[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2023117997A1 - Procede de fabrication de substrats demontables - Google Patents

Procede de fabrication de substrats demontables Download PDF

Info

Publication number
WO2023117997A1
WO2023117997A1 PCT/EP2022/086785 EP2022086785W WO2023117997A1 WO 2023117997 A1 WO2023117997 A1 WO 2023117997A1 EP 2022086785 W EP2022086785 W EP 2022086785W WO 2023117997 A1 WO2023117997 A1 WO 2023117997A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
cavities
substrates
exfoliation
implantation zone
Prior art date
Application number
PCT/EP2022/086785
Other languages
English (en)
Inventor
Thierry SALVETAT
Guillaume BERRE
François-Xavier DARRAS
Original Assignee
Commissariat A L'energie Atomique Et Aux Energies Alternatives
Soitec
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from FR2114488A external-priority patent/FR3131435A1/fr
Application filed by Commissariat A L'energie Atomique Et Aux Energies Alternatives, Soitec filed Critical Commissariat A L'energie Atomique Et Aux Energies Alternatives
Priority to EP22836247.1A priority Critical patent/EP4453997A1/fr
Publication of WO2023117997A1 publication Critical patent/WO2023117997A1/fr

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/185Joining of semiconductor bodies for junction formation
    • H01L21/187Joining of semiconductor bodies for junction formation by direct bonding

Definitions

  • the invention relates to the technical field of the manufacture of removable substrates. Also referred to as temporary handles.
  • the invention finds particular interest in the transfer of a useful layer onto a support substrate to manufacture a device (or component) for any type of application (electronics, mechanics, optics, etc.).
  • Temporary handles of a first type are made from a polymer material, and are compatible only with low temperatures (typically below 300° C.).
  • Temporary handles of a second type are compatible with higher temperatures (typically around 500°C to 600°C).
  • the temporary handles known from the state of the art are conventionally manufactured using a weakened bonding interface between two substrates.
  • the weakened bonding interface can be obtained with rough surfaces, or with materials of the two substrates chosen so as to be physically and chemically incompatible. The dismantling of the two substrates can be carried out later using heat treatment, or mechanically by inserting a blade along the bonding interface.
  • the subject of the invention is a method for manufacturing removable substrates, comprising the steps: a) providing:
  • first substrate comprising implanted species forming a flat implantation zone, the first substrate comprising a surface proximal to the flat implantation zone;
  • step b) a second substrate, comprising a surface; b) forming a set of cavities at the proximal surface of the first substrate and/or at the surface of the second substrate; c) assembling the first and second substrates by direct bonding between the proximal surface of the first substrate and the surface of the second substrate; d) applying a heat treatment to the assembly obtained at the end of step c), according to a thermal budget adapted to weaken the flat implantation zone; the set of cavities being arranged during step b) so as to:
  • step d prohibit thermal initiation of the fracture of the weakened flat implantation zone at the end of step d).
  • such a method according to the invention makes it possible to obtain temporary handles by using a flat implantation zone formed by implanted species, then weakened by a heat treatment in order to subsequently dismantle the first and second substrates by applying mechanical stress (e.g. insertion of a blade at the bonding interface).
  • the heat treatment of step d) makes it possible to mature the implanted defects, which can generate defects of the microcrack or blister type which will grow and thereby weaken the flat implantation zone.
  • the arrangement (for example the dimensioning and/or the distribution) of the set of cavities at the proximal surface of the first substrate and/or at the surface of the second substrate during step b) is adapted to delimit, at the result of step c):
  • the set of cavities is arranged at the proximal surface of the first substrate and/or at the surface of the second substrate during step b) so that:
  • the bonding zones have an area adapted to allow direct bonding between the first and second substrates during step c);
  • the free zones have a suitable spatial distribution to prevent thermal initiation of the fracture of the weakened flat implantation zone at the end of step d).
  • microcracks defects of the microfissure type
  • the maturation of micro-crack type defects is linked to the implanted species (classically ionized gaseous species) undergoing heat treatment (for example at 500°C for several tens of minutes), in the presence of a stiffening effect.
  • the inventors have observed that the presence of cavities in the free zones, adjacent to the bonding zones, limits the development of microcracks at the level of the bonding regions.
  • the free zones are not subjected to a stiffening effect, and can therefore deform inside the cavity or cavities facing them during the maturation of blister type defects (“blister” in English).
  • the maturation of blister-type defects is indeed linked to the implanted species (classically ionized gaseous species) undergoing heat treatment (for example at 500°C for several tens of minutes), in the absence of a stiffening effect.
  • the growth of blister-type defects is limited by the phenomenon of exfoliation corresponding to their decapsulation.
  • the presence of cavities allows vertical expansion of blister-like defects.
  • the flat implantation zone thus resists thermal energy provided by the heat treatment of step d), that is to say that the flat implantation zone is not fractured by the heat treatment of the step d), but is sufficiently weakened (by the presence of microcracks and, where applicable, blisters) to be subsequently fractured by mechanical stress to disassemble the first and second substrates, for example by inserting a blade between the first and second substrates or by peeling.
  • the method according to the invention may comprise one or more of the following characteristics.
  • the method comprises a step e) consisting in carrying out a mechanical fracture of the flat implantation zone weakened after step d), so as to dismantle the first and second substrates.
  • an advantage provided is the simplicity of dismantling the first and second substrates, for example by inserting a blade between the first and second substrates.
  • the set of cavities is arranged during step b) so that each pair of adjacent cavities is spaced apart by a distance between:
  • an advantage obtained is to obtain:
  • step d free zones, arranged between the bonding zones to prevent thermal initiation of the fracture of the flat implantation zone weakened at the end of step d).
  • the first threshold is between 500 nm and 3 ⁇ m, preferably between 1 ⁇ m and 2 ⁇ m.
  • the second threshold is between 5 ⁇ m and 200 ⁇ m, preferably between 5 ⁇ m and 100 ⁇ m, more preferably between 5 ⁇ m and 10 ⁇ m.
  • the first and second substrates have a bonding surface at the end of step c); and the set of cavities is arranged during step b) so as to occupy between 50% and 85% of the bonding surface, preferably between 60% and 80% of the bonding surface.
  • step d free zones, arranged between the bonding zones to prevent thermal initiation of the fracture of the flat implantation zone weakened at the end of step d).
  • step b) the set of cavities is formed during step b) at the proximal surface of the first substrate so as to extend below the flat implantation zone;
  • each cavity has at least one dimension, in the plane of the proximal surface of the first substrate, less than or equal to twice an average radius of exfoliation predetermined, preferably less than or equal to twice a predetermined minimum radius of exfoliation.
  • an advantage obtained is to limit the lateral expansion of the blisters inside the cavities in order to avoid the phenomenon of exfoliation.
  • each cavity has at least one dimension, in the plane of the surface of the second substrate, less than or equal to twice a predetermined mean radius of exfoliation , preferably less than or equal to twice a predetermined minimum exfoliation radius.
  • an advantage obtained is to limit the lateral expansion of the blisters inside the cavities in order to avoid the phenomenon of exfoliation.
  • each cavity has at least one dimension, in the plane of the proximal surface of the first substrate and in the plane of the surface of the second substrate, less than or equal twice a predetermined average exfoliation radius, preferably less than or equal to twice a predetermined minimum exfoliation radius.
  • an advantage obtained is to limit the lateral expansion of the blisters inside the cavities in order to avoid the phenomenon of exfoliation.
  • the set of cavities is formed during step b) at the proximal surface of the first substrate so as to extend beyond the flat implantation zone.
  • an advantage obtained is to overcome the presence of blisters, which allows greater tolerance on the lateral dimension of the cavities in the plane of the proximal surface of the first substrate.
  • the set of cavities is arranged to prevent the lateral propagation of microcracks and thereby the fracture of the weakened flat implantation zone.
  • each cavity of the assembly occupies the proximal surface of the first substrate and/or the surface of the second substrate so as to delimit an opening having a shape chosen from among a rectangular, square, triangular or circular shape.
  • the thermal budget of step d) is defined by: - a heat treatment temperature between 200°C and 900°C,
  • an advantage obtained is to obtain a flat implantation zone resistant to thermal energy provided by a heat treatment for fracturing or by a heat treatment for strengthening the bonding interface.
  • the flat implantation zone is not fractured by such a thermal budget, but is sufficiently weakened (by the presence of microcracks and blisters) to be fractured subsequently by mechanical stress to disassemble the first and second substrates, for example at by inserting a blade between the first and second substrates.
  • Such a thermal budget would be sufficient to fracture the planar implantation zone in the absence of such a set of cavities at the proximal surface of the first substrate and/or at the surface of the second substrate.
  • step a) comprises a preliminary step consisting in determining an average radius of exfoliation and/or a minimum radius of exfoliation by a statistical analysis of microscopic observations, after having applied to the first substrate thermal fracturing treatment of the flat implantation zone.
  • This heat treatment is applied directly to the first substrate to determine the radius of exfoliation in the case where the cavities are formed on the surface of the second substrate. If the cavities are formed on the proximal surface of the first substrate, this heat treatment will be applied to the first substrate after thinning over its entire surface and over a thickness corresponding to the depth of the cavities.
  • an advantage obtained is to improve the reliability of the dimensioning of the cavities during step b) in order to obtain free zones, not subject to a stiffening effect, which can deform inside the cavity or cavities facing during the maturation of defects of the blister type during step d), while limiting the lateral expansion of the blisters inside the cavities in order to avoid the phenomenon of exfoliation.
  • the first substrate provided during step a) is made of a material chosen from:
  • a semiconductor material preferably selected from Si, Ge, Si-Ge, SiC, a III-V material
  • the invention also relates to an assembly for manufacturing removable substrates, comprising:
  • first substrate comprising implanted species forming a flat implantation zone, the first substrate comprising a surface proximal to the flat implantation zone;
  • a set of cavities arranged on the proximal surface of the first substrate and/or on the surface of the second substrate so as to: allow direct bonding between the proximal surface of the first substrate and the surface of the second substrate; prohibit thermal initiation of the fracture of the flat implantation zone, after a heat treatment applied to the first and second bonded substrates, according to a thermal budget adapted to weaken the flat implantation zone.
  • the arrangement for example the sizing and/or the distribution of the set of cavities on the proximal surface of the first substrate and/or on the surface of the second substrate is adapted to delimit:
  • the set of cavities is arranged at the proximal surface of the first substrate and/or at the surface of the second substrate so that:
  • the bonding zones have a surface adapted to allow direct bonding between the first and second substrates
  • the free zones have a spatial distribution adapted to prevent thermal initiation of the fracture of the weakened flat implantation zone after the heat treatment applied to the first and second bonded substrates.
  • microcracks defects of the microfissure type
  • the maturation of micro-crack type defects is linked to the implanted species (classically ionized gaseous species) undergoing heat treatment (for example at 500° C. for several tens of minutes), in the presence of a stiffening effect.
  • the inventors have observed that the presence of cavities in the free zones, adjacent to the bonding zones, limits the development of microcracks at the level of the bonding regions.
  • the free zones are not subjected to a stiffening effect, and can therefore deform inside the cavity or cavities facing them during the maturation of blister type defects (“blister” in English).
  • the maturation of blister-type defects is in fact linked to the implanted species (classically ionized gaseous species) undergoing heat treatment (for example at 500° C. for several tens of minutes), in the absence of a stiffening effect.
  • the growth of blister-type defects is limited by the phenomenon of exfoliation corresponding to their decapsulation.
  • the presence of cavities allows vertical expansion of blister-like defects.
  • the flat implantation zone thus resists thermal energy provided by the heat treatment applied to the first and second bonded substrates, that is to say that the flat implantation zone is not fractured by the heat treatment, but is sufficiently weakened (by the presence of microcracks and, where appropriate, blisters) to be subsequently fractured by mechanical stress to disassemble the first and second substrates, for example by inserting a blade between the first and second substrates or by peeling.
  • the set of cavities is arranged on the proximal surface of the first substrate and/or on the surface of the second substrate so that each pair of adjacent cavities is spaced apart by a distance comprised between:
  • the first and second substrates are intended to present a bonding surface; and the set of cavities is arranged at the proximal surface of the first substrate and/or on the surface of the second substrate so as to occupy between 50% and 85% of the bonding surface, preferably between 60% and 80% of the bonding surface.
  • the set of cavities is arranged at the proximal surface of the first substrate so as to extend below the flat implantation zone;
  • each cavity has at least one dimension, in the plane of the proximal surface of the first substrate, less than or equal to twice an average radius of exfoliation predetermined, preferably less than or equal to twice a predetermined minimum radius of exfoliation.
  • an advantage obtained is to limit the lateral expansion of the blisters inside the cavities in order to avoid the phenomenon of exfoliation.
  • the set of cavities is arranged on the surface of the second substrate so that each cavity has at least one dimension, in the plane of the surface of the second substrate, less than or equal to twice a predetermined average exfoliation radius, preferably less than or equal to twice a predetermined minimum exfoliation radius.
  • an advantage obtained is to limit the lateral expansion of the blisters inside the cavities in order to avoid the phenomenon of exfoliation.
  • the set of cavities is arranged: on the proximal surface of the first substrate so as to extend below the flat implantation zone, and on the surface of the second substrate;
  • each cavity has at least one dimension, in the plane of the proximal surface of the first substrate and in the plane of the surface of the second substrate, less than or equal to twice an average radius exfoliation predetermined, preferably less than or equal to twice a predetermined minimum radius of exfoliation.
  • an advantage obtained is to limit the lateral expansion of the blisters inside the cavities in order to avoid the phenomenon of exfoliation.
  • the set of cavities is arranged at the proximal surface of the first substrate so as to extend beyond the flat implantation zone.
  • an advantage obtained is to overcome the presence of blisters, which allows greater tolerance on the lateral dimension of the cavities in the plane of the proximal surface of the first substrate.
  • the set of cavities is arranged to prevent the lateral propagation of microcracks and thereby the fracture of the weakened flat implantation zone.
  • substrate we mean a self-supporting physical support, made of a base material from which a device (or component) can be formed for any type of application, in particular electronic, mechanical, optical.
  • a substrate can be a “slice” (also called a “wafer”, “wafer” in English) which generally takes the form of a disc resulting from a cut in an ingot of a crystalline material.
  • flat zone we mean a flatness within the usual tolerances linked to the experimental conditions of manufacture, and not a perfect flatness in the mathematical sense of the term.
  • Exfoliation radius means a parameter, denoted R ex f 0 , defined by the equation: where "v” denotes the Poisson's ratio of the thin layer, “E” denotes the Young's modulus of the thin layer, “li>” is the Boltzmann constant, “T” is the temperature (in K) at which is subjected to the thin layer, “a” is the effective dose fraction (in %) of the implanted species, “D” is the implanted dose (in at./cm 2 ) of the species, “o” is the limit shear stress , “e” is the thickness of the thin layer, and “x” is the multiplication operator.
  • the thin layer is the part of the first substrate extending between the flat implantation zone and the surface of the first substrate through which the implantation of the species took place (surface proximal to the flat implantation zone).
  • Exfoliation corresponds to a partial (local) detachment of the thin layer at the level of the flat area of implantation. It is tricky to theoretically determine the radius of exfoliation because of physical quantities that are difficult to quantify, in particular the limit shear stress. The radius of exfoliation is specific to the implantation performed in the first substrate.
  • Mean exfoliation radius means an arithmetic mean of the exfoliation radii obtained experimentally.
  • predetermined it is meant that the average radius of exfoliation is determined before the design of the set of cavities formed at the proximal surface of the first substrate and/or at the surface of the second substrate.
  • cavity designates a surface cavity, open, extending to the proximal surface of the first substrate and/or to the surface of the second substrate, and which can be obtained by etching.
  • distributed on the surface we mean a spatial distribution of the set of cavities on the proximal surface of the first substrate and/or on the surface of the second substrate.
  • direct bonding we mean a bonding (preferably spontaneous) resulting from the direct contact of two surfaces, that is to say in the absence of an additional element such as an adhesive, a wax or solder. Adhesion comes mainly from van der Waals forces resulting from the electronic interaction between the atoms or molecules of two surfaces, hydrogen bonds due to surface preparations or covalent bonds established between the two surfaces.
  • the direct bonding is advantageously carried out at ambient temperature and pressure. Direct bonding can cover bonding by thermocompression or eutectic bonding depending on the nature of the two surfaces brought into contact.
  • thermal initiation we mean an initiation of the fracture of the flat implantation zone obtained by thermal energy.
  • Mechanical fracture means a fracture of the flat implantation zone (weakened) obtained by mechanical energy.
  • thermal energy for example provided by a heat treatment applied to the assembly of the first and second substrates
  • thermal energy is not sufficient to initiate a fracture of the flat zone of implantation which would have the effect of separating the first and second substrates.
  • type III-V material is meant a binary alloy between elements located respectively in column III and in column V of the periodic table of the elements.
  • semiconductor material is meant a material having an electrical conductivity at 300 K of between 10 3 S/cm and 10 3 S/cm.
  • each cavity delimits an opening having a square shape with side “a”, each pair of adjacent cavities being spaced apart by a distance “b” from the proximal surface of the first substrate and/or from the surface of the second substrate.
  • thermal budget we mean an energy input of a thermal nature, determined by the choice of a value for the temperature of the heat treatment and the choice of a value for the duration of the heat treatment.
  • facing we mean that an element A faces an element B when the elements A and B are facing each other along the normal to the bonding surface of the first and second substrates.
  • extending beyond we mean that the cavities extend beyond the flat implantation zone when the depth of the cavities is strictly greater than the implantation depth of the implanted species.
  • Figure 1 is a schematic sectional view, illustrating the first and second substrates before bonding according to a first embodiment where the set of cavities is formed on the surface of the second substrate.
  • Figure 2 is a schematic sectional view, illustrating the direct bonding of the first and second substrates according to the first embodiment.
  • Figure 3 is a schematic sectional view, illustrating the presence of blister-type defects after bonding of the first and second substrates according to the first embodiment, when the assembly undergoes a heat treatment leading to a maturation of the defects.
  • Figure 4 is a schematic sectional view, illustrating the insertion of a blade at the bonding interface to dismantle the first and second substrates according to the first embodiment.
  • Figure 5 is a graph showing the depth of implantation on the abscissa (in pm) and the radius of exfoliation (in pm) obtained experimentally on the ordinate.
  • Figure 6 is an illustration of a microscopic observation of localized tearing (or exfoliation) of the surface of the first substrate (i.e. the surface proximal to the flat implantation zone), the first substrate being subjected to a thermal fracturing treatment without stiffening effect.
  • Figure 7 is a schematic sectional view, illustrating the first and second substrates before bonding according to a second embodiment where the set of cavities is formed at the proximal surface of the first substrate.
  • Figure 8 is a schematic sectional view, illustrating the first and second substrates before bonding according to a third embodiment where the set of cavities is formed at the proximal surface of the first substrate and at the surface of the second substrate.
  • Figure 9 is a schematic sectional view, illustrating the first and second substrates before bonding according to a fourth embodiment where the set of cavities is formed at the proximal surface of the first substrate so as to extend beyond the area implantation plan.
  • An object of the invention is a process for manufacturing removable substrates 1, 2, comprising the steps: a) providing:
  • first substrate 1 comprising implanted species 10 forming a flat implantation zone 100, the first substrate 1 comprising a surface S proximal to the flat implantation zone 100;
  • a second substrate 2 comprising a surface 20; b) forming a set of cavities 200 at the proximal surface S of the first substrate 1 and/or at the surface 20 of the second substrate 2; c) assembling the first and second substrates 1, 2 by direct bonding between the proximal surface S of the first substrate 1 and the surface 20 of the second substrate 2; d) applying a heat treatment to the assembly obtained at the end of step c), according to a heat budget suitable for weakening the flat implantation zone 100; the set of cavities 200 being arranged during step b) so as to:
  • step d prohibit thermal initiation of the fracture of the flat implantation zone 100 weakened at the end of step d).
  • Step a) is illustrated in Figures 1, 7 to 9.
  • the implanted species 10 are advantageously gaseous species, preferably comprising ionized hydrogen atoms and/or ionized helium atoms. It is possible to carry out a co-implantation between these species and/or with other gaseous species, or even to carry out a multi-implantation of the same gaseous species.
  • the first substrate 1 provided during step a) is advantageously made of a material chosen from:
  • a semiconductor material preferably selected from Si, Ge, Si-Ge, SiC, a III-V material
  • the first substrate 1 is made of silicon
  • step a) advantageously comprises a preliminary step consisting in determining an average radius of exfoliation and/or a minimum radius of exfoliation by a statistical analysis of microscopic observations, after having applied to the first substrate 1 (comprising the implanted species 10) a thermal fracturing treatment of the planar implantation zone 100 (for example Ih at 500° C. when the first substrate 1 is made of silicon).
  • This heat treatment is applied directly to the first substrate 1 to determine the radius of exfoliation in the case where the cavities 200 are formed on the surface 20 of the second substrate 2. If the cavities 200 are formed on the proximal surface S of the first substrate 1 , this heat treatment will be applied to the first substrate 1 after thinning over its entire surface and over a thickness corresponding to the depth of the cavities 200.
  • the fracturing heat treatment of the flat implantation zone 100 is carried out according to a thermal budget similar to the thermal budget of step d). In the absence of a stiffening effect, this heat treatment leads to the formation of blisters 3 and localized tearing 3' (exfoliations).
  • FIG. 6 optical microscopy observations of the surface S (proximal to the planar implantation zone 100) of the first substrate 1 make it possible to observe these blisters 3 and these exfoliations 3', the exfoliations 3' being easily identifiable by the presence of a dark border on their outline.
  • An image analysis makes it possible to measure the surface of these 3' exfoliations. The surfaces thus measured are converted into radius (considering the defects as circular). The dimensions thus extracted, in sufficient number to allow a statistical analysis (i.e.
  • Figure 5 illustrates in this regard the radius of the 3' exfoliations observed according to this experimental protocol for the first silicon substrates 1, implanted at a fixed dose, as a function of the implantation energy here translated into implantation depth.
  • Step b) is illustrated in figures 1, 7 to 9.
  • the set of cavities 200 is formed during step b) on the surface 20 of the second substrate 2.
  • the set of cavities 200 is dimensioned and distributed during the step b) so as to:
  • step d prohibit thermal initiation of the fracture of the flat implantation zone 100 weakened at the end of step d).
  • the set of cavities 200 is formed during step b) at the proximal surface S of the first substrate 1 so as to extend below the flat zone d implantation 100.
  • Step b) is performed after the formation of the planar implantation zone 100.
  • the set of cavities 200 is sized and distributed during step b) so as to:
  • step d prohibit thermal initiation of the fracture of the flat implantation zone 100 weakened at the end of step d).
  • the set of cavities 200 is formed during step b) at the proximal surface S of the first substrate 1, so as to extend below the planar implantation zone 100, and on the surface 20 of the second substrate 2.
  • Step b) is performed after the formation of the planar implantation zone 100.
  • the set of cavities 200 is dimensioned and distributed during step b) so as to:
  • step d prohibit thermal initiation of the fracture of the flat implantation zone 100 weakened at the end of step d).
  • the set of cavities 200 is formed during step b) at the proximal surface S of the first substrate 1 so as to extend beyond the flat zone d implantation 100.
  • Step b) is performed after the formation of the planar implantation zone 100.
  • the set of cavities 200 is spaced during step b) so as to:
  • step d prohibit thermal initiation of the fracture of the flat implantation zone 100 weakened at the end of step d).
  • the set of cavities 200 is advantageously arranged during step b) so that each pair of adjacent cavities 200 is spaced apart by a distance between:
  • step d a second threshold, strictly higher than the first threshold, below which a thermal initiation of the fracture of the weakened flat implantation zone 100 is prohibited at the end of step d).
  • the first threshold is advantageously between 500 nm and 3 ⁇ m, preferably between 1 ⁇ m and 2 ⁇ m.
  • the second threshold is advantageously between 5 ⁇ m and 200 ⁇ m, preferably between 5 ⁇ m and 100 ⁇ m, more preferably between 5 ⁇ m and 10 ⁇ m.
  • the first and second substrates 1, 2 have a bonding surface at the end of step c).
  • the set of cavities 200 is advantageously arranged during step b) so as to occupy between 50% and 85% of the bonding surface, preferably between 60% and 80% of the bonding surface.
  • each cavity 200 has at least one dimension, in the plane of the proximal surface S of the first substrate 1 and/or in the plane of the surface 20 of the second substrate 2, less than or equal to twice the predetermined average exfoliation radius, preferably less than or equal to twice the predetermined minimum exfoliation radius.
  • the lateral dimension of the cavities 200 is in the plane of the surface 20 of the second substrate 2.
  • the lateral dimension of the cavities 200 is in the plane of the proximal surface S of the first substrate 1.
  • the lateral dimension of the cavities 200 is in the plane of the proximal surface S of the first substrate 1 and in the plane of the surface 20 of the second substrate 2. According to the fourth embodiment illustrated in FIG. 9, the lateral dimension of the cavities , in the plane of the proximal surface S of the first substrate 1, is not a critical parameter in the absence of blisters 3.
  • Each cavity 200 of the assembly occupies the proximal surface S of the first substrate 1 and/or the surface 20 of the second substrate 2 so as to delimit an opening having a shape advantageously chosen from a rectangular, square, triangular or circular shape.
  • each cavity 200 can delimit an opening having a square shape, each side of which is between 10 ⁇ m and 30 ⁇ m, preferably between 15 ⁇ m and 20 ⁇ m. If the predetermined minimum exfoliation radius is 15 ⁇ m, the cavities 200 can advantageously take the form of squares with a side of 30 ⁇ m, circles with a diameter of 30 ⁇ m, or lines with a width of 30 ⁇ m.
  • the cavities 200 can be obtained by etching the second substrate 2.
  • the second substrate 2 can be made of a semiconductor material, such as silicon.
  • the set of cavities 200 is advantageously sized so that each cavity 200 has a depth, along the normal to the surface 20 of the second substrate 2 (and/or along the normal to the proximal surface S of the first substrate 1), greater than the maximum deflection of blisters 3, noted
  • H max can be approximated according to the theory of elasticity of plates and blisters, developed by Timoshenko, by the formula:
  • the thin layer is the part of the first substrate 1 extending between the flat implantation zone 100 and the surface S of the first substrate 1 through which the implantation of the species 10 has taken place (proximal to the planar implantation zone 100) when the cavities 200 are formed on the surface 20 of the second substrate 2.
  • each cavity 200 can be less than the maximum deflection of the blisters 3 (i.e. the blisters 3 can 'touch the bottom of the cavities 200') without this affecting the correct implementation of a method according to the 'invention.
  • Step c) is illustrated in Figure 2.
  • Step c) is advantageously preceded by a step consisting in cleaning the surfaces to be bonded of the first and second substrates 1, 2, for example to avoid contamination of the surfaces by hydrocarbons, particles or metallic elements.
  • a step consisting in cleaning the surfaces to be bonded of the first and second substrates 1, 2, for example to avoid contamination of the surfaces by hydrocarbons, particles or metallic elements it is possible to clean the surfaces to be bonded using a dilute SCI solution (mixture of NH 4 OH and H2O2).
  • Step c) is advantageously preceded by a step consisting in activating the surfaces to be bonded of the first and second substrates 1, 2, for example by plasma treatment or by ion beam sputtering (IBS for "Ion Beam Sputering" in English).
  • IBS ion beam sputtering
  • Step c) is preferably carried out in a medium with a controlled atmosphere.
  • step c) can be performed under high vacuum such as a secondary vacuum of less than 10 2 mbar.
  • the heat treatment is applied to the assembly of the first and second substrates 1, 2 obtained at the end of step c).
  • the heat treatment is applied during step d) according to a heat budget adapted to weaken the planar implantation zone 100. More specifically, in the first, second and third embodiments illustrated respectively in FIGS. 1, 7 and 8, the implanted species 10 generate microcracks or blisters 3 in response to the heat treatment applied during step d) which weaken the flat implantation zone 100.
  • the blisters 3 generated during step d) extend to the inside the set of cavities 200. One or more blisters 3 can extend inside a cavity 200 of the set.
  • the heat treatment of step d) makes it possible to mature the implanted defects, generating microcracks and blisters 3 which will grow and thereby weaken the flat implantation zone 100.
  • blister type defects 3 appear during step d), when the assembly is subjected to heat treatment.
  • the free zones ZL extending to the surface S of the first substrate 1 (ie the surface proximal to the planar implantation zone 100), facing the cavities 200, are not subjected to a stiffening effect.
  • the free zones ZL not subject to a stiffening effect, can then deform inside the cavity or cavities 200 facing them, after the blister type defects 3 have matured, so as to prevent thermal initiation of the fracture. of the flat implantation zone 100 weakened at the end of step d).
  • This mechanism is identical for the second and third embodiments illustrated respectively in FIGS. 7 and 8.
  • the free zones ZL extending to the proximal surface S of the first substrate 1, facing the cavities 200, are not subjected to a stiffening effect.
  • the free zones ZL not subject to a stiffening effect, can then deform inside the cavity or cavities 200 facing them, after the blister type defects 3 have matured, so as to prevent thermal initiation of the fracture. of the flat implantation zone 100 weakened at the end of step d).
  • the implanted species 10 only generate microcracks at the bonding zones in response to the heat treatment applied during step d) which weakens the flat implantation zone 100.
  • the thermal budget of step d) is advantageously adapted to fracture the planar implantation zone 100, in the absence of the set of cavities 200 at the proximal surface S of the first substrate 1 and/or at the surface 20 of the second substrate 2.
  • a thermal budget of step d) weakens the flat implantation zone 100 but does not allow thermal initiation of the fracture of the flat implantation zone 100.
  • the thermal budget of step d) can be defined by:
  • the thermal budget of step d) depends in particular on the material of the first substrate 1 and the implantation conditions of the implanted species 10.
  • the temperature of the heat treatment can be between 300° C and 600°C, for example of the order of 500°C.
  • the heat treatment temperature can be of the order of 200°C.
  • the heat treatment temperature can be around 150°C.
  • step d) The heat treatment in step d) is advantageously thermal annealing.
  • the method may include a step e) consisting in carrying out a mechanical fracture of the flat implantation zone 100 weakened after step d), so as to disassemble the first and second substrates 1, 2.
  • step e) can be performed by inserting a blade L between the first and second substrates 1, 2, at the bonding interface, from one edge of the assembly of the first and second substrates 1 , 2.
  • a peeling layer for example made of a polymer material which will then be used to mechanically peel the thin layer.
  • the first disassembled substrate 1 can be recycled and reused. Furthermore, after the execution of step e), the thin layer transferred onto the second substrate 2 can be subjected to chemical and/or mechanical treatments to cover a flat surface, and to obtain a useful layer from which be formed a component for all types of applications, including electronic, mechanical, optical.
  • the first substrate 1 and/or the second substrate 2 can be subjected to technological steps, carried out between steps d) and e), in order to form all or part of a component.
  • the technological steps may consist of steps of thinning, layer transfer, layer deposition, photolithography, etching, etc. It should be noted that the thinning of the first substrate 1 is advantageously carried out between steps c) and d).
  • the assembly of the first and second substrates 1, 2 can be secured to a receiving substrate for the implementation of certain technological steps.
  • An object of the invention is an assembly for manufacturing removable substrates 1, 2, comprising:
  • first substrate 1 comprising implanted species 10 forming a flat implantation zone 100, the first substrate 1 comprising a surface S proximal to the flat implantation zone 100;
  • a set of cavities 200 arranged at the proximal surface S of the first substrate 1 and/or at the surface 20 of the second substrate 2 so as to: allow direct bonding between the proximal surface S of the first substrate 1 and the surface 20 of the second substrate 2; prohibit thermal initiation of the fracture of the flat implantation zone 100 after a heat treatment applied to the first and second bonded substrates 1, 2, according to a thermal budget adapted to weaken the flat implantation zone 100.
  • the set of cavities 200 is advantageously arranged at the proximal surface S of the first substrate 1 and/or at the surface 20 of the second substrate 2 so that each pair of adjacent cavities 200 is spaced apart by a distance comprised between:
  • the first and second substrates 1, 2 are intended to present a bonding surface.
  • the set of cavities 200 is advantageously arranged at the proximal surface S of the first substrate 1 and/or at the surface 20 of the second substrate 2 so as to occupy between 50% and 85% of the bonding surface, preferably between 60% and 80% of the bonding surface.
  • each cavity 200 has at least one dimension, in the plane of the proximal surface S of the first substrate 1 and/or in the plane of the surface 20 of the second substrate 2, lower or equal to twice a predetermined average exfoliation radius, preferably less than or equal to twice a predetermined minimum exfoliation radius.
  • the lateral dimension of the cavities 200 is in the plane of the surface 20 of the second substrate 2.
  • the lateral dimension of the cavities 200 is in the plane of the proximal surface S of the first substrate 1.
  • the lateral dimension of the cavities 200 is in the plane of the proximal surface S of the first substrate 1 and in the plane of the surface 20 of the second substrate 2.
  • the lateral dimension of the cavities, in the plane of the proximal surface S of the first substrate 1 is not a critical parameter in the absence of blisters 3.
  • the set of cavities 200 is arranged on the surface 20 of the second substrate 2 so that each cavity 200 has at least one dimension, in the plane of the surface 20 of the second substrate 2, less than or equal to twice a predetermined average exfoliation radius, preferably less than or equal to twice a predetermined minimum exfoliation radius.
  • the set of cavities 200 is arranged at the proximal surface S of the first substrate 1 so as to extend below the planar implantation zone 100;
  • each cavity 200 has at least one dimension, in the plane of the proximal surface S of the first substrate 1, less than or equal to twice a predetermined average exfoliation radius, preferably less than or equal to twice a predetermined minimum exfoliation radius.
  • the set of cavities 200 is arranged: on the proximal surface S of the first substrate 1 so as to extend below the flat implantation zone 100, and on the surface 20 of the second substrate 2;
  • each cavity 200 has at least one dimension, in the plane of the proximal surface S of the first substrate 1 and in the plane of the surface 20 of the second substrate 2, less than or equal to twice a predetermined average exfoliation radius, preferably less than or equal to twice a predetermined minimum exfoliation radius.
  • the set of cavities 200 is arranged at the proximal surface S of the first substrate 1 so as to extend beyond the planar implantation zone 100.
  • first and second substrates 1, 2, implanted species 10, average radius of exfoliation, shape of the cavities 200 apply for this object of the invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Micromachines (AREA)
  • Combinations Of Printed Boards (AREA)

Abstract

Procédé de fabrication de substrats (1, 2) démontables, comportant les étapes : a) prévoir : - un premier substrat (1), comprenant des espèces implantées (10) formant une zone plane d'implantation (100) et une surface (S) proximale; - un second substrat (2), comprenant une surface (20) b) former un ensemble de cavités (200) à la surface (S) proximale du premier substrat (1) et/ ou à la surface (20) du second substrat (2); c) assembler les premier et second substrats (1, 2) par un collage direct; d) appliquer un traitement thermique selon un pour fragiliser la zone plane d'implantation (100); l'ensemble de cavités (200) étant agencé de manière à : - autoriser un collage direct entre les premier et second substrats (1, 2) lors de l'étape c); - interdire une initiation thermique de la fracture de la zone plane d'implantation (100) fragilisée à l'issue de l'étape d).

Description

PROCEDE DE FABRICATION DE SUBSTRATS DEMONTABLES
Domaine technique
L’invention se rapporte au domaine technique de la fabrication de substrats démontables. On parle également de poignées temporaires.
L’invention trouve notamment son intérêt dans le transfert d’une couche utile sur un substrat support pour fabriquer un dispositif (ou composant) pour tout type d’applications (électronique, mécanique, optique etc.).
État de l’art
Les poignées temporaires de l’état de la technique sont principalement de deux types. Des poignées temporaires d’un premier type sont réalisées à base d’un matériau polymère, et sont compatibles uniquement avec des basses températures (typiquement inférieures à 300°C). Des poignées temporaires d’un deuxième type sont compatibles avec de plus hautes températures (typiquement de l’ordre de 500°C à 600°C). Les poignées temporaires connues de l’état de la technique sont classiquement fabriquées à l’aide d’une interface de collage affaiblie entre deux substrats. L’interface de collage affaiblie peut être obtenue avec des surfaces rugueuses, ou avec des matériaux des deux substrats choisis de manière à être physico-chimiquement peu compatibles. Le démontage des deux substrats peut être exécuté ultérieurement à l’aide d’un traitement thermique, ou de manière mécanique par insertion d’une lame suivant l’interface de collage.
De telles solutions de l’état de la technique ne sont pas entièrement satisfaisantes, en raison de leur complexité de mise en œuvre.
Exposé de l’invention
L’invention vise à remédier en tout ou partie aux inconvénients précités. A cet effet, l’invention a pour objet un procédé de fabrication de substrats démontables, comportant les étapes : a) prévoir :
- un premier substrat, comprenant des espèces implantées formant une zone plane d’implantation, le premier substrat comprenant une surface proximale à la zone plane d’implantation ;
- un second substrat, comprenant une surface ; b) former un ensemble de cavités à la surface proximale du premier substrat et/ou à la surface du second substrat ; c) assembler les premier et second substrats par un collage direct entre la surface proximale du premier substrat et la surface du second substrat ; d) appliquer un traitement thermique à l’assemblage obtenu à l’issue de l’étape c), selon un budget thermique adapté pour fragiliser la zone plane d’implantation ; l’ensemble de cavités étant agencé lors de l’étape b) de manière à :
- autoriser un collage direct entre les premier et second substrats lors de l’étape c) ;
- interdire une initiation thermique de la fracture de la zone plane d’implantation fragilisée à l’issue de l’étape d).
Ainsi, un tel procédé selon l’invention permet l’obtention de poignées temporaires en utilisant une zone plane d’implantation formée par des espèces implantées, puis fragilisée par un traitement thermique pour démonter ultérieurement les premier et second substrats par l’application d’une contrainte mécanique (e.g. insertion d’une lame à l’interface de collage). Le traitement thermique de l’étape d) permet de maturer les défauts implantés, pouvant générer des défauts de type microfissure ou cloque qui vont grossir et par là-même fragiliser la zone plane d’implantation.
L’agencement (par exemple le dimensionnement et/ou la répartition) de l’ensemble de cavités à la surface proximale du premier substrat et/ ou à la surface du second substrat lors de l’étape b) est adapté pour délimiter, à l’issue de l’étape c) :
- des zones de collage, faisant face aux murets séparant les cavités et occupant l’espace inter-cavités, les zones de collage étant donc soumises à un effet raidisseur ;
- des zones libres, faisant face aux cavités.
Plus précisément, l’ensemble de cavités est agencé à la surface proximale du premier substrat et/ ou à la surface du second substrat lors de l’étape b) de sorte que :
- les zones de collage présentent une superficie adaptée pour autoriser un collage direct entre les premier et second substrats lors de l’étape c) ;
- les zones libres présentent une distribution spatiale adaptée pour interdire une initiation thermique de la fracture de la zone plane d’implantation fragilisée à l’issue de l’étape d).
Le déclenchement de la fracture (g spliting» en langue anglaise) de la zone plane d’implantation est principalement dû à la maturation de défauts de type microfissure (« microcracks » en langue anglaise). La maturation des défauts de type micro fissure est liée aux espèces implantées (classiquement des espèces gazeuses ionisées) subissant un traitement thermique (par exemple à 500°C pendant plusieurs dizaines de minutes), en présence d’un effet raidisseur. Les inventeurs ont constaté que la présence des cavités dans les zones libres, adjacentes aux zones de collage, limitait le développement des microfissures au niveau des régions de collage.
Par ailleurs, lorsque les cavités s’étendent à la surface proximale du premier substrat, en- deçà de la zone plane d’implantation, les zones libres ne sont pas soumises à un effet raidisseur, et peuvent donc se déformer à l’intérieur de la ou des cavités leur faisant face lors de la maturation de défauts de type cloque (« blister» en langue anglaise). La maturation de défauts de type cloque est en effet liée aux espèces implantées (classiquement des espèces gazeuses ionisées) subissant un traitement thermique (par exemple à 500°C pendant plusieurs dizaines de minutes), en absence d’un effet raidisseur. La croissance des défauts de type cloque est bornée par le phénomène d’exfoliation correspondant à leur décapsulation. La présence de cavités autorise une expansion verticale des défauts de type cloque.
La zone plane d’implantation résiste ainsi à une énergie thermique apportée par le traitement thermique de l’étape d), c'est-à-dire que la zone plane d’implantation n’est pas fracturée par le traitement thermique de l’étape d), mais est suffisamment fragilisée (par la présence de microfissures et le cas échéant de cloques) pour être fracturée ultérieurement par une sollicitation mécanique pour démonter les premier et second substrats, par exemple à l’aide de l’insertion d’une lame entre les premier et second substrats ou par pelage.
Le procédé selon l’invention peut comporter une ou plusieurs des caractéristiques suivantes.
Selon une caractéristique de l’invention, le procédé comporte une étape e) consistant à exécuter une fracture mécanique de la zone plane d’implantation fragilisée après l’étape d), de manière à démonter les premier et second substrats.
Ainsi, un avantage procuré est la simplicité du démontage des premier et second substrats, par exemple en insérant une lame entre les premier et second substrats.
Selon une caractéristique de l’invention, l’ensemble de cavités est agencé lors de l’étape b) de sorte que chaque couple de cavités adjacentes est espacé d’une distance comprise entre :
- un premier seuil, au-delà duquel un collage direct entre les premier et second substrats est autorisé lors de l’étape c) ;
- un second seuil, strictement supérieur au premier seuil, en-deçà duquel une initiation thermique de la fracture de la zone plane d’implantation fragilisée est interdite à l’issue de l’étape d). Ainsi, un avantage procuré est d’obtenir :
(i) des zones de collage présentant une superficie suffisante pour autoriser un collage direct entre les premier et second substrats lors de l’étape c) ;
(ii) des zones libres, agencées entre les zones de collage pour interdire une initiation thermique de la fracture de la zone plane d’implantation fragilisée à l’issue de l’étape d).
Selon une caractéristique de l’invention, le premier seuil est compris entre 500 nm et 3 pm, de préférence compris entre 1 pm et 2 pm.
Selon une caractéristique de l’invention, le second seuil est compris entre 5 pm et 200 pm, de préférence compris entre 5 pm et 100 pm, plus préférentiellement compris entre 5 pm et 10 pm.
Selon une caractéristique de l’invention, les premier et second substrats présentent une surface de collage à l’issue de l’étape c) ; et l’ensemble de cavités est agencé lors de l’étape b) de manière à occuper entre 50% et 85% de la surface de collage, de préférence entre 60% et 80% de la surface de collage.
Ainsi, un avantage procuré est d’obtenir :
(i) des zones de collage présentant une superficie suffisante pour autoriser un collage direct entre les premier et second substrats lors de l’étape c) ;
(ii) des zones libres, agencées entre les zones de collage pour interdire une initiation thermique de la fracture de la zone plane d’implantation fragilisée à l’issue de l’étape d).
Selon une caractéristique de l’invention :
- l’ensemble de cavités est formé lors de l’étape b) à la surface proximale du premier substrat de manière à s’étendre en-deçà de la zone plane d’implantation ;
- l’ensemble de cavités est agencé lors de l’étape b) de sorte que chaque cavité présente au moins une dimension, dans le plan de la surface proximale du premier substrat, inférieure ou égale au double d’un rayon moyen d’exfoliation prédéterminé, de préférence inférieure ou égale au double d’un rayon minimum d’exfoliation prédéterminé.
Ainsi, un avantage procuré est de borner l’expansion latérale des cloques à l’intérieur des cavités afin d’éviter le phénomène d’exfoliation.
Selon une caractéristique de l’invention :
- l’ensemble de cavités est formé lors de l’étape b) à la surface du second substrat ; - l’ensemble de cavités est agencé lors de l’étape b) de sorte que chaque cavité présente au moins une dimension, dans le plan de la surface du second substrat, inférieure ou égale au double d’un rayon moyen d’exfoliation prédéterminé, de préférence inférieure ou égale au double d’un rayon minimum d’exfoliation prédéterminé.
Ainsi, un avantage procuré est de borner l’expansion latérale des cloques à l’intérieur des cavités afin d’éviter le phénomène d’exfoliation.
Selon une caractéristique de l’invention :
- l’ensemble de cavités est formé lors de l’étape b) : à la surface proximale du premier substrat de manière à s’étendre en-deçà de la zone plane d’implantation, et à la surface du second substrat ;
- l’ensemble de cavités est agencé lors de l’étape b) de sorte que chaque cavité présente au moins une dimension, dans le plan de la surface proximale du premier substrat et dans le plan de la surface du second substrat, inférieure ou égale au double d’un rayon moyen d’exfoliation prédéterminé, de préférence inférieure ou égale au double d’un rayon minimum d’exfoliation prédéterminé.
Ainsi, un avantage procuré est de borner l’expansion latérale des cloques à l’intérieur des cavités afin d’éviter le phénomène d’exfoliation.
Selon une caractéristique de l’invention, l’ensemble de cavités est formé lors de l’étape b) à la surface proximale du premier substrat de manière à s’étendre au-delà de la zone plane d’implantation.
Ainsi, un avantage procuré est de s’affranchir de la présence de cloques, ce qui permet une plus grande tolérance sur la dimension latérale des cavités dans le plan de la surface proximale du premier substrat. L’ensemble de cavités est agencé pour empêcher la propagation latérale des microfissures et par là-même la fracture de la zone plane d’implantation fragilisée.
Selon une caractéristique de l’invention, chaque cavité de l’ensemble occupe la surface proximale du premier substrat et/ ou la surface du second substrat de manière à délimiter une ouverture présentant une forme choisie parmi une forme rectangulaire, carrée, triangulaire ou circulaire.
Selon une caractéristique de l’invention, le budget thermique de l’étape d) est défini par : - une température du traitement thermique comprise entre 200°C et 900°C,
- une durée du traitement thermique comprise entre quelques minutes et quelques dizaines de minutes.
Ainsi, un avantage procuré est d’obtenir une zone plane d’implantation résistant à une énergie thermique apportée par un traitement thermique de fracturation ou par un traitement thermique de renforcement de l’interface de collage. La zone plane d’implantation n’est pas fracturée par un tel budget thermique, mais est suffisamment fragilisée (par la présence de microfissures et de cloques) pour être fracturée ultérieurement par une sollicitation mécanique pour démonter les premier et second substrats, par exemple à l’aide de l’insertion d’une lame entre les premier et second substrats. Un tel budget thermique serait suffisant pour fracturer la zone plane d’implantation en l’absence d’un tel ensemble de cavités à la surface proximale du premier substrat et/ ou à la surface du second substrat.
Selon une caractéristique de l’invention, l’étape a) comporte une étape préalable consistant à déterminer un rayon moyen d’exfoliation et/ou un rayon minimal d’exfoliation par une analyse statistique d’observations microscopiques, après avoir appliqué au premier substrat un traitement thermique de fracturation de la zone plane d’implantation.
Ce traitement thermique est appliqué directement au premier substrat pour déterminer le rayon d’exfoliation dans le cas où les cavités sont formées à la surface du second substrat. Si les cavités sont formées à la surface proximale du premier substrat, ce traitement thermique sera appliqué au premier substrat après un amincissement sur toute sa surface et sur une épaisseur correspondant à la profondeur des cavités.
Ainsi, un avantage procuré est d’améliorer la fiabilité du dimensionnement des cavités lors de l’étape b) afin d’obtenir des zones libres, non soumises à un effet raidisseur, pouvant se déformer à l’intérieur de la ou des cavités leur faisant face lors de la maturation de défauts de type cloque lors de l’étape d), tout en bornant l’expansion latérale des cloques à l’intérieur des cavités afin d’éviter le phénomène d’exfoliation.
Selon une caractéristique de l’invention, le premier substrat prévu lors de l’étape a) est réalisé dans un matériau choisi parmi :
- un matériau semi-conducteur, de préférence sélectionné parmi Si, Ge, Si-Ge, SiC, un matériau III-V ;
- le tantalate de lithium LiTaOs, le niobate de lithium I .i\b( ) 3. L’invention a également pour objet un ensemble pour fabriquer des substrats démontables, comportant :
- un premier substrat, comprenant des espèces implantées formant une zone plane d’implantation, le premier substrat comprenant une surface proximale à la zone plane d’implantation ;
- un second substrat, comprenant une surface ;
- un ensemble de cavités, agencé à la surface proximale du premier substrat et/ou à la surface du second substrat de manière à : autoriser un collage direct entre la surface proximale du premier substrat et la surface du second substrat ; interdire une initiation thermique de la fracture de la zone plane d’implantation, après un traitement thermique appliqué aux premier et second substrats collés, selon un budget thermique adapté pour fragiliser la zone plane d’implantation.
Ainsi, comme évoqué précédemment, l’agencement (par exemple le dimensionnement et/ ou la répartition) de l’ensemble de cavités à la surface proximale du premier substrat et/ ou à la surface du second substrat est adapté pour délimiter :
- des zones de collage, faisant face aux murets séparant les cavités et occupant l’espace inter-cavités, les zones de collage étant donc soumises à un effet raidisseur ;
- des zones libres, faisant face aux cavités.
Plus précisément, l’ensemble de cavités est agencé à la surface proximale du premier substrat et/ ou à la surface du second substrat de sorte que :
- les zones de collage présentent une superficie adaptée pour autoriser un collage direct entre les premier et second substrats ;
- les zones libres présentent une distribution spatiale adaptée pour interdire une initiation thermique de la fracture de la zone plane d’implantation fragilisée après le traitement thermique appliqué aux premier et second substrats collés.
Le déclenchement de la fracture (g spliting» en langue anglaise) de la zone plane d’implantation est principalement dû à la maturation de défauts de type microfissure (« microcracks » en langue anglaise). La maturation des défauts de type micro fissure est liée aux espèces implantées (classiquement des espèces gazeuses ionisées) subissant un traitement thermique (par exemple à 500°C pendant plusieurs dizaines de minutes), en présence d’un effet raidisseur. Les inventeurs ont constaté que la présence des cavités dans les zones libres, adjacentes aux zones de collage, limitait le développement des microfissures au niveau des régions de collage. Par ailleurs, lorsque les cavités s’étendent à la surface proximale du premier substrat, en- deçà de la zone plane d’implantation, les zones libres ne sont pas soumises à un effet raidisseur, et peuvent donc se déformer à l’intérieur de la ou des cavités leur faisant face lors de la maturation de défauts de type cloque (« blister» en langue anglaise). La maturation de défauts de type cloque est en effet liée aux espèces implantées (classiquement des espèces gazeuses ionisées) subissant un traitement thermique (par exemple à 500°C pendant plusieurs dizaines de minutes), en absence d’un effet raidisseur. La croissance des défauts de type cloque est bornée par le phénomène d’exfoliation correspondant à leur décapsulation. La présence de cavités autorise une expansion verticale des défauts de type cloque.
La zone plane d’implantation résiste ainsi à une énergie thermique apportée par le traitement thermique appliqué aux premier et second substrats collés, c'est-à-dire que la zone plane d’implantation n’est pas fracturée par le traitement thermique, mais est suffisamment fragilisée (par la présence de microfissures et le cas échéant de cloques) pour être fracturée ultérieurement par une sollicitation mécanique pour démonter les premier et second substrats, par exemple à l’aide de l’insertion d’une lame entre les premier et second substrats ou par pelage.
Selon une caractéristique de l’invention, l’ensemble de cavités est agencé à la surface proximale du premier substrat et/ou à la surface du second substrat de sorte que chaque couple de cavités adjacentes est espacé d’une distance comprise entre :
- un premier seuil, au-delà duquel un collage direct entre les premier et second substrats est autorisé ;
- un second seuil, strictement supérieur au premier seuil, en-deçà duquel une initiation thermique de la fracture de la zone plane d’implantation est interdite après le traitement thermique appliqué aux premier et second substrats collés.
Ainsi, un avantage procuré est d’obtenir :
(i) des zones de collage présentant une superficie suffisante pour autoriser un collage direct entre les premier et second substrats ;
(ii) des zones libres, agencées entre les zones de collage pour interdire une initiation thermique de la fracture de la zone plane d’implantation fragilisée après le traitement thermique appliqué aux premier et second substrats collés.
Selon une caractéristique de l’invention, les premier et second substrats sont destinés à présenter une surface de collage ; et l’ensemble de cavités est agencé à la surface proximale du premier substrat et/ou à la surface du second substrat de manière à occuper entre 50% et 85% de la surface de collage, de préférence entre 60% et 80% de la surface de collage.
Ainsi, un avantage procuré est d’obtenir :
(i) des zones de collage présentant une superficie suffisante pour autoriser un collage direct entre les premier et second substrats ;
(ii) des zones libres, agencées entre les zones de collage pour interdire une initiation thermique de la fracture de la zone plane d’implantation fragilisée après le traitement thermique appliqué aux premier et second substrats collés.
Selon une caractéristique de l’invention :
- l’ensemble de cavités est agencé à la surface proximale du premier substrat de manière à s’étendre en-deçà de la zone plane d’implantation ;
- l’ensemble de cavités est agencé à la surface proximale du premier substrat de sorte que chaque cavité présente au moins une dimension, dans le plan de la surface proximale du premier substrat, inférieure ou égale au double d’un rayon moyen d’exfoliation prédéterminé, de préférence inférieure ou égale au double d’un rayon minimum d’exfoliation prédéterminé.
Ainsi, un avantage procuré est de borner l’expansion latérale des cloques à l’intérieur des cavités afin d’éviter le phénomène d’exfoliation.
Selon une caractéristique de l’invention, l’ensemble de cavités est agencé à la surface du second substrat de sorte que chaque cavité présente au moins une dimension, dans le plan de la surface du second substrat, inférieure ou égale au double d’un rayon moyen d’exfoliation prédéterminé, de préférence inférieure ou égale au double d’un rayon minimum d’exfoliation prédéterminé.
Ainsi, un avantage procuré est de borner l’expansion latérale des cloques à l’intérieur des cavités afin d’éviter le phénomène d’exfoliation.
Selon une caractéristique de l’invention :
- l’ensemble de cavités est agencé : à la surface proximale du premier substrat de manière à s’étendre en-deçà de la zone plane d’implantation, et à la surface du second substrat ;
- l’ensemble de cavités est agencé de sorte que chaque cavité présente au moins une dimension, dans le plan de la surface proximale du premier substrat et dans le plan de la surface du second substrat, inférieure ou égale au double d’un rayon moyen d’exfoliation prédéterminé, de préférence inférieure ou égale au double d’un rayon minimum d’exfoliation prédéterminé.
Ainsi, un avantage procuré est de borner l’expansion latérale des cloques à l’intérieur des cavités afin d’éviter le phénomène d’exfoliation.
Selon une caractéristique de l’invention, l’ensemble de cavités est agencé à la surface proximale du premier substrat de manière à s’étendre au-delà de la zone plane d’implantation.
Ainsi, un avantage procuré est de s’affranchir de la présence de cloques, ce qui permet une plus grande tolérance sur la dimension latérale des cavités dans le plan de la surface proximale du premier substrat. L’ensemble de cavités est agencé pour empêcher la propagation latérale des microfissures et par là-même la fracture de la zone plane d’implantation fragilisée.
Définitions
- Par « substrat », on entend un support physique autoporté, réalisé dans un matériau de base à partir duquel peut être formé un dispositif (ou composant) pour tout type d’applications, notamment électronique, mécanique, optique. Un substrat peut être une « tranche » (également dénommée « plaquette », « wafer» en langue anglaise) qui se présente généralement sous la forme d’un disque issu d’une découpe dans un lingot d’un matériau cristallin.
- Par « zone plane », on entend une planéité dans les tolérances usuelles liées aux conditions expérimentales de fabrication, et non une planéité parfaite au sens mathématique du terme.
- Par « rayon d’exfoliation », on entend un paramètre, noté Rexf0, défini par l’équation :
Figure imgf000012_0001
où « v » désigne le coefficient de Poisson de la couche mince, « E » désigne le module d’Young de la couche mince, « l i> » est la constante de Boltzmann, « T » est la température (en K) à laquelle est soumise la couche mince, « a » est la fraction de dose efficace (en %) des espèces implantées, « D » est la dose implantée (en at./ cm2) des espèces, « o » est la contrainte limite de cisaillement, « e » est l’épaisseur de la couche mince, et « x » est l’opérateur de multiplication. La couche mince est la partie du premier substrat s’étendant entre la zone plane d’implantation et la surface du premier substrat à travers laquelle l’implantation des espèces s’est effectuée (surface proximale à la zone plane d’implantation). L’exfoliation correspond à un détachement partiel (local) de la couche mince au niveau de la zone plane d’implantation. Il est délicat de déterminer de manière théorique le rayon d’exfoliation en raison de grandeurs physiques difficilement quantifiables, notamment la contrainte limite de cisaillement. Le rayon d’exfoliation est spécifique à l’implantation effectuée dans le premier substrat.
- Par « rayon moyen d’exfoliation », on entend une moyenne arithmétique des rayons d’exfoliation obtenus de manière expérimentale.
- Par « prédéterminé », on entend que le rayon moyen d’exfoliation est déterminé avant la conception de l’ensemble de cavités formé à la surface proximale du premier substrat et/ ou à la surface du second substrat.
- Le terme « cavité » désigne une cavité superficielle, ouverte, s’étendant à la surface proximale du premier substrat et/ ou à la surface du second substrat, et pouvant être obtenue par gravure.
- Par « réparti à la surface », on entend une distribution spatiale de l’ensemble de cavités à la surface proximale du premier substrat et/ ou à la surface du second substrat.
- Par « collage direct », on entend un collage (de préférence spontané) issue de la mise en contact direct de deux surfaces, c'est-à-dire en l’absence d’un élément additionnel tel qu’une colle, une cire ou une brasure. L’adhésion provient principalement des forces de van der Waals issues de l’interaction électronique entre les atomes ou les molécules de deux surfaces, des liaisons hydrogène du fait des préparations des surfaces ou des liaisons covalentes établies entre les deux surfaces. Le collage direct est avantageusement exécuté à température et pression ambiantes. Le collage direct peut couvrir un collage par thermocompression ou un collage eutectique selon la nature des deux surfaces mises en contact.
- Par « initiation thermique », on entend une initiation de la fracture de la zone plane d’implantation obtenue par une énergie thermique.
- Par « fracture mécanique », on entend une fracture de la zone plane d’implantation (fragilisée) obtenue par une énergie mécanique.
- Par « autoriser un collage direct », on entend que l’interface de collage (limitée principalement par l’ensemble des surfaces des murets séparant les cavités) possède une énergie d’adhésion suffisante pour coller les premier et second substrats entre eux.
- Par « interdire une initiation thermique », on entend qu’une énergie thermique (par exemple apportée par un traitement thermique appliqué à l’assemblage des premier et second substrats) n’est pas suffisante pour initier une fracture de la zone plane d’implantation qui aurait comme effet de séparer les premier et second substrats.
- Par « matériau de type III-V », on entend un alliage binaire entre des éléments situés respectivement dans la colonne III et dans la colonne V du tableau périodique des éléments. - Par « matériau semi-conducteur », on entend un matériau présentant une conductivité électrique à 300 K comprise entre 103 S/ cm et 103 S/ cm.
- L’expression « occuper un pourcentage de la surface de collage » par l’ensemble de r , cavités peut etre décrite par un taux d occupation derini par la tormule
Figure imgf000014_0001
chaque cavité délimite une ouverture présentant une forme carrée de côté « a », chaque couple de cavités adjacentes étant espacé d’une distance « b » à la surface proximale du premier substrat et/ ou à la surface du second substrat.
- Par « budget thermique », on entend un apport d’énergie de nature thermique, déterminé par le choix d’une valeur de la température du traitement thermique et le choix d’une valeur de la durée du traitement thermique.
- Les valeurs X et Y exprimées à l’aide des expressions « entre X et Y » ou « compris entre X et Y » sont incluses dans la plage de valeurs définie.
- Par « faisant face », on entend qu’un élément A fait face à un élément B lorsque les éléments A et B sont en regard l’un de l’autre suivant la normale à la surface de collage des premier et second substrats.
- Par « s’étendant en-deçà », on entend que les cavités s’étendent en deçà de la zone plane d’implantation lorsque la profondeur des cavités est strictement inférieure à la profondeur d’implantation des espèces implantées.
- Par « s’étendant au-delà », on entend que les cavités s’étendent au-delà de la zone plane d’implantation lorsque la profondeur des cavités est strictement supérieure à la profondeur d’implantation des espèces implantées.
Brève description des dessins
D’autres caractéristiques et avantages apparaîtront dans l’exposé détaillé de différents modes de réalisation de l’invention, l’exposé étant assorti d’exemples et de références aux dessins joints.
Figure 1 est une vue schématique en coupe, illustrant les premier et second substrats avant collage selon un premier mode de réalisation où l’ensemble de cavités est formé à la surface du second substrat.
Figure 2 est une vue schématique en coupe, illustrant le collage direct des premier et second substrats selon le premier mode de réalisation.
Figure 3 est une vue schématique en coupe, illustrant la présence de défauts de type cloque après collage des premier et second substrats selon le premier mode de réalisation, lorsque l’assemblage subit un traitement thermique conduisant à une maturation des défauts. Figure 4 est une vue schématique en coupe, illustrant l’insertion d’une lame à l’interface de collage pour démonter les premier et second substrats selon le premier mode de réalisation.
Figure 5 est un graphique représentant en abscisses la profondeur d’implantation (en pm) et en ordonnées un rayon d’exfoliation (en pm) obtenu expérimentalement.
Figure 6 est une illustration d’une observation microscopique d’arrachements localisés (ou exfoliations) de la surface du premier substrat (i.e. la surface proximale à la zone plane d’implantation), le premier substrat étant soumis à un traitement thermique de fracturation sans effet raidisseur.
Figure 7 est une vue schématique en coupe, illustrant les premier et second substrats avant collage selon un deuxième mode de réalisation où l’ensemble de cavités est formé à la surface proximale du premier substrat.
Figure 8 est une vue schématique en coupe, illustrant les premier et second substrats avant collage selon un troisième mode de réalisation où l’ensemble de cavités est formé à la surface proximale du premier substrat et à la surface du second substrat.
Figure 9 est une vue schématique en coupe, illustrant les premier et second substrats avant collage selon un quatrième mode de réalisation où l’ensemble de cavités est formé à la surface proximale du premier substrat de manière à s’étendre au-delà de la zone plane d’implantation.
Il est à noter que les figures 1 à 4, 7 à 9 décrites ci-avant sont schématiques, et ne sont pas à l’échelle par souci de lisibilité et pour en simplifier leur compréhension. Les coupes sont effectuées suivant la normale à la surface de collage.
Exposé détaillé des modes de réalisation
Les éléments identiques ou assurant la même fonction porteront les mêmes références pour les différents modes de réalisation, par souci de simplification.
Procédé de fabrication
Un objet de l’invention est un procédé de fabrication de substrats 1, 2 démontables, comportant les étapes : a) prévoir :
- un premier substrat 1, comprenant des espèces implantées 10 formant une zone plane d’implantation 100, le premier substrat 1 comprenant une surface S proximale à la zone plane d’implantation 100 ;
- un second substrat 2, comprenant une surface 20 ; b) former un ensemble de cavités 200 à la surface S proximale du premier substrat 1 et/ ou à la surface 20 du second substrat 2 ; c) assembler les premier et second substrats 1, 2 par un collage direct entre la surface S proximale du premier substrat 1 et la surface 20 du second substrat 2 ; d) appliquer un traitement thermique à l’assemblage obtenu à l’issue de l’étape c), selon un budget thermique adapté pour fragiliser la zone plane d’implantation 100 ; l’ensemble de cavités 200 étant agencé lors de l’étape b) de manière à :
- autoriser un collage direct entre les premier et second substrats 1, 2 lors de l’étape c) ;
- interdire une initiation thermique de la fracture de la zone plane d’implantation 100 fragilisée à l’issue de l’étape d).
Etape a)
L’étape a) est illustrée aux figures 1, 7 à 9.
Les espèces implantées 10 sont avantageusement des espèces gazeuses, comportant de préférence des atomes d’hydrogène ionisé et/ ou des atomes d’hélium ionisé. Il est possible d’effectuer une co-implantation entre ces espèces et/ ou avec d’autres espèces gazeuses, ou encore d’effectuer une multi-implantation des mêmes espèces gazeuses.
Le premier substrat 1 prévu lors de l’étape a) est avantageusement réalisé dans un matériau choisi parmi :
- un matériau semi-conducteur, de préférence sélectionné parmi Si, Ge, Si-Ge, SiC, un matériau III-V ;
- le tantalate de lithium LiTaCfo le niobate de lithium LiNbCfo.
A titre d’exemple non limitatif, lorsque le premier substrat 1 est réalisé en silicium, il est possible d’implanter des atomes d’hydrogène ionisé selon les paramètres suivants :
- une énergie comprise entre 120 keV et 200 keV ;
- une dose comprise entre 6.1016 at.crn 2 et 7.1016 at.cm'2.
Comme illustré aux figures 5 et 6, l’étape a) comporte avantageusement une étape préalable consistant à déterminer un rayon moyen d’exfoliation et/ou un rayon minimal d’exfoliation par une analyse statistique d’observations microscopiques, après avoir appliqué au premier substrat 1 (comprenant les espèces implantées 10) un traitement thermique de fracturation de la zone plane d’implantation 100 (par exemple Ih à 500°C lorsque le premier substrat 1 est réalisé en silicium). Ce traitement thermique est appliqué directement au premier substrat 1 pour déterminer le rayon d’exfoliation dans le cas où les cavités 200 sont formées à la surface 20 du second substrat 2. Si les cavités 200 sont formées à la surface proximale S du premier substrat 1, ce traitement thermique sera appliqué au premier substrat 1 après un amincissement sur toute sa surface et sur une épaisseur correspondant à la profondeur des cavités 200.
Le traitement thermique de fracturation de la zone plane d’implantation 100 est exécuté selon un budget thermique similaire au budget thermique de l’étape d). En l’absence d’un effet raidisseur, ce traitement thermique entraîne la formation de cloques 3 et d’arrachements 3’ localisés (exfoliations). Comme illustré à la figure 6, des observations en microscopie optique de la surface S (proximale à la zone plane d’implantation 100) du premier substrat 1 permettent d’observer ces cloques 3 et ces exfoliations 3’, les exfoliations 3’ étant aisément repérables par la présence d’un liseré sombre sur leur contour. Une analyse d’image permet de mesurer la surface de ces exfoliations 3’. Les surfaces ainsi mesurées sont converties en rayon (en considérant les défauts comme circulaires). Les dimensions ainsi extraites, en nombre suffisant pour permettre une analyse statistique (i.e. typiquement une population de plusieurs dizaines d’exfoliations), permettent alors de définir leur taille minimum, moyenne, et maximum. La figure 5 illustre à cet égard le rayon des exfoliations 3’ observées selon ce protocole expérimental pour des premiers substrats 1 de silicium, implantés à une dose fixe, en fonction de l’énergie d’implantation ici traduite en profondeur d’implantation.
Etape b)
L’étape b) est illustrée aux figures 1, 7 à 9.
Selon un premier mode de réalisation illustré à la figure 1, l’ensemble de cavités 200 est formé lors de l’étape b) à la surface 20 du second substrat 2. L’ensemble de cavités 200 est dimensionné et réparti lors de l’étape b) de manière à :
- autoriser un collage direct entre les premier et second substrats 1, 2 lors de l’étape c) ;
- interdire une initiation thermique de la fracture de la zone plane d’implantation 100 fragilisée à l’issue de l’étape d).
Selon un deuxième mode de réalisation illustré à la figure 7, l’ensemble de cavités 200 est formé lors de l’étape b) à la surface S proximale du premier substrat 1 de manière à s’étendre en-deçà de la zone plane d’implantation 100. L’étape b) est exécutée après la formation de la zone plane d’implantation 100. L’ensemble de cavités 200 est dimensionné et réparti lors de l’étape b) de manière à :
- autoriser un collage direct entre les premier et second substrats 1, 2 lors de l’étape c) ;
- interdire une initiation thermique de la fracture de la zone plane d’implantation 100 fragilisée à l’issue de l’étape d).
Selon un troisième mode de réalisation illustré à la figure 8, l’ensemble de cavités 200 est formé lors de l’étape b) à la surface S proximale du premier substrat 1, de manière à s'étendre en-deçà de la zone plane d’implantation 100, et à la surface 20 du second substrat 2. L’étape b) est exécutée après la formation de la zone plane d’implantation 100. L’ensemble de cavités 200 est dimensionné et réparti lors de l’étape b) de manière à :
- autoriser un collage direct entre les premier et second substrats 1, 2 lors de l’étape c) ;
- interdire une initiation thermique de la fracture de la zone plane d’implantation 100 fragilisée à l’issue de l’étape d).
Selon un quatrième mode de réalisation illustré à la figure 9, l’ensemble de cavités 200 est formé lors de l’étape b) à la surface S proximale du premier substrat 1 de manière à s’étendre au-delà de la zone plane d’implantation 100. L’étape b) est exécutée après la formation de la zone plane d’implantation 100. L’ensemble de cavités 200 est espacé lors de l’étape b) de manière à :
- autoriser un collage direct entre les premier et second substrats 1, 2 lors de l’étape c) ;
- interdire une initiation thermique de la fracture de la zone plane d’implantation 100 fragilisée à l’issue de l’étape d).
L’ensemble de cavités 200 est avantageusement agencé lors de l’étape b) de sorte que chaque couple de cavités 200 adjacentes est espacé d’une distance comprise entre :
- un premier seuil, au-delà duquel un collage direct entre les premier et second substrats 1, 2 est autorisé lors de l’étape c) ;
- un second seuil, strictement supérieur au premier seuil, en-deçà duquel une initiation thermique de la fracture de la zone plane d’implantation 100 fragilisée est interdite à l’issue de l’étape d).
Le premier seuil est avantageusement compris entre 500 nm et 3 pm, de préférence compris entre 1 pm et 2 pm. Le second seuil est avantageusement compris entre 5 pm et 200 pm, de préférence compris entre 5 pm et 100 pm, plus préférentiellement compris entre 5 pm et 10 pm.
Les premier et second substrats 1, 2 présentent une surface de collage à l’issue de l’étape c). L’ensemble de cavités 200 est avantageusement agencé lors de l’étape b) de manière à occuper entre 50% et 85% de la surface de collage, de préférence entre 60% et 80% de la surface de collage.
L’ensemble de cavités 200 est avantageusement agencé lors de l’étape b) de sorte que chaque cavité 200 présente au moins une dimension, dans le plan de la surface S proximale du premier substrat 1 et/ou dans le plan de la surface 20 du second substrat 2, inférieure ou égale au double du rayon moyen d’exfoliation prédéterminé, de préférence inférieure ou égale au double du rayon minimum d’exfoliation prédéterminé. Selon le premier mode de réalisation illustré à la figure 1, la dimension latérale des cavités 200 est dans le plan de la surface 20 du second substrat 2. Selon le deuxième mode de réalisation illustré à la figure 7, la dimension latérale des cavités 200 est dans le plan de la surface S proximale du premier substrat 1. Selon le troisième mode de réalisation illustré à la figure 8, la dimension latérale des cavités 200 est dans le plan de la surface S proximale du premier substrat 1 et dans le plan de la surface 20 du second substrat 2. Selon le quatrième mode de réalisation illustré à la figure 9, la dimension latérale des cavités, dans le plan de la surface S proximale du premier substrat 1, n’est pas un paramètre critique en l’absence de cloques 3.
Chaque cavité 200 de l’ensemble occupe la surface S proximale du premier substrat 1 et/ ou la surface 20 du second substrat 2 de manière à délimiter une ouverture présentant une forme avantageusement choisie parmi une forme rectangulaire, carrée, triangulaire ou circulaire. A titre d’exemple non limitatif, chaque cavité 200 peut délimiter une ouverture présentant une forme carrée dont chaque côté est compris entre 10 pm et 30 pm, de préférence compris entre 15 pm et 20 pm. Si le rayon minimum d’exfoliation prédéterminé est de 15 pm, les cavités 200 peuvent avantageusement prendre la forme de carrés avec un côté de 30 pm, de cercles avec un diamètre de 30 pm, ou de lignes avec une largeur de 30 pm.
Les cavités 200 peuvent être obtenues par gravure du second substrat 2. A titre d’exemple non limitatif, le second substrat 2 peut être réalisé dans un matériau semi-conducteur, tel que le silicium.
En présence de cloques 3, l’ensemble de cavités 200 est avantageusement dimensionné de sorte que chaque cavité 200 possède une profondeur, suivant la normale à la surface 20 du second substrat 2 (et/ou suivant la normale à la surface S proximale du premier substrat 1), supérieure à la flèche maximale des cloques 3, notée La valeur de Hmax peut être
Figure imgf000019_0001
approximée selon la théorie de l’élasticité des plaques et des cloques, développée par Timoshenko, par la formule :
„ 3 1— 2
Hm mnarx = - X - 5-XPi XR 16 Ee3 4 où :
- « v » désigne le coefficient de Poisson de la couche mince transférée,
- « E » désigne le module d’Young de la couche mince,
- « e » est l’épaisseur de la couche mince,
- « Pi » est la pression dans une cloque 3 (dépendant de la dose d’implantation),
- « R » est le rayon d’une cloque 3,
- « x » est l’opérateur de multiplication.
La couche mince est la partie du premier substrat 1 s’étendant entre la zone plane d’implantation 100 et la surface S du premier substrat 1 à travers laquelle l’implantation des espèces 10 s’est effectuée (proximale à la zone plane d’implantation 100) lorsque les cavités 200 sont formées à la surface 20 du second substrat 2.
Toutefois, la profondeur de chaque cavité 200 peut être inférieure à la flèche maximale des cloques 3 (i.e. les cloques 3 peuvent ‘toucher le fond des cavités 200’) sans que cela n’affecte la bonne mise en œuvre d’un procédé selon l’invention.
Etape c)
L’étape c) est illustrée à la figure 2.
L’étape c) est avantageusement précédée d’une étape consistant à nettoyer les surfaces à coller des premier et second substrats 1, 2, par exemple pour éviter la contamination des surfaces par des hydrocarbures, des particules ou des éléments métalliques. A titre d’exemple non limitatif, il est possible de nettoyer les surfaces à coller à l’aide d’une solution diluée SCI (mélange de NH4OH et de H2O2) .
L’étape c) est avantageusement précédée d’une étape consistant à activer les surfaces à coller des premier et second substrats 1, 2, par exemple par un traitement plasma ou par pulvérisation par faisceau d’ions (IBS pour « Ion Beam Sputering» en langue anglaise). L’activation des surfaces à coller permet de réduire le premier seuil.
L’étape c) est préférentiellement exécutée dans un milieu à atmosphère contrôlée. A titre d’exemple non limitatif, l’étape c) peut être exécutée sous vide poussé tel qu’un vide secondaire inférieur à 102 mbar.
Etape d)
Le traitement thermique est appliqué à l’assemblage des premier et second substrats 1, 2 obtenu à l’issue de l’étape c). Le traitement thermique est appliqué lors de l’étape d) selon un budget thermique adapté pour fragiliser la zone plane d’implantation 100. Plus précisément, dans les premier, deuxième et troisième modes de réalisation illustrés respectivement aux figures 1, 7 et 8, les espèces implantées 10 génèrent des microfissures ou des cloques 3 en réponse au traitement thermique appliqué lors de l’étape d) qui fragilisent la zone plane d’implantation 100. Les cloques 3 générées lors de l’étape d) s’étendent à l’intérieur de l’ensemble de cavités 200. Une ou plusieurs cloques 3 peuvent s’étendre à l’intérieur d’une cavité 200 de l’ensemble. Le traitement thermique de l’étape d) permet de maturer les défauts implantés, générant des microfissures et des cloques 3 qui vont grossir et par là-même fragiliser la zone plane d’implantation 100.
Comme illustré à la figure 3, des défauts de type cloque 3 apparaissent lors de l’étape d), lorsque l’assemblage est soumis à un traitement thermique. Les zones libres ZL, s’étendant à la surface S du premier substrat 1 (i.e. la surface proximale à la zone plane d’implantation 100), faisant face aux cavités 200, ne sont pas soumises à un effet raidisseur. Les zones libres ZL, non soumises à un effet raidisseur, peuvent alors se déformer à l’intérieur de la ou des cavités 200 leur faisant face, après la maturation de défauts de type cloque 3, de manière à interdire une initiation thermique de la fracture de la zone plane d’implantation 100 fragilisée à l’issue de l’étape d). Ce mécanisme est identique pour les deuxième et troisième modes de réalisation illustrés respectivement aux figures 7 et 8. Les zones libres ZL, s’étendant à la surface S proximale du premier substrat 1, faisant face aux cavités 200, ne sont pas soumises à un effet raidisseur. Les zones libres ZL, non soumises à un effet raidisseur, peuvent alors se déformer à l’intérieur de la ou des cavités 200 leur faisant face, après la maturation de défauts de type cloque 3, de manière à interdire une initiation thermique de la fracture de la zone plane d’implantation 100 fragilisée à l’issue de l’étape d).
Dans le quatrième mode de réalisation illustré à la figure 9, les espèces implantées 10 génèrent uniquement des microfissures au niveau des zones de collage en réponse au traitement thermique appliqué lors de l’étape d) qui fragilisent la zone plane d’implantation 100.
Le budget thermique de l’étape d) est avantageusement adapté pour fracturer la zone plane d’implantation 100, en l’absence de l’ensemble de cavités 200 à la surface S proximale du premier substrat 1 et/ ou à la surface 20 du second substrat 2. Or, dans l’invention, c’est-à- dire en présence d’un tel ensemble de cavités 200 à la surface S proximale du premier substrat et/ou à la surface 20 du second substrat 2, un tel budget thermique de l’étape d) fragilise la zone plane d’implantation 100 mais ne permet pas d’initier thermiquement la fracture de la zone plane d’implantation 100.
A titre d’exemple non limitatif, le budget thermique de l’étape d) peut être défini par :
- une température du traitement thermique comprise entre 200°C et 900°C,
- une durée du traitement thermique comprise entre quelques minutes et quelques dizaines de minutes.
Le budget thermique de l’étape d) dépend notamment du matériau du premier substrat 1 et des conditions d’implantation des espèces implantées 10. Lorsque le premier substrat 1 est réalisé en silicium Si, la température du traitement thermique peut être comprise entre 300°C et 600°C, par exemple de l’ordre de 500°C. Lorsque le premier substrat 1 est réalisé en tantalate de lithium LiTaCL, la température du traitement thermique peut être de l’ordre de 200°C. Lorsque le premier substrat 1 est réalisé en phosphure d’indium InP, la température du traitement thermique peut être de l’ordre de 150°C.
Le traitement thermique de l’étape d) est avantageusement un recuit thermique. Etape e)
Le procédé peut comporter une étape e) consistant à exécuter une fracture mécanique de la zone plane d’implantation 100 fragilisée après l’étape d), de manière à démonter les premier et second substrats 1, 2.
Comme illustré à la figure 4, l’étape e) peut être exécutée en insérant une lame L entre les premier et second substrats 1, 2, à l’interface de collage, depuis un bord de l’assemblage des premier et second substrats 1, 2. A titre de variante, il est possible de prévoir de laminer sur la couche mince une couche de pelage (par exemple réalisée dans un matériau polymère) qui va servir ensuite à peler mécaniquement la couche mince.
Après l’exécution de l’étape e), le premier substrat 1 démonté peut être recyclé et réutilisé. En outre, après l’exécution de l’étape e), la couche mince transférée sur le second substrat 2 peut être soumise à des traitements chimiques et/ ou mécaniques pour recouvrer une surface plane, et obtenir une couche utile à partir de laquelle peut être formé un composant pour tout type d’applications, notamment électronique, mécanique, optique.
Etapes technologiques
Le premier substrat 1 et/ou le second substrat 2 peuvent être soumis à des étapes technologiques, exécutées entre les étapes d) et e), afin de former tout ou partie d’un composant. A titre d'exemples non limitatifs, les étapes technologiques peuvent consister en des étapes d’amincissement, de report de couche, de dépôt de couche, de photolithographie, de gravure etc. Il est à noter que l’amincissement du premier substrat 1 est avantageusement exécuté entre les étapes c) et d). L’assemblage des premier et second substrats 1, 2 peut être solidarisé à un substrat de réception pour la mise en œuvre de certaines étapes technologiques.
Ensemble de fabrication
Un objet de l’invention est un ensemble pour fabriquer des substrats 1, 2 démontables, comportant :
- un premier substrat 1, comprenant des espèces implantées 10 formant une zone plane d’implantation 100, le premier substrat 1 comprenant une surface S proximale à la zone plane d’implantation 100 ;
- un second substrat 2, comprenant une surface 20 ;
- un ensemble de cavités 200, agencé à la surface S proximale du premier substrat 1 et/ ou à la surface 20 du second substrat 2 de manière à : autoriser un collage direct entre la surface S proximale du premier substrat 1 et la surface 20 du second substrat 2 ; interdire une initiation thermique de la fracture de la zone plane d’implantation 100 après un traitement thermique appliqué aux premier et second substrats 1, 2 collés, selon un budget thermique adapté pour fragiliser la zone plane d’implantation 100.
L’ensemble de cavités 200 est avantageusement agencé à la surface S proximale du premier substrat 1 et/ou à la surface 20 du second substrat 2 de sorte que chaque couple de cavités 200 adjacentes est espacé d’une distance comprise entre :
- un premier seuil, au-delà duquel un collage direct entre les premier et second substrats 1, 2 est autorisé ;
- un second seuil, strictement supérieur au premier seuil, en-deçà duquel une initiation thermique de la fracture de la zone plane d’implantation 100 fragilisée est interdite après le traitement thermique appliqué aux premier et second substrats 1, 2 collés.
Les premier et second substrats 1, 2 sont destinés à présenter une surface de collage. L’ensemble de cavités 200 est avantageusement agencé à la surface S proximale du premier substrat 1 et/ou à la surface 20 du second substrat 2 de manière à occuper entre 50% et 85% de la surface de collage, de préférence entre 60% et 80% de la surface de collage.
L’ensemble de cavités 200 est avantageusement agencé de sorte que chaque cavité 200 présente au moins une dimension, dans le plan de la surface S proximale du premier substrat 1 et/ou dans le plan de la surface 20 du second substrat 2, inférieure ou égale au double d’un rayon moyen d’exfoliation prédéterminé, de préférence inférieure ou égale au double d’un rayon minimum d’exfoliation prédéterminé.
Selon le premier mode de réalisation illustré à la figure 1, la dimension latérale des cavités 200 est dans le plan de la surface 20 du second substrat 2. Selon le deuxième mode de réalisation illustré à la figure 7, la dimension latérale des cavités 200 est dans le plan de la surface S proximale du premier substrat 1. Selon le troisième mode de réalisation illustré à la figure 8, la dimension latérale des cavités 200 est dans le plan de la surface S proximale du premier substrat 1 et dans le plan de la surface 20 du second substrat 2. Selon le quatrième mode de réalisation illustré à la figure 9, la dimension latérale des cavités, dans le plan de la surface S proximale du premier substrat 1, n’est pas un paramètre critique en l’absence de cloques 3.
Selon le premier mode de réalisation illustré à la figure 1, l’ensemble de cavités 200 est agencé à la surface 20 du second substrat 2 de sorte que chaque cavité 200 présente au moins une dimension, dans le plan de la surface 20 du second substrat 2, inférieure ou égale au double d’un rayon moyen d’exfoliation prédéterminé, de préférence inférieure ou égale au double d’un rayon minimum d’exfoliation prédéterminé.
Selon le deuxième mode de réalisation illustré à la figure 7 : - l’ensemble de cavités 200 est agencé à la surface S proximale du premier substrat 1 de manière à s’étendre en-deçà de la zone plane d’implantation 100 ;
- l’ensemble de cavités 200 est agencé à la surface S proximale du premier substrat 1 de sorte que chaque cavité 200 présente au moins une dimension, dans le plan de la surface S proximale du premier substrat 1, inférieure ou égale au double d’un rayon moyen d’exfoliation prédéterminé, de préférence inférieure ou égale au double d’un rayon minimum d’exfoliation prédéterminé.
Selon le troisième mode de réalisation illustré à la figure 8 :
- l’ensemble de cavités 200 est agencé : à la surface S proximale du premier substrat 1 de manière à s’étendre en-deçà de la zone plane d’implantation 100, et à la surface 20 du second substrat 2 ;
- l’ensemble de cavités 200 est agencé de sorte que chaque cavité 200 présente au moins une dimension, dans le plan de la surface S proximale du premier substrat 1 et dans le plan de la surface 20 du second substrat 2, inférieure ou égale au double d’un rayon moyen d’exfoliation prédéterminé, de préférence inférieure ou égale au double d’un rayon minimum d’exfoliation prédéterminé.
Selon le quatrième mode de réalisation illustré à la figure 9, l’ensemble de cavités 200 est agencé à la surface S proximale du premier substrat 1 de manière à s’étendre au-delà de la zone plane d’implantation 100.
Les caractéristiques techniques décrites ci-avant (premier et second substrats 1, 2, espèces implantées 10, rayon moyen d’exfoliation, forme des cavités 200) s’appliquent pour cet objet de l’invention.
L’invention ne se limite pas aux modes de réalisation exposés. L’homme du métier est mis à même de considérer leurs combinaisons techniquement opérantes, et de leur substituer des équivalents.

Claims

23 REVENDICATIONS
1. Procédé de fabrication de substrats (1, 2) démontables, comportant les étapes : a) prévoir :
- un premier substrat (1), comprenant des espèces implantées (10) formant une zone plane d’implantation (100), le premier substrat (1) comprenant une surface (S) proximale à la zone plane d’implantation (100) ;
- un second substrat (2), comprenant une surface (20) ; b) former un ensemble de cavités (200) à la surface (S) proximale du premier substrat (1) et/ ou à la surface (20) du second substrat (2) ; c) assembler les premier et second substrats (1, 2) par un collage direct entre la surface (S) proximale du premier substrat (1) et la surface (20) du second substrat (2) ; d) appliquer un traitement thermique à l’assemblage obtenu à l’issue de l’étape c), selon un budget thermique adapté pour fragiliser la zone plane d’implantation (100) ; l’ensemble de cavités (200) étant agencé lors de l’étape b) de manière à :
- autoriser un collage direct entre les premier et second substrats (1, 2) lors de l’étape c) ;
- interdire une initiation thermique de la fracture de la zone plane d’implantation (100) fragilisée à l’issue de l’étape d).
2. Procédé selon la revendication 1, comportant une étape e) consistant à exécuter une fracture mécanique de la zone plane d’implantation (100) fragilisée après l’étape d), de manière à démonter les premier et second substrats (1, 2).
3. Procédé selon la revendication 1 ou 2, dans lequel l’ensemble de cavités (200) est agencé lors de l’étape b) de sorte que chaque couple de cavités (200) adjacentes est espacé d’une distance comprise entre :
- un premier seuil, au-delà duquel un collage direct entre les premier et second substrats (1, 2) est autorisé lors de l’étape c) ;
- un second seuil, strictement supérieur au premier seuil, en-deçà duquel une initiation thermique de la fracture de la zone plane d’implantation (100) fragilisée est interdite à l’issue de l’étape d).
4. Procédé selon la revendication 3, dans lequel le premier seuil est compris entre 500 nm et 3 pm, de préférence compris entre 1 pm et 2 pm.
5. Procédé selon la revendication 3 ou 4, dans lequel le second seuil est compris entre 5 pm et 200 pm, de préférence compris entre 5 pm et 100 pm, plus préférentiellement compris entre 5 pm et 10 pm.
6. Procédé selon l’une des revendications 1 à 5, dans lequel les premier et second substrats (1, 2) présentent une surface de collage à l’issue de l’étape c) ; et l’ensemble de cavités (200) est agencé lors de l’étape b) de manière à occuper entre 50% et 85% de la surface de collage, de préférence entre 60% et 80% de la surface de collage.
7. Procédé selon l’une des revendications 1 à 6, dans lequel :
- l’ensemble de cavités (200) est formé lors de l’étape b) à la surface (S) proximale du premier substrat (1) de manière à s’étendre en-deçà de la zone plane d’implantation (100) ;
- l’ensemble de cavités (200) est agencé lors de l’étape b) de sorte que chaque cavité (200) présente au moins une dimension, dans le plan de la surface (S) proximale du premier substrat (1), inférieure ou égale au double d’un rayon moyen d’exfoliation prédéterminé, de préférence inférieure ou égale au double d’un rayon minimum d’exfoliation prédéterminé.
8. Procédé selon l’une des revendications 1 à 6, dans lequel :
- l’ensemble de cavités (200) est formé lors de l’étape b) à la surface (20) du second substrat (2) ;
- l’ensemble de cavités (200) est agencé lors de l’étape b) de sorte que chaque cavité (200) présente au moins une dimension, dans le plan de la surface (20) du second substrat (2), inférieure ou égale au double d’un rayon moyen d’exfoliation prédéterminé, de préférence inférieure ou égale au double d’un rayon minimum d’exfoliation prédéterminé.
9. Procédé selon l’une des revendications 1 à 6, dans lequel :
- l’ensemble de cavités (200) est formé lors de l’étape b) : à la surface (S) proximale du premier substrat (1) de manière à s’étendre en-deçà de la zone plane d’implantation (100), et à la surface (20) du second substrat (2) ;
- l’ensemble de cavités (200) est agencé lors de l’étape b) de sorte que chaque cavité (200) présente au moins une dimension, dans le plan de la surface (S) proximale du premier substrat (1) et dans le plan de la surface (20) du second substrat (2), inférieure ou égale au double d’un rayon moyen d’exfoliation prédéterminé, de préférence inférieure ou égale au double d’un rayon minimum d’exfoliation prédéterminé.
10. Procédé selon l’une des revendications 1 à 6, dans lequel l’ensemble de cavités (200) est formé lors de l’étape b) à la surface (S) proximale du premier substrat (1) de manière à s’étendre au-delà de la zone plane d’implantation (100).
11. Procédé selon l’une des revendications 1 à 9, dans lequel l’étape a) comporte une étape préalable consistant à déterminer un rayon moyen d’exfoliation et/ ou un rayon minimal d’exfoliation par une analyse statistique d’observations microscopiques, après avoir appliqué au premier substrat (1) un traitement thermique de fracturation de la zone plane d’implantation (100).
12. Ensemble pour fabriquer des substrats (1, 2) démontables, comportant :
- un premier substrat (1), comprenant des espèces implantées (10) formant une zone plane d’implantation (100), le premier substrat (1) comprenant une surface (S) proximale à la zone plane d’implantation (100) ;
- un second substrat (2), comprenant une surface (20) ;
- un ensemble de cavités (200), agencé à la surface (S) proximale du premier substrat (1) et/ ou à la surface (20) du second substrat (2) de manière à : autoriser un collage direct entre la surface (S) proximale du premier substrat (1) et la surface (20) du second substrat (2) ; interdire une initiation thermique de la fracture de la zone plane d’implantation (100), après un traitement thermique appliqué aux premier et second substrats (1, 2) collés, selon un budget thermique adapté pour fragiliser la zone plane d’implantation (100).
13. Ensemble selon la revendication 12, dans lequel l’ensemble de cavités (200) est agencé à la surface (S) proximale du premier substrat (1) et/ ou à la surface (20) du second substrat (2) de sorte que chaque couple de cavités (200) adjacentes est espacé d’une distance comprise entre :
- un premier seuil, au-delà duquel un collage direct entre les premier et second substrats (1, 2) est autorisé ;
- un second seuil, strictement supérieur au premier seuil, en-deçà duquel une initiation thermique de la fracture de la zone plane d’implantation (100) est interdite après le traitement thermique appliqué aux premier et second substrats (1, 2) collés. 26
14. Ensemble selon la revendication 12 ou 13, dans lequel les premier et second substrats (1, 2) sont destinés à présenter une surface de collage ; et l’ensemble de cavités (200) est agencé à la surface (S) proximale du premier substrat (1) et/ou à la surface (20) du second substrat (2) de manière à occuper entre 50% et 85% de la surface de collage, de préférence entre 60% et 80% de la surface de collage.
15. Ensemble selon l’une des revendications 12 à 14, dans lequel :
- l’ensemble de cavités (200) est agencé à la surface (S) proximale du premier substrat (1) de manière à s’étendre en-deçà de la zone plane d’implantation (100) ;
- l’ensemble de cavités (200) est agencé à la surface (S) proximale du premier substrat (1) de sorte que chaque cavité (200) présente au moins une dimension, dans le plan de la surface (S) proximale du premier substrat (1), inférieure ou égale au double d’un rayon moyen d’exfoliation prédéterminé, de préférence inférieure ou égale au double d’un rayon minimum d’exfoliation prédéterminé.
16. Ensemble selon l’une des revendications 12 à 14, dans lequel l’ensemble de cavités (200) est agencé à la surface (20) du second substrat (2) de sorte que chaque cavité (200) présente au moins une dimension, dans le plan de la surface (20) du second substrat (2), inférieure ou égale au double d’un rayon moyen d’exfoliation prédéterminé, de préférence inférieure ou égale au double d’un rayon minimum d’exfoliation prédéterminé.
17. Ensemble selon l’une des revendications 12 à 14, dans lequel :
- l’ensemble de cavités (200) est agencé : à la surface (S) proximale du premier substrat (1) de manière à s’étendre en-deçà de la zone plane d’implantation (100), et à la surface (20) du second substrat (2) ;
- l’ensemble de cavités (200) est agencé de sorte que chaque cavité (200) présente au moins une dimension, dans le plan de la surface (S) proximale du premier substrat (1) et dans le plan de la surface (20) du second substrat (2), inférieure ou égale au double d’un rayon moyen d’exfoliation prédéterminé, de préférence inférieure ou égale au double d’un rayon minimum d’exfoliation prédéterminé.
18. Ensemble selon l’une des revendications 12 à 14, dans lequel l’ensemble de cavités (200) est agencé à la surface (S) proximale du premier substrat (1) de manière à s’étendre au- delà de la zone plane d’implantation (100).
PCT/EP2022/086785 2021-12-24 2022-12-19 Procede de fabrication de substrats demontables WO2023117997A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP22836247.1A EP4453997A1 (fr) 2021-12-24 2022-12-19 Procede de fabrication de substrats demontables

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
FRFR2114488 2021-12-24
FR2114488A FR3131435A1 (fr) 2021-12-24 2021-12-24 Procédé de fabrication de substrats démontables
FRFR2201495 2022-02-21
FR2201495A FR3131432A1 (fr) 2021-12-24 2022-02-21 Procédé de fabrication de substrats démontables

Publications (1)

Publication Number Publication Date
WO2023117997A1 true WO2023117997A1 (fr) 2023-06-29

Family

ID=84819977

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2022/086785 WO2023117997A1 (fr) 2021-12-24 2022-12-19 Procede de fabrication de substrats demontables

Country Status (3)

Country Link
EP (1) EP4453997A1 (fr)
TW (1) TW202341305A (fr)
WO (1) WO2023117997A1 (fr)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5804086A (en) * 1994-01-26 1998-09-08 Commissariat A L'energie Atomique Structure having cavities and process for producing such a structure
US7575988B2 (en) * 2006-07-11 2009-08-18 S.O.I.Tec Silicon On Insulator Technologies Method of fabricating a hybrid substrate
US7927980B2 (en) * 2004-11-29 2011-04-19 Commissariat A L'energie Atomique Method for forming a detachable substrate including implantation and exfoliation
US20210287933A1 (en) * 2020-03-10 2021-09-16 Commissariat A L'energie Atomique Et Aux Energies Alternatives Method for suspending a thin layer on a cavity with a stiffening effect obtained by pressurising the cavity by implanted species
FR3109016A1 (fr) * 2020-04-01 2021-10-08 Soitec Structure demontable et procede de transfert d’une couche mettant en œuvre ladite structure demontable

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5804086A (en) * 1994-01-26 1998-09-08 Commissariat A L'energie Atomique Structure having cavities and process for producing such a structure
US7927980B2 (en) * 2004-11-29 2011-04-19 Commissariat A L'energie Atomique Method for forming a detachable substrate including implantation and exfoliation
US7575988B2 (en) * 2006-07-11 2009-08-18 S.O.I.Tec Silicon On Insulator Technologies Method of fabricating a hybrid substrate
US20210287933A1 (en) * 2020-03-10 2021-09-16 Commissariat A L'energie Atomique Et Aux Energies Alternatives Method for suspending a thin layer on a cavity with a stiffening effect obtained by pressurising the cavity by implanted species
FR3109016A1 (fr) * 2020-04-01 2021-10-08 Soitec Structure demontable et procede de transfert d’une couche mettant en œuvre ladite structure demontable

Also Published As

Publication number Publication date
TW202341305A (zh) 2023-10-16
EP4453997A1 (fr) 2024-10-30

Similar Documents

Publication Publication Date Title
EP1155442B1 (fr) Procede de realisation d'une structure multicouche a contraintes internes controlees
EP3646374B1 (fr) Procédé de transfert d'une couche mince sur un substrat support présentant des coefficients de dilatation thermique différents
FR2797347A1 (fr) Procede de transfert d'une couche mince comportant une etape de surfragililisation
EP1299905A1 (fr) Procede de decoupage d'un bloc de materiau et de formation d'un film mince
EP2842155B1 (fr) Procede de collage dans une atmosphere de gaz presentant un coefficient de joule-thomson negatif
FR2947380A1 (fr) Procede de collage par adhesion moleculaire.
FR2969378A1 (fr) Structure composite tridimensionnelle comportant plusieurs couches de microcomposants en alignement
WO2014060817A1 (fr) Procédé de collage par adhésion moléculaire
EP3960698B1 (fr) Procédé de transfert d'une couche mince sur un substrat receveur comportant des cavités et une région dépourvue de cavités
FR2950733A1 (fr) Procede de planarisation par ultrasons d'un substrat dont une surface a ete liberee par fracture d'une couche enterree fragilisee
WO2023117997A1 (fr) Procede de fabrication de substrats demontables
EP3721470B1 (fr) Procédé de transfert d'une couche utilisant une structure démontable
FR3131432A1 (fr) Procédé de fabrication de substrats démontables
EP4088309B1 (fr) Procede d'assemblage de deux substrats semi-conducteurs
EP4305660A1 (fr) Procede de fabrication d'une structure semi-conductrice a base de carbure de silicium et structure composite intermediaire
EP2676288A1 (fr) Procede de realisation d'un support de substrat
FR3064398A1 (fr) Structure de type semi-conducteur sur isolant, notamment pour un capteur d'image de type face avant, et procede de fabrication d'une telle structure
WO2024184336A1 (fr) Procede de fabrication d'une structure comprenant une pluralite de cavites enterrees
WO2023186595A1 (fr) Procede de transfert d'une couche mince sur un substrat support
FR3093859A1 (fr) Procédé de transfert d’une couche utile sur une substrat support
WO2023151852A1 (fr) Procede de transfert d'une couche mince sur un substrat support
EP3753047B1 (fr) Structure démontable et procédé de démontage utilisant ladite structure
EP4303175A1 (fr) Procede de fabrication d'une structure comprenant une pluralité de membranes surplombant des cavites
FR3093860A1 (fr) Procédé de transfert d’une couche utile sur un substrat support
WO2002076881A1 (fr) Procede de fabrication d'une structure a membrane micro-usinee

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22836247

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18722778

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022836247

Country of ref document: EP

Effective date: 20240724