[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2023106204A1 - フェライト系ステンレス鋼およびその製造方法 - Google Patents

フェライト系ステンレス鋼およびその製造方法 Download PDF

Info

Publication number
WO2023106204A1
WO2023106204A1 PCT/JP2022/044388 JP2022044388W WO2023106204A1 WO 2023106204 A1 WO2023106204 A1 WO 2023106204A1 JP 2022044388 W JP2022044388 W JP 2022044388W WO 2023106204 A1 WO2023106204 A1 WO 2023106204A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
stainless steel
ferritic stainless
mass
steel according
Prior art date
Application number
PCT/JP2022/044388
Other languages
English (en)
French (fr)
Inventor
佳幸 藤村
尊仁 濱田
純一 濱田
Original Assignee
日鉄ステンレス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日鉄ステンレス株式会社 filed Critical 日鉄ステンレス株式会社
Priority to CN202280073828.2A priority Critical patent/CN118234882A/zh
Priority to JP2023566272A priority patent/JPWO2023106204A1/ja
Priority to KR1020247015669A priority patent/KR20240076835A/ko
Priority to EP22904135.5A priority patent/EP4446442A1/en
Publication of WO2023106204A1 publication Critical patent/WO2023106204A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/26Ferrous alloys, e.g. steel alloys containing chromium with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/002Heat treatment of ferrous alloys containing Cr
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0236Cold rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0257Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment with diffusion of elements, e.g. decarburising, nitriding
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/005Ferrous alloys, e.g. steel alloys containing rare earths, i.e. Sc, Y, Lanthanides
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/008Ferrous alloys, e.g. steel alloys containing tin
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/004Dispersions; Precipitations
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite

Definitions

  • the present invention relates to ferritic stainless steel and its manufacturing method.
  • Ferritic stainless steel which is used for catalyst carriers for purifying exhaust gases (including electrically heated types) mounted on automobiles and motorcycles (including electrically heated types), stove combustion cylinders, and combustion gas exhaust systems in plants, has high oxidation resistance at high temperatures. high temperature oxidation) is required.
  • Patent Document 1 discloses a high-Al-containing ferritic stainless steel with further improved high-temperature oxidation resistance.
  • the high Al content ferritic stainless steel disclosed in Patent Document 1 contains 15-25% Cr and 4.5-6.0% Al. Furthermore, by suppressing the amounts of Mn and Si added, Mn and Si are reduced, and by containing Mo as an essential element, the high-temperature oxidation resistance of the high-Al-containing ferritic stainless steel is improved.
  • An object of one aspect of the present invention is to realize a ferritic stainless steel that is excellent in high-temperature oxidation resistance and toughness.
  • the ferritic stainless steel according to one aspect of the present invention has, in mass %, C: 0.030% or less, Si: 0.01 to 1.5%, Mn: 0.01 ⁇ 1.00%, P: 0.050% or less, S: 0.005% or less, Cr: 15.0-25.0%, Al: 2.0-4.0%, Ni: 1.00% Below, Nb: 0.01 to 0.70%, N: 0.030% or less, B: 0.0003 to 0.01%, REM: 0.01 to 0.20%, the balance being Fe and It consists of unavoidable impurities, has a dislocation density ⁇ derived using the Williamson and Hall method of 0.91 ⁇ 10 14 [m ⁇ 2 ] or more, and is examined using a scanning electron microscope in a plane perpendicular to the rolling direction.
  • Carbide having a Nb concentration of 5 wt % or more and a particle diameter of 0.1 ⁇ m or more as measured by energy dispersive X-ray analysis when the cut cross section is randomly observed at three locations in the range of 30 ⁇ m ⁇ 30 ⁇ m each.
  • the number is 2 or more and 15 or less on average.
  • a method for producing ferritic stainless steel comprising: annealing a steel strip after hot rolling; , after the final annealing step, a cold rolling step of rolling until the dislocation density ⁇ derived using the Williamson and Hall method is 0.91 ⁇ 10 14 [m ⁇ 2 ] or more.
  • ferritic stainless steel with excellent high-temperature oxidation resistance and toughness can be realized.
  • FIG. 3 is a partially enlarged schematic diagram of a cross section of an alumina layer formed by heating an exemplary ferritic stainless steel according to an embodiment at 1050° C. for 50 hours, cut in the thickness direction.
  • FIG. 4 is a partially enlarged schematic diagram of an alumina layer of a comparative example;
  • the term "stainless steel” means a stainless steel material whose specific shape is not limited. Examples of this stainless steel material include steel plates, steel pipes, bar steels, and the like.
  • “%”, which is the unit of content of each component element, means “% by mass” unless otherwise specified.
  • “A to B” indicates that A or more and B or less.
  • the ferritic stainless steel according to one embodiment of the present invention has a steel composition in mass % of C: 0.030% or less, Si: 0.01 to 1.5%, Mn: 0.01 to 1.00. %, P: 0.050% or less, S: 0.005% or less, Cr: 15.0 to 25.0%, Al: 2.0 to 4.0%, Ni: 1.00% or less, Nb: 0.01 to 0.70%, N: 0.030% or less, B: 0.0003 to 0.01%, REM: 0.01 to 0.20%.
  • the component composition has a reduced Al content compared to conventional high-Al-containing ferritic stainless steels.
  • ferritic stainless steel according to one embodiment of the present invention has the above chemical composition, it is possible to obtain a ferritic stainless steel having excellent toughness.
  • ferritic stainless steel is composed of iron (Fe) or a small amount of unavoidable impurities (inevitable impurities) other than the components shown below.
  • C is an essential element in the ferritic stainless steel according to one embodiment of the present invention.
  • C tends to cause abnormal oxidation as the content increases.
  • excessive C content deteriorates the toughness of slabs and hot coils, making it difficult to process them into plate materials by hot working. Therefore, in one aspect of the present invention, the upper limit of the C content is set to 0.030%. If the C content is 0.020% or less, the possibility of abnormal oxidation can be further reduced and workability can be improved. Considering the above reasons, the more preferable content of C is 0.002 to 0.015%.
  • Si is an element effective in improving oxidation resistance, and is an essential element in the ferritic stainless steel according to one embodiment of the present invention.
  • an excessive Si content may reduce toughness and workability. Therefore, in one aspect of the present invention, the Si content is 0.01 to 1.50%. By setting the Si content to 0.01 to 1.0%, preferably 0.01 to 0.50%, the effect as a deoxidizing agent and workability are further improved.
  • Mn is an essential element in the ferritic stainless steel according to one embodiment of the present invention.
  • an excessive Mn content may destabilize the ferrite phase and lower the high-temperature oxidation resistance. Therefore, in one aspect of the present invention, the content of Mn is 0.01 to 1.00%. By setting the Mn content to 0.01 to 0.80%, more preferably 0.01 to 0.50%, the possibility of occurrence of corrosion starting points is further reduced.
  • P is an essential element in the ferritic stainless steel according to one embodiment of the present invention.
  • an excessive P content may deteriorate the oxidation resistance and toughness of the hot-rolled sheet. Therefore, in one aspect of the present invention, the P content is specified to be 0.050% or less. By setting the P content to 0.04% or less, deterioration of workability can be further reduced. Considering the above reasons, the preferable content of P is 0.005 to 0.03%.
  • S is an essential element in the ferritic stainless steel according to one embodiment of the present invention.
  • an excessive S content may adversely affect the formation of the Al 2 O 3 film in the ferritic stainless steel, degrading the oxidation resistance. Therefore, in one aspect of the present invention, the S content is specified to be 0.005% or less. Considering the above reasons, the more preferable S content is 0.0001 to 0.002%.
  • Chromium> Cr is a basic alloying element necessary to improve the high-temperature oxidation resistance of ferritic stainless steel.
  • Cr a basic alloying element necessary to improve the high-temperature oxidation resistance of ferritic stainless steel.
  • the Cr content is specified to be 15.0 to 25.0%.
  • the Cr content is specified to be 16.0 to 22.0%, more preferably 17.0 to 20.0%, the oxidation suppressing effect and manufacturability can be further improved.
  • Al is a basic alloying element necessary to improve the high-temperature oxidation resistance of ferritic stainless steel.
  • Al is a basic alloying element necessary to improve the high-temperature oxidation resistance of ferritic stainless steel.
  • an oxide film of Al 2 O 3 is formed on the surface of the stainless steel, and oxidation of the stainless steel is suppressed.
  • the oxide film becomes denser and the adhesion to the base steel is improved, thereby suppressing the occurrence of abnormal oxidation.
  • an excessive Al content deteriorates the toughness of the stainless steel, resulting in poor manufacturability and workability. Therefore, in one aspect of the present invention, the Al content is specified as 2.0 to 4.0%.
  • the Al content is specified as 2.0 to 4.0%.
  • the Al content is specified as 2.5 to 3.7%, more preferably 2.8 to 3.5%, high-temperature oxidation resistance and manufacturability can be further improved.
  • Ni is an element that improves the corrosion resistance of ferritic stainless steel, and is an essential element in the ferritic stainless steel according to one embodiment of the present invention.
  • an excessive Ni content destabilizes the ferrite phase and increases the material cost. Therefore, in one aspect of the present invention, the Ni content is specified to be 1.00% or less. By setting the Ni content to 0.50% or less, it is possible to further suppress destabilization of the ferrite phase and an increase in production cost due to excessive Ni content. Considering the above reasons, the more preferable Ni content is 0.02 to 0.30%.
  • N is an essential element in the ferritic stainless steel according to one embodiment of the present invention.
  • the content of N is specified to be 0.030% or less.
  • the N content is 0.003 to 0.020%.
  • Nb is an element added to ensure high-temperature strength. Furthermore, Nb has the effect of promoting the formation of the Al 2 O 3 film. In addition, it suppresses recrystallization of stainless steel and refines crystal grains, thereby widening the grain boundary area. On the other hand, an excessive Nb content may deteriorate the toughness of the hot-rolled sheet.
  • B is an element that improves the secondary workability and oxidation resistance of molded products manufactured using ferritic stainless steel. On the other hand, if B is contained excessively, the compound of B becomes an inclusion (impurity).
  • REM rare earth metals refers to lanthanoid elements (elements with atomic numbers of 57 to 71, such as La, Ce, Pr, Nd, and Sm).
  • REM is an element that improves high-temperature oxidation resistance.
  • the Al oxide film is stabilized by containing a predetermined amount or more of REM. Also, by improving the adhesion between the base material and the oxide, the oxidation resistance is improved. On the other hand, an excessive REM content causes surface defects during hot rolling, resulting in lower manufacturability.
  • the Nb content is specified as 0.01 to 0.70%.
  • the Nb content By setting the Nb content to 0.05 to 0.50%, more preferably 0.08 to 0.30%, the possibility of deterioration in workability can be further reduced.
  • the upper limit of the Nb content is even more preferably 0.20% or 0.15%.
  • the content of B is defined as 0.0003 to 0.01%. By setting the content of B to 0.0003 to 0.005%, the existence of inclusions can be further reduced and the secondary workability can be improved.
  • the content of REM is defined as 0.01 to 0.20%.
  • the content of REM is preferably 0.02-0.15%, more preferably 0.04-0.10%.
  • the ferritic stainless steel according to one aspect of the present invention further contains at least one element selected from Zr, V, Cu, Mo, W, Hf, Sn, Ta, Ti, Mg, and Ca as elements other than those described above. You may select at least one element selected from Zr, V, Cu, Mo, W, Hf, Sn, Ta, Ti, Mg, and Ca as elements other than those described above. You may select at least one element selected from Zr, V, Cu, Mo, W, Hf, Sn, Ta, Ti, Mg, and Ca as elements other than those described above. You may be any element selected from Zr, V, Cu, Mo, W, Hf, Sn, Ta, Ti, Mg, and Ca as elements other than those described above. You may select at least one element selected from Zr, V, Cu, Mo, W, Hf, Sn, Ta, Ti, Mg, and Ca as elements other than those described above. You may select at least one element selected from Zr, V, Cu, Mo, W, Hf, Sn, Ta,
  • Zr Zirconium>
  • Zr is an element that improves oxidation resistance.
  • excessive addition of Zr may harden the steel and cause a decrease in toughness. Therefore, in one aspect of the present invention, 0.50% or less of Zr may be contained. Considering the reduction of hardening, etc., the Zr content is more preferably 0.01 to 0.40%.
  • V Vanadium>
  • V is an element that improves workability and weld zone toughness.
  • excessive addition of V may deteriorate the toughness of the hot-rolled sheet.
  • One aspect of the present invention may contain 0.50% or less of V. Considering the reduction of hardening, etc., the V content is more preferably 0.02 to 0.35%.
  • Cu is an element that improves the corrosion resistance of ferritic stainless steel.
  • an excessive Cu content may lead to deterioration in oxidation resistance and hot workability. Therefore, in one embodiment of the present invention, 1.0% or less of Cu may be contained. Considering material costs and the like, the Cu content is more preferably 0.01 to 0.85%.
  • Mo molybdenum> Mo is an element that improves corrosion resistance. On the other hand, if Mo is contained excessively, the steel becomes hard, the toughness is lowered, and the material cost is increased. Therefore, in one aspect of the present invention, 2.0% or less of Mo may be contained. Considering workability, material cost, etc., the Mo content is more preferably 0.01 to 1.0%.
  • W is an element added to ensure high-temperature strength.
  • an excessive W content deteriorates the toughness of the hot-rolled sheet and increases the material cost. Therefore, in one aspect of the present invention, 2.0% or less of W may be contained. Considering material costs and the like, the content of W is more preferably 0.01 to 1.0%.
  • Hf Hafnium>
  • Hf is an element that improves oxidation resistance.
  • an excessive Hf content lowers the toughness of the hot-rolled sheet and increases the material cost. Therefore, in one embodiment of the present invention, 0.50% or less Hf may be contained. Considering toughness and material cost, the Hf content is more preferably 0.001 to 0.20%.
  • Sn Tin>
  • Tin is an element that improves the corrosion resistance of ferritic stainless steel.
  • Sn is an element that improves the corrosion resistance of ferritic stainless steel.
  • the Sn content is more preferably 0.005 to 0.20%.
  • Ta Tantalum> Ta is an element that improves the cleanliness and oxidation resistance of steel.
  • an excessive Ta content lowers the toughness and increases the material cost. Therefore, in one aspect of the present invention, 0.5% or less of Ta may be contained.
  • the Ta content is preferably 0.40% or less. Considering the above reasons, the more preferable Ta content is 0.001 to 0.30%.
  • Ti reacts with C and/or N to turn ferritic stainless steel into a ferritic single layer at 900-1000°C.
  • TiO 2 is generated in the Al oxide, which may deteriorate the oxidation life. Therefore, in one aspect of the present invention, 0.20% or less of Ti may be contained. Considering workability and the like, the Ti content is more preferably 0.005 to 0.10%.
  • Mg Magnesium> Mg forms Mg oxide together with Al in molten steel and acts as a deoxidizing agent. On the other hand, an excessive Mg content lowers the toughness of the steel and lowers the manufacturability. Therefore, in one aspect of the present invention, 0.015% or less of Mg may be contained. Considering the above reasons, the preferred content of Mg is 0.0002 to 0.0080%.
  • Ca is an element that improves hot workability.
  • the toughness of the steel is lowered and the manufacturability is lowered. Therefore, in one aspect of the present invention, 0.015% or less of Ca may be contained. Considering the above reasons, the preferable content of Ca is 0.0001 to 0.012%.
  • the ferritic stainless steel according to the present embodiment may satisfy 100 ⁇ [C]/[Nb] ⁇ 35, where [C] is mass % of C and [Nb] is mass % of Nb.
  • Nb-based carbides are generated during hot rolling or annealing, which increases the amount of accumulated strain in the final cold rolling, making it possible to obtain the desired dislocation density.
  • the ferritic stainless steel according to the present embodiment has a dislocation density ⁇ of 0.91 ⁇ 10 14 [m ⁇ 2 ] or higher as determined by the Williamson and Hall method using X-ray diffraction. X-ray diffraction is measured from the surface in this embodiment.
  • Dislocation density is a value that indicates the amount of dislocations in a crystal, and is the number of coordination lines [m ⁇ 2 ] penetrating a unit area of a crystal cross section or the length of dislocation lines present in a unit volume of a crystal. is indicated by the sum of [m/m ⁇ 3 ]. Since the ferritic stainless steel according to the present embodiment has a dislocation density ⁇ of 0.91 ⁇ 10 14 [m ⁇ 2 ] or more, Al and Cr diffuse rapidly, and an alumina layer can be formed quickly. . Therefore, oxidation resistance can be improved.
  • the dislocation density ⁇ [m ⁇ 2 ] is derived using the Williamson and Hall method. More specifically, for example, it is derived as follows. That is, an X-ray diffractometer using a Co tube as an X-ray source measured ⁇ (110) 52.2°, ⁇ (211) 99.3°, ⁇ (229) A diffraction intensity curve is measured for each diffraction peak (2 ⁇ ) at 123.3°. The diffraction peak (2 ⁇ ) in the obtained diffraction intensity curve is separated into a peak due to the K ⁇ 1 line and a peak due to the K ⁇ 2 line.
  • the peak top method is used to specify the diffraction angle 2 ⁇ , and the angle between half the peak intensity is calculated as the half width.
  • the true half-value width ⁇ can be calculated using the following formula (1) using the half-value width ⁇ m of the steel material after cold rolling and the half-value width ⁇ 0 of the steel material after final annealing. .
  • Equation (3) is the wavelength of X-rays.
  • the strain ⁇ can be calculated from the slope of the graph created by plotting ⁇ cos ⁇ / ⁇ against sin ⁇ / ⁇ .
  • (14.4 ⁇ 2 )/b 2 (3) (Nb carbide)
  • SEM scanning electron microscope
  • the average number of Nb carbides having a Nb concentration of 5 wt % or more and a particle size of 0.1 ⁇ m or more measured by EDS analysis is 2 or more and 15 or less.
  • the particle size of the carbide is calculated from the size of particles in an image taken with a scanning electron microscope. Specifically, the particle diameter of the carbide is defined as the average width between the width with the largest distance and the width with the smallest distance in the carbide.
  • the ferritic stainless steel according to the present disclosure can be suitably applied to applications requiring oxidation resistance at high temperatures. Therefore, use conditions mean high temperature conditions. Below, the alumina layer 10 formed when the ferritic stainless steel according to the present disclosure is heated at 1050° C. for 50 hours will be described.
  • the present inventors have found that when Nb, Cr, and REM are contained as essential elements in ferritic stainless steel at concentrations within appropriate ranges, columnar alumina layers are formed under conditions of use. It was found that the crystallization was improved. This is believed to be due to the concentration of Nb, Cr and REM at the grain boundaries of the alumina layer.
  • the total concentration of Nb oxides, Cr oxides and REM oxides present in grain boundaries is 3.5 wt % or more. Since this suppresses the inward diffusion of oxygen, the alumina layer 10 has excellent oxidation resistance. That is, the ferritic stainless steel according to this embodiment has excellent oxidation resistance under high temperature conditions.
  • the present inventors have found that the columnar crystallization is also improved by containing B as an essential element at a concentration within an appropriate range.
  • the ferritic stainless steel according to the present embodiment has C: 0.030% or less, Si: 0.01 to 1.5%, Mn: 0.01 to 1.00%, and P: 0.050% by mass. % or less, S: 0.005% or less, Cr: 15.0 to 25.0%, Al: 2.0 to 4.0%, Ni: 1.00% or less, Nb: 0.01 to 0.70 %, N: 0.030% or less, B: 0.0003-0.01%, and REM: 0.01-0.20%.
  • the alumina layer 10 formed by heating the ferritic stainless steel containing the above components at 1050° C. for 50 hours has the following characteristics. That is, in a cross section of the alumina layer 10 cut in the thickness direction, the total grain boundary length included in any region having an area of 2.25 ⁇ m 2 is 5.5 ⁇ m or less.
  • FIG. 1 is a partially enlarged schematic cross-sectional view of an alumina layer 10 formed by heating an exemplary ferritic stainless steel according to the present embodiment at 1050° C. for 50 hours, cut in the thickness direction.
  • the grain boundary length included in the region having an area of 2.25 ⁇ m 2 is the sum of the lengths of all the grain boundaries GB existing within the region having an area of 2.25 ⁇ m 2 .
  • the grain boundary length included in the region of 2.25 ⁇ m 2 is 5.5 ⁇ m or less.
  • FIG. 2 is a partially enlarged schematic view of a comparative alumina layer 20 in which the grain boundary length contained in 2.25 ⁇ m 2 is longer than 5.5 ⁇ m.
  • the comparative alumina layer 20 in which the grain boundary length included in 2.25 ⁇ m 2 is longer than 5.5 ⁇ m has a higher proportion of equiaxed grains than the example shown in FIG.
  • the columnar crystal means a structure in which crystal grains grown elongated in the thickness direction of the alumina layer are arranged.
  • the equiaxed crystal means a polycrystalline structure in which the shape and orientation of crystal grains constituting the equiaxed crystal are isotropic.
  • the alumina layer with a high ratio of columnar crystals has a higher per unit area than the alumina layer with a high ratio of equiaxed crystals (FIG. 2). It can be seen that the length of the grain boundary GB becomes shorter.
  • the grain boundary length included in an arbitrary 2.25 ⁇ m 2 in the cross section of the alumina layer 10 according to this embodiment cut in the thickness direction is 5.5 ⁇ m or less.
  • the alumina layer 10 has a high columnar crystal ratio. Since equiaxed crystals have a higher grain boundary density than columnar crystals, grain boundary diffusion paths for oxygen increase. Therefore, equiaxed crystals have a shorter oxidation life than columnar crystals. Therefore, the ferritic stainless steel according to the present embodiment has a high columnar crystal ratio, and thus has excellent oxidation resistance under high-temperature conditions.
  • the manufacturing process of ferritic stainless steel in this embodiment includes a pretreatment process, a hot rolling process, an annealing process, a pickling process, and a cold rolling process.
  • a vacuum or argon atmosphere melting furnace is used to melt steel with a composition adjusted to fall within the scope of the present invention, and this steel is cast to produce a slab. Thereafter, slab pieces for hot rolling are cut from the slab. Then, the slab piece is heated to a temperature range of 1100° C. to 1300° C. in the atmosphere. The time to heat and hold the slab pieces is not limited.
  • the said casting may be continuous casting.
  • the hot rolling process is a process of hot rolling the slab (steel ingot) obtained in the pretreatment process to produce a hot rolled steel strip with a predetermined thickness.
  • the annealing process is a process for softening the steel strip by heating the hot rolled steel strip obtained in the hot rolling process to, for example, 900 to 1050°C.
  • the steel strip after annealing is cooled from the annealing temperature to 400° C. for 30 seconds or longer.
  • Nb carbide can be precipitated inside the structure (that is, grain boundaries and grain interiors).
  • the pickling process is a process of washing off scale adhering to the surface of the annealed steel strip obtained by the annealing process using a pickling solution such as hydrochloric acid or a mixed solution of nitric acid and hydrofluoric acid.
  • the cold rolling process is a process of further thinning the annealed steel strip from which the scale has been removed in the first pickling process.
  • the rolling reduction in the cold rolling process is 65% or more, preferably 75% or more.
  • the strain in the steel can be increased. More specifically, by setting the rolling reduction in the cold rolling step to 65% or more, the dislocation density ⁇ derived by the Williamson and Hall method using X-ray diffraction is 0.91 ⁇ 10 14 [m ⁇ 2 ]. That's it.
  • the ratio should be 65% or more, preferably 75% or more.
  • a series of steps from the annealing step to the cold rolling step may be performed multiple times.
  • the annealing step is called the final annealing step.
  • the final annealing step is called the final annealing step, and the other annealing steps are called intermediate annealing steps.
  • the rolling reduction in the cold rolling step after the final annealing step is 65% or more.
  • the cold rolling step after the final annealing step is cold rolling until the dislocation density ⁇ derived by the Williamson and Hall method using X-ray diffraction reaches 0.91 ⁇ 10 14 [m -2 ] or more. This is the rolling process.
  • the method for manufacturing ferritic stainless steel according to the present embodiment is characterized by not including an annealing process after the cold rolling process. That is, the ferritic stainless steel according to this embodiment is a cold rolled steel strip after the cold rolling process. Since the ferritic stainless steel is a cold-rolled steel strip, strain remains accumulated in the steel, accelerating the diffusion of Al and Cr. Therefore, an alumina layer can be formed early under high-temperature conditions, and high high-temperature oxidation resistance can be realized. Moreover, since there is no need to perform final annealing after cold rolling, manufacturing costs can be reduced.
  • the ferritic stainless steel according to aspect 1 of the present disclosure has, in mass %, C: 0.030% or less, Si: 0.01 to 1.5%, Mn: 0.01 to 1.00%, P: 0 .050% or less, S: 0.005% or less, Cr: 15.0-25.0%, Al: 2.0-4.0%, Ni: 1.00% or less, Nb: 0.01-0 .70%, N: 0.030% or less, B: 0.0003 to 0.01%, REM: 0.01 to 0.20%, the balance being Fe and unavoidable impurities, X-ray diffraction
  • the dislocation density ⁇ derived by the Williamson and Hall method using is 0.91 ⁇ 10 14 [m ⁇ 2 ] or more.
  • the toughness is excellent.
  • the dislocation density ⁇ is 0.91 ⁇ 10 14 [m ⁇ 2 ] or more, an alumina layer can be formed early, so that a ferritic stainless steel having excellent oxidation resistance at high temperatures can be realized. be able to.
  • the ferritic stainless steel according to aspect 2 of the present disclosure forms an alumina layer mainly composed of alumina when heated at 1050 ° C. for 50 hours in the above aspect 1, and the alumina layer is formed in the thickness direction of the alumina layer.
  • the total length of grain boundaries included in an arbitrary region having an area of 2.25 ⁇ m 2 may be 5.5 ⁇ m or less in a cross section when cut into two.
  • the total concentration of Nb oxides, Cr oxides, and REM oxides present in grain boundaries in the alumina layer is 3.5 wt% or more.
  • the ferritic stainless steel according to Aspect 4 of the present disclosure is, in any one of Aspects 1 to 3, Zr: 0.50% or less, V: 0.50% or less, and Cu: 1.0% or less in terms of % by mass. , Mo: 2.0% or less, W: 2.0% or less, Hf: 0.50% or less, Sn: 0.50% or less, Ta: 0.5% or less, Ti: 0.20% or less, Mg Ca: 0.015% or less, and Ca: 0.015% or less.
  • a method for producing ferritic stainless steel comprising: annealing a steel strip after hot rolling; cooling the steel strip after annealing from the annealing temperature to 400° C. for 30 seconds or longer; and final annealing. After the step, a cold rolling step of rolling until the dislocation density ⁇ derived using the Williamson and Hall method is 0.91 ⁇ 10 14 [m ⁇ 2 ] or more.
  • ferritic stainless steel with excellent toughness and high-temperature oxidation resistance can be realized.
  • the rolling reduction in the cold rolling step may be 65% or more.
  • the ferritic stainless steel obtained through the cold rolling step is measured in the rolling direction using a scanning electron microscope.
  • the Nb concentration measured by energy dispersive X-ray analysis is 5 wt% or more and the particle diameter is 0.1 ⁇ m or more.
  • the average number of carbides of 2 or more and 15 or less may be present.
  • a method for producing ferritic stainless steel according to aspect 9 of the present disclosure is, in any one of aspects 6 to 8, wherein the ferritic stainless steel obtained through the cold rolling step is heated at 1050° C. for 50 hours.
  • an alumina layer is formed, and the alumina layer has an area of 2.25 ⁇ m in a cross section when the alumina layer is cut in the thickness direction. It may be below.
  • a method for producing ferritic stainless steel according to Aspect 10 of the present disclosure is the method for producing ferritic stainless steel according to Aspect 9 above, wherein the total concentration of Nb oxide, Cr oxide and REM oxide present in grain boundaries in the alumina layer is 3.0%. It may be 5 wt % or more.
  • a method for producing ferritic stainless steel according to aspect 11 of the present disclosure is the method according to any one of aspects 6 to 10, wherein the ferritic stainless steel contains, by mass %, Zr: 0.50% or less, V: 0.50 % or less, Cu: 1.0% or less, Mo: 2.0% or less, W: 2.0% or less, Hf: 0.50% or less, Sn: 0.50% or less, Ta: 0.5% or less , Ti: 0.20% or less, Mg: 0.015% or less, and Ca: 0.015% or less.
  • a method for producing a ferritic stainless steel according to Aspect 12 of the present disclosure is, in any one of Aspects 6 to 11, wherein the ferritic stainless steel contains [C] as % by mass of C, and [Nb] as % by mass of Nb. , 100 ⁇ [C]/[Nb] ⁇ 35 may be satisfied.
  • the heating temperature in the final annealing step may be 900°C to 1050°C.
  • ferritic stainless steels were produced from the ingredients shown in Table 1 below as invention example steels and comparative example steels.
  • the steel type No. 1 to 16 are ferritic stainless steels as examples of the present invention produced within the scope of the present invention.
  • the steel type No. Nos. 17 to 27 are ferritic stainless steels as comparative examples produced under conditions outside the scope of the present invention.
  • the steel having the components shown in Table 1 was vacuum melted to produce a 30 kg slab. After heating the slab at 1230° C. for 2 hours, it was subjected to hot rolling to prepare a hot-rolled sheet having a thickness of 3 mm. The obtained hot-rolled sheet was annealed between 900 and 1050° C. to prepare a hot-rolled and annealed sheet. The obtained hot-rolled and annealed sheet was cold-rolled and annealed twice, and then finally cold-rolled to produce a cold-rolled sheet with a thickness of 50 ⁇ m. Table 2 shows the cooling time from the annealing temperature to 400°C in the annealing process.
  • the cold rolling up to the second time was carried out at a rolling reduction of 60 to 85% for both the inventive examples and the comparative examples, and the annealing after cold rolling was carried out in the temperature range of 900 to 1050°C.
  • the rolling reduction in the final cold rolling is described in the column of "Final rolling reduction" in Table 2. As shown in Table 2, the rolling reduction in the final cold rolling of the inventive examples is 65% or more. On the other hand, the rolling reduction in the final cold rolling of the comparative example is less than 65%.
  • the manufacturing method described in this embodiment is an example, and the manufacturing method is not limited.
  • Table 1 shows the composition of the components contained in each steel type in mass%.
  • the balance other than the components shown in Table 1 is Fe or a small amount of unavoidable impurities (unavoidable impurities).
  • the underlines in Table 1 indicate that the range of each component contained in each stainless steel according to the comparative examples of the present invention is outside the scope of the present invention.
  • the dislocation density ⁇ was 0.91 ⁇ 10 14 [m ⁇ 2 ] or more when the rolling reduction in the final cold rolling was 65% or more. On the other hand, it was demonstrated that when the rolling reduction in the final cold rolling is less than 65%, the dislocation density ⁇ is less than 0.91 ⁇ 10 14 [m ⁇ 2 ].
  • Nb carbide The number of Nb carbides present in the structure of the cold-rolled steel sheets of the invention example steels and comparative example steels shown in Table 1 was investigated. The investigation was conducted as follows. First, the cold-rolled sheet was cut along a plane perpendicular to the rolling direction. Next, using a scanning electron microscope, the cut surface is observed at random three places in the range of 30 ⁇ m ⁇ 30 ⁇ m each, and the Nb concentration measured by energy dispersive X-ray analysis is 5 wt% or more and the particle diameter is 0. . The average number of carbides of 1 ⁇ m or more was calculated. The calculated average value of Nb carbides is shown in Table 2 as "average number of Nb carbides". As shown in Table 2, the steel type No. 1, which is an example of the present invention. 1 to 16, the average number of carbides was in the range of 2 to 15.
  • ⁇ (good) indicates a grain boundary length of 5.5 ⁇ m or less within the range of 2.25 ⁇ m 2
  • ⁇ (poor) indicates 2.25 ⁇ m 2.
  • the grain boundary length within the range of is greater than 5.5 ⁇ m.
  • the cold-rolled sheets of the steel grades of the invention examples and the steel grades of the comparative examples shown in Table 1 were heated at 1050°C for 50 hours. After heating, each steel sheet was observed from the cross section, and the concentration of each element in the grain boundary was measured by STEM-EDX.
  • the STEM image observation was carried out by spot analysis of the central part of the grain boundary using an HD-2700 manufactured by Hitachi High-Tech Corporation at a voltage of 200 V and an observation magnification of 4,000,000 times.
  • EDX energy dispersive X-ray analysis
  • EDAX Octane T Ultra W manufactured by Ametech was used. Analysis time was 300 seconds.
  • Table 2 shows the sum of the element concentrations of Nb, Cr, Ce, La, and Nd. This value is the total concentration of Nb oxide, Cr oxide and REM oxide in the grain boundary.
  • Toughness evaluation test Toughness evaluation tests performed on the inventive examples and comparative examples shown in Table 1 will be described below.
  • a test piece used in this evaluation test was produced based on the V-notch test piece of the JIS standard (JIS Z 2242 (2018)).
  • the plate thickness was adjusted by surface-cutting the 3 mm-thick hot-rolled plate described in the production of the steel material to a plate thickness of 2.5 mm.
  • a test piece was taken from the steel plate so that the longitudinal direction of the test piece was parallel to the rolling direction. Also, a notch was made in the test piece so as to be perpendicular to the rolling direction.
  • invention example steel No. 1 to 16 all met the above criteria for high temperature oxidation resistance and toughness.
  • Comparative Example Steel No. Nos. 17 to 27 did not meet the above criteria in either or both high temperature oxidation resistance and toughness.
  • ferritic stainless steel within the scope of the present invention is excellent in high-temperature oxidation resistance and toughness.
  • Comparative example steel No. 17 the grain boundary length satisfies the standard, but because the B content is low, the concentrations of Nb, Cr and REM in the grain boundary do not satisfy the standard. As a result, excellent results in high-temperature oxidation resistance were not obtained.
  • Comparative example steel No. 19 the content of Nb was less than 0.01%, the concentrations of Nb, Cr and REM in the grain boundaries did not meet the criteria, and the result was not excellent in high-temperature oxidation resistance.
  • Comparative Example Steel No. No. 21 has a Si content of more than 1.5%, and shows excellent results in high-temperature oxidation resistance due to the influence of Si-based oxides such as SiO 2 .
  • comparative example steel No. No. 21 had a Si content of more than 1.5% and did not show good results for toughness.
  • Comparative Example Steel No. 22 the Al content is lower than 2.0%, and an oxide film of Al 2 O 3 is difficult to form. As a result, the oxygen partial pressure becomes high, and equiaxed crystals are likely to occur, so good results were not obtained in terms of high-temperature oxidation resistance.
  • Comparative example steel No. 23 since the Ti content was higher than 0.20%, equiaxed crystallization was likely to occur, and good results in high-temperature oxidation resistance were not obtained.
  • Comparative example steel No. No. 25 did not show good results for toughness because the Al content was higher than 4.0%.
  • Comparative example steel No. 26 the Cr content was higher than 25.0%, Cr was concentrated at the alumina grain boundary, and equiaxed crystals were likely to be formed, and did not exhibit good results in terms of high-temperature oxidation resistance.
  • Comparative Example Steel No. No. 27 did not show good results in terms of toughness due to the formation of oxides such as Y 2 O 3 or CeO 2 due to the REM content higher than 0.20%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Sheet Steel (AREA)

Abstract

本発明の一態様のフェライト系ステンレス鋼は、質量%で、C:0.030%以下、Si:0.01~1.5%、Mn:0.01~1.00%、P:0.050%以下、S:0.005%以下、Cr:15.0~25.0%、Al:2.0~4.0%、Ni:1.00%以下、Nb:0.01~0.70%、N:0.030%以下、B:0.0003~0.01%、REM:0.01~0.20%を含有し、残部がFeおよび不可避的不純物からなり、Williamson and Hall法を用いて導出される転位密度ρが0.91×1014[m-2]以上である。

Description

フェライト系ステンレス鋼およびその製造方法
 本発明はフェライト系ステンレス鋼およびその製造方法に関する。
 自動車、二輪車などに搭載される排ガス浄化用触媒担体(電気加熱式を含む)、ストーブ燃焼筒、またはプラントにおける燃焼ガス排気装置などに用いられるフェライト系ステンレス鋼は、高温における高い耐酸化特性(耐高温酸化性)が要求される。
 特許文献1には、耐高温酸化性をさらに向上させた高Al含有フェライト系ステンレス鋼が開示されている。特許文献1に開示される高Al含有フェライト系ステンレス鋼は、15~25%のCrおよび4.5~6.0%のAlを含有する。さらに、添加するMnおよびSiの添加量を抑えることで低Mn化および低Si化し、Moを必須元素として含有することにより高Al含有フェライト系ステンレス鋼の耐高温酸化特性を向上させている。
日本国特許第3351836号公報
 しかしながら、上述のような従来技術は、AlおよびMoの添加量が過剰であるために靭性が低下し、製造性に悪影響を及ぼす可能性がある。
 本発明の一態様は、耐高温酸化性および靭性に優れるフェライト系ステンレス鋼を実現することを目的とする。
 上記の課題を解決するために、本発明の一態様に係るフェライト系ステンレス鋼は、質量%で、C:0.030%以下、Si:0.01~1.5%、Mn:0.01~1.00%、P:0.050%以下、S:0.005%以下、Cr:15.0~25.0%、Al:2.0~4.0%、Ni:1.00%以下、Nb:0.01~0.70%、N:0.030%以下、B:0.0003~0.01%、REM:0.01~0.20%を含有し、残部がFeおよび不可避的不純物からなり、Williamson and Hall法を用いて導出される転位密度ρが0.91×1014[m-2]以上であり、走査型電子顕微鏡を用いて、圧延方向に垂直な平面で切断した断面を、それぞれ30μm×30μmの範囲でランダムに3箇所観察したときに、エネルギー分散型X線分析によって測定されるNb濃度が5wt%以上であり粒子径が0.1μm以上である炭化物の数は、平均値で2個以上15個以下である。
 また、本発明の一態様に係るフェライト系ステンレス鋼の製造方法は、質量%で、C:0.030%以下、Si:0.01~1.5%、Mn:0.01~1.00%、P:0.050%以下、S:0.005%以下、Cr:15.0~25.0%、Al:2.0~4.0%、Ni:1.00%以下、Nb:0.01~0.70%、N:0.030%以下、B:0.0003~0.01%、REM:0.01~0.20%を含有し、残部がFeおよび不可避的不純物からなる、フェライト系ステンレス鋼の製造方法であって、熱間圧延後の鋼帯を焼鈍し、焼鈍後における前記鋼帯を焼鈍温度から400度までの冷却時間を30秒以上として冷却する焼鈍工程と、最終焼鈍工程後に、Williamson and Hall法を用いて導出される転位密度ρが0.91×1014[m-2]以上となるまで圧延する冷間圧延工程と、を含む。
 本発明の一態様によれば、耐高温酸化性および靭性に優れるフェライト系ステンレス鋼を実現できる。
実施形態に係る例示的なフェライト系ステンレス鋼を1050℃にて50時間加熱することにより形成されたアルミナ層を厚み方向に切断したときの断面における部分拡大模式図である。 比較例アルミナ層の部分拡大模式図である。
 〔実施形態〕
 以下、本発明の一実施形態について、詳細に説明する。本明細書において、「ステンレス鋼」との用語は、具体的な形状が限定されないステンレス鋼材を意味する。このステンレス鋼材としては、例えば、鋼板、鋼管、条鋼、などが挙げられる。なお、本明細書において、各成分元素の含有量の単位である「%」は、特に言及がない限り「質量%」を意味する。また、本出願において、「A~B」は、A以上B以下であることを示している。
 (フェライト系ステンレス鋼の成分組成)
 まず、本実施形態におけるフェライト系ステンレス鋼を構成する必須元素について説明する。
 本発明の一実施形態に係るフェライト系ステンレス鋼は、鋼成分組成として、質量%でC:0.030%以下、Si:0.01~1.5%、Mn:0.01~1.00%、P:0.050%以下、S:0.005%以下、Cr:15.0~25.0%、Al:2.0~4.0%、Ni:1.00%以下、Nb:0.01~0.70%、N:0.030%以下、B:0.0003~0.01%、REM:0.01~0.20%を含有する。
 当該成分組成は、従来の高Al含有フェライト系ステンレス鋼と比較してAlの含有量が低減されている。本発明の一実施形態に係るフェライト系ステンレス鋼が上記成分組成を有することにより、靭性に優れるフェライト系ステンレス鋼を得ることができる。
 以下、本発明の一実施形態に係るフェライト系ステンレス鋼に含まれる各元素の含有量の意義について説明する。なお、当該フェライト系ステンレス鋼は、以下に示す各成分以外は、鉄(Fe)、または不可避的に混入する少量の不純物(不可避的不純物)からなる。
 <C:炭素>
 Cは、本発明の一実施形態に係るフェライト系ステンレス鋼における必須元素である。一方、Cは、含有量の増加に伴って、異常酸化が発生し易くなる。また、過度にCを含有すると、スラブ及びホットコイルの靭性を劣化させ、熱間加工によって板材に加工することが困難になる。そのため、本発明の一態様では、Cの含有量の上限を0.030%に規定する。Cの含有量を0.020%以下とすると異常酸化発生の可能性をさらに低減し、加工性を向上させることができる。上記理由を鑑みた、Cのより好ましい含有量は、0.002~0.015%である。
 <Si:ケイ素>
 Siは、耐酸化性の向上に有効な元素であり、本発明の一実施形態に係るフェライト系ステンレス鋼における必須元素である。一方、Siを過度に含有すると靭性および加工性を低下させる可能性がある。そのため、本発明の一態様では、Siの含有量は、0.01~1.50%である。Siの含有量を0.01~1.0%、より好ましくは、0.01~0.50%とすることにより、脱酸剤としての効果、加工性がさらに向上する。
 <Mn:マンガン>
 Mnは、本発明の一実施形態に係るフェライト系ステンレス鋼における必須元素である。一方、Mnを過度に含有すると、フェライト相が不安定化するとともに、耐高温酸化性を低下させる可能性がある。そのため、本発明の一態様では、Mnの含有量は、0.01~1.00%である。Mnの含有量を0.01~0.80%、より好ましくは0.01~0.50%とすることにより、腐食起点発生の可能性がより低減される。
 <P:リン>
 Pは、本発明の一実施形態に係るフェライト系ステンレス鋼における必須元素である。一方、Pを過度に含有すると、耐酸化性および熱延板靭性が劣化する可能性がある。そのため、本発明の一態様では、Pの含有量は、0.050%以下と規定する。Pの含有量を0.04%以下とすることにより、加工性の劣化をより低減することができる。上記理由を鑑みた、Pのより好ましい含有量は、0.005~0.03%である。
 <S:硫黄>
 Sは、本発明の一実施形態に係るフェライト系ステンレス鋼における必須元素である。一方、Sを過度に含有するとフェライト系ステンレス鋼においてAl皮膜の形成に悪影響を及ぼし、耐酸化性を劣化させる可能性がある。そのため、本発明の一態様では、Sの含有量は、0.005%以下と規定している。上記理由を鑑みた、Sのより好ましい含有量は、0.0001~0.002%である。
 <Cr:クロム>
 Crは、フェライト系ステンレス鋼の耐高温酸化特性を向上させるために必要な基本的な合金元素である。所定量以上のCrを含有することにより、ステンレス鋼の表面に酸化皮膜が形成され、ステンレス鋼の酸化が抑制される。一方、過度のCrを含有すると、靭性が低下し、製造性が悪くなる。そのため、本発明の一態様では、Crの含有量を15.0~25.0%と規定している。Crの含有量を16.0~22.0%、より好ましくは17.0~20.0%とすることにより、酸化抑制効果および製造性をより向上させることができる。
 <Al:アルミニウム>
 Alは、フェライト系ステンレス鋼の耐高温酸化特性を向上させるために必要な基本的な合金元素である。所定量以上のAlを含有することにより、ステンレス鋼の表面にAlの酸化皮膜が形成され、ステンレス鋼の酸化が抑制される。また、REMまたはYが添加される場合、当該酸化皮膜が緻密になると共に下地鋼に対する密着性が向上し、異常酸化の発生が抑制される。一方、Alを過度に含有すると、ステンレス鋼の靭性を劣化させ、製造性および加工性が悪くなる。そのため、本発明の一態様では、Alの含有量を2.0~4.0%と規定する。Alの含有量を2.5~3.7%、より好ましくは2.8~3.5%とすることにより、耐高温酸化特性および製造性をより向上させることができる。
 <Ni:ニッケル>
 Niは、フェライト系ステンレス鋼の耐食性を向上させる元素であり、本発明の一実施形態に係るフェライト系ステンレス鋼における必須元素である。一方、Niを過度に含有すると、フェライト相が不安定化するとともに、材料コストが上昇する。そのため、本発明の一態様では、Niの含有量を1.00%以下と規定している。Niの含有量を0.50%以下とすることにより、過度の含有によるフェライト相の不安定化および製造コストの上昇をより抑制することができる。上記理由を鑑みた、Niのより好ましい含有量は、0.02~0.30%である。
 <N:窒素>
 Nは、本発明の一実施形態に係るフェライト系ステンレス鋼における必須元素である。一方、過度に含有すると鋼中のAlと結合し、AlNを形成して加速酸化の起点となる可能性がある。そのため、本発明の一態様では、Nの含有量は、0.030%以下と規定する。Nの含有量を0.025%以下とすることにより、硬質化の可能性をより低減することができる。上記理由を鑑みた、Nのより好ましい含有量は、0.003~0.020%である。
 <Nb(ニオブ)、B(ホウ素)、REM(希土類元素)>
 Nbは、高温強度確保のために添加する元素である。さらにNbは、Al皮膜の形成を促進させる効果がある。また、ステンレス鋼の再結晶を抑制し、結晶粒を微細化させることで粒界面積を広くする。一方、Nbを過度に含有すると熱延板靭性が劣化する可能性がある。
 Bは、フェライト系ステンレス鋼を使用して製造された成形品の二次加工性および耐酸化性を向上させる元素である。一方、Bを過剰に含有させると、Bの化合物が介在物(不純物)となってしまう。
 REM(希土類元素、rare earth metals)とは、ランタノイド系元素(La、Ce、Pr、Nd、Smなど原子番号57~71の元素)をいう。REMは、耐高温酸化性を向上させる元素である。所定量以上のREMを含有することによりAl酸化皮膜を安定化させる。また母材と酸化物の密着性を改善することにより耐酸化性が向上する。一方、REMを過度に含有すると、熱間圧延の際に表面欠陥が生じ、製造性が低下する。
 上記理由により、本発明の一態様では、Nbの含有量を0.01~0.70%と規定する。Nbの含有量を0.05~0.50%、より好ましくは、0.08~0.30%とすることにより、加工性の劣化の可能性をより低減することができる。Nbの含有量の上限は、さらにより好ましくは、0.20%または0.15%である。また、Bの含有量を0.0003~0.01%と規定する。Bの含有量を0.0003~0.005%とすることにより、より介在物の存在を低減し、二次加工性を向上させることができる。また、REMの含有量を、0.01~0.20%と規定する。REMの含有量は、好ましくは0.02~0.15%であり、より好ましくは、0.04~0.10%である。
 (その他の成分)
 本発明の一態様に係るフェライト系ステンレス鋼は、上記以外の元素として、Zr、V、Cu、Mo、W、Hf、Sn、Ta、Ti、Mg、Caのうち少なくとも1種の元素をさらに含有してもよい。
 <Zr:ジルコニウム>
 Zrは耐酸化性を向上させる元素である。一方、Zrを過剰に添加すると鋼を硬質化して靭性の低下を招く可能性がある。そのため、本発明の一態様では、0.50%以下のZrを含有してもよい。硬質化の低減などを考慮すると、Zrの含有量は、0.01~0.40%であることがより好ましい。
 <V:バナジウム>
 Vは加工性および溶接部靭性を向上させる元素である。一方、Vを過剰に添加すると熱延板靭性を劣化させる可能性がある。本発明の一態様では、0.50%以下のVを含有してもよい。硬質化の低減などを考慮すると、Vの含有量は0.02~0.35%であることがより好ましい。
 <Cu:銅>
 Cuは、フェライト系ステンレス鋼の耐食性を向上させる元素である。一方、Cuを過度に含有すると、耐酸化性や熱間加工性の低下を招く可能性がある。そのため、本発明の一態様では、1.0%以下のCuを含有してもよい。材料コストなどを考慮すると、Cuの含有量は0.01~0.85%であることがより好ましい。
 <Mo:モリブデン>
 Moは、耐食性を向上させる元素である。一方、Moを過度に含有すると硬質化し、靭性が低下するとともに材料コストが上昇する。そのため、本発明の一態様では、2.0%以下のMoを含有してもよい。加工性、材料コストなどを考慮すると、Moの含有量は0.01~1.0%であることがより好ましい。
 <W:タングステン>
 Wは、高温強度確保のために添加する元素である。一方、Wを過度に含有すると、熱延板靭性を劣化させるとともに材料コストが上昇する。そのため、本発明の一態様では、2.0%以下のWを含有してもよい。材料コストなどを考慮すると、Wの含有量は0.01~1.0%であることがより好ましい。
 <Hf:ハフニウム>
 Hfは、耐酸化性を向上させる元素である。一方、Hfを過度に含有すると、熱延板靭性を低下させるとともに材料コストが上昇する。そのため、本発明の一態様では、0.50%以下のHfを含有してもよい。靭性および材料コストを考慮すると、Hfの含有量は0.001~0.20%であることがより好ましい。
 <Sn:スズ>
 Sn(スズ)は、フェライト系ステンレス鋼の耐食性を向上させる元素である。一方、Snを過度に含有すると、加工性が低下し、かつ材料コストが上昇する。そのため、本発明の一態様では、0.50%以下のSnを含有してもよい。加工性、コストなどを考慮すると、Snの含有量は0.005~0.20%であることがより好ましい。
 <Ta:タンタル>
 Taは、鋼の洗浄度および耐酸化性を向上させる元素である。一方、Taを過度に含有すると、靭性を低下させるとともに材料コストが上昇する。そのため、本発明の一態様では、0.5%以下のTaを含有してもよい。靭性および材料コストを考慮すると、Taの含有量は、0.40%以下であることが好ましい。上記理由を鑑みた、Taのより好ましい含有量は、0.001~0.30%である。
 <Ti:チタン>
 Tiは、Cおよび/またはNと反応することにより、フェライト系ステンレス鋼を900~1000℃においてフェライト系単層にすることができる。一方、Tiを過度に含有すると、Alの酸化物中にTiOを生成し、酸化寿命を劣化させる可能性がある。そのため、本発明の一態様では、0.20%以下のTiを含有してもよい。加工性などを考慮すると、Tiの含有量は0.005~0.10%であることがより好ましい。
 <Mg:マグネシウム>
 Mgは、溶鋼中でAlとともにMg酸化物を形成して脱酸剤として作用する。一方、Mgを過度に含有すると鋼の靭性が低下して製造性が低下する。そのため、本発明の一態様では、0.015%以下のMgを含有してもよい。上記理由を鑑みた、Mgの好ましい含有量は、0.0002~0.0080%である。
 <Ca:カルシウム>
 Caは、熱間加工性を向上させる元素である。一方、Caを過度に含有すると、鋼の靭性が低下して製造性が低下する。そのため、本発明の一態様では、0.015%以下のCaを含有してもよい。上記理由を鑑みた、Caの好ましい含有量は、0.0001~0.012%である。
 本実施形態に係るフェライト系ステンレス鋼は、[C]をCの質量%、[Nb]をNbの質量%としたときに、100×[C]/[Nb]≦35を満たしてもよい。これにより、熱延時または焼鈍時にNb系炭化物が生成することで、最終的な冷間圧延でのひずみの蓄積量が増大し、目的の転位密度を得ることができる。
 (転位密度)
 本実施形態に係るフェライト系ステンレス鋼は、X線回折を用いるWilliamson and Hall法によって導出される転位密度ρが0.91×1014[m-2]以上である。本実施形態においてX線回折は表面から測定される。
 転位密度とは、結晶内の転位の量を示す値であり、結晶の切断面の単位面積を貫く配位線の数[m-2]または単位体積の結晶内に存在する転位線の長さの総計[m/m-3]で示される。本実施形態に係るフェライト系ステンレス鋼は、転位密度ρが0.91×1014[m-2]以上であることにより、AlおよびCrの拡散が速く、迅速にアルミナ層を形成することができる。よって、耐酸化性を向上させることができる。
 本実施形態において、転位密度ρ[m-2]は、Williamson and Hall法を用いて導出される。より具体的には、例えば、以下のように導出される。すなわち、電解研磨処理を施した試料に対し、X線源としてCo管球を用いたX線回折装置によって、α(110)52.2°、α(211)99.3°、α(229)123.3°の各回折ピーク(2θ)について回折強度曲線を測定する。得られた回折強度曲線における回折ピーク(2θ)をKα線によるピークとKα線によるピークとに分離する。分離したKα線による回折ピークについて、ピークトップ法を用いて回折角2θを特定するとともに、ピーク強度の1/2の強度間の角度を半価幅として算出する。なお、真の半価幅βは、冷間圧延後の鋼材の半価幅βと最終焼鈍後の鋼材の半価幅βを用いて、以下の式(1)を用いて算出され得る。
 β=β -β    (1)
 上記式(1)によって算出された真の半価幅βは、結晶子サイズDによる半価幅の広がりβと、歪みεによる半価幅の広がりβとの和として、下記式(2)のように表される。
 β=β+β   (2)
 結晶子サイズ(D)による半価幅の広がりβは、下記の式(3)によって表され、歪み(ε)による半価幅の広がりβは、下記の式(4)によって表されることが知られている。
 β=0.9λ/(Dcosθ)   (3)
 β=2εtanθ   (4)
 ここで、式(3)におけるλは、X線の波長である。
 上記式(2)に対して、上記式(3)および式(4)を用い、整理することにより下記の式(5)が得られる。
 βcosθ/λ=(0.9/D)+(2εsinθ/λ)   (5)
 上記式(5)の式に示されるように、sinθ/λに対してβcosθ/λをプロットすることによって作製されたグラフの傾きから歪εを算出することができる。
 そして、算出した歪(ε)と、転位のバーガースベクトルの大きさb(=0.25nm)と、以下の式(6)を用いることにより、転位密度ρを算出する。
 ρ=(14.4×ε)/b   (3)
 (Nb炭化物)
 本実施形態に係るフェライト系ステンレス鋼は、走査型電子顕微鏡(SEM、Scanning Electron Microscope)を用いて、圧延方向に垂直な平面で切断した断面を、それぞれ30μm×30μmの範囲でランダムに3箇所観察したときに、EDS分析によって測定されるNb濃度が5wt%以上であり粒子径が0.1μm以上であるNb炭化物の数が、平均値で2個以上15個以下である。上記の平均値が2個以上であることにより、冷間圧延時において組織内にひずみを蓄積しやすくなる。また、上記の平均値が15個以下であることにより、ステンレス鋼の靱性が低下しにくくなる。炭化物の粒子径は、走査型電子顕微鏡で撮像した画像における粒子の大きさから算出する。具体的には、炭化物における距離が最も大きい幅と最も小さい幅との平均幅を炭化物の粒子径とする。
 (アルミナ層)
 本開示に係るフェライト系ステンレス鋼は、高温における耐酸化特性を要求される用途に好適に適用され得る。そのため、使用条件下とは、高温条件下を意味する。以下では、本開示に係るフェライト系ステンレス鋼を、1050℃にて50hr加熱したときに形成されるアルミナ層10について説明する。
 本発明者らは、鋭意研究の結果、フェライト系ステンレス鋼の成分として、Nb、CrおよびREMを必須元素として適正範囲内の濃度にて含有した場合、使用条件下において形成されるアルミナ層の柱状晶化が向上することを見出した。これは、アルミナ層の粒界にNb、CrおよびREMが濃化することに起因すると考えられる。本実施形態に係るアルミナ層10において、粒界中に存在するNb酸化物、Cr酸化物およびREM系酸化物の合計濃度は、3.5wt%以上である。これにより、酸素の内方拡散が抑制されるため、アルミナ層10は優れた耐酸化性を有する。すなわち、本実施形態に係るフェライト系ステンレス鋼は、高温条件下において優れた耐酸化性を有する。
 また、本発明者らは、Bを必須元素として適正範囲内の濃度にて含有することによっても柱状晶化が向上することを見出した。
 本実施形態に係るフェライト系ステンレス鋼は、質量%で、C:0.030%以下、Si:0.01~1.5%、Mn:0.01~1.00%、P:0.050%以下、S:0.005%以下、Cr:15.0~25.0%、Al:2.0~4.0%、Ni:1.00%以下、Nb:0.01~0.70%、N:0.030%以下、B:0.0003~0.01%、REM:0.01~0.20%を含有する。
 上記成分を含有するフェライト系ステンレス鋼を1050℃にて50時間加熱することにより形成されるアルミナ層10は、以下の特徴を有する。すなわち、アルミナ層10を厚み方向に切断したときの断面において、面積が2.25μmの任意の領域に含まれる粒界長さの合計は5.5μm以下である。
 図1は、本実施形態に係る例示的なフェライト系ステンレス鋼を1050℃にて50時間加熱することにより形成されたアルミナ層10を厚み方向に切断したときの断面における部分拡大模式図である。図1に示すような任意の面積が2.25μmの領域は、例えば、アルミナ層10の厚み方向の中央を中心とする、1.5μm四方に囲まれた領域であってよい。面積が2.25μmの領域に含まれる粒界長さとは、面積が2.25μmの領域内に存在する粒界GBの長さを全て足し合わせたものである。図1に示す例において、2.25μmの領域に含まれる粒界長さは5.5μm以下である。
 図2は、2.25μmに含まれる粒界長さが5.5μmより長い、比較例アルミナ層20の部分模式拡大図である。図2に示すように、2.25μmに含まれる粒界長さが5.5μmより長い比較例アルミナ層20は、図1に示す例よりも等軸晶の比率が高い。
 ここで、柱状晶とは、アルミナ層の厚さ方向に細長く成長した結晶粒が並んだ組織を意味する。等軸晶とは、等軸晶を構成する結晶粒の形状および方位が等方的な多結晶組織を意味する。
 図1と、図2とを比較すると明らかなように、柱状晶の比率が高いアルミナ層(図1)は、等軸晶の比率が高いアルミナ層(図2)よりも、任意の単位面積あたりの粒界GBの長さが短くなることがわかる。
 本実施形態に係るアルミナ層10を厚み方向に切断したときの断面における任意の2.25μmに含まれる粒界長さは5.5μm以下である。換言すると、アルミナ層10は、高い柱状晶比率を有している。等軸晶は、柱状晶よりも粒界密度が大きいため、酸素の粒界拡散経路が増加する。そのため、等軸晶は、柱状晶よりも酸化寿命が短い。そのため、本実施形態に係るフェライト系ステンレス鋼は、高い柱状晶比率を有することにより、高温条件において優れた耐酸化性を有する。
 (製造方法)
 始めに、本実施形態におけるフェライト系ステンレス鋼の製造工程の一例について概略的に説明する。本実施形態におけるフェライト系ステンレス鋼の製造工程は、前処理工程、熱間圧延工程、焼鈍工程、酸洗工程、および冷間圧延工程を含む。
 前処理工程では、まず、真空またはアルゴン雰囲気の溶解炉を用いて、本発明の範囲内となるように組成を調整した鋼を溶製し、この鋼を鋳造して、スラブを製造する。その後、該スラブから熱間圧延用のスラブ片を切り出す。そして、当該スラブ片を大気雰囲気中で1100℃~1300℃の温度域に加熱する。該スラブ片を加熱して保持する時間は、限定されない。なお、工業的に前処理工程を行う場合、前記鋳造は連続鋳造であってよい。
 熱間圧延工程は、前処理工程において得られるスラブ(鋼塊)を熱間圧延することにより、所定の厚みの熱延鋼帯を製造する工程である。
 焼鈍工程は、熱間圧延工程で得られた熱延鋼帯を例えば900~1050℃に加熱することによって、鋼帯の軟質化を図る工程である。焼鈍工程では、焼鈍後における鋼帯の焼鈍温度から400℃までの冷却時間を30秒以上として冷却する。これにより、組織内部(すなわち、粒界および粒内)にNb炭化物を析出させることができる。
 酸洗工程は、上記焼鈍工程により得られた焼鈍鋼帯の表面に付着したスケールを、塩酸または硝酸とフッ化水素酸との混合液などの酸洗液を用いて洗い落とす工程である。
 冷間圧延工程は、第1酸洗工程においてスケール除去された焼鈍鋼帯を、さらに薄く圧延する工程である。冷間圧延工程における圧延率は65%以上、好ましくは75%以上である。冷間圧延工程における圧延率を65%以上とすることにより、鋼内のひずみを大きくすることができる。より具体的には、冷間圧延工程における圧延率を65%以上とすることにより、X線回折を用いるWilliamson and Hall法によって導出される転位密度ρが0.91×1014[m-2]以上となる。換言すると、X線回折を用いるWilliamson and Hall法によって導出される転位密度ρが0.91×1014[m-2]以上となる冷延板を作製するためには、冷間圧延工程における圧延率を65%以上、好ましくは75%以上とすればよい。
 なお、焼鈍工程~冷間圧延工程の一連の工程を複数回実施してもよい。当該一連の工程が単回の場合、焼鈍工程を最終焼鈍工程と称する。当該一連の工程が複数回実施される場合、最終の焼鈍工程を最終焼鈍工程と称し、それ以外の焼鈍工程を中間焼鈍工程と称する。
 また、本実施形態に係る製造方法において、最終焼鈍工程後の冷間圧延工程における圧延率は、65%以上である。換言すると、最終焼鈍工程後の冷間圧延工程は、X線回折を用いるWilliamson and Hall法によって導出される転位密度ρが0.91×1014[m-2]以上となるまで圧延する冷間圧延工程である。
 本実施形態に係るフェライト系ステンレス鋼の製造方法は、冷間圧延工程の後に焼鈍工程を含まないことを特徴とする。すなわち、本実施形態に係るフェライト系ステンレス鋼は、冷間圧延工程後の冷延鋼帯である。フェライト系ステンレス鋼が冷延鋼帯であることにより、鋼内にひずみが蓄積されたままの状態となり、AlおよびCrの拡散が早まる。そのため、高温条件下において早期にアルミナ層を形成することができ、高い耐高温酸化性を実現することができる。また、冷間圧延後に最終焼鈍を施す必要がないため、製造コストを低減することができる。
 (まとめ)
 本開示の態様1に係るフェライト系ステンレス鋼は、質量%で、C:0.030%以下、Si:0.01~1.5%、Mn:0.01~1.00%、P:0.050%以下、S:0.005%以下、Cr:15.0~25.0%、Al:2.0~4.0%、Ni:1.00%以下、Nb:0.01~0.70%、N:0.030%以下、B:0.0003~0.01%、REM:0.01~0.20%を含有し、残部がFeおよび不可避的不純物からなり、X線回折を用いるWilliamson and Hall法によって導出される転位密度ρが0.91×1014[m-2]以上である。
 上記構成によれば、Alの含有量4.0%以下であるため、靭性に優れる。また、転位密度ρが0.91×1014[m-2]以上であることにより、早期にアルミナ層を形成することができるため、高温での耐酸化性に優れるフェライト系ステンレス鋼を実現することができる。
 本開示の態様2に係るフェライト系ステンレス鋼は、上記態様1において、1050℃にて50時間加熱した場合にアルミナを主体とするアルミナ層を形成し、前記アルミナ層は、当該アルミナ層を厚み方向に切断したときの断面において、面積が2.25μmの任意の領域に含まれる粒界長さの合計が5.5μm以下であってもよい。
 本開示の態様3に係るフェライト系ステンレス鋼は、上記態様2において、前記アルミナ層において、粒界中に存在するNb酸化物、Cr酸化物およびREM系酸化物の合計濃度が3.5wt%以上であってもよい。
 本開示の態様4に係るフェライト系ステンレス鋼は、上記態様1から3のいずれかにおいて、質量%で、Zr:0.50%以下、V:0.50%以下、Cu:1.0%以下、Mo:2.0%以下、W:2.0%以下、Hf:0.50%以下、Sn:0.50%以下、Ta:0.5%以下、Ti:0.20%以下、Mg:0.015%以下、およびCa:0.015%以下のうち1種以上をさらに含有してもよい。
 本開示の態様5に係るフェライト系ステンレス鋼は、上記態様1から4のいずれかにおいて、[C]をCの質量%、[Nb]をNbの質量%としたときに、100×[C]/[Nb]≦35を満たしてもよい。
 本開示の態様6に係るフェライト系ステンレス鋼の製造方法は、質量%で、C:0.030%以下、Si:0.01~1.5%、Mn:0.01~1.00%、P:0.050%以下、S:0.005%以下、Cr:15.0~25.0%、Al:2.0~4.0%、Ni:1.00%以下、Nb:0.01~0.70%、N:0.030%以下、B:0.0003~0.01%、REM:0.01~0.20%を含有し、残部がFeおよび不可避的不純物からなる、フェライト系ステンレス鋼の製造方法であって、熱間圧延後の鋼帯を焼鈍し、焼鈍後における前記鋼帯の焼鈍温度から400度までの冷却時間が30秒以上である焼鈍工程と、最終焼鈍工程後に、Williamson and Hall法を用いて導出される転位密度ρが0.91×1014[m-2]以上となるまで圧延する冷間圧延工程と、を含む。
 上記構成によれば、靭性および高温での耐酸化性に優れたフェライト系ステンレス鋼を実現することができる。
 本開示の態様7に係るフェライト系ステンレス鋼の製造方法は、上記態様6において、前記冷間圧延工程における圧延率は65%以上であってもよい。
 本開示の態様8に係るフェライト系ステンレス鋼の製造方法は、上記態様6または7において、前記冷間圧延工程を経て得られる前記フェライト系ステンレス鋼は、走査型電子顕微鏡を用いて、圧延方向に垂直な平面で切断した断面を、それぞれ30μm×30μmの範囲でランダムに3箇所観察したときに、エネルギー分散型X線分析によって測定されるNb濃度が5wt%以上であり粒子径が0.1μm以上である炭化物の数が平均値で2個以上15個以下存在する構成であってもよい。
 本開示の態様9に係るフェライト系ステンレス鋼の製造方法は、上記態様6から8のいずれかにおいて、前記冷間圧延工程を経て得られる前記フェライト系ステンレス鋼は、1050℃にて50時間加熱した場合にアルミナ層を形成し、前記アルミナ層は、当該アルミナ層を厚み方向に切断したときの断面において、面積が2.25μmの任意の領域に含まれる粒界長さの合計が5.5μm以下であってもよい。
 本開示の態様10に係るフェライト系ステンレス鋼の製造方法は、上記態様9において、前記アルミナ層において、粒界中に存在するNb酸化物、Cr酸化物およびREM系酸化物の合計濃度が3.5wt%以上であってもよい。
 本開示の態様11に係るフェライト系ステンレス鋼の製造方法は、上記態様6から10のいずれかにおいて、前記フェライト系ステンレス鋼は、質量%で、Zr:0.50%以下、V:0.50%以下、Cu:1.0%以下、Mo:2.0%以下、W:2.0%以下、Hf:0.50%以下、Sn:0.50%以下、Ta:0.5%以下、Ti:0.20%以下、Mg:0.015%以下、およびCa:0.015%以下のうち1種以上をさらに含有してもよい。
 本開示の態様12に係るフェライト系ステンレス鋼の製造方法は、上記態様6から11のいずれかにおいて、前記フェライト系ステンレス鋼は、[C]をCの質量%、[Nb]をNbの質量%としたときに、100×[C]/[Nb]≦35を満たしてもよい。
 本開示の態様13に係るフェライト系ステンレス鋼の製造方法は、上記態様6から12のいずれかにおいて、最終焼鈍工程における加熱温度は、900℃~1050℃であってよい。当該構成により、靭性および高温での耐酸化性に優れたフェライト系ステンレス鋼を実現するのに適した焼鈍鋼帯を得ることができる。
 〔実施例〕
 本発明のフェライト系ステンレス鋼の物性を評価するために、発明例鋼種および比較例鋼種として、下記の表1に示す成分を原料とするフェライト系ステンレス鋼を製造した。表1において、鋼種No.1~16は、本発明の範囲において作製した、本発明例としてのフェライト系ステンレス鋼である。また、表1において、鋼種No.17~27は、本発明の範囲外の条件で作製した、比較例としてのフェライト系ステンレス鋼である。
 表1に示す鋼種の鋼材を製造するにあたり、まず、表1に示す成分の鋼を真空溶解し、30kgのスラブを製造した。当該スラブを1230℃で2時間加熱後、熱間圧延を施して、板厚3mmの熱延板を作成した。得られた熱延板を、900~1050℃の間で焼鈍し、熱延焼鈍板を作成した。得られた熱延焼鈍板に対し、冷間圧延および焼鈍をそれぞれ2回実施し、さらに最終の冷間圧延を行うことにより、板厚50μmの冷延板を製造した。焼鈍工程における、焼鈍温度から400度までの冷却時間を表2に示す。
 なお、2回目までの冷間圧延は、本発明例および比較例ともに圧延率60~85%で行い、冷間圧延後の焼鈍は900~1050℃の温度範囲の条件下において実施した。最終の冷間圧延における圧延率については、表2の「最終圧延率」の欄に記載した。表2に示されるように、本発明例の最終の冷間圧延における圧延率は65%以上である。一方、比較例の最終の冷間圧延における圧延率は65%未満である。なお、本実施例に記載の製造方法は一例であり、製造方法を限定するものではない。
Figure JPOXMLDOC01-appb-T000001
 表1には、各鋼種に含まれる成分の組成が質量%で示されている。なお、表1に示す各成分以外の残部は、Feまたは不可避的に混入する少量の不純物(不可避的不純物)である。表1中の下線は、本発明の比較例に係る各ステンレス鋼に含まれる各成分の範囲が、本発明の範囲外であることを示している。
 (転位密度の測定)
 以下では、表1に示した本発明例鋼種および比較例鋼種の冷延板に対して実施した転位密度ρの測定について説明する。転位密度ρの測定は、実施形態中の(転位密度)の項において説明した方法に従って測定した。表2に転位密度ρの測定結果を示す。本発明例である鋼種No.1~16は、全て転位密度ρが0.91×1014[m-2]以上であった。一方、比較例鋼種No.17~27は、全て転位密度ρが0.91×1014[m-2]未満であった。当該結果から、最終の冷間圧延における圧延率を65%以上とした場合、転位密度ρが0.91×1014[m-2]以上となることが実証された。一方、最終の冷間圧延における圧延率が65%未満である場合には、転位密度ρは0.91×1014[m-2]未満となることが実証された。
 (Nb炭化物)
 表1に示した本発明例鋼種および比較例鋼種の冷延板に対して、組織内に存在するNb炭化物の個数を調査した。調査は以下のようにして行った。まず、冷延板を圧延方向に垂直な平面で切断した。次に、走査型電子顕微鏡を用いて切断面を、それぞれ30μm×30μmの範囲でランダムに3箇所観察し、エネルギー分散型X線分析によって測定されるNb濃度が5wt%以上であり粒子径が0.1μm以上の炭化物の平均個数を算出した。算出したNb炭化物の平均値を「平均Nb炭化物個数」として表2に示す。表2に示すように、本発明例である鋼種No.1~16は、全て炭化物の平均個数が2~15個の範囲であった。
 (粒界長さの測定)
 まず、表1に示した本発明例鋼種および比較例鋼種の冷延板を、1050℃にて50時間加熱した。加熱後、各鋼板を断面からSTEM観察した。STEM観察は、日立ハイテク社製HD-2700を用い、電圧200V、観察倍率3万倍にて行った。アルミナ粒界長さの測定は、アルミナ皮膜の中央部よりランダムに1.5μm×1.5μmの範囲を選定し、当該範囲内の粒界の合計長さを求めた。なお、測定長さはランダムに選定した3か所の平均値とした。
 表2の粒界長さの判定において、「〇(良好)」は、2.25μmの範囲内の粒界長さ5.5μm以下であり、「×(不良)」は、2.25μmの範囲内の粒界長さ5.5μmより大きいことを示している。
 (アルミナ層の粒界中の元素濃度)
 以下では、表1に示した本発明例および比較例のアルミナ粒界中の、Nb、CrおよびREM元素濃度について説明する。
 まず、表1に示した本発明例鋼種および比較例鋼種の冷延板を、1050℃にて50時間加熱した。加熱後、各鋼板を断面から観察し、STEM-EDXにより、粒界中の各元素濃度を測定した。STEM像観察は、日立ハイテク社製HD-2700を用い、電圧200V、観察倍率400万倍、粒界中央部をスポット分析することにより行った。EDX(エネルギー分散型X線分析)は、アメテック社製 エネルギー分散型X線分析装置EDAX Octane T Ultra Wを用いた。分析時間は300秒間とした。
 表2には、Nb、Cr、Ce、La、およびNdの元素濃度を合計した値を示している。この値は、すなわち、粒界中のNb酸化物、Cr酸化物およびREM系酸化物の合計濃度である。
 表2の濃化元素濃度の判定において、粒界中のNb酸化物、Cr酸化物およびREM系酸化物の合計濃度が3.5wt%以上である場合、「〇(良好)」と表記した。一方3.5wt%未満である場合には、表2において「×(不良)」と表記した。
 (耐高温酸化特性評価試験)
 以下では、表1および表2に示した本発明例および比較例に対して実施した耐高温酸化特性評価試験について説明する。まず、表1に示した鋼種ごとに、鋼材の製造において説明した板厚50μmの冷延板から幅20mm、長さ25mmの試験片を3枚採取した。当該試験片を1050℃の大気雰囲気に50時間供し、3枚の平均酸化増量を測定した。本耐高温酸化特性評価試験は、エレマ電気炉を用いて大気中で実施した。この結果を以下の表3に示す。表3の耐高温酸化特性の判定において、「〇(良好)」は、平均酸化増量が1mg/cm以下であり、「×(不良)」は、1mg/cmを超えていたことを示している。
 (靭性評価試験)
 以下では、表1に示した本発明例および比較例に対して実施した靭性評価試験について説明する。まず本評価試験に用いる試験片を、JIS規格(JIS Z 2242(2018))のVノッチ試験片に基づき作製した。板厚の調整は、鋼材の製造において説明した板厚3mmの熱延板を、板厚2.5mmまで表面切削することにより行った。試験片の長手方向が圧延方向と平行となるように鋼板から試験片を採取した。また、圧延方向と垂直になるように試験片にノッチを入れた。
 本評価試験は、JIS規格(JIS Z 2242(2018))に基づいて実施した。本評価試験を室温(23℃±2℃)で、各鋼種につき5本ずつ実施し、シャルピー衝撃値(吸収エネルギー)を求めた。なお、本評価試験では、(株)東京衝機製造所製のIC-30B型シャルピー衝撃試験機を用いた。この結果を以下の表2に示す。表2において、「〇(良好)」は、シャルピー衝撃値が20J/cm以上であり、「×(不良)」は、シャルピー衝撃値が20J/cm未満であることを示している。
Figure JPOXMLDOC01-appb-T000002
 表2に示されるように、発明例鋼種No.1~16は全て、耐高温酸化特性および靭性について、上記基準を満たした。比較例鋼種No.17~27は、耐高温酸化特性および靭性のいずれかまたは両方において、上記基準を満たさなかった。
 すなわち、本発明の範囲内のフェライト系ステンレス鋼は、耐高温酸化特性および靱性に優れることが実証された。
 以下に、比較例鋼種No.17~27が本発明例鋼種よりも良好な結果を示さない理由について説明する。
 比較例鋼種No.17は、粒界長さは基準を満たしているが、Bの含有量が低いため、Nb、CrおよびREMの粒界中の濃度が基準を満たさなかった。これにより、耐高温酸化性に優れた結果を示さなかった。
 比較例鋼種No.18は、REMの含有量が0.01%未満であるため、Nb、CrおよびREMの粒界中の濃度が基準を満たさなかった。また、比較例鋼種No.18は、Tiの含有量が0.20%よりも多いため、等軸晶化しやすくかつ、耐高温酸化性に優れた結果を示さなかった。
 比較例鋼種No.19は、Nbの含有量が0.01%未満であり、Nb、CrおよびREMの粒界中の濃度が基準を満たさず、耐高温酸化性に優れた結果を示さなかった。
 比較例鋼種No.20は、Zrの含有量が0.50%よりも多いため、アルミナ粒界にZrが偏析しやすく結晶の等軸晶化を助長し、耐高温酸化性に優れた結果を示さなかった。
 比較例鋼種No.21は、Siの含有量が1.5%よりも多く、SiOなどのSi系酸化物の影響により耐高温酸化性に優れた結果を示した。一方、比較例鋼種No.21は、Siの含有量が1.5%よりも多く、靭性について良好な結果を示さなかった。
 比較例鋼種No.22は、Alの含有量が2.0%よりも低く、Alの酸化皮膜が形成されにくい。これにより酸素分圧が高い状態となり、等軸晶化しやすいため、耐高温酸化性について良好な結果を示さなかった。
 比較例鋼種No.23は、Tiの含有量が0.20%よりも高いため、等軸晶化しやすく、耐高温酸化性について良好な結果を示さなかった。
 比較例鋼種No.24は、Nbの含有量が0.70%よりも高く、等軸晶化しやすいため、耐高温酸化性については良好な結果を示さなかった。
 比較例鋼種No.25は、Alの含有量が4.0%よりも高いため、靭性について良好な結果を示さなかった。
 比較例鋼種No.26は、Crの含有量が25.0%よりも高く、アルミナ粒界にCrが濃化し等軸晶を形成しやすくなり、耐高温酸化性について良好な結果を示さなかった。
 比較例鋼種No.27は、REMの含有量が0.20%よりも多いため、YまたはCeOなどの酸化物が形成されるため、靭性について良好な結果を示さなかった。
 10 アルミナ層
 

 

Claims (12)

  1.  質量%で、C:0.030%以下、Si:0.01~1.5%、Mn:0.01~1.00%、P:0.050%以下、S:0.005%以下、Cr:15.0~25.0%、Al:2.0~4.0%、Ni:1.00%以下、Nb:0.01~0.70%、N:0.030%以下、B:0.0003~0.01%、REM:0.01~0.20%を含有し、残部がFeおよび不可避的不純物からなり、Williamson and Hall法を用いて導出される転位密度ρが0.91×1014[m-2]以上であり、
     走査型電子顕微鏡を用いて、圧延方向に垂直な平面で切断した断面を、それぞれ30μm×30μmの範囲でランダムに3箇所観察したときに、エネルギー分散型X線分析によって測定されるNb濃度が5wt%以上であり粒子径が0.1μm以上である炭化物の数は、平均値で2個以上15個以下である、フェライト系ステンレス鋼。
  2.  1050℃にて50時間加熱した場合にアルミナを主体とするアルミナ層を形成し、
     前記アルミナ層は、当該アルミナ層を厚み方向に切断したときの断面において、面積が2.25μmの任意の領域に含まれる粒界長さの合計が5.5μm以下である、請求項1に記載のフェライト系ステンレス鋼。
  3.  前記アルミナ層において、粒界中に存在するNb酸化物、Cr酸化物およびREM系酸化物の合計濃度が3.5wt%以上である、請求項2に記載のフェライト系ステンレス鋼。
  4.  質量%で、Zr:0.50%以下、V:0.50%以下、Cu:1.0%以下、Mo:2.0%以下、W:2.0%以下、Hf:0.50%以下、Sn:0.50%以下、Ta:0.5%以下、Ti:0.20%以下、Mg:0.015%以下、およびCa:0.015%以下のうち1種以上をさらに含有する、請求項1から3のいずれか1項に記載のフェライト系ステンレス鋼。
  5.  [C]をCの質量%、[Nb]をNbの質量%としたときに、
     100×[C]/[Nb]≦35を満たす、請求項1から3のいずれか1項に記載のフェライト系ステンレス鋼。
  6.  質量%で、C:0.030%以下、Si:0.01~1.5%、Mn:0.01~1.00%、P:0.050%以下、S:0.005%以下、Cr:15.0~25.0%、Al:2.0~4.0%、Ni:1.00%以下、Nb:0.01~0.70%、N:0.030%以下、B:0.0003~0.01%、REM:0.01~0.20%を含有し、残部がFeおよび不可避的不純物からなる、フェライト系ステンレス鋼の製造方法であって、
     熱間圧延後の鋼帯を焼鈍し、焼鈍後における前記鋼帯の焼鈍温度から400度までの冷却時間が30秒以上である焼鈍工程と、
     最終焼鈍工程後に、Williamson and Hall法を用いて導出される転位密度ρが0.91×1014[m-2]以上となるまで圧延する冷間圧延工程と、を含む、フェライト系ステンレス鋼の製造方法。
  7.  前記冷間圧延工程における圧延率は65%以上である、請求項6に記載のフェライト系ステンレス鋼の製造方法。
  8.  前記冷間圧延工程を経て得られる前記フェライト系ステンレス鋼は、走査型電子顕微鏡を用いて、圧延方向に垂直な平面で切断した断面を、それぞれ30μm×30μmの範囲でランダムに3箇所観察したときに、エネルギー分散型X線分析によって測定されるNb濃度が5wt%以上であり粒子径が0.1μm以上である炭化物の数が平均値で2個以上15個以下存在する、請求項6または7に記載のフェライト系ステンレス鋼の製造方法。
  9.  前記冷間圧延工程を経て得られる前記フェライト系ステンレス鋼は、1050℃にて50時間加熱した場合にアルミナ層を形成し、
     前記アルミナ層は、当該アルミナ層を厚み方向に切断したときの断面において、面積が2.25μmの任意の領域に含まれる粒界長さの合計が5.5μm以下である、請求項6または7に記載のフェライト系ステンレス鋼の製造方法。
  10.  前記アルミナ層において、粒界中に存在するNb酸化物、Cr酸化物およびREM系酸化物の合計濃度が3.5wt%以上である、請求項9に記載のフェライト系ステンレス鋼の製造方法。
  11.  前記フェライト系ステンレス鋼は、質量%で、Zr:0.50%以下、V:0.50%以下、Cu:1.0%以下、Mo:2.0%以下、W:2.0%以下、Hf:0.50%以下、Sn:0.50%以下、Ta:0.5%以下、Ti:0.20%以下、Mg:0.015%以下、およびCa:0.015%以下のうち1種以上をさらに含有する、請求項6または7に記載のフェライト系ステンレス鋼の製造方法。
  12.  前記フェライト系ステンレス鋼は、[C]をCの質量%、[Nb]をNbの質量%としたときに、
     100×[C]/[Nb]≦35を満たす、請求項6または7に記載のフェライト系ステンレス鋼の製造方法。
PCT/JP2022/044388 2021-12-09 2022-12-01 フェライト系ステンレス鋼およびその製造方法 WO2023106204A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN202280073828.2A CN118234882A (zh) 2021-12-09 2022-12-01 铁素体类不锈钢及其制造方法
JP2023566272A JPWO2023106204A1 (ja) 2021-12-09 2022-12-01
KR1020247015669A KR20240076835A (ko) 2021-12-09 2022-12-01 페라이트계 스테인리스강 및 그 제조 방법
EP22904135.5A EP4446442A1 (en) 2021-12-09 2022-12-01 Ferritic stainless steel and method for manufacturing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021200093 2021-12-09
JP2021-200093 2021-12-09

Publications (1)

Publication Number Publication Date
WO2023106204A1 true WO2023106204A1 (ja) 2023-06-15

Family

ID=86730274

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/044388 WO2023106204A1 (ja) 2021-12-09 2022-12-01 フェライト系ステンレス鋼およびその製造方法

Country Status (5)

Country Link
EP (1) EP4446442A1 (ja)
JP (1) JPWO2023106204A1 (ja)
KR (1) KR20240076835A (ja)
CN (1) CN118234882A (ja)
WO (1) WO2023106204A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002146484A (ja) * 2000-11-10 2002-05-22 Sanyo Special Steel Co Ltd 高強度フェライト系耐熱鋼
JP3351836B2 (ja) 1992-12-07 2002-12-03 日新製鋼株式会社 耐高温酸化性に優れた高Al含有フェライト系ステンレス鋼
JP2020066794A (ja) * 2018-10-26 2020-04-30 日鉄ステンレス株式会社 フェライト系ステンレス鋼及びその製造方法、並びに燃料電池用部材
CN111471938A (zh) * 2020-05-25 2020-07-31 武汉钢铁有限公司 无碳化物贝氏体的电动汽车齿轮用钢及其生产方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS51836B1 (ja) 1969-08-13 1976-01-10

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3351836B2 (ja) 1992-12-07 2002-12-03 日新製鋼株式会社 耐高温酸化性に優れた高Al含有フェライト系ステンレス鋼
JP2002146484A (ja) * 2000-11-10 2002-05-22 Sanyo Special Steel Co Ltd 高強度フェライト系耐熱鋼
JP2020066794A (ja) * 2018-10-26 2020-04-30 日鉄ステンレス株式会社 フェライト系ステンレス鋼及びその製造方法、並びに燃料電池用部材
CN111471938A (zh) * 2020-05-25 2020-07-31 武汉钢铁有限公司 无碳化物贝氏体的电动汽车齿轮用钢及其生产方法

Also Published As

Publication number Publication date
EP4446442A1 (en) 2024-10-16
CN118234882A (zh) 2024-06-21
KR20240076835A (ko) 2024-05-30
JPWO2023106204A1 (ja) 2023-06-15

Similar Documents

Publication Publication Date Title
JP4084733B2 (ja) 延性に優れた高強度低比重鋼板およびその製造方法
WO2013146815A1 (ja) 耐熱フェライト系ステンレス冷延鋼板、冷延素材用フェライト系ステンレス熱延鋼板及びそれらの製造方法
JP6205407B2 (ja) 耐熱性に優れたフェライト系ステンレス鋼板
JP5707671B2 (ja) 加工性と製造性に優れたNb添加フェライト系ステンレス鋼板及びその製造方法
JP5560578B2 (ja) 加工性に優れたフェライト系ステンレス冷延鋼板及びその製造方法
JP5561447B1 (ja) ステンレス鋼板およびステンレス箔
WO2018158854A1 (ja) フェライト系ステンレス鋼板、ホットコイルおよび自動車排気系フランジ部材
WO2018158853A1 (ja) フェライト系ステンレス鋼板、ホットコイルおよび自動車排気系フランジ部材
WO2019188601A1 (ja) 耐塩害腐食性に優れたフェライト系ステンレス鋼
JP6319537B1 (ja) ステンレス鋼板およびステンレス箔
JP4430502B2 (ja) 延性に優れた低比重鋼板の製造方法
JP2022155181A (ja) オーステナイト系ステンレス鋼
WO2023106204A1 (ja) フェライト系ステンレス鋼およびその製造方法
JPH02254136A (ja) 製造性に優れた耐熱、耐酸化性Fe―Cr―A▲l▼系合金
JP7511439B2 (ja) フェライト系ステンレス鋼
WO2023106203A1 (ja) フェライト系ステンレス鋼およびその製造方法
JP7323092B1 (ja) フェライト系ステンレス鋼およびその製造方法
WO2023243133A1 (ja) フェライト系ステンレス鋼およびその製造方法
WO2023170996A1 (ja) フェライト系ステンレス鋼板および排気部品
JPH0156138B2 (ja)
JP7584230B2 (ja) フェライト系ステンレス鋼板及び溶接構造体
WO2024058278A1 (ja) オーステナイト系合金材
JP2023146597A (ja) フェライト系ステンレス熱延鋼板およびその製造方法
JP2001288542A (ja) 耐リジング性に優れるCr含有薄鋼板およびその製造方法
WO2024177059A1 (ja) フェライト系ステンレス鋼板および排気部品

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22904135

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023566272

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 18701784

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 202280073828.2

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 20247015669

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2401003074

Country of ref document: TH

WWE Wipo information: entry into national phase

Ref document number: 2022904135

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2022904135

Country of ref document: EP

Effective date: 20240709