[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2023112246A1 - Floating body structure, control method, and program - Google Patents

Floating body structure, control method, and program Download PDF

Info

Publication number
WO2023112246A1
WO2023112246A1 PCT/JP2021/046481 JP2021046481W WO2023112246A1 WO 2023112246 A1 WO2023112246 A1 WO 2023112246A1 JP 2021046481 W JP2021046481 W JP 2021046481W WO 2023112246 A1 WO2023112246 A1 WO 2023112246A1
Authority
WO
WIPO (PCT)
Prior art keywords
floating body
floating
move
internal device
floating structure
Prior art date
Application number
PCT/JP2021/046481
Other languages
French (fr)
Japanese (ja)
Inventor
友花 篠崎
潤 加藤
恒子 倉
浩史 松原
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2021/046481 priority Critical patent/WO2023112246A1/en
Priority to JP2023567425A priority patent/JPWO2023112246A1/ja
Publication of WO2023112246A1 publication Critical patent/WO2023112246A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • B63B35/44Floating buildings, stores, drilling platforms, or workshops, e.g. carrying water-oil separating devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63BSHIPS OR OTHER WATERBORNE VESSELS; EQUIPMENT FOR SHIPPING 
    • B63B35/00Vessels or similar floating structures specially adapted for specific purposes and not otherwise provided for
    • B63B35/50Vessels or floating structures for aircraft

Definitions

  • the present invention relates to a floating structure, control method, and program.
  • Non-Patent Document 1 discloses a tension mooring platform that suppresses the shaking of a floating structure by the force generated by buoyancy.
  • TLP MODEC, Inc., Internet ⁇ URL: https://www.modec.com/business/floater/tlp/ >
  • Tension mooring can simultaneously control horizontal and vertical positional fluctuations and shaking, but once installed, it was difficult to change the mooring position.
  • the present invention has been made in view of the above, and it is an object of the present invention to provide a floating structure that can be easily moved to any position on the surface of the water and that maintains a platform at a desired position and inclination.
  • a floating structure is a structure including a floating body that can float and move on a water surface and an internal device that can move on a plane above the floating body, wherein the floating body is a plane on which the internal device moves. and a propulsion device for moving the floating body, wherein the internal device includes a leveling table, a support section that supports the leveling table and is vertically extendable, and a moving section for moving the plane. and a control section for controlling the support section and the moving section in order to maintain the position and inclination of the leveling table in a desired state.
  • FIG. 1 is a diagram showing an example of the configuration of a floating structure according to this embodiment.
  • FIG. 2 is a diagram for explaining an example of movement of an internal mechanism.
  • FIG. 3 is a plan view showing an example of the arrangement of V-mechanisms.
  • FIG. 4A is a flowchart illustrating an example of the flow of processing by a control unit;
  • FIG. 4B is a flowchart illustrating an example of the flow of processing by the control unit;
  • 4C is a flowchart illustrating an example of the flow of processing by the control unit;
  • FIG. FIG. 4D is a flowchart illustrating an example of the flow of processing by the control unit;
  • FIG. 5 is a diagram showing an example of a floating structure on which photovoltaic panels are installed.
  • FIG. 5 is a diagram showing an example of a floating structure on which photovoltaic panels are installed.
  • FIG. 6 is a diagram showing an example of a floating structure on which photovoltaic panels are installed.
  • FIG. 7 is a diagram showing an example of a floating structure provided with drainage grooves.
  • FIG. 8 is a cross-sectional view of a drain groove.
  • FIG. 9 is a diagram showing an example of a floating structure having bellows.
  • FIG. 10 is a diagram showing an example of a floating structure having bellows.
  • FIG. 11 is a diagram showing the state of the bellows in FIGS. 9 and 10.
  • FIG. FIG. 12 is a diagram illustrating an example of a hardware configuration of a control unit;
  • FIG. 1 is a diagram showing an example of the configuration of a floating structure according to this embodiment.
  • a floating body structure 1 shown in the figure includes a floating body 30 that can float and move on water, and an internal mechanism 10 that can move on the floating body 30 . Since the internal mechanism 10 and the floating body 30 move so as to maintain the position and inclination of the leveling platform 11 on the upper part of the internal mechanism 10, it can be used as an activity base where observation equipment vulnerable to positional deviation and shaking can be installed, and drones can take off and land. can
  • the floating body 30 includes a frame 31, a control section 32, a propulsion device 33, and a sensor 34.
  • the frame 31 is a member with a flat surface on which the internal mechanism 10 moves.
  • One or more sensors 34 for grasping the positional relationship between the internal mechanism 10 and the floating body 30 are arranged on the plane.
  • sensors 34 are positioned near the center of frame 31 and the perimeter of frame 31 .
  • the frame 31 may have side walls around the plane.
  • the control unit 32 controls the propeller 33 for moving the floating body 30 .
  • the propeller 33 is attached to the outside of the frame 31 and used to move the floating body 30 .
  • propeller 33 is a propeller attached to the bottom of frame 31 .
  • the floating body 30 may have a plurality of propellers 33 so that it can move in all directions.
  • the control unit 32 drives the propeller 33 to move the floating body 30 so that the center of the frame 31 overlaps the reference position. make it
  • the internal mechanism 10 includes a leveling table 11, a middle plate 12, a V mechanism 13, an H mechanism 14, a controller 15, and a sensor 16.
  • the H mechanism 14 is arranged on the lower surface of the intermediate plate 12 .
  • the H mechanism 14 is used to finely adjust the horizontal position of the internal mechanism 10 , that is, to move the internal mechanism 10 within the frame 31 .
  • the H mechanism 14 is a stepping motor-driven wheel that operates in pairs of at least three. By driving the wheels, the internal mechanism 10 is moved within the frame 31 .
  • a V-mechanism 13 is arranged on the upper surface of the middle plate 12 , and a leveling table 11 is arranged on the V-mechanism 13 .
  • the V mechanism 13 is used to support the leveling table 11 and adjust the inclination and height of the leveling table 11 .
  • the V-mechanism 13 is a set of at least three electric cylinders that support the leveling table 11 .
  • a sensor 16 for grasping the positional relationship between the internal mechanism 10 and the floating body 30 is arranged at the center of the lower surface of the intermediate plate 12 .
  • sensor 16 measures the distance to sensor 34 located on floating body 30 .
  • the sensor 16 may be arranged at a reference position of the internal mechanism 10 .
  • the control unit 15 includes an acceleration sensor and a gyro sensor, detects the positional deviation and tilt of the internal mechanism 10, controls the H mechanism 14 and the V mechanism 13, and adjusts the position and tilt of the leveling table 11 to desired positions and tilts. keep on tilt.
  • the acceleration sensor and the gyro sensor are preferably arranged on the intermediate plate 12 .
  • the accelerometer provides relative position movement information (distance, direction) from the past.
  • the control unit 15 controls the H mechanism 14 based on the obtained movement information to move the internal mechanism 10 to a desired position within the frame 31 .
  • the tilt information of the internal mechanism 10 is obtained by the gyro sensor.
  • the control unit 15 controls the V mechanism 13 based on the obtained tilt information to keep the tilt of the leveling table 11 at a desired angle.
  • the control unit 15 controls the V mechanism 13 based on the variation value to keep the leveling platform 11 at a desired height.
  • FIG. 2(a) shows an initial state in which the floating body 30 is floated at a desired position on the water surface 100, the internal mechanism 10 is positioned at the center of the frame 31, and the leveling table 11 is set at a desired height. Indicates status.
  • the internal mechanism 10 operates so that the position and inclination of the leveling table 11 are maintained as shown in FIG. 2(a).
  • the controller 15 controls the H mechanism 14 to move the internal mechanism 10, is controlled to adjust the inclination and height of the leveling table 11, and the position and inclination of the leveling table 11 are kept in the initial state.
  • the control unit 15 controls the H mechanism 14 to move the internal mechanism 10 rightward in the drawing, extend the V mechanism 13 on the right side of the leveling table 11, and extend the V mechanism 13 on the left side. is contracted to keep the inclination of the level maintenance table 11 horizontal.
  • a set of three V-mechanisms 13 may be provided in order to stably support the leveling table 11 . Further, by providing a plurality of sets of V-mechanisms 13 and switching the working set, the internal mechanism 10 can be continuously operated in consideration of the rated time of the V-mechanisms 13 .
  • Rated time is the time that can be operated continuously. In order to operate the V-mechanism 13 safely, it should be operated so as not to exceed the rated time and rest for the same amount of time as the operating time.
  • FIG. 3 is a plan view showing an example of the arrangement of the V mechanism 13.
  • FIG. 3 three sets of three V-mechanisms are arranged. Specifically, a total of nine electric cylinders 13A, 13B, 13C are arranged at equal intervals on a circle centered on the center of the intermediate plate 12. group, and C group. Each group is switched and operated within the rated time. For example, while A group is in operation, B group and C group are inactive, while B group is in operation, A group and C group are inactive, and while C group is in operation, A group and B group are inactive.
  • the H mechanism 14 may also be provided with a plurality of sets of three stepping motors and wheels, and the working sets may be switched.
  • the arrangement example of the V mechanism 13 in FIG. 3 can also be applied to the arrangement of the H mechanism 14 .
  • a plurality of sets of propellers 33 may also be provided, and the set of propellers 33 to be operated may be switched.
  • the standards P0 and A0 of the leveling platform 11 are set.
  • the reference P0 is the coordinates of the center of the leveling platform 11 to be maintained.
  • the coordinates of the reference P0 on the horizontal plane are the center of the frame 31 .
  • the height of the reference P0 is set according to the movable range of the V mechanism 13.
  • a horizontal maintenance start time T Sn and an end time T Fn are set.
  • the period from the horizontal maintenance start time T Sn to the end time T Fn is the horizontal maintenance period for maintaining the horizontal maintenance base 11 at a desired position and inclination.
  • a plurality of horizontal maintenance periods may be set intermittently.
  • the first horizontal maintenance period is set by horizontal maintenance start time TS1 and end time TF1
  • the second horizontal maintenance period is set by horizontal maintenance start time TS2 and end time TF2 .
  • End time T F1 ⁇ horizontal maintenance start time T S2 .
  • a period from the end time T Fn of the horizontal maintenance period to the next horizontal maintenance start time T Sn+1 is a rest period.
  • the horizontal maintenance period is set according to the observation time of the observation device placed on the horizontal maintenance table 11 or the time required for the drone to take off from the horizontal maintenance table 11 and the scheduled landing time thereafter.
  • the internal mechanism 10 is moved to the center of the frame 31.
  • the internal mechanism 10 is moved so that the sensor 16 of the internal mechanism 10 is directly above the sensor 34 arranged in the center of the frame 31 .
  • the V mechanism 13 is set to the initial height, and the leveling table 11 is arranged at the desired height.
  • the V mechanism 13 is set to the initial height, and the remaining sets of V-mechanisms 13 are set to the lowest position and rested.
  • the leveling table 11 is placed at the reference P0 position with the inclination of the reference A0, and the internal mechanism 10 starts operating to keep the leveling table 11 at the references P0 and A0.
  • the control unit 15 acquires the current time T in step S15, and determines whether or not the current time T is the horizontal maintenance period in step S16. When the current time T is between the horizontal maintenance period T Sn and the end time T Fn , it is the horizontal maintenance period.
  • step S17 the control unit 15 determines whether the operating V mechanism 13 or H mechanism 14 has exceeded the rated time.
  • step S18 the control unit 15 suspends the V mechanism 13 or H mechanism 14 that has exceeded the rated time, and sets another set of V mechanism 13 or H mechanism. Activate mechanism 14 .
  • control unit 15 executes the processing shown in the flowcharts of FIGS. do.
  • the processing after step S15 and the processing shown in the flowcharts of FIGS. 4B and 4C are repeated during the horizontal maintenance period.
  • the control unit 15 determines whether or not to end the operation in step S19.
  • the control unit 15 determines to end the operation when the current time T exceeds the end time TFn of the last horizontal maintenance period.
  • the control section 15 executes the processing shown in the flowchart of FIG. 4D.
  • the control unit 15 moves the position of the internal mechanism 10 or the floating body 30 so that the level maintenance base 11 can be maintained at the desired position and inclination when the next level maintenance period starts.
  • step S21 the control unit 15 obtains the current coordinate P of the center of the leveling table 11 based on the relative position movement information obtained from the acceleration sensor, and determines whether the current coordinate P and the reference P0 are different. Determine whether or not.
  • the reference P0 is the coordinates of the center of the leveling platform 11 to be maintained.
  • control unit 15 executes the process shown in the flowchart of FIG. 4C without controlling the H mechanism 14. Note that the processing shown in the flowchart of FIG. 4C is also executed when only the height direction positions of the coordinate P and the reference P0 are different.
  • step S22 the control unit 15 determines whether there is room for the internal mechanism 10 to move, that is, whether the internal mechanism 10 will collide with the side wall. Specifically, the control unit 15 corrects the positional deviation obtained from the acceleration sensor to the position within the frame 31 obtained from the sensor 16 , and determines whether the position of the internal mechanism 10 after correction is within the frame 31 . Determine whether or not.
  • step S23 the control unit 32 controls the propeller 33 to move the floating body 30 so that the coordinate PD of the center of the frame 31 approaches the reference P0.
  • the control unit 15 transmits the movement direction and movement amount to the control unit 32 , and the control unit 32 moves the floating body 30 based on the movement direction and movement amount received from the control unit 15 .
  • the control unit 32 moves the floating body 30 based on the movement direction and movement amount received from the control unit 15 .
  • control unit 15 executes the processing shown in the flowchart of FIG. 4C.
  • step S31 the control unit 15 obtains the current tilt A of the leveling table 11 based on the tilt information of the internal mechanism 10 obtained from the gyro sensor, and determines whether the current tilt A is different from the reference A0. do.
  • the reference A0 is the tilt of the leveling table 11 to be maintained.
  • control unit 15 advances the process to step S35.
  • step S32 the control unit 15 determines whether or not the height of the leveling table 11 has changed Vc.
  • the height change Vc is obtained from an acceleration sensor.
  • the inclination and height of the leveling table 11 are adjusted.
  • step S35 the control unit 15 determines whether or not the height of the leveling table 11 has changed Vc.
  • control unit 15 After controlling the V mechanism 13, the control unit 15 returns to step S16 in FIG. 4A and checks the rated time.
  • the process of FIG. 4B may be executed after the process of FIG. 4C, or the process of FIG. 4B and the process of FIG. 4C may be executed in parallel.
  • step S41 the control unit 15 determines whether or not the coordinate P of the center of the horizontal maintenance table 11 is a position that can be returned to the reference P0 by the next horizontal maintenance start time T Sn+1 .
  • the controller 15 moves the internal mechanism 10 toward the reference P0 in step S42. If necessary, the propeller 33 is controlled to move the floating body 30 .
  • FIG. 5 and 6 are diagrams showing modifications in which the sidewalls of the frame 31 are thickened and the photovoltaic panel 35 is installed on the upper surface of the sidewalls.
  • the frame 31 and internal mechanism 10 in FIG. 5 are circular, and the frame 31 and internal mechanism 10 in FIG. 6 are square.
  • the power generated by the photovoltaic panel 35 may be transmitted to the power supply that supplies power to the V mechanism 13 and the H mechanism 14 by wireless power supply or the like, or may be used as power for the propeller 33 of the floating body 30.
  • the frame 31 or the level maintenance table 11 may be equipped with a function for grasping the surrounding situation such as a camera, radar, or sensor, and collision avoidance may be performed when the propeller 33 is driven to move the floating body 30. .
  • FIG. 7 is a diagram showing a modification in which grooves 36 are provided on the plane of frame 31.
  • Water entering the frame 31 can be drained by providing grooves 36 that gradually become deeper in one direction.
  • grooves 36 are provided in a grid pattern.
  • the grooves 36 may be provided radially.
  • FIG. 8 shows a cross-sectional view of the side wall portion of the frame 31.
  • FIG. A drainage hole is provided where the groove 36 is at its deepest. The hole is connected to the outside of the frame 31 and has a check valve 37 at the tip of the hole. The water that has flowed through the grooves 36 is discharged out of the frame 31 through the holes.
  • FIGS. 9 and 10 are diagrams showing a modification provided with a bellows 38 connecting the leveling table 11 and the frame 31.
  • FIG. FIG. 11 is a diagram showing the state of the bellows 38 in FIGS. 9 and 10.
  • FIG. By connecting the leveling table 11 and the frame 31 with the bellows 38, the movement of the leveling table 11 is not hindered, and water or living things can be prevented from entering the frame 31. - ⁇ The bellows 38 can follow even when the leveling table 11 is tilted.
  • the level maintaining base 11 may be raised periodically, or a drain valve may be provided in the middle of the bellows 38.
  • a rod for supporting the bellows 38 may be provided, and the frame 31 may be provided with a ventilation function.
  • the floating structure 1 of this embodiment includes the floating body 30 that can float and move on the water surface and the internal mechanism 10 that can move on the floating body 30 .
  • the floating body 30 includes a frame 31 on which the internal mechanism 10 moves and a thruster 33 for moving the floating body 30 .
  • the internal mechanism 10 includes a leveling table 11, a V mechanism 13 that supports the leveling table 11 and can be expanded and contracted in the vertical direction, an H mechanism 14 for moving the plane inside the frame 31, and a position of the leveling table 11. and a controller 15 for controlling the V mechanism 13 and the H mechanism 14 in order to keep the inclination in a desired state. As a result, the leveling table 11 can be maintained at a desired position and inclination.
  • the control units 15 and 32 described above include, for example, a central processing unit (CPU) 901, a memory 902, a storage 903, a communication device 904, an input device 905, and an output device as shown in FIG. 906 can be used.
  • the control units 15 and 32 are implemented by the CPU 901 executing a predetermined program loaded on the memory 902 .
  • This program can be recorded on a computer-readable recording medium such as a magnetic disk, optical disk, or semiconductor memory, or distributed via a network.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • Ocean & Marine Engineering (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

A floating body structure 1 comprises: a floating body 30 that can move by floating on the water surface; and an internal mechanism 10 that can move on the floating body 30. The floating body 30 comprises: a frame 31 on which the internal mechanism 10 moves; and propellers 33 for moving the floating body 30. The internal mechanism 10 comprises: a horizontality-maintaining platform 11; a V mechanism 13 that supports the horizontality-maintaining platform 11 and can be extended and contracted in the vertical direction; an H mechanism 14 for moving the plane inside the frame 31; and a control unit 15 for controlling the V mechanism 13 and the H mechanism 14 in order to keep the inclination and position of the horizontality-maintaining platform 11 in a desired state.

Description

浮体構造物、制御方法、およびプログラムFLOATING STRUCTURE, CONTROL METHOD AND PROGRAM

 本発明は、浮体構造物、制御方法、およびプログラムに関する。 The present invention relates to a floating structure, control method, and program.

 水上で傾きや揺れを抑制する技術は船舶分野で研究・開発がされてきた。例えば、ビルジキール、フィンスタビライザ、アンチローリングタンク、およびジャイロスタビライザなどがその典型であり、幅広く用いられている。双胴船は船体形状により揺れを抑制し、マリンサスペンション船は船体を上部と下部に分けて、その間をサスペンションでつなぐことで揺れを抑制している。非特許文献1には、浮力によって生じる力で浮体構造物の揺れを抑える緊張係留式プラットフォームが開示されている。  Technologies for suppressing tilting and swaying on water have been researched and developed in the field of ships. For example, bilge keels, fin stabilizers, anti-rolling tanks, and gyro stabilizers are typical and widely used. A catamaran suppresses swaying due to the shape of the hull, while a marine suspension vessel suppresses swaying by dividing the hull into upper and lower parts and connecting the two with suspension. Non-Patent Document 1 discloses a tension mooring platform that suppresses the shaking of a floating structure by the force generated by buoyancy.

“TLP”、MODEC, Inc.、インターネット〈 URL:https://www.modec.com/business/floater/tlp/ 〉"TLP", MODEC, Inc., Internet < URL: https://www.modec.com/business/floater/tlp/ >

 船は進行方向以外への細かな平行移動は不可能である。つまり、船は後ろおよび横方向に進むことはできない。また、船体を大きくすると波長に比べて船体が大きくなるため波の影響を受けづらくなり揺れは小さくできるが、小型船で揺れを抑制することは難しい。 It is impossible for the ship to make small parallel movements other than in the direction of travel. That is, the ship cannot go backwards and sideways. Also, if the hull is enlarged, the hull will be larger than the wavelength, so it will be less affected by the waves and the swaying can be reduced, but it is difficult to suppress the swaying in a small ship.

 緊張係留は水平方向と鉛直方向の位置変動と揺れの制御を同時にできるが、一度設置すると係留位置を変更するのは困難であるという問題があった。 Tension mooring can simultaneously control horizontal and vertical positional fluctuations and shaking, but once installed, it was difficult to change the mooring position.

 本発明は、上記に鑑みてなされたものであり、水面上の任意の位置に簡単に移動でき、台を所望の位置および傾きに保つ浮体構造物を提供することを目的とする。 The present invention has been made in view of the above, and it is an object of the present invention to provide a floating structure that can be easily moved to any position on the surface of the water and that maintains a platform at a desired position and inclination.

 本発明の一態様の浮体構造物は、水面に浮いて移動可能な浮体と浮体上の平面を移動可能な内部装置を備える浮体構造物であって、前記浮体は、前記内部装置が移動する平面と、当該浮体を移動するための推進器を備え、前記内部装置は、水平維持台と、前記水平維持台を支え、上下方向に伸縮可能な支持部と、前記平面を移動するための移動部と、前記水平維持台の位置および傾きを所望の状態に保つために前記支持部と前記移動部を制御する制御部を備える。 A floating structure according to one aspect of the present invention is a structure including a floating body that can float and move on a water surface and an internal device that can move on a plane above the floating body, wherein the floating body is a plane on which the internal device moves. and a propulsion device for moving the floating body, wherein the internal device includes a leveling table, a support section that supports the leveling table and is vertically extendable, and a moving section for moving the plane. and a control section for controlling the support section and the moving section in order to maintain the position and inclination of the leveling table in a desired state.

 本発明によれば、水面上の任意の位置に簡単に移動でき、台を所望の位置および傾きに保つ浮体構造物を提供できる。 According to the present invention, it is possible to provide a floating structure that can be easily moved to any position on the surface of the water and that keeps the platform at a desired position and inclination.

図1は、本実施形態の浮体構造物の構成の一例を示す図である。FIG. 1 is a diagram showing an example of the configuration of a floating structure according to this embodiment. 図2は、内部機構の動きの一例を説明するための図である。FIG. 2 is a diagram for explaining an example of movement of an internal mechanism. 図3は、V機構の配置の一例を示す平面図である。FIG. 3 is a plan view showing an example of the arrangement of V-mechanisms. 図4Aは、制御部の処理の流れの一例を示すフローチャートである。FIG. 4A is a flowchart illustrating an example of the flow of processing by a control unit; 図4Bは、制御部の処理の流れの一例を示すフローチャートである。FIG. 4B is a flowchart illustrating an example of the flow of processing by the control unit; 図4Cは、制御部の処理の流れの一例を示すフローチャートである。4C is a flowchart illustrating an example of the flow of processing by the control unit; FIG. 図4Dは、制御部の処理の流れの一例を示すフローチャートである。FIG. 4D is a flowchart illustrating an example of the flow of processing by the control unit; 図5は、太陽光発電パネルを設置した浮体構造物の一例を示す図である。FIG. 5 is a diagram showing an example of a floating structure on which photovoltaic panels are installed. 図6は、太陽光発電パネルを設置した浮体構造物の一例を示す図である。FIG. 6 is a diagram showing an example of a floating structure on which photovoltaic panels are installed. 図7は、排水用の溝を備えた浮体構造物の一例を示す図である。FIG. 7 is a diagram showing an example of a floating structure provided with drainage grooves. 図8は、排水用の溝の断面図である。FIG. 8 is a cross-sectional view of a drain groove. 図9は、蛇腹を備えた浮体構造物の一例を示す図である。FIG. 9 is a diagram showing an example of a floating structure having bellows. 図10は、蛇腹を備えた浮体構造物の一例を示す図である。FIG. 10 is a diagram showing an example of a floating structure having bellows. 図11は、図9および図10のときの蛇腹の様子を示す図である。FIG. 11 is a diagram showing the state of the bellows in FIGS. 9 and 10. FIG. 図12は、制御部のハードウェア構成の一例を示す図である。FIG. 12 is a diagram illustrating an example of a hardware configuration of a control unit;

 以下、本発明の実施の形態について図面を用いて説明する。なお、本発明は以下で説明する実施の形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲内において変更を加えても構わない。 Embodiments of the present invention will be described below with reference to the drawings. The present invention is not limited to the embodiments described below, and modifications may be made without departing from the scope of the present invention.

 [浮体構造物の構成]
 図1は、本実施形態の浮体構造物の構成の一例を示す図である。同図に示す浮体構造物1は、水上に浮かんで移動可能な浮体30と、浮体30上を移動可能な内部機構10を備える。内部機構10と浮体30は内部機構10上部の水平維持台11の位置および傾きを保つように動くので、位置ズレおよび揺れに弱い観測装置を設置したり、ドローンが離着陸可能な活動拠点として利用したりできる。
[Configuration of floating structure]
FIG. 1 is a diagram showing an example of the configuration of a floating structure according to this embodiment. A floating body structure 1 shown in the figure includes a floating body 30 that can float and move on water, and an internal mechanism 10 that can move on the floating body 30 . Since the internal mechanism 10 and the floating body 30 move so as to maintain the position and inclination of the leveling platform 11 on the upper part of the internal mechanism 10, it can be used as an activity base where observation equipment vulnerable to positional deviation and shaking can be installed, and drones can take off and land. can

 浮体30は、枠31、制御部32、推進器33、およびセンサ34を備える。 The floating body 30 includes a frame 31, a control section 32, a propulsion device 33, and a sensor 34.

 枠31は、内部機構10が移動する平面を備えた部材である。平面には、内部機構10と浮体30との位置関係を把握するための1つ以上のセンサ34が配置される。例えば、センサ34は、枠31の中心と、枠31の外周の近くに配置される。枠31は、平面の周囲に側壁を備えてもよい。 The frame 31 is a member with a flat surface on which the internal mechanism 10 moves. One or more sensors 34 for grasping the positional relationship between the internal mechanism 10 and the floating body 30 are arranged on the plane. For example, sensors 34 are positioned near the center of frame 31 and the perimeter of frame 31 . The frame 31 may have side walls around the plane.

 制御部32は、浮体30を移動するための推進器33を制御する。推進器33は、枠31の外側に取り付けられて、浮体30の移動のために用いられる。例えば、推進器33は、枠31の下部に取り付けられたプロペラである。浮体30は全方向に移動できるように複数の推進器33を備えてもよい。内部機構10が枠31の外周近くまで移動し、これ以上枠31内を移動できなくなると、制御部32は推進器33を駆動して浮体30を移動させ、枠31の中心が基準位置と重なるようにする。 The control unit 32 controls the propeller 33 for moving the floating body 30 . The propeller 33 is attached to the outside of the frame 31 and used to move the floating body 30 . For example, propeller 33 is a propeller attached to the bottom of frame 31 . The floating body 30 may have a plurality of propellers 33 so that it can move in all directions. When the internal mechanism 10 moves close to the outer periphery of the frame 31 and can no longer move inside the frame 31, the control unit 32 drives the propeller 33 to move the floating body 30 so that the center of the frame 31 overlaps the reference position. make it

 内部機構10は、水平維持台11、中板12、V機構13、H機構14、制御部15、およびセンサ16を備える。 The internal mechanism 10 includes a leveling table 11, a middle plate 12, a V mechanism 13, an H mechanism 14, a controller 15, and a sensor 16.

 中板12の下面にH機構14が配置される。H機構14は、内部機構10の水平位置を微調整するため、つまり内部機構10を枠31内で移動するために用いられる。例えば、H機構14は、少なくとも3本が1組となって稼働する、ステッピングモータで駆動される車輪である。車輪を駆動することで、内部機構10を枠31内で移動させる。 The H mechanism 14 is arranged on the lower surface of the intermediate plate 12 . The H mechanism 14 is used to finely adjust the horizontal position of the internal mechanism 10 , that is, to move the internal mechanism 10 within the frame 31 . For example, the H mechanism 14 is a stepping motor-driven wheel that operates in pairs of at least three. By driving the wheels, the internal mechanism 10 is moved within the frame 31 .

 中板12の上面にV機構13が配置され、V機構13の上に水平維持台11が配置される。V機構13は、水平維持台11を支えて、水平維持台11の傾きおよび高さを調整するために用いられる。例えば、V機構13は、少なくとも3本が1組となって水平維持台11を支える電動シリンダである。 A V-mechanism 13 is arranged on the upper surface of the middle plate 12 , and a leveling table 11 is arranged on the V-mechanism 13 . The V mechanism 13 is used to support the leveling table 11 and adjust the inclination and height of the leveling table 11 . For example, the V-mechanism 13 is a set of at least three electric cylinders that support the leveling table 11 .

 中板12の下面の中央に内部機構10と浮体30との位置関係を把握するためのセンサ16が配置される。例えば、センサ16は、浮体30に配置されたセンサ34との間の距離を測定する。センサ16は、内部機構10の基準となる位置に配置されればよい。 A sensor 16 for grasping the positional relationship between the internal mechanism 10 and the floating body 30 is arranged at the center of the lower surface of the intermediate plate 12 . For example, sensor 16 measures the distance to sensor 34 located on floating body 30 . The sensor 16 may be arranged at a reference position of the internal mechanism 10 .

 制御部15は、加速度センサおよびジャイロセンサを備え、内部機構10の位置ズレおよび傾きを検出し、H機構14およびV機構13を制御して、水平維持台11の位置および傾きを所望の位置および傾きに保つ。加速度センサとジャイロセンサは中板12に配置されるとよい。加速度センサにより過去の時点からの相対的な位置の移動情報(距離、方向)が得られる。制御部15は、得られた移動情報をもとにH機構14を制御して内部機構10を枠31内で所望の位置に移動させる。ジャイロセンサにより内部機構10の傾き情報が得られる。制御部15は、得られた傾き情報をもとにV機構13を制御して水平維持台11の傾きを所望の角度に保つ。加速度センサから高さの変動値を得ている場合、制御部15は、その変動値をもとにV機構13を制御して水平維持台11を所望の高さに保つ。 The control unit 15 includes an acceleration sensor and a gyro sensor, detects the positional deviation and tilt of the internal mechanism 10, controls the H mechanism 14 and the V mechanism 13, and adjusts the position and tilt of the leveling table 11 to desired positions and tilts. keep on tilt. The acceleration sensor and the gyro sensor are preferably arranged on the intermediate plate 12 . The accelerometer provides relative position movement information (distance, direction) from the past. The control unit 15 controls the H mechanism 14 based on the obtained movement information to move the internal mechanism 10 to a desired position within the frame 31 . The tilt information of the internal mechanism 10 is obtained by the gyro sensor. The control unit 15 controls the V mechanism 13 based on the obtained tilt information to keep the tilt of the leveling table 11 at a desired angle. When the height variation value is obtained from the acceleration sensor, the control unit 15 controls the V mechanism 13 based on the variation value to keep the leveling platform 11 at a desired height.

 図2を参照し、内部機構10の動きについて説明する。図2(a)は、浮体30を水面100上の所望の位置に浮かせ、内部機構10の位置を枠31の中心に配置し、水平維持台11の高さを所望の高さに設定した初期状態を示す。内部機構10は、水平維持台11の位置と傾きが図2(a)の状態を保つように動作する。 The movement of the internal mechanism 10 will be described with reference to FIG. FIG. 2(a) shows an initial state in which the floating body 30 is floated at a desired position on the water surface 100, the internal mechanism 10 is positioned at the center of the frame 31, and the leveling table 11 is set at a desired height. Indicates status. The internal mechanism 10 operates so that the position and inclination of the leveling table 11 are maintained as shown in FIG. 2(a).

 図2(b)に示すように水面100が変化し、浮体30が移動したり、傾いたりした場合、制御部15は、H機構14を制御して内部機構10を移動させるとともに、V機構13を制御して水平維持台11の傾きと高さを調整し、水平維持台11の位置と傾きを初期状態に保つ。図2(b)では、制御部15は、H機構14を制御して内部機構10を図の右方向へ移動するとともに、水平維持台11の右側のV機構13を伸ばし、左側のV機構13を縮めて水平維持台11の傾きを水平に保っている。 As shown in FIG. 2B, when the water surface 100 changes and the floating body 30 moves or tilts, the controller 15 controls the H mechanism 14 to move the internal mechanism 10, is controlled to adjust the inclination and height of the leveling table 11, and the position and inclination of the leveling table 11 are kept in the initial state. In FIG. 2B, the control unit 15 controls the H mechanism 14 to move the internal mechanism 10 rightward in the drawing, extend the V mechanism 13 on the right side of the leveling table 11, and extend the V mechanism 13 on the left side. is contracted to keep the inclination of the level maintenance table 11 horizontal.

 次に、V機構13およびH機構14の配置例について説明する。水平維持台11を安定して支えるためには3本1組のV機構13を備えるとよい。また、複数組のV機構13を備えて、稼働する組を切り替えることで、V機構13の定格時間を考慮して内部機構10を連続的に動作させることができる。定格時間とは、連続して稼働できる時間である。V機構13を安全に稼働させるためには、定格時間を超えないように稼働し、稼働時間と同じだけ休止するとよい。 Next, an arrangement example of the V mechanism 13 and the H mechanism 14 will be described. A set of three V-mechanisms 13 may be provided in order to stably support the leveling table 11 . Further, by providing a plurality of sets of V-mechanisms 13 and switching the working set, the internal mechanism 10 can be continuously operated in consideration of the rated time of the V-mechanisms 13 . Rated time is the time that can be operated continuously. In order to operate the V-mechanism 13 safely, it should be operated so as not to exceed the rated time and rest for the same amount of time as the operating time.

 図3は、V機構13の配置の一例を示す平面図である。同図では、3本1組のV機構を3組配置している。具体的には、中板12の中心を中心とする円上に全部で9本の電動シリンダ13A,13B,13Cを等間隔で並べて、電動シリンダ13A,13B,13Cを3本ずつA組、B組、およびC組に振り分けた。定格時間内で各組を切り替えて稼働させる。例えば、A組が稼働中はB組とC組が休止し、B組が稼働中はA組とC組が休止し、C組が稼働中はA組とB組が休止する。 FIG. 3 is a plan view showing an example of the arrangement of the V mechanism 13. FIG. In the figure, three sets of three V-mechanisms are arranged. Specifically, a total of nine electric cylinders 13A, 13B, 13C are arranged at equal intervals on a circle centered on the center of the intermediate plate 12. group, and C group. Each group is switched and operated within the rated time. For example, while A group is in operation, B group and C group are inactive, while B group is in operation, A group and C group are inactive, and while C group is in operation, A group and B group are inactive.

 H機構14も、V機構13と同様に、3本1組のステッピングモータと車輪を複数組備えて、稼働する組を切り替えてもよい。図3のV機構13の配置例は、H機構14の配置にも適用できる。 Similarly to the V mechanism 13, the H mechanism 14 may also be provided with a plurality of sets of three stepping motors and wheels, and the working sets may be switched. The arrangement example of the V mechanism 13 in FIG. 3 can also be applied to the arrangement of the H mechanism 14 .

 推進器33も、複数組備えて、稼働する推進器33の組を切り替えてもよい。 A plurality of sets of propellers 33 may also be provided, and the set of propellers 33 to be operated may be switched.

 なお、浮体構造物1の稼働時間が定格時間内に収まる場合、あるいは定格時間を考慮しなくてよい機構を用いる場合は、複数組の機構を備えなくてもよい。 If the operating time of the floating structure 1 falls within the rated time, or if a mechanism that does not require consideration of the rated time is used, multiple sets of mechanisms may not be provided.

 [制御部の処理]
 次に、図4Aから図4Dのフローチャートを参照し、制御部15の処理の一例について説明する。浮体30は水面上の所望の位置に配置しているものとする。
[Processing of control part]
Next, an example of the processing of the control unit 15 will be described with reference to the flowcharts of FIGS. 4A to 4D. It is assumed that the floating body 30 is arranged at a desired position on the water surface.

 ステップS11にて、水平維持台11の基準P0、A0を設定する。基準P0は、維持したい水平維持台11の中心の座標である。例えば、基準P0の水平面上の座標は枠31の中心とする。基準P0の高さはV機構13の可動範囲に応じて設定する。基準A0は、維持したい水平維持台11の角度である。角度は、例えば、水平維持台11の中心を原点とした球面座標系の水平維持台11の最も高い部分の角度で表す。水平の場合は、天頂角Θ=90度、方位角φ=0度である。 In step S11, the standards P0 and A0 of the leveling platform 11 are set. The reference P0 is the coordinates of the center of the leveling platform 11 to be maintained. For example, the coordinates of the reference P0 on the horizontal plane are the center of the frame 31 . The height of the reference P0 is set according to the movable range of the V mechanism 13. FIG. The reference A0 is the angle of the leveling platform 11 to be maintained. The angle is represented, for example, by the angle of the highest portion of the leveling table 11 in a spherical coordinate system with the center of the leveling table 11 as the origin. In the horizontal case, the zenith angle Θ=90 degrees and the azimuth angle φ=0 degrees.

 ステップS12にて、水平維持開始時刻TSnと終了時刻TFnを設定する。水平維持開始時刻TSnから終了時刻TFnまでの期間が水平維持台11を所望の位置および傾きに保つ水平維持期間である。水平維持期間は間欠的に複数個設定してもよい。例えば、1番目の水平維持期間は水平維持開始時刻TS1と終了時刻TF1で設定し、2番目の水平維持期間は水平維持開始時刻TS2と終了時刻TF2で設定する。終了時刻TF1<水平維持開始時刻TS2とする。水平維持期間の終了時刻TFnと次の水平維持開始時刻TSn+1までの間は休憩期間である。水平維持期間は、水平維持台11に載せる観測装置の観測時間、あるいは水平維持台11からドローンが飛び立つのに要する時間とその後の着陸予定時刻に応じて設定する。 At step S12, a horizontal maintenance start time T Sn and an end time T Fn are set. The period from the horizontal maintenance start time T Sn to the end time T Fn is the horizontal maintenance period for maintaining the horizontal maintenance base 11 at a desired position and inclination. A plurality of horizontal maintenance periods may be set intermittently. For example, the first horizontal maintenance period is set by horizontal maintenance start time TS1 and end time TF1 , and the second horizontal maintenance period is set by horizontal maintenance start time TS2 and end time TF2 . End time T F1 <horizontal maintenance start time T S2 . A period from the end time T Fn of the horizontal maintenance period to the next horizontal maintenance start time T Sn+1 is a rest period. The horizontal maintenance period is set according to the observation time of the observation device placed on the horizontal maintenance table 11 or the time required for the drone to take off from the horizontal maintenance table 11 and the scheduled landing time thereafter.

 ステップS13にて、内部機構10を枠31の中心に移動する。例えば、枠31の中心に配置したセンサ34の真上に内部機構10のセンサ16が来るように内部機構10を移動する。 At step S13, the internal mechanism 10 is moved to the center of the frame 31. For example, the internal mechanism 10 is moved so that the sensor 16 of the internal mechanism 10 is directly above the sensor 34 arranged in the center of the frame 31 .

 ステップS14にて、V機構13を初期の高さに設定し、水平維持台11を所望の高さに配置する。V機構13を複数組備える場合、いずれか1組のV機構13を初期の高さに設定し、残りの組のV機構13を一番低い位置に設定して休止させる。 At step S14, the V mechanism 13 is set to the initial height, and the leveling table 11 is arranged at the desired height. When a plurality of sets of V-mechanisms 13 are provided, one set of V-mechanisms 13 is set to the initial height, and the remaining sets of V-mechanisms 13 are set to the lowest position and rested.

 ステップS13およびステップS14の処理で、水平維持台11が基準A0の傾きで、基準P0の位置に配置され、内部機構10は水平維持台11を基準P0、A0に保つように動作を開始する。 In the processing of steps S13 and S14, the leveling table 11 is placed at the reference P0 position with the inclination of the reference A0, and the internal mechanism 10 starts operating to keep the leveling table 11 at the references P0 and A0.

 動作を開始すると、制御部15は、ステップS15にて、現在時刻Tを取得し、ステップS16にて、現在時刻Tが水平維持期間であるか否か判定する。現在時刻Tが水平維持期間TSnと終了時刻TFnの間のときは水平維持期間である。 When the operation is started, the control unit 15 acquires the current time T in step S15, and determines whether or not the current time T is the horizontal maintenance period in step S16. When the current time T is between the horizontal maintenance period T Sn and the end time T Fn , it is the horizontal maintenance period.

 現在時刻Tが水平維持期間の場合、ステップS17にて、制御部15は、稼働中のV機構13またはH機構14が定格時間を超えていないか判定する。 When the current time T is the horizontal maintenance period, in step S17, the control unit 15 determines whether the operating V mechanism 13 or H mechanism 14 has exceeded the rated time.

 V機構13またはH機構14が定格時間を超えた場合、ステップS18にて、制御部15は、定格時間を超えたV機構13またはH機構14を休止し、別の組のV機構13またはH機構14を稼働する。 If the V mechanism 13 or H mechanism 14 exceeds the rated time, in step S18, the control unit 15 suspends the V mechanism 13 or H mechanism 14 that has exceeded the rated time, and sets another set of V mechanism 13 or H mechanism. Activate mechanism 14 .

 現在時刻Tが水平維持期間の場合、制御部15は、図4Bおよび図4Cのフローチャートに示す処理を実行してV機構13とH機構14を制御し、水平維持台11の位置および傾きを維持する。ステップS15以降の処理、並びに図4Bおよび図4Cのフローチャートに示す処理は、水平維持期間の間繰り返される。 When the current time T is the level maintenance period, the control unit 15 executes the processing shown in the flowcharts of FIGS. do. The processing after step S15 and the processing shown in the flowcharts of FIGS. 4B and 4C are repeated during the horizontal maintenance period.

 現在時刻Tが水平維持期間ではない場合、制御部15は、ステップS19にて、動作を終了するか否か判定する。制御部15は、現在時刻Tが最後の水平維持期間の終了時刻TFnを超えた場合に動作を終了すると判定する。動作を終了しない場合、つまり、次の水平維持期間までの休憩期間の場合、制御部15は、図4Dのフローチャートに示す処理を実行する。図4Dのフローチャートに示す処理では、次の水平維持期間が始まる時点で水平維持台11を所望の位置および傾きに保つことができるように、制御部15は内部機構10または浮体30の位置を移動させる。 If the current time T is not in the horizontal maintenance period, the control unit 15 determines whether or not to end the operation in step S19. The control unit 15 determines to end the operation when the current time T exceeds the end time TFn of the last horizontal maintenance period. When the motion is not finished, that is, in the case of the rest period until the next horizontal maintenance period, the control section 15 executes the processing shown in the flowchart of FIG. 4D. In the process shown in the flowchart of FIG. 4D, the control unit 15 moves the position of the internal mechanism 10 or the floating body 30 so that the level maintenance base 11 can be maintained at the desired position and inclination when the next level maintenance period starts. Let

 続いて、図4Bを参照し、制御部15がH機構14を制御する処理の一例について説明する。 Next, with reference to FIG. 4B, an example of a process in which the control unit 15 controls the H mechanism 14 will be described.

 ステップS21にて、制御部15は、加速度センサから得られる相対的な位置の移動情報に基づいて水平維持台11の中心の現在の座標Pを求め、現在の座標Pと基準P0とが異なるか否か判定する。基準P0は、維持したい水平維持台11の中心の座標である。 In step S21, the control unit 15 obtains the current coordinate P of the center of the leveling table 11 based on the relative position movement information obtained from the acceleration sensor, and determines whether the current coordinate P and the reference P0 are different. Determine whether or not. The reference P0 is the coordinates of the center of the leveling platform 11 to be maintained.

 現在の座標Pが基準P0と同じ場合、制御部15は、H機構14を制御することなく、図4Cのフローチャートに示す処理を実行する。なお、座標Pと基準P0の高さ方向の位置だけが異なる場合も図4Cのフローチャートに示す処理を実行する。  If the current coordinate P is the same as the reference P0, the control unit 15 executes the process shown in the flowchart of FIG. 4C without controlling the H mechanism 14. Note that the processing shown in the flowchart of FIG. 4C is also executed when only the height direction positions of the coordinate P and the reference P0 are different.

 現在の座標Pと基準P0とが異なる場合、ステップS22にて、制御部15は、内部機構10の動く余地があるか否か、つまり内部機構10が側壁に衝突しないか否かを判定する。具体的には、制御部15は、センサ16から得られる枠31内での位置に加速度センサから得られた位置ズレ量を補正し、補正後の内部機構10の位置が枠31内であるか否か判定する。 If the current coordinate P and the reference P0 are different, in step S22, the control unit 15 determines whether there is room for the internal mechanism 10 to move, that is, whether the internal mechanism 10 will collide with the side wall. Specifically, the control unit 15 corrects the positional deviation obtained from the acceleration sensor to the position within the frame 31 obtained from the sensor 16 , and determines whether the position of the internal mechanism 10 after correction is within the frame 31 . Determine whether or not.

 内部機構10の動く余地がない場合、ステップS23にて、制御部32は、枠31の中心の座標PDを基準P0に近づけるように、推進器33を制御して浮体30を移動させる。例えば、制御部15が移動方向と移動量を制御部32へ送信し、制御部32は制御部15から受信した移動方向と移動量に基づいて浮体30を移動させる。浮体30を基準P0に近づけることで、内部機構10の動く余地ができる。 If there is no room for the internal mechanism 10 to move, in step S23 the control unit 32 controls the propeller 33 to move the floating body 30 so that the coordinate PD of the center of the frame 31 approaches the reference P0. For example, the control unit 15 transmits the movement direction and movement amount to the control unit 32 , and the control unit 32 moves the floating body 30 based on the movement direction and movement amount received from the control unit 15 . By bringing the floating body 30 closer to the reference P0, there is room for the internal mechanism 10 to move.

 ステップS24にて、制御部15は、H機構14を制御して、P=P0となるように、内部機構10を移動する。 At step S24, the control unit 15 controls the H mechanism 14 to move the internal mechanism 10 so that P=P0.

 制御部15は、H機構14を制御すると、図4Cのフローチャートに示す処理を実行する。 After controlling the H mechanism 14, the control unit 15 executes the processing shown in the flowchart of FIG. 4C.

 続いて、図4Cを参照し、制御部15がV機構13を制御する処理の一例について説明する。 Next, with reference to FIG. 4C, an example of processing for controlling the V mechanism 13 by the control unit 15 will be described.

 ステップS31にて、制御部15は、ジャイロセンサから得られる内部機構10の傾き情報に基づいて水平維持台11の現在の傾きAを求め、現在の傾きAと基準A0とが異なるか否か判定する。基準A0は、維持したい水平維持台11の傾きである。 In step S31, the control unit 15 obtains the current tilt A of the leveling table 11 based on the tilt information of the internal mechanism 10 obtained from the gyro sensor, and determines whether the current tilt A is different from the reference A0. do. The reference A0 is the tilt of the leveling table 11 to be maintained.

 現在の傾きAが基準A0と同じ場合、制御部15は、処理をステップS35に進める。 If the current inclination A is the same as the reference A0, the control unit 15 advances the process to step S35.

 現在の傾きAと基準A0とが異なる場合、ステップS32にて、制御部15は、水平維持台11の高さに変化Vcがあるか否か判定する。高さの変化Vcは、加速度センサから得られる。 When the current inclination A and the reference A0 are different, in step S32, the control unit 15 determines whether or not the height of the leveling table 11 has changed Vc. The height change Vc is obtained from an acceleration sensor.

 現在の傾きAと基準A0とが異なり、高さに変化Vcがある場合、ステップS33にて、制御部15は、V機構13を制御して、A=A0かつVc=0となるように、水平維持台11の傾きと高さを調整する。 If the current inclination A is different from the reference A0 and there is a change Vc in the height, in step S33 the control unit 15 controls the V mechanism 13 so that A=A0 and Vc=0. The inclination and height of the leveling table 11 are adjusted.

 現在の傾きAと基準A0とが異なる場合、ステップS34にて、制御部15は、V機構13を制御して、A=A0となるように、水平維持台11の傾きを調整する。 When the current tilt A and the reference A0 are different, in step S34, the control unit 15 controls the V mechanism 13 to adjust the tilt of the leveling table 11 so that A=A0.

 一方、現在の傾きAが基準A0と同じ場合、ステップS35にて、制御部15は、水平維持台11の高さに変化Vcがあるか否か判定する。 On the other hand, if the current inclination A is the same as the reference A0, in step S35, the control unit 15 determines whether or not the height of the leveling table 11 has changed Vc.

 高さに変化Vcがある場合、ステップS36にて、制御部15は、V機構13を制御して、Vc=0となるように、水平維持台11の高さを調整する。 When there is a change Vc in height, in step S36, the control unit 15 controls the V mechanism 13 to adjust the height of the leveling table 11 so that Vc=0.

 制御部15は、V機構13を制御すると、図4AのステップS16に戻り、定格時間のチェックを行う。 After controlling the V mechanism 13, the control unit 15 returns to step S16 in FIG. 4A and checks the rated time.

 なお、図4Cの処理の後に図4Bの処理が実行されてもよいし、図4Bの処理と図4Cの処理が並列で実行されてもよい。 The process of FIG. 4B may be executed after the process of FIG. 4C, or the process of FIG. 4B and the process of FIG. 4C may be executed in parallel.

 続いて、図4Dを参照し、休憩期間における制御部15の処理の一例について説明する。 Next, with reference to FIG. 4D, an example of processing of the control unit 15 during the rest period will be described.

 ステップS41にて、制御部15は、水平維持台11の中心の座標Pが次の水平維持開始時刻TSn+1までに基準P0に戻せる位置であるか否か判定する。 In step S41, the control unit 15 determines whether or not the coordinate P of the center of the horizontal maintenance table 11 is a position that can be returned to the reference P0 by the next horizontal maintenance start time T Sn+1 .

 内部機構10が基準P0に戻せない位置にいる場合、ステップS42にて、制御部15は、基準P0に向けて内部機構10を移動させる。必要であれば、推進器33を制御して浮体30を移動させる。 When the internal mechanism 10 is at a position where it cannot be returned to the reference P0, the controller 15 moves the internal mechanism 10 toward the reference P0 in step S42. If necessary, the propeller 33 is controlled to move the floating body 30 .

 [変形例]
 次に、浮体構造物1の変形例について説明する。
[Modification]
Next, a modified example of the floating structure 1 will be described.

 図5および図6は、枠31の側壁を厚くして、側壁の上面に太陽光発電パネル35を設置した変形例を示す図である。図5の枠31と内部機構10は円形、図6の枠31と内部機構10は四角形である。 5 and 6 are diagrams showing modifications in which the sidewalls of the frame 31 are thickened and the photovoltaic panel 35 is installed on the upper surface of the sidewalls. The frame 31 and internal mechanism 10 in FIG. 5 are circular, and the frame 31 and internal mechanism 10 in FIG. 6 are square.

 太陽光発電パネル35によって発電された電力は、V機構13とH機構14に給電する電源へ無線給電などで送電してもよいし、浮体30の推進器33の電力として用いてもよい。 The power generated by the photovoltaic panel 35 may be transmitted to the power supply that supplies power to the V mechanism 13 and the H mechanism 14 by wireless power supply or the like, or may be used as power for the propeller 33 of the floating body 30.

 枠31または水平維持台11にカメラ、レーダ、あるいはセンサなどの周辺状況を把握するための機能を搭載し、推進器33を駆動して浮体30を移動させる際に衝突回避を実施してもよい。 The frame 31 or the level maintenance table 11 may be equipped with a function for grasping the surrounding situation such as a camera, radar, or sensor, and collision avoidance may be performed when the propeller 33 is driven to move the floating body 30. .

 図7は、枠31の平面に溝36を備えた変形例を示す図である。一方向に向かって徐々に深くなる溝36を備えることで枠31内に進入する水を排水できる。図7の例では溝36を格子状に設けている。溝36を放射状に設けてもよい。 FIG. 7 is a diagram showing a modification in which grooves 36 are provided on the plane of frame 31. FIG. Water entering the frame 31 can be drained by providing grooves 36 that gradually become deeper in one direction. In the example of FIG. 7, grooves 36 are provided in a grid pattern. The grooves 36 may be provided radially.

 図8に、枠31の側壁部分の断面図を示す。溝36が一番深くなる場所に排水用の穴を設ける。穴は枠31の外部に繋がり、穴の先に逆流防止弁37を備える。溝36を流れた水は穴から枠31の外へ排出される。 8 shows a cross-sectional view of the side wall portion of the frame 31. FIG. A drainage hole is provided where the groove 36 is at its deepest. The hole is connected to the outside of the frame 31 and has a check valve 37 at the tip of the hole. The water that has flowed through the grooves 36 is discharged out of the frame 31 through the holes.

 図9および図10は、水平維持台11と枠31とを繋ぐ蛇腹38を備えた変形例を示す図である。図11は、図9および図10のときの蛇腹38の様子を示す図である。水平維持台11と枠31とを蛇腹38で繋ぐことで、水平維持台11の移動を妨げることなく、枠31内に水または生物などの侵入を防止できる。水平維持台11を傾ける場合も蛇腹38は追従可能である。 9 and 10 are diagrams showing a modification provided with a bellows 38 connecting the leveling table 11 and the frame 31. FIG. FIG. 11 is a diagram showing the state of the bellows 38 in FIGS. 9 and 10. FIG. By connecting the leveling table 11 and the frame 31 with the bellows 38, the movement of the leveling table 11 is not hindered, and water or living things can be prevented from entering the frame 31. - 特許庁The bellows 38 can follow even when the leveling table 11 is tilted.

 蛇腹38の谷の部分に水が溜まることを防ぐため、定期的に水平維持台11を上昇させてもよいし、蛇腹38の中腹に排水弁を備えてもよい。なお、蛇腹38を支える棒を備えてもよいし、枠31内に換気機能を備えてもよい。 In order to prevent water from accumulating in the trough portion of the bellows 38, the level maintaining base 11 may be raised periodically, or a drain valve may be provided in the middle of the bellows 38. A rod for supporting the bellows 38 may be provided, and the frame 31 may be provided with a ventilation function.

 以上説明したように、本実施形態の浮体構造物1は、水面に浮いて移動可能な浮体30と浮体30上を移動可能な内部機構10を備える。浮体30は、内部機構10が移動する枠31と、浮体30を移動するための推進器33を備える。内部機構10は、水平維持台11と、水平維持台11を支え、上下方向に伸縮可能なV機構13と、枠31内の平面を移動するためのH機構14と、水平維持台11の位置および傾きを所望の状態に保つためにV機構13とH機構14を制御する制御部15を備える。これにより、水平維持台11を所望の位置および傾きに保つことができる。その結果、水平維持台11に位置ズレや揺れに弱い観測装置を設置して観測を行ったり、水平維持台11をドローンが離着陸可能な活動拠点として利用できたりする。また、非係留のため浮体構造物1は任意の位置に移動可能であり、柔軟な観測が行える。 As described above, the floating structure 1 of this embodiment includes the floating body 30 that can float and move on the water surface and the internal mechanism 10 that can move on the floating body 30 . The floating body 30 includes a frame 31 on which the internal mechanism 10 moves and a thruster 33 for moving the floating body 30 . The internal mechanism 10 includes a leveling table 11, a V mechanism 13 that supports the leveling table 11 and can be expanded and contracted in the vertical direction, an H mechanism 14 for moving the plane inside the frame 31, and a position of the leveling table 11. and a controller 15 for controlling the V mechanism 13 and the H mechanism 14 in order to keep the inclination in a desired state. As a result, the leveling table 11 can be maintained at a desired position and inclination. As a result, it is possible to install an observation device that is vulnerable to position shift and shaking on the level maintenance platform 11 for observation, and to use the level maintenance platform 11 as an activity base from which drones can take off and land. In addition, since the floating structure 1 is not moored, it can be moved to any position, and flexible observation can be performed.

 上記説明した制御部15,32には、例えば、図12に示すような、中央演算処理装置(CPU)901と、メモリ902と、ストレージ903と、通信装置904と、入力装置905と、出力装置906とを備える汎用的なコンピュータシステムを用いることができる。このコンピュータシステムにおいて、CPU901がメモリ902上にロードされた所定のプログラムを実行することにより、制御部15,32が実現される。このプログラムは磁気ディスク、光ディスク、半導体メモリなどのコンピュータ読み取り可能な記録媒体に記録することも、ネットワークを介して配信することもできる。 The control units 15 and 32 described above include, for example, a central processing unit (CPU) 901, a memory 902, a storage 903, a communication device 904, an input device 905, and an output device as shown in FIG. 906 can be used. In this computer system, the control units 15 and 32 are implemented by the CPU 901 executing a predetermined program loaded on the memory 902 . This program can be recorded on a computer-readable recording medium such as a magnetic disk, optical disk, or semiconductor memory, or distributed via a network.

 1 浮体構造物
 10 内部機構
 11 水平維持台
 12 中板
 13 V機構
 14 H機構
 15 制御部
 16 センサ
 30 浮体
 31 枠
 32 制御部
 33 推進器
 34 センサ
 35 太陽光発電パネル
 36 溝
 37 逆流防止弁
 38 蛇腹
1 Floating Structure 10 Internal Mechanism 11 Leveling Table 12 Middle Plate 13 V Mechanism 14 H Mechanism 15 Controller 16 Sensor 30 Floating Body 31 Frame 32 Controller 33 Propeller 34 Sensor 35 Photovoltaic Panel 36 Groove 37 Check Valve 38 Bellows

Claims (8)

 水面に浮いて移動可能な浮体と浮体上の平面を移動可能な内部装置を備える浮体構造物であって、
 前記浮体は、
  前記内部装置が移動する平面と、
  当該浮体を移動するための推進器を備え、
 前記内部装置は、
  水平維持台と、
  前記水平維持台を支え、上下方向に伸縮可能な支持部と、
  前記平面を移動するための移動部と、
  前記水平維持台の位置および傾きを所望の状態に保つために前記支持部と前記移動部を制御する制御部を備える
 浮体構造物。
A floating structure comprising a floating body that can float and move on the surface of water and an internal device that can move on a plane above the floating body,
The floating body is
a plane in which the internal device moves;
Equipped with a propulsion device for moving the floating body,
The internal device is
a leveling table;
a support part that supports the leveling table and is vertically expandable;
a moving part for moving the plane;
A floating structure comprising a control section that controls the support section and the moving section in order to maintain the position and inclination of the leveling table in a desired state.
 請求項1に記載の浮体構造物であって、
 前記制御部は、前記内部装置が前記平面の外周に達して移動できない場合に前記浮体を移動する
 浮体構造物。
The floating structure according to claim 1,
The control unit moves the floating body when the internal device reaches the outer periphery of the plane and cannot move.
 請求項1または2に記載の浮体構造物であって、
 前記支持部は少なくとも3本以上の電動シリンダであり、
 前記移動部は少なくとも3つ以上の車輪である
 浮体構造物。
The floating structure according to claim 1 or 2,
The support portion is at least three electric cylinders,
The floating structure, wherein the moving part is at least three wheels.
 請求項3に記載の浮体構造物であって、
 前記支持部は複数組の電動シリンダを定格時間内で切り替えて動作し、
 前記移動部は複数組の車輪を定格時間内で切り替えて動作する
 浮体構造物。
The floating structure according to claim 3,
The support unit operates by switching between a plurality of sets of electric cylinders within a rated time,
A floating structure in which the moving part operates by switching a plurality of sets of wheels within a rated time.
 請求項1ないし4のいずれかに記載の浮体構造物であって、
 前記浮体と前記水平維持台とを繋ぐ蛇腹を備える
 浮体構造物。
A floating structure according to any one of claims 1 to 4,
A floating structure comprising a bellows that connects the floating body and the leveling platform.
 水面に浮いて移動可能な浮体と浮体上の平面を移動可能な内部装置を備える浮体構造物の制御方法であって、
 コンピュータが、
 前記内部装置に配置した加速度センサの測定値に基づいて、前記内部装置を前記浮体上で移動し、
 前記内部装置に配置したジャイロセンサの測定値に基づいて、前記内部装置の備える水平維持台を支える支持部を制御する
 制御方法。
A control method for a floating structure comprising a floating body that can float and move on a water surface and an internal device that can move on a plane above the floating body,
the computer
moving the internal device on the floating body based on the measurement value of an acceleration sensor arranged in the internal device;
A control method, comprising: controlling a support section for supporting a leveling table included in the internal device based on a measurement value of a gyro sensor arranged in the internal device.
 請求項6に記載の制御方法であって、
 前記コンピュータは、
 前記内部装置が前記平面の外周に達して移動できない場合に前記浮体を移動する
 制御方法。
The control method according to claim 6,
The computer is
A control method for moving the floating body when the internal device reaches the outer periphery of the plane and cannot move.
 請求項6または7に記載の制御方法をコンピュータに実行させるプログラム。 A program that causes a computer to execute the control method according to claim 6 or 7.
PCT/JP2021/046481 2021-12-16 2021-12-16 Floating body structure, control method, and program WO2023112246A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/JP2021/046481 WO2023112246A1 (en) 2021-12-16 2021-12-16 Floating body structure, control method, and program
JP2023567425A JPWO2023112246A1 (en) 2021-12-16 2021-12-16

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2021/046481 WO2023112246A1 (en) 2021-12-16 2021-12-16 Floating body structure, control method, and program

Publications (1)

Publication Number Publication Date
WO2023112246A1 true WO2023112246A1 (en) 2023-06-22

Family

ID=86773835

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/046481 WO2023112246A1 (en) 2021-12-16 2021-12-16 Floating body structure, control method, and program

Country Status (2)

Country Link
JP (1) JPWO2023112246A1 (en)
WO (1) WO2023112246A1 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59161101A (en) * 1983-02-14 1984-09-11 トラコ−,ベイ,インコ−ポレ−テツド Stable antenna unit with accelerating moving mass
JPS6317194A (en) * 1986-07-10 1988-01-25 Sumitomo Heavy Ind Ltd Omnidirectional anti-sway supporting device
JPS63255193A (en) * 1987-04-13 1988-10-21 Kayaba Ind Co Ltd Horizontal movement prevention device of cabin
JPH0450093A (en) * 1990-06-18 1992-02-19 Kanto Auto Works Ltd Water heliport
US20050230537A1 (en) * 2004-01-28 2005-10-20 Chouery Farid A Stabilizing surface for flight deck or other uses
US20100224118A1 (en) * 2006-12-15 2010-09-09 Vidar Hovland Helicopter landing platform having motion stabilizer for compensating ship roll and/or pitch
US20140070052A1 (en) * 2012-09-13 2014-03-13 Electronics And Telecommunications Research Institute Smart helipad for supporting landing of vertical takeoff and landing aircraft, system including the smart helipad, and method of providing the smart helipad
CN105173024A (en) * 2015-09-26 2015-12-23 哈尔滨工程大学 Three-freedom-degree hydraulic drive heavy load stabilizing platform
KR20170018727A (en) * 2015-08-10 2017-02-20 대우조선해양 주식회사 Movable type helideck
CN108914788A (en) * 2018-06-21 2018-11-30 送飞实业集团有限公司 A kind of helideck moves induction type to positive elasticity landing plate
JP2020117099A (en) * 2019-01-24 2020-08-06 三幸セミコンダクター株式会社 Water surface floating facility

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59161101A (en) * 1983-02-14 1984-09-11 トラコ−,ベイ,インコ−ポレ−テツド Stable antenna unit with accelerating moving mass
JPS6317194A (en) * 1986-07-10 1988-01-25 Sumitomo Heavy Ind Ltd Omnidirectional anti-sway supporting device
JPS63255193A (en) * 1987-04-13 1988-10-21 Kayaba Ind Co Ltd Horizontal movement prevention device of cabin
JPH0450093A (en) * 1990-06-18 1992-02-19 Kanto Auto Works Ltd Water heliport
US20050230537A1 (en) * 2004-01-28 2005-10-20 Chouery Farid A Stabilizing surface for flight deck or other uses
US20100224118A1 (en) * 2006-12-15 2010-09-09 Vidar Hovland Helicopter landing platform having motion stabilizer for compensating ship roll and/or pitch
US20140070052A1 (en) * 2012-09-13 2014-03-13 Electronics And Telecommunications Research Institute Smart helipad for supporting landing of vertical takeoff and landing aircraft, system including the smart helipad, and method of providing the smart helipad
KR20170018727A (en) * 2015-08-10 2017-02-20 대우조선해양 주식회사 Movable type helideck
CN105173024A (en) * 2015-09-26 2015-12-23 哈尔滨工程大学 Three-freedom-degree hydraulic drive heavy load stabilizing platform
CN108914788A (en) * 2018-06-21 2018-11-30 送飞实业集团有限公司 A kind of helideck moves induction type to positive elasticity landing plate
JP2020117099A (en) * 2019-01-24 2020-08-06 三幸セミコンダクター株式会社 Water surface floating facility

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
GISING ANDREAS: "MALLS -Mobile Automatic Launch and Landing Station for VTOL UAVs ", EXAMENSARBETE LINKÖPING UNIVERSITET, 18 December 2008 (2008-12-18), pages 1 - 41, XP093073405 *
NIWA, SHO: "Active Vibration Compensation for Catwalk by Hydraulic Parallel Mechanism", JOURNAL OF GRADUATE SCHOOL OF ENGINEERING & DESIGN, vol. 7, March 2018 (2018-03-01), XP009546461 *
VIKRANTH DABBIRU RAVI, SARMA ANURAG, PATEL BRIJESH, , : "Compensating Ship Deck Movement under Influence of Wind Waves Using 6 DOF Stewart Platform", INTERNATIONAL JOURNAL OF COMPUTER SCIENCE TRENDS AND TECHNOLOGY, vol. 8, no. 2, 1 March 2020 (2020-03-01), pages 87 - 94, XP093073388, ISSN: 2347-8578 *

Also Published As

Publication number Publication date
JPWO2023112246A1 (en) 2023-06-22

Similar Documents

Publication Publication Date Title
US10996676B2 (en) Proactive directional control systems and methods
US9073605B2 (en) Boat with active suspension system
CN104890830B (en) Deep water dynamic positioning semisubmersible platform tuning heave plate, which subtracts to shake to subtract, swings control system
CN107719595B (en) Composite ocean platform anti-rolling system and method
JP2017025511A (en) Movable pier
WO2016109601A1 (en) Proactive directional control systems and methods
KR101217527B1 (en) Balance keeping crane and vessel with the crane
WO2023112246A1 (en) Floating body structure, control method, and program
KR101112131B1 (en) Dual deck vessel
KR101141594B1 (en) Balance keeping crane and vessel with the crane
CN114802587A (en) Active displacement compensation type hyperstable four-body ship
CN115107946A (en) Active roll reduction method for offshore floating platform
US7123201B2 (en) Radar antenna leveling system
KR101141593B1 (en) Dual boom structure, dual boom crane and vessel with the crane
KR102054885B1 (en) Ship chair responding to movement of ship
JP2846015B2 (en) Semi-submersible type catamaran floating ship
JP2024510639A (en) Ship vibration damper system
CN214451685U (en) Stabilizing device for top-layer viewing platform of mail steamer
JP7300151B2 (en) Acoustic communication method and acoustic communication system by attitude control of floating body
KR20190111169A (en) Helideck
CN220391469U (en) Marine platform based on swing arm structure
KR102632997B1 (en) A bed for a drone
KR101185920B1 (en) Ship for marine operating
AU2023285664A1 (en) Adaptive light for a watercraft
CN117621846A (en) Self-adaptive AGV trolley for logistics on ship and self-adaptive method thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21968161

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2023567425

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21968161

Country of ref document: EP

Kind code of ref document: A1