WO2023106743A1 - Frictional force quantification system - Google Patents
Frictional force quantification system Download PDFInfo
- Publication number
- WO2023106743A1 WO2023106743A1 PCT/KR2022/019475 KR2022019475W WO2023106743A1 WO 2023106743 A1 WO2023106743 A1 WO 2023106743A1 KR 2022019475 W KR2022019475 W KR 2022019475W WO 2023106743 A1 WO2023106743 A1 WO 2023106743A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- frictional force
- force
- magnitude
- quantification system
- frictional
- Prior art date
Links
- 230000033001 locomotion Effects 0.000 claims description 22
- 238000011002 quantification Methods 0.000 claims description 19
- 239000003550 marker Substances 0.000 claims description 10
- 239000003086 colorant Substances 0.000 claims description 6
- 238000000034 method Methods 0.000 claims description 6
- 230000035939 shock Effects 0.000 claims description 4
- 230000001141 propulsive effect Effects 0.000 claims description 2
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 claims 4
- 229910052709 silver Inorganic materials 0.000 claims 4
- 239000004332 silver Substances 0.000 claims 4
- 230000037396 body weight Effects 0.000 claims 1
- 230000000694 effects Effects 0.000 description 11
- 238000010586 diagram Methods 0.000 description 7
- 244000007853 Sarothamnus scoparius Species 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 239000004575 stone Substances 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 230000006870 function Effects 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 239000000155 melt Substances 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 238000005070 sampling Methods 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 1
- 230000000386 athletic effect Effects 0.000 description 1
- 230000037147 athletic performance Effects 0.000 description 1
- 239000003822 epoxy resin Substances 0.000 description 1
- 239000000284 extract Substances 0.000 description 1
- 230000009191 jumping Effects 0.000 description 1
- 239000000314 lubricant Substances 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 210000003205 muscle Anatomy 0.000 description 1
- 229920000647 polyepoxide Polymers 0.000 description 1
- 230000003746 surface roughness Effects 0.000 description 1
- 230000000007 visual effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L5/00—Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
- G01L5/0028—Force sensors associated with force applying means
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L1/00—Measuring force or stress, in general
- G01L1/24—Measuring force or stress, in general by measuring variations of optical properties of material when it is stressed, e.g. by photoelastic stress analysis using infrared, visible light, ultraviolet
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L19/00—Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
- G01L19/08—Means for indicating or recording, e.g. for remote indication
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L19/00—Details of, or accessories for, apparatus for measuring steady or quasi-steady pressure of a fluent medium insofar as such details or accessories are not special to particular types of pressure gauges
- G01L19/08—Means for indicating or recording, e.g. for remote indication
- G01L19/083—Means for indicating or recording, e.g. for remote indication electrical
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L5/00—Apparatus for, or methods of, measuring force, work, mechanical power, or torque, specially adapted for specific purposes
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N19/00—Investigating materials by mechanical methods
- G01N19/02—Measuring coefficient of friction between materials
Definitions
- the present disclosure relates to a system for quantifying frictional force, and more specifically, to a system for quantifying and expressing the main frictional force of a section supported on the ground during various sports activities such as running.
- Friction is one of the important factors in sports. Friction is a force that opposes the motion of objects, and occurs on surfaces where two objects come into contact. The magnitude of the frictional force acts opposite to the direction of motion and depends on the surface roughness of the object and the weight of the object. The key to performance is to use the friction force well when an athlete on snow or ice speeds up, stops, or changes direction or turns.
- Synthetic plastic skis have a lower thermal conductivity than metal skis, so they can melt more snow relatively, allowing them to achieve higher speeds.
- Short track athletes which is one of the representative ice skating events that compete for speed in 0.001 second increments, it is important for athletes to reduce friction to maintain speed even when going around a curved section.
- Short track athletes increase the centripetal force, a force opposite to the centrifugal force, by moving their hands in the direction of rotation to overcome the centrifugal force that tries to bounce out of the curve.
- a representative example of utilizing frictional force in sports is a skate blade. Skate blades are thin and sharp. The pressure increases as the force applied per contact surface increases or the area to which the force is applied becomes narrower, and as the pressure increases, the ice turns into a water state.
- the frictional force quantification system displays the frictional force at every moment when the frictional force is generated by accumulating arrows, and standardizes the size and direction of the frictional force according to a standard.
- the main frictional force of the section supported on the ground during running and various sports activities is quantified and expressed.
- the maximum value and the average value of the measured frictional force are displayed in different colors, so that the size and location of the frictional force can be more visually and intuitively grasped.
- a system for quantifying frictional force includes a camera for photographing motion of an analysis object including a player; A reflective marker attached to the foot to generate three-dimensional coordinates; a calculation module for calculating frictional force using the direction and magnitude of the applied force based on the shape of the sole indicated by each reflective marker; An analysis module that analyzes the calculated frictional force according to the location and magnitude of the frictional force; and an output module outputting a display including arrows and colors corresponding to the location and magnitude of the analyzed frictional force.
- the frictional force quantification system as described above accurately measures the magnitude and location of the frictional force generated on the ground during various sports activities including walking and running, and simplifies the representative value (maximum value, average value) and 8 directions, so that it can be used in various sports activities.
- the frictional force generated can be quantified.
- FIG. 1 is a diagram showing the configuration of a system for quantifying frictional force according to an embodiment
- FIG. 2 is a view showing a camera and a ground reaction force device according to an embodiment
- FIG. 3 is a diagram showing requirements for calculating frictional force in a system for quantifying frictional force according to an embodiment
- FIG. 4 is a diagram showing a direction of quantifying frictional force and a final output of quantifying frictional force according to an embodiment
- FIG. 5 is a view showing an example of frictional force analysis output of a frictional force quantification system according to an embodiment
- FIG. 6 is a view showing an embodiment of measuring ground reaction force
- FIG. 7 is a view showing an embodiment in which the landing section and the propulsion section are divided according to the form of the ground reaction force while the feet are supported on the ground.
- a system for quantifying frictional force includes a camera for photographing motion of an analysis object including a player; A reflective marker attached to the foot to generate three-dimensional coordinates; a calculation module for calculating frictional force using the direction and magnitude of the applied force based on the shape of the sole indicated by each reflective marker; An analysis module that analyzes the calculated frictional force according to the location and magnitude of the frictional force; and an output module outputting a display including arrows and colors corresponding to the location and magnitude of the analyzed frictional force.
- FIG. 1 is a diagram showing the configuration of a system for quantifying frictional force according to an embodiment.
- the frictional force quantification system includes a camera 10, a reflective marker 100, a ground reaction force 200, a calculation module 300, an analysis module 400, and an output module 500.
- a module' used in this specification should be interpreted as including software, hardware, or a combination thereof, depending on the context in which the term is used.
- the software may be machine language, firmware, embedded code, and application software.
- the hardware may be a circuit, processor, computer, integrated circuit, integrated circuit core, sensor, micro-electro-mechanical system (MEMS), passive device, or combination thereof.
- MEMS micro-electro-mechanical system
- the camera 100 photographs the movement of an analysis object such as a player whose frictional force is to be measured.
- the frictional force quantification system includes two or more infrared cameras and sets a sampling rate of at least 100 Hz to capture motion.
- the reflective marker 100 is attached to the foot to generate three-dimensional coordinates and measures the direction and magnitude of the force applied to the attached area.
- the reflection marker 100 may be in the form of a sphere having a diameter of 1 cm to 2 cm, and sensing components of force constituting frictional force such as a motion measuring sensor, a muscle force measuring sensor, a speed measuring sensor, and an acceleration measuring sensor. It can be composed of the sensors necessary for
- the ground reaction force device 200 senses forces acting on the human body during motion including impact force, propulsion force, and ground reaction force.
- the ground reaction force device 200 of the frictional force quantification system is a device that can measure force applied when the body moves, such as walking or running. For example, in athletics, the force at the start and running time can be precisely measured, and in the baseball game, the pressure when the foot is stepped on during pitching and batting can be measured.
- the ground reaction force may be measured by setting the sampling rate of the ground reaction force device 200 to at least 1000 Hz or more.
- an infrared camera is installed around where sports motions such as running are performed, and the motion is induced so that the supporting foot is positioned on the ground reaction force. Thereafter, the frictional force is calculated by obtaining the 3D positional coordinates of the six reflective markers shown in FIG. 3 (b) attached to the feet or shoes.
- the calculation module 300 calculates the position of the foot with each reflective marker and calculates the frictional force using the direction and magnitude of the applied force based on the shape of the foot. In the embodiment, the calculation module 300 calculates the magnitude of the frictional force as the magnitude of the horizontal force compared to the vertical force pressing the ground vertically. In an embodiment, the calculation module 300 may receive data sensed by the ground reaction force 200 and calculate the frictional force by using a force component according to the direction of the ground reaction force. Components of the force according to the direction of the ground reaction force may include left and right ground reaction force Fx, front and rear ground reaction force Fy, and vertical ground reaction force Fz. The magnitude of the frictional force is calculated as the magnitude of the horizontal ground reaction force relative to the vertical ground reaction force that presses the ground vertically according to Equation 1.
- the calculation module 300 calculates the frictional force by calculating the three-dimensional ground reaction force (Fx; left and right ground reaction force, Fy: front and rear ground reaction force, Fz: vertical ground reaction force) shown in FIG. 3 (a) and FIG. ), the direction of the frictional force can be set to the direction of the segmental position of the foot and the direction of the horizontal ground reaction force. Also, in the embodiment, the calculation module 300 may display the magnitude of the applied frictional force as a friction coefficient (horizontal force versus vertical force).
- the analysis module 400 analyzes the calculated frictional force according to the applied position and magnitude of the frictional force. For example, as shown in (c) of FIG. 4, the analysis module 400 classifies the direction of the frictional force into 8 directions to generate a frictional force expression section, and the position and size of the maximum frictional force and average frictional force applied to the expression section , analyze the direction.
- the expression section may include a landing section for absorbing impact and a propulsion section for applying propulsive force.
- the output module 500 outputs a visual display including arrows and colors corresponding to the location and magnitude of the analyzed frictional force.
- the output module 500 may set a representative value of the frictional force that can be calculated at every moment in the section supported on the ground and display the set representative value. Referring to FIG. 4 , the output module 500 according to the embodiment displays the landing zone D and the tracking distance E along with the friction force quantification index, and also displays a picture F corresponding to the operation at the moment of friction force analysis. can be printed together.
- the frictional force quantification system matches the direction of the arrow to the direction of frictional force, the length of the arrow to the magnitude of frictional force, and the starting point of the arrow to the point of force applied to the ground. It is possible to indicate the section supporting the .
- the maximum value and the average value of the frictional force may be output in different colors. For example, the maximum value of the frictional force may be output in red and the average value in blue.
- the meaning of matching the arrow color, character, arrow direction, and length displayed by the output module according to the embodiment shown in FIG. 4 is as follows.
- (B) PL 1.5 requires (requires) maximum (red) frictional force (friction coefficient) of 1.5 times the vertical force in the PL direction (in the direction of 45 degrees outside the back of the right foot) in the landing section (B), which is the shock absorbing section.
- PL 1.0 requires an average (blue) frictional force (friction coefficient) of 1.0 times the vertical force in the AM-PL direction (45 degrees outward from the back of the right foot) in the landing section (B), which is the shock absorbing section (required) do) can be interpreted as (P)
- a 2.5 means that a maximum (red) frictional force (friction coefficient) of 2.5 times the vertical force is required (required) in the A direction (front direction based on the right foot) in the propulsion section (P).
- a 1.5 means that an average (blue) friction force (friction coefficient) of 1.5 times the vertical force is required (required) in the A direction (front direction based on the right foot) in the landing section (P), which is the shock absorbing section.
- FIG. 5 is a diagram showing an example of an output of frictional force analysis of a system for quantifying frictional force according to an embodiment.
- the system for quantifying frictional force segments the photographed motion, extracts the coordinates of the location where the force is applied, maps the extracted coordinates to each point P, and calculates the horizontal ground reaction force at each point. and the vertical ground reaction force can be represented by an arrow.
- FIG. 6 is a diagram showing an embodiment of measuring ground reaction force.
- the ground reaction force may be measured in three dimensions at every moment (0.001 second), and the measured ground reaction force may be converted into a graph over time and displayed.
- FIG. 7 is a view showing an embodiment in which a landing section and a propulsion section are divided according to the form of ground reaction force while the feet are supported on the ground.
- the analysis module of the frictional force quantification system generates a graph of frictional force change over time, and divides the frictional force presenting section into a landing section and a propulsion section in the generated graph and analyzes it.
- friction change graphs of various motions including running, jumping, and rotation may be generated and analyzed.
- the frictional force quantification system expresses the frictional force at every moment by accumulating arrows, standardizes the magnitude and direction of the frictional force according to standards, and sets and displays the representative value of the frictional force, thereby determining the magnitude and location of the frictional force generated during sports motion.
- the frictional force quantification system accurately measures the magnitude and location of the frictional force generated on the ground during various sports activities, including walking and running, and simplifies the representative value (maximum value, average value) and 8 directions to determine the frictional force generated in various sports activities. can be quantified.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Automation & Control Theory (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Measurement Of The Respiration, Hearing Ability, Form, And Blood Characteristics Of Living Organisms (AREA)
Abstract
Description
본 개시는 마찰력 정량화 시스템에 관한 것으로 구체적으로, 달리기 등 다양한 스포츠 동작 중 지면에 지지하는 구간의 주요 마찰력을 정량화 하여 표출하는 시스템에 관한 것이다. The present disclosure relates to a system for quantifying frictional force, and more specifically, to a system for quantifying and expressing the main frictional force of a section supported on the ground during various sports activities such as running.
본 명세서에서 달리 표시되지 않는 한, 이 섹션에 설명되는 내용들은 이 출원의 청구항들에 대한 종래 기술이 아니며, 이 섹션에 포함된다고 하여 종래 기술이라고 인정되는 것은 아니다.Unless otherwise indicated herein, material described in this section is not prior art to the claims in this application, and inclusion in this section is not an admission that it is prior art.
마찰력은 스포츠에서 중요한 요소 중 하나다. 마찰력이란 물체의 운동을 방해하는 힘으로, 두 물체가 서로 맞닿는 표면에서 발생한다. 마찰력의 크기는 운동 방향과 반대로 작용하고, 물체 표면 거칠기와 물체 무게에 따라 좌우된다. 눈이나 얼음 위에서 경기하는 선수가 속도를 내거나 정지할 때, 또는 진행 방향을 바꾸거나 회전할 때 마찰력을 잘 이용하는 것이 경기력의 관건이다.Friction is one of the important factors in sports. Friction is a force that opposes the motion of objects, and occurs on surfaces where two objects come into contact. The magnitude of the frictional force acts opposite to the direction of motion and depends on the surface roughness of the object and the weight of the object. The key to performance is to use the friction force well when an athlete on snow or ice speeds up, stops, or changes direction or turns.
스키 선수의 경우 스키 바닥과 눈 사이에서 마찰에 의한 열이 발생한다. 이 열이 눈을 녹이고 스키가 잘 미끄러진다. 스키 재질로 합성 플라스틱이 주로 사용되는 것도 비슷한 이유다. 합성 플라스틱 스키는 금속 재질 스키보다 열전도율이 낮기 때문에 상대적으로 눈을 더 많이 녹일 수 있어 더 빠른 속도를 낼 수 있게 해준다.In the case of a skier, heat is generated by friction between the bottom of the ski and the snow. This heat melts the snow and the skis glide well. It is for a similar reason that synthetic plastics are mainly used as ski materials. Synthetic plastic skis have a lower thermal conductivity than metal skis, so they can melt more snow relatively, allowing them to achieve higher speeds.
스톤과 빗자루라는 독특한 조합의 빙상 종목인 컬링도 마찰력이 승패를 좌우한다고 해도 과언이 아닌 경기다. 컬링 선수들은 전략에 따라 스톤을 더 멀리 보내기도, 가깝게 보내기도 해야 하는데 이 과정에서 마찰력을 조절하기 위해 빗자루를 쓴다. 빗자루로 얼음판을 문질러 생기는 마찰열로 얼음을 녹이면 스톤이 더 멀리 뻗어간다.It is no exaggeration to say that curling, an ice event with a unique combination of stone and broom, is also a game where friction determines victory or defeat. Curling players have to send stones farther or closer depending on their strategy, and in this process, they use brooms to control friction. When the ice is melted by the frictional heat generated by rubbing the ice sheet with a broom, the stone extends farther.
0.001초 단위로 속도를 다투는 대표적인 빙상 종목 중 하나인 쇼트트랙의 경우 선수는 곡선 구간을 돌 때도 속도를 유지하기 위해 마찰을 줄이는 게 중요하다. 쇼트트랙 선수는 곡선 주로에서 밖으로 튕겨 나가려는 원심력을 이기기 위해 회전 방향으로 손을 짚으면서 원심력과 반대 방향 힘인 구심력을 높인다. 또한, 마찰력을 스포츠에 활용하는 대표적인 예는 스케이트 날이다. 스케이트날은 가늘고 날카롭다. 압력은 접촉면당 가해지는 힘이 커지거나 힘을 가하는 면적이 좁을수록 커지며 압력이 증가하면 얼음은 물 상태가 된다. 날카로운 스케이트 날에 사람의 몸무게가 실리면 접촉면의 얼음이 순간적으로 녹아서 물이 된다. 그 물이 스케이트 날과 얼음판 사이의 윤활유 역할을 하게 되어 마찰력은 줄어들고 속도가 나게 된다. 네덜란드 스피드스케이팅 선수들은 클랩 스케이트를 주로 활용하는데 클랩 스케이트는 얼음을 지치고 몸을 앞으로 이동하는 순간, 스케이트화의 뒷굽에서 날이 분리되고 발을 떼어도 얼음판에 스케이트 날이 붙어 있어서 날과 얼음 사이의 마찰을 줄여주고 선수는 체력부담을 덜면서 속도를 유지할 수 있도록 해 준다. 이러한 클랩 스케이트를 활용하여 네덜란드는 스피드스케이팅 강국으로 부상하게 되었다. 쇼트트랙 선수의 착용장갑에도 마찰력을 줄이기 위해 손가락 끝을 매끄러운 에폭시 수지로 감싼다. 이를 통해 쇼트트랙선수들은 곡선 구간을 돌 때 몸을 옆으로 기울여서 넘어지는 것을 방지하기 위해 장갑을 착용한다. 이렇게 마찰력을 정확하게 측정하고 컨트롤 하는 경우 경기력 향상에 많은 도움이 되지만, 운동 중 발생하는 마찰력을 정확하게 측정하는 시스템 및 측정 지표가 부재한 실정이다. In the case of short track, which is one of the representative ice skating events that compete for speed in 0.001 second increments, it is important for athletes to reduce friction to maintain speed even when going around a curved section. Short track athletes increase the centripetal force, a force opposite to the centrifugal force, by moving their hands in the direction of rotation to overcome the centrifugal force that tries to bounce out of the curve. In addition, a representative example of utilizing frictional force in sports is a skate blade. Skate blades are thin and sharp. The pressure increases as the force applied per contact surface increases or the area to which the force is applied becomes narrower, and as the pressure increases, the ice turns into a water state. When a person's weight is placed on a sharp skate blade, the ice on the contact surface instantly melts into water. The water acts as a lubricant between the skate blade and the ice sheet, reducing friction and increasing speed. Dutch speed skaters mainly use clap skates. As soon as the body moves forward after tiring the ice, the blade separates from the heel of the skate and the skate blade stays on the ice even when the foot is removed, so friction between the blade and the ice occurs. It reduces the load and allows the athlete to maintain speed while relieving physical strain. Utilizing these clap skates, the Netherlands emerged as a speed skating powerhouse. The fingertips are wrapped with smooth epoxy resin to reduce friction even in the gloves worn by short track athletes. Through this, short track athletes wear gloves to prevent falling by leaning their bodies sideways when going around a curved section. In this way, accurate measurement and control of frictional force is very helpful in improving athletic performance, but there is no system and measurement index for accurately measuring frictional force generated during exercise.
실시예에 따른 마찰력 정량화 시스템은 마찰력이 발생하는 매 순간의 마찰력을 화살표를 누적하여 표시하고, 마찰력 크기와 방향을 기준에 따라 표준화한다. 또한, 마찰력 대표값을 설정하여 달리기 및 다양한 스포츠 동작 중 지면에 지지하는 구간의 주요 마찰력을 정량화하여 표출한다. The frictional force quantification system according to the embodiment displays the frictional force at every moment when the frictional force is generated by accumulating arrows, and standardizes the size and direction of the frictional force according to a standard. In addition, by setting representative values of frictional force, the main frictional force of the section supported on the ground during running and various sports activities is quantified and expressed.
또한, 측정된 마찰력의 최대값과 평균값을 색으로 다르게 표시하여, 마찰력 크기와 발생 위치를 보다 가시적이고 직관적으로 파악할 수 있도록 한다.In addition, the maximum value and the average value of the measured frictional force are displayed in different colors, so that the size and location of the frictional force can be more visually and intuitively grasped.
실시예에 따른 마찰력 정량화 시스템은 선수를 포함하는 분석객체의 움직임을 촬영하는 카메라; 발에 부착되어 3차원 위치 좌표를 생성하는 반사마커; 각각의 반사 마커로 표시된 발바닥 모양을 기준으로 가해진 힘의 방향과 크기를 이용하여 마찰력을 산출하는 산출모듈; 산출된 마찰력을 마찰력이 가해진 위치와 크기에 따라 분석하는 분석모듈; 및 분석된 마찰력의 위치와 크기에 대응하는 화살표, 색을 포함하는 디스플레이를 출력하는 출력 모듈; 을 포함한다. A system for quantifying frictional force according to an embodiment includes a camera for photographing motion of an analysis object including a player; A reflective marker attached to the foot to generate three-dimensional coordinates; a calculation module for calculating frictional force using the direction and magnitude of the applied force based on the shape of the sole indicated by each reflective marker; An analysis module that analyzes the calculated frictional force according to the location and magnitude of the frictional force; and an output module outputting a display including arrows and colors corresponding to the location and magnitude of the analyzed frictional force. includes
이상에서와 같은 마찰력 정량화 시스템은 보행 및 달리기를 비롯한 다양한 스포츠 동작 수행 시 지면에서 발생하는 마찰력의 크기와 위치를 정확하게 측정하고 대표값(최대값, 평균값)과 8방향으로 간소화함으로써, 다양한 스포츠 동작에서 발생하는 마찰력을 정량화 시킬 수 있다. The frictional force quantification system as described above accurately measures the magnitude and location of the frictional force generated on the ground during various sports activities including walking and running, and simplifies the representative value (maximum value, average value) and 8 directions, so that it can be used in various sports activities. The frictional force generated can be quantified.
스포츠 동작과 성과에 많은 영향을 미치는 마찰력의 발생 위치와 크기를 정량화 함으로써, 스포츠 동작의 효율성과 경기력을 향상시킬 수 있으며, 요구되는 마찰력의 적용을 통해 동작의 안정성을 높이고 미끄러짐으로 인한 낙상 등의 상해를 예방하는데 활용할 수 있다.By quantifying the location and magnitude of the friction force that greatly affects sports motion and performance, the efficiency and performance of sports motion can be improved. can be used to prevent
본 발명의 효과는 상기한 효과로 한정되는 것은 아니며, 본 발명의 상세한 설명 또는 특허청구범위에 기재된 발명의 구성으로부터 추론 가능한 모든 효과를 포함하는 것으로 이해되어야 한다.The effects of the present invention are not limited to the above effects, and should be understood to include all effects that can be inferred from the detailed description of the present invention or the configuration of the invention described in the claims.
도 1은 실시예에 따른 마찰력 정량화 시스템 구성을 나타낸 도면1 is a diagram showing the configuration of a system for quantifying frictional force according to an embodiment;
도 2는 실시예에 따른 카메라와 지면반력기를 나타낸 도면2 is a view showing a camera and a ground reaction force device according to an embodiment;
도 3은 실시예에 따른 마찰력 정량화 시스템에서 마찰력 산출 필요조건을 나타낸 도면3 is a diagram showing requirements for calculating frictional force in a system for quantifying frictional force according to an embodiment;
도 4는 실시예에 따른 마찰력 정량화 방향 및 마찰력 정량화 최종 출력을 나타낸 도면4 is a diagram showing a direction of quantifying frictional force and a final output of quantifying frictional force according to an embodiment;
도 5은 실시예에 따른 마찰력 정량화 시스템의 마찰력 분석 출력 예를 나타낸 도면5 is a view showing an example of frictional force analysis output of a frictional force quantification system according to an embodiment;
도 6은 지면 반력 측정 실시예를 나타낸 도면6 is a view showing an embodiment of measuring ground reaction force;
도 7은 발이 지면에 지지하는 동안 지면반력의 형태에 따라 착지구간과 추진구간으로 구분한 실시예를 나타낸 도면7 is a view showing an embodiment in which the landing section and the propulsion section are divided according to the form of the ground reaction force while the feet are supported on the ground.
실시예에 따른 마찰력 정량화 시스템은 선수를 포함하는 분석객체의 움직임을 촬영하는 카메라; 발에 부착되어 3차원 위치 좌표를 생성하는 반사마커; 각각의 반사 마커로 표시된 발바닥 모양을 기준으로 가해진 힘의 방향과 크기를 이용하여 마찰력을 산출하는 산출모듈; 산출된 마찰력을 마찰력이 가해진 위치와 크기에 따라 분석하는 분석모듈; 및 분석된 마찰력의 위치와 크기에 대응하는 화살표, 색을 포함하는 디스플레이를 출력하는 출력 모듈; 을 포함한다. A system for quantifying frictional force according to an embodiment includes a camera for photographing motion of an analysis object including a player; A reflective marker attached to the foot to generate three-dimensional coordinates; a calculation module for calculating frictional force using the direction and magnitude of the applied force based on the shape of the sole indicated by each reflective marker; An analysis module that analyzes the calculated frictional force according to the location and magnitude of the frictional force; and an output module outputting a display including arrows and colors corresponding to the location and magnitude of the analyzed frictional force. includes
본 발명의 이점 및 특징, 그리고 그것들을 달성하는 방법은 첨부되는 도면과 함께 상세하게 후술되어 있는 실시 예들을 참조하면 명확해질 것이다. 그러나 본 발명은 이하에서 개시되는 실시 예들에 한정되는 것이 아니라 서로 다른 다양한 형태로 구현될 수 있으며, 단지 본 실시 예들은 본 발명의 개시가 완전하도록 하고, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 발명의 범주를 완전하게 알려주기 위해 제공되는 것이며, 본 발명은 청구항의 범주에 의해 정의될 뿐이다. 명세서 전체에 걸쳐 동일 도면부호는 동일 구성 요소를 지칭한다.Advantages and features of the present invention, and methods for achieving them, will become clear with reference to the embodiments described below in detail in conjunction with the accompanying drawings. However, the present invention is not limited to the embodiments disclosed below, but may be implemented in various different forms, and only the present embodiments make the disclosure of the present invention complete, and common knowledge in the art to which the present invention belongs It is provided to fully inform the holder of the scope of the invention, and the present invention is only defined by the scope of the claims. Like reference numerals designate like elements throughout the specification.
본 발명의 실시 예들을 설명함에 있어서 공지 기능 또는 구성에 대한 구체적인 설명이 본 발명의 요지를 불필요하게 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명을 생략할 것이다. 그리고 후술되는 용어들은 본 발명의 실시 예에서의 기능을 고려하여 정의된 용어들로서 이는 사용자, 운용자의 의도 또는 관례 등에 따라 달라질 수 있다. 그러므로 그 정의는 본 명세서 전반에 걸친 내용을 토대로 내려져야 할 것이다.In describing the embodiments of the present invention, if it is determined that a detailed description of a known function or configuration may unnecessarily obscure the subject matter of the present invention, the detailed description will be omitted. In addition, terms to be described below are terms defined in consideration of functions in the embodiments of the present invention, which may vary according to the intention or custom of a user or operator. Therefore, the definition should be made based on the contents throughout this specification.
도 1은 실시예에 따른 마찰력 정량화 시스템 구성을 나타낸 도면이다.1 is a diagram showing the configuration of a system for quantifying frictional force according to an embodiment.
도 1을 참조하면, 실시예에 따른 마찰력 정량화 시스템은 카메라(10), 반사마커(100), 지면 반력기(200), 산출모듈(300), 분석모듈(400) 및 출력 모듈(500)을 포함하여 구성될 수 있다. 본 명세서에서 사용되는 '모듈' 이라는 용어는 용어가 사용된 문맥에 따라서, 소프트웨어, 하드웨어 또는 그 조합을 포함할 수 있는 것으로 해석되어야 한다. 예를 들어, 소프트웨어는 기계어, 펌웨어(firmware), 임베디드코드(embedded code), 및 애플리케이션 소프트웨어일 수 있다. 또 다른 예로, 하드웨어는 회로, 프로세서, 컴퓨터, 집적 회로, 집적 회로 코어, 센서, 멤스(MEMS; Micro-Electro-Mechanical System), 수동 디바이스, 또는 그 조합일 수 있다.Referring to FIG. 1 , the frictional force quantification system according to the embodiment includes a
카메라(100)는 마찰력을 측정하고자 하는 선수 등 분석객체의 움직임을 촬영한다. 실시예에 따른 마찰력 정량화 시스템은 도 2의 (a)에 도시된 바와 같이, 2대 이상의 적외선 카메라(infrared camera)를 구비하여 촬영속도(sampling rate) 최소 100 Hz로 설정하여 움직임을 촬영할 수 있다.The
반사마커(100)은 발에 부착되어 3차원 위치 좌표를 생성하고, 부착된 영역에 가해지는 힘의 방향과 크기를 측정한다. 실시예에서 반사마커(reflection marker)(100)는 지름 1cm내지2cm의 구 형태가 될 수 있고, 움직임 측정센서, 근력측정센서, 속도 측정센서, 가속 측정센서 등 마찰력을 구성하는 힘의 구성요소 센싱에 필요한 센서들로 구성될 수 있다.The
지면 반력기(200)는 충격력 추진력, 지면반력(Ground Reaction Force)을 포함하는 동작 중 인체에 작용하는 힘을 센싱 한다. 도 2의 (b)에 도시된 바와 같이, 실시예에 따른 마찰력 정량화 시스템의 지면 반력기(200)는 보행이나 주행 등 몸을 움직일 때 가해지는 힘을 측정할 수 있는 기기이다. 예를 들어 육상 경기에서는 출발 시점 및 주행 시점 에서의 힘을 정밀하게 측정할 수 있고, 야구 경기에서는 피칭과 배팅 시에 발을 밟았을 때의 압력 등을 측정할 수 있다. 실시예에서는 지면반력기(200)의 샘플링 속도(sampling rate)를 최소 1000 Hz 이상으로 설정하여 지면 반력을 측정할 수 있다. 실시예에서는 달리기를 비롯한 스포츠 동작이 수행되는 주변에 적외선 카메라를 설치하고, 지지하는 발이 지면 반력기 위에 위치하도록 동작을 유도한다. 이후, 발 또는 신발에 부착한 도 3의 (b)에 도시된 6개의 반사 마커에 대한 3차원 위치 좌표를 획득하여 마찰력을 산출하도록 한다. The ground reaction force device 200 senses forces acting on the human body during motion including impact force, propulsion force, and ground reaction force. As shown in (b) of FIG. 2 , the ground reaction force device 200 of the frictional force quantification system according to the embodiment is a device that can measure force applied when the body moves, such as walking or running. For example, in athletics, the force at the start and running time can be precisely measured, and in the baseball game, the pressure when the foot is stepped on during pitching and batting can be measured. In the embodiment, the ground reaction force may be measured by setting the sampling rate of the ground reaction force device 200 to at least 1000 Hz or more. In the embodiment, an infrared camera is installed around where sports motions such as running are performed, and the motion is induced so that the supporting foot is positioned on the ground reaction force. Thereafter, the frictional force is calculated by obtaining the 3D positional coordinates of the six reflective markers shown in FIG. 3 (b) attached to the feet or shoes.
산출모듈(300)은 각각의 반사 마커로 발의 위치를 계산하고 발 모양을 기준으로 가해진 힘의 방향과 크기를 이용하여 마찰력을 산출한다. 실시예에서 산출모듈(300)은 마찰력 크기는 지면을 수직으로 누르는 수직힘 대비 수평힘의 크기로 산출한다. 실시예에서 산출모듈(300)은 지면 반력기(200)에서 센싱된 데이터를 전달받아, 지면 반력의 방향에 따른 힘의 구성요소를 활용하여 마찰력을 산출할 수 있다. 지면 반력의 방향에 따른 힘의 구성요소에는 좌우 지면반력 Fx, 전후 지면반력 Fy 및 수직 지면반력 Fz 이 포함될 수 있다. 마찰력의 크기는 수학식 1에 따라 지면을 수직으로 누르는 수직 지면 반력에 대한 수평 지면 반력의 크기로 산출한다.The
수학식 1 Equation 1
RCOF=Horizontal GRF(Fx, Fy)/Vertical GRF(Fz)RCOF=Horizontal GRF(Fx, Fy)/Vertical GRF(Fz)
Horizontal GRF=sqrt((Fx)2+(Fy)2)Horizontal GRF=sqrt((Fx) 2 +(Fy) 2 )
GRF: 지면반력(ground reaction forces),GRF: ground reaction forces,
RCOF: 필요한 마찰계수(Required coefficient of friction)RCOF: Required coefficient of friction
도 3은 실시예에 따른 마찰력 정량화 시스템에서 마찰력 산출 필요조건을 나타낸 도면이다. 실시예에서는 산출모듈(300)은 마찰력 산출 시 도 3의 (a)에 도시된 3차원 지면반력 (Fx; 좌우 지면반력, Fy: 전후 지면반력, Fz: 수직 지면반력) 과 도 3의 (b)에 도시된 발 분절 위치를 이용하여, 마찰력의 방향을 발의 분절 위치와 수평 지면 반력의 방향으로 설정할 수 있다. 또한, 실시예에서 산출모듈(300)은 가해진 마찰력의 크기를 마찰계수(수직 힘 대비 수평 힘)로 표시할 수 있다.3 is a diagram showing requirements for calculating frictional force in a system for quantifying frictional force according to an embodiment. In the embodiment, the
분석모듈(400)은 산출된 마찰력을 마찰력이 가해진 위치와 크기에 따라 분석한다. 예컨대, 분석모듈(400)은 도 4의 (c)에 도시된 바와 같이, 마찰력의 방향을 8방향으로 분류하여 마찰력 표출구간을 생성하고, 표출구간에 가해지는 최대마찰력, 평균마찰력의 위치, 크기, 방향을 분석한다. 실시예에서 표출구간은 충격을 흡수하는 착지구간과 추진력을 가하는 추진구간을 포함할 수 있다.The
출력 모듈(500)은 분석된 마찰력의 위치와 크기에 대응하는 화살표, 색을 포함하는 시각적 디스플레이를 출력한다. 출력 모듈(500)은 지면에 지지하는 구간에서 매 순간 산출 가능한 마찰력의 대표값을 설정하고 설정한 대표값을 표시할 수 있다. 도 4를 참조하면, 실시예에 따른 출력모듈(500)은 마찰력 정량화 지표와 함께, 착지구간(D)과 추친구간(E)을 표시하고 마찰력 분석 순간의 동작에 해당하는 사진(F)도 함께 출력할 수 있다.The
도 4를 참조하면, 실시예에 따른 마찰력 정량화 시스템은 화살표 방향은 마찰력 방향으로, 화살표 길이는 마찰력 크기로, 화살표 시작점은 지면에 가한 힘점으로 매칭하고, 약 0.01초의 화살표를 연속적으로 표기하여 발이 지면을 지지하고 있는 구간을 표시할 수 있다. 또한, 마찰력 최대값과 평균값은 색을 달리하여 출력할 수 있다. 예컨대, 마찰력 최대값은 붉은색으로, 평균값은 파란색으로 출력할 수 있다. 도 4에 도시된 실시예에 따른 출력 모듈이 표시한 화살표 색, 문자, 화살표 방향, 길이에 매칭된 의미는 다음과 같다. (B) PL 1.5는 충격흡수 구간인 착지구간(B)에서 PL 방향(오른발 기준 뒤쪽 외측 45도 방향)으로 수직힘 대비 1.5배의 최대(빨간색) 마찰력(마찰계수)이 요구된다(필요하다)는 의미이다. (B) PL 1.0은 충격흡수 구간인 착지구간(B)에서 AM - PL 방향(오른발 기준 뒤쪽 외측 45도 방향)으로 수직힘 대비 1.0배의 평균(파란색) 마찰력(마찰계수)이 요구된다(필요하다)로 해석할 수 있다. (P) A 2.5는 추진구간(P)에서 A 방향(오른발 기준 앞쪽 방향)으로 수직힘 대비 2.5배의 최대(빨간색) 마찰력(마찰계수)이 요구된다(필요하다)의 의미이다. (P) A 1.5는 충격흡수 구간인 착지구간(P)에서 A 방향(오른발 기준 앞쪽 방향)으로 수직힘 대비 1.5배의 평균(파란색) 마찰력(마찰계수)이 요구된다(필요하다)는 의미로 해석할 수 있다. Referring to FIG. 4, the frictional force quantification system according to the embodiment matches the direction of the arrow to the direction of frictional force, the length of the arrow to the magnitude of frictional force, and the starting point of the arrow to the point of force applied to the ground. It is possible to indicate the section supporting the . In addition, the maximum value and the average value of the frictional force may be output in different colors. For example, the maximum value of the frictional force may be output in red and the average value in blue. The meaning of matching the arrow color, character, arrow direction, and length displayed by the output module according to the embodiment shown in FIG. 4 is as follows. (B) PL 1.5 requires (requires) maximum (red) frictional force (friction coefficient) of 1.5 times the vertical force in the PL direction (in the direction of 45 degrees outside the back of the right foot) in the landing section (B), which is the shock absorbing section. is the meaning (B) PL 1.0 requires an average (blue) frictional force (friction coefficient) of 1.0 times the vertical force in the AM-PL direction (45 degrees outward from the back of the right foot) in the landing section (B), which is the shock absorbing section (required) do) can be interpreted as (P) A 2.5 means that a maximum (red) frictional force (friction coefficient) of 2.5 times the vertical force is required (required) in the A direction (front direction based on the right foot) in the propulsion section (P). (P) A 1.5 means that an average (blue) friction force (friction coefficient) of 1.5 times the vertical force is required (required) in the A direction (front direction based on the right foot) in the landing section (P), which is the shock absorbing section. can be interpreted
도 5는 실시예에 따른 마찰력 정량화 시스템의 마찰력 분석 출력 예를 나타낸 도면이다.5 is a diagram showing an example of an output of frictional force analysis of a system for quantifying frictional force according to an embodiment.
도 5를 참조하면, 실시예에 따른 마찰력 정량화 시스템은 촬영된 움직임을 분절하고, 힘이 가해지는 위치 좌표를 추출하고 추출된 좌표를 각 포인트(P)로 매핑하여, 각 포인트 에서의 수평 지면 반력과 수직 지면 반력을 화살표로 표현할 수 있다.Referring to FIG. 5 , the system for quantifying frictional force according to the embodiment segments the photographed motion, extracts the coordinates of the location where the force is applied, maps the extracted coordinates to each point P, and calculates the horizontal ground reaction force at each point. and the vertical ground reaction force can be represented by an arrow.
도 6은 지면 반력 측정 실시예를 나타낸 도면이다. 6 is a diagram showing an embodiment of measuring ground reaction force.
도 6을 참조하면, 실시예에서는 지면 반력을 매순간(0.001초) 3차원으로 측정하여, 측정된 지면 반력을 시간에 따른 그래프로 변환하여 디스플레이 할 수 있다. Referring to FIG. 6 , in the embodiment, the ground reaction force may be measured in three dimensions at every moment (0.001 second), and the measured ground reaction force may be converted into a graph over time and displayed.
도 7은 발이 지면에 지지하는 동안 지면반력의 형태에 따라 착지구간과 추진구간으로 구분한 실시예를 나타낸 도면이다.7 is a view showing an embodiment in which a landing section and a propulsion section are divided according to the form of ground reaction force while the feet are supported on the ground.
도 7을 참조하면, 실시예에 따른 마찰력 정량화 시스템의 분석모듈은 시간에 따른 마찰력 변화 그래프를 생성하고, 생성된 그래프에서 마찰력 제시 구간을 착지구간과 추진구간으로 구분하여 분석할 수 있다. 실시예에서는 러닝(Running), 점핑(jumping), 회전(Rotation)을 포함하는 다양한 움직임의 마찰력 변화그래프를 생성하고, 분석할 수 있다.Referring to FIG. 7 , the analysis module of the frictional force quantification system according to the embodiment generates a graph of frictional force change over time, and divides the frictional force presenting section into a landing section and a propulsion section in the generated graph and analyzes it. In the embodiment, friction change graphs of various motions including running, jumping, and rotation may be generated and analyzed.
실시예에 따른 마찰력 정량화 시스템은 매 순간의 마찰력을 화살표를 누적시켜 표출하고, 마찰력 크기와 방향은 기준에 따라 표준화하며, 마찰력 대표값을 설정하여 표시함으로써 스포츠 동작 중 발생하는 마찰력의 크기와 위치를 정확하게 측정하고 측정 결과에 기반하여 신발, 장갑 등 스포츠 용품을 설계 가능하게 함으로써, 선수들의 경기력을 대폭 향상시킬 수 있다.The frictional force quantification system according to the embodiment expresses the frictional force at every moment by accumulating arrows, standardizes the magnitude and direction of the frictional force according to standards, and sets and displays the representative value of the frictional force, thereby determining the magnitude and location of the frictional force generated during sports motion. By accurately measuring and designing sporting goods such as shoes and gloves based on the measurement results, players' performance can be greatly improved.
스포츠 동작과 성과에 많은 영향을 미치는 마찰력의 발생 위치와 크기를 정확하게 측정함으로써, 선수들의 훈련 과정과 결과를 더욱 정확하게 분석할 수 있다. 이를 통해, 정확한 훈련 피드백을 제시하여 경기력 향상 및 선수 개개인의 역량 향상에 도움을 줄 수 있다. By accurately measuring the location and magnitude of the frictional force that greatly affects sports motion and performance, it is possible to more accurately analyze the training process and results of athletes. Through this, accurate training feedback can be presented to help improve performance and improve individual players' capabilities.
뿐만 아니라, 보행 및 달리기를 비롯한 다양한 스포츠 동작 수행 시 지면에서 발생하는 마찰력의 크기와 위치를 정확하게 측정하고 대표값(최대값, 평균값)과 8방향으로 간소화함으로써, 다양한 스포츠 동작에서 발생하는 마찰력을 정량화 시킬 수 있다. In addition, by accurately measuring the magnitude and location of the frictional force generated on the ground during various sports activities, including walking and running, and simplifying the representative value (maximum value, average value) and 8 directions, the frictional force generated in various sports activities is quantified. can make it
스포츠 동작과 성과에 많은 영향을 미치는 마찰력의 발생 위치와 크기를 정량화 함으로써, 스포츠 동작의 효율성과 경기력을 향상시킬 수 있으며, 요구되는 마찰력의 적용을 통해 동작의 안정성을 높이고 미끄러짐으로 인한 낙상 등의 상해를 예방하는데 활용할 수 있다.By quantifying the location and magnitude of the friction force that greatly affects sports motion and performance, the efficiency and performance of sports motion can be improved. can be used to prevent
개시된 내용은 예시에 불과하며, 특허청구범위에서 청구하는 청구의 요지를 벗어나지 않고 당해 기술분야에서 통상의 지식을 가진 자에 의하여 다양하게 변경 실시될 수 있으므로, 개시된 내용의 보호범위는 상술한 특정의 실시예에 한정되지 않는다.The disclosed content is only an example, and can be variously modified and implemented by those skilled in the art without departing from the subject matter of the claim claimed in the claims, so the protection scope of the disclosed content is limited to the specific not limited to the examples.
마찰력 정량화 시스템은 보행 및 달리기를 비롯한 다양한 스포츠 동작 수행 시 지면에서 발생하는 마찰력의 크기와 위치를 정확하게 측정하고 대표값(최대값, 평균값)과 8방향으로 간소화함으로써, 다양한 스포츠 동작에서 발생하는 마찰력을 정량화 시킬 수 있다. The frictional force quantification system accurately measures the magnitude and location of the frictional force generated on the ground during various sports activities, including walking and running, and simplifies the representative value (maximum value, average value) and 8 directions to determine the frictional force generated in various sports activities. can be quantified.
스포츠 동작과 성과에 많은 영향을 미치는 마찰력의 발생 위치와 크기를 정량화 함으로써, 스포츠 동작의 효율성과 경기력을 향상시킬 수 있으며, 요구되는 마찰력의 적용을 통해 동작의 안정성을 높이고 미끄러짐으로 인한 낙상 등의 상해를 예방하는데 활용할 수 있다.By quantifying the location and magnitude of the friction force that greatly affects sports motion and performance, the efficiency and performance of sports motion can be improved. can be used to prevent
Claims (7)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2021-0176419 | 2021-12-10 | ||
KR1020210176419A KR102669531B1 (en) | 2021-12-10 | 2021-12-10 | Friction Quantification System |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023106743A1 true WO2023106743A1 (en) | 2023-06-15 |
Family
ID=86730834
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2022/019475 WO2023106743A1 (en) | 2021-12-10 | 2022-12-02 | Frictional force quantification system |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR102669531B1 (en) |
WO (1) | WO2023106743A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014124448A (en) * | 2012-12-27 | 2014-07-07 | Casio Comput Co Ltd | Exercise information display system, exercise information display method, and exercise information display program |
US20210046356A1 (en) * | 2015-06-23 | 2021-02-18 | Ipcomm Llc | Method and Apparatus for Early Detection of Diabetic Foot Disorders by Analyzing Foot Temperature and Vertical and Shear Forces on Feet |
JP2021065393A (en) * | 2019-10-23 | 2021-04-30 | 国立大学法人広島大学 | Biological measuring system and method |
JP2021083562A (en) * | 2019-11-26 | 2021-06-03 | 東京都公立大学法人 | Information processing device, calculation method, and program |
KR20210120148A (en) * | 2020-03-24 | 2021-10-07 | 주식회사 에스에스티컴퍼니 (SSTC Co., Ltd.) | Method for analysis of exercising posture |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10069868B2 (en) | 2014-03-28 | 2018-09-04 | Intel Corporation | Systems and methods to facilitate multi-factor authentication policy enforcement using one or more policy handlers |
KR101816290B1 (en) | 2015-12-01 | 2018-01-09 | 인제대학교 산학협력단 | Power Supply System |
-
2021
- 2021-12-10 KR KR1020210176419A patent/KR102669531B1/en active Active
-
2022
- 2022-12-02 WO PCT/KR2022/019475 patent/WO2023106743A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2014124448A (en) * | 2012-12-27 | 2014-07-07 | Casio Comput Co Ltd | Exercise information display system, exercise information display method, and exercise information display program |
US20210046356A1 (en) * | 2015-06-23 | 2021-02-18 | Ipcomm Llc | Method and Apparatus for Early Detection of Diabetic Foot Disorders by Analyzing Foot Temperature and Vertical and Shear Forces on Feet |
JP2021065393A (en) * | 2019-10-23 | 2021-04-30 | 国立大学法人広島大学 | Biological measuring system and method |
JP2021083562A (en) * | 2019-11-26 | 2021-06-03 | 東京都公立大学法人 | Information processing device, calculation method, and program |
KR20210120148A (en) * | 2020-03-24 | 2021-10-07 | 주식회사 에스에스티컴퍼니 (SSTC Co., Ltd.) | Method for analysis of exercising posture |
Also Published As
Publication number | Publication date |
---|---|
KR20230087834A (en) | 2023-06-19 |
KR102669531B1 (en) | 2024-05-29 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11996002B2 (en) | System and method for physical activity performance analysis | |
US11951351B2 (en) | Exercise treadmill | |
Michahelles et al. | Sensing and monitoring professional skiers | |
JP6165736B2 (en) | System and method for supporting exercise practice | |
Holleczek et al. | Textile pressure sensors for sports applications | |
Müller et al. | Biomechanical aspects of new techniques in alpine skiing and ski-jumping | |
KR101365301B1 (en) | Device and method for characterizing movements | |
Spelmezan et al. | Real-time snowboard training system | |
Fasel et al. | Measuring spatio-temporal parameters of uphill ski-mountaineering with ski-fixed inertial sensors | |
US10500463B2 (en) | Ice skating measuring apparatus | |
Spelmezan et al. | Wearable automatic feedback devices for physical activities | |
WO2023106744A1 (en) | Shoe design system using frictional force quantification index | |
WO2023106743A1 (en) | Frictional force quantification system | |
Supej et al. | Kinematic determination of the beginning of a ski turn | |
Raschner et al. | Kinematic and kinetic analysis of slalom turns as a basis for the development of specific training methods to improve strength and endurance | |
Holleczek et al. | Recognizing turns and other snowboarding activities with a gyroscope | |
CN109675291A (en) | A kind of intelligent skate showing transfer function with exercise data | |
Holleczek et al. | Towards an interactive snowboarding assistance system | |
CN209645820U (en) | The intelligent skate of transfer function are shown with exercise data | |
Hall et al. | Dynamic displacement and pressure distribution in alpine ski boots | |
Savolainen et al. | A review of athletic energy expenditure, using skiing as a practical example | |
Sattar et al. | Body sensor networks for monitoring performances in sports: A brief overview and some new thoughts. | |
KR102300995B1 (en) | Machine learning system for 3d spatial information | |
CA3136439A1 (en) | System, method and computer-readable medium for measuring athletic performance | |
Giandolini | A simple method for determining foot strike pattern during running |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22904573 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 22904573 Country of ref document: EP Kind code of ref document: A1 |