WO2023119813A1 - 自動分析装置及び光源ランプの寿命の判定方法 - Google Patents
自動分析装置及び光源ランプの寿命の判定方法 Download PDFInfo
- Publication number
- WO2023119813A1 WO2023119813A1 PCT/JP2022/038568 JP2022038568W WO2023119813A1 WO 2023119813 A1 WO2023119813 A1 WO 2023119813A1 JP 2022038568 W JP2022038568 W JP 2022038568W WO 2023119813 A1 WO2023119813 A1 WO 2023119813A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- light source
- source lamp
- absorbance
- automatic analyzer
- life
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 26
- 230000008859 change Effects 0.000 claims abstract description 48
- 238000001514 detection method Methods 0.000 claims abstract description 10
- 238000002835 absorbance Methods 0.000 claims description 183
- 238000012423 maintenance Methods 0.000 claims description 43
- 238000012549 training Methods 0.000 claims description 17
- 238000004458 analytical method Methods 0.000 claims description 11
- 230000006870 function Effects 0.000 claims description 10
- 230000008569 process Effects 0.000 claims description 9
- 238000013459 approach Methods 0.000 claims description 3
- 238000012545 processing Methods 0.000 abstract description 8
- 238000005516 engineering process Methods 0.000 abstract description 3
- 230000003287 optical effect Effects 0.000 abstract 1
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 105
- 238000006243 chemical reaction Methods 0.000 description 82
- 239000000523 sample Substances 0.000 description 34
- 238000005259 measurement Methods 0.000 description 28
- 230000007246 mechanism Effects 0.000 description 28
- 239000003153 chemical reaction reagent Substances 0.000 description 25
- 230000009471 action Effects 0.000 description 18
- 238000010586 diagram Methods 0.000 description 13
- 238000004140 cleaning Methods 0.000 description 9
- 230000007423 decrease Effects 0.000 description 9
- 230000005856 abnormality Effects 0.000 description 8
- 238000004364 calculation method Methods 0.000 description 8
- 238000011481 absorbance measurement Methods 0.000 description 7
- 238000003756 stirring Methods 0.000 description 7
- 230000007717 exclusion Effects 0.000 description 6
- 238000005406 washing Methods 0.000 description 6
- 230000032258 transport Effects 0.000 description 5
- 238000013528 artificial neural network Methods 0.000 description 4
- 230000002159 abnormal effect Effects 0.000 description 3
- 239000012295 chemical reaction liquid Substances 0.000 description 3
- 238000011109 contamination Methods 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 230000002123 temporal effect Effects 0.000 description 3
- 239000012472 biological sample Substances 0.000 description 2
- 230000008878 coupling Effects 0.000 description 2
- 238000010168 coupling process Methods 0.000 description 2
- 238000005859 coupling reaction Methods 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 2
- 229910052736 halogen Inorganic materials 0.000 description 2
- 150000002367 halogens Chemical class 0.000 description 2
- 238000010801 machine learning Methods 0.000 description 2
- 230000000644 propagated effect Effects 0.000 description 2
- 238000004611 spectroscopical analysis Methods 0.000 description 2
- 210000002700 urine Anatomy 0.000 description 2
- 230000003213 activating effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 239000008280 blood Substances 0.000 description 1
- 210000004369 blood Anatomy 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 230000001186 cumulative effect Effects 0.000 description 1
- 238000013480 data collection Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 239000003599 detergent Substances 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 239000000428 dust Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000007667 floating Methods 0.000 description 1
- 230000012447 hatching Effects 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 239000008213 purified water Substances 0.000 description 1
- 210000002966 serum Anatomy 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 230000001131 transforming effect Effects 0.000 description 1
- 230000001960 triggered effect Effects 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/27—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
- G01N21/274—Calibration, base line adjustment, drift correction
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/251—Colorimeters; Construction thereof
- G01N21/253—Colorimeters; Construction thereof for batch operation, i.e. multisample apparatus
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/17—Systems in which incident light is modified in accordance with the properties of the material investigated
- G01N21/25—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
- G01N21/27—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration
- G01N21/272—Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands using photo-electric detection ; circuits for computing concentration for following a reaction, e.g. for determining photometrically a reaction rate (photometric cinetic analysis)
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N35/00—Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N21/00—Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
- G01N21/75—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated
- G01N21/77—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator
- G01N21/78—Systems in which material is subjected to a chemical reaction, the progress or the result of the reaction being investigated by observing the effect on a chemical indicator producing a change of colour
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2201/00—Features of devices classified in G01N21/00
- G01N2201/12—Circuits of general importance; Signal processing
- G01N2201/129—Using chemometrical methods
- G01N2201/1296—Using chemometrical methods using neural networks
Definitions
- the present disclosure relates to an automatic analyzer and a method for determining the lifetime of a light source lamp.
- a biochemical automatic analyzer that analyzes the components of biological samples such as serum and urine is known.
- a biochemical automated analyzer reacts a test sample with a reagent in a reaction vessel, and optically measures the resulting color tone or turbidity change at regular time intervals with a photometric unit such as a spectrophotometer. do.
- a photometric unit such as a spectrophotometer.
- Patent Document 1 the disturbance of the amount of light just before the life (breakage) of the light source lamp is detected. If the light intensity of the light source lamp fluctuates greatly, the measured absorbance will vary greatly. Measurement in a state where there is a large variation in the amount of light may lead to inaccurate measurement results.
- the present disclosure provides a technique for detecting that the life of the light source lamp is approaching before reaching an unstable state in which the light amount of the light source lamp fluctuates greatly.
- the automatic analyzer of the present disclosure includes a light source lamp, a photodetector that detects light emitted from the light source lamp, and processes a detection signal of the photodetector to detect the light. and a control device for calculating the absorbance, wherein the control device obtains the change in the absorbance over time, and determines that the life of the light source lamp is approaching when the tendency of the change in the absorbance over time changes. It is characterized by
- FIG. 4 is a diagram showing an example of a measurement condition setting screen according to the first embodiment
- FIG. 10 is a graph showing an example of temporal change in water blank absorbance when maintenance work is performed with a lighting time of 1500 hours. Graph showing an example of change in water blank absorbance over time. The graph which calculated and plotted the inclination of the graph of FIG.
- FIG. 9 is a flowchart showing a method for determining the life of a light source lamp according to the second embodiment; The figure which shows the example of the measurement condition setting screen which concerns on 2nd Embodiment.
- FIG. 11 is a functional block diagram of a learning device according to a third embodiment;
- FIG. 4 is a diagram showing an example of data included in maintenance history;
- FIG. 4 is a diagram showing an example of data included in alarm information;
- FIG. 1 is a schematic diagram showing the configuration of an automatic analyzer 10 according to the first embodiment.
- the automatic analyzer 10 includes an apparatus body 100 and a control device 200.
- the apparatus main body 100 includes a reaction disk 101, a sample disk 102, a reagent disk 103, a light source lamp 104, a spectroscopic diffraction grating 105, a sensor 106, a reaction container storage section 107, a transport device 108, a sample dispensing mechanism 109, and a reagent dispensing mechanism. 110 , a stirring mechanism 111 and a cleaning mechanism 112 .
- the reaction disk 101 is configured to be rotatable and holds a plurality of reaction vessels 1 along the circumferential direction. A sample and a reagent are dispensed into the reaction container 1 .
- the reaction disk 101 is installed in a reaction tank, and the reaction vessel 1 is immersed in temperature-controlled circulating water in the reaction tank.
- the sample disk 102 is rotatable and holds a plurality of sample containers 2 along the circumferential direction.
- a sample container 2 contains a biological sample such as blood or urine.
- the reagent disk 103 is configured to be rotatable and radially holds a plurality of reagent containers 3 .
- the reagent container 3 contains various reagents used for sample analysis.
- the light source lamp 104, spectral diffraction grating 105, and sensor 106 constitute a photometer.
- the light source lamp 104 irradiates one of the reaction vessels 1 held on the reaction disk 101 with light.
- the light transmitted through the reaction vessel 1 is split into respective wavelength components by the spectroscopy diffraction grating 105 .
- a necessary number of sensors 106 are installed at the spectroscopic destination.
- the sensors 106 are placed at positions corresponding to the wavelengths required for measurement.
- the sensor 106 photoelectrically converts incident light to generate a current proportional to the amount of light, that is, the number of photons. This current is called photocurrent.
- the photocurrent is converted into a digital value by an A/D converter (not shown) in order to obtain an electric signal proportional to the concentration of the component to be measured contained in the sample.
- the digital value is output to the control device 200 as the detection result of the sensor 106 .
- the reaction container storage unit 107 stores a plurality of unused reaction containers 1.
- the transport device 108 grips the reaction vessel 1 and includes an actuator capable of moving in three axial directions.
- the transport device 108 transports the reaction vessel 1 stored in the reaction vessel storage section 107 to the reaction disk 101 .
- the sample pipetting mechanism 109 and reagent pipetting mechanism 110 drive a probe provided on an arm that rotates around a rotation axis to perform suction and discharge operations.
- a sample dispensing mechanism 109 dispenses the sample from the sample container 2 to the reaction container 1 .
- the reagent dispensing mechanism 110 dispenses the reagent from the reagent container 3 to the reaction container 1 .
- the stirring mechanism 111 stirs the sample and reagent dispensed into the reaction container 1 by driving a probe provided on an arm that rotates around a rotation axis.
- the cleaning mechanism 112 has a suction mechanism, a detergent ejection mechanism, a water ejection mechanism, and a drying mechanism (not shown), and is configured to be able to clean and dry the reaction vessel 1 .
- the control device 200 is a computer device, for example, and has a processor 201 , a storage device 202 , an output device 203 and an input device 204 .
- the control device 200 controls the operation of the automatic analyzer 10 as a whole. Also, the control device 200 receives a detection signal from the photometer and analyzes the substance to be measured in the sample.
- the processor 201 is composed of a processing device such as a CPU, MPU, or GPU. Processor 201 controls the operation of each component of automatic analyzer 10 . The processor 201 also calculates the absorbance from the detection result (photometric data) of the photometer.
- the storage device 202 may comprise internal or external storage devices such as memory and storage. The storage device 202 stores programs and various parameters necessary for the operation of the automatic analyzer 10, photometric data, and the like.
- the output device 203 includes, for example, a display, touch panel, printer, speaker, and the like.
- the input device 204 is composed of, for example, a keyboard, mouse, microphone, touch panel, and the like.
- the processor 201, the storage device 202, the output device 203, and the input device 204 can exchange information with each other via a bus (not shown).
- the cleaning mechanism 112 cleans the reaction container 1 .
- the cleaning mechanism 112 dispenses water (purified water or pure water: sometimes referred to as “blank water”) into the reaction vessel 1 .
- the photometer measures the transmitted light of the reaction vessel 1 into which water has been dispensed, and outputs photometric data to the processor 201 .
- the processor 201 calculates absorbance (hereinafter referred to as “water blank absorbance”) from the photometric data and stores it in the storage device 202 .
- the washing mechanism 112 sucks water from the reaction container 1 and discards it in a waste liquid tank (not shown).
- blank water may be contained in the reagent container 3 . In this case, blank water can be dispensed into the reaction vessel 1 by the reagent dispensing mechanism 110 instead of the washing mechanism 112 .
- the sample dispensing mechanism 109 dispenses the sample in the sample container 2 into the reaction container 1 .
- the reagent dispensing mechanism 110 dispenses the reagent in the reagent container 3 to the reaction container 1 into which the sample has been dispensed.
- the stirring mechanism 111 stirs the sample and reagent dispensed into the reaction container 1 .
- the photometer measures the color developed by the chemical reaction of the sample and reagent in the reaction container 1 at regular time intervals determined according to the rotation speed of the reaction disk 101 .
- the processor 201 calculates the absorbance of the reaction liquid from the photometric data and stores it in the storage device 202 .
- the processor 201 corrects the absorbance of the reaction solution in the reaction vessel 1 by the water blank absorbance and calculates the concentration of the sample. Since the absorbance fluctuates under the influence of scratches or stains on the reaction vessel 1 and changes in the light intensity of the light source lamp 104, the water blank absorbance is generally obtained immediately before measuring the absorbance of the sample.
- the temperature of the reaction vessel 1 is kept constant by a constant temperature water supply device (not shown) in order to promote the chemical reaction stably.
- the cleaning mechanism 112 cleans the reaction vessel 1 .
- the reaction container 1 after cleaning is used for the measurement of the next sample.
- the reaction vessel 1 is repeatedly used in the order of washing, water blank absorbance measurement, and sample absorbance measurement.
- the water blank absorbance is measured at the timing when blank water is dispensed into the reaction container 1 and the reaction disk 101 rotates to cross the reaction container 1 in front of the photometer.
- a stable measurement value can be obtained because the reaction vessel 1 does not contain factors that change the absorbance. Therefore, it is suitable for checking the state of the light source lamp 104 . It should be noted that the greater the light intensity of the light source lamp 104, the lower the absorbance, and the lower the light intensity, the higher the absorbance.
- FIG. 2 is a graph showing an example of changes in water blank absorbance over time.
- the horizontal axis of the graph in FIG. 2 is the lighting time (h) of the light source lamp 104, and the vertical axis is the water blank absorbance.
- FIG. 2 plots the absorbance of light with a wavelength of 340 nm measured every 20 hours using a halogen lamp as the light source lamp 104 .
- the water blank absorbance tends to increase from the start of lighting (start of use of the new light source lamp 104).
- the amount of change over time in the water blank absorbance is greatest at the start of use, and as the light source lamp 104 is consumed, the amount of change over time gradually decreases and the water blank absorbance reaches a peak.
- the amount of increase in water blank absorbance up to this peak and the time to reach the peak differ depending on the light source lamp. After that, the water blank absorbance turns to a downward trend, and at the time of disconnection, the water blank absorbance jumps to a high value. Immediately before disconnection, the state of the light source lamp 104 becomes unstable, and the absorbance of the water blank fluctuates greatly up and down. The extent to which the absorbance of the water blank drops and the time required to break the wire differ depending on the light source lamp.
- FIG. 3 is a graph obtained by calculating and plotting the slope of the graph in FIG.
- the horizontal axis of the graph in FIG. 3 is the lighting time (h) of the light source lamp 104
- the vertical axis is the slope of the graph in FIG. FIG. 3 is obtained by fitting a regression line using data for the past 100 hours from each measurement point of water blank absorbance and plotting its slope.
- the slope of the graph in FIG. 2 that is, the amount of change over time in the water blank absorbance tends to gradually decrease, and fluctuates greatly up and down just before disconnection.
- the slope value of one plot may be greater than the slope value of the immediately preceding plot.
- the slope of the graph at any time thereafter may be greater than the slope of the graph at the start of use of the light source lamp 104 due to the influence of disturbance. Taking this into account, it can be said that the slope of the water blank absorbance graph shown in FIG. In FIGS. 2 and 3, as an example, water blank absorbance measured with light of 340 nm using a halogen lamp was described, but similar trends are shown for light of wavelengths such as 450 nm or 600 nm, for example.
- the absorbance fluctuation caused by the light amount fluctuation due to the deterioration of the light source lamp 104 has the following two characteristics.
- the first point is that the amount of change in absorbance over time is the largest at the start of use, except for the disturbance in absorbance that occurs immediately before the life of the light source lamp 104, and the amount of change in absorbance over time tends to gradually decrease as the light source lamp 104 deteriorates.
- the second point is that the disturbance of absorbance that occurs just before the end of life of the light source lamp 104 is a feature that appears after the trend of absorbance fluctuation from the start of use shows the opposite trend. For example, as shown in FIG. 2, when the absorbance tends to increase from the start of use, the absorbance decreases for several hours as the life of the light source lamp 104 approaches, and then the absorbance fluctuates greatly up and down just before the life of the light source lamp 104.
- the present inventors found that when the amount of change in absorbance over time has decreased or when the trend of change in absorbance has changed in the opposite direction, the life of the light source lamp is approaching. I found out that it can be determined that there is.
- FIG. 4 is a flowchart showing a method for determining the life (abnormality) of the light source lamp 104 according to the first embodiment.
- the processing in FIG. 4 is executed by the processor 201 activating the light source lamp monitoring program and causing the hardware of the automatic analyzer 10 to cooperate.
- the light source lamp monitoring program can be started, for example, when the automatic analyzer 10 is turned on.
- the light source lamp monitoring program can be activated when the user inputs an instruction to check the status of the light source lamp 104 .
- the light source lamp monitoring program may be started simultaneously with the analysis sequence program when the user inputs an instruction to start the analysis sequence.
- Step S1 The processor 201 drives the washing mechanism 112 to dispense blank water into the reaction container 1 and measure the water blank absorbance with a photometer.
- This water blank absorbance measurement can be performed as a water blank measurement included in the analysis sequence of the automatic analyzer 10 . In this case, no new water blank absorbance measurements are required for execution of the light source lamp monitoring program.
- Step S2 Processor 201 cumulatively stores the measured water blank absorbance in storage device 202 .
- the processor 201 stores the measured water blank absorbance in the storage device 202 in association with the accumulated lighting time from the start of use of the light source lamp 104 .
- the accumulated lighting time of the light source lamp 104 can be calculated by the processor 201 based on the lighting execution date and time and the extinguishing execution date of the light source lamp 104 stored in the storage device 202 .
- Step S3 Processor 201 determines whether the required number of data blank absorbances of water has been stored. If the required number of water blank absorbances are stored (Yes), the process proceeds to step S4. If the required number of water blank absorbances has not been stored (No), the process returns to step S1, and water blank absorbance measurements (step S1) and storage (step S2) are continued until the required number of data is accumulated. repeat.
- Step S4 Based on the water blank absorbance and the lighting time of the light source lamp 104 accumulated in the storage device 202, the processor 201 calculates the slope of the graph obtained from the water blank absorbance and the lighting time, and stores it in the storage device 202.
- the slope can be calculated by fitting a straight line or curve (function) using, for example, the method of least squares to the graph obtained from the cumulatively stored water blank absorbance and lighting time.
- a straight line the change in absorbance from the start of lighting of the light source lamp 104 to disconnection is not linear. Therefore, when applying a straight line, the water blank absorbance within a predetermined lighting time range starting from the latest water blank absorbance, or the water blank absorbance within a predetermined number of data range starting from the latest water blank absorbance. can be used.
- all water blank absorbances from the start of lighting may be used.
- the processor 201 calculates the slope of the fitted straight line or the slope of the curve (differential value, etc.) and uses this as the slope of the graph.
- step S4 If the number of water blank absorbance data is small and the water blank absorbance is disturbed due to disturbance, the slope value calculated in step S4 is likely to be affected by the disturbed water blank absorbance. Therefore, by increasing the number of necessary data determined in step S3 described above, it is possible to reduce the influence of the disturbed water blank absorbance on the calculation of the slope of the graph.
- Step S5 The processor 201 determines whether or not the life of the light source lamp 104 is approaching based on the calculated inclination. If the life of the light source lamp 104 is approaching (Yes), the process proceeds to step S6. If the life of the light source lamp 104 is not approaching (No), the process ends.
- Whether the life of the light source lamp 104 is approaching is determined by whether the upward trend of the water blank absorbance has stopped (the slope value becomes 0) or whether the water blank absorbance has started a downward trend (the slope value becomes become negative). That is, with a slope of 0 as a threshold, it can be determined that the light source lamp 104 is nearing the end of its life when the slope is 0 or less.
- the processor 201 executes step S5 multiple times. After that, a step of determining the number of times the slope becomes 0 or less is executed, and when the slope becomes 0 or less a predetermined number of times, the process proceeds to step S6. If the slope does not become 0 or less for the predetermined number of times, the process ends.
- the threshold value for life determination of the light source lamp 104 does not necessarily have to be 0. For example, if the light source lamp 104 is to be used until just before the end of life, the threshold can be set to a value smaller than zero. If it is desired to replace the light source lamp 104 while the degree of consumption is small, the threshold can be set to a value greater than zero. The threshold can also be set to a value greater than 0 when it is desired to notify the user early that the life of the light source lamp 104 is approaching.
- step S5 whether or not the downward trend of the water blank absorbance has stopped (the slope value has become 0), or whether the water blank absorbance has been on an upward trend (the slope value has become positive) ), that is, whether the absorbance is 0 or more, it is determined that the life of the light source lamp 104 is approaching.
- Step S6 The processor 201 generates a warning (alarm information) indicating that the life is approaching, and outputs it to the output device 203 to notify the user.
- a warning alarm information
- the text "Light source lamp is nearing the end of its life” or the text "Please replace the light source lamp” can be included in the notification screen and displayed on the display, or voiced from the speaker. can do.
- the processor 201 may have a function of recording the generated alarm information together with the measured water blank absorbance in the storage device 202 and later referring to these accumulated data. As a result, it becomes possible to analyze the process of how the absorbance became abnormal from the measurement data. As a result, it is possible to improve the measurement reliability. Furthermore, the accumulated data may be transferred to a service base via a communication line, and the status of the automatic analyzer 10 may be monitored at the service base. As a result, it is possible to take measures such as maintenance instructions and parts replacement at an early stage, and the reliability of the automatic analyzer 10 can be improved.
- control device 200 may only control the operation of device main body 100 and the processing of FIG. 4 may be executed by another control device that can communicate with control device 200 .
- FIG. 4 shows an example of using the water blank absorbance measured with blank water contained in the reaction vessel 1 in determining the life of the light source lamp 104 .
- the absorbance measured with the reaction vessel 1 empty may be used, or the absorbance measured with a specific reaction liquid contained therein may be used.
- the results actually used in the analysis sequence may be used, or they may be newly acquired for life determination of the light source lamp 104 .
- the absorbance of the light transmitted through the reaction containers 1 instead of the absorbance of the light transmitted through the reaction containers 1, the absorbance of the light passing through the gap between the adjacent reaction containers 1 may be used.
- the absorbance measured in the gap of the reaction container 1 is not affected by stains or scratches on the reaction container 1 or air bubbles in the reaction container 1, there is an advantage that the absorbance change of the light source lamp 104 is easier to understand than the water blank absorbance. .
- the wavelength used for life determination of the light source lamp 104 there is no particular limitation on the wavelength used for life determination of the light source lamp 104 .
- absorbance changes due to deterioration of the light source lamp 104 tend to be more visible on the short wavelength side, such as 340 nm. Therefore, the life of the light source lamp 104 can be determined more accurately by measuring the short-wavelength absorbance change.
- the slope of the graph obtained from the water blank absorbance and the lighting time may be calculated for each wavelength, or may be calculated based on the absorbance difference between a plurality of wavelengths obtained by obtaining the water blank absorbance at a plurality of wavelengths. .
- the difference in water blank absorbance measured at different wavelengths at the same time the influence of dust floating in the circulating water of the reaction tank and air bubbles adhering to the reaction vessel 1 can be reduced.
- the wavelength to be measured in the water blank absorbance measurement depends on the analysis items of the sample to be measured afterwards.
- An automatic analyzer generally uses a plurality of reaction containers 1. Therefore, the obtained water blank absorbance is not obtained from a single reaction vessel 1 .
- water blank absorbances obtained in a plurality of reaction vessels 1 may be used as long as they are measured at the same wavelength. The inclination may be calculated for each reaction vessel 1 as long as the number of data necessary for determination can be obtained. Further, the water blank absorbance stored in the storage device 202 may be used as it is for calculating the slope, or the average value or median value of a plurality of water blank absorbance values may be calculated and then used for calculating the slope. .
- the light source lamp 104 is turned on after being turned off once. Therefore, when the light source lamp 104 is turned on again, it takes time to stabilize the light amount, and there is a possibility that the light amount becomes unstable. Therefore, by setting not to use the photometric data measured within a predetermined period of time immediately after starting the automatic analyzer 10 or after replacing the circulating water for calculating the inclination, an erroneous determination of the life of the light source lamp 104 can be prevented. can be prevented.
- the processor 201 determines whether or not there is such a divergence in absorbance, and controls so as not to use an abnormal reaction vessel 1 for analysis. If the processor 201 determines whether or not there is such a divergence in absorbance, the absorbance considered to be diverging may be excluded from the slope calculation target. Also, a new criterion for determining the absorbance to be excluded from the calculation may be set. For example, a point that deviates significantly from the above-described regression line or the absorbance estimated from the regression curve can be excluded from slope calculation.
- the above conditions such as the wavelength used for life determination of the light source lamp 104 and the conditions for excluding the measured water blank absorbance, may be incorporated into the light source lamp monitoring program or may be set by the user.
- FIG. 5 is a diagram showing an example of a measurement condition setting screen 30 (GUI screen) for setting conditions for life determination of the light source lamp 104.
- the measurement condition setting screen 30 includes a measurement condition setting section 31 and an exclusion condition setting section 32 .
- the wavelengths measurable by the photometer are listed, and it is possible to select which wavelength the water blank absorbance measurement result is to be used for slope calculation.
- the exclusion condition setting unit 32 can set the water blank absorbance to be excluded from the slope calculation.
- the water blank absorbance obtained at the time designated by the exclusion condition setting unit 32 is not used for calculating the slope of the graph.
- FIG. 6 is a graph showing an example of temporal change in water blank absorbance when maintenance work was performed with a lighting time of 1500 hours. As shown in FIG. 6, the absorbance shifts toward lower values at the lighting time of 1500 hours. This shift in absorbance is due to changes in the measurement environment, not due to changes in the degree of consumption of the light source lamp 104 . Since the rate of change (slope) of the absorbance depends on the degree of wear of the light source lamp 104, it can be expected that the rate of change (slope) of the absorbance will be approximately the same before and after maintenance.
- the degree of wear of the light source lamp 104 cannot be determined correctly.
- a method of calculating the slope of the graph using only the data acquired after maintenance is also conceivable, but in this case, the degree of wear of the light source lamp 104 cannot be determined until the required number of data is collected. Therefore, the amount of absorbance shift due to maintenance is calculated using the absorbance immediately before and after maintenance, and correction is performed.
- Absorbance deviation due to maintenance can be corrected by calculating the difference between the water blank absorbance immediately before maintenance and the water blank absorbance immediately after maintenance, and adding and subtracting the difference. Whether or not maintenance is to be performed can be determined by the processor 201 triggered by a maintenance execution signal transmitted from the processor 201 or a maintenance execution signal instructed by the user via the GUI screen.
- the device may not retain information on whether maintenance has been performed. For example, this is the case when maintenance is performed with the automatic analyzer 10 turned off. In such a case, it is necessary to determine the occurrence of the absorbance deviation separately from the lifetime determination of the light source lamp 104 .
- the change rate (slope) of absorbance is expected to be approximately the same before and after maintenance. Therefore, if it is possible to detect that the slopes are approximately the same when detecting the deviation of the absorbance, it can be determined that the maintenance has been performed.
- the absorbance divergence is, for example, based on the regression line or regression curve obtained in the previous life determination flow, estimating the absorbance at the lighting time when the latest absorbance was obtained, and the estimated value and the latest absorbance actually measured There is a method of comparing with. Alternatively, when the difference in lighting time is small, the difference in absorbance can be detected by comparing the difference between the latest absorbance and the previous absorbance. There is a method for determining whether or not the slopes are approximately the same by calculating the slopes before and after detection of the divergence in absorbance and comparing the slopes. If the inclinations are approximately the same, it may be determined that the change is not due to an abnormality in the light source lamp 104, and the amount of deviation may be corrected.
- the tilts are not at the same level, it may be assumed that the state of the apparatus is unstable due to an abnormality in the light source lamp 104 or other factors, and the apparatus may be stopped or the user may be notified of the abnormality.
- the reason may be that the light source lamp 104 is in an unstable state before disconnection, or that the light source lamp 104 has been replaced. If the reason is replacement of the light source lamp 104, it is normal for the slope to become high. , can prevent unnecessary stoppage of the equipment.
- the slope calculation when determining the absorbance deviation may be performed using a smaller number of data than when determining the lifetime of the light source lamp 104, or may be calculated using the same number of data.
- the automatic analyzer of the first embodiment includes the light source lamp 104, the sensor 106 (photodetector) that detects the light emitted from the light source lamp 104, and the detection signal of the sensor 106, and a processor 201 (control device) that calculates the absorbance.
- the processor 201 acquires the change in absorbance over time, and determines that the life of the light source lamp 104 is nearing the end of its life when the tendency of the change in absorbance over time changes. A change in the tendency of the absorbance over time can be detected by comparing the slope of the graph obtained from the absorbance and the lighting time of the light source lamp with a predetermined threshold value.
- the amount of change in absorbance over time is the largest at the start of use, and tends to gradually decrease as the lamp deteriorates.
- the disturbance of the absorbance that occurs immediately before the end of the life of the light source lamp 104 is a feature that appears after the change in absorbance from the start of use exhibits a trend opposite to that of the absorbance. Therefore, by monitoring the tendency of change in absorbance over time as in the first embodiment, it is possible to detect that the life of the light source lamp 104 is approaching before the light amount of the light source lamp 104 changes significantly and becomes unstable. can be detected.
- each light source lamp 104 it is possible to detect that the life of each light source lamp 104 is nearing the end of its life according to the degree of wear of each of the light source lamps 104, so that it is possible to determine the proper replacement timing of each light source lamp 104. As a result, the burden of replacement work on the user can be reduced. Furthermore, since the light source lamp 104 whose service life is nearing the end of its life does not need to be replaced, the cost of the light source lamp 104 can be reduced, and the burden on the environment can be reduced.
- the second embodiment proposes a technique of estimating the life of the light source lamp 104 and notifying the user of the replacement time in advance.
- FIG. 7 is a graph showing an example of changes in water blank absorbance over time.
- the water blank absorbance was measured up to 500 hours lighting time, and the curve fitted to the plot up to 500 hours is indicated by the dotted line. In this way, the curve fitting can estimate the temporal change in water blank absorbance after 500 hours.
- FIG. 8 is a graph obtained by calculating and plotting the slope of the graph in FIG.
- a curve fitted to the plot of the slope of the graph up to the lighting time of 1000 hours is indicated by a dotted line.
- curve fitting can estimate the change in the slope of the graph after 1000 hours, and the lighting time when the slope reaches a predetermined threshold value, that is, the lighting time when the life of the light source lamp 104 is approaching can be estimated.
- FIG. 9 is a flow chart showing a method for determining the life of the light source lamp 104 according to the second embodiment. Since steps S1 to S3 are the same as those in the first embodiment, description thereof is omitted. After step S3, steps S104 to S107 are executed.
- Step S104 The processor 201 fits a regression curve to the obtained water blank absorbance plot and calculates the slope of the regression curve.
- Step S105 Based on the slope of the regression curve, the processor 201 determines the lighting time at which the upward trend of the water blank absorbance stops (the slope value becomes 0), or the upward trend of the water blank absorbance turns to a downward trend (the slope value minus) to estimate the lighting time. That is, the lighting time at which the slope is 0 or less is estimated using the slope of 0 as a threshold.
- the slope threshold is not limited to 0, and can be changed as appropriate depending on the situation.
- Step S106 The processor 201 calculates the remaining time (remaining lighting time) until the estimated lighting time based on the lighting time estimated in step S105 and the current lighting time.
- the remaining lighting time is the remaining time until the time when the light source lamp 104 should be replaced when the life of the light source lamp 104 approaches.
- Step S107 The processor 201 generates a notification including the remaining lighting time and outputs it to the output device 203 to notify the user.
- a notification including the remaining lighting time and outputs it to the output device 203 to notify the user.
- FIG. 10 is a diagram showing an example of a measurement condition setting screen 40 (GUI screen) according to the second embodiment.
- the measurement condition setting screen 40 includes a measurement condition setting section 31 , an exclusion condition setting section 32 and a warning output setting section 41 . Since the measurement condition setting unit 31 and the exclusion condition setting unit 32 are the same as those in the first embodiment (FIG. 5), description thereof will be omitted.
- the warning output setting unit 41 the user can set how many business days and how many hours before the estimated remaining lighting time (replacement time) to display a warning screen on the display (output device 203). Multiple timings for outputting the warning screen can be set. In this way, by notifying the user of the replacement time before the estimated replacement time of the light source lamp 104, the user can plan the timing of the replacement work without interrupting the measurement in progress. This prevents loss of samples and reagents due to interruption of measurement.
- the processor 201 fits a function (regression curve) to the graph obtained from the absorbance and the lighting time of the light source lamp, and the slope of the fitted function reaches a predetermined threshold.
- the lighting time of the lamp is calculated before the inclination reaches a predetermined threshold, and the lighting time at which the life of the light source lamp is approaching is estimated.
- the user can plan in advance when to replace the light source lamp.
- the technology for determining the life of the light source lamp 104 based on the slope of the graph obtained from the lighting time of the light source lamp 104 and the water blank absorbance has been described.
- the accuracy of the calculated slope value will be reduced.
- the life of the light source lamp may be determined based on the past operation history of the automatic analyzer. This makes it possible to determine the life of the light source lamp 104 more accurately.
- the third embodiment proposes a technique of estimating the life of the light source lamp 104 by machine learning.
- FIG. 11 is a functional block diagram of the learning device 300 according to the third embodiment.
- the learning device 300 is configured to be able to transmit and receive data to and from the storage device 202 of the control device 200 .
- the physical configuration of the learning device 300 may be, for example, a single server or a single general-purpose computer, or a plurality of servers in which arbitrary portions of processing devices (processors) and storage devices are connected via a network. may be composed of
- the functions of the learning device 300 are realized by executing a program stored in the storage device by the processing device. Also, functions equivalent to all or part of functions configured by software may be realized by hardware such as FPGA (Field Programmable Gate Array) or ASIC (Application Specific Integrated Circuit).
- FPGA Field Programmable Gate Array
- ASIC Application Specific Integrated Circuit
- the storage device 202 stores the determination data 50 and the learning model 60.
- the determination data 50 includes water blank absorbance 51 , maintenance history 52 of the automatic analyzer 10 , and alarm information 53 .
- the determination data 50 may include index data related to life determination of the light source lamp 104 (for example, the above-described threshold value, calculated slope, accumulated lighting time of the light source lamp 104, measured wavelength, etc.).
- the processor 201 (not shown in FIG. 11) outputs the determination data 50 stored in the storage device 202 to the learning device 300 .
- Learning model 60 is used when processor 201 determines the life of light source lamp 104 .
- the learning model 60 is created and updated by the learning device 300 .
- the learning device 300 includes an input unit 301 , a training data generation unit 302 , a training data input unit 303 , a learning model update unit 304 , an output unit 305 , an algorithm database 306 and another device data database 307 .
- the input unit 301 receives determination data 50 from the control device 200 .
- the input unit 301 outputs the acquired determination data 50 to the training data generation unit 302 .
- a training data generation unit 302 generates training data from the determination data 50 .
- the training data input unit 303 inputs the training data generated by the training data generation unit 302 to the learning model update unit 304 .
- a learning model update unit 304 updates the learning model 60 using the training data.
- the output unit 305 transmits the learning model 60 updated by the learning model update unit 304 to the control device 200 .
- the processor 201 stores the updated learning model 60 in the storage device 202 and uses the updated learning model 60 to determine the life span of the light source lamp 104 .
- the prototype of the learning model 60 is stored in the algorithm database 306.
- the other device data database 307 stores training data for judgment data collected from other automatic analysis devices.
- the learning models stored in algorithm database 306 are created based on training data from other device data database 307 .
- the learning model updating unit 304 updates the learning model 60 and feeds back change information to the training data generating unit 302 when the algorithm of the learning model 60 is changed.
- the training data generation unit 302 updates training data generation conditions based on feedback from the learning model update unit 304 .
- FIG. 12A is a diagram showing an example of data included in the maintenance history 52.
- the maintenance history 52 includes a maintenance name 521 performed, a date 522 and a time 523 when the maintenance was performed as data items.
- maintenance names 521 reaction tank circulating water exchange, reaction tank cleaning, and reaction tank vessel exchange are exemplified, but the types of maintenance are not limited to these.
- FIG. 12B is a diagram showing an example of data included in the alarm information 53.
- the alarm information 53 includes, as data items, a date 531, a time 532, an alarm code 533 and an alarm name 534 when the processor 201 of the automatic analyzer 10 issues an alarm.
- the alarm code 533 is an arbitrary identification number given to the alarm when the processor 201 generates the alarm.
- As the alarm name 534 light intensity decrease, reaction tank water temperature high, water supply tank water level decrease, vacuum tank full, suction pressure abnormality (sample), sample shortage, stirring failure, cell skip, cell blank value error are exemplified. 201 can also generate alarms other than these depending on the operational status of the automatic analyzer 10 .
- Any learning device such as a neural network, a regression tree, or a Bayes classifier can be used as the learning model 60 .
- FIG. 13 is a diagram showing an example of a learning model 60 based on a neural network.
- a learning model 60 is composed of an input layer 61 , an intermediate layer 62 and an output layer 63 .
- Information (determination data or processed data thereof) input to the input layer 61 is propagated to the intermediate layer 62 and further propagated to the output layer 63 in order.
- the output layer 63 outputs an inference result (determined result of the life of the light source lamp 104 ) based on the information input to the input layer 61 .
- a neural network has a plurality of intermediate layers, but FIG. 13 shows only one intermediate layer 62 as a representative.
- Input layer 61, intermediate layer 62 and output layer 63 each have a plurality of input units, intermediate units and output units indicated by circles.
- Information input to each input unit of the input layer 61 is weighted by the coupling coefficient between the input unit and the intermediate unit and input to each intermediate unit.
- the values of the intermediate units of the intermediate layer 62 are calculated by adding the values from the input units.
- the output from each intermediate unit of the intermediate layer 62 is weighted by the coupling coefficient between the intermediate unit and the output unit and input to each output unit.
- the values of the output units of the output layer 63 are calculated. In this way, the processing in the intermediate layer 62 corresponds to non-linearly transforming the values of the input data input to the input layer 61 and outputting them as output data of the output layer 63 .
- the determination data input to the input layer 61 can be classified into measurement result information 54 and device-related information 55, for example.
- the measurement result information 54 includes, for example, water blank absorbance, measurement wavelength, and cumulative lighting time of the light source lamp.
- the device-related information 55 includes, for example, maintenance history and alarm information.
- the maintenance history includes, for example, operations such as water exchange of the reaction vessel, cleaning of the reaction vessel, replacement of the reaction vessel 1, and washing of the reaction vessel 1, which may affect the water blank absorbance.
- Alarm information includes various levels of alarms. There are cases where immediate maintenance is required to cancel the alarm, and cases where the attention level is such that immediate maintenance is not required but observation is required.
- the inference results output from the output layer 63 can be classified into action-related information 64 and anomaly causes 65, for example.
- the action-related information 64 is information related to the user's action regarding the light source lamp 104. For example, replacement of the light source lamp 104 is recommended, average remaining time until use is disabled, average remaining time until recommended action, and the like. including.
- the output values of the action-related information 64 are probability values, and it is determined whether the output probability values are greater than or less than a predetermined threshold value.
- the average remaining time until unusable is the estimated remaining lighting time until the absorbance reaches an unstable state before the light source lamp 104 is disconnected.
- the average remaining time until action recommendation is the estimated remaining lighting time until the replacement of the light source lamp 104 is recommended.
- the cause of abnormality 65 is information suggesting that an abnormal absorbance value has occurred due to a factor other than the light source lamp 104, such as contamination of the reaction vessel or contamination of the reaction container 1, for example.
- the user can determine the necessity of replacement of the light source lamp 104 based on the action-related information 64 and the cause of abnormality 65 that are output.
- the determination of the life of the light source lamp 104 by the learning model 60 described above is performed, for example, instead of step S5 (FIG. 4) described in the first embodiment, or steps S105 to S106 (FIG. 4) described in the second embodiment. 9) can be performed by the processor 201 instead.
- the processor 201 After that, the processor 201 generates a notification or warning to the user based on the action-related information 64 and the cause of abnormality 65 output from the learning model 60, and outputs it to the output device 203 (for example, display).
- FIG. 14 is a diagram showing an example of the recommended action display screen 70 displayed on the display.
- FIG. 14 shows a case where replacement of the light source lamp 104 is recommended.
- the recommended action display screen 70 includes a recommended action display portion 71 , a recommended execution time display portion 72 and a reference information display portion 73 .
- the recommended action display portion 71 displays the name of the recommended action and the degree of recommendation.
- a larger hatched portion of the bar 74 indicates a higher degree of recommendation.
- the recommended implementation time display section 72 displays the past implementation history of the replacement of the light source lamp 104, the recommended period of replacement of the light source lamp 104, and the scheduled implementation date of the replacement of the light source lamp 104. Also, the period during which the replacement of the light source lamp 104 is recommended is indicated by hatching in the calendar, the black circle mark indicates today, and the black triangle mark indicates the date when the action is scheduled to be performed. A history of past replacement of the light source lamp 104 is generated based on the maintenance history 52 stored in the storage device 202 . The recommended period for replacement of the light source lamp 104 is generated based on the average remaining time until action recommendation output from the learning model 60 .
- the scheduled replacement date of the light source lamp 104 can be determined, for example, by the user setting in advance how many business days before the end of the recommended period is to be replaced. Alternatively, the date on which the exchange is scheduled to take place can be determined by the user clicking on a calendar date.
- the reference information display section 73 can display data that is highly important for determining whether or not a predetermined recommended action is necessary, such as the history of water blank absorbance. This makes it possible for the user to check whether the recommended action is appropriate in light of the user's experience without collecting data again.
- the storage device 202 receives information related to changes in absorbance over time and information related to maintenance of the automatic analyzer 10, and outputs the life of the light source lamp 104.
- a learning model 60 learned using training data is stored.
- the processor 201 inputs to the learning model 60 the obtained information related to the change in absorbance over time and the information related to the maintenance of the automatic analyzer 10 and causes the learning model 60 to output a value related to the life of the light source lamp 104 .
- machine learning can be used to determine whether the change in absorbance trend is caused by the light source lamp 104 or by something other than the light source lamp 104 according to the relationship between the change in absorbance over time and maintenance. can be done.
- erroneous determination of the life of the light source lamp 104 can be prevented, and the life of the light source lamp 104 can be determined with high accuracy.
- the present disclosure is not limited to the embodiments described above, and includes various modifications.
- the above-described embodiments have been described in detail in order to explain the present disclosure in an easy-to-understand manner, and do not necessarily include all the configurations described.
- part of an embodiment can be replaced with the configuration of another embodiment.
- the configuration of another embodiment can be added to the configuration of one embodiment.
- a part of the configuration of each embodiment can be added, deleted or replaced with a part of the configuration of another embodiment.
Landscapes
- Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- General Physics & Mathematics (AREA)
- Biochemistry (AREA)
- Pathology (AREA)
- Immunology (AREA)
- General Health & Medical Sciences (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Analytical Chemistry (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Engineering & Computer Science (AREA)
- Theoretical Computer Science (AREA)
- Mathematical Physics (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Investigating Or Analysing Materials By Optical Means (AREA)
Abstract
Description
<自動分析装置の構成例>
図1は、第1の実施形態に係る自動分析装置10の構成を示す模式図である。図1に示すように、自動分析装置10は、装置本体100及び制御装置200を備える。装置本体100は、反応ディスク101、試料ディスク102、試薬ディスク103、光源ランプ104、分光用回折格子105、センサ106、反応容器収納部107、搬送装置108、試料分注機構109、試薬分注機構110、攪拌機構111及び洗浄機構112を備える。
自動分析装置10の各構成要素の動作は制御装置200のプロセッサ201により制御されるが、以下では説明の簡略化のため、各構成要素を動作の主体として説明する。
図4は、第1の実施形態に係る光源ランプ104の寿命(異常)の判定方法を示すフローチャートである。図4の処理は、プロセッサ201が光源ランプ監視プログラムを起動し、自動分析装置10のハードウェアを連携動作させることによって実行される。光源ランプ監視プログラムは、例えば、自動分析装置10の電源を入れた際に起動することができる。あるいは、光源ランプ監視プログラムは、ユーザが光源ランプ104の状態を確認するための指示を入力した際に起動することもできる。あるいは、光源ランプ監視プログラムは、ユーザが分析シーケンスの開始の指示を入力した際に、分析シーケンス用のプログラムと同時に起動してもよい。
プロセッサ201は、洗浄機構112を駆動して、反応容器1にブランク水を分注させ、光度計により水ブランク吸光度を測定する。この水ブランク吸光度の測定は、自動分析装置10の分析シーケンスに含まれている水ブランク測定として実施することができる。この場合、光源ランプ監視プログラムの実行のための新たな水ブランク吸光度の測定を必要としない。
プロセッサ201は、測定した水ブランク吸光度を記憶装置202に累積記憶する。このとき、プロセッサ201は、測定した水ブランク吸光度を、光源ランプ104の使用開始からの累積点灯時間と対応付けて記憶装置202に記憶する。光源ランプ104の累積点灯時間は、記憶装置202が記憶した光源ランプ104の点灯実行日時及び消灯実行日時を基に、プロセッサ201が算出することができる。
プロセッサ201は、必要なデータ数の水ブランク吸光度が記憶されたか判定する。必要な数の水ブランク吸光度が記憶されている場合(Yes)、処理はステップS4に移行する。必要な数の水ブランク吸光度が記憶されていない場合(No)、処理はステップS1に戻り、必要なデータ数が蓄積されるまで、水ブランク吸光度の測定(ステップS1)及び記憶(ステップS2)を繰り返す。
プロセッサ201は、記憶装置202に蓄積された水ブランク吸光度と光源ランプ104の点灯時間に基づいて、水ブランク吸光度及び点灯時間から求められるグラフの傾きを算出し、記憶装置202に記憶する。
プロセッサ201は、算出した傾きに基づいて、光源ランプ104の寿命が近づいているか否かを判定する。光源ランプ104の寿命が近づいている場合(Yes)、処理はステップS6に移行する。光源ランプ104の寿命が近づいていない場合(No)、処理は終了する。
プロセッサ201は、寿命が近づいていることを示す警告(アラーム情報)を生成し、出力装置203に出力することで、ユーザに通知する。このとき、例えば、「光源ランプの寿命が近づいています」というテキスト、又は、「光源ランプを交換してください」というテキストなどを通知画面に含めてディスプレイに表示したり、音声でスピーカから発したりすることができる。
図4の処理は、自動分析装置10の装置本体100に接続された制御装置200のプロセッサ201により実行されることを説明した。代替的に、制御装置200は、装置本体100の動作の制御のみを行い、図4の処理は、制御装置200と通信可能な他の制御装置において実行するようにしてもよい。
反応槽の清掃や反応容器1の交換等のメンテナンス作業を実施すると、測定環境がメンテナンス前後で異なるため、吸光度が高値方向又は低値方向にシフトする。以下、メンテナンスによる吸光度のずれを考慮した寿命の判定方法について説明する。
以上のように、第1の実施形態の自動分析装置は、光源ランプ104と、光源ランプ104から発出された光を検出するセンサ106(光検出器)と、センサ106の検出信号を処理し、吸光度を算出するプロセッサ201(制御装置)と、を備える。プロセッサ201は、吸光度の経時変化を取得し、吸光度の経時変化の傾向が変化した場合に、光源ランプ104の寿命が近づいていると判定する。吸光度の経時変化の傾向の変化は、吸光度と光源ランプの点灯時間とから求められるグラフの傾きと、所定の閾値との比較により、検知することができる。上述のように、光源ランプの寿命直前に起こる吸光度の乱れを除き、吸光度の経時変化量は使用開始時に最も大きく、劣化するにつれて徐々に小さくなる傾向がある。また、光源ランプ104の寿命直前に起こる吸光度の乱れは、使用開始からの吸光度の変動の傾向と逆の傾向を示した後に現れる特徴である。したがって、第1の実施形態のように吸光度の経時変化の傾向を監視することにより、光源ランプ104の光量が大きく変動する不安定な状態に至る前に、光源ランプ104の寿命が近づいていることを検出することができる。
上述の第1の実施形態においては、光源ランプ104の寿命が近づいていると判定された場合に、交換を促すようユーザに通知することを説明した。第2の実施形態においては、光源ランプ104の寿命を推測し、交換時期を前もってユーザに通知する技術を提案する。
プロセッサ201は、取得された水ブランク吸光度のプロットに回帰曲線をあてはめ、回帰曲線の傾きを算出する。
プロセッサ201は、回帰曲線の傾きに基づいて、水ブランク吸光度の上昇傾向が止まる(傾きの値が0になる)点灯時間、又は、水ブランク吸光度が上昇傾向から下降傾向に転じる(傾きの値がマイナスになる)点灯時間を推定する。すなわち、傾き0を閾値として、傾きが0以下となる点灯時間を推定する。なお、第1の実施形態と同様に、傾きの閾値は0に限定されず、場合に応じて適宜変更することができる。
プロセッサ201は、ステップS105で推定した点灯時間と現在の点灯時間とに基づいて、推定した点灯時間までの残り時間(残点灯時間)を算出する。当該残点灯時間は、光源ランプ104の寿命が近づいて光源ランプ104を交換すべき時間までの残り時間である。
プロセッサ201は、残点灯時間を含む通知を生成し、出力装置203に出力することで、ユーザに通知する。このとき、例えば、「光源ランプの交換時期はX日後です」というテキストを警告画面に含めてディスプレイに表示したり、音声でスピーカから発したりすることができる。
図10は、第2の実施形態に係る測定条件設定画面40(GUI画面)の例を示す図である。測定条件設定画面40は、測定条件設定部31、除外条件設定部32及び警告出力設定部41を含む。測定条件設定部31と除外条件設定部32は第1の実施形態(図5)と同じであるので、説明を省略する。警告出力設定部41では、推定した残点灯時間(交換時期)の何営業日前、何時間前にディスプレイ(出力装置203)に警告画面を表示するかをユーザが設定できる。警告画面の出力のタイミングは複数設定することができる。このように、推定された光源ランプ104の交換時期よりも前にユーザに交換時期を通知することにより、ユーザは実行中の測定を中断することなく、交換作業の実施タイミングを計画できる。これにより、測定の中断によって試料や試薬が損失することを防止できる。
以上のように、第2の実施形態において、プロセッサ201は、吸光度と光源ランプの点灯時間とから求められるグラフに関数(回帰曲線)をフィッティングし、フィッティングした関数の傾きが所定の閾値に達する光源ランプの点灯時間を、傾きが所定の閾値に達する前に算出して、光源ランプの寿命が近づく点灯時間を推定する。第2の実施形態によれば、ユーザが光源ランプの交換時期を前もって計画することができる。
上述の第1及び第2の実施形態においては、光源ランプ104の点灯時間と水ブランク吸光度とから求められるグラフの傾きに基づいて光源ランプ104の寿命を判定する技術を説明した。しかしながら、水ブランク吸光度が乱れると、算出される傾きの値の精度が低下してしまう。水ブランク吸光度を不安定にする原因にはいくつかの種類があり、それぞれの原因の解消方法は異なる。そこで、自動分析装置の過去の運用履歴に基づいて光源ランプの寿命を判定するようにしてもよい。これにより、より精度良く光源ランプ104の寿命を判定することが可能になる。このために、第3の実施形態においては、光源ランプ104の寿命を機械学習により推定する技術を提案する。
以上のように、第3の実施形態においては、記憶装置202が、吸光度の経時変化に関連する情報及び自動分析装置10のメンテナンスに関連する情報を入力とし、光源ランプ104の寿命を出力とする訓練データを用いて学習させた学習モデル60を記憶している。プロセッサ201は、学習モデル60に、取得した吸光度の経時変化に関連する情報及び自動分析装置10のメンテナンスに関連する情報を入力して、光源ランプ104の寿命に関する値を出力させる。このように、機械学習により、吸光度の経時変化とメンテナンスとの関連性に応じて、吸光度の傾向の変化が光源ランプ104に起因するものか、光源ランプ104以外に起因するものかを判定することができる。これにより、光源ランプ104の寿命の誤判定を防止でき、精度良く光源ランプ104の寿命を判定することができる。
本開示は、上述した実施形態に限定されるものでなく、様々な変形例を含んでいる。例えば、上述した実施形態は、本開示を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備える必要はない。また、ある実施形態の一部を他の実施形態の構成に置き換えることができる。また、ある実施形態の構成に他の実施形態の構成を加えることもできる。また、各実施形態の構成の一部について、他の実施形態の構成の一部を追加、削除又は置換することもできる。
Claims (14)
- 光源ランプと、
前記光源ランプから発出された光を検出する光検出器と、
前記光検出器の検出信号を処理し、前記光の吸光度を算出する制御装置と、を備え、
前記制御装置は、
前記吸光度の経時変化を取得し、
前記吸光度の経時変化の傾向が変化した場合に、前記光源ランプの寿命が近づいていると判定することを特徴とする自動分析装置。 - 請求項1の自動分析装置において、
前記制御装置は、
前記吸光度と前記光源ランプの点灯時間とから求められるグラフの傾きを算出し、
前記傾きと所定の閾値との比較により、前記吸光度の経時変化の傾向の変化を検知することを特徴とする自動分析装置。 - 請求項2の自動分析装置において、
前記制御装置は、
前記光源ランプの点灯開始から前記吸光度が上昇傾向にある場合、前記傾きが前記所定の閾値以下となったときに、前記吸光度の経時変化の傾向が変化したと判定し、
前記光源ランプの点灯開始から前記吸光度が下降傾向にある場合、前記傾きが前記所定の閾値以上となったときに、前記吸光度の経時変化の傾向が変化したと判定することを特徴とする自動分析装置。 - 請求項2の自動分析装置において、
前記制御装置は、
前記グラフに関数をフィッティングし、
前記フィッティングした関数に基づいて前記傾きを算出することを特徴とする自動分析装置。 - 請求項4の自動分析装置において、
前記制御装置は、
前記フィッティングした関数の前記傾きが前記所定の閾値に達する前記光源ランプの点灯時間を、前記傾きが前記所定の閾値に達する前に算出して、前記光源ランプの寿命が近づく前記点灯時間を推定することを特徴とする自動分析装置。 - 請求項1の自動分析装置において、
前記制御装置は、
前記光源ランプの寿命が近づいていると判定された場合に、前記光源ランプの交換をユーザに促す通知を生成し、出力装置に出力することを特徴とする自動分析装置。 - 請求項5の自動分析装置において、
前記制御装置は、
前記推定した前記光源ランプの寿命が近づく前記点灯時間よりも前に、前記光源ランプの交換をユーザに促す通知を生成し、出力装置に出力することを特徴とする自動分析装置。 - 請求項7の自動分析装置において、
前記制御装置は、
前記通知を前記出力装置に出力するタイミングを設定可能に構成されたGUI画面を生成し、前記出力装置に出力することを特徴とする自動分析装置。 - 請求項1の自動分析装置において、
前記吸光度の経時変化に関連する情報及び前記自動分析装置のメンテナンスに関連する情報を入力とし、前記光源ランプの寿命を出力とする訓練データを用いて学習させた学習モデルを記憶する記憶装置をさらに備え、
前記制御装置は、
前記学習モデルに、取得した前記吸光度の経時変化に関連する情報及び前記自動分析装置のメンテナンスに関連する情報を入力して、前記光源ランプの寿命に関する値を出力させることを特徴とする自動分析装置。 - 請求項9の自動分析装置において、
前記吸光度の経時変化に関連する情報は、前記吸光度の経時変化及び前記光源ランプの点灯時間を含むことを特徴とする自動分析装置。 - 請求項9の自動分析装置において、
前記自動分析装置のメンテナンスに関連する情報は、前記自動分析装置のメンテナンス履歴及び前記自動分析装置のアラーム履歴を含むことを特徴とする自動分析装置。 - 請求項9の自動分析装置において、
前記学習モデルが出力する前記光源ランプの寿命に関する値は、前記光源ランプの交換の推奨度合い、前記光源ランプが使用不可になるまでの平均的残り時間、及び、前記光源ランプの交換の推奨時期までの平均的残り時間のうち少なくとも1つを含むことを特徴とする自動分析装置。 - 請求項1の自動分析装置において、
前記制御装置は、
前記自動分析装置の起動から所定の時間が経過した後に取得された前記吸光度の経時変化を前記判定に用いることを特徴とする自動分析装置。 - 光源ランプと、前記光源ランプから発出された光を検出する光検出器と、を備える自動分析装置に接続された制御装置により実行される前記光源ランプの寿命の判定方法であって、
前記制御装置により、
前記光検出器により検出された光の検出信号を受信することと、
前記検出信号に基づいて吸光度を算出することと、
前記吸光度の経時変化を取得することと、
前記吸光度の経時変化の傾向が変化した場合に、前記光源ランプの寿命が近づいていると判定することと、を含む、光源ランプの寿命の判定方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202280080406.8A CN118355262A (zh) | 2021-12-23 | 2022-10-17 | 自动分析装置以及光源灯的寿命的判定方法 |
EP22908834.9A EP4455636A1 (en) | 2021-12-23 | 2022-10-17 | Automated analyzing device, and method for determining service life of light source lamp |
JP2023569088A JPWO2023119813A1 (ja) | 2021-12-23 | 2022-10-17 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021208935 | 2021-12-23 | ||
JP2021-208935 | 2021-12-23 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023119813A1 true WO2023119813A1 (ja) | 2023-06-29 |
Family
ID=86901974
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/038568 WO2023119813A1 (ja) | 2021-12-23 | 2022-10-17 | 自動分析装置及び光源ランプの寿命の判定方法 |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP4455636A1 (ja) |
JP (1) | JPWO2023119813A1 (ja) |
CN (1) | CN118355262A (ja) |
WO (1) | WO2023119813A1 (ja) |
Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5590052A (en) * | 1994-04-14 | 1996-12-31 | Abaxis, Inc. | Error checking in blood analyzer |
JPH09229939A (ja) * | 1996-02-22 | 1997-09-05 | Hitachi Ltd | 自動化学分析装置における測光系の精度確認方法 |
JPH1038793A (ja) * | 1996-07-23 | 1998-02-13 | Chino Corp | 光学的測定装置 |
JPH10281978A (ja) * | 1997-04-11 | 1998-10-23 | Hitachi Ltd | 自動分析装置 |
JPH11121339A (ja) * | 1997-10-20 | 1999-04-30 | Nikon Corp | 露光装置及び露光方法 |
JP2001091518A (ja) * | 1999-09-20 | 2001-04-06 | Hitachi Ltd | 自動分析装置 |
JP2008058151A (ja) * | 2006-08-31 | 2008-03-13 | Hitachi High-Technologies Corp | 化学分析装置 |
JP2011117746A (ja) * | 2009-12-01 | 2011-06-16 | Hitachi High-Technologies Corp | 自動分析装置、および自動分析装置の光源ランプ交換方法 |
JP2011185728A (ja) * | 2010-03-08 | 2011-09-22 | Toshiba Corp | 自動分析装置 |
JP2017129460A (ja) * | 2016-01-20 | 2017-07-27 | 日本電子株式会社 | 自動分析装置、光源異常検出方法及びプログラム |
JP2019536049A (ja) * | 2016-12-02 | 2019-12-12 | エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft | 生物学的試料を分析する自動分析装置のための故障状態予測 |
CN111814401A (zh) * | 2020-07-08 | 2020-10-23 | 重庆大学 | 基于遗传算法的bp神经网络的led寿命预测方法 |
-
2022
- 2022-10-17 CN CN202280080406.8A patent/CN118355262A/zh active Pending
- 2022-10-17 EP EP22908834.9A patent/EP4455636A1/en active Pending
- 2022-10-17 JP JP2023569088A patent/JPWO2023119813A1/ja active Pending
- 2022-10-17 WO PCT/JP2022/038568 patent/WO2023119813A1/ja active Application Filing
Patent Citations (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5590052A (en) * | 1994-04-14 | 1996-12-31 | Abaxis, Inc. | Error checking in blood analyzer |
JPH09229939A (ja) * | 1996-02-22 | 1997-09-05 | Hitachi Ltd | 自動化学分析装置における測光系の精度確認方法 |
JPH1038793A (ja) * | 1996-07-23 | 1998-02-13 | Chino Corp | 光学的測定装置 |
JPH10281978A (ja) * | 1997-04-11 | 1998-10-23 | Hitachi Ltd | 自動分析装置 |
JPH11121339A (ja) * | 1997-10-20 | 1999-04-30 | Nikon Corp | 露光装置及び露光方法 |
JP2001091518A (ja) * | 1999-09-20 | 2001-04-06 | Hitachi Ltd | 自動分析装置 |
JP2008058151A (ja) * | 2006-08-31 | 2008-03-13 | Hitachi High-Technologies Corp | 化学分析装置 |
JP2011117746A (ja) * | 2009-12-01 | 2011-06-16 | Hitachi High-Technologies Corp | 自動分析装置、および自動分析装置の光源ランプ交換方法 |
JP2011185728A (ja) * | 2010-03-08 | 2011-09-22 | Toshiba Corp | 自動分析装置 |
JP2017129460A (ja) * | 2016-01-20 | 2017-07-27 | 日本電子株式会社 | 自動分析装置、光源異常検出方法及びプログラム |
JP2019536049A (ja) * | 2016-12-02 | 2019-12-12 | エフ.ホフマン−ラ ロシュ アーゲーF. Hoffmann−La Roche Aktiengesellschaft | 生物学的試料を分析する自動分析装置のための故障状態予測 |
CN111814401A (zh) * | 2020-07-08 | 2020-10-23 | 重庆大学 | 基于遗传算法的bp神经网络的led寿命预测方法 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2023119813A1 (ja) | 2023-06-29 |
EP4455636A1 (en) | 2024-10-30 |
CN118355262A (zh) | 2024-07-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4654256B2 (ja) | 自動分析装置 | |
CN110023764B (zh) | 用于分析生物样本的自动分析仪的故障状态预测 | |
JP5795268B2 (ja) | ネットワーク化された診断臨床分析装置の差し迫った分析故障を検出するための方法 | |
EP2434292B1 (en) | Automatic analysis device and analysis method | |
JP5193937B2 (ja) | 自動分析装置、及び分析方法 | |
US8510064B2 (en) | Method for determining a condition indicator of a water analysis apparatus | |
JP6945479B2 (ja) | 分析物濃度を決定する方法 | |
JP2004251802A (ja) | 自動分析装置 | |
JP6991363B2 (ja) | 自動分析装置 | |
WO2023119813A1 (ja) | 自動分析装置及び光源ランプの寿命の判定方法 | |
JP5373573B2 (ja) | 自動分析装置、および自動分析装置の光源ランプ交換方法 | |
WO2023013344A1 (ja) | 化学分析装置 | |
CN104487848B (zh) | 维护支持系统 | |
US20240345110A1 (en) | Automatic Analyzer | |
JP4723439B2 (ja) | 化学分析装置 | |
US20230341425A1 (en) | Automatic analyzer and dispensing method of reagent | |
US20240331855A1 (en) | Predictive maintenance system and method | |
WO2024181059A1 (ja) | 自動分析装置、および自動分析方法 | |
CN113574390A (zh) | 数据解析方法、数据解析系统以及计算机 | |
US20240060931A1 (en) | Electrolyte analysis device and method for identifying abnormality in same | |
JP2009047545A (ja) | 分析装置および光源劣化検出方法 | |
WO2023176437A1 (en) | Methods and systems for generating learning model to predict failure of drain pump | |
JP7357557B2 (ja) | 自動分析装置及び反応異常判定方法 | |
JP2023181770A (ja) | 自動分析装置及び判定方法 | |
CN115956205A (zh) | 自动分析装置、推荐动作通知系统及推荐动作通知方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22908834 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280080406.8 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18717116 Country of ref document: US Ref document number: 2023569088 Country of ref document: JP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2022908834 Country of ref document: EP Effective date: 20240723 |