WO2023119947A1 - Electrolytic solution for lithium ion secondary battery and lithium ion secondary battery - Google Patents
Electrolytic solution for lithium ion secondary battery and lithium ion secondary battery Download PDFInfo
- Publication number
- WO2023119947A1 WO2023119947A1 PCT/JP2022/042308 JP2022042308W WO2023119947A1 WO 2023119947 A1 WO2023119947 A1 WO 2023119947A1 JP 2022042308 W JP2022042308 W JP 2022042308W WO 2023119947 A1 WO2023119947 A1 WO 2023119947A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- ion secondary
- secondary battery
- electrolytic solution
- lithium
- negative electrode
- Prior art date
Links
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium ion Chemical compound [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 title claims abstract description 106
- 229910001416 lithium ion Inorganic materials 0.000 title claims abstract description 106
- 239000008151 electrolyte solution Substances 0.000 title claims abstract description 99
- 150000001298 alcohols Chemical class 0.000 claims abstract description 58
- 239000003792 electrolyte Substances 0.000 claims description 42
- 125000000217 alkyl group Chemical group 0.000 claims description 29
- 150000005676 cyclic carbonates Chemical class 0.000 claims description 12
- 150000005678 chain carbonates Chemical class 0.000 claims description 7
- 125000004435 hydrogen atom Chemical group [H]* 0.000 claims description 7
- AQYSYJUIMQTRMV-UHFFFAOYSA-N hypofluorous acid Chemical compound FO AQYSYJUIMQTRMV-UHFFFAOYSA-N 0.000 abstract 1
- 239000010410 layer Substances 0.000 description 60
- 150000001875 compounds Chemical class 0.000 description 30
- 239000002904 solvent Substances 0.000 description 26
- -1 ethanol Chemical compound 0.000 description 25
- 239000000203 mixture Substances 0.000 description 23
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 19
- 230000000694 effects Effects 0.000 description 19
- 238000000034 method Methods 0.000 description 19
- 229910052744 lithium Inorganic materials 0.000 description 18
- 239000007774 positive electrode material Substances 0.000 description 18
- 238000007600 charging Methods 0.000 description 17
- 239000007773 negative electrode material Substances 0.000 description 17
- 238000007789 sealing Methods 0.000 description 17
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 16
- 239000004020 conductor Substances 0.000 description 16
- 229920000642 polymer Polymers 0.000 description 16
- 238000005516 engineering process Methods 0.000 description 15
- 150000003839 salts Chemical class 0.000 description 14
- 238000007599 discharging Methods 0.000 description 13
- 238000003860 storage Methods 0.000 description 13
- 238000001514 detection method Methods 0.000 description 11
- 229940021013 electrolyte solution Drugs 0.000 description 11
- 230000014759 maintenance of location Effects 0.000 description 11
- 239000007769 metal material Substances 0.000 description 11
- 239000002002 slurry Substances 0.000 description 10
- 238000002845 discoloration Methods 0.000 description 9
- 239000011883 electrode binding agent Substances 0.000 description 9
- 238000004519 manufacturing process Methods 0.000 description 9
- 239000000126 substance Substances 0.000 description 9
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 8
- 125000002023 trifluoromethyl group Chemical group FC(F)(F)* 0.000 description 8
- 230000004927 fusion Effects 0.000 description 7
- 229910052751 metal Inorganic materials 0.000 description 7
- 238000012360 testing method Methods 0.000 description 7
- 239000002033 PVDF binder Substances 0.000 description 6
- 230000009471 action Effects 0.000 description 6
- 229910052782 aluminium Inorganic materials 0.000 description 6
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 6
- 239000000463 material Substances 0.000 description 6
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 description 6
- 229920002981 polyvinylidene fluoride Polymers 0.000 description 6
- 238000002360 preparation method Methods 0.000 description 6
- 239000004743 Polypropylene Substances 0.000 description 5
- 239000003125 aqueous solvent Substances 0.000 description 5
- 238000000576 coating method Methods 0.000 description 5
- 239000006258 conductive agent Substances 0.000 description 5
- 239000000470 constituent Substances 0.000 description 5
- 238000000151 deposition Methods 0.000 description 5
- 239000012528 membrane Substances 0.000 description 5
- 239000002184 metal Substances 0.000 description 5
- 230000002093 peripheral effect Effects 0.000 description 5
- 229920001155 polypropylene Polymers 0.000 description 5
- 239000002243 precursor Substances 0.000 description 5
- 239000000243 solution Substances 0.000 description 5
- 238000004804 winding Methods 0.000 description 5
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 4
- 239000000654 additive Substances 0.000 description 4
- 239000003575 carbonaceous material Substances 0.000 description 4
- 230000008021 deposition Effects 0.000 description 4
- 229910002804 graphite Inorganic materials 0.000 description 4
- 239000010439 graphite Substances 0.000 description 4
- 239000002245 particle Substances 0.000 description 4
- 239000011241 protective layer Substances 0.000 description 4
- 230000006641 stabilisation Effects 0.000 description 4
- 238000011105 stabilization Methods 0.000 description 4
- WEVYAHXRMPXWCK-UHFFFAOYSA-N Acetonitrile Chemical compound CC#N WEVYAHXRMPXWCK-UHFFFAOYSA-N 0.000 description 3
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 3
- RHQDFWAXVIIEBN-UHFFFAOYSA-N Trifluoroethanol Chemical compound OCC(F)(F)F RHQDFWAXVIIEBN-UHFFFAOYSA-N 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000354 decomposition reaction Methods 0.000 description 3
- JBTWLSYIZRCDFO-UHFFFAOYSA-N ethyl methyl carbonate Chemical compound CCOC(=O)OC JBTWLSYIZRCDFO-UHFFFAOYSA-N 0.000 description 3
- 238000011156 evaluation Methods 0.000 description 3
- 239000011888 foil Substances 0.000 description 3
- 150000002596 lactones Chemical class 0.000 description 3
- PQXKHYXIUOZZFA-UHFFFAOYSA-M lithium fluoride Chemical compound [Li+].[F-] PQXKHYXIUOZZFA-UHFFFAOYSA-M 0.000 description 3
- 229910003002 lithium salt Inorganic materials 0.000 description 3
- 159000000002 lithium salts Chemical class 0.000 description 3
- 238000002156 mixing Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 239000003960 organic solvent Substances 0.000 description 3
- 229920000098 polyolefin Polymers 0.000 description 3
- 238000001556 precipitation Methods 0.000 description 3
- 238000003825 pressing Methods 0.000 description 3
- 239000011347 resin Substances 0.000 description 3
- 229920005989 resin Polymers 0.000 description 3
- YEJRWHAVMIAJKC-UHFFFAOYSA-N 4-Butyrolactone Chemical compound O=C1CCCO1 YEJRWHAVMIAJKC-UHFFFAOYSA-N 0.000 description 2
- 229920002134 Carboxymethyl cellulose Polymers 0.000 description 2
- XTHFKEDIFFGKHM-UHFFFAOYSA-N Dimethoxyethane Chemical compound COCCOC XTHFKEDIFFGKHM-UHFFFAOYSA-N 0.000 description 2
- KMTRUDSVKNLOMY-UHFFFAOYSA-N Ethylene carbonate Chemical compound O=C1OCCO1 KMTRUDSVKNLOMY-UHFFFAOYSA-N 0.000 description 2
- 229910013870 LiPF 6 Inorganic materials 0.000 description 2
- SECXISVLQFMRJM-UHFFFAOYSA-N N-Methylpyrrolidone Chemical compound CN1CCCC1=O SECXISVLQFMRJM-UHFFFAOYSA-N 0.000 description 2
- 238000005481 NMR spectroscopy Methods 0.000 description 2
- 239000004698 Polyethylene Substances 0.000 description 2
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 2
- PPBRXRYQALVLMV-UHFFFAOYSA-N Styrene Chemical compound C=CC1=CC=CC=C1 PPBRXRYQALVLMV-UHFFFAOYSA-N 0.000 description 2
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 2
- 150000008065 acid anhydrides Chemical class 0.000 description 2
- 230000000996 additive effect Effects 0.000 description 2
- 239000000956 alloy Substances 0.000 description 2
- 229910045601 alloy Inorganic materials 0.000 description 2
- 229910021383 artificial graphite Inorganic materials 0.000 description 2
- 125000000484 butyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- 125000004432 carbon atom Chemical group C* 0.000 description 2
- 239000002041 carbon nanotube Substances 0.000 description 2
- 229910021393 carbon nanotube Inorganic materials 0.000 description 2
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 2
- 239000001768 carboxy methyl cellulose Substances 0.000 description 2
- 235000010948 carboxy methyl cellulose Nutrition 0.000 description 2
- 150000001733 carboxylic acid esters Chemical class 0.000 description 2
- 239000008112 carboxymethyl-cellulose Substances 0.000 description 2
- 239000006182 cathode active material Substances 0.000 description 2
- 238000000748 compression moulding Methods 0.000 description 2
- 229910052802 copper Inorganic materials 0.000 description 2
- 239000010949 copper Substances 0.000 description 2
- 239000011889 copper foil Substances 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 150000002170 ethers Chemical class 0.000 description 2
- FKRCODPIKNYEAC-UHFFFAOYSA-N ethyl propionate Chemical compound CCOC(=O)CC FKRCODPIKNYEAC-UHFFFAOYSA-N 0.000 description 2
- 238000003682 fluorination reaction Methods 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 125000001153 fluoro group Chemical group F* 0.000 description 2
- GAEKPEKOJKCEMS-UHFFFAOYSA-N gamma-valerolactone Chemical compound CC1CCC(=O)O1 GAEKPEKOJKCEMS-UHFFFAOYSA-N 0.000 description 2
- 229910010272 inorganic material Inorganic materials 0.000 description 2
- 239000011147 inorganic material Substances 0.000 description 2
- 239000012948 isocyanate Substances 0.000 description 2
- 238000005304 joining Methods 0.000 description 2
- 239000003273 ketjen black Substances 0.000 description 2
- 239000005001 laminate film Substances 0.000 description 2
- 239000011244 liquid electrolyte Substances 0.000 description 2
- 238000007500 overflow downdraw method Methods 0.000 description 2
- 229920006280 packaging film Polymers 0.000 description 2
- 239000012785 packaging film Substances 0.000 description 2
- 235000011837 pasties Nutrition 0.000 description 2
- 150000003014 phosphoric acid esters Chemical class 0.000 description 2
- 150000003016 phosphoric acids Chemical class 0.000 description 2
- 229920000573 polyethylene Polymers 0.000 description 2
- 238000012545 processing Methods 0.000 description 2
- 125000001436 propyl group Chemical group [H]C([*])([H])C([H])([H])C([H])([H])[H] 0.000 description 2
- OSFBJERFMQCEQY-UHFFFAOYSA-N propylidene Chemical compound [CH]CC OSFBJERFMQCEQY-UHFFFAOYSA-N 0.000 description 2
- 230000001603 reducing effect Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 229910052814 silicon oxide Inorganic materials 0.000 description 2
- 150000003871 sulfonates Chemical class 0.000 description 2
- 229920003051 synthetic elastomer Polymers 0.000 description 2
- 239000005061 synthetic rubber Substances 0.000 description 2
- 229910052723 transition metal Inorganic materials 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- BYEAHWXPCBROCE-UHFFFAOYSA-N 1,1,1,3,3,3-hexafluoropropan-2-ol Chemical compound FC(F)(F)C(O)C(F)(F)F BYEAHWXPCBROCE-UHFFFAOYSA-N 0.000 description 1
- JCSRVIQQOQNBKC-UHFFFAOYSA-N 1,1,2,2-tetrafluoro-3-(2,2,3,3-tetrafluoropropoxy)propane Chemical compound FC(F)C(F)(F)COCC(F)(F)C(F)F JCSRVIQQOQNBKC-UHFFFAOYSA-N 0.000 description 1
- NCYNKWQXFADUOZ-UHFFFAOYSA-N 1,1-dioxo-2,1$l^{6}-benzoxathiol-3-one Chemical compound C1=CC=C2C(=O)OS(=O)(=O)C2=C1 NCYNKWQXFADUOZ-UHFFFAOYSA-N 0.000 description 1
- OQHXCCQBSGTCGM-UHFFFAOYSA-N 1,2,5-oxadithiolane 2,2,5,5-tetraoxide Chemical compound O=S1(=O)CCS(=O)(=O)O1 OQHXCCQBSGTCGM-UHFFFAOYSA-N 0.000 description 1
- FSSPGSAQUIYDCN-UHFFFAOYSA-N 1,3-Propane sultone Chemical compound O=S1(=O)CCCO1 FSSPGSAQUIYDCN-UHFFFAOYSA-N 0.000 description 1
- VAYTZRYEBVHVLE-UHFFFAOYSA-N 1,3-dioxol-2-one Chemical compound O=C1OC=CO1 VAYTZRYEBVHVLE-UHFFFAOYSA-N 0.000 description 1
- WNXJIVFYUVYPPR-UHFFFAOYSA-N 1,3-dioxolane Chemical compound C1COCO1 WNXJIVFYUVYPPR-UHFFFAOYSA-N 0.000 description 1
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 1
- HNAGHMKIPMKKBB-UHFFFAOYSA-N 1-benzylpyrrolidine-3-carboxamide Chemical compound C1C(C(=O)N)CCN1CC1=CC=CC=C1 HNAGHMKIPMKKBB-UHFFFAOYSA-N 0.000 description 1
- PSQZJKGXDGNDFP-UHFFFAOYSA-N 2,2,3,3,3-pentafluoropropan-1-ol Chemical compound OCC(F)(F)C(F)(F)F PSQZJKGXDGNDFP-UHFFFAOYSA-N 0.000 description 1
- WXJFKAZDSQLPBX-UHFFFAOYSA-N 2,2,3,3,4,4,4-heptafluorobutan-1-ol Chemical compound OCC(F)(F)C(F)(F)C(F)(F)F WXJFKAZDSQLPBX-UHFFFAOYSA-N 0.000 description 1
- UHOPWFKONJYLCF-UHFFFAOYSA-N 2-(2-sulfanylethyl)isoindole-1,3-dione Chemical compound C1=CC=C2C(=O)N(CCS)C(=O)C2=C1 UHOPWFKONJYLCF-UHFFFAOYSA-N 0.000 description 1
- FALRKNHUBBKYCC-UHFFFAOYSA-N 2-(chloromethyl)pyridine-3-carbonitrile Chemical compound ClCC1=NC=CC=C1C#N FALRKNHUBBKYCC-UHFFFAOYSA-N 0.000 description 1
- BJWMSGRKJIOCNR-UHFFFAOYSA-N 4-ethenyl-1,3-dioxolan-2-one Chemical compound C=CC1COC(=O)O1 BJWMSGRKJIOCNR-UHFFFAOYSA-N 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- QQJFVTIFADPLJE-UHFFFAOYSA-N C(O)(=O)F.C=C Chemical compound C(O)(=O)F.C=C QQJFVTIFADPLJE-UHFFFAOYSA-N 0.000 description 1
- OIFBSDVPJOWBCH-UHFFFAOYSA-N Diethyl carbonate Chemical compound CCOC(=O)OCC OIFBSDVPJOWBCH-UHFFFAOYSA-N 0.000 description 1
- 229910005143 FSO2 Inorganic materials 0.000 description 1
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 1
- 239000005057 Hexamethylene diisocyanate Substances 0.000 description 1
- JGFBQFKZKSSODQ-UHFFFAOYSA-N Isothiocyanatocyclopropane Chemical compound S=C=NC1CC1 JGFBQFKZKSSODQ-UHFFFAOYSA-N 0.000 description 1
- 229910004190 Li1.15(Mn0.65Ni0.22Co0.13)O2 Inorganic materials 0.000 description 1
- 229910008744 Li1.2Mn0.52Co0.175Ni0.1O2 Inorganic materials 0.000 description 1
- 229910008975 Li2PFO3 Inorganic materials 0.000 description 1
- 229910013063 LiBF 4 Inorganic materials 0.000 description 1
- 229910012278 LiCo0.98Al0.01Mg0.01O2 Inorganic materials 0.000 description 1
- 229910012851 LiCoO 2 Inorganic materials 0.000 description 1
- 229910032387 LiCoO2 Inorganic materials 0.000 description 1
- 229910011857 LiFe0.3Mn0.7PO4 Inorganic materials 0.000 description 1
- 229910011990 LiFe0.5Mn0.5PO4 Inorganic materials 0.000 description 1
- 229910052493 LiFePO4 Inorganic materials 0.000 description 1
- 229910000668 LiMnPO4 Inorganic materials 0.000 description 1
- 229910002991 LiNi0.5Co0.2Mn0.3O2 Inorganic materials 0.000 description 1
- 229910002995 LiNi0.8Co0.15Al0.05O2 Inorganic materials 0.000 description 1
- 229910003005 LiNiO2 Inorganic materials 0.000 description 1
- 229910013874 LiPF2O2 Inorganic materials 0.000 description 1
- 229910002097 Lithium manganese(III,IV) oxide Inorganic materials 0.000 description 1
- RJUFJBKOKNCXHH-UHFFFAOYSA-N Methyl propionate Chemical compound CCC(=O)OC RJUFJBKOKNCXHH-UHFFFAOYSA-N 0.000 description 1
- 239000004677 Nylon Substances 0.000 description 1
- RFFFKMOABOFIDF-UHFFFAOYSA-N Pentanenitrile Chemical compound CCCCC#N RFFFKMOABOFIDF-UHFFFAOYSA-N 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- XBDQKXXYIPTUBI-UHFFFAOYSA-M Propionate Chemical compound CCC([O-])=O XBDQKXXYIPTUBI-UHFFFAOYSA-M 0.000 description 1
- 229910008484 TiSi Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 description 1
- 230000002159 abnormal effect Effects 0.000 description 1
- KXKVLQRXCPHEJC-UHFFFAOYSA-N acetic acid trimethyl ester Natural products COC(C)=O KXKVLQRXCPHEJC-UHFFFAOYSA-N 0.000 description 1
- 239000006230 acetylene black Substances 0.000 description 1
- BTGRAWJCKBQKAO-UHFFFAOYSA-N adiponitrile Chemical compound N#CCCCCC#N BTGRAWJCKBQKAO-UHFFFAOYSA-N 0.000 description 1
- 150000004703 alkoxides Chemical class 0.000 description 1
- 229910003481 amorphous carbon Inorganic materials 0.000 description 1
- 239000006183 anode active material Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000009529 body temperature measurement Methods 0.000 description 1
- 229910001593 boehmite Inorganic materials 0.000 description 1
- KGBXLFKZBHKPEV-UHFFFAOYSA-N boric acid Chemical class OB(O)O KGBXLFKZBHKPEV-UHFFFAOYSA-N 0.000 description 1
- PPTSBERGOGHCHC-UHFFFAOYSA-N boron lithium Chemical compound [Li].[B] PPTSBERGOGHCHC-UHFFFAOYSA-N 0.000 description 1
- OBNCKNCVKJNDBV-UHFFFAOYSA-N butanoic acid ethyl ester Natural products CCCC(=O)OCC OBNCKNCVKJNDBV-UHFFFAOYSA-N 0.000 description 1
- PWLNAUNEAKQYLH-UHFFFAOYSA-N butyric acid octyl ester Natural products CCCCCCCCOC(=O)CCC PWLNAUNEAKQYLH-UHFFFAOYSA-N 0.000 description 1
- 239000003990 capacitor Substances 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 239000002134 carbon nanofiber Substances 0.000 description 1
- HRSNTDPZHQCOGI-UHFFFAOYSA-N carbonyl difluoride ethene Chemical compound C=C.C(=O)(F)F HRSNTDPZHQCOGI-UHFFFAOYSA-N 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 229920001940 conductive polymer Polymers 0.000 description 1
- 238000010280 constant potential charging Methods 0.000 description 1
- 238000010277 constant-current charging Methods 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- SXWUDUINABFBMK-UHFFFAOYSA-L dilithium;fluoro-dioxido-oxo-$l^{5}-phosphane Chemical compound [Li+].[Li+].[O-]P([O-])(F)=O SXWUDUINABFBMK-UHFFFAOYSA-L 0.000 description 1
- IEJIGPNLZYLLBP-UHFFFAOYSA-N dimethyl carbonate Chemical compound COC(=O)OC IEJIGPNLZYLLBP-UHFFFAOYSA-N 0.000 description 1
- 238000004993 emission spectroscopy Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- HHEIMYAXCOIQCJ-UHFFFAOYSA-N ethyl 2,2-dimethylpropanoate Chemical compound CCOC(=O)C(C)(C)C HHEIMYAXCOIQCJ-UHFFFAOYSA-N 0.000 description 1
- 229940093499 ethyl acetate Drugs 0.000 description 1
- 125000001495 ethyl group Chemical group [H]C([H])([H])C([H])([H])* 0.000 description 1
- 239000000835 fiber Substances 0.000 description 1
- 230000005669 field effect Effects 0.000 description 1
- 229920001973 fluoroelastomer Polymers 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 239000011245 gel electrolyte Substances 0.000 description 1
- 229910021469 graphitizable carbon Inorganic materials 0.000 description 1
- 230000017525 heat dissipation Effects 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- RRAMGCGOFNQTLD-UHFFFAOYSA-N hexamethylene diisocyanate Chemical compound O=C=NCCCCCCN=C=O RRAMGCGOFNQTLD-UHFFFAOYSA-N 0.000 description 1
- FAHBNUUHRFUEAI-UHFFFAOYSA-M hydroxidooxidoaluminium Chemical compound O[Al]=O FAHBNUUHRFUEAI-UHFFFAOYSA-M 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000009616 inductively coupled plasma Methods 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 125000000959 isobutyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])* 0.000 description 1
- 125000001449 isopropyl group Chemical group [H]C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 150000002641 lithium Chemical class 0.000 description 1
- 229910000625 lithium cobalt oxide Inorganic materials 0.000 description 1
- 229910001947 lithium oxide Inorganic materials 0.000 description 1
- 229910001496 lithium tetrafluoroborate Inorganic materials 0.000 description 1
- VDVLPSWVDYJFRW-UHFFFAOYSA-N lithium;bis(fluorosulfonyl)azanide Chemical compound [Li+].FS(=O)(=O)[N-]S(F)(=O)=O VDVLPSWVDYJFRW-UHFFFAOYSA-N 0.000 description 1
- QSZMZKBZAYQGRS-UHFFFAOYSA-N lithium;bis(trifluoromethylsulfonyl)azanide Chemical compound [Li+].FC(F)(F)S(=O)(=O)[N-]S(=O)(=O)C(F)(F)F QSZMZKBZAYQGRS-UHFFFAOYSA-N 0.000 description 1
- QVXQYMZVJNYDNG-UHFFFAOYSA-N lithium;bis(trifluoromethylsulfonyl)methylsulfonyl-trifluoromethane Chemical compound [Li+].FC(F)(F)S(=O)(=O)[C-](S(=O)(=O)C(F)(F)F)S(=O)(=O)C(F)(F)F QVXQYMZVJNYDNG-UHFFFAOYSA-N 0.000 description 1
- IGILRSKEFZLPKG-UHFFFAOYSA-M lithium;difluorophosphinate Chemical compound [Li+].[O-]P(F)(F)=O IGILRSKEFZLPKG-UHFFFAOYSA-M 0.000 description 1
- BFZPBUKRYWOWDV-UHFFFAOYSA-N lithium;oxido(oxo)cobalt Chemical compound [Li+].[O-][Co]=O BFZPBUKRYWOWDV-UHFFFAOYSA-N 0.000 description 1
- MCVFFRWZNYZUIJ-UHFFFAOYSA-M lithium;trifluoromethanesulfonate Chemical compound [Li+].[O-]S(=O)(=O)C(F)(F)F MCVFFRWZNYZUIJ-UHFFFAOYSA-M 0.000 description 1
- 239000000395 magnesium oxide Substances 0.000 description 1
- CPLXHLVBOLITMK-UHFFFAOYSA-N magnesium oxide Inorganic materials [Mg]=O CPLXHLVBOLITMK-UHFFFAOYSA-N 0.000 description 1
- AXZKOIWUVFPNLO-UHFFFAOYSA-N magnesium;oxygen(2-) Chemical compound [O-2].[Mg+2] AXZKOIWUVFPNLO-UHFFFAOYSA-N 0.000 description 1
- 238000004949 mass spectrometry Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 229910052987 metal hydride Inorganic materials 0.000 description 1
- 150000004681 metal hydrides Chemical class 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical class C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 1
- 229940017219 methyl propionate Drugs 0.000 description 1
- YKYONYBAUNKHLG-UHFFFAOYSA-N n-Propyl acetate Natural products CCCOC(C)=O YKYONYBAUNKHLG-UHFFFAOYSA-N 0.000 description 1
- 125000004108 n-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- UUIQMZJEGPQKFD-UHFFFAOYSA-N n-butyric acid methyl ester Natural products CCCC(=O)OC UUIQMZJEGPQKFD-UHFFFAOYSA-N 0.000 description 1
- 125000004123 n-propyl group Chemical group [H]C([H])([H])C([H])([H])C([H])([H])* 0.000 description 1
- 229910021382 natural graphite Inorganic materials 0.000 description 1
- 229910021470 non-graphitizable carbon Inorganic materials 0.000 description 1
- 239000011255 nonaqueous electrolyte Substances 0.000 description 1
- 229920001778 nylon Polymers 0.000 description 1
- 229920006284 nylon film Polymers 0.000 description 1
- TWNQGVIAIRXVLR-UHFFFAOYSA-N oxo(oxoalumanyloxy)alumane Chemical compound O=[Al]O[Al]=O TWNQGVIAIRXVLR-UHFFFAOYSA-N 0.000 description 1
- RVTZCBVAJQQJTK-UHFFFAOYSA-N oxygen(2-);zirconium(4+) Chemical compound [O-2].[O-2].[Zr+4] RVTZCBVAJQQJTK-UHFFFAOYSA-N 0.000 description 1
- 125000005003 perfluorobutyl group Chemical group FC(F)(F)C(F)(F)C(F)(F)C(F)(F)* 0.000 description 1
- 125000005004 perfluoroethyl group Chemical group FC(F)(F)C(F)(F)* 0.000 description 1
- 125000005009 perfluoropropyl group Chemical group FC(C(C(F)(F)F)(F)F)(F)* 0.000 description 1
- 230000000737 periodic effect Effects 0.000 description 1
- RKEWSXXUOLRFBX-UHFFFAOYSA-N pimavanserin Chemical compound C1=CC(OCC(C)C)=CC=C1CNC(=O)N(C1CCN(C)CC1)CC1=CC=C(F)C=C1 RKEWSXXUOLRFBX-UHFFFAOYSA-N 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 229940090181 propyl acetate Drugs 0.000 description 1
- QQONPFPTGQHPMA-UHFFFAOYSA-N propylene Natural products CC=C QQONPFPTGQHPMA-UHFFFAOYSA-N 0.000 description 1
- RUOJZAUFBMNUDX-UHFFFAOYSA-N propylene carbonate Chemical compound CC1COC(=O)O1 RUOJZAUFBMNUDX-UHFFFAOYSA-N 0.000 description 1
- 125000002914 sec-butyl group Chemical group [H]C([H])([H])C([H])([H])C([H])(*)C([H])([H])[H] 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- RMAQACBXLXPBSY-UHFFFAOYSA-N silicic acid Chemical class O[Si](O)(O)O RMAQACBXLXPBSY-UHFFFAOYSA-N 0.000 description 1
- 229910052710 silicon Inorganic materials 0.000 description 1
- 239000010703 silicon Substances 0.000 description 1
- LIVNPJMFVYWSIS-UHFFFAOYSA-N silicon monoxide Chemical compound [Si-]#[O+] LIVNPJMFVYWSIS-UHFFFAOYSA-N 0.000 description 1
- 229920003048 styrene butadiene rubber Polymers 0.000 description 1
- 229940014800 succinic anhydride Drugs 0.000 description 1
- IAHFWCOBPZCAEA-UHFFFAOYSA-N succinonitrile Chemical compound N#CCCC#N IAHFWCOBPZCAEA-UHFFFAOYSA-N 0.000 description 1
- 230000008961 swelling Effects 0.000 description 1
- 229920001059 synthetic polymer Polymers 0.000 description 1
- 125000000999 tert-butyl group Chemical group [H]C([H])([H])C(*)(C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 1
- 239000002562 thickening agent Substances 0.000 description 1
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 description 1
- DQWPFSLDHJDLRL-UHFFFAOYSA-N triethyl phosphate Chemical compound CCOP(=O)(OCC)OCC DQWPFSLDHJDLRL-UHFFFAOYSA-N 0.000 description 1
- WZCZNEGTXVXAAS-UHFFFAOYSA-N trifluoromethanol Chemical compound OC(F)(F)F WZCZNEGTXVXAAS-UHFFFAOYSA-N 0.000 description 1
- 125000001889 triflyl group Chemical group FC(F)(F)S(*)(=O)=O 0.000 description 1
- WVLBCYQITXONBZ-UHFFFAOYSA-N trimethyl phosphate Chemical compound COP(=O)(OC)OC WVLBCYQITXONBZ-UHFFFAOYSA-N 0.000 description 1
- YFHICDDUDORKJB-UHFFFAOYSA-N trimethylene carbonate Chemical compound O=C1OCCCO1 YFHICDDUDORKJB-UHFFFAOYSA-N 0.000 description 1
- NQPDZGIKBAWPEJ-UHFFFAOYSA-N valeric acid Chemical compound CCCCC(O)=O NQPDZGIKBAWPEJ-UHFFFAOYSA-N 0.000 description 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 1
- 229910001928 zirconium oxide Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/052—Li-accumulators
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M10/00—Secondary cells; Manufacture thereof
- H01M10/05—Accumulators with non-aqueous electrolyte
- H01M10/056—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
- H01M10/0564—Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
- H01M10/0566—Liquid materials
- H01M10/0567—Liquid materials characterised by the additives
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Definitions
- This technology relates to electrolyte solutions for lithium-ion secondary batteries and lithium-ion secondary batteries.
- lithium-ion secondary batteries Due to the widespread use of various electronic devices such as mobile phones, the development of lithium-ion secondary batteries is underway as a power source that is compact, lightweight, and provides high energy density.
- This lithium-ion secondary battery includes an electrolyte (electrolyte for lithium-ion secondary batteries) along with a positive electrode and a negative electrode, and various studies have been made on the configuration of the lithium-ion secondary battery.
- electrolyte electrolyte for lithium-ion secondary batteries
- the electrolyte of the lithium ion secondary battery contains an alcohol such as ethanol, and the content of the alcohol in the electrolyte is 0.01 ppm or more and less than 50 ppm (see, for example, Patent Document 1). ).
- the non-aqueous electrolyte of metal hydride batteries contains alcohols such as trifluoromethanol (see, for example, Patent Document 2).
- JP 2015-133236 A Japanese Patent Publication No. 2018-509743
- An electrolyte solution for a lithium ion secondary battery includes a fluorinated alcohol represented by formula (1), and the content of the fluorinated alcohol is 0.1% by weight or more and 5.0% by weight. are as follows.
- R1R2R3COH (1) (Each of R1, R2 and R3 is a hydrogen group, an alkyl group or a fluorinated alkyl group, provided that at least one of R1, R2 and R3 is a fluorinated alkyl group. )
- a lithium ion secondary battery according to an embodiment of the present technology includes a positive electrode, a negative electrode, and an electrolytic solution, and the electrolytic solution has the same configuration as the electrolytic solution for a lithium ion secondary battery according to an embodiment of the present technology. It has a configuration.
- the lithium ion secondary battery electrolyte solution contains a fluorinated alcohol, and the content of the fluorinated alcohol is is 0.1% by weight or more and 5.0% by weight or less, excellent storage characteristics and excellent charge/discharge characteristics can be obtained.
- FIG. 2 is a cross-sectional view showing the configuration of the battery element shown in FIG. 1;
- FIG. 4 is a block diagram showing the configuration of an application example of a lithium ion secondary battery;
- FIG. 2 is a cross-sectional view showing the configuration of a test lithium-ion secondary battery;
- Electrolyte solution for lithium ion secondary battery First, an electrolyte solution for a lithium ion secondary battery (hereinafter simply referred to as “electrolyte solution”) according to an embodiment of the present technology will be described.
- This electrolyte is used in lithium-ion secondary batteries, which are electrochemical devices.
- the electrolytic solution may be used in electrochemical devices other than lithium ion secondary batteries.
- Specific examples of other electrochemical devices are capacitors and the like.
- the electrolytic solution is a liquid electrolyte, and is used as a medium for lithium ions in lithium ion secondary batteries.
- the electrolytic solution contains one or more of the fluorinated alcohols represented by formula (1), and the content of the fluorinated alcohol in the electrolytic solution is 0.1% by weight to 5.0% by weight, preferably 0.3% to 3.0% by weight.
- This fluorinated alcohol is a compound in which alcohol is fluorinated.
- R1R2R3COH (1) (Each of R1, R2 and R3 is a hydrogen group, an alkyl group or a fluorinated alkyl group, provided that at least one of R1, R2 and R3 is a fluorinated alkyl group. )
- the nucleophilicity is reduced because the alcohol is fluorinated.
- the electrolytic solution contains fluorinated alcohol
- the fluorinated alcohol is less likely to react with other components in the electrolytic solution.
- Electrolyte salts and the like are less likely to deposit in the electrolytic solution. This facilitates maintaining the chemical state of the electrolyte even when the lithium ion secondary battery is stored.
- the deterioration of the electrolytic solution includes discoloration and the like, and specific examples of other components include electrolyte salts described later.
- fluorinated alcohols have high reducing properties.
- the fluorinated alcohol rapidly reacts on the surface of the negative electrode during the initial charge, so that a good film derived from the fluorinated alcohol is formed. be done.
- This coating contains fluorinated alkoxide and electrochemically stable lithium fluoride (LiF), which is believed to be formed by decomposition of the fluorinated alcohol after reduction.
- LiF electrochemically stable lithium fluoride
- R1, R2 and R3 is not particularly limited as long as it is a hydrogen group (--H), an alkyl group or a fluorinated alkyl group, as described above.
- the alkyl group may be linear or branched with one or more side chains. Although the number of carbon atoms in the alkyl group is not particularly limited, it is preferably 1 to 4. This is because the solubility and compatibility of the fluorinated alcohol are improved.
- alkyl groups include methyl, ethyl, propyl and butyl groups.
- the alkyl group is not limited to a chain shape and may be branched.
- a propyl group may be an n-propyl group or an isopropyl group.
- the butyl group may be an n-butyl group, a sec-butyl group, an isobutyl group, or a tert-butyl group.
- a fluorinated alkyl group is a group in which one or more hydrogen groups in an alkyl group have been substituted with a fluorine group.
- the details of the alkyl group are as described above.
- fluorinated alkyl groups include perfluoromethyl, perfluoroethyl, perfluoropropyl and perfluorobutyl groups.
- specific examples of the fluorine alkyl group are not limited to the perfluoro group, and may be a monofluoromethyl group, a monofluoroethyl group, a monofluoropropyl group, a monofluorobutyl group, or the like.
- R1, R2 and R3 is a fluorinated alkyl group.
- the fluorinated alcohol is a compound obtained by fluorinating an alcohol as described above, and thus contains one or more fluorine atoms as constituent elements.
- Compounds in which each of R1, R2 and R3 is either a hydrogen group or an alkyl group are thereby excluded from the fluorinated alcohols described herein.
- R1, R2 and R3 when at least one of R1, R2 and R3 is a fluorinated alkyl group, at least one of R1, R2 and R3 is a bulky group containing fluorine as a constituent element. .
- R1, R2 and R3 are preferably fluorinated alkyl groups. This is because the degree of fluorination of the fluorinated alcohol increases, so that the chemical state of the electrolytic solution is more likely to be maintained, and the discharge capacity is less likely to decrease even after repeated charging and discharging.
- fluorinated alcohols are CF3CH2OH , CF2HCH2OH , CFH2CH2OH , CF3CF2CH2OH , CF3CFHCH2OH , CF3CH2CH2OH , CF2 HCF2CH2OH , ( CF3 ) 2CHOH , CF3C (CH3)HOH , ( CF3 ) 3COH , ( CF3 ) 2C ( CH3 )OH, ( CF3 )C( CH3 ) 2OH , CF3CF2CF2CH2OH , CF3CF2CH2CH2OH , CF3CH2CH2CH2OH , CF3CH2CH2CH2OH , CF3CF2CH ( OH ) CF3 , CF3CF2CH ( _ _ OH) CH3 , CF3CH2CH ( OH ) CF3 , CF3CH2CH (OH) CH3 and CH3CH2CH (
- the secondary battery When measuring the content of the fluorinated alcohol in the electrolytic solution, the secondary battery is disassembled to collect the electrolytic solution, and then the electrolytic solution is analyzed to determine the content of the fluorinated alcohol. calculate.
- the method of analyzing the electrolytic solution is not particularly limited, but specifically includes inductively coupled plasma (ICP) emission spectroscopy, nuclear magnetic resonance spectroscopy (NMR), gas chromatograph mass spectrometry (GC-MS), and the like. Any one type or two or more types.
- the electrolytic solution further contains a solvent.
- This solvent contains one or more of non-aqueous solvents (organic solvents), and the electrolytic solution containing the non-aqueous solvent is a so-called non-aqueous electrolytic solution.
- Non-aqueous solvents include esters, ethers, and the like, and more specifically, carbonate compounds, carboxylic acid ester compounds, lactone compounds, and the like.
- the carbonate compounds include cyclic carbonates and chain carbonates.
- cyclic carbonates include ethylene carbonate and propylene carbonate.
- chain carbonates include dimethyl carbonate, diethyl carbonate and ethylmethyl carbonate.
- the carboxylic acid ester compound is a chain carboxylic acid ester or the like.
- chain carboxylic acid esters include methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate, propyl propionate, methyl trimethyl acetate, ethyl trimethyl acetate, methyl butyrate and ethyl butyrate.
- Lactone-based compounds include lactones. Specific examples of lactones include ⁇ -butyrolactone and ⁇ -valerolactone.
- the ethers may be partially fluorinated compounds, specifically 1,2-dimethoxyethane, tetrahydrofuran, 1,3-dioxolane, 1,4-dioxane and 1,1 , 2-tetrafluoroethyl 2,2,2,3,3-tetrafluoropropyl ether and the like.
- the solvent preferably contains a cyclic carbonate and a chain carbonate. This is because a high battery capacity can be stably obtained in a lithium ion secondary battery. In addition, the chemical state of the electrolytic solution is easily maintained sufficiently, and the discharge capacity is less likely to decrease sufficiently even if charging and discharging are repeated.
- the electrolytic solution further contains an electrolytic salt.
- This electrolyte salt is a light metal salt such as a lithium salt.
- lithium salts include lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium trifluoromethanesulfonate (LiCF 3 SO 3 ), lithium bis(fluorosulfonyl)imide (LiN ( FSO2 ) 2 ), bis(trifluoromethanesulfonyl )imidolithium (LiN(CF3SO2)2), lithium tris(trifluoromethanesulfonyl)methide (LiC(CF3SO2)3 ) , bis ( oxalato )boron lithium oxide (LiB( C2O4 ) 2 ) , lithium monofluorophosphate ( Li2PFO3 ) and lithium difluorophosphate ( LiPF2O2 ) . This is because a high battery capacity can be obtained.
- LiPF 6 lithium hexafluorophosphate
- LiBF 4 lithium tetrafluorobo
- the content of the electrolyte salt is not particularly limited, but specifically, it is 0.3 mol/kg to 3.0 mol/kg with respect to the solvent. This is because high ionic conductivity can be obtained.
- the electrolytic solution may further contain one or more of additives. This is because the electrochemical stability of the electrolytic solution is improved, so that the decomposition reaction of the electrolytic solution is suppressed during charging and discharging of the lithium ion secondary battery using the electrolytic solution.
- the types of additives are not particularly limited, but specific examples include unsaturated cyclic carbonates, fluorinated cyclic carbonates, sulfonate esters, phosphate esters, acid anhydrides, nitrile compounds and isocyanate compounds.
- unsaturated cyclic carbonates include vinylene carbonate, vinylethylene carbonate and methyleneethylene carbonate.
- fluorinated cyclic carbonates include ethylene monofluorocarbonate and ethylene difluorocarbonate.
- sulfonate esters include propane sultone and propene sultone.
- phosphate esters include trimethyl phosphate and triethyl phosphate.
- acid anhydrides include succinic anhydride, 1,2-ethanedisulfonic anhydride and 2-sulfobenzoic anhydride.
- nitrile compounds include acetonitrile, valeronitrile, adiponitrile and succinonitrile.
- isocyanate compounds include hexamethylene diisocyanate.
- the electrolytic solution is manufactured by a series of procedures described below. Specifically, after adding the electrolyte salt to the solvent, the fluorinated alcohol is added to the solvent. As a result, the electrolyte salt and the fluorinated alcohol are each dispersed or dissolved in the solvent to prepare an electrolytic solution.
- a solvent in which the fluorinated alcohol is dissolved may be used.
- the content of the fluorinated alcohol in the electrolytic solution may exceed 5% by weight during the production of the electrolytic solution.
- the electrolytic solution contains the fluorinated alcohol, and the content of the fluorinated alcohol in the electrolytic solution is 0.1% by weight to 5.0% by weight.
- the nucleophilicity of the fluorinated alcohol is lowered, so that the electrolyte is less likely to deteriorate over time, and electrolyte salts and the like are less likely to deposit in the electrolyte.
- the fluorinated alcohol since the fluorinated alcohol has a high reducing property, a good film derived from the fluorinated alcohol is formed on the surface of the negative electrode during the initial charge.
- the content of the fluorinated alcohol in the electrolytic solution is 0.3% by weight to 3.0% by weight, the chemical state of the electrolytic solution is more likely to be maintained, and lithium ions using the electrolytic solution Even if the secondary battery is repeatedly charged and discharged, the discharge capacity is less likely to decrease, so a higher effect can be obtained.
- R1, R2 and R3 shown in formula (1) are fluorinated alkyl groups, the degree of fluorination of the fluorinated alcohol increases, so that a higher effect can be obtained. .
- the electrolytic solution further contains a cyclic carbonate and a chain carbonate, the chemical state of the electrolytic solution can be sufficiently maintained in a lithium-ion secondary battery using the electrolytic solution. Even if charging and discharging are repeated, the discharge capacity is less likely to decrease sufficiently, so a higher effect can be obtained.
- Lithium ion secondary battery Next, a lithium-ion secondary battery according to an embodiment of the present technology using the electrolyte solution described above will be described.
- the lithium-ion secondary battery described here is a secondary battery in which battery capacity is obtained by utilizing the absorption and release of lithium.
- a lithium ion secondary battery can stably obtain a sufficient battery capacity by utilizing the absorption and release of lithium.
- the charge capacity of the negative electrode is larger than the discharge capacity of the positive electrode. That is, the electrochemical capacity per unit area of the negative electrode is set to be larger than the electrochemical capacity per unit area of the positive electrode. This is to prevent lithium metal from depositing on the surface of the negative electrode during charging.
- Configuration> 1 shows a perspective configuration of a lithium ion secondary battery
- FIG. 2 shows a cross-sectional configuration of the battery element 20 shown in FIG.
- FIG. 1 shows a state in which the exterior film 10 and the battery element 20 are separated from each other, and the cross section of the battery element 20 along the XZ plane is indicated by a broken line. In FIG. 2, only part of the battery element 20 is shown.
- This lithium ion secondary battery as shown in FIGS. 1 and 2, includes an exterior film 10, a battery element 20, a positive electrode lead 31, a negative electrode lead 32, and sealing films 41 and 42. .
- the lithium-ion secondary battery described here is a laminated film-type secondary battery using a flexible or pliable exterior film 10 .
- the exterior film 10 is an exterior member that houses the battery element 20, and has a sealed bag-like structure with the battery element 20 housed therein. As a result, the exterior film 10 accommodates the electrolytic solution together with the positive electrode 21 and the negative electrode 22, which will be described later.
- the exterior film 10 is a single film-like member and is folded in the folding direction F.
- the exterior film 10 is provided with a recessed portion 10U (deeply drawn portion) for housing the battery element 20 .
- the exterior film 10 is a three-layer laminate film in which a fusion layer, a metal layer, and a surface protective layer are laminated in this order from the inside. Outer peripheral edge portions of the fusion layer are fused together.
- the fusible layer contains a polymer compound such as polypropylene.
- the metal layer contains a metal material such as aluminum.
- the surface protective layer contains a polymer compound such as nylon.
- the configuration (number of layers) of the exterior film 10 is not particularly limited, and may be one layer, two layers, or four layers or more.
- the sealing film 41 is inserted between the exterior film 10 and the positive electrode lead 31
- the sealing film 42 is inserted between the exterior film 10 and the negative electrode lead 32 .
- one or both of the sealing films 41 and 42 may be omitted.
- the sealing film 41 is a sealing member that prevents external air from entering the exterior film 10 .
- the sealing film 41 contains a polymer compound such as polyolefin having adhesiveness to the positive electrode lead 31, and a specific example of the polyolefin is polypropylene.
- the structure of the sealing film 42 is the same as the structure of the sealing film 41 except that it is a sealing member having adhesion to the negative electrode lead 32 . That is, the sealing film 42 contains a polymer compound such as polyolefin that has adhesiveness to the negative electrode lead 32 .
- the battery element 20 is a power generation element including a positive electrode 21, a negative electrode 22, a separator 23, and an electrolytic solution (not shown), as shown in FIGS. It is
- This battery element 20 is a so-called wound electrode assembly. That is, the positive electrode 21 and the negative electrode 22 are laminated with the separator 23 interposed therebetween, and are wound around the winding axis P while facing each other with the separator 23 interposed therebetween. Note that the winding axis P is a virtual axis extending in the Y-axis direction.
- the three-dimensional shape of the battery element 20 is not particularly limited.
- the shape of the cross section of the battery element 20 intersecting the winding axis P (the cross section along the XZ plane) is determined by the long axis J1 and the short axis J2. It is a defined flat shape.
- the long axis J1 is a virtual axis extending in the X-axis direction and having a length larger than the length of the short axis J2, and the short axis J2 extends in the Z-axis direction that intersects the X-axis direction. is a virtual axis having a length smaller than that of the long axis J1.
- the cross-sectional shape of the battery element 20 is a flat, substantially elliptical shape.
- the positive electrode 21 includes a positive electrode current collector 21A and a positive electrode active material layer 21B, as shown in FIG.
- the positive electrode current collector 21A has a pair of surfaces on which the positive electrode active material layer 21B is provided.
- the positive electrode current collector 21A contains a conductive material such as a metal material, and a specific example of the conductive material is aluminum.
- the positive electrode active material layer 21B is provided on both sides of the positive electrode current collector 21A, and contains one or more of positive electrode active materials that occlude and release lithium.
- the positive electrode active material layer 21B may be provided only on one side of the positive electrode current collector 21A on the side where the positive electrode 21 faces the negative electrode 22 .
- the positive electrode active material layer 21B may further contain one or more of other materials such as a positive electrode binder and a positive electrode conductive agent.
- a method for forming the positive electrode active material layer 21B is not particularly limited, but a specific example is a coating method.
- the positive electrode active material contains a lithium-containing compound.
- This lithium-containing compound is a compound containing lithium and one or more transition metal elements as constituent elements, and may further contain one or more other elements as constituent elements.
- the type of the other element is not particularly limited as long as it is an element other than a transition metal element (excluding lithium). Specifically, it is an element belonging to Groups 2 to 15 in the long period periodic table.
- the type of lithium-containing compound is not particularly limited, but specific examples include oxides, phosphoric acid compounds, silicic acid compounds and boric acid compounds.
- oxides are LiNiO2 , LiCoO2 , LiCo0.98Al0.01Mg0.01O2 , LiNi0.5Co0.2Mn0.3O2 , LiNi0.8Co0.15Al0.05O2 , LiNi0.33Co0.33Mn0.33 . O2 , Li 1.2Mn0.52Co0.175Ni0.1O2 , Li1.15 ( Mn0.65Ni0.22Co0.13 ) O2 and LiMn2O4 .
- _ _ Specific examples of phosphoric acid compounds include LiFePO4 , LiMnPO4 , LiFe0.5Mn0.5PO4 and LiFe0.3Mn0.7PO4 .
- the positive electrode binder contains one or more of compounds such as synthetic rubber and polymer compounds.
- synthetic rubbers include styrene-butadiene rubber, fluororubber, and ethylene propylene diene.
- polymer compounds include polyvinylidene fluoride, polyimide and carboxymethylcellulose.
- the positive electrode conductive agent contains one or more of conductive materials such as carbon materials, and specific examples of the conductive materials include graphite, carbon black, acetylene black, ketjen black, carbon Such as fibers, carbon nanofibers and carbon nanotubes.
- the conductive material may be a metal material, a conductive polymer compound, or the like.
- the negative electrode 22 includes a negative electrode current collector 22A and a negative electrode active material layer 22B, as shown in FIG.
- the negative electrode current collector 22A has a pair of surfaces on which the negative electrode active material layer 22B is provided.
- the negative electrode current collector 22A contains a conductive material such as a metal material, and a specific example of the conductive material is copper.
- the negative electrode active material layer 22B is provided on both surfaces of the negative electrode current collector 22A, and contains one or more of negative electrode active materials that intercalate and deintercalate lithium.
- the negative electrode active material layer 22B may be provided only on one side of the negative electrode current collector 22A on the side where the negative electrode 22 faces the positive electrode 21 .
- the negative electrode active material layer 22B may further contain one or more of other materials such as a negative electrode binder and a negative electrode conductor.
- the method of forming the negative electrode active material layer 22B is not particularly limited, but specifically, it is a coating method or the like.
- the negative electrode active material contains one or more of carbon materials and metal-based materials. This is because a high energy density can be obtained.
- carbon materials include graphitizable carbon, non-graphitizable carbon, and graphite.
- This graphite may be natural graphite, artificial graphite, or both.
- a metallic material is a material containing as constituent elements one or more of metallic elements and semi-metallic elements capable of forming an alloy with lithium. , silicon and tin.
- This metallic material may be a single substance, an alloy, a compound, a mixture of two or more of them, or a material containing two or more of these phases.
- Specific examples of metallic materials include TiSi 2 and SiO x (0 ⁇ x ⁇ 2, or 0.2 ⁇ x ⁇ 1.4).
- each of the negative electrode binder and the negative electrode conductive agent is the same as those of the positive electrode binder and the positive electrode conductive agent.
- the separator 23 is an insulating porous film interposed between the positive electrode 21 and the negative electrode 22, as shown in FIG. Allows lithium ions to pass through.
- This separator 23 contains a polymer compound such as polyethylene.
- the positive electrode lead 31 is a positive electrode terminal connected to the positive electrode current collector 21A of the positive electrode 21, as shown in FIGS.
- the positive electrode lead 31 contains a conductive material such as a metal material, and a specific example of the conductive material is aluminum.
- the shape of the positive electrode lead 31 is not particularly limited, but specifically, it is either a thin plate shape, a mesh shape, or the like.
- the negative electrode lead 32 is a negative electrode terminal connected to the negative electrode current collector 22A of the negative electrode 22, as shown in FIGS.
- the negative electrode lead 32 contains a conductive material such as a metal material, and a specific example of the conductive material is copper.
- the details regarding the lead-out direction and shape of the negative electrode lead 32 are the same as the details regarding the lead-out direction and shape of the positive electrode lead 31 .
- a lithium ion secondary battery operates as described below.
- lithium is released in an ionic state from the positive electrode 21, and the lithium is absorbed in the negative electrode 22 in an ionic state through the electrolyte.
- lithium is released in an ionic state from the negative electrode 22 in the battery element 20, and the lithium is absorbed in the positive electrode 21 in an ionic state through the electrolyte.
- the positive electrode 21 and the negative electrode 22 are prepared according to an example procedure described below, and an electrolytic solution is prepared. While assembling a lithium ion secondary battery using it, the stabilization process of the lithium ion secondary battery is performed.
- a paste-like positive electrode mixture slurry is prepared by putting a mixture (positive electrode mixture) in which a positive electrode active material, a positive electrode binder, and a positive electrode conductor are mixed together into a solvent.
- This solvent may be an aqueous solvent or an organic solvent.
- the cathode active material layer 21B is formed by applying the cathode mixture slurry to both surfaces of the cathode current collector 21A.
- the positive electrode active material layer 21B may be compression-molded using a roll press machine or the like. In this case, the positive electrode active material layer 21B may be heated, or compression molding may be repeated multiple times. As a result, the cathode active material layers 21B are formed on both surfaces of the cathode current collector 21A, so that the cathode 21 is produced.
- the negative electrode 22 is manufactured by the same procedure as the manufacturing procedure of the positive electrode 21 described above. Specifically, a paste-like negative electrode mixture slurry is prepared by adding a mixture (negative electrode mixture) in which a negative electrode active material, a negative electrode binder, and a negative electrode conductor are mixed with each other into a solvent, and then a negative electrode collection is performed.
- the anode active material layer 22B is formed by applying the anode mixture slurry to both surfaces of the conductor 22A. After that, the negative electrode active material layer 22B may be compression molded. As a result, the negative electrode 22 is manufactured because the negative electrode active material layers 22B are formed on both surfaces of the negative electrode current collector 22A.
- a joining method such as welding is used to connect the positive electrode lead 31 to the positive electrode current collector 21A of the positive electrode 21, and a joining method such as welding is used to connect the negative electrode current collector 22A of the negative electrode 22 to the negative electrode.
- Connect lead 32 a joining method such as welding is used to connect the positive electrode lead 31 to the positive electrode current collector 21A of the positive electrode 21, and a joining method such as welding is used to connect the negative electrode current collector 22A of the negative electrode 22 to the negative electrode.
- the positive electrode 21 and the negative electrode 22 are laminated with the separator 23 interposed therebetween, and then the positive electrode 21, the negative electrode 22 and the separator 23 are wound to form a wound body (not shown).
- This wound body has the same structure as the battery element 20 except that the positive electrode 21, the negative electrode 22 and the separator 23 are not impregnated with the electrolytic solution.
- the wound body is molded into a flat shape by pressing the wound body using a press machine or the like.
- the exterior films 10 (bonding layer/metal layer/surface protective layer) are folded to face each other. Subsequently, by using an adhesion method such as a heat fusion method, the outer peripheral edge portions of two sides of the fusion layers facing each other are joined to each other, so that the wound body is placed inside the bag-shaped exterior film 10. to accommodate.
- a sealing film 41 is inserted between the packaging film 10 and the positive electrode lead 31 and a sealing film 42 is inserted between the packaging film 10 and the negative electrode lead 32 .
- the wound body is impregnated with the electrolytic solution, so that the battery element 20, which is the wound electrode body, is produced. Accordingly, the battery element 20 is enclosed inside the bag-shaped exterior film 10, so that the lithium ion secondary battery is assembled.
- the assembled lithium ion secondary battery is charged and discharged.
- Various conditions such as environmental temperature, number of charge/discharge times (number of cycles), and charge/discharge conditions can be arbitrarily set.
- films are formed on the respective surfaces of the positive electrode 21 and the negative electrode 22, so that the state of the lithium ion secondary battery is electrochemically stabilized.
- a lithium ion secondary battery is completed.
- the lithium ion secondary battery is provided with an electrolytic solution, and the electrolytic solution has the structure described above. Therefore, for the reasons described above, excellent storage characteristics and excellent charge/discharge characteristics can be obtained.
- a separator 23 which is a porous membrane, was used. However, although not specifically illustrated here, a laminated separator including a polymer compound layer may be used.
- a laminated separator includes a porous membrane having a pair of surfaces and a polymer compound layer provided on one or both sides of the porous membrane. This is because the adhesiveness of the separator to each of the positive electrode 21 and the negative electrode 22 is improved, so that the winding misalignment of the battery element 20 is suppressed. As a result, swelling of the lithium-ion secondary battery is suppressed even if a decomposition reaction of the electrolytic solution occurs.
- the polymer compound layer contains a polymer compound such as polyvinylidene fluoride. Polyvinylidene fluoride has excellent physical strength and is electrochemically stable.
- One or both of the porous membrane and the polymer compound layer may contain a plurality of insulating particles. This is because the safety (heat resistance) of the lithium ion secondary battery is improved because the plurality of insulating particles promote heat dissipation when the lithium ion secondary battery generates heat.
- the insulating particles contain one or more of insulating materials such as inorganic materials and resin materials. Specific examples of inorganic materials are aluminum oxide, aluminum nitride, boehmite, silicon oxide, titanium oxide, magnesium oxide and zirconium oxide. Specific examples of resin materials include acrylic resins and styrene resins.
- the precursor solution is applied to one or both sides of the porous membrane.
- a plurality of insulating particles may be added to the precursor solution.
- the positive electrode 21 and the negative electrode 22 are laminated with the separator 23 and the electrolyte layer interposed therebetween, and the positive electrode 21, the negative electrode 22, the separator 23 and the electrolyte layer are wound.
- This electrolyte layer is interposed between the positive electrode 21 and the separator 23 and interposed between the negative electrode 22 and the separator 23 .
- the electrolyte layer contains a polymer compound together with an electrolytic solution, and the electrolytic solution is held by the polymer compound. This is because leakage of the electrolytic solution is prevented.
- the composition of the electrolytic solution is as described above.
- Polymer compounds include polyvinylidene fluoride and the like.
- a lithium-ion secondary battery used as a power source may be a main power source for electronic devices and electric vehicles, or may be an auxiliary power source.
- a main power source is a power source that is preferentially used regardless of the presence or absence of other power sources.
- the auxiliary power supply may be a power supply that is used in place of the main power supply or a power supply that is switched from the main power supply.
- lithium-ion secondary battery applications are as follows. Electronic devices such as video cameras, digital still cameras, mobile phones, laptop computers, headphone stereos, portable radios and portable information terminals. Backup power and storage devices such as memory cards. Power tools such as power drills and power saws. It is a battery pack mounted on an electronic device. Medical electronic devices such as pacemakers and hearing aids. It is an electric vehicle such as an electric vehicle (including a hybrid vehicle). A power storage system, such as a domestic or industrial battery system, that stores power for emergencies. In these uses, one lithium ion secondary battery may be used, or a plurality of lithium ion secondary batteries may be used.
- the battery pack may use a single cell or an assembled battery.
- An electric vehicle is a vehicle that operates (runs) using a lithium-ion secondary battery as a drive power source, and may be a hybrid vehicle that also includes a drive source different from the lithium-ion secondary battery.
- electric power stored in a lithium-ion secondary battery which is a power storage source, can be used to power home electric appliances.
- Fig. 3 shows the block configuration of the battery pack.
- the battery pack described here is a battery pack (a so-called soft pack) using one lithium-ion secondary battery, and is mounted in an electronic device such as a smart phone.
- This battery pack includes a power supply 51 and a circuit board 52, as shown in FIG.
- This circuit board 52 is connected to the power supply 51 and includes a positive terminal 53 , a negative terminal 54 and a temperature detection terminal 55 .
- the power supply 51 includes one lithium ion secondary battery.
- the positive lead is connected to the positive terminal 53 and the negative lead is connected to the negative terminal 54 .
- the power supply 51 can be connected to the outside through the positive terminal 53 and the negative terminal 54, and thus can be charged and discharged.
- the circuit board 52 includes a control section 56 , a switch 57 , a PTC element 58 and a temperature detection section 59 .
- the PTC element 58 may be omitted.
- the control unit 56 includes a central processing unit (CPU), memory, etc., and controls the overall operation of the battery pack. This control unit 56 detects and controls the use state of the power source 51 as necessary.
- CPU central processing unit
- memory etc.
- the control unit 56 cuts off the switch 57 so that the charging current flows through the current path of the power source 51.
- the overcharge detection voltage is not particularly limited, but is specifically 4.20V ⁇ 0.05V, and the overdischarge detection voltage is not particularly limited, but is specifically 2.40V ⁇ 0.1V. is.
- the switch 57 includes a charge control switch, a discharge control switch, a charge diode, a discharge diode, and the like, and switches connection/disconnection between the power supply 51 and an external device according to instructions from the control unit 56 .
- This switch 57 includes a field effect transistor (MOSFET) using a metal oxide semiconductor, etc., and each of the charging current and the discharging current is detected based on the ON resistance of switch 57 .
- MOSFET field effect transistor
- the temperature detection unit 59 includes a temperature detection element such as a thermistor.
- the temperature detection unit 59 measures the temperature of the power supply 51 using the temperature detection terminal 55 and outputs the temperature measurement result to the control unit 56 .
- the measurement result of the temperature measured by the temperature detection unit 59 is used when the control unit 56 performs charging/discharging control at the time of abnormal heat generation and when the control unit 56 performs correction processing when calculating the remaining capacity.
- a lithium ion secondary battery (laminate film type) shown in FIGS. 1 and 2 was produced by the procedure described below.
- a positive electrode active material lithium cobalt oxide (LiCoO 2 ), which is a lithium-containing compound (oxide)
- a positive electrode binder polyvinylidene fluoride
- a positive electrode conductor amorphous carbon
- the positive electrode mixture slurry is applied to both surfaces of the positive electrode current collector 21A (aluminum foil having a thickness of 10 ⁇ m) using a coating device, and then the positive electrode mixture slurry is dried to form a positive electrode active material layer. 21B.
- the positive electrode current collector 21A on which the positive electrode active material layer 21B was formed was cut into strips. Thus, the positive electrode 21 was produced.
- a negative electrode active material (20 parts by mass of silicon oxide as a metal material and 74 parts by mass of artificial graphite as a carbon material
- a negative electrode binder polyvinylidene fluoride
- a negative electrode mixture was prepared by mixing 2.5 parts by mass of a conductive agent (2 parts by mass of carbon nanotubes and 0.5 parts by mass of graphite) and 2 parts by mass of a thickening agent (carboxymethyl cellulose).
- the negative electrode mixture slurry is applied to both surfaces of the negative electrode current collector 22A (copper foil having a thickness of 8 ⁇ m) using a coating device, and then the negative electrode mixture slurry is dried to form a negative electrode active material layer. 22B was formed.
- the negative electrode active material layer 22B was compression-molded using a roll press, and then the negative electrode current collector 22A on which the negative electrode active material layer 22B was formed was cut into strips. Thus, the negative electrode 22 was produced.
- an electrolytic solution was prepared by the same procedure except that the fluorinated alcohol was not used.
- an electrolytic solution was prepared by the same procedure except that ethanol (C 2 H 5 OH (EA)) was used instead of the fluorinated alcohol.
- EA C 2 H 5 OH
- an electrolytic solution was prepared by the same procedure except that ethanol was used instead of the cyclic carbonate.
- the positive electrode lead 31 (aluminum foil) was welded to the positive electrode collector 21A of the positive electrode 21, and the negative electrode lead 32 (copper foil) was welded to the negative electrode collector 22A.
- the positive electrode 21, the negative electrode 22 and the separator 23 are wound to obtain a winding.
- a circular body was produced.
- the wound body was molded into a flat shape by pressing the wound body using a pressing machine.
- the exterior film 10 was folded so as to sandwich the wound body housed inside the recessed portion 10U.
- the exterior film 10 includes a fusion layer (a polypropylene film with a thickness of 30 ⁇ m), a metal layer (aluminum foil with a thickness of 40 ⁇ m), and a surface protective layer (a nylon film with a thickness of 25 ⁇ m). was laminated in this order from the inside.
- the wound body was housed inside the bag-shaped exterior film 10 by heat-sealing the outer peripheral edge portions of two sides of the fusion layers facing each other.
- the wound body was impregnated with the electrolytic solution, and the battery element 20 was produced. Accordingly, since the battery element 20 was sealed inside the exterior film 10, a lithium ion secondary battery was assembled.
- constant-current charging was performed at a current of 0.1C until the voltage reached 4.4V
- constant-voltage charging was performed at the voltage of 4.4V until the current reached 0.025C.
- constant current discharge was performed at a current of 0.1C until the voltage reached 3.0V.
- 0.1C is a current value that can completely discharge the battery capacity (theoretical capacity) in 10 hours
- 0.025C is a current value that completely discharges the battery capacity in 40 hours.
- FIG. 4 shows a cross-sectional configuration of a test (coin-type) lithium-ion secondary battery.
- the test electrode 61 is housed inside the outer cup 64 and the counter electrode 62 is housed inside the outer can 65 .
- the test electrode 61 and the counter electrode 62 are laminated with a separator 63 interposed therebetween, and the exterior cup 64 and the exterior can 65 are crimped together with a gasket 66 interposed therebetween.
- the electrolytic solution is impregnated in each of the test electrode 61, counter electrode 62 and separator 63, and has the structure described above.
- a test electrode 61 When producing a coin-type lithium ion secondary battery, a test electrode 61 was produced in the same manner, except that the positive electrode active material layer 21B was formed only on one side of the positive electrode current collector 21A.
- a counter electrode 62 was produced by the same procedure, except that the negative electrode active material layer 22B was formed only on one side of the current collector 22A.
- the positive electrode active material layer 21B and the negative electrode active material layer 22B were opposed to each other with the separator 63 interposed therebetween. Details of the separator 63 are the same as those of the separator 23 .
- initial efficiency (discharge capacity/charge capacity) x 100.
- discharge capacity at the 150th cycle was measured by repeatedly charging and discharging the lithium ion secondary battery until the number of cycles reached 150 in the same environment.
- capacity retention rate (%) (discharge capacity at 150th cycle/discharge capacity at 1st cycle) x 100, which is another index for evaluating charge/discharge characteristics. was calculated.
- the charging/discharging conditions were the same as the charging/discharging conditions during the stabilization treatment of the lithium-ion secondary battery.
- the value of the capacity retention rate shown in Table 1 is a value normalized by setting the value of the capacity retention rate in the case of not using the fluorinated alcohol (Comparative Example 1) to 100.
- the element structure of the battery element is a wound type.
- the element structure of the battery element is not particularly limited, it may be a stacked type or a folded type.
- the positive electrode and the negative electrode are alternately laminated with a separator interposed therebetween, and in the multifold type, the positive electrode and the negative electrode are folded zigzag while facing each other with the separator interposed therebetween.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Manufacturing & Machinery (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Secondary Cells (AREA)
Abstract
This lithium-ion secondary battery includes an electrolytic solution together with a positive electrode and a negative electrode, the electrolytic solution includes a fluorinated alcohol represented by formula (1), and the content of the fluoroalcohol in the electrolytic solution is 0.1-5.0% by weight.
Description
本技術は、リチウムイオン二次電池用電解液およびリチウムイオン二次電池に関する。
This technology relates to electrolyte solutions for lithium-ion secondary batteries and lithium-ion secondary batteries.
携帯電話機などの多様な電子機器が普及しているため、小型かつ軽量であると共に高エネルギー密度が得られる電源としてリチウムイオン二次電池の開発が進められている。
Due to the widespread use of various electronic devices such as mobile phones, the development of lithium-ion secondary batteries is underway as a power source that is compact, lightweight, and provides high energy density.
このリチウムイオン二次電池は、正極および負極と共に電解液(リチウムイオン二次電池用電解液)を備えており、そのリチウムイオン二次電池の構成に関しては、様々な検討がなされている。
This lithium-ion secondary battery includes an electrolyte (electrolyte for lithium-ion secondary batteries) along with a positive electrode and a negative electrode, and various studies have been made on the configuration of the lithium-ion secondary battery.
具体的には、リチウムイオン二次電池の電解液がエタノールなどのアルコール類を含んでおり、その電解液におけるアルコール類の含有量が0.01ppm以上50ppm未満である(例えば、特許文献1参照。)。また、金属水素化物電池の非水電解質がトリフルオロメタノールなどのアルコール類を含んでいる(例えば、特許文献2参照。)。
Specifically, the electrolyte of the lithium ion secondary battery contains an alcohol such as ethanol, and the content of the alcohol in the electrolyte is 0.01 ppm or more and less than 50 ppm (see, for example, Patent Document 1). ). Also, the non-aqueous electrolyte of metal hydride batteries contains alcohols such as trifluoromethanol (see, for example, Patent Document 2).
リチウムイオン二次電池の構成に関する様々な検討がなされているが、そのリチウムイオン二次電池の保存特性および充放電特性は未だ十分でないため、改善の余地がある。
Various studies have been conducted on the composition of lithium-ion secondary batteries, but the storage characteristics and charge-discharge characteristics of the lithium-ion secondary batteries are still insufficient, so there is room for improvement.
そこで、優れた保存特性および優れた充放電特性を得ることが可能であるリチウムイオン二次電池用電解液およびリチウムイオン二次電池が望まれている。
Therefore, there is a demand for an electrolytic solution for lithium ion secondary batteries and a lithium ion secondary battery that are capable of obtaining excellent storage characteristics and excellent charge/discharge characteristics.
本技術の一実施形態のリチウムイオン二次電池用電解液は、式(1)で表されるフッ素化アルコールを含み、そのフッ素化アルコールの含有量が0.1重量%以上5.0重量%以下であるものである。
An electrolyte solution for a lithium ion secondary battery according to an embodiment of the present technology includes a fluorinated alcohol represented by formula (1), and the content of the fluorinated alcohol is 0.1% by weight or more and 5.0% by weight. are as follows.
R1R2R3COH ・・・(1)
(R1、R2およびR3のそれぞれは、水素基、アルキル基およびフッ素化アルキル基のうちのいずれかである。ただし、R1、R2およびR3のうちの少なくとも1つは、フッ素化アルキル基である。) R1R2R3COH (1)
(Each of R1, R2 and R3 is a hydrogen group, an alkyl group or a fluorinated alkyl group, provided that at least one of R1, R2 and R3 is a fluorinated alkyl group. )
(R1、R2およびR3のそれぞれは、水素基、アルキル基およびフッ素化アルキル基のうちのいずれかである。ただし、R1、R2およびR3のうちの少なくとも1つは、フッ素化アルキル基である。) R1R2R3COH (1)
(Each of R1, R2 and R3 is a hydrogen group, an alkyl group or a fluorinated alkyl group, provided that at least one of R1, R2 and R3 is a fluorinated alkyl group. )
本技術の一実施形態のリチウムイオン二次電池は、正極と負極と電解液とを備え、その電解液が上記した本技術の一実施形態のリチウムイオン二次電池用電解液の構成と同様の構成を有するものである。
A lithium ion secondary battery according to an embodiment of the present technology includes a positive electrode, a negative electrode, and an electrolytic solution, and the electrolytic solution has the same configuration as the electrolytic solution for a lithium ion secondary battery according to an embodiment of the present technology. It has a configuration.
本技術の一実施形態のリチウムイオン二次電池用電解液またはリチウムイオン二次電池によれば、そのリチウムイオン二次電池用電解液がフッ素化アルコールを含んでおり、そのフッ素化アルコールの含有量が0.1重量%以上5.0重量%以下であるので、優れた保存特性および優れた充放電特性を得ることができる。
According to the lithium ion secondary battery electrolyte solution or the lithium ion secondary battery of one embodiment of the present technology, the lithium ion secondary battery electrolyte solution contains a fluorinated alcohol, and the content of the fluorinated alcohol is is 0.1% by weight or more and 5.0% by weight or less, excellent storage characteristics and excellent charge/discharge characteristics can be obtained.
なお、本技術の効果は、必ずしもここで説明された効果に限定されるわけではなく、後述する本技術に関連する一連の効果のうちのいずれの効果でもよい。
It should be noted that the effects of the present technology are not necessarily limited to the effects described here, and may be any of a series of effects related to the present technology described below.
以下、本技術の一実施形態に関して、図面を参照しながら詳細に説明する。なお、説明する順序は、下記の通りである。
1.リチウムイオン二次電池用電解液
1-1.構成
1-2.製造方法
1-3.作用および効果
2.リチウムイオン二次電池
2-1.構成
2-2.動作
2-3.製造方法
2-4.作用および効果
3.変形例
4.リチウムイオン二次電池の用途
Hereinafter, one embodiment of the present technology will be described in detail with reference to the drawings. The order of explanation is as follows.
1. Electrolyte solution for lithium ion secondary battery 1-1. Configuration 1-2. Manufacturing method 1-3. Action and effect 2 . Lithium ion secondary battery 2-1. Configuration 2-2. Operation 2-3. Manufacturing method 2-4. Action and effect 3. Modification 4. Applications of lithium-ion secondary batteries
1.リチウムイオン二次電池用電解液
1-1.構成
1-2.製造方法
1-3.作用および効果
2.リチウムイオン二次電池
2-1.構成
2-2.動作
2-3.製造方法
2-4.作用および効果
3.変形例
4.リチウムイオン二次電池の用途
Hereinafter, one embodiment of the present technology will be described in detail with reference to the drawings. The order of explanation is as follows.
1. Electrolyte solution for lithium ion secondary battery 1-1. Configuration 1-2. Manufacturing method 1-3. Action and effect 2 . Lithium ion secondary battery 2-1. Configuration 2-2. Operation 2-3. Manufacturing method 2-4. Action and effect 3. Modification 4. Applications of lithium-ion secondary batteries
<1.リチウムイオン二次電池用電解液>
まず、本技術の一実施形態のリチウムイオン二次電池用電解液(以下、単に「電解液」と呼称する。)に関して説明する。 <1. Electrolyte solution for lithium ion secondary battery>
First, an electrolyte solution for a lithium ion secondary battery (hereinafter simply referred to as "electrolyte solution") according to an embodiment of the present technology will be described.
まず、本技術の一実施形態のリチウムイオン二次電池用電解液(以下、単に「電解液」と呼称する。)に関して説明する。 <1. Electrolyte solution for lithium ion secondary battery>
First, an electrolyte solution for a lithium ion secondary battery (hereinafter simply referred to as "electrolyte solution") according to an embodiment of the present technology will be described.
この電解液は、電気化学デバイスであるリチウムイオン二次電池に用いられる。ただし、電解液は、リチウムイオン二次電池とは異なる他の電気化学デバイスに用いられてもよい。他の電気化学デバイスの具体例は、キャパシタなどである。
This electrolyte is used in lithium-ion secondary batteries, which are electrochemical devices. However, the electrolytic solution may be used in electrochemical devices other than lithium ion secondary batteries. Specific examples of other electrochemical devices are capacitors and the like.
<1-1.構成>
電解液は、液状の電解質であり、リチウムイオン二次電池においてリチウムイオンの媒介として用いられる。 <1-1. Configuration>
The electrolytic solution is a liquid electrolyte, and is used as a medium for lithium ions in lithium ion secondary batteries.
電解液は、液状の電解質であり、リチウムイオン二次電池においてリチウムイオンの媒介として用いられる。 <1-1. Configuration>
The electrolytic solution is a liquid electrolyte, and is used as a medium for lithium ions in lithium ion secondary batteries.
[フッ素化アルコール]
この電解液は、式(1)で表されるフッ素化アルコールのうちのいずれか1種類または2種類以上を含んでおり、その電解液におけるフッ素化アルコールの含有量は、0.1重量%~5.0重量%、好ましくは0.3重量%~3.0重量%である。このフッ素化アルコールは、アルコールがフッ素化された化合物である。 [Fluorinated alcohol]
The electrolytic solution contains one or more of the fluorinated alcohols represented by formula (1), and the content of the fluorinated alcohol in the electrolytic solution is 0.1% by weight to 5.0% by weight, preferably 0.3% to 3.0% by weight. This fluorinated alcohol is a compound in which alcohol is fluorinated.
この電解液は、式(1)で表されるフッ素化アルコールのうちのいずれか1種類または2種類以上を含んでおり、その電解液におけるフッ素化アルコールの含有量は、0.1重量%~5.0重量%、好ましくは0.3重量%~3.0重量%である。このフッ素化アルコールは、アルコールがフッ素化された化合物である。 [Fluorinated alcohol]
The electrolytic solution contains one or more of the fluorinated alcohols represented by formula (1), and the content of the fluorinated alcohol in the electrolytic solution is 0.1% by weight to 5.0% by weight, preferably 0.3% to 3.0% by weight. This fluorinated alcohol is a compound in which alcohol is fluorinated.
R1R2R3COH ・・・(1)
(R1、R2およびR3のそれぞれは、水素基、アルキル基およびフッ素化アルキル基のうちのいずれかである。ただし、R1、R2およびR3のうちの少なくとも1つは、フッ素化アルキル基である。) R1R2R3COH (1)
(Each of R1, R2 and R3 is a hydrogen group, an alkyl group or a fluorinated alkyl group, provided that at least one of R1, R2 and R3 is a fluorinated alkyl group. )
(R1、R2およびR3のそれぞれは、水素基、アルキル基およびフッ素化アルキル基のうちのいずれかである。ただし、R1、R2およびR3のうちの少なくとも1つは、フッ素化アルキル基である。) R1R2R3COH (1)
(Each of R1, R2 and R3 is a hydrogen group, an alkyl group or a fluorinated alkyl group, provided that at least one of R1, R2 and R3 is a fluorinated alkyl group. )
電解液が適正量(=0.1重量%~5.0重量%)のフッ素化アルコールを含んでいるのは、その電解液を用いたリチウムイオン二次電池において、その電解液の化学的な状態が維持されやすくなると共に、充放電を繰り返しても放電容量が減少しにくくなるからである。
The reason why the electrolyte contains an appropriate amount (= 0.1 wt% to 5.0 wt%) of fluorinated alcohol is that in a lithium ion secondary battery using the electrolyte, the chemical This is because the state is easily maintained, and the discharge capacity is less likely to decrease even if charging and discharging are repeated.
詳細には、フッ素化アルコールでは、アルコールがフッ素化されているため、求核性が低下する。この場合には、電解液がフッ素化アルコールを含んでいても、そのフッ素化アルコールが電解液中の他の成分と反応しにくくなるため、その電解液が経時的に劣化しにくくなると共に、その電解液中において電解質塩などが析出しにくくなる。これにより、リチウムイオン二次電池が保存されても、電解液の化学的な状態が維持されやすくなる。なお、電解液の劣化とは、変色などであると共に、他の成分の具体例は、後述する電解質塩などである。
Specifically, in fluorinated alcohols, the nucleophilicity is reduced because the alcohol is fluorinated. In this case, even if the electrolytic solution contains fluorinated alcohol, the fluorinated alcohol is less likely to react with other components in the electrolytic solution. Electrolyte salts and the like are less likely to deposit in the electrolytic solution. This facilitates maintaining the chemical state of the electrolyte even when the lithium ion secondary battery is stored. The deterioration of the electrolytic solution includes discoloration and the like, and specific examples of other components include electrolyte salts described later.
しかも、フッ素化アルコールは、高い還元性を有している。この場合には、リチウムイオン二次電池が繰り返して充放電されると、初回の充電時において負極の表面においてフッ素化アルコールが速やかに反応するため、そのフッ素化アルコールに由来する良好な被膜が形成される。この被膜は、フッ素化アルコキシドと、電気化学的に安定なフッ化リチウム(LiF)とを含んでおり、そのフッ化リチウムは、フッ素化アルコールが還元後に分解することにより形成されると考えられる。これにより、負極の表面において電解液が分解されにくくなるため、充放電を繰り返しても放電容量が減少しにくくなる。
Moreover, fluorinated alcohols have high reducing properties. In this case, when the lithium ion secondary battery is repeatedly charged and discharged, the fluorinated alcohol rapidly reacts on the surface of the negative electrode during the initial charge, so that a good film derived from the fluorinated alcohol is formed. be done. This coating contains fluorinated alkoxide and electrochemically stable lithium fluoride (LiF), which is believed to be formed by decomposition of the fluorinated alcohol after reduction. As a result, the electrolytic solution is less likely to be decomposed on the surface of the negative electrode, and thus the discharge capacity is less likely to decrease even if charging and discharging are repeated.
R1、R2およびR3のそれぞれは、上記したように、水素基(-H)、アルキル基およびフッ素化アルキル基のうちのいずれかであれば、特に限定されない。
Each of R1, R2 and R3 is not particularly limited as long as it is a hydrogen group (--H), an alkyl group or a fluorinated alkyl group, as described above.
アルキル基は、鎖状でもよいし、1本または2本以上の側鎖を有する分岐状でもよい。アルキル基の炭素数は、特に限定されないが、中でも、1~4であることが好ましい。フッ素化アルコールの溶解性および相溶性が向上するからである。
The alkyl group may be linear or branched with one or more side chains. Although the number of carbon atoms in the alkyl group is not particularly limited, it is preferably 1 to 4. This is because the solubility and compatibility of the fluorinated alcohol are improved.
アルキル基の具体例は、メチル基、エチル基、プロピル基およびブチル基などである。ただし、アルキル基は、上記したように、鎖状に限られずに分岐状でもよい。このため、一例を挙げると、プロピル基は、n-プロピル基でもよいし、イソプロピル基でもよい。また、他の一例を挙げると、ブチル基は、n-ブチル基でもよいし、sec-ブチル基でもよいし、イソブチル基でもよいし、tert-ブチル基でもよい。
Specific examples of alkyl groups include methyl, ethyl, propyl and butyl groups. However, as described above, the alkyl group is not limited to a chain shape and may be branched. Thus, by way of example, a propyl group may be an n-propyl group or an isopropyl group. Further, to give another example, the butyl group may be an n-butyl group, a sec-butyl group, an isobutyl group, or a tert-butyl group.
フッ素化アルキル基は、アルキル基のうちの1つまたは2つ以上の水素基がフッ素基により置換された基である。アルキル基に関する詳細(構成および炭素数など)は、上記した通りである。
A fluorinated alkyl group is a group in which one or more hydrogen groups in an alkyl group have been substituted with a fluorine group. The details of the alkyl group (structure, number of carbon atoms, etc.) are as described above.
フッ素化アルキル基の具体例は、パーフルオロメチル基、パーフルオロエチル基、パーフルオロプロピル基およびパーフルオロブチル基などである。ただし、フッ素アルキル基の具体例は、パーフルオロ基に限られないため、モノフルオロメチル基、モノフルオロエチル基、モノフルオロプロピル基およびモノフルオロブチル基などでもよい。
Specific examples of fluorinated alkyl groups include perfluoromethyl, perfluoroethyl, perfluoropropyl and perfluorobutyl groups. However, specific examples of the fluorine alkyl group are not limited to the perfluoro group, and may be a monofluoromethyl group, a monofluoroethyl group, a monofluoropropyl group, a monofluorobutyl group, or the like.
ここでは、上記したように、R1、R2およびR3のうちの1つまたは2つ以上は、フッ素化アルキル基である。フッ素化アルコールは、上記したように、アルコールがフッ素化された化合物であるため、1つ以上のフッ素を構成元素として含んでいるからである。これにより、R1、R2およびR3のそれぞれが水素基およびアルキル基のうちのいずれかである化合物は、ここで説明するフッ素化アルコールから除かれる。
Here, as described above, one or more of R1, R2 and R3 is a fluorinated alkyl group. This is because the fluorinated alcohol is a compound obtained by fluorinating an alcohol as described above, and thus contains one or more fluorine atoms as constituent elements. Compounds in which each of R1, R2 and R3 is either a hydrogen group or an alkyl group are thereby excluded from the fluorinated alcohols described herein.
詳細には、R1、R2およびR3のうちの1つ以上がフッ素化アルキル基であると、そのR1、R2およびR3のうちの1つ以上がフッ素を構成元素として含んでいる嵩高い基になる。これにより、フッ素化アルコールが還元後に分解しやすくなるため、フッ化リチウムが形成されやすくなる。よって、電解液の化学的な状態がより維持されやすくなると共に、充放電を繰り返しても放電容量がより減少しにくくなる。
Specifically, when at least one of R1, R2 and R3 is a fluorinated alkyl group, at least one of R1, R2 and R3 is a bulky group containing fluorine as a constituent element. . This makes it easier for the fluorinated alcohol to decompose after the reduction, thus facilitating the formation of lithium fluoride. Therefore, the chemical state of the electrolytic solution is more likely to be maintained, and the discharge capacity is less likely to decrease even if charging and discharging are repeated.
中でも、R1、R2およびR3のうちの2つ以上は、フッ素化アルキル基であることが好ましい。フッ素化アルコールに関するフッ素化の度合いが高くなるため、電解液の化学的な状態がより維持されやすくなると共に、充放電を繰り返しても放電容量がより減少しにくくなるからである。
Among them, two or more of R1, R2 and R3 are preferably fluorinated alkyl groups. This is because the degree of fluorination of the fluorinated alcohol increases, so that the chemical state of the electrolytic solution is more likely to be maintained, and the discharge capacity is less likely to decrease even after repeated charging and discharging.
フッ素化アルコールの具体例は、CF3 CH2 OH、CF2 HCH2 OH、CFH2 CH2 OH、CF3 CF2 CH2 OH、CF3 CFHCH2 OH、CF3 CH2 CH2 OH、CF2 HCF2 CH2 OH、(CF3 )2 CHOH、CF3 C(CH3 )HOH、(CF3 )3 COH、(CF3 )2 C(CH3 )OH、(CF3 )C(CH3 )2 OH、CF3 CF2 CF2 CH2 OH、CF3 CF2 CH2 CH2 OH、CF3 CH2 CH2 CH2 OH、CF3 CF2 CH(OH)CF3 、CF3 CF2 CH(OH)CH3 、CF3 CH2 CH(OH)CF3 、CF3 CH2 CH(OH)CH3 およびCH3 CH2 CH(OH)CF3 などである。
Specific examples of fluorinated alcohols are CF3CH2OH , CF2HCH2OH , CFH2CH2OH , CF3CF2CH2OH , CF3CFHCH2OH , CF3CH2CH2OH , CF2 HCF2CH2OH , ( CF3 ) 2CHOH , CF3C (CH3)HOH , ( CF3 ) 3COH , ( CF3 ) 2C ( CH3 )OH, ( CF3 )C( CH3 ) 2OH , CF3CF2CF2CH2OH , CF3CF2CH2CH2OH , CF3CH2CH2CH2OH , CF3CF2CH ( OH ) CF3 , CF3CF2CH ( _ _ OH) CH3 , CF3CH2CH ( OH ) CF3 , CF3CH2CH (OH) CH3 and CH3CH2CH (OH) CF3 .
なお、電解液におけるフッ素化アルコールの含有量を測定する場合には、二次電池を解体することにより、電解液を回収したのち、その電解液を分析することにより、フッ素化アルコールの含有量を算出する。電解液の分析方法は、特に限定されないが、具体的には、誘導結合プラズマ(ICP)発光分光分析法、核磁気共鳴分光法(NMR)およびガスクロマトグラフ質量分析法(GC-MS)などのうちのいずれか1種類または2種類以上である。
When measuring the content of the fluorinated alcohol in the electrolytic solution, the secondary battery is disassembled to collect the electrolytic solution, and then the electrolytic solution is analyzed to determine the content of the fluorinated alcohol. calculate. The method of analyzing the electrolytic solution is not particularly limited, but specifically includes inductively coupled plasma (ICP) emission spectroscopy, nuclear magnetic resonance spectroscopy (NMR), gas chromatograph mass spectrometry (GC-MS), and the like. Any one type or two or more types.
[溶媒]
なお、電解液は、さらに、溶媒を含んでいる。この溶媒は、非水溶媒(有機溶剤)のうちのいずれか1種類または2種類以上を含んでおり、その非水溶媒を含んでいる電解液は、いわゆる非水電解液である。非水溶媒は、エステル類およびエーテル類などを含んでおり、より具体的には、炭酸エステル系化合物、カルボン酸エステル系化合物およびラクトン系化合物などを含んでいる。 [solvent]
Note that the electrolytic solution further contains a solvent. This solvent contains one or more of non-aqueous solvents (organic solvents), and the electrolytic solution containing the non-aqueous solvent is a so-called non-aqueous electrolytic solution. Non-aqueous solvents include esters, ethers, and the like, and more specifically, carbonate compounds, carboxylic acid ester compounds, lactone compounds, and the like.
なお、電解液は、さらに、溶媒を含んでいる。この溶媒は、非水溶媒(有機溶剤)のうちのいずれか1種類または2種類以上を含んでおり、その非水溶媒を含んでいる電解液は、いわゆる非水電解液である。非水溶媒は、エステル類およびエーテル類などを含んでおり、より具体的には、炭酸エステル系化合物、カルボン酸エステル系化合物およびラクトン系化合物などを含んでいる。 [solvent]
Note that the electrolytic solution further contains a solvent. This solvent contains one or more of non-aqueous solvents (organic solvents), and the electrolytic solution containing the non-aqueous solvent is a so-called non-aqueous electrolytic solution. Non-aqueous solvents include esters, ethers, and the like, and more specifically, carbonate compounds, carboxylic acid ester compounds, lactone compounds, and the like.
炭酸エステル系化合物は、環状炭酸エステルおよび鎖状炭酸エステルなどである。環状炭酸エステルの具体例は、炭酸エチレンおよび炭酸プロピレンなどである。鎖状炭酸エステルの具体例は、炭酸ジメチル、炭酸ジエチルおよび炭酸エチルメチルなどである。
The carbonate compounds include cyclic carbonates and chain carbonates. Specific examples of cyclic carbonates include ethylene carbonate and propylene carbonate. Specific examples of chain carbonates include dimethyl carbonate, diethyl carbonate and ethylmethyl carbonate.
カルボン酸エステル系化合物は、鎖状カルボン酸エステルなどである。鎖状カルボン酸エステルの具体例は、酢酸メチル、酢酸エチル、酢酸プロピル、プロピオン酸メチル、プロピオン酸エチル、プロピオン酸プロピル、トリメチル酢酸メチル、トリメチル酢酸エチル、酪酸メチルおよび酪酸エチルなどである。
The carboxylic acid ester compound is a chain carboxylic acid ester or the like. Specific examples of chain carboxylic acid esters include methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate, propyl propionate, methyl trimethyl acetate, ethyl trimethyl acetate, methyl butyrate and ethyl butyrate.
ラクトン系化合物は、ラクトンなどである。ラクトンの具体例は、γ-ブチロラクトンおよびγ-バレロラクトンなどである。
Lactone-based compounds include lactones. Specific examples of lactones include γ-butyrolactone and γ-valerolactone.
なお、エーテル類は、エーテルのうちの一部がフッ素化された化合物でもよく、具体的には、1,2-ジメトキシエタン、テトラヒドロフラン、1,3-ジオキソラン、1,4-ジオキサンおよび1,1,2-テトラフルオロエチル2,2,2,3,3-テトラフルオロプロピルエーテルなどである。
The ethers may be partially fluorinated compounds, specifically 1,2-dimethoxyethane, tetrahydrofuran, 1,3-dioxolane, 1,4-dioxane and 1,1 , 2-tetrafluoroethyl 2,2,2,3,3-tetrafluoropropyl ether and the like.
中でも、溶媒は、環状炭酸エステルおよび鎖状炭酸エステルを含んでいることが好ましい。リチウムイオン二次電池において高い電池容量が安定して得られるからである。また、電解液の化学的な状態が十分に維持されやすくなると共に、充放電を繰り返しても放電容量が十分に減少しにくくなるからである。
Among them, the solvent preferably contains a cyclic carbonate and a chain carbonate. This is because a high battery capacity can be stably obtained in a lithium ion secondary battery. In addition, the chemical state of the electrolytic solution is easily maintained sufficiently, and the discharge capacity is less likely to decrease sufficiently even if charging and discharging are repeated.
[電解質塩]
また、電解液は、さらに、電解質塩を含んでいる。この電解質塩は、リチウム塩などの軽金属塩である。 [Electrolyte salt]
Moreover, the electrolytic solution further contains an electrolytic salt. This electrolyte salt is a light metal salt such as a lithium salt.
また、電解液は、さらに、電解質塩を含んでいる。この電解質塩は、リチウム塩などの軽金属塩である。 [Electrolyte salt]
Moreover, the electrolytic solution further contains an electrolytic salt. This electrolyte salt is a light metal salt such as a lithium salt.
リチウム塩の具体例は、六フッ化リン酸リチウム(LiPF6 )、四フッ化ホウ酸リチウム(LiBF4 )、トリフルオロメタンスルホン酸リチウム(LiCF3 SO3 )、ビス(フルオロスルホニル)イミドリチウム(LiN(FSO2 )2 )、ビス(トリフルオロメタンスルホニル)イミドリチウム(LiN(CF3 SO2 )2 )、リチウムトリス(トリフルオロメタンスルホニル)メチド(LiC(CF3 SO2 )3 )、ビス(オキサラト)ホウ酸リチウム(LiB(C2 O4 )2 )、モノフルオロリン酸リチウム(Li2 PFO3 )およびジフルオロリン酸リチウム(LiPF2 O2 )などである。高い電池容量が得られるからである。
Specific examples of lithium salts include lithium hexafluorophosphate (LiPF 6 ), lithium tetrafluoroborate (LiBF 4 ), lithium trifluoromethanesulfonate (LiCF 3 SO 3 ), lithium bis(fluorosulfonyl)imide (LiN ( FSO2 ) 2 ), bis(trifluoromethanesulfonyl )imidolithium (LiN(CF3SO2)2), lithium tris(trifluoromethanesulfonyl)methide (LiC(CF3SO2)3 ) , bis ( oxalato )boron lithium oxide (LiB( C2O4 ) 2 ) , lithium monofluorophosphate ( Li2PFO3 ) and lithium difluorophosphate ( LiPF2O2 ) . This is because a high battery capacity can be obtained.
電解質塩の含有量は、特に限定されないが、具体的には、溶媒に対して0.3mol/kg~3.0mol/kgである。高いイオン伝導性が得られるからである。
The content of the electrolyte salt is not particularly limited, but specifically, it is 0.3 mol/kg to 3.0 mol/kg with respect to the solvent. This is because high ionic conductivity can be obtained.
[添加剤]
また、電解液は、さらに、添加剤のうちのいずれか1種類または2種類以上を含んでいてもよい。電解液の電気化学的安定性が向上するため、その電解液を用いたリチウムイオン二次電池の充放電時において、その電解液の分解反応が抑制されるからである。 [Additive]
In addition, the electrolytic solution may further contain one or more of additives. This is because the electrochemical stability of the electrolytic solution is improved, so that the decomposition reaction of the electrolytic solution is suppressed during charging and discharging of the lithium ion secondary battery using the electrolytic solution.
また、電解液は、さらに、添加剤のうちのいずれか1種類または2種類以上を含んでいてもよい。電解液の電気化学的安定性が向上するため、その電解液を用いたリチウムイオン二次電池の充放電時において、その電解液の分解反応が抑制されるからである。 [Additive]
In addition, the electrolytic solution may further contain one or more of additives. This is because the electrochemical stability of the electrolytic solution is improved, so that the decomposition reaction of the electrolytic solution is suppressed during charging and discharging of the lithium ion secondary battery using the electrolytic solution.
添加剤の種類は、特に限定されないが、具体的には、不飽和環状炭酸エステル、フッ素化環状炭酸エステル、スルホン酸エステル、リン酸エステル、酸無水物、ニトリル化合物およびイソシアネート化合物などである。
The types of additives are not particularly limited, but specific examples include unsaturated cyclic carbonates, fluorinated cyclic carbonates, sulfonate esters, phosphate esters, acid anhydrides, nitrile compounds and isocyanate compounds.
不飽和環状炭酸エステルの具体例は、炭酸ビニレン、炭酸ビニルエチレンおよび炭酸メチレンエチレンなどである。フッ素化環状炭酸エステルの具体例は、モノフルオロ炭酸エチレンおよびジフルオロ炭酸エチレンなどである。スルホン酸エステルの具体例は、プロパンスルトンおよびプロペンスルトンなどである。リン酸エステルの具体例は、リン酸トリメチルおよびリン酸トリエチルなどである。酸無水物の具体例は、コハク酸無水物、1,2-エタンジスルホン酸無水物および2-スルホ安息香酸無水物などである。ニトリル化合物の具体例は、アセトニトリル、バレロニトリル、アジポニトリルおよびスクシノニトリルなどである。イソシアネート化合物の具体例は、ヘキサメチレンジイソシアネートなどである。
Specific examples of unsaturated cyclic carbonates include vinylene carbonate, vinylethylene carbonate and methyleneethylene carbonate. Specific examples of fluorinated cyclic carbonates include ethylene monofluorocarbonate and ethylene difluorocarbonate. Specific examples of sulfonate esters include propane sultone and propene sultone. Specific examples of phosphate esters include trimethyl phosphate and triethyl phosphate. Specific examples of acid anhydrides include succinic anhydride, 1,2-ethanedisulfonic anhydride and 2-sulfobenzoic anhydride. Specific examples of nitrile compounds include acetonitrile, valeronitrile, adiponitrile and succinonitrile. Specific examples of isocyanate compounds include hexamethylene diisocyanate.
<1-2.製造方法>
電解液は、以下で説明する一連の手順により製造される。具体的には、溶媒に電解質塩を添加したのち、その溶媒にフッ素化アルコールを添加する。これにより、溶媒中において電解質塩およびフッ素化アルコールのそれぞれが分散または溶解されるため、電解液が調製される。 <1-2. Manufacturing method>
The electrolytic solution is manufactured by a series of procedures described below. Specifically, after adding the electrolyte salt to the solvent, the fluorinated alcohol is added to the solvent. As a result, the electrolyte salt and the fluorinated alcohol are each dispersed or dissolved in the solvent to prepare an electrolytic solution.
電解液は、以下で説明する一連の手順により製造される。具体的には、溶媒に電解質塩を添加したのち、その溶媒にフッ素化アルコールを添加する。これにより、溶媒中において電解質塩およびフッ素化アルコールのそれぞれが分散または溶解されるため、電解液が調製される。 <1-2. Manufacturing method>
The electrolytic solution is manufactured by a series of procedures described below. Specifically, after adding the electrolyte salt to the solvent, the fluorinated alcohol is added to the solvent. As a result, the electrolyte salt and the fluorinated alcohol are each dispersed or dissolved in the solvent to prepare an electrolytic solution.
なお、電解液を製造する場合には、フッ素化アルコールが溶解した状態の溶媒を用いてもよい。この場合には、電解液の製造途中において、その電解液におけるフッ素化アルコールの含有量が5重量%を超えていてもよい。
When producing the electrolytic solution, a solvent in which the fluorinated alcohol is dissolved may be used. In this case, the content of the fluorinated alcohol in the electrolytic solution may exceed 5% by weight during the production of the electrolytic solution.
<1-3.作用および効果>
この電解液によれば、その電解液がフッ素化アルコールを含んでおり、その電解液におけるフッ素化アルコールの含有量が0.1重量%~5,0重量%である。 <1-3. Action and effect>
According to this electrolytic solution, the electrolytic solution contains the fluorinated alcohol, and the content of the fluorinated alcohol in the electrolytic solution is 0.1% by weight to 5.0% by weight.
この電解液によれば、その電解液がフッ素化アルコールを含んでおり、その電解液におけるフッ素化アルコールの含有量が0.1重量%~5,0重量%である。 <1-3. Action and effect>
According to this electrolytic solution, the electrolytic solution contains the fluorinated alcohol, and the content of the fluorinated alcohol in the electrolytic solution is 0.1% by weight to 5.0% by weight.
この場合には、上記したように、フッ素化アルコールの求核性が低下するため、電解液が経時的に劣化しにくくなると共に、その電解液中において電解質塩などが析出しにくくなる。しかも、上記したように、フッ素化アルコールが高い還元性を有するため、初回の充電時においてフッ素化アルコールに由来する良好な被膜が負極の表面に形成される。
In this case, as described above, the nucleophilicity of the fluorinated alcohol is lowered, so that the electrolyte is less likely to deteriorate over time, and electrolyte salts and the like are less likely to deposit in the electrolyte. Moreover, as described above, since the fluorinated alcohol has a high reducing property, a good film derived from the fluorinated alcohol is formed on the surface of the negative electrode during the initial charge.
よって、電解液の化学的な状態が維持されやすくなると共に、その電解液を用いたリチウムイオン二次電池の充放電を繰り返しても放電容量が減少しにくくなるため、優れた保存特性および優れた充放電特性を得ることができる。
Therefore, the chemical state of the electrolyte solution is easily maintained, and the discharge capacity is less likely to decrease even if the lithium ion secondary battery using the electrolyte solution is repeatedly charged and discharged. Charge/discharge characteristics can be obtained.
特に、電解液におけるフッ素化アルコールの含有量が0.3重量%~3.0重量%であれば、電解液の化学的な状態がより維持されやすくなると共に、その電解液を用いたリチウムイオン二次電池の充放電を繰り返しても放電容量がより減少しにくくなるため、より高い効果を得ることができる。
In particular, when the content of the fluorinated alcohol in the electrolytic solution is 0.3% by weight to 3.0% by weight, the chemical state of the electrolytic solution is more likely to be maintained, and lithium ions using the electrolytic solution Even if the secondary battery is repeatedly charged and discharged, the discharge capacity is less likely to decrease, so a higher effect can be obtained.
また、式(1)に示したR1、R2およびR3のうちの2つ以上がフッ素化アルキル基であれば、フッ素化アルコールに関するフッ素化の度合いが高くなるため、より高い効果を得ることができる。
In addition, if two or more of R1, R2 and R3 shown in formula (1) are fluorinated alkyl groups, the degree of fluorination of the fluorinated alcohol increases, so that a higher effect can be obtained. .
また、電解液がさらに環状炭酸エステルおよび鎖状炭酸エステルを含んでいれば、その電解液を用いたリチウムイオン二次電池において、その電解液の化学的な状態が十分に維持されやすくなると共に、充放電を繰り返しても放電容量が十分に減少しにくくなるため、より高い効果を得ることができる。
Further, if the electrolytic solution further contains a cyclic carbonate and a chain carbonate, the chemical state of the electrolytic solution can be sufficiently maintained in a lithium-ion secondary battery using the electrolytic solution. Even if charging and discharging are repeated, the discharge capacity is less likely to decrease sufficiently, so a higher effect can be obtained.
<2.リチウムイオン二次電池>
次に、上記した電解液を用いた本技術の一実施形態のリチウムイオン二次電池に関して説明する。 <2. Lithium ion secondary battery>
Next, a lithium-ion secondary battery according to an embodiment of the present technology using the electrolyte solution described above will be described.
次に、上記した電解液を用いた本技術の一実施形態のリチウムイオン二次電池に関して説明する。 <2. Lithium ion secondary battery>
Next, a lithium-ion secondary battery according to an embodiment of the present technology using the electrolyte solution described above will be described.
ここで説明するリチウムイオン二次電池は、リチウムの吸蔵放出を利用して電池容量が得られる二次電池であり、正極および負極と共に電解液を備えている。リチウムイオン二次電池では、リチウムの吸蔵放出を利用して十分な電池容量が安定に得られる。
The lithium-ion secondary battery described here is a secondary battery in which battery capacity is obtained by utilizing the absorption and release of lithium. A lithium ion secondary battery can stably obtain a sufficient battery capacity by utilizing the absorption and release of lithium.
このリチウムイオン二次電池では、負極の充電容量が正極の放電容量よりも大きくなっている。すなわち、負極の単位面積当たりの電気化学容量は、正極の単位面積当たりの電気化学容量よりも大きくなるように設定されている。充電途中において負極の表面にリチウム金属が析出することを防止するためである。
In this lithium-ion secondary battery, the charge capacity of the negative electrode is larger than the discharge capacity of the positive electrode. That is, the electrochemical capacity per unit area of the negative electrode is set to be larger than the electrochemical capacity per unit area of the positive electrode. This is to prevent lithium metal from depositing on the surface of the negative electrode during charging.
<2-1.構成>
図1は、リチウムイオン二次電池の斜視構成を表していると共に、図2は、図1に示した電池素子20の断面構成を表している。ただし、図1では、外装フィルム10と電池素子20とが互いに分離された状態を示していると共に、XZ面に沿った電池素子20の断面を破線で示している。図2では、電池素子20の一部だけを示している。 <2-1. Configuration>
1 shows a perspective configuration of a lithium ion secondary battery, and FIG. 2 shows a cross-sectional configuration of thebattery element 20 shown in FIG. However, FIG. 1 shows a state in which the exterior film 10 and the battery element 20 are separated from each other, and the cross section of the battery element 20 along the XZ plane is indicated by a broken line. In FIG. 2, only part of the battery element 20 is shown.
図1は、リチウムイオン二次電池の斜視構成を表していると共に、図2は、図1に示した電池素子20の断面構成を表している。ただし、図1では、外装フィルム10と電池素子20とが互いに分離された状態を示していると共に、XZ面に沿った電池素子20の断面を破線で示している。図2では、電池素子20の一部だけを示している。 <2-1. Configuration>
1 shows a perspective configuration of a lithium ion secondary battery, and FIG. 2 shows a cross-sectional configuration of the
このリチウムイオン二次電池は、図1および図2に示したように、外装フィルム10と、電池素子20と、正極リード31と、負極リード32と、封止フィルム41,42とを備えている。ここで説明するリチウムイオン二次電池は、可撓性または柔軟性を有する外装フィルム10を用いたラミネートフィルム型の二次電池である。
This lithium ion secondary battery, as shown in FIGS. 1 and 2, includes an exterior film 10, a battery element 20, a positive electrode lead 31, a negative electrode lead 32, and sealing films 41 and 42. . The lithium-ion secondary battery described here is a laminated film-type secondary battery using a flexible or pliable exterior film 10 .
[外装フィルムおよび封止フィルム]
外装フィルム10は、図1に示したように、電池素子20を収納する外装部材であり、その電池素子20が内部に収納された状態において封止された袋状の構造を有している。これにより、外装フィルム10は、後述する正極21および負極22と共に電解液を内部に収納している。 [Exterior film and sealing film]
As shown in FIG. 1, theexterior film 10 is an exterior member that houses the battery element 20, and has a sealed bag-like structure with the battery element 20 housed therein. As a result, the exterior film 10 accommodates the electrolytic solution together with the positive electrode 21 and the negative electrode 22, which will be described later.
外装フィルム10は、図1に示したように、電池素子20を収納する外装部材であり、その電池素子20が内部に収納された状態において封止された袋状の構造を有している。これにより、外装フィルム10は、後述する正極21および負極22と共に電解液を内部に収納している。 [Exterior film and sealing film]
As shown in FIG. 1, the
ここでは、外装フィルム10は、1枚のフィルム状の部材であり、折り畳み方向Fに折り畳まれている。この外装フィルム10には、電池素子20を収容するための窪み部10U(深絞り部)が設けられている。
Here, the exterior film 10 is a single film-like member and is folded in the folding direction F. The exterior film 10 is provided with a recessed portion 10U (deeply drawn portion) for housing the battery element 20 .
具体的には、外装フィルム10は、融着層、金属層および表面保護層が内側からこの順に積層された3層のラミネートフィルムであり、その外装フィルム10が折り畳まれた状態において、互いに対向する融着層のうちの外周縁部同士が互いに融着されている。融着層は、ポリプロピレンなどの高分子化合物を含んでいる。金属層は、アルミニウムなどの金属材料を含んでいる。表面保護層は、ナイロンなどの高分子化合物を含んでいる。
Specifically, the exterior film 10 is a three-layer laminate film in which a fusion layer, a metal layer, and a surface protective layer are laminated in this order from the inside. Outer peripheral edge portions of the fusion layer are fused together. The fusible layer contains a polymer compound such as polypropylene. The metal layer contains a metal material such as aluminum. The surface protective layer contains a polymer compound such as nylon.
ただし、外装フィルム10の構成(層数)は、特に、限定されないため、1層または2層でもよいし、4層以上でもよい。
However, the configuration (number of layers) of the exterior film 10 is not particularly limited, and may be one layer, two layers, or four layers or more.
封止フィルム41は、外装フィルム10と正極リード31との間に挿入されていると共に、封止フィルム42は、外装フィルム10と負極リード32との間に挿入されている。ただし、封止フィルム41,42のうちの一方または双方は、省略されてもよい。
The sealing film 41 is inserted between the exterior film 10 and the positive electrode lead 31 , and the sealing film 42 is inserted between the exterior film 10 and the negative electrode lead 32 . However, one or both of the sealing films 41 and 42 may be omitted.
この封止フィルム41は、外装フィルム10の内部に外気などが侵入することを防止する封止部材である。なお、封止フィルム41は、正極リード31に対して密着性を有するポリオレフィンなどの高分子化合物を含んでおり、そのポリオレフィンの具体例は、ポリプロピレンなどである。
The sealing film 41 is a sealing member that prevents external air from entering the exterior film 10 . The sealing film 41 contains a polymer compound such as polyolefin having adhesiveness to the positive electrode lead 31, and a specific example of the polyolefin is polypropylene.
封止フィルム42の構成は、負極リード32に対して密着性を有する封止部材であることを除いて、封止フィルム41の構成と同様である。すなわち、封止フィルム42は、負極リード32に対して密着性を有するポリオレフィンなどの高分子化合物を含んでいる。
The structure of the sealing film 42 is the same as the structure of the sealing film 41 except that it is a sealing member having adhesion to the negative electrode lead 32 . That is, the sealing film 42 contains a polymer compound such as polyolefin that has adhesiveness to the negative electrode lead 32 .
[電池素子]
電池素子20は、図1および図2に示したように、正極21と、負極22と、セパレータ23と、電解液(図示せず)とを含む発電素子であり、外装フィルム10の内部に収納されている。 [Battery element]
Thebattery element 20 is a power generation element including a positive electrode 21, a negative electrode 22, a separator 23, and an electrolytic solution (not shown), as shown in FIGS. It is
電池素子20は、図1および図2に示したように、正極21と、負極22と、セパレータ23と、電解液(図示せず)とを含む発電素子であり、外装フィルム10の内部に収納されている。 [Battery element]
The
この電池素子20は、いわゆる巻回電極体である。すなわち、正極21および負極22は、セパレータ23を介して互いに積層されていると共に、そのセパレータ23を介して互いに対向しながら巻回軸Pを中心として巻回されている。なお、巻回軸Pとは、Y軸方向に延在する仮想軸である。
This battery element 20 is a so-called wound electrode assembly. That is, the positive electrode 21 and the negative electrode 22 are laminated with the separator 23 interposed therebetween, and are wound around the winding axis P while facing each other with the separator 23 interposed therebetween. Note that the winding axis P is a virtual axis extending in the Y-axis direction.
電池素子20の立体的形状は、特に限定されない。ここでは、電池素子20の立体的形状は、扁平状であるため、巻回軸Pと交差する電池素子20の断面(XZ面に沿った断面)の形状は、長軸J1および短軸J2により規定される扁平形状である。この長軸J1は、X軸方向に延在すると共に短軸J2の長さよりも大きい長さを有する仮想軸であると共に、短軸J2は、X軸方向と交差するZ軸方向に延在すると共に長軸J1の長さよりも小さい長さを有する仮想軸である。ここでは、電池素子20の立体的形状は、扁平な円筒状であるため、その電池素子20の断面の形状は、扁平な略楕円である。
The three-dimensional shape of the battery element 20 is not particularly limited. Here, since the three-dimensional shape of the battery element 20 is flat, the shape of the cross section of the battery element 20 intersecting the winding axis P (the cross section along the XZ plane) is determined by the long axis J1 and the short axis J2. It is a defined flat shape. The long axis J1 is a virtual axis extending in the X-axis direction and having a length larger than the length of the short axis J2, and the short axis J2 extends in the Z-axis direction that intersects the X-axis direction. is a virtual axis having a length smaller than that of the long axis J1. Here, since the three-dimensional shape of the battery element 20 is a flat cylindrical shape, the cross-sectional shape of the battery element 20 is a flat, substantially elliptical shape.
(正極)
正極21は、図2に示したように、正極集電体21Aおよび正極活物質層21Bを含んでいる。 (positive electrode)
Thepositive electrode 21 includes a positive electrode current collector 21A and a positive electrode active material layer 21B, as shown in FIG.
正極21は、図2に示したように、正極集電体21Aおよび正極活物質層21Bを含んでいる。 (positive electrode)
The
正極集電体21Aは、正極活物質層21Bが設けられる一対の面を有している。この正極集電体21Aは、金属材料などの導電性材料を含んでおり、その導電性材料の具体例は、アルミニウムなどである。
The positive electrode current collector 21A has a pair of surfaces on which the positive electrode active material layer 21B is provided. The positive electrode current collector 21A contains a conductive material such as a metal material, and a specific example of the conductive material is aluminum.
ここでは、正極活物質層21Bは、正極集電体21Aの両面に設けられており、リチウムを吸蔵放出する正極活物質のうちのいずれか1種類または2種類以上を含んでいる。ただし、正極活物質層21Bは、正極21が負極22に対向する側において正極集電体21Aの片面だけに設けられていてもよい。また、正極活物質層21Bは、さらに、正極結着剤および正極導電剤などの他の材料のうちのいずれか1種類または2種類以上を含んでいてもよい。正極活物質層21Bの形成方法は、特に限定されないが、具体的には、塗布法などである。
Here, the positive electrode active material layer 21B is provided on both sides of the positive electrode current collector 21A, and contains one or more of positive electrode active materials that occlude and release lithium. However, the positive electrode active material layer 21B may be provided only on one side of the positive electrode current collector 21A on the side where the positive electrode 21 faces the negative electrode 22 . In addition, the positive electrode active material layer 21B may further contain one or more of other materials such as a positive electrode binder and a positive electrode conductive agent. A method for forming the positive electrode active material layer 21B is not particularly limited, but a specific example is a coating method.
正極活物質は、リチウム含有化合物を含んでいる。このリチウム含有化合物は、リチウムと共に1種類または2種類以上の遷移金属元素を構成元素として含む化合物であり、さらに、1種類または2種類以上の他元素を構成元素として含んでいてもよい。他元素の種類は、遷移金属元素以外の元素(リチウムを除く。)であれば、特に限定されないが、具体的には、長周期型周期表中の2族~15族に属する元素である。リチウム含有化合物の種類は、特に限定されないが、具体的には、酸化物、リン酸化合物、ケイ酸化合物およびホウ酸化合物などである。
The positive electrode active material contains a lithium-containing compound. This lithium-containing compound is a compound containing lithium and one or more transition metal elements as constituent elements, and may further contain one or more other elements as constituent elements. The type of the other element is not particularly limited as long as it is an element other than a transition metal element (excluding lithium). Specifically, it is an element belonging to Groups 2 to 15 in the long period periodic table. The type of lithium-containing compound is not particularly limited, but specific examples include oxides, phosphoric acid compounds, silicic acid compounds and boric acid compounds.
酸化物の具体例は、LiNiO2 、LiCoO2 、LiCo0.98Al0.01Mg0.01O2 、LiNi0.5 Co0.2 Mn0.3 O2 、LiNi0.8 Co0.15Al0.05O2 、LiNi0.33Co0.33Mn0.33O2 、Li1.2 Mn0.52Co0.175 Ni0.1 O2 、Li1.15(Mn0.65Ni0.22Co0.13)O2 およびLiMn2 O4 などである。リン酸化合物の具体例は、LiFePO4 、LiMnPO4 、LiFe0.5 Mn0.5 PO4 およびLiFe0.3 Mn0.7 PO4 などである。
Specific examples of oxides are LiNiO2 , LiCoO2 , LiCo0.98Al0.01Mg0.01O2 , LiNi0.5Co0.2Mn0.3O2 , LiNi0.8Co0.15Al0.05O2 , LiNi0.33Co0.33Mn0.33 . O2 , Li 1.2Mn0.52Co0.175Ni0.1O2 , Li1.15 ( Mn0.65Ni0.22Co0.13 ) O2 and LiMn2O4 . _ _ Specific examples of phosphoric acid compounds include LiFePO4 , LiMnPO4 , LiFe0.5Mn0.5PO4 and LiFe0.3Mn0.7PO4 .
正極結着剤は、合成ゴムおよび高分子化合物などの化合物のうちのいずれか1種類または2種類以上を含んでいる。合成ゴムの具体例は、スチレンブタジエン系ゴム、フッ素系ゴムおよびエチレンプロピレンジエンなどである。高分子化合物の具体例は、ポリフッ化ビニリデン、ポリイミドおよびカルボキシメチルセルロースなどである。
The positive electrode binder contains one or more of compounds such as synthetic rubber and polymer compounds. Specific examples of synthetic rubbers include styrene-butadiene rubber, fluororubber, and ethylene propylene diene. Specific examples of polymer compounds include polyvinylidene fluoride, polyimide and carboxymethylcellulose.
正極導電剤は、炭素材料などの導電性材料のうちのいずれか1種類または2種類以上を含んでおり、その導電性材料の具体例は、黒鉛、カーボンブラック、アセチレンブラック、ケッチェンブラック、カーボンファイバー、カーボンナノファイバーおよびカーボンナノチューブなどである。ただし、導電性材料は、金属材料および導電性高分子化合物などでもよい。
The positive electrode conductive agent contains one or more of conductive materials such as carbon materials, and specific examples of the conductive materials include graphite, carbon black, acetylene black, ketjen black, carbon Such as fibers, carbon nanofibers and carbon nanotubes. However, the conductive material may be a metal material, a conductive polymer compound, or the like.
(負極)
負極22は、図2に示したように、負極集電体22Aおよび負極活物質層22Bを含んでいる。 (negative electrode)
Thenegative electrode 22 includes a negative electrode current collector 22A and a negative electrode active material layer 22B, as shown in FIG.
負極22は、図2に示したように、負極集電体22Aおよび負極活物質層22Bを含んでいる。 (negative electrode)
The
負極集電体22Aは、負極活物質層22Bが設けられる一対の面を有している。この負極集電体22Aは、金属材料などの導電性材料を含んでおり、その導電性材料の具体例は、銅などである。
The negative electrode current collector 22A has a pair of surfaces on which the negative electrode active material layer 22B is provided. The negative electrode current collector 22A contains a conductive material such as a metal material, and a specific example of the conductive material is copper.
ここでは、負極活物質層22Bは、負極集電体22Aの両面に設けられており、リチウムを吸蔵放出する負極活物質のうちのいずれか1種類または2種類以上を含んでいる。ただし、負極活物質層22Bは、負極22が正極21に対向する側において負極集電体22Aの片面だけに設けられていてもよい。また、負極活物質層22Bは、さらに、負極結着剤および負極導電剤などの他の材料のうちのいずれか1種類または2種類以上を含んでいてもよい。なお、負極活物質層22Bの形成方法は、特に限定されないが、具体的には、塗布法などである。
Here, the negative electrode active material layer 22B is provided on both surfaces of the negative electrode current collector 22A, and contains one or more of negative electrode active materials that intercalate and deintercalate lithium. However, the negative electrode active material layer 22B may be provided only on one side of the negative electrode current collector 22A on the side where the negative electrode 22 faces the positive electrode 21 . In addition, the negative electrode active material layer 22B may further contain one or more of other materials such as a negative electrode binder and a negative electrode conductor. The method of forming the negative electrode active material layer 22B is not particularly limited, but specifically, it is a coating method or the like.
負極活物質は、炭素材料および金属系材料などのうちのいずれか1種類または2種類以上を含んでいる。高いエネルギー密度が得られるからである。
The negative electrode active material contains one or more of carbon materials and metal-based materials. This is because a high energy density can be obtained.
炭素材料の具体例は、易黒鉛化性炭素、難黒鉛化性炭素および黒鉛などである。この黒鉛は、天然黒鉛でもよいし、人造黒鉛でもよいし、双方でもよい。
Specific examples of carbon materials include graphitizable carbon, non-graphitizable carbon, and graphite. This graphite may be natural graphite, artificial graphite, or both.
金属系材料は、リチウムと合金を形成可能である金属元素および半金属元素のうちのいずれか1種類または2種類以上を構成元素として含む材料であり、その金属元素および半金属元素の具体例は、ケイ素およびスズなどである。この金属系材料は、単体でもよいし、合金でもよいし、化合物でもよいし、それらの2種類以上の混合物でもよいし、それらの2種類以上の相を含む材料でもよい。金属系材料の具体例は、TiSi2 およびSiOx (0<x≦2、または0.2<x<1.4)などである。
A metallic material is a material containing as constituent elements one or more of metallic elements and semi-metallic elements capable of forming an alloy with lithium. , silicon and tin. This metallic material may be a single substance, an alloy, a compound, a mixture of two or more of them, or a material containing two or more of these phases. Specific examples of metallic materials include TiSi 2 and SiO x (0<x≦2, or 0.2<x<1.4).
負極結着剤および負極導電剤のそれぞれに関する詳細は、正極結着剤および正極導電剤のそれぞれに関する詳細と同様である。
The details of each of the negative electrode binder and the negative electrode conductive agent are the same as those of the positive electrode binder and the positive electrode conductive agent.
(セパレータ)
セパレータ23は、図2に示したように、正極21と負極22との間に介在している絶縁性の多孔質膜であり、その正極21と負極22との接触(短絡)を防止しながらリチウムイオンを通過させる。このセパレータ23は、ポリエチレンなどの高分子化合物を含んでいる。 (separator)
Theseparator 23 is an insulating porous film interposed between the positive electrode 21 and the negative electrode 22, as shown in FIG. Allows lithium ions to pass through. This separator 23 contains a polymer compound such as polyethylene.
セパレータ23は、図2に示したように、正極21と負極22との間に介在している絶縁性の多孔質膜であり、その正極21と負極22との接触(短絡)を防止しながらリチウムイオンを通過させる。このセパレータ23は、ポリエチレンなどの高分子化合物を含んでいる。 (separator)
The
(電解液)
電解液に関する詳細は、上記した通りである。すなわち、電解液は、適正量(=0.1重量%~5.0重量%)のフッ素化アルコールを含んでいる。 (Electrolyte)
Details regarding the electrolyte are as described above. That is, the electrolytic solution contains an appropriate amount (=0.1% by weight to 5.0% by weight) of fluorinated alcohol.
電解液に関する詳細は、上記した通りである。すなわち、電解液は、適正量(=0.1重量%~5.0重量%)のフッ素化アルコールを含んでいる。 (Electrolyte)
Details regarding the electrolyte are as described above. That is, the electrolytic solution contains an appropriate amount (=0.1% by weight to 5.0% by weight) of fluorinated alcohol.
[正極リードおよび負極リード]
正極リード31は、図1および図2に示したように、正極21の正極集電体21Aに接続されている正極端子であり、外装フィルム10の内部から外部に導出されている。この正極リード31は、金属材料などの導電性材料を含んでおり、その導電性材料の具体例は、アルミニウムなどである。正極リード31の形状は、特に限定されないが、具体的には、薄板状および網目状などのうちのいずれかである。 [Positive lead and negative lead]
Thepositive electrode lead 31 is a positive electrode terminal connected to the positive electrode current collector 21A of the positive electrode 21, as shown in FIGS. The positive electrode lead 31 contains a conductive material such as a metal material, and a specific example of the conductive material is aluminum. The shape of the positive electrode lead 31 is not particularly limited, but specifically, it is either a thin plate shape, a mesh shape, or the like.
正極リード31は、図1および図2に示したように、正極21の正極集電体21Aに接続されている正極端子であり、外装フィルム10の内部から外部に導出されている。この正極リード31は、金属材料などの導電性材料を含んでおり、その導電性材料の具体例は、アルミニウムなどである。正極リード31の形状は、特に限定されないが、具体的には、薄板状および網目状などのうちのいずれかである。 [Positive lead and negative lead]
The
負極リード32は、図1および図2に示したように、負極22の負極集電体22Aに接続されている負極端子であり、外装フィルム10の内部から外部に導出されている。この負極リード32は、金属材料などの導電性材料を含んでおり、その導電性材料の具体例は、銅などである。ここでは、負極リード32の導出方向および形状に関する詳細は、正極リード31の導出方向および形状に関する詳細と同様である。
The negative electrode lead 32 is a negative electrode terminal connected to the negative electrode current collector 22A of the negative electrode 22, as shown in FIGS. The negative electrode lead 32 contains a conductive material such as a metal material, and a specific example of the conductive material is copper. Here, the details regarding the lead-out direction and shape of the negative electrode lead 32 are the same as the details regarding the lead-out direction and shape of the positive electrode lead 31 .
<2-2.動作>
リチウムイオン二次電池は、以下で説明するように動作する。 <2-2. Operation>
A lithium ion secondary battery operates as described below.
リチウムイオン二次電池は、以下で説明するように動作する。 <2-2. Operation>
A lithium ion secondary battery operates as described below.
充電時には、電池素子20において、正極21からリチウムがイオン状態で放出されると共に、そのリチウムが電解液を介して負極22にイオン状態で吸蔵される。一方、放電時には、電池素子20において、負極22からリチウムがイオン状態で放出されると共に、そのリチウムが電解液を介して正極21にイオン状態で吸蔵される。
During charging, in the battery element 20, lithium is released in an ionic state from the positive electrode 21, and the lithium is absorbed in the negative electrode 22 in an ionic state through the electrolyte. On the other hand, in the battery element 20, on the other hand, lithium is released in an ionic state from the negative electrode 22 in the battery element 20, and the lithium is absorbed in the positive electrode 21 in an ionic state through the electrolyte.
<2-3.製造方法>
リチウムイオン二次電池を製造する場合には、以下で説明する一例の手順により、正極21および負極22のそれぞれを作製すると共に、電解液を調製したのち、その正極21、負極22および電解液を用いてリチウムイオン二次電池を組み立てると共に、そのリチウムイオン二次電池の安定化処理を行う。 <2-3. Manufacturing method>
In the case of manufacturing a lithium ion secondary battery, thepositive electrode 21 and the negative electrode 22 are prepared according to an example procedure described below, and an electrolytic solution is prepared. While assembling a lithium ion secondary battery using it, the stabilization process of the lithium ion secondary battery is performed.
リチウムイオン二次電池を製造する場合には、以下で説明する一例の手順により、正極21および負極22のそれぞれを作製すると共に、電解液を調製したのち、その正極21、負極22および電解液を用いてリチウムイオン二次電池を組み立てると共に、そのリチウムイオン二次電池の安定化処理を行う。 <2-3. Manufacturing method>
In the case of manufacturing a lithium ion secondary battery, the
[正極の作製]
最初に、正極活物質、正極結着剤および正極導電剤が互いに混合された混合物(正極合剤)を溶媒に投入することにより、ペースト状の正極合剤スラリーを調製する。この溶媒は、水性溶媒でもよいし、有機溶剤でもよい。続いて、正極集電体21Aの両面に正極合剤スラリーを塗布することにより、正極活物質層21Bを形成する。最後に、ロールプレス機などを用いて正極活物質層21Bを圧縮成型してもよい。この場合には、正極活物質層21Bを加熱してもよいし、圧縮成型を複数回繰り返してもよい。これにより、正極集電体21Aの両面に正極活物質層21Bが形成されるため、正極21が作製される。 [Preparation of positive electrode]
First, a paste-like positive electrode mixture slurry is prepared by putting a mixture (positive electrode mixture) in which a positive electrode active material, a positive electrode binder, and a positive electrode conductor are mixed together into a solvent. This solvent may be an aqueous solvent or an organic solvent. Subsequently, the cathodeactive material layer 21B is formed by applying the cathode mixture slurry to both surfaces of the cathode current collector 21A. Finally, the positive electrode active material layer 21B may be compression-molded using a roll press machine or the like. In this case, the positive electrode active material layer 21B may be heated, or compression molding may be repeated multiple times. As a result, the cathode active material layers 21B are formed on both surfaces of the cathode current collector 21A, so that the cathode 21 is produced.
最初に、正極活物質、正極結着剤および正極導電剤が互いに混合された混合物(正極合剤)を溶媒に投入することにより、ペースト状の正極合剤スラリーを調製する。この溶媒は、水性溶媒でもよいし、有機溶剤でもよい。続いて、正極集電体21Aの両面に正極合剤スラリーを塗布することにより、正極活物質層21Bを形成する。最後に、ロールプレス機などを用いて正極活物質層21Bを圧縮成型してもよい。この場合には、正極活物質層21Bを加熱してもよいし、圧縮成型を複数回繰り返してもよい。これにより、正極集電体21Aの両面に正極活物質層21Bが形成されるため、正極21が作製される。 [Preparation of positive electrode]
First, a paste-like positive electrode mixture slurry is prepared by putting a mixture (positive electrode mixture) in which a positive electrode active material, a positive electrode binder, and a positive electrode conductor are mixed together into a solvent. This solvent may be an aqueous solvent or an organic solvent. Subsequently, the cathode
[負極の作製]
上記した正極21の作製手順と同様の手順により、負極22を作製する。具体的には、負極活物質、負極結着剤および負極導電剤が互いに混合された混合物(負極合剤)を溶媒に投入することにより、ペースト状の負極合剤スラリーを調製したのち、負極集電体22Aの両面に負極合剤スラリーを塗布することにより、負極活物質層22Bを形成する。こののち、負極活物質層22Bを圧縮成型してもよい。これにより、負極集電体22Aの両面に負極活物質層22Bが形成されるため、負極22が作製される。 [Preparation of negative electrode]
Thenegative electrode 22 is manufactured by the same procedure as the manufacturing procedure of the positive electrode 21 described above. Specifically, a paste-like negative electrode mixture slurry is prepared by adding a mixture (negative electrode mixture) in which a negative electrode active material, a negative electrode binder, and a negative electrode conductor are mixed with each other into a solvent, and then a negative electrode collection is performed. The anode active material layer 22B is formed by applying the anode mixture slurry to both surfaces of the conductor 22A. After that, the negative electrode active material layer 22B may be compression molded. As a result, the negative electrode 22 is manufactured because the negative electrode active material layers 22B are formed on both surfaces of the negative electrode current collector 22A.
上記した正極21の作製手順と同様の手順により、負極22を作製する。具体的には、負極活物質、負極結着剤および負極導電剤が互いに混合された混合物(負極合剤)を溶媒に投入することにより、ペースト状の負極合剤スラリーを調製したのち、負極集電体22Aの両面に負極合剤スラリーを塗布することにより、負極活物質層22Bを形成する。こののち、負極活物質層22Bを圧縮成型してもよい。これにより、負極集電体22Aの両面に負極活物質層22Bが形成されるため、負極22が作製される。 [Preparation of negative electrode]
The
[電解液の調製]
上記した手順により、フッ素化アルコールを含む電解液を調製する。 [Preparation of electrolytic solution]
An electrolytic solution containing a fluorinated alcohol is prepared according to the procedure described above.
上記した手順により、フッ素化アルコールを含む電解液を調製する。 [Preparation of electrolytic solution]
An electrolytic solution containing a fluorinated alcohol is prepared according to the procedure described above.
[リチウムイオン二次電池の組み立て]
最初に、溶接法などの接合法を用いて、正極21の正極集電体21Aに正極リード31を接続させると共に、溶接法などの接合法を用いて、負極22の負極集電体22Aに負極リード32を接続させる。 [Assembly of lithium-ion secondary battery]
First, a joining method such as welding is used to connect thepositive electrode lead 31 to the positive electrode current collector 21A of the positive electrode 21, and a joining method such as welding is used to connect the negative electrode current collector 22A of the negative electrode 22 to the negative electrode. Connect lead 32 .
最初に、溶接法などの接合法を用いて、正極21の正極集電体21Aに正極リード31を接続させると共に、溶接法などの接合法を用いて、負極22の負極集電体22Aに負極リード32を接続させる。 [Assembly of lithium-ion secondary battery]
First, a joining method such as welding is used to connect the
続いて、セパレータ23を介して正極21および負極22を互いに積層させたのち、その正極21、負極22およびセパレータ23を巻回させることにより、巻回体(図示せず)を作製する。この巻回体は、正極21、負極22およびセパレータ23のそれぞれに電解液が含浸されていないことを除いて、電池素子20の構成と同様の構成を有している。続いて、プレス機などを用いて巻回体を押圧することにより、扁平状となるように巻回体を成型する。
Subsequently, the positive electrode 21 and the negative electrode 22 are laminated with the separator 23 interposed therebetween, and then the positive electrode 21, the negative electrode 22 and the separator 23 are wound to form a wound body (not shown). This wound body has the same structure as the battery element 20 except that the positive electrode 21, the negative electrode 22 and the separator 23 are not impregnated with the electrolytic solution. Subsequently, the wound body is molded into a flat shape by pressing the wound body using a press machine or the like.
続いて、窪み部10Uの内部に巻回体を収容したのち、外装フィルム10(融着層/金属層/表面保護層)を折り畳むことにより、その外装フィルム10同士を互いに対向させる。続いて、熱融着法などの接着法を用いて、互いに対向する融着層のうちの2辺の外周縁部同士を互いに接合させることにより、袋状の外装フィルム10の内部に巻回体を収納する。
Subsequently, after the wound body is housed inside the hollow portion 10U, the exterior films 10 (bonding layer/metal layer/surface protective layer) are folded to face each other. Subsequently, by using an adhesion method such as a heat fusion method, the outer peripheral edge portions of two sides of the fusion layers facing each other are joined to each other, so that the wound body is placed inside the bag-shaped exterior film 10. to accommodate.
最後に、袋状の外装フィルム10の内部に電解液を注入したのち、熱融着法などの接着法を用いて、互いに対向する融着層のうちの残りの1辺の外周縁部同士を互いに接合させる。この場合には、外装フィルム10と正極リード31との間に封止フィルム41を挿入すると共に、外装フィルム10と負極リード32との間に封止フィルム42を挿入する。
Finally, after injecting the electrolytic solution into the interior of the bag-shaped exterior film 10, the outer peripheral edges of the remaining one side of the mutually facing fusion layers are bonded together using a bonding method such as a heat fusion method. Join each other. In this case, a sealing film 41 is inserted between the packaging film 10 and the positive electrode lead 31 and a sealing film 42 is inserted between the packaging film 10 and the negative electrode lead 32 .
これにより、巻回体に電解液が含浸されるため、巻回電極体である電池素子20が作製される。よって、袋状の外装フィルム10の内部に電池素子20が封入されるため、リチウムイオン二次電池が組み立てられる。
As a result, the wound body is impregnated with the electrolytic solution, so that the battery element 20, which is the wound electrode body, is produced. Accordingly, the battery element 20 is enclosed inside the bag-shaped exterior film 10, so that the lithium ion secondary battery is assembled.
[安定化処理]
組み立て後のリチウムイオン二次電池を充放電させる。環境温度、充放電回数(サイクル数)および充放電条件などの各種条件は、任意に設定可能である。これにより、正極21および負極22のそれぞれの表面に被膜が形成されるため、リチウムイオン二次電池の状態が電気化学的に安定化する。よって、リチウムイオン二次電池が完成する。 [Stabilization treatment]
The assembled lithium ion secondary battery is charged and discharged. Various conditions such as environmental temperature, number of charge/discharge times (number of cycles), and charge/discharge conditions can be arbitrarily set. As a result, films are formed on the respective surfaces of thepositive electrode 21 and the negative electrode 22, so that the state of the lithium ion secondary battery is electrochemically stabilized. Thus, a lithium ion secondary battery is completed.
組み立て後のリチウムイオン二次電池を充放電させる。環境温度、充放電回数(サイクル数)および充放電条件などの各種条件は、任意に設定可能である。これにより、正極21および負極22のそれぞれの表面に被膜が形成されるため、リチウムイオン二次電池の状態が電気化学的に安定化する。よって、リチウムイオン二次電池が完成する。 [Stabilization treatment]
The assembled lithium ion secondary battery is charged and discharged. Various conditions such as environmental temperature, number of charge/discharge times (number of cycles), and charge/discharge conditions can be arbitrarily set. As a result, films are formed on the respective surfaces of the
<2-4.作用および効果>
このリチウムイオン二次電池によれば、そのリチウムイオン二次電池が電解液を備えており、その電解液が上記した構成を有している。よって、上記した理由により、優れた保存特性および優れた充放電特性を得ることができる。 <2-4. Action and effect>
According to this lithium ion secondary battery, the lithium ion secondary battery is provided with an electrolytic solution, and the electrolytic solution has the structure described above. Therefore, for the reasons described above, excellent storage characteristics and excellent charge/discharge characteristics can be obtained.
このリチウムイオン二次電池によれば、そのリチウムイオン二次電池が電解液を備えており、その電解液が上記した構成を有している。よって、上記した理由により、優れた保存特性および優れた充放電特性を得ることができる。 <2-4. Action and effect>
According to this lithium ion secondary battery, the lithium ion secondary battery is provided with an electrolytic solution, and the electrolytic solution has the structure described above. Therefore, for the reasons described above, excellent storage characteristics and excellent charge/discharge characteristics can be obtained.
このリチウムイオン二次電池に関する他の作用および効果は、正極1に関する他の作用および効果と同様である。
Other actions and effects regarding this lithium ion secondary battery are the same as other actions and effects regarding the positive electrode 1 .
<3.変形例>
リチウムイオン二次電池の構成は、以下で説明するように、適宜、変更可能である。ただし、以下で説明する一連の変形例は、互いに組み合わされてもよい。 <3. Variation>
The configuration of the lithium ion secondary battery can be changed as appropriate, as described below. However, the series of variants described below may be combined with each other.
リチウムイオン二次電池の構成は、以下で説明するように、適宜、変更可能である。ただし、以下で説明する一連の変形例は、互いに組み合わされてもよい。 <3. Variation>
The configuration of the lithium ion secondary battery can be changed as appropriate, as described below. However, the series of variants described below may be combined with each other.
[変形例1]
多孔質膜であるセパレータ23を用いた。しかしながら、ここでは具体的に図示しないが、高分子化合物層を含む積層型のセパレータを用いてもよい。 [Modification 1]
Aseparator 23, which is a porous membrane, was used. However, although not specifically illustrated here, a laminated separator including a polymer compound layer may be used.
多孔質膜であるセパレータ23を用いた。しかしながら、ここでは具体的に図示しないが、高分子化合物層を含む積層型のセパレータを用いてもよい。 [Modification 1]
A
具体的には、積層型のセパレータは、一対の面を有する多孔質膜と、その多孔質膜の片面または両面に設けられた高分子化合物層とを含んでいる。正極21および負極22のそれぞれに対するセパレータの密着性が向上するため、電池素子20の巻きずれが抑制されるからである。これにより、電解液の分解反応が発生しても、リチウムイオン二次電池の膨れが抑制される。高分子化合物層は、ポリフッ化ビニリデンなどの高分子化合物を含んでいる。ポリフッ化ビニリデンは、物理的強度に優れていると共に、電気化学的に安定である。
Specifically, a laminated separator includes a porous membrane having a pair of surfaces and a polymer compound layer provided on one or both sides of the porous membrane. This is because the adhesiveness of the separator to each of the positive electrode 21 and the negative electrode 22 is improved, so that the winding misalignment of the battery element 20 is suppressed. As a result, swelling of the lithium-ion secondary battery is suppressed even if a decomposition reaction of the electrolytic solution occurs. The polymer compound layer contains a polymer compound such as polyvinylidene fluoride. Polyvinylidene fluoride has excellent physical strength and is electrochemically stable.
なお、多孔質膜および高分子化合物層のうちの一方または双方は、複数の絶縁性粒子を含んでいてもよい。リチウムイオン二次電池の発熱時において複数の絶縁性粒子が放熱を促進させるため、そのリチウムイオン二次電池の安全性(耐熱性)が向上するからである。絶縁性粒子は、無機材料および樹脂材料などの絶縁性材料のうちのいずれか1種類または2種類以上を含んでいる。無機材料の具体例は、酸化アルミニウム、窒化アルミニウム、ベーマイト、酸化ケイ素、酸化チタン、酸化マグネシウムおよび酸化ジルコニウムなどである。樹脂材料の具体例は、アクリル樹脂およびスチレン樹脂などである。
One or both of the porous membrane and the polymer compound layer may contain a plurality of insulating particles. This is because the safety (heat resistance) of the lithium ion secondary battery is improved because the plurality of insulating particles promote heat dissipation when the lithium ion secondary battery generates heat. The insulating particles contain one or more of insulating materials such as inorganic materials and resin materials. Specific examples of inorganic materials are aluminum oxide, aluminum nitride, boehmite, silicon oxide, titanium oxide, magnesium oxide and zirconium oxide. Specific examples of resin materials include acrylic resins and styrene resins.
積層型のセパレータを作製する場合には、高分子化合物および溶媒などを含む前駆溶液を調製したのち、多孔質膜の片面または両面に前駆溶液を塗布する。この場合には、必要に応じて、前駆溶液に複数の絶縁性粒子を添加してもよい。
When manufacturing a laminated separator, after preparing a precursor solution containing a polymer compound, a solvent, etc., the precursor solution is applied to one or both sides of the porous membrane. In this case, if necessary, a plurality of insulating particles may be added to the precursor solution.
この積層型のセパレータを用いた場合においても、正極21と負極22との間においてリチウムが移動可能になるため、同様の効果を得ることができる。この場合には、特に、上記したように、リチウムイオン二次電池の安全性が向上するため、より高い効果を得ることができる。
Even when this laminated separator is used, the same effect can be obtained because lithium can move between the positive electrode 21 and the negative electrode 22 . In this case, especially, as described above, the safety of the lithium ion secondary battery is improved, so that a higher effect can be obtained.
[変形例2]
液状の電解質である電解液を用いた。しかしながら、ここでは具体的に図示しないが、ゲル状の電解質である電解質層を用いてもよい。 [Modification 2]
An electrolytic solution, which is a liquid electrolyte, was used. However, although not specifically illustrated here, an electrolyte layer that is a gel electrolyte may be used.
液状の電解質である電解液を用いた。しかしながら、ここでは具体的に図示しないが、ゲル状の電解質である電解質層を用いてもよい。 [Modification 2]
An electrolytic solution, which is a liquid electrolyte, was used. However, although not specifically illustrated here, an electrolyte layer that is a gel electrolyte may be used.
電解質層を用いた電池素子20では、セパレータ23および電解質層を介して正極21および負極22が互いに積層されていると共に、その正極21、負極22、セパレータ23および電解質層が巻回されている。この電解質層は、正極21とセパレータ23との間に介在していると共に、負極22とセパレータ23との間に介在している。
In the battery element 20 using the electrolyte layer, the positive electrode 21 and the negative electrode 22 are laminated with the separator 23 and the electrolyte layer interposed therebetween, and the positive electrode 21, the negative electrode 22, the separator 23 and the electrolyte layer are wound. This electrolyte layer is interposed between the positive electrode 21 and the separator 23 and interposed between the negative electrode 22 and the separator 23 .
具体的には、電解質層は、電解液と共に高分子化合物を含んでおり、その電解液は、高分子化合物により保持されている。電解液の漏液が防止されるからである。電解液の構成は、上記した通りである。高分子化合物は、ポリフッ化ビニリデンなどを含んでいる。電解質層を形成する場合には、電解液、高分子化合物および溶媒などを含む前駆溶液を調製したのち、正極21および負極22のそれぞれの片面または両面に前駆溶液を塗布する。
Specifically, the electrolyte layer contains a polymer compound together with an electrolytic solution, and the electrolytic solution is held by the polymer compound. This is because leakage of the electrolytic solution is prevented. The composition of the electrolytic solution is as described above. Polymer compounds include polyvinylidene fluoride and the like. When forming the electrolyte layer, after preparing a precursor solution containing an electrolytic solution, a polymer compound, a solvent, and the like, the precursor solution is applied to one side or both sides of each of the positive electrode 21 and the negative electrode 22 .
この電解質層を用いた場合においても、正極21と負極22との間において電解質層を介してリチウムが移動可能になるため、同様の効果を得ることができる。この場合には、特に、上記したように、電解液の漏液が防止されるため、より高い効果を得ることができる。
Even when this electrolyte layer is used, lithium can move between the positive electrode 21 and the negative electrode 22 through the electrolyte layer, so that similar effects can be obtained. In this case, especially, as described above, leakage of the electrolytic solution is prevented, so that a higher effect can be obtained.
<4.リチウムイオン二次電池の用途>
リチウムイオン二次電池の用途(適用例)は、特に限定されない。電源として用いられるリチウムイオン二次電池は、電子機器および電動車両などの主電源でもよいし、補助電源でもよい。主電源とは、他の電源の有無に関係なく、優先的に使用される電源である。補助電源は、主電源の代わりに使用される電源でもよいし、主電源から切り替えられる電源でもよい。 <4. Applications of Lithium Ion Secondary Battery>
The use (application example) of the lithium ion secondary battery is not particularly limited. A lithium-ion secondary battery used as a power source may be a main power source for electronic devices and electric vehicles, or may be an auxiliary power source. A main power source is a power source that is preferentially used regardless of the presence or absence of other power sources. The auxiliary power supply may be a power supply that is used in place of the main power supply or a power supply that is switched from the main power supply.
リチウムイオン二次電池の用途(適用例)は、特に限定されない。電源として用いられるリチウムイオン二次電池は、電子機器および電動車両などの主電源でもよいし、補助電源でもよい。主電源とは、他の電源の有無に関係なく、優先的に使用される電源である。補助電源は、主電源の代わりに使用される電源でもよいし、主電源から切り替えられる電源でもよい。 <4. Applications of Lithium Ion Secondary Battery>
The use (application example) of the lithium ion secondary battery is not particularly limited. A lithium-ion secondary battery used as a power source may be a main power source for electronic devices and electric vehicles, or may be an auxiliary power source. A main power source is a power source that is preferentially used regardless of the presence or absence of other power sources. The auxiliary power supply may be a power supply that is used in place of the main power supply or a power supply that is switched from the main power supply.
リチウムイオン二次電池の用途の具体例は、以下の通りである。ビデオカメラ、デジタルスチルカメラ、携帯電話機、ノート型パソコン、ヘッドホンステレオ、携帯用ラジオおよび携帯用情報端末などの電子機器である。バックアップ電源およびメモリーカードなどの記憶用装置である。電動ドリルおよび電動鋸などの電動工具である。電子機器などに搭載される電池パックである。ペースメーカおよび補聴器などの医療用電子機器である。電気自動車(ハイブリッド自動車を含む。)などの電動車両である。非常時に備えて電力を蓄積しておく家庭用または産業用のバッテリシステムなどの電力貯蔵システムである。これらの用途では、1個のリチウムイオン二次電池が用いられてもよいし、複数個のリチウムイオン二次電池が用いられてもよい。
Specific examples of lithium-ion secondary battery applications are as follows. Electronic devices such as video cameras, digital still cameras, mobile phones, laptop computers, headphone stereos, portable radios and portable information terminals. Backup power and storage devices such as memory cards. Power tools such as power drills and power saws. It is a battery pack mounted on an electronic device. Medical electronic devices such as pacemakers and hearing aids. It is an electric vehicle such as an electric vehicle (including a hybrid vehicle). A power storage system, such as a domestic or industrial battery system, that stores power for emergencies. In these uses, one lithium ion secondary battery may be used, or a plurality of lithium ion secondary batteries may be used.
電池パックでは、単電池が用いられてもよいし、組電池が用いられてもよい。電動車両は、駆動用電源としてリチウムイオン二次電池を用いて作動(走行)する車両であり、そのリチウムイオン二次電池とは異なる他の駆動源も併せて備えたハイブリッド自動車でもよい。家庭用の電力貯蔵システムでは、電力貯蔵源であるリチウムイオン二次電池に蓄積された電力を利用して、家庭用の電気製品などを使用可能である。
The battery pack may use a single cell or an assembled battery. An electric vehicle is a vehicle that operates (runs) using a lithium-ion secondary battery as a drive power source, and may be a hybrid vehicle that also includes a drive source different from the lithium-ion secondary battery. In a home electric power storage system, electric power stored in a lithium-ion secondary battery, which is a power storage source, can be used to power home electric appliances.
ここで、リチウムイオン二次電池の適用例の一例に関して具体的に説明する。以下で説明する適用例の構成は、あくまで一例であるため、適宜、変更可能である。
Here, an example of application of the lithium-ion secondary battery will be specifically described. The configuration of the application example described below is merely an example, and can be changed as appropriate.
図3は、電池パックのブロック構成を表している。ここで説明する電池パックは、1個のリチウムイオン二次電池を用いた電池パック(いわゆるソフトパック)であり、スマートフォンに代表される電子機器などに搭載される。
Fig. 3 shows the block configuration of the battery pack. The battery pack described here is a battery pack (a so-called soft pack) using one lithium-ion secondary battery, and is mounted in an electronic device such as a smart phone.
この電池パックは、図3に示したように、電源51と、回路基板52とを備えている。この回路基板52は、電源51に接続されていると共に、正極端子53、負極端子54および温度検出端子55を含んでいる。
This battery pack includes a power supply 51 and a circuit board 52, as shown in FIG. This circuit board 52 is connected to the power supply 51 and includes a positive terminal 53 , a negative terminal 54 and a temperature detection terminal 55 .
電源51は、1個のリチウムイオン二次電池を含んでいる。このリチウムイオン二次電池では、正極リードが正極端子53に接続されていると共に、負極リードが負極端子54に接続されている。この電源51は、正極端子53および負極端子54を介して外部と接続可能であるため、充放電可能である。回路基板52は、制御部56と、スイッチ57と、PTC素子58と、温度検出部59とを含んでいる。ただし、PTC素子58は、省略されてもよい。
The power supply 51 includes one lithium ion secondary battery. In this lithium ion secondary battery, the positive lead is connected to the positive terminal 53 and the negative lead is connected to the negative terminal 54 . The power supply 51 can be connected to the outside through the positive terminal 53 and the negative terminal 54, and thus can be charged and discharged. The circuit board 52 includes a control section 56 , a switch 57 , a PTC element 58 and a temperature detection section 59 . However, the PTC element 58 may be omitted.
制御部56は、中央演算処理装置(CPU)およびメモリなどを含んでおり、電池パックの全体の動作を制御する。この制御部56は、必要に応じて電源51の使用状態の検出および制御を行う。
The control unit 56 includes a central processing unit (CPU), memory, etc., and controls the overall operation of the battery pack. This control unit 56 detects and controls the use state of the power source 51 as necessary.
なお、制御部56は、電源51(リチウムイオン二次電池)の電圧が過充電検出電圧または過放電検出電圧に到達すると、スイッチ57を切断することにより、電源51の電流経路に充電電流が流れないようにする。過充電検出電圧は、特に限定されないが、具体的には、4.20V±0.05Vであると共に、過放電検出電圧は、特に限定されないが、具体的には、2.40V±0.1Vである。
When the voltage of the power source 51 (lithium-ion secondary battery) reaches the overcharge detection voltage or the overdischarge detection voltage, the control unit 56 cuts off the switch 57 so that the charging current flows through the current path of the power source 51. avoid The overcharge detection voltage is not particularly limited, but is specifically 4.20V±0.05V, and the overdischarge detection voltage is not particularly limited, but is specifically 2.40V±0.1V. is.
スイッチ57は、充電制御スイッチ、放電制御スイッチ、充電用ダイオードおよび放電用ダイオードなどを含んでおり、制御部56の指示に応じて電源51と外部機器との接続の有無を切り換える。このスイッチ57は、金属酸化物半導体を用いた電界効果トランジスタ(MOSFET)などを含んでおり、充電電流および放電電流のそれぞれは、スイッチ57のON抵抗に基づいて検出される。
The switch 57 includes a charge control switch, a discharge control switch, a charge diode, a discharge diode, and the like, and switches connection/disconnection between the power supply 51 and an external device according to instructions from the control unit 56 . This switch 57 includes a field effect transistor (MOSFET) using a metal oxide semiconductor, etc., and each of the charging current and the discharging current is detected based on the ON resistance of switch 57 .
温度検出部59は、サーミスタなどの温度検出素子を含んでいる。この温度検出部59は、温度検出端子55を用いて電源51の温度を測定すると共に、その温度の測定結果を制御部56に出力する。温度検出部59により測定された温度の測定結果は、異常発熱時において制御部56が充放電制御を行う場合および残容量の算出時において制御部56が補正処理を行う場合などに用いられる。
The temperature detection unit 59 includes a temperature detection element such as a thermistor. The temperature detection unit 59 measures the temperature of the power supply 51 using the temperature detection terminal 55 and outputs the temperature measurement result to the control unit 56 . The measurement result of the temperature measured by the temperature detection unit 59 is used when the control unit 56 performs charging/discharging control at the time of abnormal heat generation and when the control unit 56 performs correction processing when calculating the remaining capacity.
本技術の実施例に関して説明する。
An example of this technology will be explained.
<実験例1~10および比較例1~7>
以下で説明するように、リチウムイオン二次電池を作製したのち、そのリチウムイオン二次電池の特性を評価した。 <Experimental Examples 1 to 10 and Comparative Examples 1 to 7>
After producing a lithium ion secondary battery, the characteristics of the lithium ion secondary battery were evaluated as described below.
以下で説明するように、リチウムイオン二次電池を作製したのち、そのリチウムイオン二次電池の特性を評価した。 <Experimental Examples 1 to 10 and Comparative Examples 1 to 7>
After producing a lithium ion secondary battery, the characteristics of the lithium ion secondary battery were evaluated as described below.
[リチウムイオン二次電池の作製]
以下で説明する手順により、図1および図2に示したリチウムイオン二次電池(ラミネートフィルム型)を作製した。 [Production of lithium ion secondary battery]
A lithium ion secondary battery (laminate film type) shown in FIGS. 1 and 2 was produced by the procedure described below.
以下で説明する手順により、図1および図2に示したリチウムイオン二次電池(ラミネートフィルム型)を作製した。 [Production of lithium ion secondary battery]
A lithium ion secondary battery (laminate film type) shown in FIGS. 1 and 2 was produced by the procedure described below.
(正極の作製)
最初に、正極活物質(リチウム含有化合物(酸化物)であるコバルト酸リチウム(LiCoO2 ))91質量部と、正極結着剤(ポリフッ化ビニリデン)3質量部と、正極導電剤(アモルファス性炭素粉であるケッチェンブラック)6質量部とを互いに混合させることにより、正極合剤とした。続いて、溶媒(有機溶剤であるN-メチル-2-ピロリドン)に正極合剤を投入したのち、その溶媒を撹拌することにより、ペースト状の正極合剤スラリーを調製した。 (Preparation of positive electrode)
First, 91 parts by mass of a positive electrode active material (lithium cobalt oxide (LiCoO 2 ), which is a lithium-containing compound (oxide)), 3 parts by mass of a positive electrode binder (polyvinylidene fluoride), and a positive electrode conductor (amorphous carbon A positive electrode material mixture was obtained by mixing 6 parts by mass of Ketjen Black (powder) with each other. Subsequently, the positive electrode mixture was added to a solvent (N-methyl-2-pyrrolidone, which is an organic solvent), and the solvent was stirred to prepare a pasty positive electrode mixture slurry.
最初に、正極活物質(リチウム含有化合物(酸化物)であるコバルト酸リチウム(LiCoO2 ))91質量部と、正極結着剤(ポリフッ化ビニリデン)3質量部と、正極導電剤(アモルファス性炭素粉であるケッチェンブラック)6質量部とを互いに混合させることにより、正極合剤とした。続いて、溶媒(有機溶剤であるN-メチル-2-ピロリドン)に正極合剤を投入したのち、その溶媒を撹拌することにより、ペースト状の正極合剤スラリーを調製した。 (Preparation of positive electrode)
First, 91 parts by mass of a positive electrode active material (lithium cobalt oxide (LiCoO 2 ), which is a lithium-containing compound (oxide)), 3 parts by mass of a positive electrode binder (polyvinylidene fluoride), and a positive electrode conductor (amorphous carbon A positive electrode material mixture was obtained by mixing 6 parts by mass of Ketjen Black (powder) with each other. Subsequently, the positive electrode mixture was added to a solvent (N-methyl-2-pyrrolidone, which is an organic solvent), and the solvent was stirred to prepare a pasty positive electrode mixture slurry.
続いて、コーティング装置を用いて正極集電体21A(厚さ=10μmであるアルミニウム箔)の両面に正極合剤スラリーを塗布したのち、その正極合剤スラリーを乾燥させることにより、正極活物質層21Bを形成した。
Subsequently, the positive electrode mixture slurry is applied to both surfaces of the positive electrode current collector 21A (aluminum foil having a thickness of 10 μm) using a coating device, and then the positive electrode mixture slurry is dried to form a positive electrode active material layer. 21B.
最後に、ロールプレス機を用いて正極活物質層21Bを圧縮成型したのち、その正極活物質層21Bが形成されている正極集電体21Aを帯状となるように切断した。これにより、正極21が作製された。
Finally, after compression-molding the positive electrode active material layer 21B using a roll press, the positive electrode current collector 21A on which the positive electrode active material layer 21B was formed was cut into strips. Thus, the positive electrode 21 was produced.
(負極の作製)
最初に、負極活物質94質量部(金属系材料である酸化ケイ素20質量部および炭素材料である人造黒鉛74質量部)と、負極結着剤(ポリフッ化ビニリデン)1.5質量部と、負極導電剤2.5質量部(カーボンナノチューブ2質量部および黒鉛0.5質量部)と、増粘剤2質量部(カルボキシメチルセルロース)とを互いに混合させることにより、負極合剤とした。 (Preparation of negative electrode)
First, 94 parts by mass of a negative electrode active material (20 parts by mass of silicon oxide as a metal material and 74 parts by mass of artificial graphite as a carbon material), 1.5 parts by mass of a negative electrode binder (polyvinylidene fluoride), and a negative electrode A negative electrode mixture was prepared by mixing 2.5 parts by mass of a conductive agent (2 parts by mass of carbon nanotubes and 0.5 parts by mass of graphite) and 2 parts by mass of a thickening agent (carboxymethyl cellulose).
最初に、負極活物質94質量部(金属系材料である酸化ケイ素20質量部および炭素材料である人造黒鉛74質量部)と、負極結着剤(ポリフッ化ビニリデン)1.5質量部と、負極導電剤2.5質量部(カーボンナノチューブ2質量部および黒鉛0.5質量部)と、増粘剤2質量部(カルボキシメチルセルロース)とを互いに混合させることにより、負極合剤とした。 (Preparation of negative electrode)
First, 94 parts by mass of a negative electrode active material (20 parts by mass of silicon oxide as a metal material and 74 parts by mass of artificial graphite as a carbon material), 1.5 parts by mass of a negative electrode binder (polyvinylidene fluoride), and a negative electrode A negative electrode mixture was prepared by mixing 2.5 parts by mass of a conductive agent (2 parts by mass of carbon nanotubes and 0.5 parts by mass of graphite) and 2 parts by mass of a thickening agent (carboxymethyl cellulose).
続いて、溶媒(水性溶媒である水)に負極合剤を投入したのち、その溶媒を撹拌することにより、ペースト状の負極合剤スラリーを調製した。
Subsequently, after the negative electrode mixture was put into a solvent (water, which is an aqueous solvent), the solvent was stirred to prepare a pasty negative electrode mixture slurry.
続いて、コーティング装置を用いて負極集電体22A(厚さ=8μmである銅箔)の両面に負極合剤スラリーを塗布したのち、その負極合剤スラリーを乾燥させることにより、負極活物質層22Bを形成した。
Subsequently, the negative electrode mixture slurry is applied to both surfaces of the negative electrode current collector 22A (copper foil having a thickness of 8 μm) using a coating device, and then the negative electrode mixture slurry is dried to form a negative electrode active material layer. 22B was formed.
最後に、ロールプレス機を用いて負極活物質層22Bを圧縮成型したのち、その負極活物質層22Bが形成されている負極集電体22Aを帯状となるように切断した。これにより、負極22が作製された。
Finally, the negative electrode active material layer 22B was compression-molded using a roll press, and then the negative electrode current collector 22A on which the negative electrode active material layer 22B was formed was cut into strips. Thus, the negative electrode 22 was produced.
(電解液の調製)
溶媒(環状炭酸エステルである炭酸エチレン(EC)および鎖状炭酸エステルである炭酸エチルメチル(EMC))に電解質塩(リチウム塩である六フッ化リン酸リチウム(LiPF6 ))を添加したのち、その溶媒を撹拌した。溶媒の混合比(重量%)は、表1に示した通りである。この場合には、電解質塩の含有量を溶媒に対して1mol/kgとした。 (Preparation of electrolytic solution)
After adding an electrolyte salt (lithium hexafluorophosphate (LiPF 6 ), which is a lithium salt) to a solvent (ethylene carbonate (EC), which is a cyclic carbonate, and ethylmethyl carbonate (EMC), which is a chain carbonate), The solvent was stirred. Mixing ratios (% by weight) of solvents are as shown in Table 1. In this case, the content of the electrolyte salt was 1 mol/kg of the solvent.
溶媒(環状炭酸エステルである炭酸エチレン(EC)および鎖状炭酸エステルである炭酸エチルメチル(EMC))に電解質塩(リチウム塩である六フッ化リン酸リチウム(LiPF6 ))を添加したのち、その溶媒を撹拌した。溶媒の混合比(重量%)は、表1に示した通りである。この場合には、電解質塩の含有量を溶媒に対して1mol/kgとした。 (Preparation of electrolytic solution)
After adding an electrolyte salt (lithium hexafluorophosphate (LiPF 6 ), which is a lithium salt) to a solvent (ethylene carbonate (EC), which is a cyclic carbonate, and ethylmethyl carbonate (EMC), which is a chain carbonate), The solvent was stirred. Mixing ratios (% by weight) of solvents are as shown in Table 1. In this case, the content of the electrolyte salt was 1 mol/kg of the solvent.
続いて、電解質塩を含む溶媒にフッ素化アルコールを添加したのち、その溶媒を攪拌した。このフッ素化アルコールとしては、ヘキサフルオロイソプロパノール((CF3 )2 CHOH(HFIP))および2,2,2-トリフルオロエタノール(CF3 CH2 OH(TFE))を用いた。電解液におけるフッ素化アルコールの含有量(重量%)は、表1に示した通りであり、その電解液におけるフッ素化アルコールの含有量の測定手順は、上記した通りである。
Subsequently, after the fluorinated alcohol was added to the solvent containing the electrolyte salt, the solvent was stirred. Hexafluoroisopropanol ((CF 3 ) 2 CHOH(HFIP)) and 2,2,2-trifluoroethanol (CF 3 CH 2 OH(TFE)) were used as the fluorinated alcohols. The content (% by weight) of the fluorinated alcohol in the electrolytic solution is as shown in Table 1, and the procedure for measuring the content of the fluorinated alcohol in the electrolytic solution is as described above.
これにより、フッ素化アルコールを含む電解液が調製された。
As a result, an electrolytic solution containing fluorinated alcohol was prepared.
なお、比較のために、フッ素化アルコールを用いなかったことを除いて同様の手順により、電解液を調製した。また、比較のために、フッ素化アルコールの代わりにエタノール(C2 H5 OH(EA))を用いたことを除いて同様の手順により、電解液を調製した。さらに、比較のために、環状炭酸エステルの代わりにエタノールを用いたことを除いて同様の手順により、電解液を調製した。
For comparison, an electrolytic solution was prepared by the same procedure except that the fluorinated alcohol was not used. For comparison, an electrolytic solution was prepared by the same procedure except that ethanol (C 2 H 5 OH (EA)) was used instead of the fluorinated alcohol. Furthermore, for comparison, an electrolytic solution was prepared by the same procedure except that ethanol was used instead of the cyclic carbonate.
(リチウムイオン二次電池の組み立て)
最初に、正極21の正極集電体21Aに正極リード31(アルミニウム箔)を溶接したと共に、負極22の負極集電体22Aに負極リード32(銅箔)を溶接した。 (Assembly of lithium-ion secondary battery)
First, the positive electrode lead 31 (aluminum foil) was welded to thepositive electrode collector 21A of the positive electrode 21, and the negative electrode lead 32 (copper foil) was welded to the negative electrode collector 22A.
最初に、正極21の正極集電体21Aに正極リード31(アルミニウム箔)を溶接したと共に、負極22の負極集電体22Aに負極リード32(銅箔)を溶接した。 (Assembly of lithium-ion secondary battery)
First, the positive electrode lead 31 (aluminum foil) was welded to the
続いて、セパレータ23(厚さ=25μmである微多孔性ポリエチレンフィルム)を介して正極21および負極22を互いに積層させたのち、その正極21、負極22およびセパレータ23を巻回させることにより、巻回体を作製した。続いて、プレス機を用いて巻回体をプレスすることにより、扁平状となるように巻回体を成型した。
Subsequently, after laminating the positive electrode 21 and the negative electrode 22 with each other with a separator 23 (a microporous polyethylene film having a thickness of 25 μm) interposed therebetween, the positive electrode 21, the negative electrode 22 and the separator 23 are wound to obtain a winding. A circular body was produced. Subsequently, the wound body was molded into a flat shape by pressing the wound body using a pressing machine.
続いて、窪み部10Uの内部に収容された巻回体を挟むように外装フィルム10を折り畳んだ。この外装フィルム10としては、融着層(厚さ=30μmであるポリプロピレンフィルム)と、金属層(厚さ=40μmであるアルミニウム箔)と、表面保護層(厚さ=25μmであるナイロンフィルム)とが内側からこの順に積層されたアルミラミネートフィルムを用いた。続いて、互いに対向する融着層のうちの2辺の外周縁部同士を互いに熱融着させることにより、袋状の外装フィルム10の内部に巻回体を収納した。
Subsequently, the exterior film 10 was folded so as to sandwich the wound body housed inside the recessed portion 10U. The exterior film 10 includes a fusion layer (a polypropylene film with a thickness of 30 μm), a metal layer (aluminum foil with a thickness of 40 μm), and a surface protective layer (a nylon film with a thickness of 25 μm). was laminated in this order from the inside. Subsequently, the wound body was housed inside the bag-shaped exterior film 10 by heat-sealing the outer peripheral edge portions of two sides of the fusion layers facing each other.
最後に、袋状の外装フィルム10の内部に電解液を注入したのち、減圧環境中において互いに対向する融着層のうちの残りの1辺の外周縁部同士を互いに熱融着させた。この場合には、外装フィルム10と正極リード31との間に封止フィルム41(厚さ=5μmであるポリプロピレンフィルム)を挿入したと共に、外装フィルム10と負極リード32との間に封止フィルム42(厚さ=5μmであるポリプロピレンフィルム)を挿入した。
Finally, after the electrolytic solution was injected into the interior of the bag-shaped exterior film 10, the outer peripheral edges of the remaining sides of the mutually facing fusion layers were heat-sealed to each other in a reduced pressure environment. In this case, a sealing film 41 (polypropylene film having a thickness of 5 μm) was inserted between the exterior film 10 and the positive electrode lead 31, and a sealing film 42 was inserted between the exterior film 10 and the negative electrode lead 32. (polypropylene film with thickness = 5 μm) was inserted.
これにより、巻回体に電解液が含浸されたため、電池素子20が作製された。よって、外装フィルム10の内部に電池素子20が封入されたため、リチウムイオン二次電池が組み立てられた。
As a result, the wound body was impregnated with the electrolytic solution, and the battery element 20 was produced. Accordingly, since the battery element 20 was sealed inside the exterior film 10, a lithium ion secondary battery was assembled.
(安定化処理)
常温環境中(温度=23℃)においてリチウムイオン二次電池を1サイクル充放電させた。充電時には、0.1Cの電流で電圧が4.4Vに到達するまで定電流充電したのち、その4.4Vの電圧で電流が0.025Cに到達するまで定電圧充電した。放電時には、0.1Cの電流で電圧が3.0Vに到達するまで定電流放電した。0.1Cとは、電池容量(理論容量)を10時間で放電しきる電流値であると共に、0.025Cとは、その電池容量を40時間で放電しきる電流値である。 (stabilization treatment)
The lithium ion secondary battery was charged and discharged for one cycle in a normal temperature environment (temperature = 23°C). At the time of charging, constant-current charging was performed at a current of 0.1C until the voltage reached 4.4V, and then constant-voltage charging was performed at the voltage of 4.4V until the current reached 0.025C. During discharge, constant current discharge was performed at a current of 0.1C until the voltage reached 3.0V. 0.1C is a current value that can completely discharge the battery capacity (theoretical capacity) in 10 hours, and 0.025C is a current value that completely discharges the battery capacity in 40 hours.
常温環境中(温度=23℃)においてリチウムイオン二次電池を1サイクル充放電させた。充電時には、0.1Cの電流で電圧が4.4Vに到達するまで定電流充電したのち、その4.4Vの電圧で電流が0.025Cに到達するまで定電圧充電した。放電時には、0.1Cの電流で電圧が3.0Vに到達するまで定電流放電した。0.1Cとは、電池容量(理論容量)を10時間で放電しきる電流値であると共に、0.025Cとは、その電池容量を40時間で放電しきる電流値である。 (stabilization treatment)
The lithium ion secondary battery was charged and discharged for one cycle in a normal temperature environment (temperature = 23°C). At the time of charging, constant-current charging was performed at a current of 0.1C until the voltage reached 4.4V, and then constant-voltage charging was performed at the voltage of 4.4V until the current reached 0.025C. During discharge, constant current discharge was performed at a current of 0.1C until the voltage reached 3.0V. 0.1C is a current value that can completely discharge the battery capacity (theoretical capacity) in 10 hours, and 0.025C is a current value that completely discharges the battery capacity in 40 hours.
これにより、正極21および負極22のそれぞれの表面に被膜が形成されたため、リチウムイオン二次電池が電気化学的に安定された。よって、リチウムイオン二次電池が完成した。
As a result, films were formed on the surfaces of the positive electrode 21 and the negative electrode 22, and the lithium ion secondary battery was electrochemically stabilized. Thus, a lithium ion secondary battery was completed.
[リチウムイオン二次電池の特性評価]
以下で説明する手順により、保存特性および充放電特性を評価したところ、表1に示した結果が得られた。 [Characteristic evaluation of lithium ion secondary battery]
When the storage characteristics and charge/discharge characteristics were evaluated according to the procedures described below, the results shown in Table 1 were obtained.
以下で説明する手順により、保存特性および充放電特性を評価したところ、表1に示した結果が得られた。 [Characteristic evaluation of lithium ion secondary battery]
When the storage characteristics and charge/discharge characteristics were evaluated according to the procedures described below, the results shown in Table 1 were obtained.
(保存特性)
ここでは、評価内容を簡素化するために、電解液を用いて作製されたリチウムイオン二次電池を用いる代わりに、その電解液をそのまま用いて評価を行った。 (storage characteristics)
Here, in order to simplify the evaluation contents, instead of using a lithium ion secondary battery produced using an electrolytic solution, the electrolytic solution was used as it was for evaluation.
ここでは、評価内容を簡素化するために、電解液を用いて作製されたリチウムイオン二次電池を用いる代わりに、その電解液をそのまま用いて評価を行った。 (storage characteristics)
Here, in order to simplify the evaluation contents, instead of using a lithium ion secondary battery produced using an electrolytic solution, the electrolytic solution was used as it was for evaluation.
具体的には、電解液を調製したのち、高温環境中(温度=40℃)において電解液を保存(保存期間=2週間)することにより、その電解液の状態を目視で観察した。これにより、劣化(変色)が発生したか否かを調べたと共に、電解質塩の析出が発生したか否かを調べた。
Specifically, after preparing the electrolytic solution, the state of the electrolytic solution was visually observed by storing the electrolytic solution in a high-temperature environment (temperature = 40°C) (storage period = 2 weeks). As a result, it was investigated whether or not deterioration (discoloration) occurred, and whether or not deposition of electrolyte salt occurred.
(充放電特性)
充放電特性を評価するためには、試験用のリチウムイオン二次電池を用いた。図4は、試験用(コイン型)のリチウムイオン二次電池の断面構成を表している。 (Charging and discharging characteristics)
A test lithium-ion secondary battery was used to evaluate the charge-discharge characteristics. FIG. 4 shows a cross-sectional configuration of a test (coin-type) lithium-ion secondary battery.
充放電特性を評価するためには、試験用のリチウムイオン二次電池を用いた。図4は、試験用(コイン型)のリチウムイオン二次電池の断面構成を表している。 (Charging and discharging characteristics)
A test lithium-ion secondary battery was used to evaluate the charge-discharge characteristics. FIG. 4 shows a cross-sectional configuration of a test (coin-type) lithium-ion secondary battery.
コイン型のリチウムイオン二次電池では、図4に示したように、外装カップ64の内部に試験極61が収容されていると共に、外装缶65の内部に対極62が収容されている。試験極61および対極62は、セパレータ63を介して互いに積層されていると共に、外装カップ64および外装缶65は、ガスケット66を介して互いに加締められている。電解液は、試験極61、対極62およびセパレータ63のそれぞれに含浸されており、上記した構成を有している。
In the coin-type lithium ion secondary battery, as shown in FIG. 4, the test electrode 61 is housed inside the outer cup 64 and the counter electrode 62 is housed inside the outer can 65 . The test electrode 61 and the counter electrode 62 are laminated with a separator 63 interposed therebetween, and the exterior cup 64 and the exterior can 65 are crimped together with a gasket 66 interposed therebetween. The electrolytic solution is impregnated in each of the test electrode 61, counter electrode 62 and separator 63, and has the structure described above.
コイン型のリチウムイオン二次電池を作製する場合には、正極集電体21Aの片面だけに正極活物質層21Bを形成したことを除いて同様の手順により、試験極61を作製したと共に、負極集電体22Aの片面だけに負極活物質層22Bを形成したことを除いて同様の手順により、対極62を作製した。これにより、セパレータ63を介して正極活物質層21Bおよび負極活物質層22Bを互いに対向させた。なお、セパレータ63に関する詳細は、セパレータ23に関する詳細と同様である。
When producing a coin-type lithium ion secondary battery, a test electrode 61 was produced in the same manner, except that the positive electrode active material layer 21B was formed only on one side of the positive electrode current collector 21A. A counter electrode 62 was produced by the same procedure, except that the negative electrode active material layer 22B was formed only on one side of the current collector 22A. Thus, the positive electrode active material layer 21B and the negative electrode active material layer 22B were opposed to each other with the separator 63 interposed therebetween. Details of the separator 63 are the same as those of the separator 23 .
充放電特性を評価する場合には、最初に、常温環境中(温度=23℃)においてリチウムイオン二次電池を充電させることにより、充電容量を測定したのち、同環境中においてリチウムイオン二次電池を放電させることにより、放電容量(1サイクル目の放電容量)を測定した。
When evaluating the charge-discharge characteristics, first, the lithium-ion secondary battery is charged in a normal temperature environment (temperature = 23 ° C.) to measure the charge capacity, and then the lithium-ion secondary battery is placed in the same environment. was discharged to measure the discharge capacity (discharge capacity at the first cycle).
続いて、初回効率(%)=(放電容量/充電容量)×100という計算式に基づいて、充放電特性を評価するための指標である初回効率を算出した。
Next, the initial efficiency, which is an index for evaluating charge-discharge characteristics, was calculated based on the formula: initial efficiency (%) = (discharge capacity/charge capacity) x 100.
続いて、同環境中においてサイクル数が150サイクルに到達するまでリチウムイオン二次電池を繰り返して充放電させることにより、放電容量(150サイクル目の放電容量)を測定した。
Subsequently, the discharge capacity (discharge capacity at the 150th cycle) was measured by repeatedly charging and discharging the lithium ion secondary battery until the number of cycles reached 150 in the same environment.
最後に、容量維持率(%)=(150サイクル目の放電容量/1サイクル目の放電容量)×100という計算式に基づいて、充放電特性を評価するための他の指標である容量維持率を算出した。
Finally, capacity retention rate (%) = (discharge capacity at 150th cycle/discharge capacity at 1st cycle) x 100, which is another index for evaluating charge/discharge characteristics. was calculated.
なお、充放電条件は、リチウムイオン二次電池の安定化処理時の充放電条件と同様にした。ただし、表1に示した容量維持率の値は、フッ素化アルコールを用いなかった場合(比較例1)における容量維持率の値を100として規格化された値である。
The charging/discharging conditions were the same as the charging/discharging conditions during the stabilization treatment of the lithium-ion secondary battery. However, the value of the capacity retention rate shown in Table 1 is a value normalized by setting the value of the capacity retention rate in the case of not using the fluorinated alcohol (Comparative Example 1) to 100.
[考察]
表1に示したように、保存特性および充放電特性のそれぞれは、電解液の構成に応じて大きく変動した。以下では、フッ素化アルコールもエタノールも用いなかった場合(比較例1)を比較基準とする。 [Discussion]
As shown in Table 1, each of the storage characteristics and charge/discharge characteristics varied greatly depending on the composition of the electrolytic solution. In the following, the case in which neither fluorinated alcohol nor ethanol was used (Comparative Example 1) is used as a reference for comparison.
表1に示したように、保存特性および充放電特性のそれぞれは、電解液の構成に応じて大きく変動した。以下では、フッ素化アルコールもエタノールも用いなかった場合(比較例1)を比較基準とする。 [Discussion]
As shown in Table 1, each of the storage characteristics and charge/discharge characteristics varied greatly depending on the composition of the electrolytic solution. In the following, the case in which neither fluorinated alcohol nor ethanol was used (Comparative Example 1) is used as a reference for comparison.
具体的には、電解液が過剰量のフッ素化アルコールを含んでいる場合(比較例2,3)には、変色および析出の双方が発生しなかった。しかしながら、初回効率が著しく減少した。また、リチウムイオン二次電池を2サイクル以上充放電させることができなかったため、容量維持率を算出することができなかった。
Specifically, when the electrolyte contained an excessive amount of fluorinated alcohol (Comparative Examples 2 and 3), neither discoloration nor deposition occurred. However, the initial efficiency was significantly reduced. In addition, since the lithium ion secondary battery could not be charged and discharged for two cycles or more, the capacity retention rate could not be calculated.
なお、電解液が添加剤としてエタノールを含んでいる場合(比較例4)には、析出は発生しなかったが、変色が発生した。この場合には、変色が発生したため、初回効率および容量維持率のそれぞれを算出しなかった。
Note that when the electrolytic solution contained ethanol as an additive (Comparative Example 4), precipitation did not occur, but discoloration occurred. In this case, since discoloration occurred, the initial efficiency and the capacity retention rate were not calculated.
また、溶媒の一部としてエタノールを用いたため、電解液が大量のエタノールを含んでいる場合(比較例5~7)には、変色および析出の双方が発生した。この場合には、変色および析出の双方が発生したため、初回効率および容量維持率のそれぞれを算出しなかった。
In addition, since ethanol was used as part of the solvent, both discoloration and precipitation occurred when the electrolyte contained a large amount of ethanol (Comparative Examples 5-7). In this case, since both discoloration and precipitation occurred, the initial efficiency and capacity retention rate were not calculated.
これに対して、電解液が適正量(=0.1重量%~5.0重量%)のフッ素化アルコールを含んでいる場合(実施例1~10)には、変色および析出の双方が発生しなかった。この場合には、初回効率が僅かに減少したものの、高い初回効率が維持されながら容量維持率が増加した。
On the other hand, when the electrolyte contains an appropriate amount (=0.1 wt% to 5.0 wt%) of fluorinated alcohol (Examples 1 to 10), both discoloration and deposition occur. didn't. In this case, although the initial efficiency slightly decreased, the capacity retention rate increased while maintaining a high initial efficiency.
特に、電解液が適正量のフッ素化アルコールを含んでいる場合(実施例1~10)には、以下で説明する傾向が得られた。
In particular, when the electrolyte contained an appropriate amount of fluorinated alcohol (Examples 1 to 10), the tendencies described below were obtained.
第1に、電解液の含有量が0.3重量%~3.0重量%であると(実施例2~4,7~9)、十分に高い初回効率が維持されながら、容量維持率が十分に増加した。
First, when the content of the electrolytic solution is 0.3% by weight to 3.0% by weight (Examples 2 to 4, 7 to 9), the capacity retention rate is reduced while maintaining a sufficiently high initial efficiency. increased enough.
第2に、フッ素化アルコールが1つ以上のフッ素化アルキル基を含んでいると(実施例1~10)、十分に高い初回効率が維持されながら、容量維持率が増加しやすくなった。
Second, when the fluorinated alcohol contained one or more fluorinated alkyl groups (Examples 1 to 10), the capacity retention rate was likely to increase while maintaining a sufficiently high initial efficiency.
第3に、電解液の溶媒が環状炭酸エステルおよび鎖状炭酸エステルを含んでいると(実施例1~10)、十分に高い初回効率が維持されながら、容量維持率が十分に増加した。
Third, when the solvent of the electrolytic solution contained cyclic carbonate and chain carbonate (Examples 1 to 10), the capacity retention rate was sufficiently increased while sufficiently high initial efficiency was maintained.
[まとめ]
表1に示した結果から、電解液が適正量(=0.1重量%~5.0重量%)のフッ素化アルコールを含んでいると、変色および析出の双方が発生しなかったと共に、高い初回効率が維持されながら容量維持率が増加した。よって、リチウムイオン二次電池において優れた保存特性および優れた充放電特性を得ることができた。 [summary]
From the results shown in Table 1, when the electrolyte contains an appropriate amount (= 0.1% by weight to 5.0% by weight) of fluorinated alcohol, both discoloration and deposition do not occur, and a high The capacity retention rate increased while the initial efficiency was maintained. Therefore, excellent storage characteristics and excellent charge/discharge characteristics could be obtained in the lithium ion secondary battery.
表1に示した結果から、電解液が適正量(=0.1重量%~5.0重量%)のフッ素化アルコールを含んでいると、変色および析出の双方が発生しなかったと共に、高い初回効率が維持されながら容量維持率が増加した。よって、リチウムイオン二次電池において優れた保存特性および優れた充放電特性を得ることができた。 [summary]
From the results shown in Table 1, when the electrolyte contains an appropriate amount (= 0.1% by weight to 5.0% by weight) of fluorinated alcohol, both discoloration and deposition do not occur, and a high The capacity retention rate increased while the initial efficiency was maintained. Therefore, excellent storage characteristics and excellent charge/discharge characteristics could be obtained in the lithium ion secondary battery.
以上、一実施形態および実施例を挙げながら本技術に関して説明したが、その本技術の構成は、一実施形態および実施例において説明された構成に限定されないため、種々に変形可能である。
Although the present technology has been described above while citing one embodiment and example, the configuration of this technology is not limited to the configuration described in the one embodiment and example, and can be variously modified.
具体的には、電池素子の素子構造が巻回型である場合に関して説明した。しかしながら、電池素子の素子構造は、特に限定されないため、積層型および九十九折り型などでもよい。積層型では、正極および負極がセパレータを介して交互に積層されていると共に、九十九折り型では、正極および負極がセパレータを介して互いに対向しながらジグザグに折り畳まれている。
Specifically, the case where the element structure of the battery element is a wound type was explained. However, since the element structure of the battery element is not particularly limited, it may be a stacked type or a folded type. In the laminated type, the positive electrode and the negative electrode are alternately laminated with a separator interposed therebetween, and in the multifold type, the positive electrode and the negative electrode are folded zigzag while facing each other with the separator interposed therebetween.
本明細書中に記載された効果は、あくまで例示であるため、本技術の効果は、本明細書中に記載された効果に限定されない。よって、本技術に関して、他の効果が得られてもよい。
Since the effects described in this specification are merely examples, the effects of the present technology are not limited to the effects described in this specification. Accordingly, other advantages may be obtained with respect to the present technology.
Claims (5)
- 正極および負極と共に電解液を備え、
前記電解液は、式(1)で表されるフッ素化アルコールを含み、
前記電解液における前記フッ素化アルコールの含有量は、0.1重量%以上5.0重量%以下である、
リチウムイオン二次電池。
R1R2R3COH ・・・(1)
(R1、R2およびR3のそれぞれは、水素基、アルキル基およびフッ素化アルキル基のうちのいずれかである。ただし、R1、R2およびR3のうちの少なくとも1つは、フッ素化アルキル基である。) an electrolyte with a positive electrode and a negative electrode;
The electrolytic solution contains a fluorinated alcohol represented by formula (1),
The content of the fluorinated alcohol in the electrolytic solution is 0.1% by weight or more and 5.0% by weight or less.
Lithium-ion secondary battery.
R1R2R3COH (1)
(Each of R1, R2 and R3 is a hydrogen group, an alkyl group or a fluorinated alkyl group, provided that at least one of R1, R2 and R3 is a fluorinated alkyl group. ) - 前記電解液における前記フッ素化アルコールの含有量は、0.3重量%以上3.0重量%以下である、
請求項1記載のリチウムイオン二次電池。 The content of the fluorinated alcohol in the electrolytic solution is 0.3% by weight or more and 3.0% by weight or less.
The lithium ion secondary battery according to claim 1. - 前記R1、前記R2および前記R3のうちの2つ以上は、前記フッ素化アルキル基である、
請求項1または請求項2に記載のリチウムイオン二次電池。 two or more of said R1, said R2 and said R3 are said fluorinated alkyl groups;
The lithium ion secondary battery according to claim 1 or 2. - 前記電解液は、さらに、環状炭酸エステルおよび鎖状炭酸エステルを含む、
請求項1ないし請求項3のいずれか1項に記載のリチウムイオン二次電池。 The electrolytic solution further contains a cyclic carbonate and a chain carbonate,
The lithium ion secondary battery according to any one of claims 1 to 3. - 式(1)で表されるフッ素化アルコールを含み、
前記フッ素化アルコールの含有量は、0.1重量%以上5.0重量%以下である、
リチウムイオン二次電池用電解液。
R1R2R3COH ・・・(1)
(R1、R2およびR3のそれぞれは、水素基、アルキル基およびフッ素化アルキル基のうちのいずれかである。ただし、R1、R2およびR3のうちの少なくとも1つは、フッ素化アルキル基である。) including a fluorinated alcohol represented by formula (1),
The content of the fluorinated alcohol is 0.1% by weight or more and 5.0% by weight or less.
Electrolyte for lithium-ion secondary batteries.
R1R2R3COH (1)
(Each of R1, R2 and R3 is a hydrogen group, an alkyl group or a fluorinated alkyl group, provided that at least one of R1, R2 and R3 is a fluorinated alkyl group. )
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021-209535 | 2021-12-23 | ||
JP2021209535 | 2021-12-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023119947A1 true WO2023119947A1 (en) | 2023-06-29 |
Family
ID=86902219
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/042308 WO2023119947A1 (en) | 2021-12-23 | 2022-11-15 | Electrolytic solution for lithium ion secondary battery and lithium ion secondary battery |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2023119947A1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20140038676A (en) * | 2012-09-21 | 2014-03-31 | 주식회사 엘지화학 | Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery comprising the same |
CN103996873A (en) * | 2014-05-20 | 2014-08-20 | 珠海市赛纬电子材料有限公司 | BTR918-graphite-cathode-matched non-aqueous electrolyte for lithium ion batteries |
WO2020183894A1 (en) * | 2019-03-11 | 2020-09-17 | パナソニックIpマネジメント株式会社 | Non-aqueous electrolyte secondary battery |
-
2022
- 2022-11-15 WO PCT/JP2022/042308 patent/WO2023119947A1/en unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20140038676A (en) * | 2012-09-21 | 2014-03-31 | 주식회사 엘지화학 | Non-aqueous electrolyte for lithium secondary battery and lithium secondary battery comprising the same |
CN103996873A (en) * | 2014-05-20 | 2014-08-20 | 珠海市赛纬电子材料有限公司 | BTR918-graphite-cathode-matched non-aqueous electrolyte for lithium ion batteries |
WO2020183894A1 (en) * | 2019-03-11 | 2020-09-17 | パナソニックIpマネジメント株式会社 | Non-aqueous electrolyte secondary battery |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7432607B2 (en) | Positive electrode piece, electrochemical device and electronic device including the positive electrode piece | |
WO2022196266A1 (en) | Secondary battery | |
WO2023063008A1 (en) | Secondary battery | |
WO2023119947A1 (en) | Electrolytic solution for lithium ion secondary battery and lithium ion secondary battery | |
WO2023162428A1 (en) | Secondary battery | |
WO2024150541A1 (en) | Electrolyte solution for lithium ion secondary batteries, and lithium ion secondary battery | |
WO2022196238A1 (en) | Electrolyte solution for secondary battery, and secondary battery | |
WO2024204282A1 (en) | Positive electrode for secondary battery, and secondary battery | |
WO2023119948A1 (en) | Secondary battery | |
WO2024142877A1 (en) | Secondary battery | |
WO2023162431A1 (en) | Secondary battery electrolyte and secondary battery | |
WO2023162429A1 (en) | Secondary battery electrolyte and secondary battery | |
WO2023162852A1 (en) | Secondary battery electrolyte and secondary battery | |
WO2023120688A1 (en) | Secondary battery | |
WO2023189709A1 (en) | Secondary battery electrolyte and secondary battery | |
JP7462142B2 (en) | Secondary battery | |
WO2023119946A1 (en) | Secondary battery electrolyte solution and secondary battery | |
WO2024195306A1 (en) | Secondary battery | |
WO2023119945A1 (en) | Secondary battery electrolyte solution and secondary battery | |
WO2023112576A1 (en) | Positive electrode for secondary batteries, and secondary battery | |
JP7537504B2 (en) | Electrolyte for secondary battery and secondary battery | |
JP7201074B2 (en) | Electrolyte for secondary battery and secondary battery | |
WO2022163139A1 (en) | Secondary battery | |
WO2022209058A1 (en) | Secondary battery | |
WO2023162432A1 (en) | Secondary battery |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22910666 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |