[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2023112312A1 - Semiconductor device and manufacturing method for same - Google Patents

Semiconductor device and manufacturing method for same Download PDF

Info

Publication number
WO2023112312A1
WO2023112312A1 PCT/JP2021/046752 JP2021046752W WO2023112312A1 WO 2023112312 A1 WO2023112312 A1 WO 2023112312A1 JP 2021046752 W JP2021046752 W JP 2021046752W WO 2023112312 A1 WO2023112312 A1 WO 2023112312A1
Authority
WO
WIPO (PCT)
Prior art keywords
region
insulating film
gate insulating
semiconductor device
drift layer
Prior art date
Application number
PCT/JP2021/046752
Other languages
French (fr)
Japanese (ja)
Inventor
俊明 岩松
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2023567482A priority Critical patent/JPWO2023112312A1/ja
Priority to PCT/JP2021/046752 priority patent/WO2023112312A1/en
Publication of WO2023112312A1 publication Critical patent/WO2023112312A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7802Vertical DMOS transistors, i.e. VDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • H01L29/0852Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
    • H01L29/0873Drain regions
    • H01L29/0878Impurity concentration or distribution
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/518Insulating materials associated therewith the insulating material containing nitrogen, e.g. nitride, oxynitride, nitrogen-doped material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66053Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide
    • H01L29/66068Multistep manufacturing processes of devices having a semiconductor body comprising crystalline silicon carbide the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/12Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/16Semiconductor bodies ; Multistep manufacturing processes therefor characterised by the materials of which they are formed including, apart from doping materials or other impurities, only elements of Group IV of the Periodic Table
    • H01L29/1608Silicon carbide

Definitions

  • the present disclosure relates to a semiconductor device having a high voltage MOSFET and a manufacturing method thereof.
  • MOSFET Metal-Oxide-Semiconductor Field-Effect Transistor
  • IGBT Insulated Gate Bipolar Transistor
  • semiconductor switching elements such as MOSFETs. Since the loss of a semiconductor switching element is determined by the conduction loss of the element and the switching loss of the element, wide bandgap semiconductor materials such as silicon carbide (SiC) or gallium nitride (GaN) are used to reduce these. Development of semiconductor switching elements is underway.
  • SiC silicon carbide
  • GaN gallium nitride
  • the SiC-MOSFET has a higher dielectric breakdown resistance than the Si-MOSFET, so the drift concentration can be set to a high concentration. A large electric field is applied. When a large voltage is applied to the gate insulating film, it causes deterioration and destruction of the gate insulating film, that is, a decrease in the breakdown voltage of the semiconductor switching element.
  • SiC-MOSFET means a MOSFET using SiC
  • Si-MOSFET means a MOSFET using Si.
  • Patent Documents 1 to 4 below disclose conventional semiconductor devices.
  • Patent Document 1 by providing a p-type electric field relaxation region in a JFET (Junction Field-Effect Transistor) region formed in an n-type epitaxial layer in contact with the gate insulating film, the SiC-MOSFET is turned off when the gate insulating film is affected. Structures have been proposed to moderate the electric field intensity.
  • JFET Joint Field-Effect Transistor
  • Patent Document 2 the purpose is to improve the reliability of the gate oxide film during the OFF operation of the MOSFET. A structure that mitigates the
  • Patent Document 3 proposes a structure in which the gate insulating film on the JFET region is thickened in order to suppress the reduction of the drain current and improve the switching characteristics.
  • Patent Literature 4 discloses applying a process technology for introducing an appropriate amount of nitrogen to the interface between the gate insulating film and the drift layer.
  • Patent Document 1 when the MOSFET is turned on, the drain-source current is hindered by the depletion layer spreading from the electric field relaxation region, and the resistance value of the well region (so-called JFET resistance value) increases. .
  • the film thickness of the epitaxial layer which is the drift region, can be made thin and the carrier density in the epitaxial layer can be increased. resistance and channel resistance.
  • Patent Document 1 an attempt is made to suppress the resistance by setting the film thickness of the electric field relaxation layer thin, but the resistance value is not sufficiently low. Therefore, in the SiC-MOSFET disclosed in Patent Document 1, the reliability of the gate insulating film is improved, but the problem is the reduction of the on-resistance.
  • Patent Document 2 discloses setting a negative fixed charge in the gate insulating film. There were cases of damage.
  • Patent Document 3 increasing the thickness of the gate insulating film on the well reduces the drain current flowing through the channel, so only the gate insulating film on the JFET region is thickened.
  • the gate insulating film on the JFET region is thickened in order to reduce the capacitance, and fixed charge is not mentioned. From the viewpoint of the reliability of the gate insulating film, it is effective to reduce the electric field by increasing the thickness of the gate insulating film. It is valid to set
  • Patent Document 4 a moderate amount of nitrogen is introduced into the interface between the gate insulating film on the well of the SiC-MOSFET and the drift layer.
  • the nitrogen concentration is set to a high concentration, there is a problem that the threshold voltage is extremely lowered. Therefore, there is an upper limit to the concentration of nitrogen introduced into the interface between the gate insulating film on the well of the SiC-MOSFET and the drift layer.
  • Document 4 does not refer to the reliability of the gate insulating film in the MOSFET or JFET portion.
  • the present disclosure has been made to solve such problems, and aims to provide a semiconductor device capable of improving reliability and a method of manufacturing the same.
  • a semiconductor device includes a silicon carbide substrate of a first conductivity type, a drift layer of the first conductivity type formed on the silicon carbide substrate, and a surface layer of the drift layer selectively having a a plurality of well regions of the second conductivity type formed in the region, source regions of the first conductivity type selectively formed in the surface layer of each well region, and the well regions adjacent to each other in plan view on the surface layer of the drift layer a low-resistance region formed between the regions and having an impurity concentration higher than that of the drift layer; a gate insulating film formed over the source region, each well region, and the low-resistance region; a gate electrode formed on the film, the gate insulating film including a first region in contact with each well region and a second region in contact with the low resistance region, the density of positive fixed charges in the second region being , higher than the density of positive fixed charges in the first region.
  • FIG. 1 is a cross-sectional view showing an example of the configuration of a semiconductor device according to Embodiment 1;
  • FIG. FIG. 4 is a cross-sectional view showing an example of a manufacturing process of the semiconductor device according to Embodiment 1;
  • FIG. 4 is a cross-sectional view showing an example of a manufacturing process of the semiconductor device according to Embodiment 1;
  • FIG. 4 is a cross-sectional view showing an example of a manufacturing process of the semiconductor device according to Embodiment 1;
  • FIG. 11 is a cross-sectional view showing an example of a manufacturing process of a semiconductor device according to a second embodiment;
  • FIG. 11 is a cross-sectional view showing an example of a manufacturing process of a semiconductor device according to a second embodiment;
  • FIG. 11 is a cross-sectional view showing an example of a manufacturing process of a semiconductor device according to a second embodiment;
  • FIG. 11 is a cross-sectional view showing an example of a manufacturing process of a semiconductor device according to a second embodiment;
  • FIG. 11 is a cross-sectional view showing an example of a manufacturing process of a semiconductor device according to a second embodiment;
  • FIG. 11 is a cross-sectional view showing an example of a manufacturing process of a semiconductor device according to a second embodiment;
  • FIG. 10 is a diagram showing the result of device simulation showing the relationship between the fixed charge of the gate oxide film and the electric field passing through the gate oxide film on the JFET region according to the second embodiment;
  • FIG. 10 is a diagram showing the result of device simulation showing the relationship between the fixed charge of the gate oxide film and the electric field passing through the gate oxide film on the JFET region according to the second embodiment;
  • FIG. 10 is a diagram showing the result of device simulation showing the relationship between the fixed charge of the gate oxide
  • FIG. 10 is a diagram showing the result of device simulation showing the relationship between the fixed charge of the gate oxide film and the current passing through the gate oxide film on the JFET region according to the second embodiment;
  • FIG. 11 is a cross-sectional view showing an example of a manufacturing process of a semiconductor device according to a third embodiment;
  • FIG. 11 is a cross-sectional view showing an example of a manufacturing process of a semiconductor device according to a third embodiment;
  • FIG. 14 is a cross-sectional view showing an example of a manufacturing process of a semiconductor device according to a fourth embodiment;
  • FIG. 14 is a cross-sectional view showing an example of a manufacturing process of a semiconductor device according to a fourth embodiment;
  • FIG. 11 is a cross-sectional view showing an example of a manufacturing process of a semiconductor device according to a fourth embodiment;
  • FIG. 14 is a cross-sectional view showing an example of a manufacturing process of a semiconductor device according to a fourth embodiment;
  • FIG. 14 is a cross-sectional view showing an example of a manufacturing process of a semiconductor device according to a fourth embodiment
  • FIG. 14 is a cross-sectional view showing an example of a manufacturing process of a semiconductor device according to a fourth embodiment
  • FIG. 14 is a cross-sectional view showing an example of a manufacturing process of a semiconductor device according to a fourth embodiment
  • 14 is a flow chart showing an example of a method of manufacturing a module including a semiconductor device according to a fourth embodiment
  • fixed charge means a charge that does not substantially move during operation in the operating temperature range of the semiconductor device according to the present disclosure, and is in a positively or negatively charged state, or in a positively or negatively charged state. It means a substance or the like in an electrically charged state.
  • Fixed charge is, for example, a charge state caused by crystal distortion or defect, a charge state caused by interatomic bond distortion or defect, positively or negatively charged atoms, molecules, fine particles, microcrystals, etc. Impurities, etc.
  • a substance or the like may be in a positively charged state due to electrons being emitted from a donor level to be created, a negatively charged state due to electrons being captured in an acceptor level, or the like.
  • FIG. 1 is a cross-sectional view showing an example of the configuration of a semiconductor device 100 according to Embodiment 1.
  • FIG. The semiconductor device 100 is an n-channel SiC-MOSFET.
  • an n-type drift layer 3 is formed on an n-type (first conductivity type) silicon carbide substrate 1 .
  • a p-type (second conductivity type) well region 6 is selectively formed in the surface layer of the drift layer 3 .
  • n-type source region 5 is formed in the surface layer of the well region 6 , and a p-type well contact region 9 is formed adjacent to the source region 5 .
  • Well contact region 9 is provided to equalize the potentials of source region 5 and well region 6 .
  • low-resistance regions 20 having an impurity concentration higher than that of the drift layer 3 are formed between the well regions 6 adjacent to each other in plan view.
  • a low resistance region 20 is included in the JFET region 4 .
  • the drift layer 3 , the source region 5 , the well region 6 , the well contact region 9 and the low resistance region 20 constitute the semiconductor layer 2 .
  • An insulating gate insulating film 7 is formed from a portion of the source region 5 to the drift layer 3 , and a gate electrode 8 is formed on the gate insulating film 7 .
  • An interlayer insulating film 13 is formed to cover the gate electrode 8 to separate the gate electrode 8 and the source electrode 11 .
  • Interlayer insulating film 13 is not formed on well contact region 9 in order to provide contact hole 31 .
  • a barrier metal 32 is formed on interlayer insulating film 13 and well contact region 9 .
  • a source electrode 11 is formed on the barrier metal 32 .
  • a drain electrode 12 is formed on the back surface of silicon carbide substrate 1 .
  • the nitrogen concentration at the interface between the gate insulating film 7 and the JFET region 4 is higher than the nitrogen concentration at the interface between the gate insulating film 7 and the well region 6 . That is, the fixed charges 40 at the interface between the gate insulating film 7 and the JFET region 4 are denser than the fixed charges 41 at the interface between the gate insulating film 7 and the well region 6 .
  • the characteristics of the MOSFET during ON operation when a gate voltage is applied to the gate electrode are determined by the amount of carriers formed at the interface of the gate insulating film on the well region and their mobility. For example, as disclosed in Patent Document 4, there is a high-density interface state density at the interface between the gate insulating film and the well region in a conventional SiC-MOSFET, and the channel mobility of the MOSFET is extremely low. The resistance increased, and the ON resistance increased accordingly. As a countermeasure against such a problem, in Patent Document 4, characteristics are improved by applying a process technology for introducing an appropriate amount of nitrogen into the interface between the gate insulating film and the well region.
  • the resistance value of the JFET region affects the ON characteristics of the MOSFET, but the amount of fixed charges at the interface between the gate insulating film and the JFET region does not directly affect the MOSFET characteristics.
  • the drift layer 3 can be highly doped and thinned and has a low resistance. It is very effective to reduce the conduction loss of the semiconductor device 100 to reduce the resistance (JFET resistance) of the current path (JFET region 4) and the resistance of the channel portion (channel resistance).
  • the gate insulating film 7 is exposed to a high electric field.
  • the amount of holes flowing from the drift layer 3 due to such an electric field can be reduced, and the reliability of the gate insulating film 7 is ensured.
  • the breakdown electric field increases. Therefore, the drift layer 3 is often designed so that a high electric field is applied, and the electric field strength applied to the gate insulating film 7 increases correspondingly. Therefore, the structure of the semiconductor device 100 according to the first embodiment is effective from the viewpoint of ensuring the reliability of the gate insulating film 7 because the positive fixed charge 40 suppresses the inflow of holes.
  • an n-type low-resistance silicon carbide substrate 1 is prepared (first step), and an n-type drift layer 3 is formed on silicon carbide substrate 1 by epitaxial growth (second step).
  • the drift layer 3 has an n-type impurity concentration of 1 ⁇ 10 13 cm ⁇ 3 to 1 ⁇ 10 18 cm ⁇ 3 and a thickness of 4 ⁇ m to 200 ⁇ m.
  • p-type well regions 6 spaced apart from each other are selectively formed in the surface layer of the drift layer 3 (third step).
  • an n-type source region 5 is selectively formed in the surface layer of the well region 6 (fourth step). Specifically, Al ions are implanted to form a p-type well region 6 and N ions are implanted to form an n-type source region 5 using a resist or oxide film processed by photolithography as a mask. do.
  • the impurity concentration in well region 6 is approximately 1 ⁇ 10 15 cm ⁇ 3 to 1 ⁇ 10 18 cm ⁇ 3 . Further, the implantation depth of Al ions implanted when forming the well region 6 is 0.3 ⁇ m to 2.0 ⁇ m.
  • Source region 5 is formed so that its bottom surface is not deeper than the bottom surface of well region 6 .
  • the impurity concentration in the source region 5 is higher than that in the well region 6 and is about 1 ⁇ 10 17 cm ⁇ 3 to 1 ⁇ 10 21 cm ⁇ 3 .
  • a well contact region 9 is formed in the surface layer of the well region 6 so as to be adjacent to the source region 5 in plan view.
  • the impurity concentration of well contact region 9 is higher than that of well region 6 .
  • An n-type low-resistance region 20 is formed in a region where the well region 6 is not formed, that is, in the surface layer of the drift layer 3 and between the well regions 6 adjacent in plan view (fifth step). Specifically, N ions are implanted to form the n-type low resistance region 20 .
  • the impurity concentration in the low resistance region 20 is approximately 1 ⁇ 10 18 cm ⁇ 3 to 1 ⁇ 10 21 cm ⁇ 3 .
  • the depth of implantation of N ions to form the low resistance region 20 is 0.3 ⁇ m to 1.0 ⁇ m.
  • the low-resistance region 20 has a higher impurity concentration as it approaches the gate insulating film 7 in the depth direction. By forming the low-resistance region 20, the impurity concentration in the vicinity of the outermost surface of the drift layer 3 becomes high, so that the JFET resistance can be lowered.
  • annealing is performed in an atmosphere of an inert gas such as Ar gas using a heat treatment device.
  • Annealing is performed at 1300° C. to 1900° C. for about 30 seconds to 1 hour.
  • the ion-implanted n-type impurities such as N and p-type impurities such as Al are activated.
  • a gate insulating film 7 and a gate electrode 8 are formed (sixth and seventh steps).
  • the gate insulating film 7 is formed by dry thermal oxidation at 1150° C. or higher.
  • the gate insulating film 7 may be formed by a deposition method, or may be formed by performing heat treatment in a nitrogen or ammonia atmosphere after forming the gate insulating film 7 .
  • the gate insulating film 7 may be formed by subjecting the surface of the drift layer 3 to high temperature annealing in a hydrogen atmosphere before forming the gate insulating film 7 .
  • gate insulating film 7 is formed by forming a silicon dioxide film by thermal oxidation in a high temperature oxidizing atmosphere. Alternatively, after forming a deposited silicon dioxide film by CVD (Chemical Vapor Deposition), nitriding is performed in a high-temperature ammonia atmosphere (NH 3 ), nitrous oxide (N 2 O) gas atmosphere, or nitric oxide (NO) gas atmosphere. A gate insulating film 7 is thus formed.
  • CVD Chemical Vapor Deposition
  • positive fixed charges 41 are formed at the interface between the gate insulating film 7 and the well region 6, and positive fixed charges 40 are formed at the interface between the gate insulating film 7 and the JFET region 4. do.
  • the drift layer 3 (low-resistance region 20) of the JFET region 4 is implanted with high-concentration nitrogen before the gate insulating film 7 is formed. More nitrogen is segregated than the amount of nitrogen.
  • a positive fixed charge 40 having a higher concentration than the interface between the gate insulating film 7 and the well region 6 is formed at the interface between the JFET region 4 and the gate insulating film 7 in which nitrogen is segregated at a high concentration.
  • the thickness of the gate insulating film 7 formed on the well region 6 and the thickness of the gate insulating film 7 formed on the JFET region 4 are approximately equal to each other. are equivalent.
  • a high-concentration impurity is implanted into the low-resistance region 20 before forming the gate insulating film 7, an implantation damage layer is formed on the surface of the drift layer 3, and the implantation damage layer is oxidized to increase the speed.
  • the oxidation can thicken the gate insulating film 7 formed on the JFET region 4 .
  • the gate electrode 8 is formed by depositing polysilicon by the CVD method and etching it using a resist processed by photolithography as a mask.
  • Polysilicon may contain impurities such as phosphorus and boron. By containing impurities in the gate electrode 8, the resistance of the gate electrode 8 can be reduced.
  • the source electrode 11 and the drain electrode 12 are formed to complete the high breakdown voltage MOSFET (semiconductor device 100) as shown in FIG. ).
  • the wiring leading out the gate electrode 8 and the source electrode 11 are formed by sputtering or evaporating a metal made of Al, Cu, Ti, Ni, Mo, W, Ta, their nitrides, their laminated films, or their alloy layers. It is deposited by a method and formed by patterning.
  • the drain electrode 12 is formed by sputtering or evaporating a metal film of Ti, Ni, Ag, Au, or the like.
  • the gate insulating film 7 on the well region 6 and the gate insulating film 7 on the JFET region 4 are formed in the same step.
  • the gate insulating film on the JFET region 4 is formed in a plurality of steps so as to be thicker than the gate insulating film on the well region 6 will be described.
  • an n-type low-resistance silicon carbide substrate 1 is prepared, and an n-type drift layer 3 is formed on the silicon carbide substrate 1 by epitaxial growth.
  • the n-type impurity concentration in the drift layer 3 is 1 ⁇ 10 13 cm ⁇ 3 to 1 ⁇ 10 18 cm ⁇ 3 .
  • the thickness of the drift layer 3 is 4 ⁇ m to 200 ⁇ m.
  • p-type well regions 6 spaced apart from each other are formed in the surface layer of the drift layer 3 .
  • an n-type source region 5 is formed in the surface layer of the well region 6 .
  • Al ions are implanted to form a p-type well region 6 and N ions are implanted to form an n-type source region 5 using a resist or oxide film processed by photolithography as a mask. do.
  • the impurity concentration in well region 6 is approximately 1 ⁇ 10 15 cm ⁇ 3 to 1 ⁇ 10 18 cm ⁇ 3 . Further, the implantation depth of Al ions implanted when forming the well region 6 is 0.3 ⁇ m to 2.0 ⁇ m.
  • Source region 5 is formed so that its bottom surface is not deeper than the bottom surface of well region 6 .
  • the impurity concentration in the source region 5 is higher than that in the well region 6 and is about 1 ⁇ 10 17 cm ⁇ 3 to 1 ⁇ 10 21 cm ⁇ 3 .
  • a well contact region 9 is formed in the surface layer of the well region 6 so as to be adjacent to the source region 5 in plan view.
  • the impurity concentration of well contact region 9 is higher than that of well region 6 .
  • An n-type low-resistance region 20 is formed in a region where the well region 6 is not formed, that is, in the surface layer of the drift layer 3 and between the well regions 6 adjacent in plan view. Specifically, N ions are implanted to form the n-type low resistance region 20 .
  • the impurity concentration in the low resistance region 20 is approximately 1 ⁇ 10 18 cm ⁇ 3 to 1 ⁇ 10 21 cm ⁇ 3 .
  • the depth of implantation of N ions to form the low resistance region 20 is 0.3 ⁇ m to 1.0 ⁇ m.
  • annealing is performed in an atmosphere of an inert gas such as Ar gas using a heat treatment device.
  • Annealing is performed at 1300° C. to 1900° C. for about 30 seconds to 1 hour.
  • the ion-implanted n-type impurities such as N and p-type impurities such as Al are activated.
  • a gate insulating film 15 (first gate insulating film) is formed.
  • the gate insulating film 15 is formed by dry thermal oxidation at 1150° C. or higher.
  • the gate insulating film 15 may be formed by a deposition method, or may be formed by performing heat treatment in a nitrogen or ammonia atmosphere after forming the gate insulating film 15 .
  • the gate insulating film 15 may be formed by subjecting the surface of the drift layer 3 to high temperature annealing in a hydrogen atmosphere before forming the gate insulating film 15 .
  • gate insulating film 15 is formed by forming a silicon dioxide film by thermal oxidation in a high temperature oxidizing atmosphere. Alternatively, after forming a silicon dioxide deposition film by CVD, the gate insulating film is formed by nitriding in a high-temperature ammonia atmosphere (NH 3 ), nitrous oxide (N 2 O) gas atmosphere, or nitrogen monoxide (NO) gas atmosphere. 15 is formed. By performing the step of forming the gate insulating film 15, positive fixed charges are formed at the interface between the gate insulating film 15 and the well region 6 and the interface between the gate insulating film 15 and the JFET region 4, respectively.
  • NH 3 high-temperature ammonia atmosphere
  • N 2 O nitrous oxide
  • NO nitrogen monoxide
  • a gate insulating film 16 (second gate insulating film) is formed by dry thermal oxidation at 1150° C. or higher (ninth step).
  • the gate insulating film 16 may be formed by a deposition method. After forming the gate insulating film 16, heat treatment is performed in a nitrogen or ammonia atmosphere. By performing the step of forming the gate insulating film 16, only the gate insulating film on the JFET region 4 can be thickened. In other words, the gate insulating film formed on the JFET region 4 consists of two layers of the gate insulating films 15 and 16 and is thicker than the gate insulating film 16 formed outside the JFET region 4 .
  • Nitrogen is introduced into the interface between the gate insulating film 15 and the JFET region 4 in two nitridation processes, so that the nitrogen concentration is higher than that at the interface between the gate insulating film 16 and the well region 6 . Therefore, the positive fixed charges 40 at the interface between the gate insulating film 15 and the JFET region 4 are denser than the positive fixed charges 41 at the interface between the gate insulating film 16 and the well region 6 .
  • the gate electrode 8 is formed by depositing polysilicon by the CVD method and etching it using a resist processed by photolithography as a mask.
  • Polysilicon may contain impurities such as phosphorus and boron. By containing impurities in the gate electrode 8, the resistance of the gate electrode 8 can be reduced.
  • the source electrode 11 and the drain electrode 12 are formed to complete the high voltage MOSFET (semiconductor device 101) as shown in FIG.
  • the wiring leading out the gate electrode 8 and the source electrode 11 are formed by sputtering or evaporating a metal made of Al, Cu, Ti, Ni, Mo, W, Ta, their nitrides, their laminated films, or their alloy layers. It is deposited by a method and formed by patterning.
  • the drain electrode 12 is formed by sputtering or evaporating a metal film of Ti, Ni, Ag, Au, or the like.
  • FIG. 11 shows the result of device simulation showing the relationship between the fixed charge of the gate oxide film and the electric field passing through the gate oxide film on the JFET region according to the second embodiment.
  • FIG. 12 shows the result of a device simulation showing the relationship between the fixed charge of the gate oxide film and the current passing through the gate oxide film on the JFET region according to the second embodiment.
  • the gate oxide film corresponds to the gate insulating film 15 .
  • the gate oxide film passing current refers to the hole current injected into the gate oxide film.
  • the thickness of the gate oxide film (T ox ) is two types of 40 nm and 60 nm, and the fixed charge at the interface between the gate oxide film and the JFET region is compared with three types of positive, negative, and zero. are doing.
  • the electric field is relaxed by thickening the gate oxide film.
  • FIG. 12 focusing on the hole current that affects the breakdown life of the gate oxide film, it can be seen that positive fixed charge is effective.
  • the amount of hole current injected into the gate oxide film can be set based on the relationship between the thickness of the gate oxide film on the JFET region 4 and the fixed charges. 11 and 12, it is most effective to thicken the gate oxide film and set positive fixed charges.
  • the gate insulating film 7 on the well region 6 and the gate insulating film 7 on the JFET region 4 are formed in the same process, the film thicknesses of both are substantially the same, and the positive fixed charge is generated. are different configurations.
  • the semiconductor device 102 according to the third embodiment an example will be described in which the gate insulating film 7 on the JFET region 4 is formed significantly thicker than the gate insulating film 7 on the well region 6 by accelerated oxidation.
  • an n-type low-resistance silicon carbide substrate 1 is prepared, and an n-type drift layer 3 is formed on the silicon carbide substrate 1 by epitaxial growth.
  • the drift layer 3 has an n-type impurity concentration of 1 ⁇ 10 13 cm ⁇ 3 to 1 ⁇ 10 18 cm ⁇ 3 and a thickness of 4 ⁇ m to 200 ⁇ m.
  • p-type well regions 6 spaced apart from each other are formed in the surface layer of the drift layer 3 .
  • an n-type source region 5 is formed in the surface layer of the well region 6 .
  • Al ions are implanted to form a p-type well region 6 and N ions are implanted to form an n-type source region 5 using a resist or oxide film processed by photolithography as a mask. do.
  • An n-type low-resistance region 20 is formed in a region where the well region 6 is not formed, that is, in the surface layer of the drift layer 3 and between the well regions 6 adjacent in plan view. Specifically, N ions are implanted to form the n-type low resistance region 20 .
  • the impurity concentration in the low resistance region 20 is approximately 1 ⁇ 10 18 cm ⁇ 3 to 1 ⁇ 10 21 cm ⁇ 3 .
  • the depth of implantation of N ions to form the low resistance region 20 is 0.3 ⁇ m to 1.0 ⁇ m.
  • the outermost layer of the drift layer 3 (low-resistance region 20) of the JFET region 4 is doped with a low concentration of about 20 nm and a concentration of about 1 ⁇ 10 19 cm ⁇ 3 to 1 ⁇ 10 21 cm ⁇ 3 .
  • Implant N ions with energy Since the implanted layer has a thickness of about 20 nm, the region into which the N ions are implanted is entirely oxidized to form the gate insulating film 7 in the subsequent step of forming the gate insulating film 7 . With the presence of this injection layer, accelerated oxidation becomes more remarkable, and the gate insulating film 7 on the JFET region 4 can be formed thicker.
  • silicon, oxygen, and fluorine are simultaneously implanted at a concentration of 1 ⁇ 10 19 cm ⁇ 3 to 1 ⁇ 10 cm ⁇ 3 .
  • about 21 cm ⁇ 3 may be implanted.
  • the gate insulating film 7 on the JFET region 4 can be formed thicker.
  • the gate insulating film 7 By forming the gate insulating film 7 so that the concentration is the highest at the outermost surface of the drift layer 3 (that is, the JFET region 4 and the low resistance region 20), N ions at the interface between the gate insulating film 7 and the JFET region 4 are reduced. The concentration becomes high within the JFET region 4 .
  • the impurity profile of the depth method of the JFET region 4 may not be uniform, and low resistance is possible if there is a high concentration region even partially.
  • ⁇ Nitrogen concentration peak position> As described in the first to third embodiments, before forming the gate insulating film, nitrogen is implanted into the JFET region, and the implanted JFET region is oxidized to form the gate insulating film. Nitrogen is segregated at the interface with the region.
  • nitriding treatment or the like is performed to segregate nitrogen at the interface between the gate insulating film and the JFET region.
  • forming a nitrogen concentration peak on the side of the gate insulating film near the interface between the gate insulating film and the JFET region is most effective for forming positive fixed charges.
  • the vicinity of the interface between the gate insulating film and the JFET region includes the interface or the gate insulating film side of about 10 nm from the interface.
  • Embodiment 4 In the first to third embodiments, the setting of positive fixed charge by nitrogen at the interface between the gate insulating film and the JFET region has been described. Embodiment 4 describes impurities other than nitrogen.
  • an n-type low-resistance silicon carbide substrate 1 is prepared, and an n-type drift layer 3 is formed on the silicon carbide substrate 1 by epitaxial growth.
  • the drift layer 3 has an n-type impurity concentration of 1 ⁇ 10 13 cm ⁇ 3 to 1 ⁇ 10 18 cm ⁇ 3 and a thickness of 4 ⁇ m to 200 ⁇ m.
  • an n-type low-resistance silicon carbide substrate 1 is prepared, and an n-type drift layer 3 is formed on silicon carbide substrate 1 by epitaxial growth.
  • the drift layer 3 has an n-type impurity concentration of 1 ⁇ 10 13 cm ⁇ 3 to 1 ⁇ 10 18 cm ⁇ 3 and a thickness of 4 ⁇ m to 200 ⁇ m.
  • p-type well regions 6 spaced apart from each other are formed in the surface layer of the drift layer 3 .
  • an n-type source region 5 is formed in the surface layer of the well region 6 .
  • Al ions are implanted to form a p-type well region 6 and N ions are implanted to form an n-type source region 5 using a resist or oxide film processed by photolithography as a mask. do.
  • An n-type low-resistance region 20 is formed in a region where the well region 6 is not formed, that is, in the surface layer of the drift layer 3 and between the well regions 6 adjacent in plan view. Specifically, N ions are implanted to form the n-type low resistance region 20 .
  • the impurity concentration in the low resistance region 20 is approximately 1 ⁇ 10 18 cm ⁇ 3 to 1 ⁇ 10 21 cm ⁇ 3 .
  • the depth of implantation of N ions to form the low resistance region 20 is 0.3 ⁇ m to 1.0 ⁇ m.
  • annealing is performed in an atmosphere of an inert gas such as Ar gas using a heat treatment device.
  • Annealing is performed at 1300° C. to 1900° C. for about 30 seconds to 1 hour.
  • the ion-implanted n-type impurities such as N and p-type impurities such as Al are activated.
  • a gate insulating film 17 is formed.
  • the gate insulating film 17 is formed by dry thermal oxidation at 1150° C. or higher.
  • the gate insulating film 17 may be formed by a deposition method.
  • Cesium (Cs) is ion-implanted into the formed gate insulating film 17 .
  • Annealing is then performed before the step of forming the semiconductor exposed region, and the cesium, which becomes a region containing fixed charges due to thermal diffusion, is redistributed in a region closer to the semiconductor.
  • the gate insulating film 17 on the JFET region 4 is left, and other insulating films are removed.
  • the gate insulating film 17 may be removed by a wet process using hydrofluoric acid or by dry etching.
  • a gate insulating film 18 is formed by dry thermal oxidation at 1150° C. or higher.
  • the gate insulating film 18 is formed by a deposition method at about 700.degree. C. to 900.degree.
  • heat treatment is performed in a nitrogen or ammonia atmosphere.
  • the gate insulating film 17 contains elements different from those of the gate insulating film 18 .
  • the gate electrode 8 is formed by depositing polysilicon by CVD and etching it using a resist processed by photolithography as a mask.
  • Polysilicon may contain impurities such as phosphorus and boron. By containing impurities in the gate electrode 8, the resistance of the gate electrode 8 can be reduced.
  • cesium, barium, rubidium, and strontium belong to alkali metals or alkaline earth metals, they have a low first ionization energy and tend to become positively charged ions.
  • cesium, barium, rubidium, and strontium have large atomic numbers unlike light elements such as sodium, which easily move even at room temperature, their charges do not move in the normal device operating temperature range.
  • Cesium, barium, rubidium, and strontium are therefore materials that act as positive fixed charges.
  • the gate insulating film 17 is silicon oxide has been described.
  • a laminated film of silicon oxide and a material having a dielectric constant higher than that of silicon oxide may be used.
  • These laminated films may contain cesium, barium, rubidium, or strontium.
  • the gate insulating film 18 is silicon oxide
  • Tantalum oxynitride those having a composite composition of these materials (hafnium oxide aluminate, hafnium oxynitride aluminate, etc.), or those containing elements contained in semiconductor substrates such as silicon (hafnium oxide silicate, hafnium aluminum oxide phosphate silicate) may also be used.
  • a laminated film of silicon oxide and a material having a dielectric constant higher than that of silicon oxide, or a laminated film of silicon oxynitride and a material having a dielectric constant higher than that of silicon oxide may be used.
  • a silicon oxide film or a silicon oxynitride film is used for the film in contact with the silicon carbide substrate 1 among the laminated films. Since the interface between the gate insulating film 18 and the well region 6 serves as the channel of the MOSFET, it is possible to realize a lower resistance by preventing deterioration of carrier mobility.
  • the gate insulating films 17 and 18 are deposited on the JFET region 4 in two or more steps to be thicker than the gate insulating film 18 on the well region 6 has been described. Since the amount of fixed charge formed in the gate insulating film 17 can be controlled by the dose amount of the element introduced into the gate insulating film 17, if the gate insulating film 17 above the JFET region 4 is dosed with a high concentration element, It can have the same thickness as the gate insulating film 18 on the well region 6 . However, in this case, only the gate insulating film 17 is formed on the JFET region 4 without forming the gate insulating film 18 thereon.
  • ⁇ Evaluation of electrical characteristics of semiconductor device 103> After forming MOSFETs on silicon carbide substrate 1, a module is formed. After forming the MOSFET, the electrical characteristics of the MOSFET are evaluated in order to judge whether the element (semiconductor device 103) is good or bad. It is then cut (diced) and divided into individual elements (chips). Non-defective devices are used when assembling the power module. A non-defective element is an element that satisfies expected characteristics when the electrical characteristics of the MOSFET are evaluated.
  • FIG. 20 is a flow chart showing an example of a method for manufacturing a module including the semiconductor device 103 according to the fourth embodiment. Although the method of manufacturing a module including the semiconductor device 103 according to the fourth embodiment will be described here, the method of manufacturing a module including each of the semiconductor devices 100, 101, and 102 described in the first to third embodiments is the same. be.
  • step S ⁇ b>101 MOSFETs are formed on the silicon carbide substrate 1 .
  • step S102 the electrical characteristics of the MOSFET are evaluated.
  • step S103 electrical stress is applied to the interface between the gate insulating film 17 of the MOSFET and the JFET region 4 to form fixed charges.
  • step S104 the wafer on which a plurality of semiconductor devices 103 are formed is diced to take out one semiconductor device 103 (chip).
  • step S105 chips are selected based on the electrical characteristics evaluated in step S102.
  • step S106 a power module is assembled using the chips selected in step S105.
  • a method of applying electrical stress in step S103 will be described.
  • the source electrode 11 and the gate electrode 8 are shorted to 0V.
  • a voltage of 80% of the withstand voltage of the MOSFET is applied to the drain electrode 12 for several seconds to several hours (12th step).
  • the environment in which the voltage is applied may be a room temperature environment or a high temperature environment of about 150.degree.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

The purpose of the present disclosure is to provide a semiconductor device and a manufacturing method therefor, whereby reliability can be enhanced. A semiconductor device according to the present disclosure comprises: a silicon carbide substrate of a first conductivity type; a drift layer of the first conductivity type formed on the silicon carbide substrate; a plurality of well regions of a second conductivity type formed selectively on a surface layer of the drift layer; a source region of the first conductivity type formed selectively on a surface layer of each of the well regions; a low resistance region formed on the surface layer of the drift layer, between the well regions adjacent when viewed planarly, and having an impurity concentration higher than that of the drift layer; a gate insulating film formed throughout on the source region, on the well regions, and on the low resistance region; and a gate electrode formed on the gate insulating film. The gate insulating film includes a first region contacting the well regions, and a second region contacting the low resistance region. The density of a positive fixed charge in the second region is higher than the density of a positive fixed charge in the first region.

Description

半導体装置およびその製造方法Semiconductor device and its manufacturing method
 本開示は、高耐圧MOSFETを有する半導体装置およびその製造方法に関する。 The present disclosure relates to a semiconductor device having a high voltage MOSFET and a manufacturing method thereof.
 電力制御用の半導体装置として、MOSFET(Metal-Oxide-Semiconductor Field-Effect Transistor)または絶縁ゲート型バイポーラトランジスタ(Insulated Gate Bipolar Transistor:IGBT)など、MOS構造のゲート電極を有する半導体装置(以下、「半導体スイッチング素子」ともいう)が広く使用されている。 As a semiconductor device for power control, a semiconductor device with a gate electrode of MOS structure such as MOSFET (Metal-Oxide-Semiconductor Field-Effect Transistor) or Insulated Gate Bipolar Transistor (IGBT) (hereinafter referred to as "semiconductor (also called "switching element") are widely used.
 インバータ等のパワーエレクトロニクス機器の省エネを実現するためには、MOSFETのような半導体スイッチング素子の損失を低減させる必要がある。半導体スイッチング素子の損失は、素子の導通損、および素子のスイッチング損失によって決定されるため、これらを低減させるために炭化珪素(SiC)または窒化ガリウム(GaN)などのワイドバンドギャップ半導体材料を用いた半導体スイッチング素子の開発が進められている。 In order to save energy in power electronics equipment such as inverters, it is necessary to reduce the loss of semiconductor switching elements such as MOSFETs. Since the loss of a semiconductor switching element is determined by the conduction loss of the element and the switching loss of the element, wide bandgap semiconductor materials such as silicon carbide (SiC) or gallium nitride (GaN) are used to reduce these. Development of semiconductor switching elements is underway.
 一方、大電力を制御するためには、半導体スイッチング素子の信頼性の向上と安定化が求められる。特にSiC-MOSFETは、Si-MOSFETに比べて絶縁破壊耐量が大きいためドリフト濃度を高濃度に設定することができるが、MOSFETのオフ動作時にドレインに高電圧が印加されたときにゲート絶縁膜に大きな電界がかかる。ゲート絶縁膜に大きな電圧がかかると、ゲート絶縁膜の劣化および破壊、すなわち半導体スイッチング素子の耐圧低下の原因となる。ここで、SiC-MOSFETとはSiCを使用したMOSFETのことをいい、Si-MOSFETとはSiを使用したMOSFETのことをいう。 On the other hand, in order to control high power, it is necessary to improve the reliability and stability of semiconductor switching elements. In particular, the SiC-MOSFET has a higher dielectric breakdown resistance than the Si-MOSFET, so the drift concentration can be set to a high concentration. A large electric field is applied. When a large voltage is applied to the gate insulating film, it causes deterioration and destruction of the gate insulating film, that is, a decrease in the breakdown voltage of the semiconductor switching element. Here, SiC-MOSFET means a MOSFET using SiC, and Si-MOSFET means a MOSFET using Si.
 従来の半導体装置として、例えば、下記の特許文献1~4が開示されている。 For example, Patent Documents 1 to 4 below disclose conventional semiconductor devices.
 特許文献1では、ゲート絶縁膜に接するn型エピタキシャル層に形成されたJFET(Junction Field-Effect Transistor)領域にp型電界緩和領域を設けることにより、SiC-MOSFETのオフ動作時にゲート絶縁膜にかかる電界強度を緩和する構造が提案されている。 In Patent Document 1, by providing a p-type electric field relaxation region in a JFET (Junction Field-Effect Transistor) region formed in an n-type epitaxial layer in contact with the gate insulating film, the SiC-MOSFET is turned off when the gate insulating film is affected. Structures have been proposed to moderate the electric field intensity.
 特許文献2では、MOSFETのオフ動作時のゲート酸化膜の信頼性向上を目的としており、JFET部上のゲート絶縁膜に負の固定電荷を設定し、JFET部上のゲート絶縁膜にかかる電界強度を緩和する構造が提案されている。 In Patent Document 2, the purpose is to improve the reliability of the gate oxide film during the OFF operation of the MOSFET. A structure that mitigates the
 半導体装置のスイッチング特性を向上させるためには、静電容量を低減することが有効である。特許文献3では、ドレイン電流の低減を抑制し、かつスイッチング特性を向上させるためにJFET領域上のゲート絶縁膜を厚くする構造が提案されている。  In order to improve the switching characteristics of semiconductor devices, it is effective to reduce the capacitance. Patent Document 3 proposes a structure in which the gate insulating film on the JFET region is thickened in order to suppress the reduction of the drain current and improve the switching characteristics.
 SiC―MOS構造では、ゲート絶縁膜と半導体層との界面に高密度の界面準位密度があり、チャネル移動度は著しく低い。従って、SiC―MOS構造では、チャネル抵抗が増大し、それに伴いオン抵抗も大きくなる。特許文献4では、ゲート絶縁膜とドリフト層と界面に適度の窒素を導入するプロセス技術を適用することについて開示されている。 In the SiC-MOS structure, there is a high density of interface states at the interface between the gate insulating film and the semiconductor layer, and the channel mobility is extremely low. Therefore, in the SiC-MOS structure, the channel resistance increases and the on-resistance accordingly increases. Patent Literature 4 discloses applying a process technology for introducing an appropriate amount of nitrogen to the interface between the gate insulating film and the drift layer.
特許第5895750号公報Japanese Patent No. 5895750 特許第5995701号公報Japanese Patent No. 5995701 特開2014-60272号公報JP 2014-60272 A 特開2011-82454号公報JP 2011-82454 A
 特許文献1の構造では、MOSFETのオン動作のときに、ドレイン-ソース間の電流が電界緩和領域から広がった空乏層によって妨げられてしまい、ウェル領域の抵抗値(いわゆるJFET抵抗値)が大きくなる。特にSiC-MOSFETでは、ドリフト領域であるエピタキシャル層の膜厚を薄くし、エピタキシャル層におけるキャリア密度を濃く形成することが可能であるため、ドリフト抵抗は小さく、MOSFET全体のオン抵抗の大部分をJFET抵抗およびチャネル抵抗が占めることになる。特許文献1では、電界緩和層の膜厚を薄く設定して抵抗抑制を試みているものの、十分な低抵抗値ではない。従って、特許文献1で開示されているSiC-MOSFETでは、ゲート絶縁膜の信頼性は向上するが、オン抵抗の低減が課題であった。 In the structure of Patent Document 1, when the MOSFET is turned on, the drain-source current is hindered by the depletion layer spreading from the electric field relaxation region, and the resistance value of the well region (so-called JFET resistance value) increases. . Especially in SiC-MOSFET, the film thickness of the epitaxial layer, which is the drift region, can be made thin and the carrier density in the epitaxial layer can be increased. resistance and channel resistance. In Patent Document 1, an attempt is made to suppress the resistance by setting the film thickness of the electric field relaxation layer thin, but the resistance value is not sufficiently low. Therefore, in the SiC-MOSFET disclosed in Patent Document 1, the reliability of the gate insulating film is improved, but the problem is the reduction of the on-resistance.
 MOSFETがオフ動作のときにゲート電圧として負バイアスが印加されると、JFET部からゲート絶縁膜へ正孔が注入される。この正孔注入によってゲート絶縁膜がダメージを受ける場合がある。特許文献2では、ゲート絶縁膜に負の固定電荷を設定することが開示されているが、負の固定電荷によってJFET部からゲート絶縁膜への正孔の注入量が増大し、ゲート絶縁膜がダメージを受ける場合があった。 When a negative bias is applied as a gate voltage when the MOSFET is off, holes are injected from the JFET section into the gate insulating film. This hole injection may damage the gate insulating film. Patent Document 2 discloses setting a negative fixed charge in the gate insulating film. There were cases of damage.
 特許文献3では、ウェル上のゲート絶縁膜の厚みを大きくするとチャネルを流れるドレイン電流が低減するため、JFET領域上のゲート絶縁膜のみを厚くしている。特許文献3では、容量低減のためにJFET領域上のゲート絶縁膜を厚くしており、固定電荷について言及していない。ゲート絶縁膜の信頼性の観点から、ゲート絶縁膜を厚くすることによる電界緩和は有効であるが、正孔注入を抑制するためには、電界緩和に加えて正の固定電荷をゲート絶縁膜に設定することが有効である。 In Patent Document 3, increasing the thickness of the gate insulating film on the well reduces the drain current flowing through the channel, so only the gate insulating film on the JFET region is thickened. In Patent Document 3, the gate insulating film on the JFET region is thickened in order to reduce the capacitance, and fixed charge is not mentioned. From the viewpoint of the reliability of the gate insulating film, it is effective to reduce the electric field by increasing the thickness of the gate insulating film. It is valid to set
 特許文献4では、SiC―MOSFETのウェル上のゲート絶縁膜とドリフト層との界面に適度の窒素を導入しているが、窒素濃度が高濃度になるに従って正の固定電荷量も増大するため、窒素濃度を高濃度に設定した場合には極端にしきい値電圧が低下するという問題がある。従って、SiC―MOSFETのウェル上のゲート絶縁膜とドリフト層との界面に導入する窒素濃度には上限がある。また、引用文献4では、MOSFETまたはJFET部におけるゲート絶縁膜の信頼性について言及していない。 In Patent Document 4, a moderate amount of nitrogen is introduced into the interface between the gate insulating film on the well of the SiC-MOSFET and the drift layer. When the nitrogen concentration is set to a high concentration, there is a problem that the threshold voltage is extremely lowered. Therefore, there is an upper limit to the concentration of nitrogen introduced into the interface between the gate insulating film on the well of the SiC-MOSFET and the drift layer. In addition, Document 4 does not refer to the reliability of the gate insulating film in the MOSFET or JFET portion.
 上記より、従来の半導体装置では、オン動作時の低抵抗化と、オフ動作時のゲート絶縁膜の耐圧低下の抑制とを両立することができず、信頼性を向上させるためには改善の余地があった。 As described above, in conventional semiconductor devices, it is not possible to achieve both a reduction in resistance during ON operation and a reduction in breakdown voltage of the gate insulating film during OFF operation, and there is room for improvement in order to improve reliability. was there.
 本開示は、このような問題を解決するためになされたものであり、信頼性を向上させることが可能な半導体装置およびその製造方法を提供することを目的とする。 The present disclosure has been made to solve such problems, and aims to provide a semiconductor device capable of improving reliability and a method of manufacturing the same.
 上記の課題を解決するために、本開示による半導体装置は、第1導電型の炭化珪素基板と、炭化珪素基板上に形成された第1導電型のドリフト層と、ドリフト層の表層に選択的に形成された第2導電型の複数のウェル領域と、各ウェル領域の表層に選択的に形成された第1導電型のソース領域と、ドリフト層の表層であって平面視において隣り合う各ウェル領域間に形成され、ドリフト層の不純物濃度よりも高い不純物濃度を有する低抵抗領域と、ソース領域上、各ウェル領域上、および低抵抗領域上に亘って形成されたゲート絶縁膜と、ゲート絶縁膜上に形成されたゲート電極とを備え、ゲート絶縁膜は、各ウェル領域に接する第1領域と、低抵抗領域に接する第2領域とを含み、第2領域における正の固定電荷の密度は、第1領域における正の固定電荷の密度よりも高い。 In order to solve the above problems, a semiconductor device according to the present disclosure includes a silicon carbide substrate of a first conductivity type, a drift layer of the first conductivity type formed on the silicon carbide substrate, and a surface layer of the drift layer selectively having a a plurality of well regions of the second conductivity type formed in the region, source regions of the first conductivity type selectively formed in the surface layer of each well region, and the well regions adjacent to each other in plan view on the surface layer of the drift layer a low-resistance region formed between the regions and having an impurity concentration higher than that of the drift layer; a gate insulating film formed over the source region, each well region, and the low-resistance region; a gate electrode formed on the film, the gate insulating film including a first region in contact with each well region and a second region in contact with the low resistance region, the density of positive fixed charges in the second region being , higher than the density of positive fixed charges in the first region.
 本開示によれば、オン動作時の低抵抗化と、オフ動作時のゲート絶縁膜の耐圧低下の抑制とを両立して半導体装置の信頼性を向上させることが可能となる。 According to the present disclosure, it is possible to improve the reliability of a semiconductor device by achieving both a reduction in resistance during ON operation and suppression of a decrease in withstand voltage of a gate insulating film during OFF operation.
 本開示の目的、特徴、態様、および利点は、以下の詳細な説明と添付図面とによって、より明白となる。 The objects, features, aspects, and advantages of the present disclosure will become more apparent with the following detailed description and accompanying drawings.
実施の形態1による半導体装置の構成の一例を示す断面図である。1 is a cross-sectional view showing an example of the configuration of a semiconductor device according to Embodiment 1; FIG. 実施の形態1による半導体装置の製造工程の一例を示す断面図である。FIG. 4 is a cross-sectional view showing an example of a manufacturing process of the semiconductor device according to Embodiment 1; 実施の形態1による半導体装置の製造工程の一例を示す断面図である。FIG. 4 is a cross-sectional view showing an example of a manufacturing process of the semiconductor device according to Embodiment 1; 実施の形態1による半導体装置の製造工程の一例を示す断面図である。FIG. 4 is a cross-sectional view showing an example of a manufacturing process of the semiconductor device according to Embodiment 1; 実施の形態2による半導体装置の製造工程の一例を示す断面図である。FIG. 11 is a cross-sectional view showing an example of a manufacturing process of a semiconductor device according to a second embodiment; 実施の形態2による半導体装置の製造工程の一例を示す断面図である。FIG. 11 is a cross-sectional view showing an example of a manufacturing process of a semiconductor device according to a second embodiment; 実施の形態2による半導体装置の製造工程の一例を示す断面図である。FIG. 11 is a cross-sectional view showing an example of a manufacturing process of a semiconductor device according to a second embodiment; 実施の形態2による半導体装置の製造工程の一例を示す断面図である。FIG. 11 is a cross-sectional view showing an example of a manufacturing process of a semiconductor device according to a second embodiment; 実施の形態2による半導体装置の製造工程の一例を示す断面図である。FIG. 11 is a cross-sectional view showing an example of a manufacturing process of a semiconductor device according to a second embodiment; 実施の形態2による半導体装置の製造工程の一例を示す断面図である。FIG. 11 is a cross-sectional view showing an example of a manufacturing process of a semiconductor device according to a second embodiment; 実施の形態2によるゲート酸化膜の固定電荷とJFET領域上のゲート酸化膜通過電界との関係を示すデバイスシミュレーションの結果を示す図である。FIG. 10 is a diagram showing the result of device simulation showing the relationship between the fixed charge of the gate oxide film and the electric field passing through the gate oxide film on the JFET region according to the second embodiment; 実施の形態2によるゲート酸化膜の固定電荷とJFET領域上のゲート酸化膜通過電流との関係を示すデバイスシミュレーションの結果を示す図である。FIG. 10 is a diagram showing the result of device simulation showing the relationship between the fixed charge of the gate oxide film and the current passing through the gate oxide film on the JFET region according to the second embodiment; 実施の形態3による半導体装置の製造工程の一例を示す断面図である。FIG. 11 is a cross-sectional view showing an example of a manufacturing process of a semiconductor device according to a third embodiment; 実施の形態3による半導体装置の製造工程の一例を示す断面図である。FIG. 11 is a cross-sectional view showing an example of a manufacturing process of a semiconductor device according to a third embodiment; 実施の形態4による半導体装置の製造工程の一例を示す断面図である。FIG. 14 is a cross-sectional view showing an example of a manufacturing process of a semiconductor device according to a fourth embodiment; 実施の形態4による半導体装置の製造工程の一例を示す断面図である。FIG. 14 is a cross-sectional view showing an example of a manufacturing process of a semiconductor device according to a fourth embodiment; 実施の形態4による半導体装置の製造工程の一例を示す断面図である。FIG. 14 is a cross-sectional view showing an example of a manufacturing process of a semiconductor device according to a fourth embodiment; 実施の形態4による半導体装置の製造工程の一例を示す断面図である。FIG. 14 is a cross-sectional view showing an example of a manufacturing process of a semiconductor device according to a fourth embodiment; 実施の形態4による半導体装置の製造工程の一例を示す断面図である。FIG. 14 is a cross-sectional view showing an example of a manufacturing process of a semiconductor device according to a fourth embodiment; 実施の形態4による半導体装置を含むモジュールの製造方法の一例を示すフローチャートである。14 is a flow chart showing an example of a method of manufacturing a module including a semiconductor device according to a fourth embodiment;
 以下、添付の図面を参照しながら実施形態について説明する。なお、図面は模式的に示されたものであり、異なる図面にそれぞれ示されている画像のサイズおよび位置の相互関係は、必ずしも正確に記載されたものではなく、適宜変更され得る。また、以下の説明では、同様の構成要素には同じ符号を付して図示し、それらの名称および機能も同様のものとする。よって、それらについての詳細な説明を省略する場合がある。 Embodiments will be described below with reference to the attached drawings. It should be noted that the drawings are schematic representations, and the interrelationships between the sizes and positions of the images shown in different drawings are not necessarily described accurately and may be changed as appropriate. Moreover, in the following description, the same components are denoted by the same reference numerals, and their names and functions are also the same. Therefore, detailed descriptions thereof may be omitted.
 また、以下の説明では、「上」、「下」、「側」、「底」、「表」または「裏」などの特定の位置および方向を意味する用語が用いられる場合がある。これらの用語は、実施形態の内容を理解することを容易にするため便宜上用いられているものであり、実際に実施される際の方向とは無関係である。 Also, in the following description, terms such as "upper", "lower", "side", "bottom", "front" or "back" may be used that mean specific positions and directions. These terms are used for convenience to facilitate understanding of the content of the embodiments, and are irrelevant to the direction in which they are actually implemented.
 本開示において、「固定電荷」とは、本開示による半導体装置の実用温度領域での動作において、実質的に移動しないものであって、正または負に帯電した荷電状態、あるいは、正または負に帯電した荷電状態にある物質等を意味する。固定電荷は、例えば、結晶の歪みまたは欠陥等に起因する荷電状態、原子間結合の歪みまたは欠損に起因する荷電状態、正または負に帯電した原子、分子、微粒子、微結晶等、不純物等が作るドナー準位から電子が放出されて正に荷電した状態、アクセプタ準位に電子が捕獲されて負に荷電した状態に起因する状態等にある物質等であってもよい。 In the present disclosure, the term “fixed charge” means a charge that does not substantially move during operation in the operating temperature range of the semiconductor device according to the present disclosure, and is in a positively or negatively charged state, or in a positively or negatively charged state. It means a substance or the like in an electrically charged state. Fixed charge is, for example, a charge state caused by crystal distortion or defect, a charge state caused by interatomic bond distortion or defect, positively or negatively charged atoms, molecules, fine particles, microcrystals, etc. Impurities, etc. A substance or the like may be in a positively charged state due to electrons being emitted from a donor level to be created, a negatively charged state due to electrons being captured in an acceptor level, or the like.
 <実施の形態1>
 <構成>
 図1は、実施の形態1による半導体装置100の構成の一例を示す断面図である。半導体装置100は、nチャネル型のSiC-MOSFETである。
<Embodiment 1>
<Configuration>
FIG. 1 is a cross-sectional view showing an example of the configuration of a semiconductor device 100 according to Embodiment 1. FIG. The semiconductor device 100 is an n-channel SiC-MOSFET.
 図1に示すように、n型(第1導電型)の炭化珪素基板1上には、n型のドリフト層3が形成されている。ドリフト層3の表層には、p型(第2導電型)のウェル領域6が選択的に形成されている。 As shown in FIG. 1, an n-type drift layer 3 is formed on an n-type (first conductivity type) silicon carbide substrate 1 . A p-type (second conductivity type) well region 6 is selectively formed in the surface layer of the drift layer 3 .
 ウェル領域6の表層には、n型のソース領域5が形成されており、ソース領域5に隣接してp型のウェルコンタクト領域9が形成されている。ウェルコンタクト領域9は、ソース領域5とウェル領域6との電位を同一にするために設けられている。ウェルコンタクト領域9を設けることによって、寄生トランジスタの動作を抑えることができる。 An n-type source region 5 is formed in the surface layer of the well region 6 , and a p-type well contact region 9 is formed adjacent to the source region 5 . Well contact region 9 is provided to equalize the potentials of source region 5 and well region 6 . By providing the well contact region 9, the operation of the parasitic transistor can be suppressed.
 ドリフト層3の表層には、平面視において隣り合うウェル領域6間に、ドリフト層3の不純物濃度よりも高い不純物濃度を有する低抵抗領域20が形成されている。低抵抗領域20は、JFET領域4に含まれている。 In the surface layer of the drift layer 3, low-resistance regions 20 having an impurity concentration higher than that of the drift layer 3 are formed between the well regions 6 adjacent to each other in plan view. A low resistance region 20 is included in the JFET region 4 .
 ドリフト層3、ソース領域5、ウェル領域6、ウェルコンタクト領域9、および低抵抗領域20は、半導体層2を構成する。 The drift layer 3 , the source region 5 , the well region 6 , the well contact region 9 and the low resistance region 20 constitute the semiconductor layer 2 .
 ソース領域5上の一部からドリフト層3上に亘って絶縁性のゲート絶縁膜7が形成されており、ゲート絶縁膜7上にゲート電極8が形成されている。ゲート電極8とソース電極11とを分離するために、ゲート電極8を覆うように層間絶縁膜13が形成されている。ウェルコンタクト領域9上には、コンタクトホール31を設けるために層間絶縁膜13が形成されていない。層間絶縁膜13およびウェルコンタクト領域9上には、バリアメタル32が形成されている。バリアメタル32上には、ソース電極11が形成されている。また、炭化珪素基板1の裏面には、ドレイン電極12が形成されている。 An insulating gate insulating film 7 is formed from a portion of the source region 5 to the drift layer 3 , and a gate electrode 8 is formed on the gate insulating film 7 . An interlayer insulating film 13 is formed to cover the gate electrode 8 to separate the gate electrode 8 and the source electrode 11 . Interlayer insulating film 13 is not formed on well contact region 9 in order to provide contact hole 31 . A barrier metal 32 is formed on interlayer insulating film 13 and well contact region 9 . A source electrode 11 is formed on the barrier metal 32 . A drain electrode 12 is formed on the back surface of silicon carbide substrate 1 .
 ゲート絶縁膜7とウェル領域6との界面には窒素があり、その窒素により正の固定電荷41が設けられている。また、ゲート絶縁膜7と後述するJFET領域4との界面にも窒素があり、その窒素により正の固定電荷40が設けられている。固定電荷41は、ゲート絶縁膜7とウェル領域6との界面近傍であってゲート絶縁膜7内に設けられている。固定電荷40は、ゲート絶縁膜7とJFET領域4との界面近傍であってゲート絶縁膜7内に設けられている。ゲート絶縁膜7は、ウェル領域6に接する第1領域と、JFET領域4に接する第2領域とを含んでいる。ゲート絶縁膜7とJFET領域4との界面は、ゲート絶縁膜7と低抵抗領域20との界面と同義である。 There is nitrogen at the interface between the gate insulating film 7 and the well region 6, and positive fixed charges 41 are provided by the nitrogen. Nitrogen is also present at the interface between the gate insulating film 7 and the JFET region 4, which will be described later, and positive fixed charges 40 are provided by the nitrogen. Fixed charge 41 is provided in gate insulating film 7 near the interface between gate insulating film 7 and well region 6 . The fixed charge 40 is provided in the gate insulating film 7 near the interface between the gate insulating film 7 and the JFET region 4 . Gate insulating film 7 includes a first region in contact with well region 6 and a second region in contact with JFET region 4 . The interface between the gate insulating film 7 and the JFET region 4 is synonymous with the interface between the gate insulating film 7 and the low resistance region 20 .
 ゲート絶縁膜7とJFET領域4との界面における窒素濃度は、ゲート絶縁膜7とウェル領域6との界面における窒素濃度よりも高濃度である。すなわち、ゲート絶縁膜7とJFET領域4との界面における固定電荷40は、ゲート絶縁膜7とウェル領域6との界面における固定電荷41よりも高密度である。 The nitrogen concentration at the interface between the gate insulating film 7 and the JFET region 4 is higher than the nitrogen concentration at the interface between the gate insulating film 7 and the well region 6 . That is, the fixed charges 40 at the interface between the gate insulating film 7 and the JFET region 4 are denser than the fixed charges 41 at the interface between the gate insulating film 7 and the well region 6 .
 ゲート電極にゲート電圧を印加したオン動作時のMOSFETの特性は、ウェル領域上のゲート絶縁膜界面に形成されるキャリア量とその移動度とによって決まる。例えば、特許文献4に開示されているように、従来のSiC―MOSFETにおけるゲート絶縁膜とウェル領域との界面には高密度の界面準位密度があり、MOSFETのチャネル移動度が著しく低いためチャネル抵抗は増大し、それに伴ってオン抵抗も大きかった。このような問題の対策として、特許文献4では、ゲート絶縁膜とウェル領域との界面に適度の窒素を導入するプロセス技術を適用することによって特性を改善した。しかし、ゲート絶縁膜とウェル領域との界面に導入する窒素濃度が高濃度になるに従って、正の固定電荷量も増大するため、高濃度に設定した場合には極端にしきい値電圧が低下するといった新たな問題が生じる。従って、ゲート絶縁膜とウェル領域との界面に導入する窒素濃度には上限がある。 The characteristics of the MOSFET during ON operation when a gate voltage is applied to the gate electrode are determined by the amount of carriers formed at the interface of the gate insulating film on the well region and their mobility. For example, as disclosed in Patent Document 4, there is a high-density interface state density at the interface between the gate insulating film and the well region in a conventional SiC-MOSFET, and the channel mobility of the MOSFET is extremely low. The resistance increased, and the ON resistance increased accordingly. As a countermeasure against such a problem, in Patent Document 4, characteristics are improved by applying a process technology for introducing an appropriate amount of nitrogen into the interface between the gate insulating film and the well region. However, as the concentration of nitrogen introduced into the interface between the gate insulating film and the well region increases, the amount of positive fixed charge also increases. A new problem arises. Therefore, there is an upper limit to the concentration of nitrogen introduced into the interface between the gate insulating film and the well region.
 一方、JFET領域の抵抗値はMOSFETのオン特性に影響するが、ゲート絶縁膜とJFET領域との界面における固定電荷の量は、MOSFETの特性には直接影響しない。オフ動作時は、ゲート絶縁膜の信頼性を考慮する必要があり、MOSFETの特性で制約となる窒素濃度よりも、さらに高濃度の窒素をゲート絶縁膜とJFET領域との界面に設けることが有効である。 On the other hand, the resistance value of the JFET region affects the ON characteristics of the MOSFET, but the amount of fixed charges at the interface between the gate insulating film and the JFET region does not directly affect the MOSFET characteristics. During off-operation, it is necessary to consider the reliability of the gate insulating film, and it is effective to provide a higher concentration of nitrogen at the interface between the gate insulating film and the JFET region than the nitrogen concentration that limits the characteristics of the MOSFET. is.
 <半導体装置100の動作>
 半導体装置100の動作について説明する。
<Operation of semiconductor device 100>
Operations of the semiconductor device 100 will be described.
 半導体装置100において、ゲート電極8に正の電圧を印加すると、ウェル領域6におけるゲート絶縁膜7との界面に電流の経路が形成される。この状態でドレイン電極12に正の電圧を印加すると、ドレイン電極12から炭化珪素基板1、ドリフト層3、ウェル領域6、およびソース領域5を経てソース電極11に電流が流れる。 In the semiconductor device 100 , when a positive voltage is applied to the gate electrode 8 , a current path is formed at the interface between the well region 6 and the gate insulating film 7 . When a positive voltage is applied to drain electrode 12 in this state, current flows from drain electrode 12 through silicon carbide substrate 1 , drift layer 3 , well region 6 and source region 5 to source electrode 11 .
 特に、SiCのようなワイドバンドギャップ半導体材料を用いた半導体装置100では、ドリフト層3を高濃度化および薄膜化することが可能であり低抵抗であるため、平面視において隣り合うウェル領域6間の電流経路(JFET領域4)の抵抗(JFET抵抗)と、チャネル部分の抵抗(チャネル抵抗)とを低減させることは、半導体装置100の導通損失を低減させるために非常に有効である。 In particular, in the semiconductor device 100 using a wide bandgap semiconductor material such as SiC, the drift layer 3 can be highly doped and thinned and has a low resistance. It is very effective to reduce the conduction loss of the semiconductor device 100 to reduce the resistance (JFET resistance) of the current path (JFET region 4) and the resistance of the channel portion (channel resistance).
 一方、ゲート電極8に印加する正の電圧を除去する、あるいはゲート電極8に負の電圧を印加すると、ゲート絶縁膜7の界面近傍のウェル領域6が空乏化される。これにより、ドレイン電極12に高電圧を印加してもドレイン電極12-ソース電極11間の電流を遮断することができる。 On the other hand, when the positive voltage applied to the gate electrode 8 is removed or the negative voltage is applied to the gate electrode 8, the well region 6 near the interface of the gate insulating film 7 is depleted. Thereby, even if a high voltage is applied to the drain electrode 12, the current between the drain electrode 12 and the source electrode 11 can be interrupted.
 このとき、ゲート絶縁膜7が高電界にさらされるが、最も電界が集中するゲート絶縁膜7とJFET領域4との界面には正の固定電荷40が形成されているため、ゲート絶縁膜7にかかる電界によるドリフト層3からの正孔の流入量を低減することができ、ゲート絶縁膜7の信頼性が確保される。特に、SiCを半導体材料として用いると絶縁破壊電界が大きくなるため、ドリフト層3に高電界が印加されるように設計することが多く、その分ゲート絶縁膜7にかかる電界強度も大きくなる。従って、本実施の形態1による半導体装置100の構造は、正の固定電荷40で正孔の流入を抑制するため、ゲート絶縁膜7の信頼性を確保する観点で有効である。 At this time, the gate insulating film 7 is exposed to a high electric field. The amount of holes flowing from the drift layer 3 due to such an electric field can be reduced, and the reliability of the gate insulating film 7 is ensured. In particular, when SiC is used as the semiconductor material, the breakdown electric field increases. Therefore, the drift layer 3 is often designed so that a high electric field is applied, and the electric field strength applied to the gate insulating film 7 increases correspondingly. Therefore, the structure of the semiconductor device 100 according to the first embodiment is effective from the viewpoint of ensuring the reliability of the gate insulating film 7 because the positive fixed charge 40 suppresses the inflow of holes.
 <半導体装置100の製造方法>
 半導体装置100の製造方法について、図2~図4を参照しつつ説明する。
<Method for Manufacturing Semiconductor Device 100>
A method of manufacturing the semiconductor device 100 will be described with reference to FIGS.
 図2に示すように、n型で低抵抗の炭化珪素基板1を準備し(第1工程)、エピタキシャル成長によって炭化珪素基板1上にn型のドリフト層3を形成する(第2工程)。本実施の形態1では、ドリフト層3のn型の不純物濃度は1×1013cm-3~1×1018cm-3であり、ドリフト層3の厚さは4μm~200μmとする。 As shown in FIG. 2, an n-type low-resistance silicon carbide substrate 1 is prepared (first step), and an n-type drift layer 3 is formed on silicon carbide substrate 1 by epitaxial growth (second step). In Embodiment 1, the drift layer 3 has an n-type impurity concentration of 1×10 13 cm −3 to 1×10 18 cm −3 and a thickness of 4 μm to 200 μm.
 図3に示すように、ドリフト層3の表層において、互いに離間したp型のウェル領域6を選択的に形成する(第3工程)。そして、ウェル領域6の表層に、n型のソース領域5を選択的に形成する(第4工程)。具体的には、フォトリソグラフィによって加工されたレジストまたは酸化膜等をマスクとして、Alイオンを注入してp型のウェル領域6を形成し、Nイオンを注入してn型のソース領域5を形成する。 As shown in FIG. 3, p-type well regions 6 spaced apart from each other are selectively formed in the surface layer of the drift layer 3 (third step). Then, an n-type source region 5 is selectively formed in the surface layer of the well region 6 (fourth step). Specifically, Al ions are implanted to form a p-type well region 6 and N ions are implanted to form an n-type source region 5 using a resist or oxide film processed by photolithography as a mask. do.
 ウェル領域6における不純物濃度は、1×1015cm-3~1×1018cm-3程度である。また、ウェル領域6を形成する際に注入されるAlイオンの注入深さは、0.3μm~2.0μmである。 The impurity concentration in well region 6 is approximately 1×10 15 cm −3 to 1×10 18 cm −3 . Further, the implantation depth of Al ions implanted when forming the well region 6 is 0.3 μm to 2.0 μm.
 ソース領域5は、その底面がウェル領域6の底面より深くならないように形成される。ソース領域5における不純物濃度は、ウェル領域6の不純物濃度より高く、かつ、1×1017cm-3~1×1021cm-3程度である。 Source region 5 is formed so that its bottom surface is not deeper than the bottom surface of well region 6 . The impurity concentration in the source region 5 is higher than that in the well region 6 and is about 1×10 17 cm −3 to 1×10 21 cm −3 .
 ウェル領域6の表層において、平面視においてソース領域5と隣接するようにウェルコンタクト領域9を形成する。ウェルコンタクト領域9の不純物濃度は、ウェル領域6の不純物濃度よりも高い。 A well contact region 9 is formed in the surface layer of the well region 6 so as to be adjacent to the source region 5 in plan view. The impurity concentration of well contact region 9 is higher than that of well region 6 .
 ウェル領域6が形成されていない領域、すなわちドリフト層3の表層であって平面視において隣り合うウェル領域6間に、n型の低抵抗領域20を形成する(第5工程)。具体的には、Nイオンを注入してn型の低抵抗領域20を形成する。低抵抗領域20における不純物濃度は、1×1018cm-3~1×1021cm-3程度である。また、低抵抗領域20を形成する際に注入されるNイオンの注入深さは、0.3μm~1.0μmである。低抵抗領域20は、深さ方向においてゲート絶縁膜7に近づくほど不純物濃度が高い。低抵抗領域20を形成することによって、ドリフト層3の最表面近傍の不純物濃度が高濃度となるため、JFET抵抗を低くすることができる。 An n-type low-resistance region 20 is formed in a region where the well region 6 is not formed, that is, in the surface layer of the drift layer 3 and between the well regions 6 adjacent in plan view (fifth step). Specifically, N ions are implanted to form the n-type low resistance region 20 . The impurity concentration in the low resistance region 20 is approximately 1×10 18 cm −3 to 1×10 21 cm −3 . The depth of implantation of N ions to form the low resistance region 20 is 0.3 μm to 1.0 μm. The low-resistance region 20 has a higher impurity concentration as it approaches the gate insulating film 7 in the depth direction. By forming the low-resistance region 20, the impurity concentration in the vicinity of the outermost surface of the drift layer 3 becomes high, so that the JFET resistance can be lowered.
 次に、熱処理装置によって、Arガスなどの不活性ガス雰囲気中でアニールを行う。アニールは、1300℃~1900℃で、30秒~1時間程度行う。このアニールを行うことによって、イオン注入されたN等のn型の不純物、および、Al等のp型の不純物を活性化させる。 Next, annealing is performed in an atmosphere of an inert gas such as Ar gas using a heat treatment device. Annealing is performed at 1300° C. to 1900° C. for about 30 seconds to 1 hour. By performing this annealing, the ion-implanted n-type impurities such as N and p-type impurities such as Al are activated.
 次に、図4に示すように、ゲート絶縁膜7およびゲート電極8を形成する(第6工程、第7工程)。ゲート絶縁膜7は、1150℃以上のドライ熱酸化法によって形成する。なお、ゲート絶縁膜7は、堆積法で形成してもよく、ゲート絶縁膜7の形成後に窒素またはアンモニア雰囲気中で熱処理を行うことによって形成してもよい。また、ゲート絶縁膜7は、当該ゲート絶縁膜7の形成前にドリフト層3の表面を水素雰囲気中で高温アニールを行うことによって形成してもよい。 Next, as shown in FIG. 4, a gate insulating film 7 and a gate electrode 8 are formed (sixth and seventh steps). The gate insulating film 7 is formed by dry thermal oxidation at 1150° C. or higher. The gate insulating film 7 may be formed by a deposition method, or may be formed by performing heat treatment in a nitrogen or ammonia atmosphere after forming the gate insulating film 7 . Moreover, the gate insulating film 7 may be formed by subjecting the surface of the drift layer 3 to high temperature annealing in a hydrogen atmosphere before forming the gate insulating film 7 .
 具体的には、高温の酸化雰囲気中で熱酸化による二酸化珪素膜を形成することによってゲート絶縁膜7を形成する。あるいは、CVD(Chemical Vapor Deposition)による二酸化珪素堆積膜の形成後に、高温のアンモニア雰囲気(NH)、亜酸化窒素(NO)ガス雰囲気、または一酸化窒素(NO)ガス雰囲気中で窒化することによってゲート絶縁膜7を形成する。 Specifically, gate insulating film 7 is formed by forming a silicon dioxide film by thermal oxidation in a high temperature oxidizing atmosphere. Alternatively, after forming a deposited silicon dioxide film by CVD (Chemical Vapor Deposition), nitriding is performed in a high-temperature ammonia atmosphere (NH 3 ), nitrous oxide (N 2 O) gas atmosphere, or nitric oxide (NO) gas atmosphere. A gate insulating film 7 is thus formed.
 ゲート絶縁膜7を形成する工程において、ゲート絶縁膜7とウェル領域6との界面に正の固定電荷41を形成し、ゲート絶縁膜7とJFET領域4との界面に正の固定電荷40を形成する。なお、JFET領域4のドリフト層3(低抵抗領域20)には、ゲート絶縁膜7を形成する前に高濃度の窒素が注入されているため、ゲート絶縁膜7とウェル領域6との界面の窒素量よりも多くの窒素が偏析される。高濃度に窒素が偏析したゲート絶縁膜7とJFET領域4との界面には、ゲート絶縁膜7とウェル領域6との界面よりも高濃度の正の固定電荷40が形成される。 In the step of forming the gate insulating film 7, positive fixed charges 41 are formed at the interface between the gate insulating film 7 and the well region 6, and positive fixed charges 40 are formed at the interface between the gate insulating film 7 and the JFET region 4. do. Note that the drift layer 3 (low-resistance region 20) of the JFET region 4 is implanted with high-concentration nitrogen before the gate insulating film 7 is formed. More nitrogen is segregated than the amount of nitrogen. A positive fixed charge 40 having a higher concentration than the interface between the gate insulating film 7 and the well region 6 is formed at the interface between the JFET region 4 and the gate insulating film 7 in which nitrogen is segregated at a high concentration.
 ゲート絶縁膜7は同一の酸化工程で形成されるため、ウェル領域6上に形成されるゲート絶縁膜7の膜厚とJFET領域4上に形成されるゲート絶縁膜7の膜厚とは、ほぼ同等である。ただし、ゲート絶縁膜7を形成する前に低抵抗領域20に高濃度の不純物を注入した場合は、ドリフト層3の表層に注入ダメージ層が形成され、当該注入ダメージ層を酸化することによる増速酸化によって、JFET領域4上に形成されるゲート絶縁膜7を厚くすることができる。 Since the gate insulating film 7 is formed by the same oxidation process, the thickness of the gate insulating film 7 formed on the well region 6 and the thickness of the gate insulating film 7 formed on the JFET region 4 are approximately equal to each other. are equivalent. However, if a high-concentration impurity is implanted into the low-resistance region 20 before forming the gate insulating film 7, an implantation damage layer is formed on the surface of the drift layer 3, and the implantation damage layer is oxidized to increase the speed. The oxidation can thicken the gate insulating film 7 formed on the JFET region 4 .
 ゲート電極8は、ポリシリコンをCVD法によって堆積し、フォトリソグラフィによって加工されたレジストをマスクとしてエッチングを行って形成する。ポリシリコンには、燐や硼素のような不純物が含まれていてもよい。ゲート電極8に不純物が含まれることによって、ゲート電極8の低抵抗化を実現することができる。 The gate electrode 8 is formed by depositing polysilicon by the CVD method and etching it using a resist processed by photolithography as a mask. Polysilicon may contain impurities such as phosphorus and boron. By containing impurities in the gate electrode 8, the resistance of the gate electrode 8 can be reduced.
 最後に、層間絶縁膜13を形成した後に、ソース電極11およびドレイン電極12を形成することによって、図1に示すような高耐圧MOSFET(半導体装置100)が完成する(第10工程、第11工程)。 Finally, after forming the interlayer insulating film 13, the source electrode 11 and the drain electrode 12 are formed to complete the high breakdown voltage MOSFET (semiconductor device 100) as shown in FIG. ).
 ゲート電極8を取り出す配線と、ソース電極11とは、Al、Cu、Ti、Ni、Mo、W、Ta、それらの窒化物、それらの積層膜、それらの合金層からなる金属をスパッタリング法または蒸着法によって堆積し、パターニングを行うことによって形成する。ドレイン電極12は、Ti、Ni、Ag、Auなどの金属膜をスパッタ法または蒸着法によって形成する。 The wiring leading out the gate electrode 8 and the source electrode 11 are formed by sputtering or evaporating a metal made of Al, Cu, Ti, Ni, Mo, W, Ta, their nitrides, their laminated films, or their alloy layers. It is deposited by a method and formed by patterning. The drain electrode 12 is formed by sputtering or evaporating a metal film of Ti, Ni, Ag, Au, or the like.
 <実施の形態2>
 実施の形態1では、半導体装置100において、ウェル領域6上のゲート絶縁膜7と、JFET領域4上のゲート絶縁膜7は同一工程で形成した。実施の形態2では、JFET領域4上のゲート絶縁膜を複数工程で形成し、ウェル領域6上のゲート絶縁膜よりも厚くなるように形成する例について説明する。
<Embodiment 2>
In the semiconductor device 100 according to the first embodiment, the gate insulating film 7 on the well region 6 and the gate insulating film 7 on the JFET region 4 are formed in the same step. In the second embodiment, an example in which the gate insulating film on the JFET region 4 is formed in a plurality of steps so as to be thicker than the gate insulating film on the well region 6 will be described.
 <半導体装置101の製造方法>
 実施の形態2による半導体装置101の製造方法について、図5~図10を参照しつつ説明する。
<Method for Manufacturing Semiconductor Device 101>
A method of manufacturing the semiconductor device 101 according to the second embodiment will be described with reference to FIGS. 5 to 10. FIG.
 図5に示すように、n型で低抵抗の炭化珪素基板1を準備し、炭化珪素基板1上にエピタキシャル成長によってn型のドリフト層3を形成する。本実施の形態2では、ドリフト層3におけるn型の不純物濃度は、1×1013cm-3~1×1018cm-3である。また、ドリフト層3の厚さは、4μm~200μmである。 As shown in FIG. 5, an n-type low-resistance silicon carbide substrate 1 is prepared, and an n-type drift layer 3 is formed on the silicon carbide substrate 1 by epitaxial growth. In Embodiment 2, the n-type impurity concentration in the drift layer 3 is 1×10 13 cm −3 to 1×10 18 cm −3 . Also, the thickness of the drift layer 3 is 4 μm to 200 μm.
 図6に示すように、ドリフト層3の表層において、互いに離間したp型のウェル領域6を形成する。そして、ウェル領域6の表層に、n型のソース領域5を形成する。具体的には、フォトリソグラフィによって加工されたレジストまたは酸化膜等をマスクとして、Alイオンを注入してp型のウェル領域6を形成し、Nイオンを注入してn型のソース領域5を形成する。 As shown in FIG. 6, p-type well regions 6 spaced apart from each other are formed in the surface layer of the drift layer 3 . Then, an n-type source region 5 is formed in the surface layer of the well region 6 . Specifically, Al ions are implanted to form a p-type well region 6 and N ions are implanted to form an n-type source region 5 using a resist or oxide film processed by photolithography as a mask. do.
 ウェル領域6における不純物濃度は、1×1015cm-3~1×1018cm-3程度である。また、ウェル領域6を形成する際に注入されるAlイオンの注入深さは、0.3μm~2.0μmである。 The impurity concentration in well region 6 is approximately 1×10 15 cm −3 to 1×10 18 cm −3 . Further, the implantation depth of Al ions implanted when forming the well region 6 is 0.3 μm to 2.0 μm.
 ソース領域5は、その底面がウェル領域6の底面より深くならないように形成される。ソース領域5における不純物濃度は、ウェル領域6の不純物濃度より高く、かつ、1×1017cm-3~1×1021cm-3程度である。 Source region 5 is formed so that its bottom surface is not deeper than the bottom surface of well region 6 . The impurity concentration in the source region 5 is higher than that in the well region 6 and is about 1×10 17 cm −3 to 1×10 21 cm −3 .
 ウェル領域6の表層において、平面視においてソース領域5と隣接するようにウェルコンタクト領域9を形成する。ウェルコンタクト領域9の不純物濃度は、ウェル領域6の不純物濃度よりも高い。 A well contact region 9 is formed in the surface layer of the well region 6 so as to be adjacent to the source region 5 in plan view. The impurity concentration of well contact region 9 is higher than that of well region 6 .
 ウェル領域6が形成されていない領域、すなわちドリフト層3の表層であって平面視において隣り合うウェル領域6間に、n型の低抵抗領域20を形成する。具体的には、Nイオンを注入してn型の低抵抗領域20を形成する。低抵抗領域20における不純物濃度は、1×1018cm-3~1×1021cm-3程度である。また、低抵抗領域20を形成する際に注入されるNイオンの注入深さは、0.3μm~1.0μmである。低抵抗領域20を形成することによって、ドリフト層3の最表面近傍の不純物濃度が高濃度となるため、JFET抵抗を低くすることができる。 An n-type low-resistance region 20 is formed in a region where the well region 6 is not formed, that is, in the surface layer of the drift layer 3 and between the well regions 6 adjacent in plan view. Specifically, N ions are implanted to form the n-type low resistance region 20 . The impurity concentration in the low resistance region 20 is approximately 1×10 18 cm −3 to 1×10 21 cm −3 . The depth of implantation of N ions to form the low resistance region 20 is 0.3 μm to 1.0 μm. By forming the low-resistance region 20, the impurity concentration in the vicinity of the outermost surface of the drift layer 3 becomes high, so that the JFET resistance can be lowered.
 次に、熱処理装置によって、Arガスなどの不活性ガス雰囲気中でアニールを行う。アニールは、1300℃~1900℃で、30秒~1時間程度行う。このアニールを行うことによって、イオン注入されたN等のn型の不純物、および、Al等のp型の不純物を活性化させる。 Next, annealing is performed in an atmosphere of an inert gas such as Ar gas using a heat treatment device. Annealing is performed at 1300° C. to 1900° C. for about 30 seconds to 1 hour. By performing this annealing, the ion-implanted n-type impurities such as N and p-type impurities such as Al are activated.
 次に、図7に示すように、ゲート絶縁膜15(第1ゲート絶縁膜)を形成する。ゲート絶縁膜15は、1150℃以上のドライ熱酸化法によって形成する。なお、ゲート絶縁膜15は、堆積法で形成してもよく、ゲート絶縁膜15の形成後に窒素またはアンモニア雰囲気中で熱処理を行うことによって形成してもよい。また、ゲート絶縁膜15は、当該ゲート絶縁膜15の形成前にドリフト層3の表面を水素雰囲気中で高温アニールを行うことによって形成してもよい。 Next, as shown in FIG. 7, a gate insulating film 15 (first gate insulating film) is formed. The gate insulating film 15 is formed by dry thermal oxidation at 1150° C. or higher. The gate insulating film 15 may be formed by a deposition method, or may be formed by performing heat treatment in a nitrogen or ammonia atmosphere after forming the gate insulating film 15 . Also, the gate insulating film 15 may be formed by subjecting the surface of the drift layer 3 to high temperature annealing in a hydrogen atmosphere before forming the gate insulating film 15 .
 具体的には、高温の酸化雰囲気中で熱酸化による二酸化珪素膜を形成することによってゲート絶縁膜15を形成する。あるいは、CVDによる二酸化珪素堆積膜の形成後に、高温のアンモニア雰囲気(NH)、亜酸化窒素(NO)ガス雰囲気、または一酸化窒素(NO)ガス雰囲気中で窒化することによってゲート絶縁膜15を形成する。ゲート絶縁膜15を形成する工程を行うことによって、ゲート絶縁膜15とウェル領域6との界面、およびゲート絶縁膜15とJFET領域4との界面のそれぞれに、正の固定電荷が形成される。 Specifically, gate insulating film 15 is formed by forming a silicon dioxide film by thermal oxidation in a high temperature oxidizing atmosphere. Alternatively, after forming a silicon dioxide deposition film by CVD, the gate insulating film is formed by nitriding in a high-temperature ammonia atmosphere (NH 3 ), nitrous oxide (N 2 O) gas atmosphere, or nitrogen monoxide (NO) gas atmosphere. 15 is formed. By performing the step of forming the gate insulating film 15, positive fixed charges are formed at the interface between the gate insulating film 15 and the well region 6 and the interface between the gate insulating film 15 and the JFET region 4, respectively.
 その後、フォトリソグラフィによって加工されたレジストまたは酸化膜等をマスクとして、JFET領域4上のゲート絶縁膜15のみを残し、その他のゲート絶縁膜15を取り除く(第8工程)。ゲート絶縁膜15の除去は、フッ酸を用いたウエットプロセスでもよく、ドライエッチングでもよい。 After that, using a resist or oxide film processed by photolithography as a mask, only the gate insulating film 15 on the JFET region 4 is left, and the other gate insulating films 15 are removed (8th step). A wet process using hydrofluoric acid or dry etching may be used to remove the gate insulating film 15 .
 次に、図8に示すように、1150℃以上のドライ熱酸化法によってゲート絶縁膜16(第2ゲート絶縁膜)を形成する(第9工程)。なお、ゲート絶縁膜16は、堆積法で形成してもよい。ゲート絶縁膜16の形成後、窒素またはアンモニア雰囲気中で熱処理を行う。ゲート絶縁膜16を形成する工程を行うことによって、JFET領域4上のゲート絶縁膜のみを厚くすることができる。すなわち、JFET領域4上に形成されるゲート絶縁膜は、ゲート絶縁膜15,16の2層となり、JFET領域4上以外に形成されたゲート絶縁膜16と比較して厚くなる。 Next, as shown in FIG. 8, a gate insulating film 16 (second gate insulating film) is formed by dry thermal oxidation at 1150° C. or higher (ninth step). Note that the gate insulating film 16 may be formed by a deposition method. After forming the gate insulating film 16, heat treatment is performed in a nitrogen or ammonia atmosphere. By performing the step of forming the gate insulating film 16, only the gate insulating film on the JFET region 4 can be thickened. In other words, the gate insulating film formed on the JFET region 4 consists of two layers of the gate insulating films 15 and 16 and is thicker than the gate insulating film 16 formed outside the JFET region 4 .
 ゲート絶縁膜15とJFET領域4との界面には、2回の窒化工程で窒素が導入されるため、ゲート絶縁膜16とウェル領域6との界面における窒素濃度よりも高濃度となる。従って、ゲート絶縁膜15とJFET領域4との界面における正の固定電荷40は、ゲート絶縁膜16とウェル領域6との界面における正の固定電荷41よりも高密度となる。 Nitrogen is introduced into the interface between the gate insulating film 15 and the JFET region 4 in two nitridation processes, so that the nitrogen concentration is higher than that at the interface between the gate insulating film 16 and the well region 6 . Therefore, the positive fixed charges 40 at the interface between the gate insulating film 15 and the JFET region 4 are denser than the positive fixed charges 41 at the interface between the gate insulating film 16 and the well region 6 .
 以後の工程は、実施の形態1と同様である。図9に示すように、ゲート電極8は、ポリシリコンをCVD法によって堆積し、フォトリソグラフィによって加工されたレジストをマスクとしてエッチングを行って形成する。ポリシリコンには、燐や硼素のような不純物が含まれていてもよい。ゲート電極8に不純物が含まれることによって、ゲート電極8の低抵抗化を実現することができる。 The subsequent steps are the same as in the first embodiment. As shown in FIG. 9, the gate electrode 8 is formed by depositing polysilicon by the CVD method and etching it using a resist processed by photolithography as a mask. Polysilicon may contain impurities such as phosphorus and boron. By containing impurities in the gate electrode 8, the resistance of the gate electrode 8 can be reduced.
 最後に、層間絶縁膜13を形成した後に、ソース電極11およびドレイン電極12を形成することによって、図10に示すような高耐圧MOSFET(半導体装置101)が完成する。 Finally, after forming the interlayer insulating film 13, the source electrode 11 and the drain electrode 12 are formed to complete the high voltage MOSFET (semiconductor device 101) as shown in FIG.
 ゲート電極8を取り出す配線と、ソース電極11とは、Al、Cu、Ti、Ni、Mo、W、Ta、それらの窒化物、それらの積層膜、それらの合金層からなる金属をスパッタリング法または蒸着法によって堆積し、パターニングを行うことによって形成する。ドレイン電極12は、Ti、Ni、Ag、Auなどの金属膜をスパッタ法または蒸着法によって形成する。 The wiring leading out the gate electrode 8 and the source electrode 11 are formed by sputtering or evaporating a metal made of Al, Cu, Ti, Ni, Mo, W, Ta, their nitrides, their laminated films, or their alloy layers. It is deposited by a method and formed by patterning. The drain electrode 12 is formed by sputtering or evaporating a metal film of Ti, Ni, Ag, Au, or the like.
 <ゲート酸化膜に注入される正孔電流>
 図11は、実施の形態2によるゲート酸化膜の固定電荷とJFET領域上のゲート酸化膜通過電界との関係を示すデバイスシミュレーションの結果である。また、図12は、実施の形態2によるゲート酸化膜の固定電荷とJFET領域上のゲート酸化膜通過電流との関係を示すデバイスシミュレーションの結果である。ここで、ゲート酸化膜は、ゲート絶縁膜15に相当する。また、ゲート酸化膜通過電流とは、ゲート酸化膜に注入される正孔電流のことをいう。
<Hole Current Injected into Gate Oxide Film>
FIG. 11 shows the result of device simulation showing the relationship between the fixed charge of the gate oxide film and the electric field passing through the gate oxide film on the JFET region according to the second embodiment. FIG. 12 shows the result of a device simulation showing the relationship between the fixed charge of the gate oxide film and the current passing through the gate oxide film on the JFET region according to the second embodiment. Here, the gate oxide film corresponds to the gate insulating film 15 . Further, the gate oxide film passing current refers to the hole current injected into the gate oxide film.
 ゲート酸化膜の膜厚(TOX)は、40nmおよび60nmの2種類であり、ゲート酸化膜とJFET領域との界面における固定電荷は、正、負、およびゼロの3種類で計算した結果を比較している。 The thickness of the gate oxide film (T ox ) is two types of 40 nm and 60 nm, and the fixed charge at the interface between the gate oxide film and the JFET region is compared with three types of positive, negative, and zero. are doing.
 図11に示すように、ゲート酸化膜を厚くすると電界は緩和される。また、図12に示すように、ゲート酸化膜の破壊寿命に影響する正孔電流に注目すると、正の固定電荷が有効であることが分かる。JFET領域4上のゲート酸化膜の膜厚と固定電荷との関係に基づいて、ゲート酸化膜に注入される正孔電流量を設定することができる。図11,12より、ゲート酸化膜を厚くし、かつ、正の固定電荷を設定することが最も有効である。 As shown in FIG. 11, the electric field is relaxed by thickening the gate oxide film. Also, as shown in FIG. 12, focusing on the hole current that affects the breakdown life of the gate oxide film, it can be seen that positive fixed charge is effective. The amount of hole current injected into the gate oxide film can be set based on the relationship between the thickness of the gate oxide film on the JFET region 4 and the fixed charges. 11 and 12, it is most effective to thicken the gate oxide film and set positive fixed charges.
 <実施の形態3>
 実施の形態1による半導体装置100は、ウェル領域6上のゲート絶縁膜7とJFET領域4上のゲート絶縁膜7は同一工程で形成され、両者の膜厚はほぼ同一であり、正の固定電荷の量が異なる構成である。実施の形態3による半導体装置102では、JFET領域4上のゲート絶縁膜7を、増速酸化手法によってウェル領域6上のゲート絶縁膜7よりも顕著に厚く形成する例について説明する。
<Embodiment 3>
In the semiconductor device 100 according to the first embodiment, the gate insulating film 7 on the well region 6 and the gate insulating film 7 on the JFET region 4 are formed in the same process, the film thicknesses of both are substantially the same, and the positive fixed charge is generated. are different configurations. In the semiconductor device 102 according to the third embodiment, an example will be described in which the gate insulating film 7 on the JFET region 4 is formed significantly thicker than the gate insulating film 7 on the well region 6 by accelerated oxidation.
 <半導体装置102の製造方法>
 実施の形態2による半導体装置102の製造方法について、図13,14を参照しつつ説明する。
<Method for Manufacturing Semiconductor Device 102>
A method of manufacturing the semiconductor device 102 according to the second embodiment will be described with reference to FIGS.
 図13に示すように、n型で低抵抗の炭化珪素基板1を準備し、エピタキシャル成長によって炭化珪素基板1上にn型のドリフト層3を形成する。本実施の形態1では、ドリフト層3のn型の不純物濃度は1×1013cm-3~1×1018cm-3であり、ドリフト層3の厚さは4μm~200μmとする。 As shown in FIG. 13, an n-type low-resistance silicon carbide substrate 1 is prepared, and an n-type drift layer 3 is formed on the silicon carbide substrate 1 by epitaxial growth. In Embodiment 1, the drift layer 3 has an n-type impurity concentration of 1×10 13 cm −3 to 1×10 18 cm −3 and a thickness of 4 μm to 200 μm.
 図14に示すように、ドリフト層3の表層において、互いに離間したp型のウェル領域6を形成する。そして、ウェル領域6の表層に、n型のソース領域5を形成する。具体的には、フォトリソグラフィによって加工されたレジストまたは酸化膜等をマスクとして、Alイオンを注入してp型のウェル領域6を形成し、Nイオンを注入してn型のソース領域5を形成する。 As shown in FIG. 14, p-type well regions 6 spaced apart from each other are formed in the surface layer of the drift layer 3 . Then, an n-type source region 5 is formed in the surface layer of the well region 6 . Specifically, Al ions are implanted to form a p-type well region 6 and N ions are implanted to form an n-type source region 5 using a resist or oxide film processed by photolithography as a mask. do.
 ウェル領域6が形成されていない領域、すなわちドリフト層3の表層であって平面視において隣り合うウェル領域6間に、n型の低抵抗領域20を形成する。具体的には、Nイオンを注入してn型の低抵抗領域20を形成する。低抵抗領域20における不純物濃度は、1×1018cm-3~1×1021cm-3程度である。また、低抵抗領域20を形成する際に注入されるNイオンの注入深さは、0.3μm~1.0μmである。低抵抗領域20を形成することによって、ドリフト層3の最表面近傍の不純物濃度が高濃度となるため、JFET抵抗を低くすることができる。 An n-type low-resistance region 20 is formed in a region where the well region 6 is not formed, that is, in the surface layer of the drift layer 3 and between the well regions 6 adjacent in plan view. Specifically, N ions are implanted to form the n-type low resistance region 20 . The impurity concentration in the low resistance region 20 is approximately 1×10 18 cm −3 to 1×10 21 cm −3 . The depth of implantation of N ions to form the low resistance region 20 is 0.3 μm to 1.0 μm. By forming the low-resistance region 20, the impurity concentration in the vicinity of the outermost surface of the drift layer 3 becomes high, so that the JFET resistance can be lowered.
 その後、JFET領域4のドリフト層3(低抵抗領域20)の最表層に、深さが20nm程度、濃度が1×1019cm-3~1×1021cm-3程度となるように、低エネルギでNイオンを注入する。注入層が20nm程度であることから、その後のゲート絶縁膜7を形成する工程において、Nイオンが注入された領域がすべて酸化されてゲート絶縁膜7となる。この注入層があることによって増速酸化がより顕著となり、JFET領域4上のゲート絶縁膜7をより厚く形成することが可能となる。 After that, the outermost layer of the drift layer 3 (low-resistance region 20) of the JFET region 4 is doped with a low concentration of about 20 nm and a concentration of about 1×10 19 cm −3 to 1×10 21 cm −3 . Implant N ions with energy. Since the implanted layer has a thickness of about 20 nm, the region into which the N ions are implanted is entirely oxidized to form the gate insulating film 7 in the subsequent step of forming the gate insulating film 7 . With the presence of this injection layer, accelerated oxidation becomes more remarkable, and the gate insulating film 7 on the JFET region 4 can be formed thicker.
 なお、ドリフト層3(JFET領域4、低抵抗領域20)の表面から深さ20nm程度のNイオンの注入ではなく、シリコン、酸素、およびフッ素を同時に濃度1×1019cm-3~1×1021cm-3程度注入してもよい。この場合、表面の注入領域に、より注入ダメージ層を形成することができるため、JFET領域4上のゲート絶縁膜7をより厚く形成することが可能となる。 Instead of implanting N ions to a depth of about 20 nm from the surface of the drift layer 3 (JFET region 4, low resistance region 20), silicon, oxygen, and fluorine are simultaneously implanted at a concentration of 1×10 19 cm −3 to 1×10 cm −3 . About 21 cm −3 may be implanted. In this case, since a larger implantation damage layer can be formed in the implantation region of the surface, the gate insulating film 7 on the JFET region 4 can be formed thicker.
 ドリフト層3(すなわち、JFET領域4、低抵抗領域20)の最表面が最も高濃度となるようにゲート絶縁膜7を形成することによって、ゲート絶縁膜7とJFET領域4と界面におけるNイオンの濃度がJFET領域4内で高濃度となる。JFET領域4の低濃度化には、JFET領域4の深さ方法の不純物プロファイルは均一でなくともよく、部分的にも高濃度の領域があれば低抵抗は可能となる。 By forming the gate insulating film 7 so that the concentration is the highest at the outermost surface of the drift layer 3 (that is, the JFET region 4 and the low resistance region 20), N ions at the interface between the gate insulating film 7 and the JFET region 4 are reduced. The concentration becomes high within the JFET region 4 . In order to reduce the concentration of the JFET region 4, the impurity profile of the depth method of the JFET region 4 may not be uniform, and low resistance is possible if there is a high concentration region even partially.
 以後の工程は、実施の形態1または2と同様である。 The subsequent steps are the same as in the first or second embodiment.
 <窒素の濃度ピーク位置>
 実施の形態1から3で説明したように、ゲート絶縁膜の形成前に、JFET領域に窒素を注入し、注入されたJFET領域を酸化することによってゲート絶縁膜を形成し、ゲート絶縁膜とJFET領域との界面に窒素を偏析させている。
<Nitrogen concentration peak position>
As described in the first to third embodiments, before forming the gate insulating film, nitrogen is implanted into the JFET region, and the implanted JFET region is oxidized to form the gate insulating film. Nitrogen is segregated at the interface with the region.
 また、ゲート絶縁膜を形成した後に窒化処理等を行い、ゲート絶縁膜とJFET領域との界面に窒素を偏析させている。これらいずれの製造法においても、ゲート絶縁膜とJFET領域との界面近傍のゲート絶縁膜側に窒素の濃度ピークを形成することが正の固定電荷の形成には最も有効である。ゲート絶縁膜とJFET領域との界面近傍は、界面、または界面から10nm程度のゲート絶縁膜側を含む。 In addition, after forming the gate insulating film, nitriding treatment or the like is performed to segregate nitrogen at the interface between the gate insulating film and the JFET region. In any of these manufacturing methods, forming a nitrogen concentration peak on the side of the gate insulating film near the interface between the gate insulating film and the JFET region is most effective for forming positive fixed charges. The vicinity of the interface between the gate insulating film and the JFET region includes the interface or the gate insulating film side of about 10 nm from the interface.
 <実施の形態4>
 実施の形態1から3では、ゲート絶縁膜とJFET領域との界面に、窒素により正の固定電荷を設定することについて説明した。実施の形態4では、窒素以外の他の不純物について説明する。
<Embodiment 4>
In the first to third embodiments, the setting of positive fixed charge by nitrogen at the interface between the gate insulating film and the JFET region has been described. Embodiment 4 describes impurities other than nitrogen.
 <半導体装置103の製造方法>
 実施の形態4による半導体装置103の製造方法について、図15~図19を参照しつつ説明する。
<Method for Manufacturing Semiconductor Device 103>
A method of manufacturing the semiconductor device 103 according to the fourth embodiment will be described with reference to FIGS. 15 to 19. FIG.
 図15に示されるように、n型で低抵抗の炭化珪素基板1を用意し、炭化珪素基板1上にエピタキシャル成長によりn型のドリフト層3を形成する。本実施形態では、ドリフト層3のn型の不純物濃度は1×1013cm-3~1×1018cm-3であり、厚さは4μm~200μmとする。 As shown in FIG. 15, an n-type low-resistance silicon carbide substrate 1 is prepared, and an n-type drift layer 3 is formed on the silicon carbide substrate 1 by epitaxial growth. In this embodiment, the drift layer 3 has an n-type impurity concentration of 1×10 13 cm −3 to 1×10 18 cm −3 and a thickness of 4 μm to 200 μm.
 図15に示すように、n型で低抵抗の炭化珪素基板1を準備し、エピタキシャル成長によって炭化珪素基板1上にn型のドリフト層3を形成する。本実施の形態1では、ドリフト層3のn型の不純物濃度は1×1013cm-3~1×1018cm-3であり、ドリフト層3の厚さは4μm~200μmとする。 As shown in FIG. 15, an n-type low-resistance silicon carbide substrate 1 is prepared, and an n-type drift layer 3 is formed on silicon carbide substrate 1 by epitaxial growth. In Embodiment 1, the drift layer 3 has an n-type impurity concentration of 1×10 13 cm −3 to 1×10 18 cm −3 and a thickness of 4 μm to 200 μm.
 図16に示すように、ドリフト層3の表層において、互いに離間したp型のウェル領域6を形成する。そして、ウェル領域6の表層に、n型のソース領域5を形成する。具体的には、フォトリソグラフィによって加工されたレジストまたは酸化膜等をマスクとして、Alイオンを注入してp型のウェル領域6を形成し、Nイオンを注入してn型のソース領域5を形成する。 As shown in FIG. 16, p-type well regions 6 spaced apart from each other are formed in the surface layer of the drift layer 3 . Then, an n-type source region 5 is formed in the surface layer of the well region 6 . Specifically, Al ions are implanted to form a p-type well region 6 and N ions are implanted to form an n-type source region 5 using a resist or oxide film processed by photolithography as a mask. do.
 ウェル領域6が形成されていない領域、すなわちドリフト層3の表層であって平面視において隣り合うウェル領域6間に、n型の低抵抗領域20を形成する。具体的には、Nイオンを注入してn型の低抵抗領域20を形成する。低抵抗領域20における不純物濃度は、1×1018cm-3~1×1021cm-3程度である。また、低抵抗領域20を形成する際に注入されるNイオンの注入深さは、0.3μm~1.0μmである。低抵抗領域20を形成することによって、ドリフト層3の最表面近傍の不純物濃度が高濃度となるため、JFET抵抗を低くすることができる。 An n-type low-resistance region 20 is formed in a region where the well region 6 is not formed, that is, in the surface layer of the drift layer 3 and between the well regions 6 adjacent in plan view. Specifically, N ions are implanted to form the n-type low resistance region 20 . The impurity concentration in the low resistance region 20 is approximately 1×10 18 cm −3 to 1×10 21 cm −3 . The depth of implantation of N ions to form the low resistance region 20 is 0.3 μm to 1.0 μm. By forming the low-resistance region 20, the impurity concentration in the vicinity of the outermost surface of the drift layer 3 becomes high, so that the JFET resistance can be lowered.
 次に、熱処理装置によって、Arガスなどの不活性ガス雰囲気中でアニールを行う。アニールは、1300℃~1900℃で、30秒~1時間程度行う。このアニールを行うことによって、イオン注入されたN等のn型の不純物、および、Al等のp型の不純物を活性化させる。 Next, annealing is performed in an atmosphere of an inert gas such as Ar gas using a heat treatment device. Annealing is performed at 1300° C. to 1900° C. for about 30 seconds to 1 hour. By performing this annealing, the ion-implanted n-type impurities such as N and p-type impurities such as Al are activated.
 次に、図17に示すように、ゲート絶縁膜17を形成する。ゲート絶縁膜17は、1150℃以上のドライ熱酸化法によって形成する。なお、ゲート絶縁膜17は、堆積法で形成してもよい。形成したゲート絶縁膜17にセシウム(Cs)をイオン注入する。その後、半導体露出領域を形成する工程前にアニールを行い、熱拡散によって固定電荷を含む領域となるセシウムを半導体により近い領域に再分布させる。 Next, as shown in FIG. 17, a gate insulating film 17 is formed. The gate insulating film 17 is formed by dry thermal oxidation at 1150° C. or higher. Note that the gate insulating film 17 may be formed by a deposition method. Cesium (Cs) is ion-implanted into the formed gate insulating film 17 . Annealing is then performed before the step of forming the semiconductor exposed region, and the cesium, which becomes a region containing fixed charges due to thermal diffusion, is redistributed in a region closer to the semiconductor.
 その後、フォトリソグラフィによって加工されたレジストをマスクとして、JFET領域4上のゲート絶縁膜17のみを残し、その他の絶縁膜を取り除く。ゲート絶縁膜17の除去はフッ酸を用いたウエットプロセスよく、ドライエッチングでもよい。 After that, using a resist processed by photolithography as a mask, only the gate insulating film 17 on the JFET region 4 is left, and other insulating films are removed. The gate insulating film 17 may be removed by a wet process using hydrofluoric acid or by dry etching.
 次に、図18に示すように、1150℃以上のドライ熱酸化法によってゲート絶縁膜18を形成する。ゲート絶縁膜18は、700℃~900℃程度の堆積法で形成する。ゲート絶縁膜18の形成後、窒素またはアンモニア雰囲気中で熱処理を行う。ゲート絶縁膜18を形成する工程を行うことによって、JFET領域4上のゲート絶縁膜17,18のみが厚くなり、かつ、セシウムを含む絶縁膜となる。ゲート絶縁膜17はゲート絶縁膜18とは異なる元素を含んでいる。 Next, as shown in FIG. 18, a gate insulating film 18 is formed by dry thermal oxidation at 1150° C. or higher. The gate insulating film 18 is formed by a deposition method at about 700.degree. C. to 900.degree. After forming the gate insulating film 18, heat treatment is performed in a nitrogen or ammonia atmosphere. By performing the step of forming the gate insulating film 18, only the gate insulating films 17 and 18 on the JFET region 4 are thickened and become insulating films containing cesium. The gate insulating film 17 contains elements different from those of the gate insulating film 18 .
 以後の工程は、実施の形態2と同様である。図19に示すように、ゲート電極8は、ポリシリコンをCVD法によって堆積し、フォトリソグラフィによって加工されたレジストをマスクとしてエッチングを行って形成する。ポリシリコンには、燐や硼素のような不純物が含まれていてもよい。ゲート電極8に不純物が含まれることによって、ゲート電極8の低抵抗化を実現することができる。 The subsequent steps are the same as in the second embodiment. As shown in FIG. 19, the gate electrode 8 is formed by depositing polysilicon by CVD and etching it using a resist processed by photolithography as a mask. Polysilicon may contain impurities such as phosphorus and boron. By containing impurities in the gate electrode 8, the resistance of the gate electrode 8 can be reduced.
 上述では、JFET領域4上のゲート絶縁膜17に、固定電荷となる不純物(元素)としてセシウムを注入する場合について説明したが、これに限るものではない。JFET領域4上のゲート絶縁膜17にバリウム(Ba)、ルビジウム(Rb)、およびストロンチウム(Sr)のうちの少なくとも1つを含ませることによって、ゲート絶縁膜17における固定電荷の形成を実現することができる。 In the above description, the case of implanting cesium as an impurity (element) that becomes a fixed charge into the gate insulating film 17 on the JFET region 4 has been described, but the present invention is not limited to this. Realizing the formation of fixed charges in the gate insulating film 17 by including at least one of barium (Ba), rubidium (Rb), and strontium (Sr) in the gate insulating film 17 on the JFET region 4. can be done.
 セシウム、バリウム、ルビジウム、およびストロンチウムは、アルカリ金属またはアルカリ土類金属に属しているため、第1イオン化エネルギが小さく、正の電荷を持つイオンになりやすい性質を有している。また、セシウム、バリウム、ルビジウム、およびストロンチウムは、室温でも移動しやすいナトリウム等の軽元素とは異なり、原子番号が大きいため、通常の素子動作温度領域では電荷が移動することはない。従って、セシウム、バリウム、ルビジウム、およびストロンチウムは、正の固定電荷として働く材料である。 Since cesium, barium, rubidium, and strontium belong to alkali metals or alkaline earth metals, they have a low first ionization energy and tend to become positively charged ions. In addition, since cesium, barium, rubidium, and strontium have large atomic numbers unlike light elements such as sodium, which easily move even at room temperature, their charges do not move in the normal device operating temperature range. Cesium, barium, rubidium, and strontium are therefore materials that act as positive fixed charges.
 図17では、ゲート絶縁膜17が酸化シリコンである場合について説明したが、酸化シリコンよりも誘電率が高い材料(絶縁材料)として、酸化ハフニウム(HfO)、酸化ジルコニウム(ZrO)、酸化アルミニウム(Al,AlO等)、酸化タンタル(Ta)、酸窒化ハフニウム(HfO)、酸窒化ジルコニウム(ZrO)、酸窒化アルミニウム(AlO)、酸窒化タンタル(TaO)、およびこれらの材料の複合的組成を有するもの(酸化ハフニウムアルミネート、酸窒化ハフニウムアルミネートなど)、あるいはシリコン等の半導体基板に含まれる元素を含むもの(酸化ハフニウムシリケート、酸化ハフニウムアルミネートシリケート)でもよい。また、酸化シリコンと酸化シリコンよりも誘電率が高い材料との積層膜、または、酸窒化シリコンと酸化シリコンよりも誘電率が高い材料との積層膜であってもよい。これらの積層膜に、セシウム、バリウム、ルビジウム、またはストロンチウムを含めてもよい。 In FIG. 17, the case where the gate insulating film 17 is silicon oxide has been described. ( Al2O3 , Al2O , etc.), tantalum oxide ( Ta2O5 ), hafnium oxynitride ( HfOxNy ) , zirconium oxynitride ( ZrOxNy ) , aluminum oxynitride ( AlOxNy ) , tantalum oxynitride (TaO x N y ), and those having a composite composition of these materials (hafnium oxide aluminate, hafnium oxynitride aluminate, etc.), or those containing elements contained in semiconductor substrates such as silicon ( hafnium oxide silicate, hafnium oxide aluminate silicate) may also be used. Alternatively, a laminated film of silicon oxide and a material having a dielectric constant higher than that of silicon oxide, or a laminated film of silicon oxynitride and a material having a dielectric constant higher than that of silicon oxide may be used. These laminated films may contain cesium, barium, rubidium, or strontium.
 図18では、ゲート絶縁膜18が酸化シリコンである場合について説明したが、誘電率が高い材料として、酸化ハフニウム、酸化ジルコニウム、酸化アルミニウム、酸化タンタル、酸窒化ハフニウム、酸窒化ジルコニウム、酸窒化アルミニウム、酸窒化タンタル、およびこれらの材料の複合的組成を有するもの(酸化ハフニウムアルミネート、酸窒化ハフニウムアルミネートなど)、あるいはシリコン等の半導体基板に含まれる元素を含むもの(酸化ハフニウムシリケート、酸化ハフニウムアルミネートシリケート)でもよい。さらに、酸化シリコンと酸化シリコンよりも誘電率が高い材料との積層膜、または、酸窒化シリコンと酸化シリコンよりも誘電率が高い材料との積層膜であってもよい。 In FIG. 18, the case where the gate insulating film 18 is silicon oxide has been described. Tantalum oxynitride, those having a composite composition of these materials (hafnium oxide aluminate, hafnium oxynitride aluminate, etc.), or those containing elements contained in semiconductor substrates such as silicon (hafnium oxide silicate, hafnium aluminum oxide phosphate silicate) may also be used. Furthermore, a laminated film of silicon oxide and a material having a dielectric constant higher than that of silicon oxide, or a laminated film of silicon oxynitride and a material having a dielectric constant higher than that of silicon oxide may be used.
 積層膜の場合、積層膜のうち炭化珪素基板1に接する膜に、酸化シリコン膜または酸窒化シリコン膜を用いる。ゲート絶縁膜18とウェル領域6との界面は、MOSFETのチャネルとなるため、キャリアの移動度の劣化を防ぐことによって、より低抵抗を実現することができる。 In the case of the laminated film, a silicon oxide film or a silicon oxynitride film is used for the film in contact with the silicon carbide substrate 1 among the laminated films. Since the interface between the gate insulating film 18 and the well region 6 serves as the channel of the MOSFET, it is possible to realize a lower resistance by preventing deterioration of carrier mobility.
 上述では、JFET領域4上に2回以上の工程でゲート絶縁膜17,18を堆積することによって、ウェル領域6上のゲート絶縁膜18よりも厚くする構造について説明した。ゲート絶縁膜17に形成する固定電荷量は、ゲート絶縁膜17に導入する元素のドーズ量でコントロールすることができるため、JFET領域4上のゲート絶縁膜17に高濃度の元素をドーズすれば、ウェル領域6上のゲート絶縁膜18と同一の厚さにすることができる。ただし、この場合、JFET領域4上にはゲート絶縁膜18を形成せずゲート絶縁膜17のみが形成されることになる。 In the above description, the structure in which the gate insulating films 17 and 18 are deposited on the JFET region 4 in two or more steps to be thicker than the gate insulating film 18 on the well region 6 has been described. Since the amount of fixed charge formed in the gate insulating film 17 can be controlled by the dose amount of the element introduced into the gate insulating film 17, if the gate insulating film 17 above the JFET region 4 is dosed with a high concentration element, It can have the same thickness as the gate insulating film 18 on the well region 6 . However, in this case, only the gate insulating film 17 is formed on the JFET region 4 without forming the gate insulating film 18 thereon.
 <半導体装置103の電気特性評価>
 炭化珪素基板1にMOSFETを形成した後に、モジュールを形成する。MOSFETの形成後には、素子(半導体装置103)の良し悪しを判断するために、MOSFETの電気特性を評価する。その後、切断(ダイシング)され、個々の素子(チップ)に分割される。パワーモジュールを組み立てる際には、良品素子を用いる。良品素子とは、MOSFETの電気特性を評価した際に期待の特性を満たす素子をいう。
<Evaluation of electrical characteristics of semiconductor device 103>
After forming MOSFETs on silicon carbide substrate 1, a module is formed. After forming the MOSFET, the electrical characteristics of the MOSFET are evaluated in order to judge whether the element (semiconductor device 103) is good or bad. It is then cut (diced) and divided into individual elements (chips). Non-defective devices are used when assembling the power module. A non-defective element is an element that satisfies expected characteristics when the electrical characteristics of the MOSFET are evaluated.
 図20は、実施の形態4による半導体装置103を含むモジュールの製造方法の一例を示すフローチャートである。なお、ここでは実施の形態4による半導体装置103を含むモジュールの製造方法について説明するが、実施の形態1~3で説明した半導体装置100,101,102のそれぞれを含むモジュールの製造方法も同様である。 FIG. 20 is a flow chart showing an example of a method for manufacturing a module including the semiconductor device 103 according to the fourth embodiment. Although the method of manufacturing a module including the semiconductor device 103 according to the fourth embodiment will be described here, the method of manufacturing a module including each of the semiconductor devices 100, 101, and 102 described in the first to third embodiments is the same. be.
 ステップS101において、炭化珪素基板1にMOSFETを形成する。 In step S<b>101 , MOSFETs are formed on the silicon carbide substrate 1 .
 ステップS102において、MOSFETの電気特性を評価する。  In step S102, the electrical characteristics of the MOSFET are evaluated.
 ステップS103において、MOSFETにおけるゲート絶縁膜17とJFET領域4との界面に対して、固定電荷を形成するための電気的なストレスを印加する。 In step S103, electrical stress is applied to the interface between the gate insulating film 17 of the MOSFET and the JFET region 4 to form fixed charges.
 ステップS104において、複数の半導体装置103が形成されたウエハから、1つの半導体装置103(チップ)取り出すべくダイシングする。 In step S104, the wafer on which a plurality of semiconductor devices 103 are formed is diced to take out one semiconductor device 103 (chip).
 ステップS105において、ステップS102で評価した電気特性に基づいて、チップを選別する。 In step S105, chips are selected based on the electrical characteristics evaluated in step S102.
 ステップS106において、ステップS105で選別されたチップを用いてパワーモジュールを組み立てる。 In step S106, a power module is assembled using the chips selected in step S105.
 ステップS103における電気的なストレスを印加する方法について説明する。ソース電極11とゲート電極8とはショートして0Vとする。ドレイン電極12には、MOSFETの素子耐圧の80%の電圧を数秒から数時間印加する(第12工程)。この電圧印加する環境は、室温環境でもよく、150℃程度の高温環境でもよい。 A method of applying electrical stress in step S103 will be described. The source electrode 11 and the gate electrode 8 are shorted to 0V. A voltage of 80% of the withstand voltage of the MOSFET is applied to the drain electrode 12 for several seconds to several hours (12th step). The environment in which the voltage is applied may be a room temperature environment or a high temperature environment of about 150.degree.
 上記の電圧条件では、ソース電極11とゲート電極8との電位差がないことから、チャネル領域のゲート絶縁膜18にストレスが印加されない。一方、JFET領域4上のゲート絶縁膜17には、ドレイン電界によって電気的なストレスが印加される。このストレスによって、JFET領域4上のみに、すなわちゲート絶縁膜17とJFET領域4との界面のみに正の固定電荷40を形成することができる。電圧印加時間とともに電荷量が増大することから、設計の電荷量を形成する時間と温度を選定すればよい。印加時間を短時間にしてスループットを上げたい場合は、高温で印可する。また、複数の素子に同時に印加してもよい。 Under the above voltage conditions, since there is no potential difference between the source electrode 11 and the gate electrode 8, no stress is applied to the gate insulating film 18 in the channel region. On the other hand, electrical stress is applied to the gate insulating film 17 on the JFET region 4 by the drain electric field. This stress can form positive fixed charges 40 only on the JFET region 4 , that is, only on the interface between the gate insulating film 17 and the JFET region 4 . Since the charge amount increases along with the voltage application time, the time and temperature for forming the designed charge amount may be selected. When it is desired to shorten the application time and increase the throughput, the application is performed at a high temperature. Also, the voltage may be applied to a plurality of elements at the same time.
 なお、本開示の範囲内において、各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略したりすることが可能である。 Within the scope of the present disclosure, it is possible to freely combine each embodiment, and to modify or omit each embodiment as appropriate.
 本開示は詳細に説明されたが、上記した説明は、すべての態様において、例示であって、限定的なものではない。例示されていない無数の変形例が想定され得るものと解される。 Although the present disclosure has been described in detail, the above description is, in all aspects, exemplary and non-limiting. It is understood that a myriad of variations not illustrated may be envisioned.
 1 炭化珪素基板、2 半導体層、3 ドリフト層、4 JFET領域、5 ソース領域、6 ウェル領域、7 ゲート絶縁膜、8 ゲート電極、9 ウェルコンタクト領域、11 ソース電極、12 ドレイン電極、13 層間絶縁膜、15 ゲート絶縁膜、16 ゲート絶縁膜、17 ゲート絶縁膜、18 ゲート絶縁膜、20 低抵抗領域、31 コンタクトホール、32 バリアメタル、40 固定電荷、41 固定電荷、100 半導体装置。 1 silicon carbide substrate 2 semiconductor layer 3 drift layer 4 JFET region 5 source region 6 well region 7 gate insulating film 8 gate electrode 9 well contact region 11 source electrode 12 drain electrode 13 interlayer insulation film, 15 gate insulating film, 16 gate insulating film, 17 gate insulating film, 18 gate insulating film, 20 low resistance region, 31 contact hole, 32 barrier metal, 40 fixed charge, 41 fixed charge, 100 semiconductor device.

Claims (15)

  1.  第1導電型の炭化珪素基板と、
     前記炭化珪素基板上に形成された第1導電型のドリフト層と、
     前記ドリフト層の表層に選択的に形成された第2導電型の複数のウェル領域と、
     各前記ウェル領域の表層に選択的に形成された第1導電型のソース領域と、
     前記ドリフト層の表層であって平面視において隣り合う各前記ウェル領域間に形成され、前記ドリフト層の不純物濃度よりも高い不純物濃度を有する低抵抗領域と、
     前記ソース領域上、各前記ウェル領域上、および前記低抵抗領域上に亘って形成されたゲート絶縁膜と、
     前記ゲート絶縁膜上に形成されたゲート電極と、
    を備え、
     前記ゲート絶縁膜は、各前記ウェル領域に接する第1領域と、前記低抵抗領域に接する第2領域とを含み、
     前記第2領域における正の固定電荷の密度は、前記第1領域における正の固定電荷の密度よりも高い、半導体装置。
    a first conductivity type silicon carbide substrate;
    a first conductivity type drift layer formed on the silicon carbide substrate;
    a plurality of well regions of a second conductivity type selectively formed on a surface layer of the drift layer;
    a first conductivity type source region selectively formed in a surface layer of each of the well regions;
    a low-resistance region that is a surface layer of the drift layer and is formed between the well regions that are adjacent to each other in plan view and has an impurity concentration higher than that of the drift layer;
    a gate insulating film formed over the source region, the well regions, and the low resistance region;
    a gate electrode formed on the gate insulating film;
    with
    the gate insulating film includes a first region in contact with each of the well regions and a second region in contact with the low resistance region;
    The semiconductor device, wherein the density of positive fixed charges in the second region is higher than the density of positive fixed charges in the first region.
  2.  前記低抵抗領域は、深さ方向において前記ゲート絶縁膜に近づくほど不純物濃度が高い、請求項1に記載の半導体装置。 2. The semiconductor device according to claim 1, wherein said low resistance region has a higher impurity concentration as it approaches said gate insulating film in the depth direction.
  3.  前記ゲート絶縁膜の前記第2領域は、前記ゲート絶縁膜の前記第1領域よりも厚い、請求項1または2に記載の半導体装置。 3. The semiconductor device according to claim 1, wherein said second region of said gate insulating film is thicker than said first region of said gate insulating film.
  4.  前記ゲート絶縁膜の前記第2領域は、前記ゲート絶縁膜の前記第1領域とは異なる元素を含む、請求項1から3のいずれか1項に記載の半導体装置。 4. The semiconductor device according to claim 1, wherein said second region of said gate insulating film contains an element different from that of said first region of said gate insulating film.
  5.  前記ゲート絶縁膜の前記第2領域における前記元素の濃度ピークは、前記第2領域と前記低抵抗領域との界面、または当該界面から10nm以内の前記第2領域にある、請求項4に記載の半導体装置。 5. The element according to claim 4, wherein the concentration peak of the element in the second region of the gate insulating film is at the interface between the second region and the low resistance region or at the second region within 10 nm from the interface. semiconductor device.
  6.  前記ゲート絶縁膜の前記第2領域における前記元素は、セシウム、バリウム、ストロンチウム、およびルビジウムのうちの少なくとも1つを含む、請求項4または5に記載の半導体装置。 6. The semiconductor device according to claim 4, wherein said element in said second region of said gate insulating film includes at least one of cesium, barium, strontium, and rubidium.
  7.  前記ゲート絶縁膜の前記第2領域は、前記ゲート絶縁膜の前記第1領域とは異なる絶縁材料を含む、請求項1から6のいずれか1項に記載の半導体装置。 7. The semiconductor device according to claim 1, wherein said second region of said gate insulating film contains an insulating material different from said first region of said gate insulating film.
  8.  前記ゲート絶縁膜の前記第2領域における前記絶縁材料は、窒化シリコン、酸窒化シリコン、酸化ハフニウム、酸窒化ハフニウム、酸化ジルコニウム、酸窒化ジルコニウム、酸化アルミニウム、酸窒化アルミニウム、酸化タンタル、および酸窒化タンタルのうちの少なくとも1つを含む、請求項7に記載の半導体装置。 The insulating material in the second region of the gate insulating film includes silicon nitride, silicon oxynitride, hafnium oxide, hafnium oxynitride, zirconium oxide, zirconium oxynitride, aluminum oxide, aluminum oxynitride, tantalum oxide, and tantalum oxynitride. 8. The semiconductor device according to claim 7, comprising at least one of
  9.  前記ゲート絶縁膜の前記第2領域と前記低抵抗領域との界面における窒素濃度は、前記ゲート絶縁膜の前記第1領域と各前記ウェル領域との界面における窒素濃度よりも高濃度である、請求項1から8のいずれか1項に記載の半導体装置。 The nitrogen concentration at the interface between the second region of the gate insulating film and the low resistance region is higher than the nitrogen concentration at the interface between the first region of the gate insulating film and each of the well regions. 9. The semiconductor device according to any one of items 1 to 8.
  10.  第1導電型の炭化珪素基板を準備する第1工程と、
     前記炭化珪素基板上に第1導電型のドリフト層を形成する第2工程と、
     前記ドリフト層の表層に第2導電型の複数のウェル領域を選択的に形成する第3工程と、
     各前記ウェル領域の表層に第1導電型のソース領域を選択的に形成する第4工程と、
     前記ドリフト層の表層であって平面視において隣り合う各前記ウェル領域間に、前記ドリフト層の不純物濃度よりも高い不純物濃度を有する低抵抗領域を形成する第5工程と、
     前記ソース領域上、各前記ウェル領域上、および前記低抵抗領域上に亘ってゲート絶縁膜を形成する第6工程と、
     前記ゲート絶縁膜上にゲート電極を形成する第7工程と、
    を備え、
     前記ゲート絶縁膜は、各前記ウェル領域に接する第1領域と、前記低抵抗領域に接する第2領域とを含み、
     前記第2領域における正の固定電荷の密度は、前記第1領域における正の固定電荷の密度よりも高い、半導体装置の製造方法。
    a first step of preparing a silicon carbide substrate of a first conductivity type;
    a second step of forming a first conductivity type drift layer on the silicon carbide substrate;
    a third step of selectively forming a plurality of well regions of the second conductivity type on the surface layer of the drift layer;
    a fourth step of selectively forming a first conductivity type source region in a surface layer of each of the well regions;
    a fifth step of forming a low-resistance region having an impurity concentration higher than that of the drift layer between the well regions that are adjacent to each other in plan view and that is a surface layer of the drift layer;
    a sixth step of forming a gate insulating film over the source region, each well region, and the low resistance region;
    a seventh step of forming a gate electrode on the gate insulating film;
    with
    the gate insulating film includes a first region in contact with each of the well regions and a second region in contact with the low resistance region;
    The method of manufacturing a semiconductor device, wherein the density of positive fixed charges in the second region is higher than the density of positive fixed charges in the first region.
  11.  前記第5工程は、前記ドリフト層の表層であって平面視において隣り合う各前記ウェル領域間に、第1導電型の不純物を注入エネルギを変えて複数回注入することによって前記低抵抗領域を形成する工程を含む、請求項10に記載の半導体装置の製造方法。 In the fifth step, the low-resistance region is formed by implanting first-conductivity-type impurities a plurality of times with different implantation energies in the surface layer of the drift layer and between the well regions that are adjacent to each other in a plan view. 11. The method of manufacturing a semiconductor device according to claim 10, comprising the step of:
  12.  前記第6工程は、
     前記低抵抗領域上のみに第1ゲート絶縁膜を形成する第8工程と、
     前記第8工程の後、前記ソース領域上、各前記ウェル領域上、および前記第1ゲート絶縁膜上に亘って第2ゲート絶縁膜を形成する第9工程と、
    を含む、請求項10または11に記載の半導体装置の製造方法。
    The sixth step is
    an eighth step of forming a first gate insulating film only on the low resistance region;
    a ninth step of forming a second gate insulating film over the source region, each of the well regions, and the first gate insulating film after the eighth step;
    12. The method of manufacturing a semiconductor device according to claim 10, comprising:
  13.  前記第1ゲート絶縁膜は、前記第2ゲート絶縁膜とは異なる絶縁材料を含む、請求項12に記載の半導体装置の製造方法。 13. The method of manufacturing a semiconductor device according to claim 12, wherein the first gate insulating film contains an insulating material different from that of the second gate insulating film.
  14.  前記ソース領域上にソース電極を形成する第10工程と、
     前記炭化珪素基板の裏面にドレイン電極を形成する第11工程と、
     前記ソース電極および前記ゲート電極に0V以下の電圧を印加し、予め定められた素子耐圧の80%以上の電圧を5秒以上印加する第12工程と、
    をさらに備える、請求項10から13のいずれか1項に記載の半導体装置の製造方法。
    a tenth step of forming a source electrode on the source region;
    an eleventh step of forming a drain electrode on the back surface of the silicon carbide substrate;
    a twelfth step of applying a voltage of 0 V or less to the source electrode and the gate electrode and applying a voltage of 80% or more of a predetermined device withstand voltage for 5 seconds or more;
    14. The method of manufacturing a semiconductor device according to any one of claims 10 to 13, further comprising:
  15.  前記第12工程において、前記ソース電極および前記ゲート電極に0Vの電圧を印加する、請求項14に記載の半導体装置の製造方法。 15. The method of manufacturing a semiconductor device according to claim 14, wherein in said twelfth step, a voltage of 0 V is applied to said source electrode and said gate electrode.
PCT/JP2021/046752 2021-12-17 2021-12-17 Semiconductor device and manufacturing method for same WO2023112312A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2023567482A JPWO2023112312A1 (en) 2021-12-17 2021-12-17
PCT/JP2021/046752 WO2023112312A1 (en) 2021-12-17 2021-12-17 Semiconductor device and manufacturing method for same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/046752 WO2023112312A1 (en) 2021-12-17 2021-12-17 Semiconductor device and manufacturing method for same

Publications (1)

Publication Number Publication Date
WO2023112312A1 true WO2023112312A1 (en) 2023-06-22

Family

ID=86773943

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/046752 WO2023112312A1 (en) 2021-12-17 2021-12-17 Semiconductor device and manufacturing method for same

Country Status (2)

Country Link
JP (1) JPWO2023112312A1 (en)
WO (1) WO2023112312A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014060272A (en) * 2012-09-18 2014-04-03 Sumitomo Electric Ind Ltd Silicon carbide semiconductor device and manufacturing method of the same
WO2017081935A1 (en) * 2015-11-12 2017-05-18 三菱電機株式会社 Silicon carbide semiconductor device and method for manufacturing silicon carbide semiconductor device
WO2017138221A1 (en) * 2016-02-08 2017-08-17 三菱電機株式会社 Silicon carbide semiconductor device and method for manufacturing same
JP2018046246A (en) * 2016-09-16 2018-03-22 株式会社東芝 Semiconductor device, manufacturing method therefor, inverter circuit, drive unit, vehicle, and lift

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014060272A (en) * 2012-09-18 2014-04-03 Sumitomo Electric Ind Ltd Silicon carbide semiconductor device and manufacturing method of the same
WO2017081935A1 (en) * 2015-11-12 2017-05-18 三菱電機株式会社 Silicon carbide semiconductor device and method for manufacturing silicon carbide semiconductor device
WO2017138221A1 (en) * 2016-02-08 2017-08-17 三菱電機株式会社 Silicon carbide semiconductor device and method for manufacturing same
JP2018046246A (en) * 2016-09-16 2018-03-22 株式会社東芝 Semiconductor device, manufacturing method therefor, inverter circuit, drive unit, vehicle, and lift

Also Published As

Publication number Publication date
JPWO2023112312A1 (en) 2023-06-22

Similar Documents

Publication Publication Date Title
US10096680B2 (en) Silicon carbide semiconductor device and method of manufacturing silicon carbide semiconductor device
TWI501322B (en) Wet chemistry processes for fabricating a semiconductor device with increased channel mobility
JP5021860B2 (en) Multilayer dielectrics in silicon carbide semiconductor structures
JP5584823B2 (en) Silicon carbide semiconductor device
JP5452062B2 (en) Method for manufacturing silicon carbide semiconductor device
US9496365B2 (en) Semiconductor device and manufacturing method for the same
US20060267022A1 (en) Field-effect transistor and thyristor
US6639273B1 (en) Silicon carbide n channel MOS semiconductor device and method for manufacturing the same
JP5982471B2 (en) Field effect silicon carbide transistor
CN107924950A (en) Silicon carbide MOSFET with integrated MOS diode
CN108604600B (en) Silicon carbide semiconductor device and method for manufacturing same
JP6095902B2 (en) Wide band gap semiconductor device and method of manufacturing the same
US11295951B2 (en) Wide band gap semiconductor device and method for forming a wide band gap semiconductor device
JPWO2014010006A1 (en) MOS field effect transistor
US20170278952A1 (en) Method of manufacturing semiconductor device, and semiconductor device
US20090206366A1 (en) Semiconductor device and method for fabricating the same
CN107078158B (en) Silicon carbide semiconductor device and method for manufacturing same
US10497572B2 (en) Method for manufacturing semiconductor device
JP5995701B2 (en) Silicon carbide semiconductor device and manufacturing method thereof
WO2023112312A1 (en) Semiconductor device and manufacturing method for same
US10177234B2 (en) Semiconductor device
US8421182B2 (en) Field effect transistor having MOS structure made of nitride compound semiconductor
JP2020155638A (en) Semiconductor device, manufacturing method of the same, and pressure transmitter using the semiconductor device
JP2024032679A (en) Manufacturing method for ohmic contact for electronic device by thermal budget optimization
JP2005085872A (en) Semiconductor element and method of manufacturing the same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21968225

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023567482

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE