general formula (3), and the weight average molecular weight of the acrylic (meth)acrylate resin (B) is 10,000. ⁇ 70,000.
  • the composite resin (A) is a polysiloxane segment (a1) having a structural unit represented by the general formula (1) and / or the general formula (2) and a silanol group and / or a hydrolyzable silyl group. (hereinafter simply referred to as polysiloxane segment (a1)) and a vinyl polymer segment (a2) having an alcoholic hydroxyl group (hereinafter simply referred to as vinyl polymer segment (a2)) are represented by the general formula (3) It is a composite resin bonded by a bond represented by
  • the bond represented by the general formula (3) is generated. Therefore, in the general formula (3), the carbon atom constitutes a part of the vinyl polymer segment (a2), and the silicon atom bonded only to the oxygen atom constitutes a part of the polysiloxane segment (a1).
  • the form of the composite resin (A) is, for example, a composite resin having a graft structure in which the polysiloxane segment (a1) is chemically bonded as a side chain of the polymer segment (a2), or the polymer segment (a2) and a composite resin having a block structure in which the polysiloxane segment (a1) is chemically bonded.
  • the polysiloxane segment (a1) is a segment having a structural unit represented by general formula (1) and/or general formula (2) and a silanol group and/or a hydrolyzable silyl group.
  • a group having a polymerizable double bond is included in the structural unit represented by general formula (1) and/or general formula (2).
  • the structural unit represented by the general formula (1) and/or the general formula (2) has a group having a polymerizable double bond as an essential component.
  • alkylene group having 1 to 6 carbon atoms in R 4 examples include methylene group, ethylene group, propylene group, isopropylene group, butylene group, isobutylene group, sec-butylene group, tert-butylene group, Pentylene group, isopentylene group, neopentylene group, tert-pentylene group, 1-methylbutylene group, 2-methylbutylene group, 1,2-dimethylpropylene group, 1-ethylpropylene group, hexylene group, isohesylene group, 1-methylpentylene group Lene group, 2-methylpentylene group, 3-methylpentylene group, 1,1-dimethylbutylene group, 1,2-dimethylbutylene group, 2,2-dimethylbutylene group, 1-ethylbutylene group, 1,1 ,2-trimethylpropylene group, 1,2,2-trimethylpropylene group, 1-ethyl-2-methylpropylene group, 1-e
  • alkyl group having 1 to 6 carbon atoms examples include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group and isopentyl.
  • Examples of the cycloalkyl group having 3 to 8 carbon atoms include cyclopropyl group, cyclobutyl group, cyclopentyl group, cyclohexyl group and the like.
  • Examples of the aryl group include phenyl group, naphthyl group, 2-methylphenyl group, 3-methylphenyl group, 4-methylphenyl group, 4-vinylphenyl group and 3-isopropylphenyl group.
  • Examples of the aralkyl group having 7 to 12 carbon atoms include benzyl group, diphenylmethyl group and naphthylmethyl group.
  • R 1 , R 2 and R 3 are a group having a polymerizable double bond
  • the polysiloxane segment (a1) is represented by the general formula (1)
  • R 1 is the group having a polymerizable double bond
  • R 2 and / or R 3 is a group having a polymerizable double bond
  • R At least one of 1 , R 2 and R 3 is a group having a polymerizable double bond.
  • polymerizable double bonds are present in the polysiloxane segment (a1), more preferably 3 to 200, even more preferably 3 to 50, to improve durability.
  • An excellent coating film can be obtained.
  • the content of polymerizable double bonds in the polysiloxane segment (a1) is 3 to 35% by weight, desired weather resistance and adhesion can be obtained.
  • the term "polymerizable double bond" as used herein is a general term for a group, among vinyl groups, vinylidene groups and vinylene groups, which can undergo a propagating reaction by free radicals.
  • the content of polymerizable double bonds indicates the weight percentage of the vinyl group, vinylidene group or vinylene group in the polysiloxane segment.
  • the structural unit represented by the general formula (1) and/or the general formula (2) is a three-dimensional network polysiloxane structural unit in which two or three silicon bonds are involved in cross-linking. Although it forms a three-dimensional network structure, it does not form a dense network structure, so that gelation or the like does not occur during production or primer formation, and storage stability is improved.
  • a silanol group in the present invention is a silicon-containing group having a hydroxyl group directly bonded to a silicon atom.
  • the silanol group is a silanol group formed by bonding an oxygen atom having a bond to a hydrogen atom in the structural unit represented by the general formula (1) and/or the general formula (2).
  • the structural unit represented by the general formula (1) and/or the general formula (2) Preferably.
  • the hydrolyzable silyl group is a silicon-containing group having a hydrolyzable group directly bonded to a silicon atom, and specific examples thereof include groups represented by general formula (4). .
  • R 5 is a monovalent organic group such as an alkyl group, an aryl group or an aralkyl group
  • R 6 is a halogen atom, an alkoxy group, an acyloxy group, a phenoxy group, an aryloxy group, a mercapto group
  • a hydrolyzable group selected from the group consisting of an amino group, an amido group, an aminooxy group, an iminooxy group and an alkenyloxy group, and b is an integer of 0 to 2.
  • alkyl group for R 5 examples include methyl group, ethyl group, propyl group, isopropyl group, butyl group, isobutyl group, sec-butyl group, tert-butyl group, pentyl group, isopentyl group, neopentyl group, tert -pentyl group, 1-methylbutyl group, 2-methylbutyl group, 1,2-dimethylpropyl group, 1-ethylpropyl group, hexyl group, isohesyl group, 1-methylpentyl group, 2-methylpentyl group, 3-methylpentyl group, 1,1-dimethylbutyl group, 1,2-dimethylbutyl group, 2,2-dimethylbutyl group, 1-ethylbutyl group, 1,1,2-trimethylpropyl group, 1,2,2-trimethylpropyl group , 1-ethyl-2-methylpropyl group, 1-ethyl-1-methylpropyl group
  • aryl groups include phenyl, naphthyl, 2-methylphenyl, 3-methylphenyl, 4-methylphenyl, 4-vinylphenyl, and 3-isopropylphenyl groups.
  • Aralkyl groups include, for example, a benzyl group, a diphenylmethyl group, a naphthylmethyl group and the like.
  • the halogen atom includes, for example, a fluorine atom, a chlorine atom, a bromine atom, an iodine atom and the like.
  • alkoxy groups include methoxy, ethoxy, propoxy, isopropoxy, butoxy, sec-butoxy, and tert-butoxy groups.
  • acyloxy groups include formyloxy, acetoxy, propanoyloxy, butanoyloxy, pivaloyloxy, pentanoyloxy, phenylacetoxy, acetoacetoxy, benzoyloxy, naphthoyloxy and the like.
  • aryloxy groups include phenyloxy and naphthyloxy.
  • alkenyloxy groups include vinyloxy, allyloxy, 1-propenyloxy, isopropenyloxy, 2-butenyloxy, 3-butenyloxy, 2-petenyloxy, 3-methyl-3-butenyloxy, 2 -hexenyloxy group and the like.
  • the hydrolyzable silyl group represented by general formula (4) becomes a silanol group.
  • a methoxy group and an ethoxy group are preferable because they are excellent in hydrolyzability.
  • the hydrolyzable silyl group is such that an oxygen atom having a bond in the structural unit represented by the general formula (1) and/or the general formula (2) is bonded to the hydrolyzable group.
  • it is preferably a substituted hydrolyzable silyl group.
  • the silanol group and the hydrolyzable silyl group are added to the hydroxyl group in the silanol group and the hydrolyzable silyl group in parallel with the curing reaction during the coating film formation by the curing reaction of the group having the polymerizable double bond. Since the hydrolytic condensation reaction proceeds between the hydrolyzable groups in the groups, the cross-linking density of the polysiloxane structure of the resulting coating film increases, and a coating film having excellent solvent resistance and the like can be formed. Further, the polysiloxane segment (a1) containing the silanol group or the hydrolyzable silyl group and the vinyl-based polymer segment (a2) described later are bonded via the bond represented by the general formula (3). Use when
  • the polysiloxane segment (a1) is not particularly limited except that it has a structural unit represented by the general formula (1) and / or the general formula (2) and a silanol group and / or a hydrolyzable silyl group. , may contain other groups.
  • Polysiloxane in which a structural unit in which R 1 in the general formula (1) is a group having a polymerizable double bond and a structural unit in which R 1 in the general formula (1) is an alkyl group such as methyl It may be the segment (a1), A structural unit in which R 1 in the general formula (1) is a group having a polymerizable double bond, a structural unit in which R 1 in the general formula (1) is an alkyl group such as a methyl group, and the general formula It may be a polysiloxane segment (a1) in which R 2 and R 3 in (2) coexist with a structural unit that is an alkyl group such as a methyl group, A structural unit in which R 1 in the general formula (1) is the group having a polymerizable double bond, and a structural unit in which R 2 and R 3 in the general formula (2) are an alkyl group such as a methyl group It may be a coexisting polysiloxane segment (a1), and is not particularly limited. Specifically
  • the vinyl polymer segment (a2) is a vinyl polymer segment such as an acrylic polymer, a fluoroolefin polymer, a vinyl ester polymer, an aromatic vinyl polymer, or a polyolefin polymer.
  • An acrylic polymer segment is preferable because the obtained coating film has excellent transparency and gloss.
  • the acrylic polymerizable segment is obtained by polymerizing or copolymerizing a general-purpose (meth)acrylic monomer.
  • the (meth)acrylic monomer is not particularly limited, and a vinyl monomer can also be copolymerized.
  • the vinyl-based polymer segment (a2) is more preferably a (meth)acrylic repeating unit having a cyclic hydrocarbon group from the viewpoint of improving adhesion to the plastic substrate.
  • the (meth)acrylic repeating unit having a cyclic hydrocarbon group is preferably cyclohexyl (meth)acrylate, cyclopentanyl (meth)acrylate, adamantyl (meth)acrylate, tricyclodecanyl (meth)acrylate, tetracyclododecanyl ( (Meth)acrylates having a cyclic hydrocarbon group such as meth)acrylates, dicyclopentanyl (meth)acrylates, and isobornyl acrylates can be mentioned. These can be used alone or in combination of two or more.
  • the vinyl polymer segment (a2) can be obtained by a known method.
  • a vinyl polymer segment (a2) can be obtained using a polymerization initiator such as tert-butyl peroxide, cumene hydroperoxide, diisopropyl peroxycarbonate and the like.
  • the number average molecular weight of the vinyl polymer segment (a2) is preferably 500 to 200,000 in terms of number average molecular weight (hereinafter abbreviated as Mn). and gelation can be prevented, and the durability is excellent.
  • Mn is more preferably in the range of 700 to 100,000, and more preferably 1,000 to 50,000 for reasons of coating suitability and adhesion to substrates, which will be described later.
  • the vinyl polymer segment (a2) is a vinyl polymer segment ( It has a silanol group and/or a hydrolyzable silyl group directly bonded to the carbon bond in a2). These silanol groups and/or hydrolyzable silyl groups become bonds represented by the general formula (3) in the production of the composite resin (A) described later, so the composite resin (A ) in the vinyl-based polymer segment (a2).
  • the vinyl polymer segment (a2) having a silanol group and/or a hydrolyzable silyl group directly bonded to a carbon bond specifically includes the general-purpose monomer, and a silanol group and/or a silanol group directly bonded to a carbon bond. It is obtained by copolymerizing a vinyl monomer containing a hydrolyzable silyl group.
  • Examples of vinyl-based monomers containing silanol groups and/or hydrolyzable silyl groups directly bonded to carbon bonds include vinyltrimethoxysilane, vinyltriethoxysilane, vinylmethyldimethoxysilane, and vinyltri(2-methoxyethoxy)silane.
  • the vinyl polymer segment (a2) preferably has an alcoholic hydroxyl group.
  • the vinyl polymer segment (a2) having an alcoholic hydroxyl group can be obtained by copolymerizing a (meth)acrylic monomer having an alcoholic hydroxyl group.
  • (meth)acrylic monomers having an alcohol hydroxyl group include 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, 3-hydroxypropyl (meth)acrylate, 2-hydroxybutyl (meth)acrylate, ) acrylate, 3-hydroxybutyl (meth) acrylate, 4-hydroxybutyl (meth) acrylate, 3-chloro-2-hydroxypropyl (meth) acrylate, di-2-hydroxyethyl fumarate, mono-2-hydroxyethyl mono Butyl fumarate, polyethylene glycol mono (meth) acrylate, polypropylene glycol mono (meth) acrylate, "PLAXEL FM or PLAXEL FA” [caprolactone addition monomer manufactured by Daicel Chemical Industries, Ltd.] and other ⁇ , ⁇ -ethylenically unsaturated Hydroxyalkyl esters of saturated carboxylic acids, adducts of these with ⁇ -caprolactone, and the like
  • the amount of alcoholic hydroxyl groups is preferably calculated from the amount of polyisocyanate to be added, which will be described later, and determined appropriately. As will be described later, in the present invention, it is more preferable to use an active energy ray-curable monomer having an alcoholic hydroxyl group in combination. Therefore, the amount of alcoholic hydroxyl groups in the vinyl polymer segment (a2) having alcoholic hydroxyl groups can be determined by taking into consideration the amount of the active energy ray-curable monomer having alcoholic hydroxyl groups used in combination. It is preferable that the hydroxyl value of the vinyl polymer segment (a2) is substantially in the range of 30 to 300 in terms of hydroxyl value.
  • the composite resin (A) is specifically produced by the methods shown in (Method 1) to (Method 3) below.
  • Method 1 Copolymerizing the general-purpose (meth)acrylic monomer or the like and a vinyl monomer containing a silanol group and/or a hydrolyzable silyl group directly bonded to the carbon bond to directly bond to the carbon bond
  • a vinyl polymer segment (a2) containing a silanol group and/or a hydrolyzable silyl group is obtained.
  • This is mixed with a silane compound having both a silanol group and/or a hydrolyzable silyl group and a polymerizable double bond, and if necessary, a general-purpose silane compound, and is subjected to a hydrolytic condensation reaction.
  • a silanol group or a hydrolyzable silyl group of a silane compound having both a silanol group and/or a hydrolyzable silyl group and a polymerizable double bond, and a silanol group directly bonded to a carbon bond and/or hydrolyzed The silanol group and / or hydrolyzable silyl group of the vinyl polymer segment (a2) containing a silyl group undergoes a hydrolytic condensation reaction to form the polysiloxane segment (a1), and the polysiloxane
  • a composite resin (A) is obtained in which the segment (a1) and the vinyl polymer segment (a2) are combined by the bond represented by the general formula (3).
  • Method 2 In the same manner as in Method 1, a vinyl polymer segment (a2) containing silanol groups and/or hydrolyzable silyl groups directly bonded to carbon bonds is obtained.
  • a silane compound having both a silanol group and/or a hydrolyzable silyl group and a polymerizable double bond and, if necessary, a general-purpose silane compound are subjected to a hydrolytic condensation reaction to obtain a polysiloxane segment (a1).
  • Method 3 As in Method 1, a vinyl polymer segment (a2) containing silanol groups and/or hydrolyzable silyl groups directly bonded to carbon bonds is obtained. On the other hand, a polysiloxane segment (a1) is obtained in the same manner as in Method 2. Furthermore, a silane compound containing a silane compound having a polymerizable double bond and, if necessary, a general-purpose silane compound are mixed together for hydrolytic condensation reaction.
  • General-purpose silane compounds used in (Method 1) to (Method 3) include, for example, methyltrimethoxysilane, methyltriethoxysilane, methyltri-n-butoxysilane, ethyltrimethoxysilane, n-propyl various organotrialkoxysilanes such as trimethoxysilane, iso-butyltrimethoxysilane, cyclohexyltrimethoxysilane, phenyltrimethoxysilane, phenyltriethoxysilane; dimethyldimethoxysilane, dimethyldiethoxysilane, dimethyldi-n-butoxysilane; , diethyldimethoxysilane, diphenyldimethoxysilane, methylcyclohexyldimethoxysilane or methylphenyldimethoxysilane; various diorganodialkoxysilanes; methylt
  • a tetrafunctional alkoxysilane compound such as tetramethoxysilane, tetraethoxysilane or tetra-n-propoxysilane, or a partial hydrolysis condensate of the tetrafunctional alkoxysilane compound may be used in combination as long as the effects of the present invention are not impaired. can.
  • the tetrafunctional alkoxysilane compound or a partial hydrolyzed condensate thereof is used in combination, the silicon atoms possessed by the tetrafunctional alkoxysilane compound are 20 relative to the total silicon atoms constituting the polysiloxane segment (a1). It is preferable to use them in combination so as not to exceed the molar percentage.
  • the silane compound can be used in combination with a metal alkoxide compound other than a silicon atom, such as boron, titanium, zirconium or aluminum, as long as the effects of the present invention are not impaired.
  • a metal alkoxide compound other than a silicon atom such as boron, titanium, zirconium or aluminum
  • catalysts to be used include inorganic acids such as hydrochloric acid, sulfuric acid and phosphoric acid; organic acids such as p-toluenesulfonic acid, monoisopropyl phosphate and acetic acid; inorganic bases such as sodium hydroxide or potassium hydroxide; , Titanic acid esters such as tetrabutyl titanate; 1,8-diazabicyclo[5.4.0]undecene-7 (DBU), 1,5-diazabicyclo[4.3.0]nonene-5 (DBN), 1 , 4-diazabicyclo[2.2.2]octane (DABCO), tri-n-butylamine, dimethylbenzylamine, monoethanolamine, imidazole, 1-methylimidazole, and various other compounds containing basic nitrogen atoms; Various quaternary ammonium salts such as tetramethylammonium salts, tetrabutylammonium salts and dilauryldimethyl
  • the amount of the catalyst added is not particularly limited, but it is generally preferable to use it in the range of 0.0001 to 10% by weight with respect to the total amount of each compound having a silanol group or a hydrolyzable silyl group. , more preferably in the range of 0.0005 to 3% by weight, and particularly preferably in the range of 0.001 to 1% by weight.
  • the amount of water to be supplied is preferably 0.05 mol or more, preferably 0.1 mol, per 1 mol of the silanol group or hydrolyzable silyl group possessed by each compound having a silanol group or hydrolyzable silyl group.
  • the above is more preferable, and 0.5 mol or more is particularly preferable.
  • These catalyst and water may be supplied all at once or sequentially, or may be supplied as a mixture of the catalyst and water in advance.
  • the reaction temperature for the hydrolytic condensation reaction in (Method 1) to (Method 3) is appropriately in the range of 0°C to 150°C, preferably in the range of 20°C to 100°C.
  • the reaction can be carried out under any conditions of normal pressure, increased pressure, or reduced pressure.
  • alcohol and water, which are by-products that may be produced in the hydrolytic condensation reaction may be removed by a method such as distillation, if necessary.
  • the charging ratio of each compound in (Method 1) to (Method 3) is appropriately selected according to the desired structure of the composite resin (A) used in the present invention. Among them, it is preferable to obtain the composite resin (A) so that the content of the polysiloxane segment (a1) is 30 to 95% by weight, and 50 to 95% by weight is preferable, because the durability of the resulting coating film is excellent. More preferred.
  • the vinyl polymer segment contains a silanol group and / or hydrolyzable A silane compound having both a silyl group and a polymerizable double bond and, if necessary, a general-purpose silane compound are mixed, and hydrolytic condensation reaction is carried out.
  • the main chain of the vinyl polymer segment is Using a vinyl polymer segment having a structure in which the silanol groups and/or hydrolyzable silyl groups are randomly distributed as an intermediate, for example, in (Method 2), the vinyl polymer segment is A method of hydrolyzing and condensing the silanol group and/or hydrolyzable silyl group possessed with the silanol group and/or hydrolyzable silyl group possessed by the polysiloxane segment described above can be mentioned.
  • the vinyl polymer segment (a2) in the composite resin (A) has an alcoholic hydroxyl group
  • a coating film having particularly excellent long-term weather resistance specifically, crack resistance
  • the polyisocyanate reacts with the hydroxyl group in the system (this is the hydroxyl group in the vinyl polymer segment (a2) or the hydroxyl group in the active energy ray-curable monomer having an alcoholic hydroxyl group described later).
  • urethane bonds which are soft segments, are formed, and it is presumed that the concentration of stress due to curing derived from polymerizable double bonds is alleviated.
  • the polyisocyanate to be used is not particularly limited, and known ones can be used.
  • ⁇ ', ⁇ '-tetramethyl-meta-xylylene diisocyanate and other aralkyl diisocyanates as main raw materials have the problem of yellowing of the cured coating film when exposed to the outdoors for a long period of time. Minimize is preferred.
  • aliphatic polyisocyanates containing aliphatic diisocyanates as main raw materials are suitable as the polyisocyanates used in the present invention.
  • Aliphatic diisocyanates include, for example, tetramethylene diisocyanate, 1,5-pentamethylene diisocyanate, 1,6-hexamethylene diisocyanate (hereinafter abbreviated as “HDI”), 2,2,4- (or 2,4,4 -trimethyl-1,6-hexamethylene diisocyanate, lysine isocyanate, isophorone diisocyanate, hydrogenated xylene diisocyanate, hydrogenated diphenylmethane diisocyanate, 1,4-diisocyanatocyclohexane, 1,3-bis(diisocyanatomethyl)cyclohexane, 4,4 '-dicyclohexylmethane diisocyanate, etc.
  • HDI is particularly prefer
  • Aliphatic polyisocyanates obtained from aliphatic diisocyanates include allophanate-type polyisocyanates, biuret-type polyisocyanates, adduct-type polyisocyanates and isocyanurate-type polyisocyanates, all of which can be suitably used.
  • blocked polyisocyanate compounds blocked with various blocking agents.
  • blocking agents include alcohols such as methanol, ethanol, and lactate; phenolic hydroxyl group-containing compounds such as phenol and salicylate; amides such as ⁇ -caprolactam and 2-pyrrolidone; oximes such as acetone oxime and methyl ethyl ketoxime. and active methylene compounds such as methyl acetoacetate, ethyl acetoacetate, and acetylacetone.
  • the content of isocyanate groups in the polyisocyanate is preferably 3 to 30% by weight from the viewpoint of crack resistance and abrasion resistance of the resulting cured coating film. If the isocyanate group content in the polyisocyanate is more than 30%, the molecular weight of the polyisocyanate becomes small, and crack resistance due to stress relaxation may not be exhibited.
  • the reaction between the polyisocyanate and the hydroxyl group in the system is particularly Heating or the like is not necessary.
  • the reaction gradually occurs by leaving it at room temperature after coating and irradiating with ultraviolet rays.
  • the reaction between the alcoholic hydroxyl group and the isocyanate may be accelerated by heating at 80° C. for several minutes to several hours (20 minutes to 4 hours) after the ultraviolet irradiation.
  • the urethanization catalyst is appropriately selected according to the desired reaction temperature.
  • acrylic (meth)acrylate resin (B) for example, a (meth)acrylate monomer ( ⁇ ) having a reactive functional group such as a hydroxyl group, a carboxyl group, an isocyanate group, or a glycidyl group is polymerized as an essential component.
  • (meth)acryloyl group is introduced by further reacting the acrylic resin intermediate obtained above with a (meth)acrylate monomer ( ⁇ ) having a functional group capable of reacting with the reactive functional group.
  • (meth)acrylate resin refers to a resin having a (meth)acryloyl group in the molecule
  • (meth)acryloyl group refers to either an acryloyl group or a methacryloyl group, or I mean both.
  • (meth)acrylate refers to one or both of acrylate and methacrylate.
  • the (meth)acrylate monomer ( ⁇ ) having a reactive functional group includes, for example, hydroxyl group-containing (meth)acrylate monomers such as hydroxyethyl (meth)acrylate and hydroxypropyl (meth)acrylate; Group-containing (meth) acrylate monomer; isocyanate group-containing (meth) acrylate monomer such as 2-acryloyloxyethyl isocyanate, 2-methacryloyloxyethyl isocyanate, 1,1-bis (acryloyloxymethyl) ethyl isocyanate; glycidyl (meth) acrylate and glycidyl group-containing (meth)acrylate monomers such as 4-hydroxybutyl acrylate glycidyl ether.
  • These (meth)acrylate monomers having a reactive functional group can be used alone or in combination of two or more.
  • the acrylic resin intermediate has better adhesion to the substrate and forms a cured product with better workability, scratch resistance and chemical resistance, so the glass transition temperature (Tg) of the homopolymer is 50 C. or higher (meth)acrylate monomers are preferably copolymerized.
  • examples of such monomers include methyl (meth)acrylate, tert-butyl (meth)acrylate, cyclohexyl (meth)acrylate, benzyl (meth)acrylate, isobornyl (meth)acrylate, dicyclopentanyl (meth)acrylate, Acrylate, adamantyl (meth)acrylate and the like.
  • At least one of these monomers is used because it provides an acrylic (meth)acrylate resin that has excellent substrate adhesion and can form a cured product with excellent workability, scratch resistance, and chemical resistance. It is preferable to use them, more preferably two or more of them are used in combination, and at least one of them is preferably methyl (meth)acrylate.
  • the value of the glass transition temperature of the homopolymer of each component can be found in Nikkan Kogyo Shimbun's "Adhesive Technology Handbook", Wiley-Interscience's "Polymer Handbook", Introduction to Paint Resins, Kyoeisha Chemical Co., Ltd. HP, Values described in the website of Mitsubishi Chemical Corporation can be adopted.
  • polymerizable unsaturated group-containing compounds can be copolymerized with the acrylic resin intermediate, if necessary.
  • Other polymerizable unsaturated group-containing compounds for example, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate (meth) acrylic acid alkyl esters; isobornyl Cyclo ring-containing (meth) acrylates such as (meth) acrylate and dicyclopentanyl (meth) acrylate; Aromatic ring-containing (meth) acrylates such as phenyl (meth) acrylate and phenoxyethyl acrylate; 3-methacryloxypropyltrimethoxysilane silyl group-containing (meth)acrylates such as styrene; styrene derivatives such as styrene, ⁇ -methylstyrene and chlor
  • the reaction ratio of the two is excellent. Since it becomes an acrylic (meth)acrylate resin having adhesiveness, workability, scratch resistance and chemical resistance, the (meth)acrylate monomer ( ⁇ ) is 5 to 95% by mass in the total of both. is preferred, and 25 to 65% is more preferred.
  • the method for producing the acrylic resin intermediate can be produced in the same manner as for general acrylic resins.
  • it can be produced by polymerizing various monomers in a temperature range of 60 to 150° C. in the presence of a polymerization initiator.
  • Polymerization methods include, for example, bulk polymerization, solution polymerization, suspension polymerization, and emulsion polymerization.
  • the polymerization mode includes, for example, random copolymers, block copolymers, graft copolymers, and the like.
  • ketone solvents such as methyl ethyl ketone and methyl isobutyl ketone
  • glycol ether solvents such as propylene glycol monomethyl ether, propylene glycol dimethyl ether, propylene glycol monopropyl ether, and propylene glycol monobutyl ether are preferably used. can be done.
  • the (meth)acrylate monomer ( ⁇ ) is not particularly limited as long as it can react with the reactive functional group of the (meth)acrylate monomer ( ⁇ ). From the viewpoint of reactivity, the following combinations are preferred: is preferred. That is, when the hydroxyl group-containing (meth)acrylate is used as the (meth)acrylate monomer ( ⁇ ), it is preferable to use an isocyanate group-containing (meth)acrylate as the (meth)acrylate monomer ( ⁇ ). When the carboxy group-containing (meth)acrylate is used as the (meth)acrylate monomer ( ⁇ ), it is preferable to use the glycidyl group-containing (meth)acrylate as the (meth)acrylate monomer ( ⁇ ).
  • the isocyanate group-containing (meth)acrylate is used as the (meth)acrylate monomer ( ⁇ )
  • the glycidyl group-containing (meth)acrylate is used as the (meth)acrylate monomer ( ⁇ )
  • the reaction between the acrylic resin intermediate and the (meth)acrylate monomer ( ⁇ ) is, for example, when the reaction is an esterification reaction, esterification of triphenylphosphine or the like at a temperature range of 60 to 150 ° C. Methods such as using a catalyst as appropriate can be mentioned. Further, when the reaction is a urethanization reaction, a method of reacting the acrylic resin intermediate while dropping the (meth)acrylate monomer ( ⁇ ) at a temperature range of 50 to 120° C. may be used. .
  • the reaction ratio between the two is preferably in the range of 0.95 to 1.1 mol of the (meth)acrylate monomer ( ⁇ ) per 1 mol of functional groups in the acrylic resin intermediate.
  • the acrylic (meth)acrylate resin (B) is composed of a (meth)acrylate monomer from the viewpoint of having excellent substrate adhesion and having better workability, scratch resistance, and chemical resistance.
  • an acrylic polymer (b1) containing a glycidyl group-containing (meth)acrylate monomer (x1) as an essential raw material is added to a hydroxyl group-containing (meth)acrylate monomer (x2) and / or a carboxy group-containing (meth) It is obtained by reacting an acrylate monomer (x3), and it is more preferable that the glycidyl group-containing (meth)acrylate monomer (x1) is used in an amount of 3 to 60 parts by mass, 5 to 40 parts by mass. It is more preferable to use the one used in the above.
  • the acrylic polymer (b1) is preferably a copolymer of a glycidyl group-containing (meth)acrylate monomer (x1) and a (meth)acrylic acid alkyl ester. More preferably, the alkyl ester is (meth)acrylic acid methyl ester.
  • the (meth)acryloyl group equivalent of the acrylic (meth)acrylate resin (B) is preferably 300 to 3,000 g/equivalent, particularly 400 to 2, because the balance of durability such as weather resistance and workability is further improved. ,000 g/equivalent is preferred.
  • the (meth)acryloyl group equivalent of the acrylic (meth)acrylate resin (B) in the present invention is a theoretical value calculated from reaction raw materials.
  • the weight average molecular weight (Mw) of the acrylic (meth)acrylate resin (B) is 10,000 to 70,000, and it has excellent substrate adhesion, workability, scratch resistance and resistance. 20,000 to 40,000 is more preferable because the chemical balance is further improved.
  • the weight average molecular weight (Mw), number average molecular weight (Mn), and molecular weight distribution (Mn/Mw) are values measured by gel permeation chromatography (GPC).
  • the mass ratio (A/B) of the composite resin (A) and the (meth)acrylate resin (B) is 2/98 because a coating film having excellent durability such as weather resistance and workability can be obtained. ⁇ 90/10 is preferred, 5/95 to 65/35 is more preferred, and 10/90 to 50/50 is even more preferred.
  • the active energy ray-curable resin composition of the present invention contains the composite resin (A) and the acrylic (meth)acrylate resin (B), and contains other active energy ray-curable components.
  • the content of active energy ray-curable components with a weight average molecular weight of 5,000 or less is It is preferably 30% by mass or less in the total mass of the curable components.
  • Examples of the other active energy ray-curable components include (meth)acrylate compounds other than the acrylic (meth)acrylate resin (B).
  • Other (meth)acrylate compounds include, for example, dendrimer-type (meth)acrylate resins, urethane (meth)acrylate resins, epoxy (meth)acrylate resins, mono(meth)acrylate compounds and modified products thereof, aliphatic hydrocarbon-type poly (Meth)acrylate compounds and modified products thereof, alicyclic poly(meth)acrylate compounds and modified products thereof, aromatic poly(meth)acrylate compounds and modified products thereof, and the like. Each of these may be used alone, or two or more of them may be used in combination.
  • the content of the polysiloxane segment (a1) in all resin components including the composite resin (A) and the acrylic (meth)acrylate resin (B) further improves the balance between durability such as weather resistance and workability. Therefore, is preferably 2 to 55% by mass, more preferably 4 to 40% by mass.
  • Examples of the photopolymerization initiator (C) include 1-hydroxycyclohexylphenyl ketone, 2-hydroxy-2-methyl-1-phenylpropan-1-one, 1-[4-(2-hydroxyethoxy)phenyl] -2-hydroxy-2-methyl-1-propan-1-one, thioxanthone and thioxanthone derivatives, 2,2′-dimethoxy-1,2-diphenylethan-1-one, diphenyl (2,4,6-trimethoxy benzoyl)phosphine oxide, 2,4,6-trimethylbenzoyldiphenylphosphine oxide, bis(2,4,6-trimethylbenzoyl)phenylphosphine oxide, 2-methyl-1-(4-methylthiophenyl)-2-morpholinopropane -1-one, 2-benzyl-2-dimethylamino-1-(4-morpholinophenyl)-1-butanone and other photoradical polymerization initiators.
  • the amount of the photopolymerization initiator (C) added is, for example, preferably in the range of 0.05 to 15% by mass in the total amount of components other than the solvent of the active energy ray-curable resin composition, and 0.1 It is more preferably in the range of ⁇ 10% by mass.
  • the photopolymerization initiator can also be used in combination with a photosensitizer such as an amine compound, a urea compound, a sulfur-containing compound, a phosphorus-containing compound, a chlorine-containing compound, or a nitrile compound, if necessary.
  • a photosensitizer such as an amine compound, a urea compound, a sulfur-containing compound, a phosphorus-containing compound, a chlorine-containing compound, or a nitrile compound, if necessary.
  • the active energy ray-curable resin composition of the present invention may contain other components than those mentioned above.
  • other components include inorganic fine particles, silane coupling agents, phosphate ester compounds, solvents, ultraviolet absorbers, antioxidants, silicon-based additives, fluorine-based additives, antistatic agents, organic beads, quantum Dots (QD), rheology control agents, defoaming agents, anti-fogging agents, colorants and the like.
  • the inorganic fine particles are added for the purpose of adjusting the hardness, refractive index, etc. of the cured coating film of the active energy ray-curable resin composition, and various known and commonly used inorganic fine particles can be used. Examples include fine particles of silica, alumina, zirconia, titania, barium titanate, antimony trioxide, and the like. Each of these may be used alone, or two or more of them may be used in combination.
  • silica particles are preferable because they are easily available and easy to handle.
  • Silica particles include, for example, various silica particles such as fumed silica, wet silica called precipitated silica, gel silica, sol-gel silica, and the like, and any of them may be used.
  • the inorganic fine particles may be those in which a functional group is introduced on the fine particle surface using various silane coupling agents.
  • a functional group By introducing a functional group to the surface of the inorganic fine particles, miscibility with organic components such as the acrylic (meth)acrylate resin (B) is increased, and storage stability is improved.
  • Silane coupling agents that modify the inorganic fine particles include, for example, [(meth)acryloyloxyalkyl]trialkylsilane, [(meth)acryloyloxyalkyl]dialkylalkoxysilane, [(meth)acryloyloxyalkyl]alkyldialkoxysilane , [(meth)acryloyloxyalkyl]trialkoxysilane, corresponding (meth)acryloyloxy-based silane coupling agent; trialkylvinylsilane, dialkylalkoxyvinylsilane, alkyldialkoxyvinylsilane, trialkoxyvinylsilane, trialkylallylsilane, dialkylalkoxyallylsilane , alkyldialkoxyallylsilane, trialkoxyallylsilane and other vinyl-based silane coupling agents; styryltrialkyl, styryldialkylalkoxysilane,
  • the (meth) acryloyloxy-based silane coupling agent is preferable because it becomes inorganic fine particles having excellent miscibility with organic components such as the acrylic (meth) acrylate resin, and 3-(meth) [(Meth)acryloyloxyalkyl]trialkoxysilanes such as acryloyloxypropyltrimethoxysilane are particularly preferred.
  • the average particle size of the inorganic fine particles is not particularly limited, and may be adjusted as appropriate according to the desired performance of the cured product.
  • the average particle diameter of the inorganic fine particles is preferably in the range of 80 to 250 nm, since a cured coating film having excellent blocking resistance, transparency, etc., as well as scratch resistance and anti-cracking properties can be obtained.
  • a range of 90 to 180 nm is more preferred, and a range of 100 to 150 nm is particularly preferred.
  • the average particle size of the inorganic fine particles is a value obtained by measuring the particle size in the active energy ray-curable resin composition under the following conditions.
  • Particle size measuring device "ELSZ-2" manufactured by Otsuka Electronics Co., Ltd.
  • Particle size measurement sample A methyl isobutyl ketone solution having a non-volatile content of 1% by mass of an active energy ray-curable resin composition.
  • the content of the inorganic fine particles in the active energy ray-curable resin composition of the present invention is not particularly limited, and may be appropriately adjusted according to the desired performance of the cured product.
  • the content of the inorganic fine particles is preferably in the range of 10 to 100 parts by mass with respect to 100 parts by mass of the acrylic (meth)acrylate resin because a cured coating film having excellent scratch resistance can be obtained.
  • Silane coupling agents added to the active energy ray-curable resin composition include, for example, [(meth)acryloyloxyalkyl]trialkylsilane, [(meth)acryloyloxyalkyl]dialkylalkoxysilane, [(meth)acryloyloxy (meth)acryloyloxy-based silane coupling agents such as alkyl]alkyldialkoxysilanes and [(meth)acryloyloxyalkyl]trialkoxysilanes; trialkylvinylsilanes, dialkylalkoxyvinylsilanes, alkyldialkoxyvinylsilanes, trialkoxyvinylsilanes, trialkyl Vinyl silane coupling agents such as allylsilane, dialkylalkoxyallylsilane, alkyldialkoxyallylsilane, and trialkoxyallylsilane; styrene silane coupling agents such as styryl
  • phosphate ester compound Commercially available products of the phosphate ester compound include, for example, "Kayamer PM-2” and “Kayamer PM-21” manufactured by Nippon Kayaku Co., Ltd., which are phosphate ester compounds having a (meth)acryloyl group in the molecular structure, "Light Ester P-1M”, “Light Ester P-2M”, “Light Acrylate P-1A (N)” manufactured by Kyoeisha Chemical Co., Ltd.
  • the solvent is added for purposes such as adjusting the coating viscosity of the active energy ray-curable resin composition, and the type and amount added are appropriately adjusted according to the desired performance. Generally, it is used so that the non-volatile content of the active energy ray-curable resin composition is in the range of 10 to 90% by mass.
  • the solvent examples include ketone solvents such as acetone, methyl ethyl ketone and methyl isobutyl ketone; cyclic ether solvents such as tetrahydrofuran and dioxolane; esters such as methyl acetate, ethyl acetate and butyl acetate; Solvents; Alicyclic solvents such as cyclohexane and methylcyclohexane; Alcohol solvents such as carbitol, cellosolve, methanol, isopropanol, butanol, and propylene glycol monomethyl ether; Ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, propylene glycol monomethyl ether, propylene Examples thereof include glycol ether solvents such as glycol monopropyl ether. These solvents can be used alone or in combination of two or more.
  • Examples of the ultraviolet absorber include 2-[4- ⁇ (2-hydroxy-3-dodecyloxypropyl)oxy ⁇ -2-hydroxyphenyl]-4,6-bis(2,4-dimethylphenyl)-1 , 3,5-triazine, 2-[4- ⁇ (2-hydroxy-3-tridecyloxypropyl)oxy ⁇ -2-hydroxyphenyl]-4,6-bis(2,4-dimethylphenyl)-1, triazine derivatives such as 3,5-triazine, 2-(2′-xanthenecarboxy-5′-methylphenyl)benzotriazole, 2-(2′-o-nitrobenzyloxy-5′-methylphenyl)benzotriazole, 2 -xanthenecarboxy-4-dodecyloxybenzophenone, 2-o-nitrobenzyloxy-4-dodecyloxybenzophenone, and the like. These ultraviolet absorbers can be used alone or in combination of two or more.
  • antioxidants examples include hindered phenol-based antioxidants, hindered amine-based antioxidants, organic sulfur-based antioxidants, and phosphate-based antioxidants. These antioxidants can be used alone or in combination of two or more.
  • silicon-based additive examples include dimethylpolysiloxane, methylphenylpolysiloxane, cyclic dimethylpolysiloxane, methylhydrogenpolysiloxane, polyether-modified dimethylpolysiloxane copolymer, polyester-modified dimethylpolysiloxane copolymer, fluorine-modified polyorganosiloxane having an alkyl group or a phenyl group such as a dimethylpolysiloxane copolymer and an amino-modified dimethylpolysiloxane copolymer; polydimethylsiloxane having a polyether-modified acrylic group; polydimethylsiloxane having a polyester-modified acrylic group; mentioned.
  • silicon additives can be used alone or in combination of two or more.
  • fluorine-based additives examples include the "Megaface” series manufactured by DIC Corporation. These fluorine-based additives can be used alone or in combination of two or more.
  • antistatic agent examples include pyridinium, imidazolium, phosphonium, ammonium, or lithium salts of bis(trifluoromethanesulfonyl)imide or bis(fluorosulfonyl)imide. These antistatic agents can be used alone or in combination of two or more.
  • organic beads examples include polymethylmethacrylate beads, polycarbonate beads, polystyrene beads, polyacrylstyrene beads, silicone beads, glass beads, acrylic beads, benzoguanamine resin beads, melamine resin beads, and polyolefin resin beads. , polyester resin beads, polyamide resin beads, polyimide resin beads, polyethylene fluoride resin beads, polyethylene resin beads, and the like. These organic beads can be used alone or in combination of two or more. Moreover, the average particle size of these organic beads is preferably in the range of 1 to 10 ⁇ m.
  • the quantum dots include II-V group semiconductor compounds, II-VI group semiconductor compounds, III-IV group semiconductor compounds, III-V group semiconductor compounds, III-VI group semiconductor compounds, and IV-VI group semiconductor compounds. , I-III-VI group semiconductor compounds, II-IV-VI group semiconductor compounds, II-IV-V group semiconductor compounds, I-II-IV-VI group semiconductor compounds, IV group elements or compounds containing these, etc. be done.
  • the II-VI group semiconductor compound is, for example, binary compounds such as ZnO, ZnS, ZnSe, ZnTe, CdS, CdSe, CdTe, HgS, HgSe, HgTe; Ternary compounds such as CdSeTe, CdSTe, CdHgS, CdHgSe, CdHgTe, HgSeS, HgSeTe, HgSTe, HgZnS, HgZnSe, HgZnTe; CdZnSeS, CdZnSeTe, CdZnSTe, CdHgSeS, CdHgSeTe, CdHgST Quaternary such as e, CdHgZnTe, HgZnSeS, HgZnSeTe, HgZnSTe compounds and the like.
  • binary compounds such as ZnO, ZnS, ZnSe, ZnTe,
  • III-IV group semiconductor compounds examples include B 4 C 3 , Al 4 C 3 , Ga 4 C 3 and the like.
  • the III-V group semiconductor compounds are, for example, binary compounds such as BP, BN, AlN, AlP, AlAs, AlSb, GaN, GaP, GaAs, GaSb, InN, InP, InAs, InSb; Ternary compounds such as GaPAs, GaPSb, AlNP, AlNAs, AlNSb, AlPAs, AlPSb, InNP, InNAs, InNSb, InPAs, InPSb, GaAlNP; NP , InAlNAs, InAlNSb, InAlPAs, and InAlPSb.
  • III-VI group semiconductor compounds are, for example, Al 2 S 3 , Al 2 Se 3 , Al 2 Te 3 , Ga 2 S 3 , Ga 2 Se 3 , Ga 2 Te 3 , GaTe, In 2 S 3 , In 2 Se3 , In2Te3 , InTe , etc. are mentioned.
  • the IV-VI group semiconductor compounds include, for example, binary compounds such as SnS, SnSe, SnTe, PbS, PbSe, and PbTe; ternary compounds such as SnSeS, SnSeTe, SnSTe, PbSeS, PbSeTe, PbSTe, SnPbS, SnPbSe, and SnPbTe quaternary compounds such as SnPbSSe, SnPbSeTe and SnPbSTe;
  • Examples of the I-III-VI group semiconductor compounds include CuInS 2 , CuInSe 2 , CuInTe 2 , CuGaS 2 , CuGaSe 2 , CuGaSe 2 , AgInS 2 , AgInSe 2 , AgInTe 2 , AgGaSe 2 , AgGaS 2 , AgGaTe 2 and the like.
  • Examples of the Group IV element or a compound containing it include C, Si, Ge, SiC, SiGe and the like.
  • a quantum dot may consist of a single semiconductor compound, or may have a core-shell structure consisting of a plurality of semiconductor compounds. Also, the surface thereof may be modified with an organic compound.
  • additives can be added in arbitrary amounts depending on the desired performance and the like, but usually 0.00% of the total 100% by mass of the components excluding the solvent in the active energy ray-curable resin composition. It is preferably used in the range of 01 to 40% by mass.
  • the active energy ray-curable resin composition used in the present invention is produced by mixing the above ingredients.
  • the mixing method is not particularly limited, and a paint shaker, disper, roll mill, bead mill, ball mill, attritor, sand mill, bead mill or the like may be used.
  • the cured coating film of the present invention can be obtained by irradiating the active energy ray-curable resin composition with an active energy ray.
  • the active energy rays include ionizing radiation such as ultraviolet rays, electron beams, ⁇ rays, ⁇ rays, and ⁇ rays.
  • the irradiation may be performed in an atmosphere of an inert gas such as nitrogen gas or in an air atmosphere in order to efficiently perform the curing reaction using the ultraviolet rays.
  • UV lamps are generally used as the source of UV light from the standpoint of practicality and economy. Specific examples include low-pressure mercury lamps, high-pressure mercury lamps, ultra-high-pressure mercury lamps, xenon lamps, gallium lamps, metal halide lamps, sunlight, and LEDs.
  • the integrated amount of active energy rays is not particularly limited, but is preferably 0.1 to 50 kJ/m 2 , more preferably 0.5 to 10 kJ/m 2 . It is preferable that the integrated amount of light is within the above range because the generation of uncured portions can be prevented or suppressed.
  • the irradiation with the active energy ray may be performed in one step, or may be performed in two or more steps.
  • the tan ⁇ measured by the dynamic viscoelasticity spectrum of the cured coating film has excellent adhesion and has excellent workability, scratch resistance and chemical resistance, so the range of 0.1 to 1 preferable.
  • the article of the present invention has the cured coating film on its surface.
  • the articles include interior and exterior materials in the construction field, mobile phones, home electric appliances, automobile interior and exterior materials, and plastic moldings such as OA equipment.
  • the weight average molecular weight (Mw) is a value measured under the following conditions using gel permeation chromatography (GPC).
  • HLC-8220 manufactured by Tosoh Corporation Column; "Guard Column H XL -H” manufactured by Tosoh Corporation + “TSKgel G5000HXL” manufactured by Tosoh Corporation + “TSKgel G4000HXL” manufactured by Tosoh Corporation + “TSKgel G3000HXL” manufactured by Tosoh Corporation + “TSKgel G2000HXL” manufactured by Tosoh Corporation Detector; RI (differential refractometer) Data processing: “SC-8010” manufactured by Tosoh Corporation Measurement conditions: Column temperature 40°C Solvent Tetrahydrofuran Flow rate 1.0 ml/min Standard; Polystyrene Sample; A tetrahydrofuran solution of 0.4% by mass in terms of resin solid content filtered through a microfilter (100 ⁇ l)
  • Synthesis Example 1 Synthesis of composite resin (A-1)) 244 parts by mass of butanol and 44 parts by mass of phenyltrimethoxysilane (PTMS) were charged into a reactor equipped with a stirrer, thermometer, dropping funnel, condenser and nitrogen gas inlet, and heated to 100°C.
  • PTMS phenyltrimethoxysilane
  • a vinyl polymer (a2-1) having a trimethoxysilyl group 600 parts by mass of a vinyl polymer (a2-1) having a trimethoxysilyl group.
  • the temperature of the reaction vessel was adjusted to 80° C., and 64 parts by mass of methyltrimethoxysilane (MTMS), 269 parts by mass of 3-methacryloyloxypropyltrimethoxysilane (MPTS), and 53 parts by mass of dimethyldimethoxysilane (DMDMS) were added. , was added into the reaction vessel.
  • MTMS methyltrimethoxysilane
  • MPTS 3-methacryloyloxypropyltrimethoxysilane
  • DDMS dimethyldimethoxysilane
  • a composite resin (A1) composed of a polysiloxane segment (a1) having a nonvolatile content of 60.1% and a vinyl polymer segment (a2) was obtained. .
  • the polysiloxane segment (a1) in this composite resin (A-1) was 50% by mass.
  • Synthesis Example 2 Synthesis of composite resin (A-2)
  • 56 parts by mass of n-butyl acetate and 13 parts by mass of PTMS were charged into the same reaction vessel as in Synthesis Example 1, and the temperature was raised to 100°C.
  • a mixture consisting of 128 parts by mass of MMA, 204 parts by mass of BA, 15 parts by mass of methacrylic acid (MA), 51 parts by mass of ethyl acrylate (EA), 77 parts by mass of styrene (St), 36 parts by mass of MPTS, and 20 parts by mass of TBPEH was heated at the same temperature. Then, the mixture was added dropwise to the reaction vessel over 5 hours while stirring under a nitrogen gas stream.
  • Synthesis Example 3 Synthesis of composite resin (A-3) 128 parts by mass of n-butyl acetate and 36 parts by mass of PTMS were charged into the same reaction vessel as in Synthesis Example 1, and the temperature was raised to 120°C. Next, a mixture of 118 parts by mass of MMA, 126 parts by mass of t-BMA, 105 parts by mass of BA, 42 parts by mass of EA, 8.4 parts by mass of AA, 21 parts by mass of MPTS, and 16 parts by mass of TBPEH was stirred at the same temperature under nitrogen gas flow. was added dropwise into the reaction vessel over 5 hours.
  • Synthesis Example 4 Synthesis of composite resin (A-4) 313 parts by mass of n-butyl acetate and 121 parts by mass of PTMS were charged into the same reaction vessel as in Synthesis Example 1, and the temperature was raised to 120°C. Next, a mixture consisting of 77 parts by mass of MMA, 15 parts by mass of t-BMA, 21 parts by mass of BA, 3 parts by mass of AA, 30 parts by mass of CHMA, 4.5 parts by mass of MPTS, and 16 parts by mass of TBPEH was stirred at the same temperature under nitrogen gas flow. , was added dropwise into the reaction vessel over 5 hours.
  • Synthesis Example 5 Synthesis of composite resin (A-5)
  • 149 parts by mass of n-butyl acetate and 113 parts by mass of PTMS were charged into the same reaction vessel as in Synthesis Example 1, and the temperature was raised to 110°C.
  • a mixture consisting of 15 parts by mass of MMA, 3 parts by mass of t-BMA, 4 parts by mass of BA, 0.6 parts by mass of AA, 6 parts by mass of CHMA, 0.9 parts by mass of MPTS, and 8 parts by mass of TBPEH is stirred at the same temperature under nitrogen gas flow. was added dropwise into the reaction vessel over 5 hours.
  • Tables 1 and 2 show the compositions and property values of the acrylic (meth)acrylates (B-1) to (B-9) and (RB-1) obtained in Synthesis Examples 6 to 15.
  • MMA methyl methacrylate (Tg of homopolymer: 105°C)
  • GMA glycidyl methacrylate (Tg of homopolymer: 4°C)
  • AA acrylic acid (Tg of homopolymer: -15°C)
  • MIBK methyl isobutyl ketone
  • PO t-butyl peroxy-2-ethylhexanoate ("Perbutyl O" manufactured by Nippon Nyukazai Co., Ltd.)
  • MQ Metoquinone (para-methoxyphenol)
  • TPP triphenylphosphine
  • t-BMA tert-butyl methacrylate (Tg of homopolymer: 107°C)
  • CHMA cyclohexyl methacrylate
  • IBXMA isobornyl methacrylate (Tg of homopolymer: 180°C)
  • BZMA benzyl methacrylate (Tg of homopolymer: 54°C)
  • Example 1 Preparation and evaluation of active energy ray-curable resin composition (1)
  • 157 parts by weight of the solution (94 parts by weight as the acrylic (meth)acrylate resin (B-1)) and a photopolymerization initiator ("Omnirad-184" manufactured by IGM Resins) 2.4 parts by weight were mixed, and active energy ray A curable resin composition (1) was obtained.
  • the cured coating film for evaluation obtained above was measured based on the JIS K-5600 cross-cut test method. On the cured coating film, cuts with a width of 1 mm were made with a cutter so that the number of grids was 100, cellophane tape was attached so as to cover all the grids, and the grids that remained attached were quickly peeled off. was counted and evaluated according to the following criteria.
  • No peeling.
  • The peeling area is 1 to 64% of the total grid area.
  • x The peeling area is 65% or more of the total grid area.
  • test piece having a width of 10 mm and a length of 100 mm was cut out from the laminated film, and a tensile test was performed on the obtained test piece under the following conditions.
  • Shimadzu Corporation Autograph AGS-1kNG (tensile speed: 10 mm / min, distance between chucks: 40 mm, measurement atmosphere: 25 ° C.)"
  • Examples 2 to 15 Preparation of active energy ray-curable resin compositions (2) to (15)
  • compositions and evaluation results of the active energy ray-curable resins (1) to (15) and (R1) to (R3) prepared in Examples 1 to 15 and Comparative Examples 1 to 3 are shown in Tables 3 to 6.
  • DPHA mixture of dipentaerythritol pentaacrylate and dipentaerythritol hexaacrylate
  • PETA mixture of pentaerythritol tetraacrylate and pentaerythritol triacrylate
  • Photoinitiator Omnirad 184 ("Omnirad 184" manufactured by IGM Resins)
  • the cured coating films obtained from Examples 1 to 15, which are active energy ray-curable resin compositions of the present invention, have coating film appearance, adhesion, solvent resistance, scratch resistance, weather resistance, stain resistance and workability. was confirmed to be superior to
  • Comparative Example 1 is an example that does not contain acrylic (meth)acrylate (B), which is an essential component of the present invention, but it was confirmed that the coating film elongation was low and the workability was insufficient.
  • Comparative Example 2 is an example that does not contain the composite resin (A), which is an essential component of the present invention, but it was confirmed that the weather resistance was insufficient.
  • Comparative Example 3 is an example in which the weight average molecular weight of acrylic (meth)acrylate (B) is lower than the lower limit of 10,000. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Macromonomer-Based Addition Polymer (AREA)

Abstract

複合樹脂(A)、アクリル(メタ)アクリレート樹脂(B)、及び光重合開始剤(C)を含有する活性エネルギー線硬化性樹脂組成物であって、前記複合樹脂(A)が、特定の構造単位と、シラノール基及び/又は加水分解性シリル基とを有するポリシロキサンセグメント(a1)と、ビニル系重合体セグメント(a2)とが、特定の結合により結合されたものであり、前記アクリル(メタ)アクリレート樹脂(B)の重量平均分子量が、10,000~70,000であることを特徴とする活性エネルギー線硬化性樹脂組成物を提供する。この活性エネルギー線硬化性樹脂組成物は、塗膜外観、密着性、耐溶剤性、耐擦傷性、耐候性、耐汚染性、及び加工性に優れた塗膜を形成可能であることから、コーティング剤や接着剤として用いることができる。

Description

活性エネルギー線硬化性樹脂組成物、硬化塗膜及び物品
 本発明は、活性エネルギー線硬化性樹脂組成物、硬化塗膜及び物品に関する。
 近年、プラスチックに代表される熱可塑性樹脂材料は軽量性、耐衝撃性、加工性、リサイクル性に優れる観点から建築分野をはじめとして自動車分野など幅広く利用されている。しかし、耐候性や耐汚染性、耐熱性や耐溶剤性、耐黄変性に劣る等の課題があるため、コーティング層を設け、性能を補って用いられることが多い。
 このようなコーティング層として、無機-有機複合樹脂を含有する紫外線硬化性樹脂組成物を使用することが提案されている(例えば、特許文献1参照)。この紫外線硬化性樹脂組成物は、ポリシロキサンセグメント及びビニル重合体セグメントを有する複合樹脂を含有するものであるが、耐候性、耐熱性、耐溶剤性、耐擦傷性等に優れるものの、基材追従性に劣るため、意匠性の高い加工や塗装後の加工においてクラックが入る等の課題があった。
特開2006-328354号公報
 本発明が解決しようとする課題は、塗膜外観、密着性、耐溶剤性、耐擦傷性、耐候性、耐汚染性、及び加工性に優れた塗膜を形成可能な活性エネルギー線硬化性樹脂組成物、硬化塗膜及び物品を提供することである。
 本発明者らは、上記課題を解決すべく鋭意研究した結果、特定の複合樹脂、特定のアクリル(メタ)アクリレート樹脂、及び光重合開始剤を含有する活性エネルギー線硬化性樹脂組成物を用いることにより、上記課題を解決できることを見出し、本発明を完成させた。
 すなわち、本発明は、複合樹脂(A)、アクリル(メタ)アクリレート樹脂(B)、及び光重合開始剤(C)を含有する活性エネルギー線硬化性樹脂組成物であって、前記複合樹脂(A)が、一般式(1)及び/又は一般式(2)で表される構造単位と、シラノール基及び/又は加水分解性シリル基とを有するポリシロキサンセグメント(a1)と、ビニル系重合体セグメント(a2)とが、一般式(3)で表される結合により結合されたものであり、前記アクリル(メタ)アクリレート樹脂(B)の重量平均分子量が、10,000~70,000であることを特徴とする活性エネルギー線硬化性樹脂組成物、硬化塗膜及び物品に関するものである。
Figure JPOXMLDOC01-appb-C000004
Figure JPOXMLDOC01-appb-C000005
(一般式(1)及び(2)中、R、R及びRは、それぞれ独立して、-R-CH=CH、-R-C(CH)=CH、-R-O-CO-C(CH)=CH、及び-R-O-CO-CH=CHからなる群から選ばれる1つの重合性二重結合を有する基(但し、Rは単結合または炭素原子数1~6のアルキレン基を表す。)、炭素原子数が1~6のアルキル基、炭素原子数が3~8のシクロアルキル基、アリール基、または炭素原子数が7~12のアラルキル基を表す。)
Figure JPOXMLDOC01-appb-C000006
(一般式(3)中、炭素原子は前記ビニル系重合体セグメント(a2)の一部分を構成し、酸素原子のみに結合したケイ素原子は、前記ポリシロキサンセグメント(a1)の一部分を構成するものとする)
 本発明の活性エネルギー線硬化性樹脂組成物は、塗膜外観、密着性、耐溶剤性、耐擦傷性、耐候性、耐汚染性、及び加工性に優れる硬化塗膜を形成可能なことから、コーティング剤や接着剤として用いることができ、特にコーティング剤として好適に用いることができる。
 本発明の活性エネルギー線硬化性樹脂組成物は、複合樹脂(A)、アクリル(メタ)アクリレート樹脂(B)、及び光重合開始剤(C)を含有する活性エネルギー線硬化性樹脂組成物であって、前記複合樹脂(A)が、一般式(1)及び/又は一般式(2)で表される構造単位と、シラノール基及び/又は加水分解性シリル基とを有するポリシロキサンセグメント(a1)と、ビニル系重合体セグメント(a2)とが、一般式(3)で表される結合により結合されたものであり、前記アクリル(メタ)アクリレート樹脂(B)の重量平均分子量が、10,000~70,000であるものである。
 前記複合樹脂(A)は、前記一般式(1)及び/または前記一般式(2)で表される構造単位と、シラノール基及び/または加水分解性シリル基とを有するポリシロキサンセグメント(a1)(以下単にポリシロキサンセグメント(a1)と称す)と、アルコール性水酸基を有するビニル系重合体セグメント(a2)(以下単にビニル系重合体セグメント(a2)と称す)とが、前記一般式(3)で表される結合により結合した複合樹脂である。 
 後述のポリシロキサンセグメント(a1)が有するシラノール基及び/又は加水分解性シリル基と、後述のビニル系重合体セグメント(a2)が有するシラノール基及び/又は加水分解性シリル基とが脱水縮合反応して、前記一般式(3)で表される結合が生じる。従って前記一般式(3)中、炭素原子は前記ビニル系重合体セグメント(a2)の一部分を構成し、酸素原子のみに結合したケイ素原子は、前記ポリシロキサンセグメント(a1)の一部分を構成するものとする。
 複合樹脂(A)の形態は、例えば、前記ポリシロキサンセグメント(a1)が前記重合体セグメント(a2)の側鎖として化学的に結合したグラフト構造を有する複合樹脂や、前記重合体セグメント(a2)と前記ポリシロキサンセグメント(a1)とが化学的に結合したブロック構造を有する複合樹脂等が挙げられる。
 前記ポリシロキサンセグメント(a1)は、一般式(1)及び/又は一般式(2)で表される構造単位と、シラノール基及び/又は加水分解性シリル基とを有すセグメントである。一般式(1)及び/又は一般式(2)で表される構造単位中には重合性二重結合を有する基が含まれている。
 前記一般式(1)及び/又は前記一般式(2)で表される構造単位は、重合性二重結合を有する基を必須成分として有している。
 具体的には、前記一般式(1)及び(2)におけるR、R及びRは、それぞれ独立して、-R-CH=CH、-R-C(CH)=CH、-R-O-CO-C(CH)=CH、及び-R-O-CO-CH=CHからなる群から選ばれる1つの重合性二重結合を有する基(但しRは単結合又は炭素原子数1~6のアルキレン基を表す)、炭素原子数が1~6のアルキル基、炭素原子が3~8のシクロアルキル基、アリール基または炭素原子が7~12のアラルキル基を表し、R、R及びRの少なくとも1つは前記重合性二重結合を有する基である。また前記Rにおける前記炭素原子数が1~6のアルキレン基としては、例えば、メチレン基、エチレン基、プロピレン基、イソプロピレン基、ブチレン基、イソブチレン基、sec-ブチレン基、tert-ブチレン基、ペンチレン基、イソペンチレン基、ネオペンチレン基、tert-ペンチレン基、1-メチルブチレン基、2-メチルブチレン基、1,2-ジメチルプロピレン基、1-エチルプロピレン基、ヘキシレン基、イソヘシレン基、1-メチルペンチレン基、2-メチルペンチレン基、3-メチルペンチレン基、1,1-ジメチルブチレン基、1,2-ジメチルブチレン基、2,2-ジメチルブチレン基、1-エチルブチレン基、1,1,2-トリメチルプロピレン基、1,2,2-トリメチルプロピレン基、1-エチル-2-メチルプロピレン基、1-エチル-1-メチルプロピレン基等が挙げられる。中でもRは、原料の入手の容易さから単結合または炭素原子数が2~4のアルキレン基が好ましい。
 また、前記炭素原子数が1~6のアルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、イソペンチル基、ネオペンチル基、tert-ペンチル基、1-メチルブチル基、2-メチルブチル基、1,2-ジメチルプロピル基、1-エチルプロピル基、ヘキシル基、イソヘシル基、1-メチルペンチル基、2-メチルペンチル基、3-メチルペンチル基、1,1-ジメチルブチル基、1,2-ジメチルブチル基、2,2-ジメチルブチル基、1-エチルブチル基、1,1,2-トリメチルプロピル基、1,2,2-トリメチルプロピル基、1-エチル-2-メチルプロピル基、1-エチル-1-メチルプロピル基等が挙げられる。
 また、前記炭素原子数が3~8のシクロアルキル基としては、例えば、シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基等が挙げられる。また、前記アリール基としては、例えば、フェニル基、ナフチル基、2-メチルフェニル基、3-メチルフェニル基、4-メチルフェニル基、4-ビニルフェニル基、3-イソプロピルフェニル基等が挙げられる。
 また、前記炭素原子数が7~12のアラルキル基としては、例えば、ベンジル基、ジフェニルメチル基、ナフチルメチル基等が挙げられる。
 また、R、R及びRの少なくとも1つは前記重合性二重結合を有する基であるとは、具体的には、ポリシロキサンセグメント(a1)が一般式(1)で表される構造単位のみを有する場合にはRが前記重合性二重結合を有する基であり、ポリシロキサンセグメント(a1)が一般式(2)で表される構造単位のみを有する場合にはR及び/又はRが前記重合性二重結合を有する基であり、ポリシロキサンセグメント(a1)が一般式(1)と一般式(2)で表される構造単位の両方を有する場合には、R、R及びRの少なくとも1つが重合性二重結合を有する基であることを示す。
 前記重合性二重結合は、ポリシロキサンセグメント(a1)中に2つ以上存在することが好ましく、3~200個存在することがより好ましく、3~50個存在することが更に好ましく、耐久性に優れた塗膜を得ることができる。具体的には、前記ポリシロキサンセグメント(a1)中の重合性二重結合の含有率が3~35重量%であれば、所望の耐候性および密着性を得ることができる。尚、ここでいう重合性二重結合とは、ビニル基、ビニリデン基もしくはビニレン基のうち、フリーラジカルによる生長反応を行うことができる基の総称である。また、重合性二重結合の含有率とは、当該ビニル基、ビニリデン基もしくはビニレン基のポリシロキサンセグメント中における重量%を示すものである。
 重合性二重結合を有する基としては、当該ビニル基、ビニリデン基、ビニレン基を含有してなる公知の全ての官能基を使用することができるが、中でも-R-C(CH)=CHや-R-O-CO-C(CH)=CHで表される(メタ)アクリロイル基は、紫外線硬化の際の反応性に富むことや、後述のビニル系重合体セグメント(a2)との相溶性が良好であり、透明性に優れる硬化塗膜が得られることから好ましい。
 前記一般式(1)及び/又は前記一般式(2)で表される構造単位は、ケイ素の結合手のうち2または3つが架橋に関与した、三次元網目状のポリシロキサン構造単位である。三次元網目構造を形成しながらも密な網目構造を形成しないので、製造あるいはプライマー形成時にゲル化等を生じることもなく保存安定性も良好となる。
 本発明においてシラノール基とは、珪素原子に直接結合した水酸基を有する珪素含有基である。該シラノール基は具体的には、前記一般式(1)及び/又は前記一般式(2)で表される構造単位の、結合手を有する酸素原子が水素原子と結合して生じたシラノール基であることが好ましい。
 また本発明において加水分解性シリル基とは、珪素原子に直接結合した加水分解性基を有する珪素含有基であり、具体的には、例えば、一般式(4)で表される基が挙げられる。
Figure JPOXMLDOC01-appb-C000007
(一般式(4)中、Rはアルキル基、アリール基又はアラルキル基等の1価の有機基を、Rはハロゲン原子、アルコキシ基、アシロキシ基、フェノキシ基、アリールオキシ基、メルカプト基、アミノ基、アミド基、アミノオキシ基、イミノオキシ基及びアルケニルオキシ基からなる群から選ばれる加水分解性基である。またbは0~2の整数である。)
 前記Rにおいて、アルキル基としては、例えば、メチル基、エチル基、プロピル基、イソプロピル基、ブチル基、イソブチル基、sec-ブチル基、tert-ブチル基、ペンチル基、イソペンチル基、ネオペンチル基、tert-ペンチル基、1-メチルブチル基、2-メチルブチル基、1,2-ジメチルプロピル基、1-エチルプロピル基、ヘキシル基、イソヘシル基、1-メチルペンチル基、2-メチルペンチル基、3-メチルペンチル基、1,1-ジメチルブチル基、1,2-ジメチルブチル基、2,2-ジメチルブチル基、1-エチルブチル基、1,1,2-トリメチルプロピル基、1,2,2-トリメチルプロピル基、1-エチル-2-メチルプロピル基、1-エチル-1-メチルプロピル基等が挙げられる。
 またアリール基としては、例えば、フェニル基、ナフチル基、2-メチルフェニル基、3-メチルフェニル基、4-メチルフェニル基、4-ビニルフェニル基、3-イソプロピルフェニル基等が挙げられる。
 またアラルキル基としては、例えば、ベンジル基、ジフェニルメチル基、ナフチルメチル基等が挙げられる。
 前記Rにおいて、ハロゲン原子としては、例えば、フッ素原子、塩素原子、臭素原子、ヨウ素原子等が挙げられる。
 アルコキシ基としては、例えば、メトキシ基、エトキシ基、プロポキシ基、イソプロポキシ基、ブトキシ基、第二ブトキシ基、第三ブトキシ基等が挙げられる。
またアシロキシ基としては、例えば、ホルミルオキシ、アセトキシ、プロパノイルオキシ、ブタノイルオキシ、ピバロイルオキシ、ペンタノイルオキシ、フェニルアセトキシ、アセトアセトキシ、ベンゾイルオキシ、ナフトイルオキシ等が挙げられる。
またアリールオキシ基としては、例えば、フェニルオキシ、ナフチルオキシ等が挙げられる。
 アルケニルオキシ基としては、例えば、ビニルオキシ基、アリルオキシ基、1-プロペニルオキシ基、イソプロペニルオキシ基、2-ブテニルオキシ基、3-ブテニルオキシ基、2-ペテニルオキシ基、3-メチル-3-ブテニルオキシ基、2-ヘキセニルオキシ基等が挙げられる。
 前記Rで表される加水分解性基が加水分解されることにより、一般式(4)で表される加水分解性シリル基はシラノール基となる。加水分解性に優れることから、中でも、メトキシ基およびエトキシ基が好ましい。
 また前記加水分解性シリル基は具体的には、前記一般式(1)及び/又は前記一般式(2)で表される構造単位の、結合手を有する酸素原子が前記加水分解性基と結合もしくは置換されている加水分解性シリル基であることが好ましい。
 前記シラノール基や前記加水分解性シリル基は、前記重合性二重結合を有する基の硬化反応による塗膜形成の際に、該硬化反応と並行して、シラノール基中の水酸基や加水分解性シリル基中の前記加水分解性基の間で加水分解縮合反応が進行するので、得られる塗膜のポリシロキサン構造の架橋密度が高まり、耐溶剤性などに優れた塗膜を形成することができる。
 また、前記シラノール基や前記加水分解性シリル基を含むポリシロキサンセグメント(a1)と後述のビニル系重合体セグメント(a2)とを、前記一般式(3)で表される結合を介して結合させる際に使用する。
 ポリシロキサンセグメント(a1)は、前記一般式(1)及び/又は前記一般式(2)で表される構造単位と、シラノール基及び/又は加水分解性シリル基とを有する以外は特に限定はなく、他の基を含んでいてもよい。例えば、
 前記一般式(1)におけるRが前記重合性二重結合を有する基である構造単位と、前記一般式(1)におけるRがメチル等のアルキル基である構造単位とが共存したポリシロキサンセグメント(a1)であってもよいし、
 前記一般式(1)におけるRが前記重合性二重結合を有する基である構造単位と、前記一般式(1)におけるRがメチル基等のアルキル基である構造単位と、前記一般式(2)におけるR及びRがメチル基等のアルキル基である構造単位とが共存したポリシロキサンセグメント(a1)であってもよいし、
 前記一般式(1)におけるRが前記重合性二重結合を有する基である構造単位と、前記一般式(2)におけるR及びRがメチル基等のアルキル基である構造単位とが共存したポリシロキサンセグメント(a1)であってもよいし、特に限定はない。
 具体的には、ポリシロキサンセグメント(a1)としては、例えば以下の構造を有するもの等が挙げられる。
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
Figure JPOXMLDOC01-appb-C000012
Figure JPOXMLDOC01-appb-C000013
Figure JPOXMLDOC01-appb-C000014
Figure JPOXMLDOC01-appb-C000015
Figure JPOXMLDOC01-appb-C000016
 前記ビニル系重合体セグメント(a2)は、アクリル系重合体、フルオロオレフィン系重合体、ビニルエステル系重合体、芳香族系ビニル系重合体、ポリオレフィン系重合体等のビニル重合体セグメントであり、中でもアクリル系重合体セグメントが、得られる塗膜の透明性や光沢に優れることから好ましい。
 前記アクリル系重合性セグメントは、汎用の(メタ)アクリルモノマーを重合または共重合させて得られる。(メタ)アクリルモノマーとしては特に限定はなく、またビニルモノマーも共重合可能である。例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、n-プロピル(メタ)アクリレート、n-ブチル(メタ)アクリレート、イソブチル(メタ)アクリレート、tert-ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート等の炭素原子数が1~22のアルキル基を有するアルキル(メタ)アクリレート類;ベンジル(メタ)アクリレート、2-フェニルエチル(メタ)アクリレート等のアラルキル(メタ)アクリレート類;シクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート等のシクロアルキル(メタ)アクリレート類;2-メトキシエチル(メタ)アクリレート、4-メトキシブチル(メタ)アクリレート等のω-アルコキシアルキル(メタ)アクリレート類;スチレン、p-tert-ブチルスチレン、α-メチルスチレン、ビニルトルエン等の芳香族ビニル系モノマー類;酢酸ビニル、プロピオン酸ビニル、ピバリン酸ビニル、安息香酸ビニル等のカルボン酸ビニルエステル類;クロトン酸メチル、クロトン酸エチル等のクロトン酸のアルキルエステル類;ジメチルマレート、ジ-n-ブチルマレート、ジメチルフマレート、ジメチルイタコネート等の不飽和二塩基酸のジアルキルエステル類;エチレン、プロピレン等のα-オレフィン類;フッ化ビニリデン、テトラフルオロエチレン、ヘキサフルオロプロピレン、クロロトリフルオロエチレン等のフルオロオレフィン類;エチルビニルエーテル、n-ブチルビニルエーテル等のアルキルビニルエーテル類;シクロペンチルビニルエーテル、シクロヘキシルビニルエーテル等のシクロアルキルビニルエーテル類;N,N-ジメチル(メタ)アクリルアミド、N-(メタ)アクリロイルモルホリン、N-(メタ)アクリロイルピロリジン、N-ビニルピロリドン等の3級アミド基含有モノマー類等が挙げられる。
 また、前記ビニル系重合体セグメント(a2)は、プラスチック基材との密着性を向上させる観点から環状炭化水素基を有する(メタ)アクリル繰り返し単位がより好ましい。前記環状炭化水素基を有する(メタ)アクリル繰り返し単位として好ましくはシクロヘキシル(メタ)アクリレート、シクロペンタニル(メタ)アクリレート、アダマンチル(メタ)アクリレート、トリシクロデカニル(メタ)アクリレート、テトラシクロドデカニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、イソボルニルアクリレート、などの環状炭化水素基を有する(メタ)アクリレートが挙げられる。これらは単独で又は2種以上を組み合わせても用いることができる。
 前記モノマーを共重合させる際の重合方法、溶剤、あるいは重合開始剤にも特に限定はなく、公知の方法によりビニル系重合体セグメント(a2)を得ることができる。例えば、塊状ラジカル重合法、溶液ラジカル重合法、非水分散ラジカル重合法等の種々の重合法により、2,2’-アゾビス(イソブチロニトリル)、2,2’-アゾビス(2,4-ジメチルバレロニトリル)、2,2’-アゾビス(2-メチルブチロニトリル)、tert-ブチルパーオキシピバレート、tert-ブチルパーオキシベンゾエート、tert-ブチルパーオキシ-2-エチルヘキサノエート、ジ-tert-ブチルパーオキサイド、クメンハイドロパーオキサイド、ジイソプロピルパーオキシカーボネート等の重合開始剤を使用してビニル系重合体セグメント(a2)を得ることができる。
 前記ビニル系重合体セグメント(a2)の数平均分子量としては、数平均分子量(以下Mnと略す)に換算して500~200,000が好ましく、前記複合樹脂(A)を製造する際の増粘やゲル化を防止でき、且つ耐久性に優れる。Mnは中でも700~100,000の範囲がより好ましく、1,000~50,000が後記する基材への塗装適性および密着性の理由からなお好ましい。
 また前記ビニル系重合体セグメント(a2)は、前記ポリシロキサンセグメント(a1)と一般式(3)で表される結合により結合された複合樹脂(A)とするために、ビニル系重合体セグメント(a2)中の炭素結合に直接結合したシラノール基及び/又は加水分解性シリル基を有する。これらのシラノール基及び/又は加水分解性シリル基は、後述の複合樹脂(A)の製造において一般式(3)で表される結合となってしまうために、最終生成物である複合樹脂(A)中のビニル系重合体セグメント(a2)には殆ど存在しない。しかしながらビニル系重合体セグメント(a2)にシラノール基及び/又は加水分解性シリル基が残存していても何ら問題はなく、前記重合性二重結合を有する基の硬化反応による塗膜形成の際に、該硬化反応と平行して、シラノール基中の水酸基や加水分解性シリル基中の前記加水分解性基の間で加水分解縮合反応が進行するので、得られる塗膜のポリシロキサン構造の架橋密度が高まり、耐久性に優れた塗膜を形成することができる。
 炭素結合に直接結合したシラノール基及び/又は加水分解性シリル基を有するビニル系重合体セグメント(a2)は、具体的には、前記汎用モノマー、及び、炭素結合に直接結合したシラノール基及び/又は加水分解性シリル基を含有するビニル系モノマーとを共重合させて得る。
 炭素結合に直接結合したシラノール基及び/又は加水分解性シリル基を含有するビニル系モノマーとしては、例えば、ビニルトリメトキシシラン、ビニルトリエトキシシラン、ビニルメチルジメトキシシラン、ビニルトリ(2-メトキシエトキシ)シラン、ビニルトリアセトキシシラン、ビニルトリクロロシラン、2-トリメトキシシリルエチルビニルエーテル、3-(メタ)アクリロイルオキシプロピルトリメトキシシラン、3-(メタ)アクリロイルオキシプロピルトリエトキシシラン、3-(メタ)アクリロイルオキシプロピルメチルジメトキシシラン、3-(メタ)アクリロイルオキシプロピルトリクロロシラン等が挙げられる。中でも、加水分解反応を容易に進行でき、また反応後の副生成物を容易に除去することができることからビニルトリメトキシシラン、3-(メタ)アクリロイルオキシプロピルトリメトキシシランが好ましい。
 また、後述のポリイソシアネートを含有する際には、前記ビニル系重合体セグメント(a2)はアルコール性水酸基を有することが好ましい。アルコール性水酸基を有するビニル系重合体セグメント(a2)は、アルコール水酸基を有する(メタ)アクリルモノマーを共重合させて得ることができる。アルコール水酸基を有する(メタ)アクリルモノマーとしては、具体的には、2-ヒドロキシエチル(メタ)アクリレート、2-ヒドロキシプロピル(メタ)アクリレート、3-ヒドロキシプロピル(メタ)アクリレート、2-ヒドロキシブチル(メタ)アクリレート、3-ヒドロキシブチル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、3-クロロ-2-ヒドロキシプロピル(メタ)アクリレート、ジ-2-ヒドロキシエチルフマレート、モノ-2-ヒドロキシエチルモノブチルフマレート、ポリエチレングルコールモノ(メタ)アクリレート、ポリプロピレングリコールモノ(メタ)アクリレート、「プラクセルFMもしくはプラクセルFA」〔ダイセル化学(株)製のカプロラクトン付加モノマー〕等の各種α、β-エチレン性不飽和カルボン酸のヒドロキシアルキルエステル類、またはこれらとε-カプロラクトンとの付加物、等が挙げられる。中でも2-ヒドロキシエチル(メタ)アクリレートが、反応が容易であり好ましい。
 前記アルコール性水酸基量は、後述のポリイソシアネートの添加量から算出して適宜決定するのが好ましい。
 また、後述の通り本発明においてはアルコール性水酸基を有する活性エネルギー線硬化性モノマーを併用してもより好ましい。従ってアルコール性水酸基を有するビニル系重合体セグメント(a2)中のアルコール性水酸基量は、併用するアルコール性水酸基を有する活性エネルギー線硬化性モノマーの量まで加味して決定することができる。実質的にはビニル系重合体セグメント(a2)の水酸基価に換算して30~300の範囲となるように含有することが好ましい。
 前記複合樹脂(A)は、具体的には下記(方法1)~(方法3)に示す方法で製造する。
 (方法1)前記汎用の(メタ)アクリルモノマー等、及び、前記炭素結合に直接結合したシラノール基及び/又は加水分解性シリル基を含有するビニル系モノマーとを共重合させて炭素結合に直接結合したシラノール基及び/又は加水分解性シリル基を含有するビニル系重合体セグメント(a2)を得る。これに、シラノール基及び/又は加水分解性シリル基並びに重合性二重結合を併有するシラン化合物、必要に応じて汎用のシラン化合物とを混合し、加水分解縮合反応させる。
 該方法においては、シラノール基及び/又は加水分解性シリル基並びに重合性二重結合を併有するシラン化合物のシラノール基あるいは加水分解性シリル基と、炭素結合に直接結合したシラノール基及び/又は加水分解性シリル基を含有するビニル系重合体セグメント(a2)が有するシラノール基及び/又は加水分解性シリル基とが加水分解縮合反応し、前記ポリシロキサンセグメント(a1)が形成されると共に、前記ポリシロキサンセグメント(a1)と、ビニル系重合体セグメント(a2)とが前記一般式(3)で表される結合により複合化された複合樹脂(A)が得られる。
 (方法2)方法1と同様にして、炭素結合に直接結合したシラノール基及び/又は加水分解性シリル基を含有するビニル系重合体セグメント(a2)を得る。
一方、シラノール基及び/又は加水分解性シリル基並びに重合性二重結合を併有するシラン化合物、必要に応じて汎用のシラン化合物を加水分解縮合反応させ、ポリシロキサンセグメント(a1)を得る。そして、ビニル系重合体セグメント(a2)が有するシラノール基及び/又は加水分解性シリル基と、とポリシロキサンセグメント(a1)とが有するシラノール基及び/又は加水分解性シリル基とを加水分解縮合反応をさせる。
 (方法3)方法1と同様に、炭素結合に直接結合したシラノール基及び/又は加水分解性シリル基を含有するビニル系重合体セグメント(a2)を得る。一方、方法2と同様にして、ポリシロキサンセグメント(a1)を得る。更に、重合性二重結合を併有するシラン化合物を含有するシラン化合物と、必要に応じて汎用のシラン化合物とを混合し、加水分解縮合反応させる。
 また、前記(方法1)~(方法3)で使用する、汎用のシラン化合物としては、例えば、メチルトリメトキシシラン、メチルトリエトキシシラン、メチルトリ-n-ブトキシシラン、エチルトリメトキシシラン、n-プロピルトリメトキシシラン、iso-ブチルトリメトキシシラン、シクロヘキシルトリメトキシシラン、フェニルトリメトキシシラン、フェニルトリエトキシシラン等の各種のオルガノトリアルコキシシラン類;ジメチルジメトキシシラン、ジメチルジエトキシシラン、ジメチルジ-n-ブトキシシラン、ジエチルジメトキシシラン、ジフェニルジメトキシシラン、メチルシクロヘキシルジメトキシシランもしくはメチルフェニルジメトキシシラン等の、各種のジオルガノジアルコキシシラン類;メチルトリクロロシラン、エチルトリクロロシラン、フェニルトリクロロシラン、ビニルトリクロロシラン、ジメチルジクロロシラン、ジエチルジクロロシランもしくはジフェニルジクロロシラン等のクロロシラン類が挙げられる。中でも、加水分解反応が容易に進行し、また反応後の副生成物を容易に除去することが可能なオルガノトリアルコキシシランやジオルガノジアルコキシシランが好ましい。
 また、テトラメトキシシラン、テトラエトキシシランもしくはテトラn-プロポキシシランなどの4官能アルコキシシラン化合物や該4官能アルコキシシラン化合物の部分加水分解縮合物を、本発明の効果を損なわない範囲で併用することもできる。前記4官能アルコキシシラン化合物又はその部分加水分解縮合物を併用する場合には、前記ポリシロキサンセグメント(a1)を構成する全珪素原子に対して、該4官能アルコキシシラン化合物の有する珪素原子が、20モル%を超えない範囲となるように併用することが好ましい。
 また、前記シラン化合物には、ホウ素、チタン、ジルコニウムあるいはアルミニウムなどの珪素原子以外の金属アルコキシド化合物を、本発明の効果を損なわない範囲で併用することもできる。例えば、ポリシロキサンセグメント(a1)を構成する全珪素原子に対して、上述の金属アルコキシド化合物の有する金属原子が、25モル%を超えない範囲で、併用することが好ましい。
 前記(方法1)~(方法3)における加水分解縮合反応は、前記加水分解性基の一部が水などの影響で加水分解され水酸基を形成し、次いで該水酸基同士、あるいは該水酸基と加水分解性基との間で進行する進行する縮合反応をいう。該加水分解縮合反応は、公知の方法で反応を進行させることができるが、前記製造工程で水と触媒とを供給することで反応を進行させる方法が簡便で好ましい。
 使用する触媒としては、例えば、塩酸、硫酸、燐酸等の無機酸類;p-トルエンスルホン酸、燐酸モノイソプロピル、酢酸等の有機酸類;水酸化ナトリウム又は水酸化カリウム等の無機塩基類;テトライソプロピルチタネート、テトラブチルチタネート等のチタン酸エステル類;1,8-ジアザビシクロ[5.4.0]ウンデセン-7(DBU)、1,5-ジアザビシクロ[4.3.0]ノネン-5(DBN)、1,4-ジアザビシクロ[2.2.2]オクタン(DABCO)、トリ-n-ブチルアミン、ジメチルベンジルアミン、モノエタノールアミン、イミダゾール、1-メチルイミダゾール等の各種の塩基性窒素原子を含有する化合物類;テトラメチルアンモニウム塩、テトラブチルアンモニウム塩、ジラウリルジメチルアンモニウム塩等の各種の4級アンモニウム塩類であって、対アニオンとして、クロライド、ブロマイド、カルボキシレートもしくはハイドロオキサイドなどを有する4級アンモニウム塩類;ジブチル錫ジアセテート、ジブチル錫ジオクトエート、ジブチル錫ジラウレート、ジブチル錫ジアセチルアセトナート、オクチル酸錫又はステアリン酸錫など錫カルボン酸塩等が挙げられる。触媒は単独で使用しても良いし、2種以上併用しても良い。
 前記触媒の添加量に特に限定はないが、一般的には前記シラノール基または加水分解性シリル基を有する各々の化合物全量に対して、0.0001~10重量%の範囲で使用することが好ましく、0.0005~3重量%の範囲で使用することがより好ましく、0.001~1重量%の範囲で使用することが特に好ましい。
 また、供給する水の量は、前記シラノール基または加水分解性シリル基を有する各々の化合物が有するシラノール基または加水分解性シリル基1モルに対して0.05モル以上が好ましく、0.1モル以上がより好ましく、特に好ましくは、0.5モル以上である。
これらの触媒及び水は、一括供給でも逐次供給であってもよく、触媒と水とを予め混合したものを供給しても良い。
 前記(方法1)~(方法3)における加水分解縮合反応を行う際の反応温度は、0℃~150℃の範囲が適切であり、好ましくは、20℃~100℃の範囲内である。また、反応の圧力としては、常圧、加圧下又は減圧下の、いずれの条件においても行うことができる。また、前記加水分解縮合反応において生成しうる副生成物であるアルコールや水は、必要に応じ蒸留などの方法により除去してもよい。
 前記(方法1)~(方法3)における各々の化合物の仕込み比率は、所望とする本発明で使用する複合樹脂(A)の構造により適宜選択される。中でも、得られる塗膜の耐久性が優れることから、ポリシロキサンゼグメント(a1)の含有率が30~95重量%となるよう複合樹脂(A)を得るのが好ましく、50~95重量%が更に好ましい。
 前記(方法1)~(方法3)において、ポリシロキサンセグメントとビニル系重合体セグメントをブロック状に複合化する具体的な方法としては、ポリマー鎖の片末端あるいは両末端のみに前記したシラノール基及び/又は加水分解性シリル基を有するような構造のビニル系重合体セグメントを中間体として使用し、例えば、(方法1)であれば、当該ビニル系重合体セグメントに、シラノール基及び/又は加水分解性シリル基並びに重合性二重結合を併有するシラン化合物、必要に応じて汎用のシラン化合物とを混合し、加水分解縮合反応させる方法が挙げられる。
 一方、前記(方法1)~(方法3)において、ビニル系重合体セグメントに対してポリシロキサンセグメントをグラフト状に複合化させる具体的な方法としては、ビニル系重合体セグメントの主鎖に対し、前記したシラノール基及び/又は加水分解性シリル基をランダムに分布させた構造を有するビニル系重合体セグメントを中間体として使用し、例えば、(方法2)であれば、当該ビニル系重合体セグメントが有するシラノール基及び/又は加水分解性シリル基と、前記したポリシロキサンセグメントが有するシラノール基及び/又は加水分解性シリル基とを加水分解縮合反応をさせる方法を挙げることができる。
 前記複合樹脂(A)における前記ビニル系重合体セグメント(a2)がアルコール性水酸基を有する場合は、ポリイソシアネートを併用することが好ましいが、その際のポリイソシアネートは、前記活性エネルギー線硬化性樹脂層の全固形分量に対して5~50重量%含有させることが好ましい。ポリイソシアネートを該範囲含有させることで、特に屋外における長期耐候性(具体的には耐クラック性)が特に優れる塗膜が得られる。これは、ポリイソシアネートと系中の水酸基(これは、前記ビニル系重合体セグメント(a2)中の水酸基や後述のアルコール性水酸基を有する活性エネルギー線硬化性モノマー中の水酸基である)とが反応して、ソフトセグメントであるウレタン結合が形成され、重合性二重結合由来の硬化による応力の集中を緩和させる働きをするのではと推定している。
 使用するポリイソシアネートとしては特に限定はなく公知のものを使用することができるが、トリレンジイソシアネート、ジフェニルメタン-4,4’-ジイソシアネート等の芳香族ジイソシアネート類や、メタ-キシリレンジイソシアネート、α,α,α’,α’-テトラメチル-メタ-キシリレンジイソシアネート等のアラルキルジイソシアネート類を主原料とするポリイソシアネートは、長期屋外曝露での硬化塗膜が黄変するという問題点が生じるため使用量を最小限にすることが好ましい。
 屋外での長期使用という観点から、本発明で用いるポリイソシアネートとしては、脂肪族ジイソシアネートを主原料とする脂肪族ポリイソシアネートが好適である。脂肪族ジイソシアネートとしては、例えば、テトラメチレンジイソシアネート、1,5-ペンタメチレンジイソシアネート、1,6-ヘキサメチレンジイソシアネート(以下「HDI」と略す)、2,2,4-(又は、2,4,4-トリメチル-1,6-ヘキサメチレンジイソイシアネート、リジンイソシアネート、イソホロンジイソシアネート、水添キシレンジイソシアネート、水添ジフェニルメタンジイソシアネート、1,4-ジイソシアネートシクロヘキサン、1,3-ビス(ジイソシアネートメチル)シクロヘキサン、4,4’-ジシクロヘキシルメタンジイソシアネート等が挙げられる。中でも、耐クラック性とコストの観点からHDIが特に好適である。
 脂肪族ジイソシアネートから得られる脂肪族ポリイソシアネートとしては、アロファネート型ポリイソシアネート、ビウレット型ポリイソシアネート、アダクト型ポリイソシアネート及びイソシアヌレート型ポリイソシアネートが挙げられるが、いずれも好適に使用することができる。
 なお、前記したポリイソシアネートとしては、種々のブロック剤でブロック化された、いわゆるブロックポリイソシアネート化合物を使用することもできる。ブロック剤としては、例えばメタノール、エタノール、乳酸エステル等のアルコール類;フェノール、サリチル酸エステル等のフェノール性水酸基含有化合物類;ε-カプロラクタム、2-ピロリドン等のアマイド類;アセトンオキシム、メチルエチルケトオキシム等のオキシム類;アセト酢酸メチル、アセト酢酸エチル、アセチルアセトン等の活性メチレン化合物類等を使用することができる。
 前記ポリイソシアネート中のイソシアネート基は、3~30重量%であることが、得られる硬化塗膜の耐クラック性と耐磨耗性の点から好ましい。前記ポリイソシアネート中のイソシアネート基が30%を超えて多い場合、ポリイソシアネートの分子量が小さくなり、応力緩和による耐クラック性が発現しなくなるおそれがある。ポリイソシアネートと系中の水酸基(これは、前記ビニル系重合体セグメント(a2)中の水酸基や後述のアルコール性水酸基を有する前記活性エネルギー線硬化性モノマー中の水酸基である)との反応は、特に加熱等は必要なく、例えば硬化形態が紫外線である場合には、塗装、紫外線照射後室温に放置することで徐徐に反応していく。また必要に応じて、紫外線照射後、80℃で数分間~数時間(20分間~4時間)加熱して、アルコール性水酸基とイソシアネートの反応を促進してもよい。その場合は、必要に応じて公知のウレタン化触媒を使用してもよい。ウレタン化触媒は、所望する反応温度に応じて適宜選択する。
 前記アクリル(メタ)アクリレート樹脂(B)としては、例えば、水酸基、カルボキシ
基、イソシアネート基、グリシジル基等の反応性官能基を有する(メタ)アクリレートモ
ノマー(α)を必須の成分として重合させて得られるアクリル樹脂中間体に、前記反応性
官能基と反応し得る官能基を有する(メタ)アクリレートモノマー(β)を更に反応させ
ることにより(メタ)アクリロイル基を導入して得られるものが挙げられる。
 なお、本発明において、「(メタ)アクリレート樹脂」とは、分子中に(メタ)アクリロイル基を有する樹脂のことをいい、「(メタ)アクリロイル基」とは、アクリロイル基及びメタクリロイル基の一方または両方のことをいう。また、「(メタ)アクリレート」とは、アクリレート及びメタクリレートの一方または両方のことをいう。
 前記反応性官能基を有する(メタ)アクリレートモノマー(α)は、例えば、ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート等の水酸基含有(メタ)アクリレートモノマー;(メタ)アクリル酸等のカルボキシ基含有(メタ)アクリレートモノマー;2-アクリロイルオキシエチルイソシアネート、2-メタクリロイルオキシエチルイソシアネート、1,1-ビス(アクリロイルオキシメチル)エチルイソシアネート等のイソシアネート基含有(メタ)アクリレートモノマー;グリシジル(メタ)アクリレート、4-ヒドロキシブチルアクリレートグリシジルエーテル等のグリシジル基含有(メタ)アクリレートモノマー等が挙げられる。これらの反応性官能基を有する(メタ)アクリレートモノマーは、単独で用いることも2種以上を併用することもできる。
 前記アクリル樹脂中間体は、より優れた基材密着性を有し、加工性、耐擦傷性及び耐薬品性により優れた硬化物を形成することから、ホモポリマーのガラス転移温度(Tg)が50℃以上の(メタ)アクリレートモノマーを共重合させたものが好ましい。このようなモノマーとしては、例えば、メチル(メタ)アクリレート、tert-ブチル(メタ)アクリレート、シクロへキシル(メタ)アクリレート、ベンジル(メタ)アクリレート、イソボルニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート、アダマンチル(メタ)アクリレート等が挙げられる。これらのモノマーは、優れた基材密着性を有し、加工性、耐擦傷性及び耐薬品性に優れた硬化物を形成可能なアクリル(メタ)アクリレート樹脂が得られることから、少なくとも1種を使用することが好ましく、さらには2種以上併用することがより好ましく、少なくとも1種がメチル(メタ)アクリレートであることが好ましい。なお、各成分のホモポリマーのガラス転移温度の値は、日刊工業新聞社の「粘着技術ハンドブック」、Wiley-Interscienceの「ポリマーハンドブック(Polymer Handbook)」、塗料用樹脂入門、共栄社化学株式会社HP、三菱ケミカル株式会社HP等に記載の値を採用することができる。
 また、前記アクリル樹脂中間体には、必要に応じてその他の重合性不飽和基含有化合物を共重合させることができる。その他の重合性不飽和基含有化合物としては、例えば、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、2-エチルヘキシル(メタ)アクリレート等の(メタ)アクリル酸アルキルエステル;イソボロニル(メタ)アクリレート、ジシクロペンタニル(メタ)アクリレート等のシクロ環含有(メタ)アクリレート;フェニル(メタ)アクリレート、フェノキシエチルアクリレート等の芳香環含有(メタ)アクリレート;3-メタクリロキシプロピルトリメトキシシラン等のシリル基含有(メタ)アクリレート;スチレン、α-メチルスチレン、クロロスチレン等のスチレン誘導体;(メタ)アクリロイルモルフォリン、ジエチレングリコールジ(メタ)アクリレート等が挙げられる。これらその他の重合性不飽和基含有化合物は、単独で用いることも2種以上を併用することもできる。
 前記アクリル樹脂中間体が前記(メタ)アクリレートモノマー(α)と、前記その他の重合性不飽和基含有化合物とを共重合させて得られるものである場合、両者の反応割合は、優れた基材密着性を有し、加工性、耐擦傷性及び耐薬品性に優れるアクリル(メタ)アクリレート樹脂となることから、両者の合計中、前記(メタ)アクリレートモノマー(α)は、5~95質量%が好ましく、25~65%がより好ましい。
 前記アクリル樹脂中間体の製造方法としては、一般的なアクリル樹脂と同様の方法にて製造することができる。例えば、重合開始剤の存在下、60~150℃の温度領域で各種モノマーを重合させることにより製造することができる。重合の方法は、例えば、塊状重合法、溶液重合法、懸濁重合法、乳化重合法等が挙げられる。また、重合様式は、例えば、ランダム共重合体、ブロック共重合体、グラフト共重合体等が挙げられる。溶液重合法で行う場合には、例えば、メチルエチルケトン、メチルイソブチルケトン等のケトン溶媒や、プロピレングリコールモノメチルエーテル、プロピレングリコールジメチルエーテル、プロピレングリコールモノプロピルエーテル、プロピレングリコールモノブチルエーテル等のグリコールエーテル溶媒を好ましく用いることができる。
 前記(メタ)アクリレートモノマー(β)は、前記(メタ)アクリレートモノマー(α)が有する反応性官能基と反応し得るものでれば特に限定されないが、反応性の観点から以下の組み合わせであることが好ましい。即ち、前記(メタ)アクリレートモノマー(α)として前記水酸基含有(メタ)アクリレートを用いた場合には、(メタ)アクリレートモノマー(β)としてイソシアネート基含有(メタ)アクリレートを用いることが好ましい。前記(メタ)アクリレートモノマー(α)として前記カルボキシ基含有(メタ)アクリレートを用いた場合には、(メタ)アクリレートモノマー(β)として前記グリシジル基含有(メタ)アクリレートを用いることが好ましい。前記(メタ)アクリレートモノマー(α)として前記イソシアネート基含有(メタ)アクリレートを用いた場合には、(メタ)アクリレートモノマー(β)として前記水酸基含有(メタ)アクリレートを用いることが好ましい。前記(メタ)アクリレートモノマー(α)として前記グリシジル基含有(メタ)アクリレートを用いた場合には、(メタ)アクリレートモノマー(β)として前記カルボキシ基含有(メタ)アクリレートを用いることが好ましい。
 前記アクリル樹脂中間体と前記(メタ)アクリレートモノマー(β)との反応は、例えば、該反応がエステル化反応である場合には、60~150℃の温度範囲で、トリフェニルホスフィン等のエステル化触媒を適宜用いるなどの方法が挙げられる。また、該反応がウレタン化反応である場合には、50~120℃の温度範囲で、前記アクリル樹脂中間体に前記(メタ)アクリレートモノマー(β)を滴下しながら反応させる等の方法が挙げられる。両者の反応割合は、前記アクリル樹脂中間体中の官能基数1モルに対し、前記(メタ)アクリレートモノマー(β)を0.95~1.1モルの範囲で用いることが好ましい。
 これらの中でも、優れた基材密着性を有し、加工性、耐擦傷性及び耐薬品性がより良好である観点から、アクリル(メタ)アクリレート樹脂(B)が、(メタ)アクリレートモノマーからなる単量体混合物の重合体であって、前記単量体混合物100質量部中にグリシジル基含有(メタ)アクリレートモノマー(x1)を5~60質量部で含有する単量体混合物の重合体であることが好ましく、特にグリシジル基含有(メタ)アクリレートモノマー(x1)を必須の原料とするアクリル系重合体(b1)に、水酸基含有(メタ)アクリレートモノマー(x2)及び/又はカルボキシ基含有(メタ)アクリレートモノマー(x3)を反応させることにより得られるものであって、グリシジル基含有(メタ)アクリレートモノマー(x1)を3~60質量部で用いたものであることがより好ましく、5~40質量部で用いたものであることがより好ましい。
 また、前記アクリル系重合体(b1)が、グリシジル基含有(メタ)アクリレートモノマー(x1)と(メタ)アクリル酸アルキルエステルとの共重合体であることが好ましく、さらに、前記(メタ)アクリル酸アルキルエステルが(メタ)アクリル酸メチルエステルであることがより好ましい。
 前記アクリル(メタ)アクリレート樹脂(B)の(メタ)アクリロイル基当量は、耐候性等の耐久性及び加工性のバランスがより向上することから300~3,000g/当量が好ましく、特に400~2,000g/当量が好ましい。なお、本発明におけるアクリル(メタ)アクリレート樹脂(B)の(メタ)アクリロイル基当量は、反応原料から理論値として算出される値である。
 また、前記アクリル(メタ)アクリレート樹脂(B)の重量平均分子量(Mw)は、10,000~70,000であるが、優れた基材密着性を有し、加工性、耐擦傷性及び耐薬品性のバランスがより向上することから20,000~40,000がより好ましい。
 なお、本発明において、重量平均分子量(Mw)、数平均分子量(Mn)、分子量分布(Mn/Mw)は、ゲルパーミエーションクロマトグラフ(GPC)により測定される値である。
 前記複合樹脂(A)と前記(メタ)アクリレート樹脂(B)との質量比(A/B)は、耐候性等の耐久性、及び加工性に優れる塗膜が得られることから、2/98~90/10が好ましく、5/95~65/35がより好ましく、10/90~50/50がさらに好ましい。
 本発明の活性エネルギー線硬化性樹脂組成物は、前記複合樹脂(A)及び前記アクリル(メタ)アクリレート樹脂(B)を含有するものであり、その他の活性エネルギー線硬化性成分を含有していてもよいが、優れた基材密着性を有し、加工性、耐擦傷性及び耐薬品性の観点から、重量平均分子量が5,000以下の活性エネルギー線硬化性成分の含有率が活性エネルギー線硬化性成分の合計質量中、30質量%以下であることが好ましい。
 前記その他の活性エネルギー線硬化性の成分としては、前記アクリル(メタ)アクリレート樹脂(B)以外のその他の(メタ)アクリレート化合物が挙げられる。その他の(メタ)アクリレート化合物は、例えば、デンドリマー型(メタ)アクリレート樹脂、ウレタン(メタ)アクリレート樹脂、エポキシ(メタ)アクリレート樹脂、モノ(メタ)アクリレート化合物及びその変性体、脂肪族炭化水素型ポリ(メタ)アクリレート化合物及びその変性体、脂環式ポリ(メタ)アクリレート化合物及びその変性体、芳香族ポリ(メタ)アクリレート化合物及びその変性体等が挙げられる。これらはそれぞれ単独で用いても良いし、2種類以上を併用しても良い。
 前記複合樹脂(A)及び前記アクリル(メタ)アクリレート樹脂(B)を含む全樹脂成分中の前記ポリシロキサンセグメント(a1)の含有量は、耐候性等の耐久性及び加工性のバランスがより向上することから、は、2~55質量%が好ましく、4~40質量%がより好ましい。
 前記光重合開始剤(C)としては、例えば、1-ヒドロキシシクロヘキシルフェニルケトン、2-ヒドロキシ-2-メチル-1-フェニルプロパン-1-オン、1-[4-(2-ヒドロキシエトキシ)フェニル]-2-ヒドロキシ-2-メチル-1-プロパン-1-オン、チオキサントン及びチオキサントン誘導体、2,2’-ジメトキシ-1,2-ジフェニルエタン-1-オン、ジフェニル(2,4,6-トリメトキシベンゾイル)ホスフィンオキシド、2,4,6-トリメチルベンゾイルジフェニルホスフィンオキシド、ビス(2,4,6-トリメチルベンゾイル)フェニルホスフィンオキシド、2-メチル-1-(4-メチルチオフェニル)-2-モルフォリノプロパン-1-オン、2-ベンジル-2-ジメチルアミノ-1-(4-モルホリノフェニル)-1-ブタノン等の光ラジカル重合開始剤などが挙げられる。
 前記光重合開始剤(C)の市販品としては、例えば、「Omnirad 1173」、「Omnirad 184」、「Omnirad 127」、「Omnirad 2959」、「Omnirad 369」、「Omnirad 379」、「Omnirad 907」、「Omnirad 4265」、「Omnirad 1000」、「Omnirad 651」、「Omnirad TPO」、「Omnirad 819」、「Omnirad 2022」、「Omnirad 2100」、「Omnirad 754」、「Omnirad 784」、「Omnirad 500」、「Omnirad 81」(IGM Resins社製);「KAYACURE DETX」、「KAYACURE MBP」、「KAYACURE DMBI」、「KAYACURE EPA」、「KAYACURE OA」(日本化薬株式会社製);「Vicure 10」、「Vicure 55」(Stoffa Chemical社製);「Trigonal P1」(Akzo Nobel社製)、「SANDORAY 1000」(SANDOZ社製);「DEAP」(Upjohn Chemical社製)、「Quantacure PDO」、「Quantacure ITX」、「Quantacure EPD」(Ward Blenkinsop社製);「Runtecure 1104」(Runtec社製)等が挙げられる。これらの光重合開始剤は、単独で用いることも、2種以上を併用することもできる。
 前記光重合開始剤(C)の添加量は、例えば、活性エネルギー線硬化性樹脂組成物の溶剤以外の成分の合計中に0.05~15質量%の範囲であることが好ましく、0.1~10質量%の範囲であることがより好ましい。
 また、前記光重合開始剤は、必要に応じて、アミン化合物、尿素化合物、含硫黄化合物、含燐化合物、含塩素化合物、ニトリル化合物等の光増感剤を併用することもできる。
 また、本発明の活性エネルギー線硬化性樹脂組成物は、上記した以外のその他の成分を含有していてもよい。前記その他の成分としては、例えば、無機微粒子、シランカップリング剤、リン酸エステル化合物、溶剤、紫外線吸収剤、酸化防止剤、シリコン系添加剤、フッ素系添加剤、帯電防止剤、有機ビーズ、量子ドット(QD)、レオロジーコントロール剤、脱泡剤、防曇剤、着色剤等が挙げられる。
 前記無機微粒子は、活性エネルギー線硬化性樹脂組成物の硬化塗膜における硬度や屈折率等を調整する等の目的で添加されるものであり、公知慣用の種々の無機微粒子を用いることができる。一例としては、シリカ、アルミナ、ジルコニア、チタニア、チタン酸バリウム、三酸化アンチモン等の微粒子が挙げられる。これらはそれぞれ単独で用いても良いし、二種類以上を併用しても良い。
 これら無機微粒子の中でも、入手が容易で扱いが簡便なことからシリカ粒子が好ましい。シリカ粒子は、例えば、フュームドシリカや、沈殿法シリカ、ゲルシリカ、ゾルゲルシリカ等と呼ばれる湿式シリカなど各種のシリカ粒子が挙げられ、いずれを用いても良い。
 前記無機微粒子は、各種シランカップリング剤にて微粒子表面に官能基を導入したものでも良い。該無機微粒子の表面に官能基を導入することにより、前記アクリル(メタ)アクリレート樹脂(B)等の有機成分との混和性が高まり、保存安定性が向上する。
 前記無機微粒子を修飾するシランカップリング剤は、例えば、[(メタ)アクリロイルオキシアルキル]トリアルキルシラン、[(メタ)アクリロイルオキシアルキル]ジアルキルアルコキシシラン、[(メタ)アクリロイルオキシアルキル]アルキルジアルコキシシラン、[(メタ)アクリロイルオキシアルキル]トリアルコキシシラン、当の(メタ)アクリロイルオキシ系シランカップリング剤;トリアルキルビニルシラン、ジアルキルアルコキシビニルシラン、アルキルジアルコキシビニルシラン、トリアルコキシビニルシラン、トリアルキルアリルシラン、ジアルキルアルコキシアリルシラン、アルキルジアルコキシアリルシラン、トリアルコキシアリルシラン等のビニル系シランカップリング剤;スチリルトリアルキル、スチリルジアルキルアルコキシシラン、スチリルアルキルジアルコキシシラン、スチリルトリアルコキシシラン等のスチレン系シランカップリング剤;(グリシジルオキシアルキル)トリアルキルシラン、(グリシジルオキシアルキル)ジアルキルアルコキシシラン、(グリシジルオキシアルキル)アルキルジアルコキシシラン、(グリシジルオキシアルキル)トリアルコキシシラン、[(3,4-エポキシシクロヘキシル)アルキル]トリメトキシシラン、[(3,4-エポキシシクロヘキシル)アルキル]トリアルキルシラン、[(3,4-エポキシシクロヘキシル)アルキル]ジアルキルアルコキシシラン、[(3,4-エポキシシクロヘキシル)アルキル]アルキルジアルコキシシラン、[(3,4-エポキシシクロヘキシル)アルキル]トリアルコキシシラン等のエポキシ系シランカップリング剤;(イソシアネートアルキル)トリアルキルシラン、(イソシアネートアルキル)ジアルキルアルコキシシラン、(イソシアネートアルキル)アルキルジアルコキシシラン、(イソシアネートアルキル)トリアルコキシシラン等のイソシアネート系シランカップリング剤等が挙げられる。これらそれぞれ単独で用いても良いし、2種類以上を併用しても良い。
 前記シランカップリング剤の中でも、前記アクリル(メタ)アクリレート樹脂等の有機成分との混和性に優れる無機微粒子となることから、(メタ)アクリロイルオキシ系シランカップリング剤が好ましく、3-(メタ)アクリロイルオキシプロピルトリメトキシシラン等の[(メタ)アクリロイルオキシアルキル]トリアルコキシシランが特に好ましい。
 前記無機微粒子の平均粒子径は特に限定されず、所望の硬化物性能等に応じて適宜調整してよい。特に、耐擦傷性とクラック防止性の他、耐ブロッキング性や透明性等にも優れる硬化塗膜が得られることから、前記無機微粒子の平均粒子径は80~250nmの範囲であることが好ましく、90~180nmの範囲であることがより好ましく、100~150nmの範囲であることが特に好ましい。
 なお、前記無機微粒子の平均粒子径は、活性エネルギー線硬化性樹脂組成物中の粒子径を以下の条件で測定した値である。
 粒子径測定装置:大塚電子株式会社製「ELSZ-2」
 粒子径測定サンプル:活性エネルギー線硬化性樹脂組成物を不揮発分1質量%のメチルイソブチルケトン溶液としたもの。
 本発明の活性エネルギー線硬化性樹脂組成物中、前記無機微粒子の含有量は特に限定されず、所望の硬化物性能等に応じて適宜調整してよい。特に、耐擦傷性に優れる硬化塗膜が得られることから、前記無機微粒子の含有率は、前記アクリル(メタ)アクリレート樹脂100質量部に対して10~100質量部の範囲であることが好ましい。
 前記活性エネルギー線硬化性樹脂組成物中に添加するシランカップリング剤は例えば、[(メタ)アクリロイルオキシアルキル]トリアルキルシラン、[(メタ)アクリロイルオキシアルキル]ジアルキルアルコキシシラン、[(メタ)アクリロイルオキシアルキル]アルキルジアルコキシシラン、[(メタ)アクリロイルオキシアルキル]トリアルコキシシラン等の(メタ)アクリロイルオキシ系シランカップリング剤;トリアルキルビニルシラン、ジアルキルアルコキシビニルシラン、アルキルジアルコキシビニルシラン、トリアルコキシビニルシラン、トリアルキルアリルシラン、ジアルキルアルコキシアリルシラン、アルキルジアルコキシアリルシラン、トリアルコキシアリルシラン等のビニル系シランカップリング剤;スチリルトリアルキル、スチリルジアルキルアルコキシシラン、スチリルアルキルジアルコキシシラン、スチリルトリアルコキシシラン等のスチレン系シランカップリング剤;(グリシジルオキシアルキル)トリアルキルシラン、(グリシジルオキシアルキル)ジアルキルアルコキシシラン、(グリシジルオキシアルキル)アルキルジアルコキシシラン、(グリシジルオキシアルキル)トリアルコキシシラン、[(3,4-エポキシシクロヘキシル)アルキル]トリメトキシシラン、[(3,4-エポキシシクロヘキシル)アルキル]トリアルキルシラン、[(3,4-エポキシシクロヘキシル)アルキル]ジアルキルアルコキシシラン、[(3,4-エポキシシクロヘキシル)アルキル]アルキルジアルコキシシラン、[(3,4-エポキシシクロヘキシル)アルキル]トリアルコキシシラン等のエポキシ系シランカップリング剤;(イソシアネートアルキル)トリアルキルシラン、(イソシアネートアルキル)ジアルキルアルコキシシラン、(イソシアネートアルキル)アルキルジアルコキシシラン、(イソシアネートアルキル)トリアルコキシシラン等のイソシアネート系シランカップリング剤等が挙げられる。これらそれぞれ単独で用いても良いし、2種類以上を併用しても良い。
 前記リン酸エステル化合物の市販品としては、例えば、分子構造中に(メタ)アクリロイル基を有するリン酸エステル化合物である日本化薬株式会社製「カヤマーPM-2」、「カヤマーPM-21」、共栄社化学株式会社製「ライトエステルP-1M」「ライトエステルP-2M」、「ライトアクリレートP-1A(N)」、SOLVAY社製「SIPOMER PAM 100」、「SIPOMER PAM 200」、「SIPOMER PAM 300」、「SIPOMER PAM 4000」、大阪有機化学工業社製「ビスコート#3PA」、「ビスコート#3PMA」、第一工業製薬社製「ニューフロンティア S-23A」;分子構造中にアリルエーテル基を有するリン酸エステル化合物であるSOLVAY社製「SIPOMER PAM 5000」等が挙げられる。
 前記溶剤は、活性エネルギー線硬化性樹脂組成物の塗工粘度調節等の目的で添加されるものであり、その種類や添加量は、所望の性能に応じて適宜調整される。一般には、活性エネルギー線硬化性樹脂組成物の不揮発分が10~90質量%の範囲となるように用いられる。前記溶剤の具体例としては、例えば、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン溶剤;テトラヒドロフラン、ジオキソラン等の環状エーテル溶剤;酢酸メチル、酢酸エチル、酢酸ブチル等のエステル;トルエン、キシレン等の芳香族溶剤;シクロヘキサン、メチルシクロヘキサン等の脂環族溶剤;カルビトール、セロソルブ、メタノール、イソプロパノール、ブタノール、プロピレングリコールモノメチルエーテルなどのアルコール溶剤;エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノプロピルエーテル等のグリコールエーテル系溶剤などが挙げられる。これらの溶剤は、単独で用いることも2種以上を併用することもできる。
 前記紫外線吸収剤としては、例えば、2-[4-{(2-ヒドロキシ-3-ドデシルオキシプロピル)オキシ}-2-ヒドロキシフェニル]-4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン、2-[4-{(2-ヒドロキシ-3-トリデシルオキシプロピル)オキシ}-2-ヒドロキシフェニル]-4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン等のトリアジン誘導体、2-(2’-キサンテンカルボキシ-5’-メチルフェニル)ベンゾトリアゾール、2-(2’-o-ニトロベンジロキシ-5’-メチルフェニル)ベンゾトリアゾール、2-キサンテンカルボキシ-4-ドデシロキシベンゾフェノン、2-o-ニトロベンジロキシ-4-ドデシロキシベンゾフェノン等が挙げられる。これらの紫外線吸収剤は、単独で用いることも2種以上を併用することもできる。
 前記酸化防止剤としては、例えば、ヒンダードフェノール系酸化防止剤、ヒンダードアミン系酸化防止剤、有機硫黄系酸化防止剤、リン酸エステル系酸化防止剤等が挙げられる。これらの酸化防止剤は、単独で用いることも2種以上を併用することもできる。
 前記シリコン系添加剤としては、例えば、ジメチルポリシロキサン、メチルフェニルポリシロキサン、環状ジメチルポリシロキサン、メチルハイドロゲンポリシロキサン、ポリエーテル変性ジメチルポリシロキサン共重合体、ポリエステル変性ジメチルポリシロキサン共重合体、フッ素変性ジメチルポリシロキサン共重合体、アミノ変性ジメチルポリシロキサン共重合体など如きアルキル基やフェニル基を有するポリオルガノシロキサン、ポリエーテル変性アクリル基を有するポリジメチルシロキサン、ポリエステル変性アクリル基を有するポリジメチルシロキサン等が挙げられる。これらのシリコン系添加剤は、単独で用いることも2種以上を併用することもできる。
 前記フッ素系添加剤の市販品としては、例えば、DIC株式会社製「メガフェース」シリーズ等が挙げられる。これらのフッ素系添加剤は、単独で用いることも2種以上を併用することもできる。
 前記帯電防止剤としては、例えば、ビス(トリフルオロメタンスルホニル)イミド又はビス(フルオロスルホニル)イミドのピリジニウム、イミダゾリウム、ホスホニウム、アンモニウム、又はリチウム塩が挙げられる。これらの帯電防止剤は、単独で用いることも2種以上を併用することもできる。
 前記有機ビーズとしては、例えば、ポリメタクリル酸メチルビーズ、ポリカーボネートビーズ、ポリスチレンビーズ、ポリアクリルスチレンビーズ、シリコーンビ-ズ、ガラスビーズ、アクリルビーズ、ベンゾグアナミン系樹脂ビーズ、メラミン系樹脂ビーズ、ポリオレフィン系樹脂ビーズ、ポリエステル系樹脂ビーズ、ポリアミド樹脂ビーズ、ポリイミド系樹脂ビーズ、ポリフッ化エチレン樹脂ビーズ、ポリエチレン樹脂ビーズ等が挙げられる。これらの有機ビーズは、単独で用いることも2種以上を併用することもできる。また、これらの有機ビーズの平均粒径は1~10μmの範囲であることが好ましい。
 前記量子ドット(QD)としては、II-V族半導体化合物、II-VI族半導体化合物、III-IV族半導体化合物、III-V族半導体化合物、III-VI族半導体化合物、IV-VI族半導体化合物、I-III-VI族半導体化合物、II-IV-VI族半導体化合物、II-IV-V族半導体化合物、I-II-IV-VI族半導体化合物、IV族元素又はこれを含む化合物等が挙げられる。前記II-VI族半導体化合物は、例えば、ZnO、ZnS、ZnSe、ZnTe、CdS、CdSe、CdTe、HgS、HgSe、HgTe等の二元化合物;ZnSeS、ZnSeTe、ZnSTe、CdZnS、CdZnSe、CdZnTe、CdSeS、CdSeTe、CdSTe、CdHgS、CdHgSe、CdHgTe、HgSeS、HgSeTe、HgSTe、HgZnS、HgZnSe、HgZnTe等の三元化合物;CdZnSeS、CdZnSeTe、CdZnSTe、CdHgSeS、CdHgSeTe、CdHgSTe、CdHgZnTe、HgZnSeS、HgZnSeTe、HgZnSTe等の四元化合物等が挙げられる。前記III-IV族半導体化合物は、例えば、B、Al、Ga等が挙げられる。前記III-V族半導体化合物は、例えば、BP、BN、AlN、AlP、AlAs、AlSb、GaN、GaP、GaAs、GaSb、InN、InP、InAs、InSb等の二元化合物;GaNP、GaNAs、GaNSb、GaPAs、GaPSb、AlNP、AlNAs、AlNSb、AlPAs、AlPSb、InNP、InNAs、InNSb、InPAs、InPSb、GaAlNP等の三元化合物;GaAlNAs、GaAlNSb、GaAlPAs、GaAlPSb、GaInNP、GaInNAs、GaInNSb、GaInPAs、GaInPSb、InAlNP、InAlNAs、InAlNSb、InAlPAs、InAlPSb等の四元化合物等が挙げられる。前記III-VI族半導体化合物は、例えば、Al、AlSe、AlTe、Ga、GaSe、GaTe、GaTe、In、InSe、InTe、InTe等が挙げられる。前記IV-VI族半導体化合物は、例えば、SnS、SnSe、SnTe、PbS、PbSe、PbTe等の二元化合物;SnSeS、SnSeTe、SnSTe、PbSeS、PbSeTe、PbSTe、SnPbS、SnPbSe、SnPbTe等の三元化合物;SnPbSSe、SnPbSeTe、SnPbSTe等の四元化合物等が挙げられる。前記I-III-VI族半導体化合物は、例えば、CuInS、CuInSe、CuInTe、CuGaS、CuGaSe、CuGaSe、AgInS、AgInSe、AgInTe、AgGaSe、AgGaS、AgGaTe等が挙げられる。前記IV族元素又はこれを含む化合物は、例えば、C、Si、Ge、SiC、SiGe等が挙げられる。量子ドットは単一の半導体化合物からなっていてもよいし、複数の半導体化合物からなるコアシェル構造を有していてもよい。また、その表面を有機化合物にて修飾したものであってもよい。
 これら各種の添加剤は、所望の性能等に応じて任意の量添加することができるが、通常、活性エネルギー線硬化性樹脂組成物中の溶剤を除いた成分の合計100質量%中、0.01~40質量%の範囲で用いることが好ましい。
 本発明で用いる活性エネルギー線硬化性樹脂組成物は前記各配合成分を混合して製造される。混合方法は特に限定されず、ペイントシェイカー、ディスパー、ロールミル、ビーズミル、ボールミル、アトライター、サンドミル、ビーズミル等を用いてもよい。
 本発明の硬化塗膜は、前記活性エネルギー線硬化性樹脂組成物に、活性エネルギー線を照射することで得ることができる。前記活性エネルギー線としては、例えば、紫外線、電子線、α線、β線、γ線等の電離放射線が挙げられる。また、前記活性エネルギー線として、紫外線を用いる場合、紫外線による硬化反応を効率よく行う上で、窒素ガス等の不活性ガス雰囲気下で照射してもよく、空気雰囲気下で照射してもよい。
 紫外線発生源としては、実用性、経済性の面から紫外線ランプが一般的に用いられている。具体的には、低圧水銀ランプ、高圧水銀ランプ、超高圧水銀ランプ、キセノンランプ、ガリウムランプ、メタルハライドランプ、太陽光、LED等が挙げられる。
 前記活性エネルギー線の積算光量は、特に制限されないが、0.1~50kJ/mであることが好ましく、0.5~10kJ/mであることがより好ましい。積算光量が上記範囲であると、未硬化部分の発生の防止または抑制ができることから好ましい。
 なお、前記活性エネルギー線の照射は、一段階で行ってもよいし、二段階以上に分けて行ってもよい。
 また、前記硬化塗膜の動的粘弾性スペクトルで測定されるtanδは、優れた密着性を有し、加工性、耐擦傷性及び耐薬品性に優れることから、0.1~1の範囲が好ましい。
 本発明の物品としては、前記硬化塗膜を表面に有するものである。前記物品としては、例えば、建築分野での内外装材、携帯電話、家電製品、自動車内外装材、OA機器等のプラスチック成形品などが挙げられる。
 以下、実施例と比較例とにより、本発明を具体的に説明する。なお、本発明は、以下に挙げた実施例に限定されるものではない。
 なお、本実施例において、重量平均分子量(Mw)は、ゲル・パーミエーション・クロマトグラフィー(GPC)を用い、下記の条件により測定した値である。
 測定装置 ; 東ソー株式会社製「HLC-8220」
 カラム  ; 東ソー株式会社製「ガードカラムHXL-H」
       +東ソー株式会社製「TSKgel G5000HXL」
       +東ソー株式会社製「TSKgel G4000HXL」
       +東ソー株式会社製「TSKgel G3000HXL」
       +東ソー株式会社製「TSKgel G2000HXL」
 検出器  ; RI(示差屈折計)
 データ処理:東ソー株式会社製「SC-8010」
 測定条件: カラム温度 40℃
       溶媒    テトラヒドロフラン
       流速    1.0ml/分
 標準   ;ポリスチレン
 試料   ;樹脂固形分換算で0.4質量%のテトラヒドロフラン溶液をマイクロフィルターでろ過したもの(100μl)
(合成例1:複合樹脂(A-1)の合成)
 撹拌機、温度計、滴下ロート、冷却管及び窒素ガス導入口を備えた反応容器に、ブタノール244質量部、フェニルトリメトキシシラン(PTMS)44質量部を仕込んで、100℃まで昇温した。次いで、メチルメタクリレート(MMA)153質量部、ターシャルブチルメタクリレート(t-BMA)30質量部、ブチルアクリレート(BA)42質量部、アクリル酸(AA)6質量部、シクロヘキシルメタクリレート(CHMA)60質量部、3-メタクリロイルオキシプロピルトリメトキシシラン(MPTS)9質量部、tert-ブチルパーオキシ-2-エチルヘキサノエート(TBPEH)12質量部からなる混合物を、同温度で、窒素ガスの通気下、撹拌しながら、前記反応容器中へ5時間かけて滴下した。その後、同温度で5時間撹拌し、トリメトキシシリル基を有するビニル重合体(a2-1)を600質量部調製した。
 次いで、前記反応容器の温度を80℃に調整し、メチルトリメトキシシラン(MTMS)64質量部、3-メタクリロイルオキシプロピルトリメトキシシラン(MPTS)269質量部、ジメチルジメトキシシラン(DMDMS)53質量部を、前記反応容器中へ添加した。その後、「A-3」〔堺化学(株)製の、iso-プロピルアシッドホスフェート〕0.8質量部と脱イオン水120質量部との混合物を、5分間で滴下し、同温度で4時間撹拌することにより、加水分解縮合反応させ、反応生成物を得た。反応生成物を、1H-NMRで分析したところ、前記ビニル重合体(a2-1)が有するトリメトキシシリル基のほぼ100%が加水分解していた。その後、前記反応生成物を、10~300kPaの減圧下で、40~60℃の条件で2時間蒸留することにより、生成したメタノール及び水を除去し、次いで、酢酸n-ブチル200質量部、メチルエチルケトン(MEK)55質量部を添加することで、不揮発分が60.1%であるポリシロキサンセグメント(a1)とビニル重合体セグメント(a2)からなる複合樹脂(A1)の溶液を1000質量部得た。この複合樹脂(A-1)中のポリシロキサンセグメント(a1)は、50質量%であった。
(合成例2:複合樹脂(A-2)の合成)
 合成例1と同様の反応容器に、酢酸n-ブチル56質量部、PTMS13質量部を仕込んで、100℃まで昇温した。次いで、MMA128質量部、BA204質量部、メタクリル酸(MA)15質量部、エチルアクリレート(EA)51質量部、スチレン(St)77質量部、MPTS36質量部、TBPEH20質量部からなる混合物を、同温度で、窒素ガスの通気下、撹拌しながら、前記反応容器中へ5時間かけて滴下した。その後、同温度で7時間撹拌し、トリメトキシシリル基を有するビニル重合体(a2-2)を600質量部調製した。
 次いで、前記反応容器の温度を90℃に調整し、MTMS18質量部、MPTS83質量部、DMDMS15質量部を、前記反応容器中へ添加した。その後、「A-3」〔堺化学(株)製の、iso-プロピルアシッドホスフェート〕0.2質量部と脱イオン水40質量部との混合物を、5分間で滴下し、同温度で2時間撹拌することにより、加水分解縮合反応させ、反応生成物を得た。反応生成物を、1H-NMRで分析したところ、前記ビニル重合体(a2-2)が有するトリメトキシシリル基のほぼ100%が加水分解していた。その後、前記反応生成物を、10~300kPaの減圧下で、40~60℃の条件で2時間蒸留することにより、生成したメタノール及び水を除去し、次いで、酢酸n―ブチル250g、メチルエチルケトン(MEK)130gを添加することで、不揮発分が60.2%であるポリシロキサンセグメント(a1)とビニル重合体セグメント(a2)からなる複合樹脂(A2)を1000質量部得た。この複合樹脂(A-2)中のポリシロキサンセグメント(a1)は、15質量%であった。
(合成例3:複合樹脂(A-3)の合成)
 合成例1と同様の反応容器に、酢酸n-ブチル128質量部、PTMS36質量部を仕込んで、120℃まで昇温した。次いで、MMA118質量部、t-BMA126質量部、BA105質量部、EA42質量部、AA8.4質量部、MPTS21質量部、TBPEH16質量部からなる混合物を、同温度で、窒素ガスの通気下、撹拌しながら、前記反応容器中へ5時間かけて滴下した。その後、同温度で7時間撹拌し、トリメトキシシリル基を有するビニル重合体(a2-3)を600質量部調製した。
 次いで、前記反応容器の温度を95℃に調整し、MTMS8.7質量部、MPTS192質量部、DMDMS11質量部を、前記反応容器中へ添加した。その後、「A-3」〔堺化学(株)製の、iso-プロピルアシッドホスフェート〕0.8質量部と脱イオン水100質量部との混合物を、5分間で滴下し、同温度で5時間撹拌することにより、加水分解縮合反応させ、反応生成物を得た。反応生成物を、1H-NMRで分析したところ、前記ビニル重合体(a2-3)が有するトリメトキシシリル基のほぼ100%が加水分解していた。その後、前記反応生成物を、10~300kPaの減圧下で、40~60℃の条件で2時間蒸留することにより、生成したメタノール及び水を除去し、次いで、酢酸n―ブチル250g、ブタノール(n-BuOH)120gを添加することで、不揮発分が60.0%であるポリシロキサンセグメント(a1)とビニル重合体セグメント(a2)からなる複合樹脂(A3)を1000質量部得た。この複合樹脂(A-3)中のポリシロキサンセグメント(a1)は、30質量%であった。
(合成例4:複合樹脂(A-4)の合成)
 合成例1と同様の反応容器に、酢酸n-ブチル313質量部、PTMS121質量部を仕込んで、120℃まで昇温した。次いで、MMA77質量部、t-BMA15質量部、BA21質量部、AA3質量部、CHMA30部、MPTS4.5質量部、TBPEH16質量部からなる混合物を、同温度で、窒素ガスの通気下、撹拌しながら、前記反応容器中へ5時間かけて滴下した。その後、同温度で7時間撹拌し、トリメトキシシリル基を有するビニル重合体(a2-4)を600質量部調製した。
 次いで、前記反応容器の温度を95℃に調整し、MTMS117質量部、MPTS339質量部、DMDMS73質量部を、前記反応容器中へ添加した。その後、「A-3」〔堺化学(株)製の、iso-プロピルアシッドホスフェート〕2.3質量部と脱イオン水100質量部との混合物を、5分間で滴下し、同温度で5時間撹拌することにより、加水分解縮合反応させ、反応生成物を得た。反応生成物を、1H-NMRで分析したところ、前記ビニル重合体(a2-4)が有するトリメトキシシリル基のほぼ100%が加水分解していた。その後、前記反応生成物を、10~300kPaの減圧下で、40~60℃の条件で4時間蒸留することにより、生成したメタノール及び水を除去し、次いで、n-BuOH70gを添加することで、不揮発分が60.0%であるポリシロキサンセグメント(a1)とビニル重合体セグメント(a2)からなる複合樹脂(A4)を1000質量部得た。この複合樹脂(A-4)中のポリシロキサンセグメント(a1)は、75質量%であった。
(合成例5:複合樹脂(A-5)の合成)
 合成例1と同様の反応容器に、酢酸n-ブチル149質量部、PTMS113質量部を仕込んで、110℃まで昇温した。次いで、MMA15質量部、t-BMA3質量部、BA4質量部、AA0.6質量部、CHMA6部、MPTS0.9質量部、TBPEH8質量部からなる混合物を、同温度で、窒素ガスの通気下、撹拌しながら、前記反応容器中へ5時間かけて滴下した。その後、同温度で7時間撹拌し、トリメトキシシリル基を有するビニル重合体(a2-5)を300質量部調製した。
 次いで、前記反応容器の温度を95℃に調整し、MTMS103質量部、MPTS478質量部、DMDMS129質量部を、前記反応容器中へ添加した。その後、「A-3」〔堺化学(株)製の、iso-プロピルアシッドホスフェート〕1.5質量部と脱イオン水185質量部との混合物を、5分間で滴下し、同温度で5時間撹拌することにより、加水分解縮合反応させ、反応生成物を得た。反応生成物を、1H-NMRで分析したところ、前記ビニル重合体(a2-5)が有するトリメトキシシリル基のほぼ100%が加水分解していた。その後、前記反応生成物を、10~300kPaの減圧下で、40~60℃の条件で5時間蒸留することにより、生成したメタノール及び水を除去し、次いで、酢酸n-ブチル104質量部、n-BuOH200gを添加することで、不揮発分が60.3%であるポリシロキサンセグメント(a1)とビニル重合体セグメント(a2)からなる複合樹脂(A5)を1000質量部得た。この複合樹脂(A-5)中のポリシロキサンセグメント(a1)は、95質量%であった。
(合成例6:アクリル(メタ)アクリレート樹脂(B-1)の調製)
 合成例1と同様の反応容器に、メチルイソブチルケトン(MIBK)387質量部を仕込み、撹拌しながら系内温度が110℃になるまで昇温し、次いで、グリシジルメタアクリレート(GMA)57質量部、MMA 513質量部およびTBPEH 10質量部からなる混合液を3時間かけて滴下ロートより滴下した後、110℃で15時間保持した。90℃まで冷却し、メトキノン(MQ)0.3質量部およびAA 29質量部を仕込んだ後、トリフェニルホスフィン(TPP)3.1質量部を添加後、さらに100℃まで昇温して8時間保持し、不揮発分が59.9%であるアクリル(メタ)アクリレート樹脂(B-1)の溶液1000質量部を得た。このアクリル(メタ)アクリレート樹脂(B-1)の重量平均分子量(Mw)は24,300、原料の仕込み比から算出される(メタ)アクリロイル基当量の理論値は1530g/当量であった。
(合成例7~14:アクリル(メタ)アクリレート樹脂(B-2)~(B-9)の調製)
 表2及び3に示す配合比率に変更した以外は、合成例6と同様の方法でアクリル(メタ)アクリレート(B-2)~(B-9)を得た。
(合成例15:アクリル(メタ)アクリレート樹脂(RB-1)の調製)
 表3に示す配合比率に変更した以外は、合成例6と同様の方法でアクリル(メタ)アクリレート(RB-1)を得た。
 合成例6~15で得たアクリル(メタ)アクリレート(B-1)~(B-9)、及び(RB-1)の組成及び性状値を表1及び2に示す。
Figure JPOXMLDOC01-appb-T000017
 表1中の略号は以下の通りである。
MMA:メチルメタクリレート(ホモポリマーのTg:105℃)
GMA:グリシジルメタクリレート(ホモポリマーのTg:4℃)
AA:アクリル酸(ホモポリマーのTg:-15℃)
MIBK:メチルイソブチルケトン
P-O:t-ブチルパーオキシ-2-エチルヘキサノエート(日本乳化剤株式会社製「パーブチルO」)
MQ:メトキノン(パラメトキシフェノール)
TPP:トリフェニルホスフィン
Figure JPOXMLDOC01-appb-T000018
 表2中の略号は以下の通りである。
 t-BMA:ターシャルブチルメタクリレート(ホモポリマーのTg:107℃) 
 CHMA:シクロへキシルメタクリレート(ホモポリマーのTg:66℃)
 IBXMA:イソボルニルメタクリレート(ホモポリマーのTg:180℃)
 BZMA:ベンジルメタクリレート(ホモポリマーのTg:54℃)
(実施例1:活性エネルギー線硬化性樹脂組成物(1)の調製及び評価)
 合成例1で得た複合樹脂(A-1)の溶液10質量部(複合樹脂(A-1)として6質量部)、合成例6で得たアクリル(メタ)アクリレート樹脂(B-1)の溶液157質量部(アクリル(メタ)アクリレート樹脂(B-1)として94質量部)、及び光重合開始剤(IGM Resins社製「Omnirad-184」)2.4質量部を混合し、活性エネルギー線硬化性樹脂組成物(1)を得た。
[評価用硬化塗膜の作製方法]
 上記で得た活性エネルギー線硬化性樹脂組成物をポリカーボネート基材上に硬化塗膜の膜厚が20μmとなるように塗装し、80℃の環境下で2分間乾燥させた後、80W/cmの高圧水銀灯下、1000mJを照射して硬化塗膜を得た。
[塗膜外観の評価]
 上記で得た評価用硬化塗膜を目視で観察し、下記の基準で塗膜外観を評価した。
  ○:クラックの発生が認められない。
  △:若干のクラックの発生が認められる。
  ×:クラックの発生が認められる。
[密着性の評価]
 上記で得た評価用硬化塗膜について、JIS K-5600 碁盤目試験法に基づいて測定した。前記硬化塗膜の上にカッターで1mm幅の切込みを入れ碁盤目の数を100個とし、全ての碁盤目を覆うようにセロハンテープを貼り付け、すばやく引き剥がして付着して残っている碁盤目の数を数え、下記の基準で評価した。
 ○:はがれなし。
 △:はがれの面積は、全碁盤目面積の1~64%。
 ×:はがれの面積は、全碁盤目面積の65%以上。
[耐溶剤性の評価]
 メチルエチルケトンを浸み込ませたフェルトで、上記で得た評価用硬化塗膜上を往復50回ラビングしたのちの硬化塗膜の状態を、指触及び目視により判定し、下記の基準で評価した。
 ○:軟化及び光沢低下が認められない。
 △:若干の軟化又は光沢低下が認められる。
 ×:著しい軟化又は光沢低下が認められる。
[耐擦傷性の評価]
 スチ-ルウ-ル(日本スチ-ルウ-ル株式会社製「ボンスタ-#0000」)0.5gで直径2.4センチメ-トルの円盤状の圧子を包み、該圧子に500g重の荷重をかけて、上記で得た評価用硬化塗膜上を10往復させる磨耗試験を行った。磨耗試験前後の硬化塗膜のヘ-ズ値を日本電色工業株式会社製「濁度計NDH5000」を用いて測定し、それらの差の値(dH)を用いて、以下の基準に従い評価した。なお、差の値(dH)が小さいほど、擦傷に対する耐性が高い。
 〇:dHが、1.0%以下。
 △:dHが、1.0%超~3.0%以下。
 ×:dHが、3.0%超。
[耐候性(外観)の評価]
 上記で得た評価用硬化塗膜について、デューパネル光ウェザーメーター(スガ試験機株式会社製、光照射時:30W/m、70℃;湿潤時:湿度90%以上、50℃、光照射/湿潤サイクル=8時間/4時間)で1,000時間曝露を行なった後の塗膜を目視で観察し、下記の基準で塗膜外観を評価した。
 ○:クラックの発生が認められない。
 △:若干のクラックの発生が認められる。
 ×:クラックの発生が認められる。
[耐候性(光沢保持率)の評価]
 作製直後の評価用硬化塗膜Aの鏡面反射率(光沢値)(%)と、評価用硬化塗膜Aを、QUV紫外線蛍光ランプ式促進耐候試験機(Q-Lab Corporation製、制御波長310nm、光照射時:0.71W/m、60℃;湿潤時:湿度90%以上、50℃、光照射/湿潤サイクル=4時間/4時間)で1,000時間曝露した後の塗膜の鏡面反射率(光沢値)(%)の、曝露前の硬化塗膜の鏡面反射率(光沢値)に対する保持率(光沢保持率:%)〔(100×曝露後の塗膜の鏡面反射率)/(曝露前の硬化塗膜の鏡面反射率)〕で評価した。保持率の値が大きいほど、耐候性が良好であることを示す。鏡面反射率はBYK株式会社製のマイクロ-トリ-グロスを用いて測定した。
[耐汚染性の評価]
 上記で得た評価用硬化塗膜について、大阪府高石市のDIC株式会社堺工場内において3か月間曝露を行なった。曝露試験後の未洗浄の塗膜と、曝露試験前の塗膜との色差(ΔE)を、コニカミノルタセンシング株式会社製「CM-3500d」を用いて評価した。前記色差(ΔE)が小さいほど、耐汚染性が良好であることを示す。
[加工性の評価]
 加工性の評価として、塗膜伸度を測定した。塗膜伸度が大きいほど加工性に優れる。
(塗膜伸度の測定方法)
 上記で得た活性エネルギー線硬化性樹脂組成物を厚さ125μmのポリエチレンテレフタラート(PET)フィルムにバーコーターで塗布し、80℃で1分間乾燥した。次いで、空気雰囲気下、高圧水銀ランプで紫外線を照射することで(1000mJ/cm)、PETフィルム上に膜厚5μmの硬化物が積層された積層フィルムを得た。
 積層フィルムを幅10mm×長さ100mmの試験片となるように切り出しを行い、 得られた試験片に対して、以下の条件で引張試験を行った。
 株式会社島津製作所製「オートグラフAGS-1kNG(引張速度;10mm/分、チャック間距離;40mm、測定雰囲気:25℃)」
(実施例2~15:活性エネルギー線硬化性樹脂組成物(2)~(15)の調製)
 表3~5に示す配合比率に変更した以外は、実施例1と同様にして、活性エネルギー線硬化性樹脂組成物(2)~(15)を得た後、各評価を行った。
(比較例1~3:アクリルアクリレート樹脂(R1)~(R3)の調製)
 表6に示す配合比率に変更した以外は、実施例1と同様にして、活性エネルギー線硬化性樹脂組成物(R1)~(R3)を得た後、各評価を行った。
 実施例1~15及び比較例1~3で調製した活性エネルギー線硬化性樹脂(1)~(15)、(R1)~(R3)の組成及び評価結果を表3~6に示す。
Figure JPOXMLDOC01-appb-T000019
Figure JPOXMLDOC01-appb-T000020
Figure JPOXMLDOC01-appb-T000021
 表5中の略号は以下の通りである。
DPHA:ジペンタエリスリトールペンタアクリレートとジペンタエリスリトールヘキサアクリレートの混合物
PETA:ペンタエリスリトールテトラアクリレートとペンタエリスリトールトリアクリレートの混合物
光重合開始剤:Omnirad 184(IGM Resins社製「Omnirad 184」)
Figure JPOXMLDOC01-appb-T000022
 本発明の活性エネルギー線硬化性樹脂組成物である実施例1~15から得られる硬化塗膜は、塗膜外観、密着性、耐溶剤性、耐擦傷性、耐候性、耐汚染性及び加工性に優れることが確認された。
 一方、比較例1は、本発明の必須成分であるアクリル(メタ)アクリレート(B)を含有しない例であるが、塗膜伸度が低く、加工性が不十分であることが確認された。
 比較例2は、本発明の必須成分である複合樹脂(A)を含有しない例であるが、耐候性が不十分であることが確認された。
 比較例3は、アクリル(メタ)アクリレート(B)の重量平均分子量が下限である10,000より低い例であるが、塗膜伸度が低く、加工性が不十分であることが確認された。

Claims (7)

  1.  複合樹脂(A)、アクリル(メタ)アクリレート樹脂(B)、及び光重合開始剤(C)を含有する活性エネルギー線硬化性樹脂組成物であって、前記複合樹脂(A)が、一般式(1)及び/又は一般式(2)で表される構造単位と、シラノール基及び/又は加水分解性シリル基とを有するポリシロキサンセグメント(a1)と、ビニル系重合体セグメント(a2)とが、一般式(3)で表される結合により結合されたものであり、前記アクリル(メタ)アクリレート樹脂(B)の重量平均分子量が、10,000~70,000であることを特徴とする活性エネルギー線硬化性樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001

    Figure JPOXMLDOC01-appb-C000002

    (一般式(1)及び(2)中、R、R及びRは、それぞれ独立して、-R-CH=CH、-R-C(CH)=CH、-R-O-CO-C(CH)=CH、及び-R-O-CO-CH=CHからなる群から選ばれる1つの重合性二重結合を有する基(但し、Rは単結合または炭素原子数1~6のアルキレン基を表す。)、炭素原子数が1~6のアルキル基、炭素原子数が3~8のシクロアルキル基、アリール基、または炭素原子数が7~12のアラルキル基を表す。)
    Figure JPOXMLDOC01-appb-C000003

    (一般式(3)中、炭素原子は前記ビニル系重合体セグメント(a2)の一部分を構成し、酸素原子のみに結合したケイ素原子は、前記ポリシロキサンセグメント(a1)の一部分を構成するものとする)
  2.  前記アクリル(メタ)アクリレート樹脂(B)が、グリシジル基含有(メタ)アクリレートモノマー(x1)を必須原料とするアクリル重合体(b1)と、水酸基含有(メタ)アクリレートモノマー(x2)及び/又はカルボキシ基含有(メタ)アクリレートモノマー(x3)との反応物である請求項1記載の活性エネルギー線硬化性樹脂組成物。
  3.  前記アクリル(メタ)アクリレート樹脂(B)の(メタ)アクリロイル基当量が、300~3,000g/eqである請求項1又は2記載の活性エネルギー線硬化性樹脂組成物。
  4.  前記複合樹脂(A)と前記アクリル(メタ)アクリレート樹脂(B)との質量比(A/B)が、2/98~90/10である請求項1~3いずれか1項記載の活性エネルギー線硬化性樹脂組成物。
  5.  全樹脂成分中の前記ポリシロキサンセグメント(a1)の含有量が、2~55質量%である請求項1~4いずれか1項記載の活性エネルギー線硬化性樹脂組成物。
  6.  請求項1~5いずれか1項記載の活性エネルギー線硬化性樹脂組成物の硬化塗膜。
  7.  請求項6記載の硬化塗膜を有する物品。
PCT/JP2022/044315 2021-12-23 2022-12-01 活性エネルギー線硬化性樹脂組成物、硬化塗膜及び物品 WO2023120089A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020247010310A KR20240051227A (ko) 2021-12-23 2022-12-01 활성 에너지선 경화성 수지 조성물, 경화 도막 및 물품
JP2023562742A JP7495016B2 (ja) 2021-12-23 2022-12-01 活性エネルギー線硬化性樹脂組成物、硬化塗膜及び物品
CN202280070665.2A CN118234768A (zh) 2021-12-23 2022-12-01 活性能量射线固化性树脂组合物、固化涂膜和物品

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-209180 2021-12-23
JP2021209180 2021-12-23

Publications (1)

Publication Number Publication Date
WO2023120089A1 true WO2023120089A1 (ja) 2023-06-29

Family

ID=86902086

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/044315 WO2023120089A1 (ja) 2021-12-23 2022-12-01 活性エネルギー線硬化性樹脂組成物、硬化塗膜及び物品

Country Status (4)

Country Link
JP (1) JP7495016B2 (ja)
KR (1) KR20240051227A (ja)
CN (1) CN118234768A (ja)
WO (1) WO2023120089A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006328354A (ja) * 2005-03-08 2006-12-07 Dainippon Ink & Chem Inc 紫外線硬化性樹脂組成物、紫外線硬化性塗料及び塗装物。
JP2007224312A (ja) * 2007-04-06 2007-09-06 Nippon Shokubai Co Ltd 複合微粒子の製造方法
JP2013199522A (ja) * 2012-03-23 2013-10-03 Kansai Paint Co Ltd 活性エネルギー線硬化性組成物及び塗装フィルム
JP2016017151A (ja) * 2014-07-09 2016-02-01 Dic株式会社 硬化物及び硬化物の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006328354A (ja) * 2005-03-08 2006-12-07 Dainippon Ink & Chem Inc 紫外線硬化性樹脂組成物、紫外線硬化性塗料及び塗装物。
JP2007224312A (ja) * 2007-04-06 2007-09-06 Nippon Shokubai Co Ltd 複合微粒子の製造方法
JP2013199522A (ja) * 2012-03-23 2013-10-03 Kansai Paint Co Ltd 活性エネルギー線硬化性組成物及び塗装フィルム
JP2016017151A (ja) * 2014-07-09 2016-02-01 Dic株式会社 硬化物及び硬化物の製造方法

Also Published As

Publication number Publication date
JPWO2023120089A1 (ja) 2023-06-29
CN118234768A (zh) 2024-06-21
KR20240051227A (ko) 2024-04-19
JP7495016B2 (ja) 2024-06-04

Similar Documents

Publication Publication Date Title
JP6127363B2 (ja) 活性エネルギー線硬化性樹脂組成物およびそれを用いた積層体
JP4985879B2 (ja) 表面に微細な凹凸を有する成形体及びその製造方法
US8962727B2 (en) Inorganic fine particle dispersant and inorganic fine particle dispersion using the same
JP2024056917A (ja) 高耐久防曇塗膜およびコーティング組成物
US8889759B2 (en) Active energy ray-curable composition, and coated article
US20120103398A1 (en) Surface-treated substrate, light-receiving-side protective sheet for solar cell using the same, and solar cell module
JP6349683B2 (ja) 積層体
CN102171037A (zh) 光催化剂负载片材和光催化剂负载片材用底漆
JP5464051B2 (ja) 硬化性樹脂組成物、太陽電池用保護シート及び太陽電池モジュール
JP7338154B2 (ja) 活性エネルギー線硬化型樹脂組成物及び積層体
JP7131695B2 (ja) 活性エネルギー線硬化性樹脂組成物、硬化物、積層体及び物品
JP7360274B2 (ja) 高耐久防曇塗膜およびコーティング組成物
CN115175807B (zh) 层积体、硬涂涂膜和涂料组合物
JP2013010921A (ja) 活性エネルギー線硬化性組成物および積層体
JP7495016B2 (ja) 活性エネルギー線硬化性樹脂組成物、硬化塗膜及び物品
CN110741025B (zh) 固化性组合物和层叠薄膜
JP2023143911A (ja) 活性エネルギー線硬化性樹脂組成物、積層フィルム、その製造方法、及び加飾フィルムの製造方法
JP6919308B2 (ja) (メタ)アクリロイル基含有樹脂及び積層フィルム
JP7364098B2 (ja) アクリル(メタ)アクリレート樹脂、活性エネルギー線硬化性樹脂組成物、硬化物及び物品
JP7346817B2 (ja) 積層体及びその用途
JP7013682B2 (ja) ウレタン(メタ)アクリレート樹脂
JP2016097553A (ja) 光学フィルム及びその製造方法ならびに情報表示装置及び車載用情報表示装置
CN115466551A (zh) 无机微粒分散体、活性能量射线固化性组合物、固化物、层叠体和物品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22910806

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023562742

Country of ref document: JP

ENP Entry into the national phase

Ref document number: 20247010310

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 202280070665.2

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE