[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2023105969A1 - Polyimide resin composition and molded body - Google Patents

Polyimide resin composition and molded body Download PDF

Info

Publication number
WO2023105969A1
WO2023105969A1 PCT/JP2022/039908 JP2022039908W WO2023105969A1 WO 2023105969 A1 WO2023105969 A1 WO 2023105969A1 JP 2022039908 W JP2022039908 W JP 2022039908W WO 2023105969 A1 WO2023105969 A1 WO 2023105969A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
polyimide resin
carbon atoms
formula
resin composition
Prior art date
Application number
PCT/JP2022/039908
Other languages
French (fr)
Japanese (ja)
Inventor
敦史 酒井
勇希 佐藤
卓弥 福島
Original Assignee
三菱瓦斯化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱瓦斯化学株式会社 filed Critical 三菱瓦斯化学株式会社
Priority to CN202280079034.7A priority Critical patent/CN118318009A/en
Priority to JP2023566146A priority patent/JPWO2023105969A1/ja
Publication of WO2023105969A1 publication Critical patent/WO2023105969A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G73/00Macromolecular compounds obtained by reactions forming a linkage containing nitrogen with or without oxygen or carbon in the main chain of the macromolecule, not provided for in groups C08G12/00 - C08G71/00
    • C08G73/06Polycondensates having nitrogen-containing heterocyclic rings in the main chain of the macromolecule
    • C08G73/10Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors

Definitions

  • the present invention relates to polyimide resin compositions and molded articles.
  • Polyimide resin is a useful engineering plastic with high thermal stability, high strength, and high solvent resistance due to the rigidity of the molecular chain, resonance stabilization, and strong chemical bonding, and is applied in a wide range of fields. Polyimide resins having crystallinity can further improve their heat resistance, strength and chemical resistance, and thus are expected to be used as metal substitutes. However, although the polyimide resin has high heat resistance, it does not show thermoplasticity and has a problem of low moldability.
  • Patent Document 1 As polyimide molding materials, highly heat-resistant resin Vespel (registered trademark) and the like are known (Patent Document 1). Since it is necessary to perform molding, it is also disadvantageous in terms of cost. On the other hand, a resin such as a crystalline resin that has a melting point and is fluid at high temperatures can be molded easily and inexpensively.
  • thermoplastic polyimide resins have been reported.
  • Thermoplastic polyimide resins are excellent in moldability in addition to the inherent heat resistance of polyimide resins. Therefore, thermoplastic polyimide resins can also be applied to moldings used in harsh environments where general-purpose thermoplastic resins such as nylon and polyester could not be applied.
  • Patent Document 2 a predetermined A thermoplastic polyimide resin is disclosed that contains a repeating unit of
  • Patent Document 3 discloses a thermoplastic polyimide resin containing a predetermined repeating unit, and also describes the use of the polyimide resin in combination with another resin as a polymer alloy.
  • thermoplastic polyimide resin described in Patent Document 3 has crystallinity and is excellent in heat resistance, strength, chemical resistance, etc., but depending on the application, a high level of dimensional stability in a wide temperature range is required. There was room for further improvement.
  • An object of the present invention is to provide a polyimide resin composition which has a low coefficient of linear thermal expansion and which can be used to form a molded article having excellent dimensional stability.
  • the present inventors have found that a polyimide resin composition containing a crystalline thermoplastic polyimide resin in which specific different polyimide structural units are combined in a specific ratio and an amorphous resin having a specific structure can solve the above problems. Found it. That is, the present invention relates to the following.
  • a repeating structural unit represented by the following formula (1) and a repeating structural unit represented by the following formula (2) are included, and the sum of the repeating structural unit of the formula (1) and the repeating structural unit of the formula (2) Containing a polyimide resin (A) having a content ratio of 20 to 70 mol% of the repeating structural unit of the formula (1) and an amorphous resin (B) containing a repeating structural unit represented by the following formula (I) polyimide resin composition.
  • R 1 is a C 6-22 divalent group containing at least one alicyclic hydrocarbon structure.
  • R 2 is a C 5-16 divalent chain aliphatic group.
  • X 1 and X 2 are each independently a tetravalent group having 6 to 22 carbon atoms containing at least one aromatic ring.
  • R 4 is a divalent group having 6 to 22 carbon atoms containing at least one aromatic ring
  • R 5 is a divalent group represented by any of the following formulas (R-5a) to (R-5c) at least one of
  • R 51 is an alkyl group having 1 to 4 carbon atoms, an alkenyl group having 2 to 4 carbon atoms, or an alkynyl group having 2 to 4 carbon atoms
  • m 51 is each independently an integer of 0 to 2; is an integer from 0 to 4.
  • each R 52 is independently an alkyl group having 1 to 4 carbon atoms, an alkenyl group having 2 to 4 carbon atoms, or an alkynyl group having 2 to 4 carbon atoms; each m 52 is independently an integer of 0 to 2; and p 52 are each independently an integer of 0 to 4. * indicates a bond.
  • each R 53 is independently an alkyl group having 1 to 4 carbon atoms or a phenyl group; each m 53 is independently an integer of 2 to 6; n is the average number of repeating units; * is a bond; show hand.
  • [2] A molded article containing the polyimide resin composition according to [1] above.
  • the polyimide resin composition and molded article of the present invention have a low coefficient of linear thermal expansion and excellent dimensional stability, and therefore are suitable for, for example, films, copper-clad laminates, electrical and electronic members that require a low coefficient of thermal expansion. .
  • FIG. 2 is a schematic diagram showing a method of preparing a sample used for observation with a field emission scanning electron microscope (FE-SEM); 1 is a micrograph of a cross section of the polyimide resin composition (pellet) of Example 2, cut in a direction perpendicular to the machine direction (MD), observed by FE-SEM.
  • FE-SEM field emission scanning electron microscope
  • the polyimide resin composition of the present invention comprises a repeating structural unit represented by the following formula (1) and a repeating structural unit represented by the following formula (2), wherein the repeating structural unit of the formula (1) and the formula (2) A polyimide resin (A) having a content ratio of 20 to 70 mol% of repeating structural units of the formula (1) with respect to the total repeating structural units of and an amorphous resin containing a repeating structural unit represented by the following formula (I) (B) and.
  • R 1 is a C 6-22 divalent group containing at least one alicyclic hydrocarbon structure.
  • R 2 is a C 5-16 divalent chain aliphatic group.
  • X 1 and X 2 are each independently a tetravalent group having 6 to 22 carbon atoms containing at least one aromatic ring.
  • R 4 is a divalent group having 6 to 22 carbon atoms containing at least one aromatic ring
  • R 5 is a divalent group represented by any of the following formulas (R-5a) to (R-5c) at least one of
  • R 51 is an alkyl group having 1 to 4 carbon atoms, an alkenyl group having 2 to 4 carbon atoms, or an alkynyl group having 2 to 4 carbon atoms
  • m 51 is each independently an integer of 0 to 2; is an integer from 0 to 4.
  • each R 52 is independently an alkyl group having 1 to 4 carbon atoms, an alkenyl group having 2 to 4 carbon atoms, or an alkynyl group having 2 to 4 carbon atoms; each m 52 is independently an integer of 0 to 2; and p 52 are each independently an integer of 0 to 4. * indicates a bond.
  • each R 53 is independently an alkyl group having 1 to 4 carbon atoms or a phenyl group; each m 53 is independently an integer of 2 to 6; n is the average number of repeating units; * is a bond; show hand.
  • the polyimide resin composition of the present invention is a polyimide resin composition having a low coefficient of linear thermal expansion (hereinafter also referred to as “CTE”) and capable of producing a molded article having excellent dimensional stability.
  • CTE coefficient of linear thermal expansion
  • Component (A) is a crystalline resin and component (B) is an amorphous resin, both of which have an imide structure. Therefore, component (A) and component (B) have mutual dispersibility, and in the resulting resin composition and molded article, they are mutually dispersed at the micro to nano level to form a microphase separation structure such as a sea-island structure.
  • component (A) or component (B) is finely dispersed at the micro to nano level is likely to disperse stress even when stress is applied. be done. Furthermore, since component (A) and component (B) are resins having relatively high heat resistance among thermoplastic resins, it is believed that higher dimensional stability can be maintained even in a high temperature range.
  • Pellets made of the polyimide resin composition of the present invention, or molded articles obtained by molding the polyimide resin composition preferably have a microphase-separated structure from the viewpoint of achieving a lower CTE.
  • the microphase-separated structure is formed by phase separation of component (A) and component (B), and may be a sea-island structure or a co-continuous structure, but preferably a sea-island structure. In the sea-island structure, either component may form the "sea" depending on the mass ratio of component (A) and component (B) in the compact.
  • whether or not the pellet or molded body has a microphase-separated structure can be determined by observing the surface or cross section of the molded body with a scanning electron microscope (SEM).
  • the polyimide resin (A) used in the present invention contains a repeating structural unit represented by the following formula (1) and a repeating structural unit represented by the following formula (2), and the repeating structural unit of the formula (1) and the formula (
  • the content ratio of the repeating structural units of formula (1) to the total repeating structural units of 2) is 20 to 70 mol %.
  • R 1 is a C 6-22 divalent group containing at least one alicyclic hydrocarbon structure.
  • R 2 is a C 5-16 divalent chain aliphatic group.
  • X 1 and X 2 are each independently a tetravalent group having 6 to 22 carbon atoms containing at least one aromatic ring.
  • the polyimide resin (A) used in the present invention is a crystalline thermoplastic resin, and its form is preferably powder or pellets.
  • the thermoplastic polyimide resin is formed by closing the imide ring after molding in the state of a polyimide precursor such as polyamic acid, for example, a polyimide resin having no glass transition temperature (Tg), or a temperature lower than the glass transition temperature It is distinguished from polyimide resin that decomposes at
  • R 1 is a C 6-22 divalent group containing at least one alicyclic hydrocarbon structure.
  • the alicyclic hydrocarbon structure means a ring derived from an alicyclic hydrocarbon compound, and the alicyclic hydrocarbon compound may be saturated or unsaturated, and It may be cyclic or polycyclic.
  • Examples of the alicyclic hydrocarbon structure include, but are not limited to, cycloalkane rings such as cyclohexane ring, cycloalkene rings such as cyclohexene, bicycloalkane rings such as norbornane ring, and bicycloalkene rings such as norbornene. Do not mean.
  • a cycloalkane ring is preferred, a cycloalkane ring having 4 to 7 carbon atoms is more preferred, and a cyclohexane ring is even more preferred.
  • R 1 has 6 to 22 carbon atoms, preferably 8 to 17 carbon atoms.
  • R 1 contains at least one, preferably 1 to 3, alicyclic hydrocarbon structures.
  • R 1 is preferably a divalent group represented by the following formula (R1-1) or (R1-2).
  • (m 11 and m 12 are each independently an integer of 0 to 2, preferably 0 or 1;
  • m 13 to m 15 are each independently an integer of 0 to 2, preferably 0 or 1.)
  • R 1 is particularly preferably a divalent group represented by the following formula (R1-3).
  • R1-3 the positional relationship of the two methylene groups with respect to the cyclohexane ring may be cis or trans, and the ratio of cis to trans may be can be any value.
  • X 1 is a tetravalent group having 6 to 22 carbon atoms containing at least one aromatic ring.
  • the aromatic ring may be a single ring or a condensed ring, and examples include, but are not limited to, benzene ring, naphthalene ring, anthracene ring, and tetracene ring. Among these, benzene ring and naphthalene ring are preferred, and benzene ring is more preferred.
  • X 1 has 6 to 22 carbon atoms, preferably 6 to 18 carbon atoms.
  • X 1 contains at least one, preferably 1 to 3, aromatic rings.
  • X 1 is preferably a tetravalent group represented by any one of formulas (X-1) to (X-4) below.
  • R 11 to R 18 are each independently an alkyl group having 1 to 4 carbon atoms;
  • p 11 to p 13 are each independently an integer of 0 to 2, preferably 0;
  • p 14 , p 15 , p 16 and p 18 are each independently an integer of 0 to 3, preferably 0.
  • p 17 is an integer of 0 to 4, preferably 0.
  • L 11 to L 13 are each independently a single bond, a carbonyl group or an alkylene group having 1 to 4 carbon atoms.) Since X 1 is a tetravalent group having 6 to 22 carbon atoms and containing at least one aromatic ring, R 12 , R 13 , p 12 and p 13 in formula (X-2) are represented by formula (X- The number of carbon atoms in the tetravalent group represented by 2) is selected within the range of 10 to 22. Similarly, L 11 , R 14 , R 15 , p 14 and p 15 in formula (X-3) are in the range of 12 to 22 carbon atoms in the tetravalent group represented by formula (X-3).
  • L 12 , L 13 , R 16 , R 17 , R 18 , p 16 , p 17 and p 18 in formula (X-4) are selected to contain tetravalent is selected so that the number of carbon atoms in the group is in the range of 18-22.
  • X 1 is particularly preferably a tetravalent group represented by the following formula (X-5) or (X-6).
  • R 2 is a divalent chain aliphatic group having 5 to 16 carbon atoms, preferably 6 to 14 carbon atoms, more preferably 7 to 12 carbon atoms, still more preferably 8 to 10 carbon atoms.
  • the chain aliphatic group means a group derived from a chain aliphatic compound, the chain aliphatic compound may be saturated or unsaturated, straight-chain It may be branched or branched.
  • R 2 is preferably an alkylene group having 5 to 16 carbon atoms, more preferably an alkylene group having 6 to 14 carbon atoms, still more preferably an alkylene group having 7 to 12 carbon atoms, and most preferably an alkylene group having 8 to 10 carbon atoms. It is an alkylene group.
  • the alkylene group may be a straight-chain alkylene group or a branched alkylene group, but is preferably a straight-chain alkylene group.
  • R 2 is preferably at least one selected from the group consisting of an octamethylene group and a decamethylene group, and more preferably an octamethylene group.
  • X2 is defined in the same manner as X1 in Formula (1), and the preferred embodiments are also the same.
  • the content ratio of the repeating structural unit of formula (1) to the total of the repeating structural unit of formula (1) and the repeating structural unit of formula (2) is 20 to 70 mol %.
  • the content ratio of the repeating structural unit of formula (1) is within the above range, the polyimide resin can be sufficiently crystallized even in a general injection molding cycle.
  • the content ratio is less than 20 mol %, the moldability is deteriorated, and when it exceeds 70 mol %, the crystallinity is deteriorated and the heat resistance is deteriorated.
  • the content ratio of the repeating structural unit of formula (1) to the total of the repeating structural unit of formula (1) and the repeating structural unit of formula (2) is preferably 65 mol% or less from the viewpoint of expressing high crystallinity.
  • the polyimide resin (A) The crystallinity of is increased, and a resin molding having more excellent heat resistance can be obtained.
  • the content ratio is preferably 25 mol% or more, more preferably 30 mol% or more, and still more preferably 32 mol% or more from the viewpoint of moldability, and is even more preferable from the viewpoint of expressing high crystallinity. is 35 mol % or less.
  • the total content ratio of the repeating structural units of the formula (1) and the repeating structural units of the formula (2) with respect to all repeating structural units constituting the polyimide resin (A) is preferably 50 to 100 mol%, more preferably 75 ⁇ 100 mol%, more preferably 80 to 100 mol%, still more preferably 85 to 100 mol%.
  • Polyimide resin (A) may further contain a repeating structural unit of the following formula (3).
  • the content ratio of the repeating structural unit of formula (3) to the sum of the repeating structural units of formula (1) and the repeating structural units of formula (2) is preferably 25 mol % or less.
  • the lower limit is not particularly limited as long as it exceeds 0 mol %.
  • the content ratio is preferably 5 mol% or more, more preferably 10 mol% or more, from the viewpoint of improving heat resistance, while maintaining crystallinity. From the standpoint of doing so, it is preferably 20 mol % or less, more preferably 15 mol % or less.
  • R 3 is a C 6-22 divalent group containing at least one aromatic ring.
  • X 3 is a C 6-22 tetravalent group containing at least one aromatic ring.
  • R 3 is a C 6-22 divalent group containing at least one aromatic ring.
  • the aromatic ring may be a single ring or a condensed ring, and examples include, but are not limited to, benzene ring, naphthalene ring, anthracene ring, and tetracene ring. Among these, benzene ring and naphthalene ring are preferred, and benzene ring is more preferred.
  • R 3 has 6 to 22 carbon atoms, preferably 6 to 18 carbon atoms.
  • R 3 contains at least one, preferably 1 to 3, aromatic rings.
  • R 3 is preferably a divalent group represented by the following formula (R3-1) or (R3-2).
  • (m 31 and m 32 are each independently an integer of 0 to 2, preferably 0 or 1;
  • m 33 and m 34 are each independently an integer of 0 to 2, preferably 0 or 1.
  • R 21 , R 22 and R 23 are each independently an alkyl group having 1 to 4 carbon atoms, an alkenyl group having 2 to 4 carbon atoms, or an alkynyl group having 2 to 4 carbon atoms.
  • p 21 , p 22 and p 23 are integers of 0 to 4, preferably 0.
  • L 21 is a single bond, a carbonyl group or an alkylene group having 1 to 4 carbon atoms.) Since R 3 is a divalent group having 6 to 22 carbon atoms and containing at least one aromatic ring, m 31 , m 32 , R 21 and p 21 in formula (R3-1) are represented by formula (R3- It is selected so that the number of carbon atoms of the divalent group represented by 1) falls within the range of 6-22. Similarly, L 21 , m 33 , m 34 , R 22 , R 23 , p 22 and p 23 in formula (R3-2) have It is chosen to fall within the range of 12-22.
  • X3 is defined in the same manner as X1 in Formula (1), and the preferred embodiments are also the same.
  • the terminal structure of the polyimide resin (A) is not particularly limited, it preferably has a chain aliphatic group having 5 to 14 carbon atoms at its terminal.
  • the chain aliphatic group may be saturated or unsaturated, linear or branched.
  • saturated chain aliphatic groups having 5 to 14 carbon atoms include n-pentyl group, n-hexyl group, n-heptyl group, n-octyl group, n-nonyl group, n-decyl group, n-undecyl group, Lauryl group, n-tridecyl group, n-tetradecyl group, isopentyl group, neopentyl group, 2-methylpentyl group, 2-methylhexyl group, 2-ethylpentyl group, 3-ethylpentyl group, isooctyl group, 2-ethylhexyl group , 3-ethylhexyl group, isononyl group, 2-ethyloctyl group, isodecyl group, isododecyl group, isotridecyl group, isotetradecyl group and the like.
  • Examples of unsaturated chain aliphatic groups having 5 to 14 carbon atoms include 1-pentenyl group, 2-pentenyl group, 1-hexenyl group, 2-hexenyl group, 1-heptenyl group, 2-heptenyl group, 1- octenyl group, 2-octenyl group, nonenyl group, decenyl group, dodecenyl group, tridecenyl group, tetradecenyl group and the like.
  • the chain aliphatic group is preferably a saturated chain aliphatic group, and more preferably a saturated straight chain aliphatic group.
  • the chain aliphatic group preferably has 6 or more carbon atoms, more preferably 7 or more carbon atoms, still more preferably 8 or more carbon atoms, and preferably 12 or less carbon atoms, more preferably 12 or less carbon atoms. has 10 or less carbon atoms, more preferably 9 or less carbon atoms. Only one type of chain aliphatic group may be used, or two or more types thereof may be used.
  • the chain aliphatic group is particularly preferably at least one selected from the group consisting of n-octyl group, isooctyl group, 2-ethylhexyl group, n-nonyl group, isononyl group, n-decyl group and isodecyl group. More preferably at least one selected from the group consisting of n-octyl group, isooctyl group, 2-ethylhexyl group, n-nonyl group and isononyl group, most preferably n-octyl group, isooctyl group and It is at least one selected from the group consisting of 2-ethylhexyl groups.
  • the polyimide resin (A) preferably has only chain aliphatic groups having 5 to 14 carbon atoms at its terminals in addition to terminal amino groups and terminal carboxy groups.
  • the content thereof is preferably 10 mol % or less, more preferably 5 mol % or less, relative to the chain aliphatic group having 5 to 14 carbon atoms.
  • the content of the chain aliphatic group having 5 to 14 carbon atoms in the polyimide resin (A) is 100 in total of all repeating structural units constituting the polyimide resin (A). It is preferably 0.01 mol % or more, more preferably 0.1 mol % or more, and still more preferably 0.2 mol % or more based on mol %.
  • the content of the chain aliphatic group having 5 to 14 carbon atoms in the polyimide resin (A) is Preferably 10 mol% or less, more preferably 6 mol% or less, still more preferably 3.5 mol% or less, even more preferably 2.0 mol% or less, more preferably 100 mol% or less of all repeating structural units More preferably, it is 1.2 mol % or less.
  • the content of the chain aliphatic group having 5 to 14 carbon atoms in the polyimide resin (A) can be determined by depolymerizing the polyimide resin (A).
  • Polyimide resin (A) preferably has a melting point of 360° C. or lower and a glass transition temperature of 150° C. or higher.
  • the melting point of the polyimide resin (A) is preferably 280° C. or higher, more preferably 290° C. or higher, from the viewpoint of heat resistance, and is preferably 345° C. or lower, more preferably 345° C. or lower, from the viewpoint of achieving high moldability. is 340° C. or less, more preferably 335° C. or less.
  • the glass transition temperature of the polyimide resin (A) is more preferably 160° C. or higher, more preferably 170° C. or higher from the viewpoint of heat resistance, and preferably 250° C. from the viewpoint of expressing high moldability.
  • the polyimide resin (A) is measured by a differential scanning calorimeter, and after melting the polyimide resin, it is cooled at a cooling rate of 20 ° C./min.
  • the heat quantity at the crystallization exothermic peak (hereinafter also simply referred to as “crystallization exothermic value”) observed when the It is preferably 17.0 mJ/mg or more, and more preferably 17.0 mJ/mg or more.
  • the upper limit of the crystallization heat value is not particularly limited, it is usually 45.0 mJ/mg or less.
  • the melting point, glass transition temperature, and crystallization heat value of the polyimide resin (A) can all be measured by a differential scanning calorimeter, and specifically by the methods described in Examples.
  • the weight average molecular weight Mw of the polyimide resin (A) is preferably 10,000 to 150,000, more preferably 15,000 to 100,000, still more preferably 20,000 to 80,000, still more preferably 30, 000 to 70,000, more preferably 35,000 to 65,000.
  • the weight-average molecular weight Mw of the polyimide resin (A) is 10,000 or more, the mechanical strength of the molded article obtained is good, and when it is 40,000 or more, the stability of the mechanical strength is good, It becomes easy to form the microphase-separated structure mentioned above, and a lower CTE can be achieved. Also, if it is 150,000 or less, moldability will be good.
  • the weight average molecular weight Mw of the polyimide resin (A) can be measured by a gel permeation chromatography (GPC) method using polymethyl methacrylate (PMMA) as a standard sample, and specifically can be measured by the method described in Examples. .
  • the logarithmic viscosity at 30° C. of a 0.5% by mass concentrated sulfuric acid solution of the polyimide resin (A) is preferably in the range of 0.8 to 2.0 dL/g, more preferably 0.9 to 1.8 dL/g. .
  • the logarithmic viscosity ⁇ is obtained from the following formula by measuring the flow times of concentrated sulfuric acid and the polyimide resin solution at 30° C. using a Canon Fenske viscometer.
  • ln [(ts/t 0 )/C] t 0 : Flow time of concentrated sulfuric acid ts: Flow time of polyimide resin solution C: 0.5 (g/dL)
  • Polyimide resin (A) can be produced by reacting a tetracarboxylic acid component and a diamine component.
  • the tetracarboxylic acid component contains a tetracarboxylic acid and/or derivative thereof containing at least one aromatic ring
  • the diamine component contains a diamine containing at least one alicyclic hydrocarbon structure and a linear aliphatic diamine. .
  • the tetracarboxylic acid containing at least one aromatic ring is preferably a compound in which four carboxy groups are directly bonded to the aromatic ring, and may contain an alkyl group in the structure.
  • the tetracarboxylic acid preferably has 6 to 26 carbon atoms.
  • Examples of the tetracarboxylic acid include pyromellitic acid, 2,3,5,6-toluenetetracarboxylic acid, 3,3′,4,4′-benzophenonetetracarboxylic acid, and 3,3′,4,4′-biphenyl. Tetracarboxylic acid, 1,4,5,8-naphthalenetetracarboxylic acid and the like are preferred. Among these, pyromellitic acid is more preferable.
  • Derivatives of tetracarboxylic acids containing at least one aromatic ring include anhydrides or alkyl esters of tetracarboxylic acids containing at least one aromatic ring.
  • the tetracarboxylic acid derivative preferably has 6 to 38 carbon atoms.
  • Anhydrides of tetracarboxylic acids include pyromellitic monoanhydride, pyromellitic dianhydride, 2,3,5,6-toluenetetracarboxylic dianhydride, 3,3′,4,4′-diphenyl sulfonetetracarboxylic dianhydride, 3,3′,4,4′-benzophenonetetracarboxylic dianhydride, 3,3′,4,4′-biphenyltetracarboxylic dianhydride, 1,4,5, 8-naphthalenetetracarboxylic dianhydride and the like are included.
  • alkyl esters of tetracarboxylic acids include dimethyl pyromellitic acid, diethyl pyromellitic acid, dipropyl pyromellitic acid, diisopropyl pyromellitic acid, dimethyl 2,3,5,6-toluenetetracarboxylate, 3,3′,4 ,4′-diphenylsulfonetetracarboxylate dimethyl, 3,3′,4,4′-benzophenonetetracarboxylate dimethyl, 3,3′,4,4′-biphenyltetracarboxylate dimethyl, 1,4,5,8 -Naphthalenetetracarboxylate dimethyl and the like.
  • the alkyl group preferably has 1 to 3 carbon atoms.
  • At least one compound selected from the above may be used alone, or two or more compounds may be used in combination.
  • the diamine containing at least one alicyclic hydrocarbon structure preferably has 6 to 22 carbon atoms, such as 1,2-bis(aminomethyl)cyclohexane, 1,3-bis(aminomethyl)cyclohexane, 1,4- Bis(aminomethyl)cyclohexane, 1,2-cyclohexanediamine, 1,3-cyclohexanediamine, 1,4-cyclohexanediamine, 4,4'-diaminodicyclohexylmethane, 4,4'-methylenebis(2-methylcyclohexylamine) , carvonediamine, limonenediamine, isophoronediamine, norbornanediamine, bis(aminomethyl)tricyclo[5.2.1.0 2,6 ]decane, 3,3′-dimethyl-4,4′-diaminodicyclohexylmethane, 4,4'-Diaminodicyclohexylpropane and the like are preferred.
  • Diamines containing an alicyclic hydrocarbon structure generally have structural isomers, but the ratio of cis/trans isomers is not limited.
  • the chain aliphatic diamine may be linear or branched, and preferably has 5 to 16 carbon atoms, more preferably 6 to 14 carbon atoms, and still more preferably 7 to 12 carbon atoms.
  • Chain aliphatic diamines such as 1,5-pentamethylenediamine, 2-methylpentane-1,5-diamine, 3-methylpentane-1,5-diamine, 1,6-hexamethylenediamine, 1,7-hepta methylenediamine, 1,8-octamethylenediamine, 1,9-nonamethylenediamine, 1,10-decamethylenediamine, 1,11-undecamethylenediamine, 1,12-dodecamethylenediamine, 1,13-trideca Methylenediamine, 1,14-tetradecamethylenediamine, 1,16-hexadecamethylenediamine, 2,2'-(ethylenedioxy)bis(ethyleneamine) and the like are preferred.
  • Chain aliphatic diamines may be used singly or in combination. Among these, chain aliphatic diamines having 8 to 10 carbon atoms can be preferably used, and at least one selected from the group consisting of 1,8-octamethylenediamine and 1,10-decamethylenediamine is particularly preferable. Available.
  • the molar amount of the diamine charged containing at least one alicyclic hydrocarbon structure with respect to the total amount of the diamine containing at least one alicyclic hydrocarbon structure and the chain aliphatic diamine The ratio is preferably 20-70 mol %.
  • the molar amount is preferably 25 mol% or more, more preferably 30 mol% or more, still more preferably 32 mol% or more, and from the viewpoint of expressing high crystallinity, preferably 60 mol% or less, more preferably 50 mol% or more.
  • the diamine component may contain a diamine containing at least one aromatic ring.
  • the diamine containing at least one aromatic ring preferably has 6 to 22 carbon atoms, such as orthoxylylenediamine, metaxylylenediamine, paraxylylenediamine, 1,2-diethynylbenzenediamine, 1,3-diethynyl.
  • the molar ratio of the charged amount of the diamine containing at least one aromatic ring to the total amount of the diamine containing at least one alicyclic hydrocarbon structure and the chain aliphatic diamine is 25 mol% or less. It is preferably 20 mol % or less, still more preferably 15 mol % or less. Although the lower limit of the molar ratio is not particularly limited, it is preferably 5 mol % or more, more preferably 10 mol % or more, from the viewpoint of improving heat resistance.
  • the molar ratio is more preferably 12 mol% or less, even more preferably 10 mol% or less, even more preferably 5 mol% or less, and even more preferably 0 mol %.
  • the charged amount ratio of the tetracarboxylic acid component and the diamine component is preferably 0.9 to 1.1 mol of the diamine component with respect to 1 mol of the tetracarboxylic acid component.
  • a terminal blocking agent may be mixed in addition to the tetracarboxylic acid component and the diamine component.
  • the terminal blocking agent at least one selected from the group consisting of monoamines and dicarboxylic acids is preferable.
  • the amount of the terminal blocking agent used may be an amount that can introduce a desired amount of terminal groups into the polyimide resin (A), and is 0.0001 to 0.001 to 0.001 to 1 mol of the tetracarboxylic acid and/or derivative thereof.
  • a monoamine terminal blocking agent is preferable as the terminal blocking agent, and from the viewpoint of improving heat aging resistance by introducing the chain aliphatic group having 5 to 14 carbon atoms described above at the end of the polyimide resin (A). , monoamines having a chain aliphatic group of 5 to 14 carbon atoms are more preferred, and monoamines having a saturated linear aliphatic group of 5 to 14 carbon atoms are even more preferred.
  • the terminal blocking agent is particularly preferably at least one selected from the group consisting of n-octylamine, isooctylamine, 2-ethylhexylamine, n-nonylamine, isononylamine, n-decylamine, and isodecylamine. , more preferably at least one selected from the group consisting of n-octylamine, isooctylamine, 2-ethylhexylamine, n-nonylamine, and isononylamine, most preferably n-octylamine, isooctylamine, and 2-ethylhexylamine.
  • polymerization method for producing the polyimide resin (A) As a polymerization method for producing the polyimide resin (A), a known polymerization method can be applied, and the method described in International Publication No. 2016/147996 can be used.
  • the amorphous resin (B) used in the present invention contains a repeating structural unit represented by the following formula (I).
  • R 4 is a divalent group having 6 to 22 carbon atoms containing at least one aromatic ring
  • R 5 is a divalent group represented by any of the following formulas (R-5a) to (R-5c) at least one of
  • R 51 is an alkyl group having 1 to 4 carbon atoms, an alkenyl group having 2 to 4 carbon atoms, or an alkynyl group having 2 to 4 carbon atoms
  • m 51 is each independently an integer of 0 to 2; is an integer from 0 to 4.
  • each R 52 is independently an alkyl group having 1 to 4 carbon atoms, an alkenyl group having 2 to 4 carbon atoms, or an alkynyl group having 2 to 4 carbon atoms; each m 52 is independently an integer of 0 to 2; and p 52 are each independently an integer of 0 to 4.
  • each R 53 is independently an alkyl group having 1 to 4 carbon atoms or a phenyl group; each m 53 is independently an integer of 2 to 6; n is the average number of repeating units; * is a bond; show hand.
  • the polyimide resin composition of the present invention can produce a molded article with a low CTE.
  • R 4 is preferably a C 12-22 divalent group containing two or more aromatic rings, more preferably the following formula (R- 4a) to (R-4c), preferably a divalent group represented by the following formula (R-4a). (In the above formula, * indicates a bond.)
  • the alkyl group having 1 to 4 carbon atoms in R 51 of formula (R-5a), R 52 of formula (R-5b) and R 53 of formula (R-5c) is methyl group, ethyl group, n-propyl , isopropyl, n-butyl, isobutyl, sec-butyl, and tert-butyl groups.
  • R 51 is preferably an alkyl group having 1 to 4 carbon atoms, more preferably an alkyl group having 1 to 3 carbon atoms, still more preferably methyl, from the viewpoint of achieving a lower CTE. or an ethyl group, more preferably a methyl group.
  • m 51 is preferably 0 or 1, more preferably 0;
  • p 51 is preferably an integer from 0 to 2, more preferably 0 or 1, more preferably 0;
  • R 52 is preferably an alkyl group having 1 to 4 carbon atoms, more preferably an alkyl group having 1 to 3 carbon atoms, still more preferably methyl, from the viewpoint of achieving a lower CTE. or an ethyl group, more preferably a methyl group.
  • m52 is preferably 0 or 1, more preferably 0;
  • p52 is preferably an integer from 0 to 2, more preferably 0 or 1, more preferably 0;
  • R 53 is each independently preferably a methyl group or a phenyl group, more preferably a methyl group, from the viewpoint of achieving a lower CTE.
  • Each m 53 is independently an integer of preferably 2 to 4, more preferably 3.
  • n is preferably 2 or more and 5,000 or less.
  • R 5 in formula (I) may have two or more divalent groups represented by any one of formulas (R-5a) to (R-5c). From the viewpoint of achieving a lower CTE, R 5 is preferably a divalent group represented by formula (R-5a), a divalent group represented by formula (R-5b), or a divalent group represented by formula (R-5a ) and a divalent group represented by formula (R-5c).
  • amorphous resin (B) examples include an amorphous resin containing a repeating structural unit represented by the following formula (B1), an amorphous resin containing a repeating structural unit represented by the following formula (B2), and At least one selected from the group consisting of amorphous resins containing repeating structural units represented by formula (B3) can be used.
  • n is the average number of repeating structural units.
  • an amorphous resin containing a repeating structural unit represented by formula (B1) is referred to as “amorphous resin (B1)”
  • an amorphous resin containing a repeating structural unit represented by formula (B2) is referred to as “amorphous Resin (B2)”
  • an amorphous resin containing a repeating structural unit represented by formula (B3) is also referred to as “amorphous resin (B3)”.
  • the melt flow rate (MFR) of the amorphous resins (B1) to (B3) is preferably within the following range from the viewpoint of improving the moldability of the polyimide resin composition and achieving a lower CTE.
  • the MFR of the amorphous resin (B1) measured at a temperature of 337° C. and a load of 6.6 kgf according to ASTM D1238 is preferably 5 to 20 g/10 minutes, more preferably 5 to 15 g/10 minutes. be.
  • the MFR of the amorphous resin (B2) measured at a temperature of 367° C. and a load of 6.6 kgf according to ASTM D1238 is preferably 10 to 30 g/10 minutes, more preferably 10 to 20 g/10 minutes. be.
  • the MFR of the amorphous resin (B3) measured at a temperature of 295° C. and a load of 6.6 kgf according to ASTM D1238 is preferably 3 to 20 g/10 minutes, more preferably 5 to 15 g/10 minutes. be.
  • the content of the repeating structural unit represented by the formula (I) (preferably the repeating structural unit represented by any one of the formulas (B1) to (B3)) in the amorphous resin (B) has a lower CTE and from the viewpoint of reducing water absorption, preferably 50% by mass or more, more preferably 70% by mass or more, even more preferably 80% by mass or more, even more preferably 90% by mass or more, and even more preferably It is 95% by mass or more and 100% by mass or less.
  • Component (B) can be used alone or in combination of two or more.
  • the component (B) is preferably at least one selected from the group consisting of amorphous resins (B1) to (B3) from the viewpoint of achieving a lower CTE and reducing the water absorption rate. , more preferably at least one selected from the group consisting of the amorphous resin (B1) and the amorphous resin (B3), more preferably the amorphous resin (B3).
  • the mass ratio of the polyimide resin (A) to the total mass of the polyimide resin (A) and the amorphous resin (B) in the polyimide resin composition [(A) / ⁇ (A) + (B) ⁇ ] is the present invention From the viewpoint of obtaining the effect of , it is preferably 0.01 or more and 0.99 or less.
  • the mass ratio is more preferably 0.1 or more, still more preferably 0.2 or more, still more preferably 0.25 or more, still more preferably 0.30 or more, and still more It is preferably 0.40 or more, still more preferably 0.45 or more, and from the viewpoint of achieving a lower CTE, it is more preferably 0.9 or less, still more preferably 0.8 or less, and even more preferably 0.8. It is 75 or less, more preferably 0.70 or less, still more preferably 0.60 or less, and even more preferably 0.55 or less.
  • the total content of the polyimide resin (A) and the amorphous resin (B) in the polyimide resin composition is preferably 50% by mass or more, more preferably 70% by mass or more, from the viewpoint of obtaining the effects of the present invention. It is preferably 80% by mass or more, more preferably 90% by mass or more, and 100% by mass or less.
  • the polyimide resin composition of the present invention contains a filler, a reinforcing fiber, a matting agent, a nucleating agent, a plasticizer, an antistatic agent, an anti-coloring agent, an anti-gelling agent, a flame retardant, a coloring agent, a slidability improver, Additives such as antioxidants, ultraviolet absorbers, conductive agents, and resin modifiers may be contained as necessary.
  • the content of the additive is not particularly limited, but from the viewpoint of expressing the effect of the additive while maintaining the physical properties derived from the polyimide resin (A) and the amorphous resin (B), the polyimide resin composition , usually 50% by mass or less, preferably 0.0001 to 30% by mass, more preferably 0.0001 to 15% by mass, still more preferably 0.001 to 10% by mass.
  • the polyimide resin composition of the present invention can take any form, pellets are preferred. Since the polyimide resin (A) and the amorphous resin (B) have thermoplasticity, for example, the polyimide resin (A), the amorphous resin (B), and optionally various optional components are melt-kneaded in an extruder. The strands can be extruded with a tumbler and pelletized by cutting the strands. Further, by introducing the obtained pellets into various molding machines and thermoforming them by the method described below, a molded article having a desired shape can be easily produced.
  • the glass transition temperature of the polyimide resin composition of the present invention is preferably 160 ° C. or higher, more preferably 170 ° C. or higher, still more preferably 180 ° C. or higher, and from the viewpoint of expressing high moldability is preferably 250° C. or lower, more preferably 240° C. or lower.
  • the glass transition temperature can be measured by a method similar to that described above.
  • a low CTE molded article can be produced.
  • the absolute value of the linear thermal expansion coefficient measured according to JIS K7197: 2012 of a 4 mm thick molded body obtained by molding the polyimide resin composition is preferably 60 ppm / ° C. or less.
  • the CTE measurement temperature range is 150 to 210 ° C. or 150 to 220 ° C., preferably 150 to 210 ° C. when the amorphous resin (B1) is used as the amorphous resin (B).
  • the range is 150 to 220°C.
  • the molded article used for CTE measurement is preferably a non-stretched molded article, more preferably an injection molded article. Injection-molded articles also have a machine direction (MD) and a direction perpendicular to it (TD), and the MD and TD may have different CTEs.
  • MD machine direction
  • TD direction perpendicular to it
  • the absolute value of the coefficient of thermal expansion of at least one of MD and TD is preferably 60 ppm/°C or less, and more preferably the absolute value of the coefficient of thermal expansion of both MD and TD is 60 ppm/°C or less. preferable.
  • the absolute value of the linear thermal expansion coefficient which is lower among MD and TD, is more preferably 55 ppm/° C. or less, more preferably 50 ppm/ ° C. or less, still more preferably 45 ppm/° C. or less, even more preferably 40 ppm/° C. or less, even more preferably 35 ppm/° C. or less, even more preferably 30 ppm/° C. or less, even more preferably 20 ppm/° C. or less, still more preferably It is preferably 15 ppm/°C or less, more preferably 10 ppm/°C or less.
  • the total value of the absolute values of the thermal expansion coefficients in MD and TD is preferably 100 ppm/° C. or less, more preferably 95 ppm. /°C or less, more preferably 90 ppm/°C or less, even more preferably 80 ppm/°C or less, still more preferably 70 ppm/°C or less, and even more preferably 60 ppm/°C or less.
  • the linear thermal expansion coefficient of the molded product is a value measured in compression mode by thermomechanical analysis (TMA method), and can be specifically measured by the method described in Examples.
  • a molded article with low water absorption can be produced.
  • the water absorption rate when immersed in water at 23 ° C. for 24 hours, measured in accordance with JIS K7209: 2000, of a molded body of 30 mm ⁇ 20 mm ⁇ thickness 4 mm obtained by molding a polyimide resin composition preferably 0.30% or less, more preferably 0.25% or less, still more preferably 0.20% or less, and even more preferably 0.17% or less.
  • the water absorption rate is obtained from the following formula when the mass of the molded article before immersion in water is (W 0 ) and the mass of the molded article after immersion in water at 23° C. for 24 hours is (W 1 ). It is a calculated value.
  • Water absorption (%) [(W 1 -W 0 )/W 0 ] x 100 Specifically, the water absorption can be measured by the method described in Examples.
  • the present invention provides a molded article containing the polyimide resin composition. Since the polyimide resin composition of the present invention has thermoplasticity, the molded article of the present invention can be easily produced by thermoforming.
  • Thermoforming methods include injection molding, extrusion molding, blow molding, hot press molding, vacuum molding, pressure molding, laser molding, welding, welding, etc. Any molding method involving a heat melting process can be used. is possible.
  • the molding temperature varies depending on the thermal properties (melting point and glass transition temperature) of the polyimide resin composition. For example, in injection molding, molding can be performed at a molding temperature of less than 400°C and a mold temperature of 220°C or less.
  • a method for producing a molded article preferably includes a step of thermoforming the polyimide resin composition at a temperature of less than 400°C.
  • Specific procedures include, for example, the following method. First, the polyimide resin (A), the amorphous resin (B), and optionally various optional components are added and dry blended, then introduced into an extruder, preferably melted at less than 400 ° C. The mixture is then melt-kneaded and extruded in an extruder to produce pellets. Alternatively, the polyimide resin (A) is introduced into the extruder, preferably melted at less than 400 ° C., and the amorphous resin (B) and various optional components are introduced into the extruder with the polyimide resin (A).
  • the aforementioned pellets may be produced by melt-kneading and extrusion. After drying the pellets, they can be introduced into various molding machines and thermoformed preferably at a temperature of less than 400° C. to produce a molded body having a desired shape.
  • the molded article of the present invention has a low coefficient of linear thermal expansion, excellent dimensional stability, and low water absorption. Therefore, it is suitable for, for example, films, copper-clad laminates, electrical and electronic members that require a low coefficient of thermal expansion. is.
  • IR measurement ⁇ Infrared spectroscopic analysis (IR measurement)>
  • the IR measurement of the polyimide resin was performed using "JIR-WINSPEC50" manufactured by JEOL Ltd.
  • the melting point Tm of the polyimide resin, and the glass transition temperature Tg, crystallization temperature Tc, and crystallization heat value ⁇ Hm of the polyimide resin, amorphous resin, and polyimide resin composition were measured using a differential scanning calorimeter (SII Nanotechnology ( Measured using a "DSC-6220" manufactured by Co., Ltd.).
  • the crystallization temperature Tc the resin powder for the polyimide resin and the amorphous resin (B1), the amorphous resin (B2), the amorphous resin (B3), and the pellet for the polyimide resin composition were used as measurement samples.
  • the measurement sample was subjected to thermal history under the following conditions.
  • the thermal history conditions were a first temperature increase (temperature increase rate of 10° C./min), then cooling (temperature decrease rate of 20° C./min), and then a second temperature increase (temperature increase rate of 10° C./min).
  • the melting point Tm was determined by reading the peak top value of the endothermic peak observed the second time the temperature was raised.
  • the glass transition temperature Tg was determined by reading the value observed at the second heating.
  • the crystallization temperature Tc was determined by reading the peak top value of the exothermic peak observed during cooling. For Tm, Tg and Tc, when multiple peaks were observed, the peak top value of each peak was read.
  • the crystallization heat value ⁇ Hm (mJ/mg) was calculated from the area of the exothermic peak observed during cooling.
  • ⁇ Semi-crystallization time> The semi-crystallization time of the polyimide resin was measured using a differential scanning calorimeter ("DSC-6220" manufactured by SII Nanotechnology Co., Ltd.). After holding at 420 ° C. for 10 minutes in a nitrogen atmosphere to completely melt the polyimide resin, when performing a rapid cooling operation at a cooling rate of 70 ° C./min, the peak top from the appearance of the observed crystallization peak. Calculate the time it took to reach In addition, in Table 1, when the semi-crystallization time was 20 seconds or less, it was described as " ⁇ 20".
  • the polyimide resin of Production Example 1 the amorphous resin, or the polyimide resin composition produced in each example, an injection molded body was produced by the method described later, and cut into a size of 30 mm ⁇ 20 mm ⁇ 4 mm in thickness. This was conditioned in an environment of 23° C. and relative humidity of 50% for 24 hours or longer before being used for measurement. After the molded article was dried in a hot air circulation oven at 50°C for 24 hours, it was returned to room temperature in a desiccator, and the mass (W 0 ) was measured under an environment of 23°C and a relative humidity of 50%.
  • CTE ⁇ Coefficient of thermal expansion
  • JIS K7197:2012 JIS K7197:2012.
  • a thermomechanical analyzer "TMA7100C” manufactured by Hitachi High-Tech Science Co., Ltd. was used in a nitrogen stream (150 mL/min) in a compression mode with a load of 49 mN and a heating rate of 5 ° C./min. The temperature was raised from 23 to 300° C.
  • thermomechanical analysis TMA measurements were performed in the machine direction (MD) and the direction perpendicular to it (TD) of the injection molded product, and the CTE was determined from the measured values at 150 to 210°C or 150 to 220°C.
  • Production Example 1 (Production of Polyimide Resin 1)
  • a 2 L separable flask equipped with a Dean-Stark apparatus, a Liebig condenser, a thermocouple, and four paddle blades 500 g of 2-(2-methoxyethoxy) ethanol (manufactured by Nippon Nyukazai Co., Ltd.) and pyromellitic dianhydride ( 218.12 g (1.00 mol) of Mitsubishi Gas Chemical Co., Ltd.) was introduced, and after nitrogen flow, the mixture was stirred at 150 rpm to form a uniform suspension.
  • 1,8- A mixed diamine solution was prepared by dissolving 93.77 g (0.65 mol) of octamethylenediamine (manufactured by Kanto Chemical Co., Ltd.) in 250 g of 2-(2-methoxyethoxy)ethanol. The mixed diamine solution was added slowly using a plunger pump. Heat was generated by the dropwise addition, but the internal temperature was adjusted to be within the range of 40 to 80°C.
  • polyimide resin 1 In the process of increasing the temperature, deposition of polyimide resin powder and dehydration due to imidization were confirmed when the liquid temperature was 120 to 140°C. After holding at 190° C. for 30 minutes, the mixture was allowed to cool to room temperature and filtered. The obtained polyimide resin powder was washed with 300 g of 2-(2-methoxyethoxy)ethanol and 300 g of methanol, filtered, and then dried in a dryer at 180° C. for 10 hours to obtain 317 g of crystalline thermoplastic polyimide resin 1. (hereinafter also simply referred to as "polyimide resin 1”) was obtained.
  • Table 1 shows the composition and evaluation results of polyimide resin 1 in Production Example 1.
  • the mol % of the tetracarboxylic acid component and the diamine component in Table 1 are values calculated from the amount of each component charged during the production of the polyimide resin.
  • Example 1 polyimide resin composition, production and evaluation of molded body
  • B1 amorphous resin
  • HK-25D co-rotating twin-screw kneading extruder
  • Examples 2-4 Except for using the amorphous resin (B) of the type and amount shown in Table 2, and using the amorphous resin and the powder of the polyimide resin 1 obtained in Production Example 1 in the ratio shown in Table 2, An injection molded article was produced in the same manner as in Example 1, and various evaluations were performed. Table 2 shows the results.
  • Comparative example 1 The polyimide resin 1 powder obtained in Production Example 1 was melt-kneaded and extruded using Laboplastomill (manufactured by Toyo Seiki Seisakusho Co., Ltd.) at a barrel temperature of 360° C. and a screw rotation speed of 150 rpm. After the strand extruded from the extruder was air-cooled, it was pelletized by a pelletizer ("Fan Cutter FC-Mini-4/N" manufactured by Hoshi Plastics Co., Ltd.). The obtained pellets were dried at 150° C. for 12 hours and then used for injection molding.
  • Laboplastomill manufactured by Toyo Seiki Seisakusho Co., Ltd.
  • injection molding is performed with a barrel temperature of 350°C, a mold temperature of 200°C, and a molding cycle of 50 seconds.
  • An injection molded body was prepared for water absorption and CTE measurements.
  • Various evaluations were performed by the methods described above using the obtained injection molded article. Table 2 shows the results.
  • Amorphous resin (B1) ("ULTEM Resin 1000P” manufactured by SABIC) was melt-kneaded and extruded using Laboplastomill (manufactured by Toyo Seiki Seisakusho Co., Ltd.) at a barrel temperature of 360°C and a screw rotation speed of 150 rpm. After the strand extruded from the extruder was air-cooled, it was pelletized by a pelletizer ("Fan Cutter FC-Mini-4/N" manufactured by Hoshi Plastics Co., Ltd.). The obtained pellets were dried at 160° C. for 6 hours and then used for injection molding.
  • injection molding is performed with a barrel temperature of 350°C, a mold temperature of 180°C, and a molding cycle of 60 seconds.
  • An injection molded body was prepared for water absorption and CTE measurements.
  • Various evaluations were performed by the methods described above using the obtained injection molded article. Table 2 shows the results.
  • Comparative example 3 Amorphous resin (B2) (“EXTEM Resin VH1003” manufactured by SABIC) was molded using an injection molding machine (“ROBOSHOT ⁇ -S30iA” manufactured by Fanuc Corporation) at a barrel temperature of 370 ° C. and a mold temperature of 160 ° C. , injection molding was performed with a molding cycle of 60 seconds, and a predetermined size was cut out to prepare an injection molded body for water absorption and CTE measurement. Various evaluations were performed by the methods described above using the obtained injection molded article. Table 2 shows the results.
  • Comparative example 4 Amorphous resin (B3) ("SILTEM resin STM1700” manufactured by SABIC) was molded using an injection molding machine ("ROBOSHOT ⁇ -S30iA” manufactured by Fanuc Corporation) at a barrel temperature of 370°C and a mold temperature of 160°C. , injection molding was performed with a molding cycle of 60 seconds, and a predetermined size was cut out to prepare an injection molded body for water absorption and CTE measurement. Various evaluations were performed by the methods described above using the obtained injection molded article. Table 2 shows the results.
  • the molded articles made of the polyimide resin compositions of the present invention have a lower linear thermal expansion coefficient and superior dimensional stability than the molded articles of Comparative Examples 1 to 4.
  • the water absorption rate is lower than that of the molded body of the amorphous resin (B) alone.
  • the dispersion state of the polyimide resin (A) and the amorphous resin (B1) in the pellets was confirmed by the following method.
  • EM UC 7 manufactured by LEICA MICROSYSTEMS
  • the pellets obtained in Example 2 are perpendicular to the flow direction (MD) of the pellets as shown in FIG. like) cut.
  • MD flow direction
  • FIG. 1 1 is a pellet.
  • FE-SEM field emission scanning electron microscope
  • the polyimide resin composition and molded article of the present invention have a low coefficient of linear thermal expansion and excellent dimensional stability, and therefore are suitable for, for example, films, copper-clad laminates, electrical and electronic members that require a low coefficient of thermal expansion. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Macromolecular Compounds Obtained By Forming Nitrogen-Containing Linkages In General (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

The present invention provides: a polyimide resin composition which comprises a polyimide resin (A) that contains a repeating constituent unit represented by formula (1) and a repeating constituent unit represented by formula (2), with the content ratio of the repeating constituent unit represented by formula (1) to the total amount of the repeating constituent unit represented by formula (1) and the repeating constituent unit represented by formula (2) being 20-70 mol%, and an amorphous resin (B) that contains a repeating constituent unit represented by formula (I); and a molded body which comprises this polyimide resin composition. (In the formulae, R1 is a C6-C22 divalent group which comprises at least one alicyclic hydrocarbon structure; R2 is a C5-C16 divalent chain aliphatic group; and X1 and X2 are each independently a C6-C22 tetravalent group which comprises at least one aromatic ring.)

Description

ポリイミド樹脂組成物及び成形体Polyimide resin composition and molded article
 本発明は、ポリイミド樹脂組成物及び成形体に関する。 The present invention relates to polyimide resin compositions and molded articles.
 ポリイミド樹脂は分子鎖の剛直性、共鳴安定化、強い化学結合によって、高熱安定性、高強度、高耐溶媒性を有する有用なエンジニアリングプラスチックであり、幅広い分野で応用されている。また結晶性を有しているポリイミド樹脂はその耐熱性、強度、耐薬品性をさらに向上させることができることから、金属代替等としての利用が期待されている。しかしながらポリイミド樹脂は高耐熱性である反面、熱可塑性を示さず、成形加工性が低いという問題がある。 Polyimide resin is a useful engineering plastic with high thermal stability, high strength, and high solvent resistance due to the rigidity of the molecular chain, resonance stabilization, and strong chemical bonding, and is applied in a wide range of fields. Polyimide resins having crystallinity can further improve their heat resistance, strength and chemical resistance, and thus are expected to be used as metal substitutes. However, although the polyimide resin has high heat resistance, it does not show thermoplasticity and has a problem of low moldability.
 ポリイミド成形材料としては高耐熱樹脂ベスペル(登録商標)等が知られているが(特許文献1)、高温下でも流動性が極めて低いため成形加工が困難であり、高温、高圧条件下で長時間成形を行う必要があることからコスト的にも不利である。これに対し、結晶性樹脂のように融点を有し、高温での流動性がある樹脂であれば容易にかつ安価で成形加工が可能である。 As polyimide molding materials, highly heat-resistant resin Vespel (registered trademark) and the like are known (Patent Document 1). Since it is necessary to perform molding, it is also disadvantageous in terms of cost. On the other hand, a resin such as a crystalline resin that has a melting point and is fluid at high temperatures can be molded easily and inexpensively.
 そこで近年、熱可塑性を有するポリイミド樹脂が報告されている。熱可塑性ポリイミド樹脂はポリイミド樹脂が本来有している耐熱性に加え、成形加工性にも優れる。そのため熱可塑性ポリイミド樹脂は、汎用の熱可塑性樹脂であるナイロンやポリエステルは適用できなかった過酷な環境下で使用される成形体への適用も可能である。
 例えば特許文献2には、少なくとも1つの芳香環を含むテトラカルボン酸及び/またはその誘導体、少なくとも1つの脂環式炭化水素構造を含むジアミン、及び鎖状脂肪族ジアミンを反応させて得られる、所定の繰り返し構成単位を含む熱可塑性ポリイミド樹脂が開示されている。
Therefore, in recent years, thermoplastic polyimide resins have been reported. Thermoplastic polyimide resins are excellent in moldability in addition to the inherent heat resistance of polyimide resins. Therefore, thermoplastic polyimide resins can also be applied to moldings used in harsh environments where general-purpose thermoplastic resins such as nylon and polyester could not be applied.
For example, in Patent Document 2, a predetermined A thermoplastic polyimide resin is disclosed that contains a repeating unit of
 エンジニアリングプラスチック分野において、物性の改良、用途に応じた機能付与等を目的として、2種以上の熱可塑性樹脂をコンパウンドしてアロイ化する技術も知られている。特許文献3には、所定の繰り返し単位を含む熱可塑性ポリイミド樹脂が開示され、該ポリイミド樹脂と他の樹脂とを併用してポリマーアロイとして用いることも記載されている。 In the field of engineering plastics, there is also known a technique of compounding two or more thermoplastic resins into an alloy for the purpose of improving physical properties and adding functions according to the application. Patent Document 3 discloses a thermoplastic polyimide resin containing a predetermined repeating unit, and also describes the use of the polyimide resin in combination with another resin as a polymer alloy.
特開2005-28524号公報JP 2005-28524 A 国際公開第2013/118704号WO2013/118704 国際公開第2016/147996号WO2016/147996
 特許文献3に記載の熱可塑性ポリイミド樹脂は結晶性を有し、耐熱性、強度、耐薬品性等に優れるが、用途によっては幅広い温度範囲における高レベルの寸法安定性が求められ、この点においてさらなる改善の余地があった。
 本発明の課題は、熱線膨張係数が低く寸法安定性に優れる成形体を作成し得るポリイミド樹脂組成物を提供することにある。
The thermoplastic polyimide resin described in Patent Document 3 has crystallinity and is excellent in heat resistance, strength, chemical resistance, etc., but depending on the application, a high level of dimensional stability in a wide temperature range is required. There was room for further improvement.
An object of the present invention is to provide a polyimide resin composition which has a low coefficient of linear thermal expansion and which can be used to form a molded article having excellent dimensional stability.
 本発明者らは、特定の異なるポリイミド構成単位を特定の比率で組み合わせた結晶性熱可塑性ポリイミド樹脂と、特定構造を有する非晶性樹脂とを含有するポリイミド樹脂組成物が上記課題を解決できることを見出した。
 すなわち本発明は、下記に関する。
[1]下記式(1)で示される繰り返し構成単位及び下記式(2)で示される繰り返し構成単位を含み、該式(1)の繰り返し構成単位と該式(2)の繰り返し構成単位の合計に対する該式(1)の繰り返し構成単位の含有比が20~70モル%のポリイミド樹脂(A)と、下記式(I)で示される繰り返し構成単位を含む非晶性樹脂(B)とを含有するポリイミド樹脂組成物。
Figure JPOXMLDOC01-appb-C000007

(Rは少なくとも1つの脂環式炭化水素構造を含む炭素数6~22の2価の基である。Rは炭素数5~16の2価の鎖状脂肪族基である。X及びXは、それぞれ独立に、少なくとも1つの芳香環を含む炭素数6~22の4価の基である。)
Figure JPOXMLDOC01-appb-C000008

(Rは少なくとも1つの芳香環を含む炭素数6~22の2価の基である。Rは下記式(R-5a)~(R-5c)のいずれかで示される2価の基のうち少なくとも1種である。)
Figure JPOXMLDOC01-appb-C000009
(R51は炭素数1~4のアルキル基、炭素数2~4のアルケニル基、又は炭素数2~4のアルキニル基である。m51はそれぞれ独立に0~2の整数であり、p51は0~4の整数である。*は結合手を示す。)
Figure JPOXMLDOC01-appb-C000010

(R52はそれぞれ独立に、炭素数1~4のアルキル基、炭素数2~4のアルケニル基、又は炭素数2~4のアルキニル基である。m52はそれぞれ独立に0~2の整数であり、p52はそれぞれ独立に0~4の整数である。*は結合手を示す。)
Figure JPOXMLDOC01-appb-C000011

(R53はそれぞれ独立に、炭素数1~4のアルキル基、又はフェニル基である。m53はそれぞれ独立に2~6の整数である。nは平均繰り返し構成単位数である。*は結合手を示す。)
[2]上記[1]に記載のポリイミド樹脂組成物を含む成形体。
The present inventors have found that a polyimide resin composition containing a crystalline thermoplastic polyimide resin in which specific different polyimide structural units are combined in a specific ratio and an amorphous resin having a specific structure can solve the above problems. Found it.
That is, the present invention relates to the following.
[1] A repeating structural unit represented by the following formula (1) and a repeating structural unit represented by the following formula (2) are included, and the sum of the repeating structural unit of the formula (1) and the repeating structural unit of the formula (2) Containing a polyimide resin (A) having a content ratio of 20 to 70 mol% of the repeating structural unit of the formula (1) and an amorphous resin (B) containing a repeating structural unit represented by the following formula (I) polyimide resin composition.
Figure JPOXMLDOC01-appb-C000007

(R 1 is a C 6-22 divalent group containing at least one alicyclic hydrocarbon structure. R 2 is a C 5-16 divalent chain aliphatic group. X 1 and X 2 are each independently a tetravalent group having 6 to 22 carbon atoms containing at least one aromatic ring.)
Figure JPOXMLDOC01-appb-C000008

(R 4 is a divalent group having 6 to 22 carbon atoms containing at least one aromatic ring; R 5 is a divalent group represented by any of the following formulas (R-5a) to (R-5c) at least one of
Figure JPOXMLDOC01-appb-C000009
(R 51 is an alkyl group having 1 to 4 carbon atoms, an alkenyl group having 2 to 4 carbon atoms, or an alkynyl group having 2 to 4 carbon atoms; m 51 is each independently an integer of 0 to 2; is an integer from 0 to 4. * indicates a bond.)
Figure JPOXMLDOC01-appb-C000010

(each R 52 is independently an alkyl group having 1 to 4 carbon atoms, an alkenyl group having 2 to 4 carbon atoms, or an alkynyl group having 2 to 4 carbon atoms; each m 52 is independently an integer of 0 to 2; and p 52 are each independently an integer of 0 to 4. * indicates a bond.)
Figure JPOXMLDOC01-appb-C000011

(each R 53 is independently an alkyl group having 1 to 4 carbon atoms or a phenyl group; each m 53 is independently an integer of 2 to 6; n is the average number of repeating units; * is a bond; show hand.)
[2] A molded article containing the polyimide resin composition according to [1] above.
 本発明のポリイミド樹脂組成物及び成形体は、熱線膨張係数が低く寸法安定性に優れることから、例えば、低熱線膨張係数を要求されるフィルム、銅張積層板、電気、電子部材に好適である。 The polyimide resin composition and molded article of the present invention have a low coefficient of linear thermal expansion and excellent dimensional stability, and therefore are suitable for, for example, films, copper-clad laminates, electrical and electronic members that require a low coefficient of thermal expansion. .
フィールドエミッション型走査型電子顕微鏡(FE-SEM)観察に用いた試料の作製方法を示す模式図である。FIG. 2 is a schematic diagram showing a method of preparing a sample used for observation with a field emission scanning electron microscope (FE-SEM); 実施例2のポリイミド樹脂組成物(ペレット)の、流れ方向(MD)に対し直交方向に切断した断面をFE-SEMにより観察した際の顕微鏡写真である。1 is a micrograph of a cross section of the polyimide resin composition (pellet) of Example 2, cut in a direction perpendicular to the machine direction (MD), observed by FE-SEM.
[ポリイミド樹脂組成物]
 本発明のポリイミド樹脂組成物は、下記式(1)で示される繰り返し構成単位及び下記式(2)で示される繰り返し構成単位を含み、該式(1)の繰り返し構成単位と該式(2)の繰り返し構成単位の合計に対する該式(1)の繰り返し構成単位の含有比が20~70モル%のポリイミド樹脂(A)と、下記式(I)で示される繰り返し構成単位を含む非晶性樹脂(B)とを含有する。
Figure JPOXMLDOC01-appb-C000012

(Rは少なくとも1つの脂環式炭化水素構造を含む炭素数6~22の2価の基である。Rは炭素数5~16の2価の鎖状脂肪族基である。X及びXは、それぞれ独立に、少なくとも1つの芳香環を含む炭素数6~22の4価の基である。)
Figure JPOXMLDOC01-appb-C000013

(Rは少なくとも1つの芳香環を含む炭素数6~22の2価の基である。Rは下記式(R-5a)~(R-5c)のいずれかで示される2価の基のうち少なくとも1種である。)
Figure JPOXMLDOC01-appb-C000014
(R51は炭素数1~4のアルキル基、炭素数2~4のアルケニル基、又は炭素数2~4のアルキニル基である。m51はそれぞれ独立に0~2の整数であり、p51は0~4の整数である。*は結合手を示す。)
Figure JPOXMLDOC01-appb-C000015

(R52はそれぞれ独立に、炭素数1~4のアルキル基、炭素数2~4のアルケニル基、又は炭素数2~4のアルキニル基である。m52はそれぞれ独立に0~2の整数であり、p52はそれぞれ独立に0~4の整数である。*は結合手を示す。)
Figure JPOXMLDOC01-appb-C000016

(R53はそれぞれ独立に、炭素数1~4のアルキル基、又はフェニル基である。m53はそれぞれ独立に2~6の整数である。nは平均繰り返し構成単位数である。*は結合手を示す。)
[Polyimide resin composition]
The polyimide resin composition of the present invention comprises a repeating structural unit represented by the following formula (1) and a repeating structural unit represented by the following formula (2), wherein the repeating structural unit of the formula (1) and the formula (2) A polyimide resin (A) having a content ratio of 20 to 70 mol% of repeating structural units of the formula (1) with respect to the total repeating structural units of and an amorphous resin containing a repeating structural unit represented by the following formula (I) (B) and.
Figure JPOXMLDOC01-appb-C000012

(R 1 is a C 6-22 divalent group containing at least one alicyclic hydrocarbon structure. R 2 is a C 5-16 divalent chain aliphatic group. X 1 and X 2 are each independently a tetravalent group having 6 to 22 carbon atoms containing at least one aromatic ring.)
Figure JPOXMLDOC01-appb-C000013

(R 4 is a divalent group having 6 to 22 carbon atoms containing at least one aromatic ring; R 5 is a divalent group represented by any of the following formulas (R-5a) to (R-5c) at least one of
Figure JPOXMLDOC01-appb-C000014
(R 51 is an alkyl group having 1 to 4 carbon atoms, an alkenyl group having 2 to 4 carbon atoms, or an alkynyl group having 2 to 4 carbon atoms; m 51 is each independently an integer of 0 to 2; is an integer from 0 to 4. * indicates a bond.)
Figure JPOXMLDOC01-appb-C000015

(each R 52 is independently an alkyl group having 1 to 4 carbon atoms, an alkenyl group having 2 to 4 carbon atoms, or an alkynyl group having 2 to 4 carbon atoms; each m 52 is independently an integer of 0 to 2; and p 52 are each independently an integer of 0 to 4. * indicates a bond.)
Figure JPOXMLDOC01-appb-C000016

(each R 53 is independently an alkyl group having 1 to 4 carbon atoms or a phenyl group; each m 53 is independently an integer of 2 to 6; n is the average number of repeating units; * is a bond; show hand.)
 本発明のポリイミド樹脂組成物は、上記構成とすることにより、熱線膨張係数(以下「CTE」ともいう)が低く寸法安定性に優れる成形体を作成し得るポリイミド樹脂組成物となる。この理由については定かではないが、次のように考えられる。
 成分(A)は結晶性樹脂、成分(B)は非晶性樹脂であるが、いずれもイミド構造を有する。そのため成分(A)と成分(B)は相互分散性を有し、得られる樹脂組成物及び成形体中ではマイクロ~ナノレベルで相互分散して、海島構造等のミクロ相分離構造を形成していると考えられる。成分(A)又は成分(B)がマイクロ~ナノレベルで微分散した成形体は応力を与えた際にも応力分散しやすいので、加熱による収縮応力が生じた場合に応力緩和が生じやすいと考えられる。さらに、成分(A)及び成分(B)は熱可塑性樹脂の中でも比較的耐熱性が高い樹脂であることから、高温領域においてもより高い寸法安定性を維持できると考えられる。
The polyimide resin composition of the present invention is a polyimide resin composition having a low coefficient of linear thermal expansion (hereinafter also referred to as “CTE”) and capable of producing a molded article having excellent dimensional stability. Although the reason for this is not certain, it is considered as follows.
Component (A) is a crystalline resin and component (B) is an amorphous resin, both of which have an imide structure. Therefore, component (A) and component (B) have mutual dispersibility, and in the resulting resin composition and molded article, they are mutually dispersed at the micro to nano level to form a microphase separation structure such as a sea-island structure. It is thought that there are A compact in which component (A) or component (B) is finely dispersed at the micro to nano level is likely to disperse stress even when stress is applied. be done. Furthermore, since component (A) and component (B) are resins having relatively high heat resistance among thermoplastic resins, it is believed that higher dimensional stability can be maintained even in a high temperature range.
 本発明のポリイミド樹脂組成物からなるペレット、又は、該ポリイミド樹脂組成物を成形して得られる成形体は、より低いCTEを達成する観点から、ミクロ相分離構造を有することが好ましい。ミクロ相分離構造は成分(A)と成分(B)との相分離により形成され、海島構造でも共連続構造でもよいが、海島構造であることが好ましい。
 海島構造においては、成形体中の成分(A)及び成分(B)の質量比によって、いずれの成分が「海」を形成していてもよい。
 本明細書において、ペレット又は成形体がミクロ相分離構造を有しているか否かについては、成形体の表面又は断面を走査型電子顕微鏡(SEM)で観察することによって判別できる。
Pellets made of the polyimide resin composition of the present invention, or molded articles obtained by molding the polyimide resin composition, preferably have a microphase-separated structure from the viewpoint of achieving a lower CTE. The microphase-separated structure is formed by phase separation of component (A) and component (B), and may be a sea-island structure or a co-continuous structure, but preferably a sea-island structure.
In the sea-island structure, either component may form the "sea" depending on the mass ratio of component (A) and component (B) in the compact.
In this specification, whether or not the pellet or molded body has a microphase-separated structure can be determined by observing the surface or cross section of the molded body with a scanning electron microscope (SEM).
<ポリイミド樹脂(A)>
 本発明に用いるポリイミド樹脂(A)は、下記式(1)で示される繰り返し構成単位及び下記式(2)で示される繰り返し構成単位を含み、該式(1)の繰り返し構成単位と該式(2)の繰り返し構成単位の合計に対する該式(1)の繰り返し構成単位の含有比が20~70モル%である。
Figure JPOXMLDOC01-appb-C000017

(Rは少なくとも1つの脂環式炭化水素構造を含む炭素数6~22の2価の基である。Rは炭素数5~16の2価の鎖状脂肪族基である。X及びXは、それぞれ独立に、少なくとも1つの芳香環を含む炭素数6~22の4価の基である。)
<Polyimide resin (A)>
The polyimide resin (A) used in the present invention contains a repeating structural unit represented by the following formula (1) and a repeating structural unit represented by the following formula (2), and the repeating structural unit of the formula (1) and the formula ( The content ratio of the repeating structural units of formula (1) to the total repeating structural units of 2) is 20 to 70 mol %.
Figure JPOXMLDOC01-appb-C000017

(R 1 is a C 6-22 divalent group containing at least one alicyclic hydrocarbon structure. R 2 is a C 5-16 divalent chain aliphatic group. X 1 and X 2 are each independently a tetravalent group having 6 to 22 carbon atoms containing at least one aromatic ring.)
 本発明に用いるポリイミド樹脂(A)は結晶性熱可塑性樹脂であり、その形態としては粉末又はペレットであることが好ましい。熱可塑性ポリイミド樹脂は、例えばポリアミド酸等のポリイミド前駆体の状態で成形した後にイミド環を閉環して形成される、ガラス転移温度(Tg)を持たないポリイミド樹脂、あるいはガラス転移温度よりも低い温度で分解してしまうポリイミド樹脂とは区別される。 The polyimide resin (A) used in the present invention is a crystalline thermoplastic resin, and its form is preferably powder or pellets. The thermoplastic polyimide resin is formed by closing the imide ring after molding in the state of a polyimide precursor such as polyamic acid, for example, a polyimide resin having no glass transition temperature (Tg), or a temperature lower than the glass transition temperature It is distinguished from polyimide resin that decomposes at
 式(1)の繰り返し構成単位について、以下に詳述する。
 Rは少なくとも1つの脂環式炭化水素構造を含む炭素数6~22の2価の基である。ここで、脂環式炭化水素構造とは、脂環式炭化水素化合物から誘導される環を意味し、該脂環式炭化水素化合物は、飽和であっても不飽和であってもよく、単環であっても多環であってもよい。
 脂環式炭化水素構造としては、シクロヘキサン環等のシクロアルカン環、シクロヘキセン等のシクロアルケン環、ノルボルナン環等のビシクロアルカン環、及びノルボルネン等のビシクロアルケン環が例示されるが、これらに限定されるわけではない。これらの中でも、好ましくはシクロアルカン環、より好ましくは炭素数4~7のシクロアルカン環、さらに好ましくはシクロヘキサン環である。
 Rの炭素数は6~22であり、好ましくは8~17である。
 Rは脂環式炭化水素構造を少なくとも1つ含み、好ましくは1~3個含む。
The repeating structural unit of formula (1) is described in detail below.
R 1 is a C 6-22 divalent group containing at least one alicyclic hydrocarbon structure. Here, the alicyclic hydrocarbon structure means a ring derived from an alicyclic hydrocarbon compound, and the alicyclic hydrocarbon compound may be saturated or unsaturated, and It may be cyclic or polycyclic.
Examples of the alicyclic hydrocarbon structure include, but are not limited to, cycloalkane rings such as cyclohexane ring, cycloalkene rings such as cyclohexene, bicycloalkane rings such as norbornane ring, and bicycloalkene rings such as norbornene. Do not mean. Among these, a cycloalkane ring is preferred, a cycloalkane ring having 4 to 7 carbon atoms is more preferred, and a cyclohexane ring is even more preferred.
R 1 has 6 to 22 carbon atoms, preferably 8 to 17 carbon atoms.
R 1 contains at least one, preferably 1 to 3, alicyclic hydrocarbon structures.
 Rは、好ましくは下記式(R1-1)又は(R1-2)で表される2価の基である。
Figure JPOXMLDOC01-appb-C000018

(m11及びm12は、それぞれ独立に、0~2の整数であり、好ましくは0又は1である。m13~m15は、それぞれ独立に、0~2の整数であり、好ましくは0又は1である。)
R 1 is preferably a divalent group represented by the following formula (R1-1) or (R1-2).
Figure JPOXMLDOC01-appb-C000018

(m 11 and m 12 are each independently an integer of 0 to 2, preferably 0 or 1; m 13 to m 15 are each independently an integer of 0 to 2, preferably 0 or 1.)
 Rは、特に好ましくは下記式(R1-3)で表される2価の基である。
Figure JPOXMLDOC01-appb-C000019

 なお、上記の式(R1-3)で表される2価の基において、2つのメチレン基のシクロヘキサン環に対する位置関係はシスであってもトランスであってもよく、またシスとトランスの比は如何なる値でもよい。
R 1 is particularly preferably a divalent group represented by the following formula (R1-3).
Figure JPOXMLDOC01-appb-C000019

In the divalent group represented by the above formula (R1-3), the positional relationship of the two methylene groups with respect to the cyclohexane ring may be cis or trans, and the ratio of cis to trans may be can be any value.
 Xは少なくとも1つの芳香環を含む炭素数6~22の4価の基である。前記芳香環は単環でも縮合環でもよく、ベンゼン環、ナフタレン環、アントラセン環、及びテトラセン環が例示されるが、これらに限定されるわけではない。これらの中でも、好ましくはベンゼン環及びナフタレン環であり、より好ましくはベンゼン環である。
 Xの炭素数は6~22であり、好ましくは6~18である。
 Xは芳香環を少なくとも1つ含み、好ましくは1~3個含む。
X 1 is a tetravalent group having 6 to 22 carbon atoms containing at least one aromatic ring. The aromatic ring may be a single ring or a condensed ring, and examples include, but are not limited to, benzene ring, naphthalene ring, anthracene ring, and tetracene ring. Among these, benzene ring and naphthalene ring are preferred, and benzene ring is more preferred.
X 1 has 6 to 22 carbon atoms, preferably 6 to 18 carbon atoms.
X 1 contains at least one, preferably 1 to 3, aromatic rings.
 Xは、好ましくは下記式(X-1)~(X-4)のいずれかで表される4価の基である。
Figure JPOXMLDOC01-appb-C000020

(R11~R18は、それぞれ独立に、炭素数1~4のアルキル基である。p11~p13は、それぞれ独立に、0~2の整数であり、好ましくは0である。p14、p15、p16及びp18は、それぞれ独立に、0~3の整数であり、好ましくは0である。p17は0~4の整数であり、好ましくは0である。L11~L13は、それぞれ独立に、単結合、カルボニル基又は炭素数1~4のアルキレン基である。)
 なお、Xは少なくとも1つの芳香環を含む炭素数6~22の4価の基であるので、式(X-2)におけるR12、R13、p12及びp13は、式(X-2)で表される4価の基の炭素数が10~22の範囲に入るように選択される。
 同様に、式(X-3)におけるL11、R14、R15、p14及びp15は、式(X-3)で表される4価の基の炭素数が12~22の範囲に入るように選択され、式(X-4)におけるL12、L13、R16、R17、R18、p16、p17及びp18は、式(X-4)で表される4価の基の炭素数が18~22の範囲に入るように選択される。
X 1 is preferably a tetravalent group represented by any one of formulas (X-1) to (X-4) below.
Figure JPOXMLDOC01-appb-C000020

(R 11 to R 18 are each independently an alkyl group having 1 to 4 carbon atoms; p 11 to p 13 are each independently an integer of 0 to 2, preferably 0; p 14 , p 15 , p 16 and p 18 are each independently an integer of 0 to 3, preferably 0. p 17 is an integer of 0 to 4, preferably 0. L 11 to L 13 are each independently a single bond, a carbonyl group or an alkylene group having 1 to 4 carbon atoms.)
Since X 1 is a tetravalent group having 6 to 22 carbon atoms and containing at least one aromatic ring, R 12 , R 13 , p 12 and p 13 in formula (X-2) are represented by formula (X- The number of carbon atoms in the tetravalent group represented by 2) is selected within the range of 10 to 22.
Similarly, L 11 , R 14 , R 15 , p 14 and p 15 in formula (X-3) are in the range of 12 to 22 carbon atoms in the tetravalent group represented by formula (X-3). L 12 , L 13 , R 16 , R 17 , R 18 , p 16 , p 17 and p 18 in formula (X-4) are selected to contain tetravalent is selected so that the number of carbon atoms in the group is in the range of 18-22.
 Xは、特に好ましくは下記式(X-5)又は(X-6)で表される4価の基である。
Figure JPOXMLDOC01-appb-C000021
X 1 is particularly preferably a tetravalent group represented by the following formula (X-5) or (X-6).
Figure JPOXMLDOC01-appb-C000021
 次に、式(2)の繰り返し構成単位について、以下に詳述する。
 Rは炭素数5~16の2価の鎖状脂肪族基であり、好ましくは炭素数6~14、より好ましくは炭素数7~12、更に好ましくは炭素数8~10である。ここで、鎖状脂肪族基とは、鎖状脂肪族化合物から誘導される基を意味し、該鎖状脂肪族化合物は、飽和であっても不飽和であってもよく、直鎖状であっても分岐状であってもよい。
 Rは、好ましくは炭素数5~16のアルキレン基であり、より好ましくは炭素数6~14、更に好ましくは炭素数7~12のアルキレン基であり、なかでも好ましくは炭素数8~10のアルキレン基である。前記アルキレン基は、直鎖アルキレン基であっても分岐アルキレン基であってもよいが、好ましくは直鎖アルキレン基である。
 Rは、好ましくはオクタメチレン基及びデカメチレン基からなる群から選ばれる少なくとも1種であり、特に好ましくはオクタメチレン基である。
Next, the repeating structural unit of formula (2) will be described in detail below.
R 2 is a divalent chain aliphatic group having 5 to 16 carbon atoms, preferably 6 to 14 carbon atoms, more preferably 7 to 12 carbon atoms, still more preferably 8 to 10 carbon atoms. Here, the chain aliphatic group means a group derived from a chain aliphatic compound, the chain aliphatic compound may be saturated or unsaturated, straight-chain It may be branched or branched.
R 2 is preferably an alkylene group having 5 to 16 carbon atoms, more preferably an alkylene group having 6 to 14 carbon atoms, still more preferably an alkylene group having 7 to 12 carbon atoms, and most preferably an alkylene group having 8 to 10 carbon atoms. It is an alkylene group. The alkylene group may be a straight-chain alkylene group or a branched alkylene group, but is preferably a straight-chain alkylene group.
R 2 is preferably at least one selected from the group consisting of an octamethylene group and a decamethylene group, and more preferably an octamethylene group.
 Xは、式(1)におけるXと同様に定義され、好ましい様態も同様である。 X2 is defined in the same manner as X1 in Formula (1), and the preferred embodiments are also the same.
 式(1)の繰り返し構成単位と式(2)の繰り返し構成単位の合計に対する、式(1)の繰り返し構成単位の含有比は20~70モル%である。式(1)の繰り返し構成単位の含有比が上記範囲である場合、一般的な射出成型サイクルにおいても、ポリイミド樹脂を十分に結晶化させ得ることが可能となる。該含有量比が20モル%未満であると成形加工性が低下し、70モル%を超えると結晶性が低下するため、耐熱性が低下する。
 式(1)の繰り返し構成単位と式(2)の繰り返し構成単位の合計に対する、式(1)の繰り返し構成単位の含有比は、高い結晶性を発現する観点から、好ましくは65モル%以下、より好ましくは60モル%以下、更に好ましくは50モル%以下、より更に好ましくは40モル%未満である。
 式(1)の繰り返し構成単位と式(2)の繰り返し構成単位の合計に対する式(1)の繰り返し構成単位の含有比が20モル%以上、40モル%未満であると、ポリイミド樹脂(A)の結晶性が高くなり、より耐熱性に優れる樹脂成形体を得ることができる。上記含有比は、成形加工性の観点からは、好ましくは25モル%以上、より好ましくは30モル%以上、更に好ましくは32モル%以上であり、高い結晶性を発現する観点から、より更に好ましくは35モル%以下である。
The content ratio of the repeating structural unit of formula (1) to the total of the repeating structural unit of formula (1) and the repeating structural unit of formula (2) is 20 to 70 mol %. When the content ratio of the repeating structural unit of formula (1) is within the above range, the polyimide resin can be sufficiently crystallized even in a general injection molding cycle. When the content ratio is less than 20 mol %, the moldability is deteriorated, and when it exceeds 70 mol %, the crystallinity is deteriorated and the heat resistance is deteriorated.
The content ratio of the repeating structural unit of formula (1) to the total of the repeating structural unit of formula (1) and the repeating structural unit of formula (2) is preferably 65 mol% or less from the viewpoint of expressing high crystallinity. More preferably 60 mol % or less, still more preferably 50 mol % or less, still more preferably less than 40 mol %.
When the content ratio of the repeating structural unit of the formula (1) to the total of the repeating structural unit of the formula (1) and the repeating structural unit of the formula (2) is 20 mol% or more and less than 40 mol%, the polyimide resin (A) The crystallinity of is increased, and a resin molding having more excellent heat resistance can be obtained. The content ratio is preferably 25 mol% or more, more preferably 30 mol% or more, and still more preferably 32 mol% or more from the viewpoint of moldability, and is even more preferable from the viewpoint of expressing high crystallinity. is 35 mol % or less.
 ポリイミド樹脂(A)を構成する全繰り返し構成単位に対する、式(1)の繰り返し構成単位と式(2)の繰り返し構成単位の合計の含有比は、好ましくは50~100モル%、より好ましくは75~100モル%、更に好ましくは80~100モル%、より更に好ましくは85~100モル%である。 The total content ratio of the repeating structural units of the formula (1) and the repeating structural units of the formula (2) with respect to all repeating structural units constituting the polyimide resin (A) is preferably 50 to 100 mol%, more preferably 75 ~100 mol%, more preferably 80 to 100 mol%, still more preferably 85 to 100 mol%.
 ポリイミド樹脂(A)は、さらに、下記式(3)の繰り返し構成単位を含有してもよい。その場合、式(1)の繰り返し構成単位と式(2)の繰り返し構成単位の合計に対する、式(3)の繰り返し構成単位の含有比は、好ましくは25モル%以下である。一方で、下限は特に限定されず、0モル%を超えていればよい。
 式(3)の繰り返し構成単位を含有する場合、前記含有比は、耐熱性の向上という観点からは、好ましくは5モル%以上、より好ましくは10モル%以上であり、一方で結晶性を維持する観点からは、好ましくは20モル%以下、より好ましくは15モル%以下である。
Figure JPOXMLDOC01-appb-C000022

(Rは少なくとも1つの芳香環を含む炭素数6~22の2価の基である。Xは少なくとも1つの芳香環を含む炭素数6~22の4価の基である。)
Polyimide resin (A) may further contain a repeating structural unit of the following formula (3). In that case, the content ratio of the repeating structural unit of formula (3) to the sum of the repeating structural units of formula (1) and the repeating structural units of formula (2) is preferably 25 mol % or less. On the other hand, the lower limit is not particularly limited as long as it exceeds 0 mol %.
When the repeating structural unit of formula (3) is contained, the content ratio is preferably 5 mol% or more, more preferably 10 mol% or more, from the viewpoint of improving heat resistance, while maintaining crystallinity. From the standpoint of doing so, it is preferably 20 mol % or less, more preferably 15 mol % or less.
Figure JPOXMLDOC01-appb-C000022

(R 3 is a C 6-22 divalent group containing at least one aromatic ring. X 3 is a C 6-22 tetravalent group containing at least one aromatic ring.)
 Rは少なくとも1つの芳香環を含む炭素数6~22の2価の基である。前記芳香環は単環でも縮合環でもよく、ベンゼン環、ナフタレン環、アントラセン環、及びテトラセン環が例示されるが、これらに限定されるわけではない。これらの中でも、好ましくはベンゼン環及びナフタレン環であり、より好ましくはベンゼン環である。
 Rの炭素数は6~22であり、好ましくは6~18である。
 Rは芳香環を少なくとも1つ含み、好ましくは1~3個含む。
R 3 is a C 6-22 divalent group containing at least one aromatic ring. The aromatic ring may be a single ring or a condensed ring, and examples include, but are not limited to, benzene ring, naphthalene ring, anthracene ring, and tetracene ring. Among these, benzene ring and naphthalene ring are preferred, and benzene ring is more preferred.
R 3 has 6 to 22 carbon atoms, preferably 6 to 18 carbon atoms.
R 3 contains at least one, preferably 1 to 3, aromatic rings.
 Rは、好ましくは下記式(R3-1)又は(R3-2)で表される2価の基である。
Figure JPOXMLDOC01-appb-C000023

(m31及びm32は、それぞれ独立に、0~2の整数であり、好ましくは0又は1である。m33及びm34は、それぞれ独立に、0~2の整数であり、好ましくは0又は1である。R21、R22、及びR23は、それぞれ独立に、炭素数1~4のアルキル基、炭素数2~4のアルケニル基、又は炭素数2~4のアルキニル基である。p21、p22及びp23は0~4の整数であり、好ましくは0である。L21は、単結合、カルボニル基又は炭素数1~4のアルキレン基である。)
 なお、Rは少なくとも1つの芳香環を含む炭素数6~22の2価の基であるので、式(R3-1)におけるm31、m32、R21及びp21は、式(R3-1)で表される2価の基の炭素数が6~22の範囲に入るように選択される。
 同様に、式(R3-2)におけるL21、m33、m34、R22、R23、p22及びp23は、式(R3-2)で表される2価の基の炭素数が12~22の範囲に入るように選択される。
R 3 is preferably a divalent group represented by the following formula (R3-1) or (R3-2).
Figure JPOXMLDOC01-appb-C000023

(m 31 and m 32 are each independently an integer of 0 to 2, preferably 0 or 1; m 33 and m 34 are each independently an integer of 0 to 2, preferably 0 or 1. R 21 , R 22 and R 23 are each independently an alkyl group having 1 to 4 carbon atoms, an alkenyl group having 2 to 4 carbon atoms, or an alkynyl group having 2 to 4 carbon atoms. p 21 , p 22 and p 23 are integers of 0 to 4, preferably 0. L 21 is a single bond, a carbonyl group or an alkylene group having 1 to 4 carbon atoms.)
Since R 3 is a divalent group having 6 to 22 carbon atoms and containing at least one aromatic ring, m 31 , m 32 , R 21 and p 21 in formula (R3-1) are represented by formula (R3- It is selected so that the number of carbon atoms of the divalent group represented by 1) falls within the range of 6-22.
Similarly, L 21 , m 33 , m 34 , R 22 , R 23 , p 22 and p 23 in formula (R3-2) have It is chosen to fall within the range of 12-22.
 Xは、式(1)におけるXと同様に定義され、好ましい様態も同様である。 X3 is defined in the same manner as X1 in Formula (1), and the preferred embodiments are also the same.
 ポリイミド樹脂(A)の末端構造には特に制限はないが、炭素数5~14の鎖状脂肪族基を末端に有することが好ましい。
 該鎖状脂肪族基は、飽和であっても不飽和であってもよく、直鎖状であっても分岐状であってもよい。ポリイミド樹脂(A)が上記特定の基を末端に有すると、耐熱老化性に優れる樹脂組成物を得ることができる。
 炭素数5~14の飽和鎖状脂肪族基としては、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デシル基、n-ウンデシル基、ラウリル基、n-トリデシル基、n-テトラデシル基、イソペンチル基、ネオペンチル基、2-メチルペンチル基、2-メチルヘキシル基、2-エチルペンチル基、3-エチルペンチル基、イソオクチル基、2-エチルヘキシル基、3-エチルヘキシル基、イソノニル基、2-エチルオクチル基、イソデシル基、イソドデシル基、イソトリデシル基、イソテトラデシル基等が挙げられる。
 炭素数5~14の不飽和鎖状脂肪族基としては、1-ペンテニル基、2-ペンテニル基、1-へキセニル基、2-へキセニル基、1-ヘプテニル基、2-ヘプテニル基、1-オクテニル基、2-オクテニル基、ノネニル基、デセニル基、ドデセニル基、トリデセニル基、テトラデセニル基等が挙げられる。
 中でも、上記鎖状脂肪族基は飽和鎖状脂肪族基であることが好ましく、飽和直鎖状脂肪族基であることがより好ましい。また耐熱老化性を得る観点から、上記鎖状脂肪族基は好ましくは炭素数6以上、より好ましくは炭素数7以上、更に好ましくは炭素数8以上であり、好ましくは炭素数12以下、より好ましくは炭素数10以下、更に好ましくは炭素数9以下である。上記鎖状脂肪族基は1種のみでもよく、2種以上でもよい。
 上記鎖状脂肪族基は、特に好ましくはn-オクチル基、イソオクチル基、2-エチルヘキシル基、n-ノニル基、イソノニル基、n-デシル基、及びイソデシル基からなる群から選ばれる少なくとも1種であり、更に好ましくはn-オクチル基、イソオクチル基、2-エチルヘキシル基、n-ノニル基、及びイソノニル基からなる群から選ばれる少なくとも1種であり、最も好ましくはn-オクチル基、イソオクチル基、及び2-エチルヘキシル基からなる群から選ばれる少なくとも1種である。
 またポリイミド樹脂(A)は、耐熱老化性の観点から、末端アミノ基及び末端カルボキシ基以外に、炭素数5~14の鎖状脂肪族基のみを末端に有することが好ましい。上記以外の基を末端に有する場合、その含有量は、好ましくは炭素数5~14の鎖状脂肪族基に対し10モル%以下、より好ましくは5モル%以下である。
Although the terminal structure of the polyimide resin (A) is not particularly limited, it preferably has a chain aliphatic group having 5 to 14 carbon atoms at its terminal.
The chain aliphatic group may be saturated or unsaturated, linear or branched. When the polyimide resin (A) has the above specific group at its terminal, a resin composition having excellent heat aging resistance can be obtained.
Examples of saturated chain aliphatic groups having 5 to 14 carbon atoms include n-pentyl group, n-hexyl group, n-heptyl group, n-octyl group, n-nonyl group, n-decyl group, n-undecyl group, Lauryl group, n-tridecyl group, n-tetradecyl group, isopentyl group, neopentyl group, 2-methylpentyl group, 2-methylhexyl group, 2-ethylpentyl group, 3-ethylpentyl group, isooctyl group, 2-ethylhexyl group , 3-ethylhexyl group, isononyl group, 2-ethyloctyl group, isodecyl group, isododecyl group, isotridecyl group, isotetradecyl group and the like.
Examples of unsaturated chain aliphatic groups having 5 to 14 carbon atoms include 1-pentenyl group, 2-pentenyl group, 1-hexenyl group, 2-hexenyl group, 1-heptenyl group, 2-heptenyl group, 1- octenyl group, 2-octenyl group, nonenyl group, decenyl group, dodecenyl group, tridecenyl group, tetradecenyl group and the like.
Among them, the chain aliphatic group is preferably a saturated chain aliphatic group, and more preferably a saturated straight chain aliphatic group. From the viewpoint of obtaining heat aging resistance, the chain aliphatic group preferably has 6 or more carbon atoms, more preferably 7 or more carbon atoms, still more preferably 8 or more carbon atoms, and preferably 12 or less carbon atoms, more preferably 12 or less carbon atoms. has 10 or less carbon atoms, more preferably 9 or less carbon atoms. Only one type of chain aliphatic group may be used, or two or more types thereof may be used.
The chain aliphatic group is particularly preferably at least one selected from the group consisting of n-octyl group, isooctyl group, 2-ethylhexyl group, n-nonyl group, isononyl group, n-decyl group and isodecyl group. more preferably at least one selected from the group consisting of n-octyl group, isooctyl group, 2-ethylhexyl group, n-nonyl group and isononyl group, most preferably n-octyl group, isooctyl group and It is at least one selected from the group consisting of 2-ethylhexyl groups.
Moreover, from the viewpoint of heat aging resistance, the polyimide resin (A) preferably has only chain aliphatic groups having 5 to 14 carbon atoms at its terminals in addition to terminal amino groups and terminal carboxy groups. When a group other than the above is present at the terminal, the content thereof is preferably 10 mol % or less, more preferably 5 mol % or less, relative to the chain aliphatic group having 5 to 14 carbon atoms.
 ポリイミド樹脂(A)中の上記炭素数5~14の鎖状脂肪族基の含有量は、優れた耐熱老化性を発現する観点から、ポリイミド樹脂(A)を構成する全繰り返し構成単位の合計100モル%に対し、好ましくは0.01モル%以上、より好ましくは0.1モル%以上、更に好ましくは0.2モル%以上である。また、十分な分子量を確保し良好な機械的物性を得るためには、ポリイミド樹脂(A)中の上記炭素数5~14の鎖状脂肪族基の含有量は、ポリイミド樹脂(A)を構成する全繰り返し構成単位の合計100モル%に対し、好ましくは10モル%以下、より好ましくは6モル%以下、更に好ましくは3.5モル%以下、より更に好ましくは2.0モル%以下、より更に好ましくは1.2モル%以下である。
 ポリイミド樹脂(A)中の上記炭素数5~14の鎖状脂肪族基の含有量は、ポリイミド樹脂(A)を解重合することにより求めることができる。
From the viewpoint of exhibiting excellent heat aging resistance, the content of the chain aliphatic group having 5 to 14 carbon atoms in the polyimide resin (A) is 100 in total of all repeating structural units constituting the polyimide resin (A). It is preferably 0.01 mol % or more, more preferably 0.1 mol % or more, and still more preferably 0.2 mol % or more based on mol %. In addition, in order to secure a sufficient molecular weight and obtain good mechanical properties, the content of the chain aliphatic group having 5 to 14 carbon atoms in the polyimide resin (A) is Preferably 10 mol% or less, more preferably 6 mol% or less, still more preferably 3.5 mol% or less, even more preferably 2.0 mol% or less, more preferably 100 mol% or less of all repeating structural units More preferably, it is 1.2 mol % or less.
The content of the chain aliphatic group having 5 to 14 carbon atoms in the polyimide resin (A) can be determined by depolymerizing the polyimide resin (A).
 ポリイミド樹脂(A)は、360℃以下の融点を有し、かつ150℃以上のガラス転移温度を有することが好ましい。ポリイミド樹脂(A)の融点は、耐熱性の観点から、より好ましくは280℃以上、更に好ましくは290℃以上であり、高い成形加工性を発現する観点からは、好ましくは345℃以下、より好ましくは340℃以下、更に好ましくは335℃以下である。また、ポリイミド樹脂(A)のガラス転移温度は、耐熱性の観点から、より好ましくは160℃以上、より好ましくは170℃以上であり、高い成形加工性を発現する観点からは、好ましくは250℃以下、より好ましくは230℃以下、更に好ましくは200℃以下である。
 またポリイミド樹脂(A)は、結晶性、耐熱性、機械的強度、耐薬品性を向上させる観点から、示差走査型熱量計測定により、該ポリイミド樹脂を溶融後、降温速度20℃/分で冷却した際に観測される結晶化発熱ピークの熱量(以下、単に「結晶化発熱量」ともいう)が、5.0mJ/mg以上であることが好ましく、10.0mJ/mg以上であることがより好ましく、17.0mJ/mg以上であることが更に好ましい。結晶化発熱量の上限値は特に限定されないが、通常、45.0mJ/mg以下である。
 ポリイミド樹脂(A)の融点、ガラス転移温度、結晶化発熱量は、いずれも示差走査型熱量計により測定することができ、具体的には実施例に記載の方法により測定できる。
Polyimide resin (A) preferably has a melting point of 360° C. or lower and a glass transition temperature of 150° C. or higher. The melting point of the polyimide resin (A) is preferably 280° C. or higher, more preferably 290° C. or higher, from the viewpoint of heat resistance, and is preferably 345° C. or lower, more preferably 345° C. or lower, from the viewpoint of achieving high moldability. is 340° C. or less, more preferably 335° C. or less. Further, the glass transition temperature of the polyimide resin (A) is more preferably 160° C. or higher, more preferably 170° C. or higher from the viewpoint of heat resistance, and preferably 250° C. from the viewpoint of expressing high moldability. Below, more preferably 230° C. or less, and still more preferably 200° C. or less.
In addition, from the viewpoint of improving crystallinity, heat resistance, mechanical strength, and chemical resistance, the polyimide resin (A) is measured by a differential scanning calorimeter, and after melting the polyimide resin, it is cooled at a cooling rate of 20 ° C./min. The heat quantity at the crystallization exothermic peak (hereinafter also simply referred to as “crystallization exothermic value”) observed when the It is preferably 17.0 mJ/mg or more, and more preferably 17.0 mJ/mg or more. Although the upper limit of the crystallization heat value is not particularly limited, it is usually 45.0 mJ/mg or less.
The melting point, glass transition temperature, and crystallization heat value of the polyimide resin (A) can all be measured by a differential scanning calorimeter, and specifically by the methods described in Examples.
 ポリイミド樹脂(A)の重量平均分子量Mwは、好ましくは10,000~150,000、より好ましくは15,000~100,000、更に好ましくは20,000~80,000、より更に好ましくは30,000~70,000、より更に好ましくは35,000~65,000の範囲である。ポリイミド樹脂(A)の重量平均分子量Mwが10,000以上であれば得られる成形体の機械的強度が良好になり、40,000以上であれば機械的強度の安定性が良好になるとともに、前述したミクロ相分離構造を形成しやすくなり、より低いCTEを達成することができる。また、150,000以下であれば成形加工性が良好になる。
 ポリイミド樹脂(A)の重量平均分子量Mwは、ポリメチルメタクリレート(PMMA)を標準試料としてゲルろ過クロマトグラフィー(GPC)法により測定することができ、具体的には実施例に記載の方法で測定できる。
The weight average molecular weight Mw of the polyimide resin (A) is preferably 10,000 to 150,000, more preferably 15,000 to 100,000, still more preferably 20,000 to 80,000, still more preferably 30, 000 to 70,000, more preferably 35,000 to 65,000. When the weight-average molecular weight Mw of the polyimide resin (A) is 10,000 or more, the mechanical strength of the molded article obtained is good, and when it is 40,000 or more, the stability of the mechanical strength is good, It becomes easy to form the microphase-separated structure mentioned above, and a lower CTE can be achieved. Also, if it is 150,000 or less, moldability will be good.
The weight average molecular weight Mw of the polyimide resin (A) can be measured by a gel permeation chromatography (GPC) method using polymethyl methacrylate (PMMA) as a standard sample, and specifically can be measured by the method described in Examples. .
 ポリイミド樹脂(A)の0.5質量%濃硫酸溶液の30℃における対数粘度は、好ましくは0.8~2.0dL/g、より好ましくは0.9~1.8dL/gの範囲である。対数粘度が0.8dL/g以上であれば、成形体とした際に十分な機械的強度が得られる。対数粘度が2.0dL/g以下であると、成形加工性及び取り扱い性が良好になる。対数粘度μは、キャノンフェンスケ粘度計を使用して、30℃において濃硫酸及び上記ポリイミド樹脂溶液の流れる時間をそれぞれ測定し、下記式から求められる。
  μ=ln[(ts/t)/C]
   t:濃硫酸の流れる時間
   ts:ポリイミド樹脂溶液の流れる時間
   C:0.5(g/dL)
The logarithmic viscosity at 30° C. of a 0.5% by mass concentrated sulfuric acid solution of the polyimide resin (A) is preferably in the range of 0.8 to 2.0 dL/g, more preferably 0.9 to 1.8 dL/g. . When the logarithmic viscosity is 0.8 dL/g or more, sufficient mechanical strength can be obtained when formed into a molded article. When the logarithmic viscosity is 2.0 dL/g or less, molding processability and handleability are improved. The logarithmic viscosity μ is obtained from the following formula by measuring the flow times of concentrated sulfuric acid and the polyimide resin solution at 30° C. using a Canon Fenske viscometer.
μ = ln [(ts/t 0 )/C]
t 0 : Flow time of concentrated sulfuric acid ts: Flow time of polyimide resin solution C: 0.5 (g/dL)
(ポリイミド樹脂(A)の製造方法)
 ポリイミド樹脂(A)は、テトラカルボン酸成分とジアミン成分とを反応させることにより製造することができる。該テトラカルボン酸成分は少なくとも1つの芳香環を含むテトラカルボン酸及び/又はその誘導体を含有し、該ジアミン成分は少なくとも1つの脂環式炭化水素構造を含むジアミン及び鎖状脂肪族ジアミンを含有する。
(Method for producing polyimide resin (A))
Polyimide resin (A) can be produced by reacting a tetracarboxylic acid component and a diamine component. The tetracarboxylic acid component contains a tetracarboxylic acid and/or derivative thereof containing at least one aromatic ring, and the diamine component contains a diamine containing at least one alicyclic hydrocarbon structure and a linear aliphatic diamine. .
 少なくとも1つの芳香環を含むテトラカルボン酸は4つのカルボキシ基が直接芳香環に結合した化合物であることが好ましく、構造中にアルキル基を含んでいてもよい。また前記テトラカルボン酸は、炭素数6~26であるものが好ましい。前記テトラカルボン酸としては、ピロメリット酸、2,3,5,6-トルエンテトラカルボン酸、3,3’,4,4’-ベンゾフェノンテトラカルボン酸、3,3’,4,4’-ビフェニルテトラカルボン酸、1,4,5,8-ナフタレンテトラカルボン酸等が好ましい。これらの中でもピロメリット酸がより好ましい。 The tetracarboxylic acid containing at least one aromatic ring is preferably a compound in which four carboxy groups are directly bonded to the aromatic ring, and may contain an alkyl group in the structure. The tetracarboxylic acid preferably has 6 to 26 carbon atoms. Examples of the tetracarboxylic acid include pyromellitic acid, 2,3,5,6-toluenetetracarboxylic acid, 3,3′,4,4′-benzophenonetetracarboxylic acid, and 3,3′,4,4′-biphenyl. Tetracarboxylic acid, 1,4,5,8-naphthalenetetracarboxylic acid and the like are preferred. Among these, pyromellitic acid is more preferable.
 少なくとも1つの芳香環を含むテトラカルボン酸の誘導体としては、少なくとも1つの芳香環を含むテトラカルボン酸の無水物又はアルキルエステル体が挙げられる。前記テトラカルボン酸誘導体は、炭素数6~38であるものが好ましい。テトラカルボン酸の無水物としては、ピロメリット酸一無水物、ピロメリット酸二無水物、2,3,5,6-トルエンテトラカルボン酸二無水物、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸二無水物、3,3’,4,4’-ベンゾフェノンテトラカルボン酸二無水物、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物、1,4,5,8-ナフタレンテトラカルボン酸二無水物等が挙げられる。テトラカルボン酸のアルキルエステル体としては、ピロメリット酸ジメチル、ピロメリット酸ジエチル、ピロメリット酸ジプロピル、ピロメリット酸ジイソプロピル、2,3,5,6-トルエンテトラカルボン酸ジメチル、3,3’,4,4’-ジフェニルスルホンテトラカルボン酸ジメチル、3,3’,4,4’-ベンゾフェノンテトラカルボン酸ジメチル、3,3’,4,4’-ビフェニルテトラカルボン酸ジメチル、1,4,5,8-ナフタレンテトラカルボン酸ジメチル等が挙げられる。上記テトラカルボン酸のアルキルエステル体において、アルキル基の炭素数は1~3が好ましい。 Derivatives of tetracarboxylic acids containing at least one aromatic ring include anhydrides or alkyl esters of tetracarboxylic acids containing at least one aromatic ring. The tetracarboxylic acid derivative preferably has 6 to 38 carbon atoms. Anhydrides of tetracarboxylic acids include pyromellitic monoanhydride, pyromellitic dianhydride, 2,3,5,6-toluenetetracarboxylic dianhydride, 3,3′,4,4′-diphenyl sulfonetetracarboxylic dianhydride, 3,3′,4,4′-benzophenonetetracarboxylic dianhydride, 3,3′,4,4′-biphenyltetracarboxylic dianhydride, 1,4,5, 8-naphthalenetetracarboxylic dianhydride and the like are included. Examples of alkyl esters of tetracarboxylic acids include dimethyl pyromellitic acid, diethyl pyromellitic acid, dipropyl pyromellitic acid, diisopropyl pyromellitic acid, dimethyl 2,3,5,6-toluenetetracarboxylate, 3,3′,4 ,4′-diphenylsulfonetetracarboxylate dimethyl, 3,3′,4,4′-benzophenonetetracarboxylate dimethyl, 3,3′,4,4′-biphenyltetracarboxylate dimethyl, 1,4,5,8 -Naphthalenetetracarboxylate dimethyl and the like. In the above alkyl ester of tetracarboxylic acid, the alkyl group preferably has 1 to 3 carbon atoms.
 少なくとも1つの芳香環を含むテトラカルボン酸及び/又はその誘導体は、上記から選ばれる少なくとも1つの化合物を単独で用いてもよく、2つ以上の化合物を組み合わせて用いてもよい。 As the tetracarboxylic acid and/or derivative thereof containing at least one aromatic ring, at least one compound selected from the above may be used alone, or two or more compounds may be used in combination.
 少なくとも1つの脂環式炭化水素構造を含むジアミンの炭素数は6~22が好ましく、例えば、1,2-ビス(アミノメチル)シクロヘキサン、1,3-ビス(アミノメチル)シクロヘキサン、1,4-ビス(アミノメチル)シクロヘキサン、1,2-シクロヘキサンジアミン、1,3-シクロヘキサンジアミン、1,4-シクロヘキサンジアミン、4,4’-ジアミノジシクロヘキシルメタン、4,4’-メチレンビス(2-メチルシクロヘキシルアミン)、カルボンジアミン、リモネンジアミン、イソフォロンジアミン、ノルボルナンジアミン、ビス(アミノメチル)トリシクロ[5.2.1.02,6]デカン、3,3’-ジメチル-4,4’-ジアミノジシクロヘキシルメタン、4,4’-ジアミノジシクロヘキシルプロパン等が好ましい。これらの化合物を単独で用いてもよく、これらから選ばれる2つ以上の化合物を組み合わせて用いてもよい。これらのうち、1,3-ビス(アミノメチル)シクロヘキサンが好適に使用できる。なお、脂環式炭化水素構造を含むジアミンは一般的には構造異性体を持つが、シス体/トランス体の比率は限定されない。 The diamine containing at least one alicyclic hydrocarbon structure preferably has 6 to 22 carbon atoms, such as 1,2-bis(aminomethyl)cyclohexane, 1,3-bis(aminomethyl)cyclohexane, 1,4- Bis(aminomethyl)cyclohexane, 1,2-cyclohexanediamine, 1,3-cyclohexanediamine, 1,4-cyclohexanediamine, 4,4'-diaminodicyclohexylmethane, 4,4'-methylenebis(2-methylcyclohexylamine) , carvonediamine, limonenediamine, isophoronediamine, norbornanediamine, bis(aminomethyl)tricyclo[5.2.1.0 2,6 ]decane, 3,3′-dimethyl-4,4′-diaminodicyclohexylmethane, 4,4'-Diaminodicyclohexylpropane and the like are preferred. These compounds may be used alone, or two or more compounds selected from these may be used in combination. Among these, 1,3-bis(aminomethyl)cyclohexane can be preferably used. Diamines containing an alicyclic hydrocarbon structure generally have structural isomers, but the ratio of cis/trans isomers is not limited.
 鎖状脂肪族ジアミンは、直鎖状であっても分岐状であってもよく、炭素数は5~16が好ましく、6~14がより好ましく、7~12が更に好ましい。鎖状脂肪族ジアミンとして例えば1,5-ペンタメチレンジアミン、2-メチルペンタン-1,5-ジアミン、3-メチルペンタン-1,5-ジアミン、1,6-ヘキサメチレンジアミン、1,7-ヘプタメチレンジアミン、1,8-オクタメチレンジアミン、1,9-ノナメチレンジアミン、1,10-デカメチレンジアミン、1,11-ウンデカメチレンジアミン、1,12-ドデカメチレンジアミン、1,13-トリデカメチレンジアミン、1,14-テトラデカメチレンジアミン、1,16-ヘキサデカメチレンジアミン、2,2’-(エチレンジオキシ)ビス(エチレンアミン)等が好ましい。
 鎖状脂肪族ジアミンは1種類あるいは複数を混合して使用してもよい。これらのうち、炭素数が8~10の鎖状脂肪族ジアミンが好適に使用でき、特に1,8-オクタメチレンジアミン及び1,10-デカメチレンジアミンからなる群から選ばれる少なくとも1種が好適に使用できる。
The chain aliphatic diamine may be linear or branched, and preferably has 5 to 16 carbon atoms, more preferably 6 to 14 carbon atoms, and still more preferably 7 to 12 carbon atoms. Chain aliphatic diamines such as 1,5-pentamethylenediamine, 2-methylpentane-1,5-diamine, 3-methylpentane-1,5-diamine, 1,6-hexamethylenediamine, 1,7-hepta methylenediamine, 1,8-octamethylenediamine, 1,9-nonamethylenediamine, 1,10-decamethylenediamine, 1,11-undecamethylenediamine, 1,12-dodecamethylenediamine, 1,13-trideca Methylenediamine, 1,14-tetradecamethylenediamine, 1,16-hexadecamethylenediamine, 2,2'-(ethylenedioxy)bis(ethyleneamine) and the like are preferred.
Chain aliphatic diamines may be used singly or in combination. Among these, chain aliphatic diamines having 8 to 10 carbon atoms can be preferably used, and at least one selected from the group consisting of 1,8-octamethylenediamine and 1,10-decamethylenediamine is particularly preferable. Available.
 ポリイミド樹脂(A)を製造する際、少なくとも1つの脂環式炭化水素構造を含むジアミンと鎖状脂肪族ジアミンの合計量に対する、少なくとも1つの脂環式炭化水素構造を含むジアミンの仕込み量のモル比は20~70モル%であることが好ましい。該モル量は、好ましくは25モル%以上、より好ましくは30モル%以上、更に好ましくは32モル%以上であり、高い結晶性を発現する観点から、好ましくは60モル%以下、より好ましくは50モル%以下、更に好ましくは40モル%未満、更に好ましくは35モル%以下である。 When producing the polyimide resin (A), the molar amount of the diamine charged containing at least one alicyclic hydrocarbon structure with respect to the total amount of the diamine containing at least one alicyclic hydrocarbon structure and the chain aliphatic diamine The ratio is preferably 20-70 mol %. The molar amount is preferably 25 mol% or more, more preferably 30 mol% or more, still more preferably 32 mol% or more, and from the viewpoint of expressing high crystallinity, preferably 60 mol% or less, more preferably 50 mol% or more. mol % or less, more preferably less than 40 mol %, more preferably 35 mol % or less.
 また、上記ジアミン成分中に、少なくとも1つの芳香環を含むジアミンを含有してもよい。少なくとも1つの芳香環を含むジアミンの炭素数は6~22が好ましく、例えば、オルトキシリレンジアミン、メタキシリレンジアミン、パラキシリレンジアミン、1,2-ジエチニルベンゼンジアミン、1,3-ジエチニルベンゼンジアミン、1,4-ジエチニルベンゼンジアミン、1,2-ジアミノベンゼン、1,3-ジアミノベンゼン、1,4-ジアミノベンゼン、4,4’-ジアミノジフェニルエーテル、3,4’-ジアミノジフェニルエーテル、4,4’-ジアミノジフェニルメタン、α,α’-ビス(4-アミノフェニル)1,4-ジイソプロピルベンゼン、α,α’-ビス(3-アミノフェニル)-1,4-ジイソプロピルベンゼン、2,2-ビス〔4-(4-アミノフェノキシ)フェニル〕プロパン、2,6-ジアミノナフタレン、1,5-ジアミノナフタレン等が挙げられる。 In addition, the diamine component may contain a diamine containing at least one aromatic ring. The diamine containing at least one aromatic ring preferably has 6 to 22 carbon atoms, such as orthoxylylenediamine, metaxylylenediamine, paraxylylenediamine, 1,2-diethynylbenzenediamine, 1,3-diethynyl. Benzenediamine, 1,4-diethynylbenzenediamine, 1,2-diaminobenzene, 1,3-diaminobenzene, 1,4-diaminobenzene, 4,4'-diaminodiphenyl ether, 3,4'-diaminodiphenyl ether, 4 ,4'-diaminodiphenylmethane, α,α'-bis(4-aminophenyl)1,4-diisopropylbenzene, α,α'-bis(3-aminophenyl)-1,4-diisopropylbenzene, 2,2- bis[4-(4-aminophenoxy)phenyl]propane, 2,6-diaminonaphthalene, 1,5-diaminonaphthalene and the like.
 上記において、少なくとも1つの脂環式炭化水素構造を含むジアミンと鎖状脂肪族ジアミンの合計量に対する、少なくとも1つの芳香環を含むジアミンの仕込み量のモル比は、25モル%以下であることが好ましく、より好ましくは20モル%以下、更に好ましくは15モル%以下である。
 前記モル比の下限は特に限定されないが、耐熱性の向上という観点からは、好ましくは5モル%以上、より好ましくは10モル%以上である。
 一方で、ポリイミド樹脂の着色を少なくする観点からは、前記モル比は、より更に好ましくは12モル%以下、より更に好ましくは10モル%以下、より更に好ましくは5モル%以下、より更に好ましくは0モル%である。
In the above, the molar ratio of the charged amount of the diamine containing at least one aromatic ring to the total amount of the diamine containing at least one alicyclic hydrocarbon structure and the chain aliphatic diamine is 25 mol% or less. It is preferably 20 mol % or less, still more preferably 15 mol % or less.
Although the lower limit of the molar ratio is not particularly limited, it is preferably 5 mol % or more, more preferably 10 mol % or more, from the viewpoint of improving heat resistance.
On the other hand, from the viewpoint of reducing the coloring of the polyimide resin, the molar ratio is more preferably 12 mol% or less, even more preferably 10 mol% or less, even more preferably 5 mol% or less, and even more preferably 0 mol %.
 ポリイミド樹脂(A)を製造する際、前記テトラカルボン酸成分と前記ジアミン成分の仕込み量比は、テトラカルボン酸成分1モルに対してジアミン成分が0.9~1.1モルであることが好ましい。 When producing the polyimide resin (A), the charged amount ratio of the tetracarboxylic acid component and the diamine component is preferably 0.9 to 1.1 mol of the diamine component with respect to 1 mol of the tetracarboxylic acid component. .
 またポリイミド樹脂(A)を製造する際、前記テトラカルボン酸成分、前記ジアミン成分の他に、末端封止剤を混合してもよい。末端封止剤としては、モノアミン類及びジカルボン酸類からなる群から選ばれる少なくとも1種が好ましい。末端封止剤の使用量は、ポリイミド樹脂(A)中に所望量の末端基を導入できる量であればよく、前記テトラカルボン酸及び/又はその誘導体1モルに対して0.0001~0.1モルが好ましく、0.001~0.06モルがより好ましく、0.002~0.035モルが更に好ましく、0.002~0.020モルがより更に好ましく、0.002~0.012モルがより更に好ましい。
 中でも、末端封止剤としてはモノアミン類末端封止剤が好ましく、ポリイミド樹脂(A)の末端に前述した炭素数5~14の鎖状脂肪族基を導入して耐熱老化性を向上させる観点から、炭素数5~14の鎖状脂肪族基を有するモノアミンがより好ましく、炭素数5~14の飽和直鎖状脂肪族基を有するモノアミンが更に好ましい。
 末端封止剤は、特に好ましくはn-オクチルアミン、イソオクチルアミン、2-エチルヘキシルアミン、n-ノニルアミン、イソノニルアミン、n-デシルアミン、及びイソデシルアミンからなる群から選ばれる少なくとも1種であり、更に好ましくはn-オクチルアミン、イソオクチルアミン、2-エチルヘキシルアミン、n-ノニルアミン、及びイソノニルアミンからなる群から選ばれる少なくとも1種であり、最も好ましくはn-オクチルアミン、イソオクチルアミン、及び2-エチルヘキシルアミンからなる群から選ばれる少なくとも1種である。
Moreover, when producing the polyimide resin (A), a terminal blocking agent may be mixed in addition to the tetracarboxylic acid component and the diamine component. As the terminal blocking agent, at least one selected from the group consisting of monoamines and dicarboxylic acids is preferable. The amount of the terminal blocking agent used may be an amount that can introduce a desired amount of terminal groups into the polyimide resin (A), and is 0.0001 to 0.001 to 0.001 to 1 mol of the tetracarboxylic acid and/or derivative thereof. 1 mol is preferable, 0.001 to 0.06 mol is more preferable, 0.002 to 0.035 mol is more preferable, 0.002 to 0.020 mol is even more preferable, 0.002 to 0.012 mol is even more preferred.
Among them, a monoamine terminal blocking agent is preferable as the terminal blocking agent, and from the viewpoint of improving heat aging resistance by introducing the chain aliphatic group having 5 to 14 carbon atoms described above at the end of the polyimide resin (A). , monoamines having a chain aliphatic group of 5 to 14 carbon atoms are more preferred, and monoamines having a saturated linear aliphatic group of 5 to 14 carbon atoms are even more preferred.
The terminal blocking agent is particularly preferably at least one selected from the group consisting of n-octylamine, isooctylamine, 2-ethylhexylamine, n-nonylamine, isononylamine, n-decylamine, and isodecylamine. , more preferably at least one selected from the group consisting of n-octylamine, isooctylamine, 2-ethylhexylamine, n-nonylamine, and isononylamine, most preferably n-octylamine, isooctylamine, and 2-ethylhexylamine.
 ポリイミド樹脂(A)を製造するための重合方法としては、公知の重合方法が適用でき、国際公開第2016/147996号に記載の方法を用いることができる。 As a polymerization method for producing the polyimide resin (A), a known polymerization method can be applied, and the method described in International Publication No. 2016/147996 can be used.
<非晶性樹脂(B)>
 本発明に用いる非晶性樹脂(B)は、下記式(I)で示される繰り返し構成単位を含む。
Figure JPOXMLDOC01-appb-C000024

(Rは少なくとも1つの芳香環を含む炭素数6~22の2価の基である。Rは下記式(R-5a)~(R-5c)のいずれかで示される2価の基のうち少なくとも1種である。)
Figure JPOXMLDOC01-appb-C000025
(R51は炭素数1~4のアルキル基、炭素数2~4のアルケニル基、又は炭素数2~4のアルキニル基である。m51はそれぞれ独立に0~2の整数であり、p51は0~4の整数である。*は結合手を示す。)
Figure JPOXMLDOC01-appb-C000026

(R52はそれぞれ独立に、炭素数1~4のアルキル基、炭素数2~4のアルケニル基、又は炭素数2~4のアルキニル基である。m52はそれぞれ独立に0~2の整数であり、p52はそれぞれ独立に0~4の整数である。*は結合手を示す。)
Figure JPOXMLDOC01-appb-C000027

(R53はそれぞれ独立に、炭素数1~4のアルキル基、又はフェニル基である。m53はそれぞれ独立に2~6の整数である。nは平均繰り返し構成単位数である。*は結合手を示す。)
 本発明のポリイミド樹脂組成物は、ポリイミド樹脂(A)と特定構造の非晶性樹脂(B)とを含有することで、低CTEの成形体を作製することができる。
<Amorphous Resin (B)>
The amorphous resin (B) used in the present invention contains a repeating structural unit represented by the following formula (I).
Figure JPOXMLDOC01-appb-C000024

(R 4 is a divalent group having 6 to 22 carbon atoms containing at least one aromatic ring; R 5 is a divalent group represented by any of the following formulas (R-5a) to (R-5c) at least one of
Figure JPOXMLDOC01-appb-C000025
(R 51 is an alkyl group having 1 to 4 carbon atoms, an alkenyl group having 2 to 4 carbon atoms, or an alkynyl group having 2 to 4 carbon atoms; m 51 is each independently an integer of 0 to 2; is an integer from 0 to 4. * indicates a bond.)
Figure JPOXMLDOC01-appb-C000026

(each R 52 is independently an alkyl group having 1 to 4 carbon atoms, an alkenyl group having 2 to 4 carbon atoms, or an alkynyl group having 2 to 4 carbon atoms; each m 52 is independently an integer of 0 to 2; and p 52 are each independently an integer of 0 to 4. * indicates a bond.)
Figure JPOXMLDOC01-appb-C000027

(each R 53 is independently an alkyl group having 1 to 4 carbon atoms or a phenyl group; each m 53 is independently an integer of 2 to 6; n is the average number of repeating units; * is a bond; show hand.)
By containing the polyimide resin (A) and the amorphous resin (B) having a specific structure, the polyimide resin composition of the present invention can produce a molded article with a low CTE.
 式(I)において、Rは、より低いCTEを達成する観点から、好ましくは2つ以上の芳香環を含む炭素数12~22の2価の基であり、より好ましくは下記式(R-4a)~(R-4c)のいずれかで示される2価の基であり、更に好ましくは下記式(R-4a)で示される2価の基である。
Figure JPOXMLDOC01-appb-C000028

(上記式中、*は結合手を示す。)
In formula (I), R 4 is preferably a C 12-22 divalent group containing two or more aromatic rings, more preferably the following formula (R- 4a) to (R-4c), preferably a divalent group represented by the following formula (R-4a).
Figure JPOXMLDOC01-appb-C000028

(In the above formula, * indicates a bond.)
 式(R-5a)のR51、式(R-5b)のR52、式(R-5c)のR53における炭素数1~4のアルキル基としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、及びtert-ブチル基が挙げられる。 The alkyl group having 1 to 4 carbon atoms in R 51 of formula (R-5a), R 52 of formula (R-5b) and R 53 of formula (R-5c) is methyl group, ethyl group, n-propyl , isopropyl, n-butyl, isobutyl, sec-butyl, and tert-butyl groups.
 式(R-5a)において、R51は、より低いCTEを達成する観点から、好ましくは炭素数1~4のアルキル基であり、より好ましくは炭素数1~3のアルキル基、更に好ましくはメチル基又はエチル基、より更に好ましくはメチル基である。m51は好ましくは0又は1、より好ましくは0であり、p51は好ましくは0~2の整数、より好ましくは0又は1、更に好ましくは0である。 In formula (R-5a), R 51 is preferably an alkyl group having 1 to 4 carbon atoms, more preferably an alkyl group having 1 to 3 carbon atoms, still more preferably methyl, from the viewpoint of achieving a lower CTE. or an ethyl group, more preferably a methyl group. m 51 is preferably 0 or 1, more preferably 0; p 51 is preferably an integer from 0 to 2, more preferably 0 or 1, more preferably 0;
 式(R-5b)において、R52は、より低いCTEを達成する観点から、好ましくは炭素数1~4のアルキル基であり、より好ましくは炭素数1~3のアルキル基、更に好ましくはメチル基又はエチル基、より更に好ましくはメチル基である。m52は好ましくは0又は1、より好ましくは0であり、p52は好ましくは0~2の整数、より好ましくは0又は1、更に好ましくは0である。 In formula (R-5b), R 52 is preferably an alkyl group having 1 to 4 carbon atoms, more preferably an alkyl group having 1 to 3 carbon atoms, still more preferably methyl, from the viewpoint of achieving a lower CTE. or an ethyl group, more preferably a methyl group. m52 is preferably 0 or 1, more preferably 0; p52 is preferably an integer from 0 to 2, more preferably 0 or 1, more preferably 0;
 式(R-5c)において、R53は、より低いCTEを達成する観点から、それぞれ独立に、好ましくはメチル基又はフェニル基であり、より好ましくはメチル基である。m53はそれぞれ独立に、好ましくは2~4の整数であり、より好ましくは3である。nは好ましくは2以上であり、5,000以下の数である。 In formula (R-5c), R 53 is each independently preferably a methyl group or a phenyl group, more preferably a methyl group, from the viewpoint of achieving a lower CTE. Each m 53 is independently an integer of preferably 2 to 4, more preferably 3. n is preferably 2 or more and 5,000 or less.
 式(I)におけるRは、前記式(R-5a)~(R-5c)のいずれかで示される2価の基のうち2以上を有していてもよい。
 Rは、より低いCTEを達成する観点から、好ましくは式(R-5a)で示される2価の基、式(R-5b)で示される2価の基、又は、式(R-5a)で示される2価の基及び式(R-5c)で示される2価の基の組み合わせである。
R 5 in formula (I) may have two or more divalent groups represented by any one of formulas (R-5a) to (R-5c).
From the viewpoint of achieving a lower CTE, R 5 is preferably a divalent group represented by formula (R-5a), a divalent group represented by formula (R-5b), or a divalent group represented by formula (R-5a ) and a divalent group represented by formula (R-5c).
 非晶性樹脂(B)の具体例として、下記式(B1)で示される繰り返し構成単位を含む非晶性樹脂、下記式(B2)で示される繰り返し構成単位を含む非晶性樹脂、及び下記式(B3)で示される繰り返し構成単位を含む非晶性樹脂からなる群から選ばれる少なくとも1種が挙げられる。
Figure JPOXMLDOC01-appb-C000029

Figure JPOXMLDOC01-appb-C000030

Figure JPOXMLDOC01-appb-C000031

(式(B3)中、nは平均繰り返し構成単位数である。)
 以下、式(B1)で示される繰り返し構成単位を含む非晶性樹脂を「非晶性樹脂(B1)」、式(B2)で示される繰り返し構成単位を含む非晶性樹脂を「非晶性樹脂(B2)」、式(B3)で示される繰り返し構成単位を含む非晶性樹脂を「非晶性樹脂(B3)」ともいう。
Specific examples of the amorphous resin (B) include an amorphous resin containing a repeating structural unit represented by the following formula (B1), an amorphous resin containing a repeating structural unit represented by the following formula (B2), and At least one selected from the group consisting of amorphous resins containing repeating structural units represented by formula (B3) can be used.
Figure JPOXMLDOC01-appb-C000029

Figure JPOXMLDOC01-appb-C000030

Figure JPOXMLDOC01-appb-C000031

(In formula (B3), n is the average number of repeating structural units.)
Hereinafter, an amorphous resin containing a repeating structural unit represented by formula (B1) is referred to as "amorphous resin (B1)", and an amorphous resin containing a repeating structural unit represented by formula (B2) is referred to as "amorphous Resin (B2)”, and an amorphous resin containing a repeating structural unit represented by formula (B3) is also referred to as “amorphous resin (B3)”.
 非晶性樹脂(B1)~(B3)のメルトフローレート(MFR)は、ポリイミド樹脂組成物の成形性向上の観点、及び、より低いCTEを達成する観点から、好ましくは以下の範囲である。
 非晶性樹脂(B1)の、ASTM D1238に準拠して温度337℃、荷重6.6kgfにて測定されるMFRは、好ましくは5~20g/10分、より好ましくは5~15g/10分である。
 非晶性樹脂(B2)の、ASTM D1238に準拠して温度367℃、荷重6.6kgfにて測定されるMFRは、好ましくは10~30g/10分、より好ましくは10~20g/10分である。
 非晶性樹脂(B3)の、ASTM D1238に準拠して温度295℃、荷重6.6kgfにて測定されるMFRは、好ましくは3~20g/10分、より好ましくは5~15g/10分である。
The melt flow rate (MFR) of the amorphous resins (B1) to (B3) is preferably within the following range from the viewpoint of improving the moldability of the polyimide resin composition and achieving a lower CTE.
The MFR of the amorphous resin (B1) measured at a temperature of 337° C. and a load of 6.6 kgf according to ASTM D1238 is preferably 5 to 20 g/10 minutes, more preferably 5 to 15 g/10 minutes. be.
The MFR of the amorphous resin (B2) measured at a temperature of 367° C. and a load of 6.6 kgf according to ASTM D1238 is preferably 10 to 30 g/10 minutes, more preferably 10 to 20 g/10 minutes. be.
The MFR of the amorphous resin (B3) measured at a temperature of 295° C. and a load of 6.6 kgf according to ASTM D1238 is preferably 3 to 20 g/10 minutes, more preferably 5 to 15 g/10 minutes. be.
 非晶性樹脂(B)中の前記式(I)で示される繰り返し構成単位(好ましくは前記式(B1)~(B3)のいずれかで示される繰り返し構成単位)の含有量は、より低いCTEを達成する観点、及び吸水率を低減する観点から、好ましくは50質量%以上、より好ましくは70質量%以上、更に好ましくは80質量%以上、より更に好ましくは90質量%以上、より更に好ましくは95質量%以上であり、100質量%以下である。 The content of the repeating structural unit represented by the formula (I) (preferably the repeating structural unit represented by any one of the formulas (B1) to (B3)) in the amorphous resin (B) has a lower CTE and from the viewpoint of reducing water absorption, preferably 50% by mass or more, more preferably 70% by mass or more, even more preferably 80% by mass or more, even more preferably 90% by mass or more, and even more preferably It is 95% by mass or more and 100% by mass or less.
 成分(B)は、1種又は2種以上を用いることができる。
 上記の中でも、成分(B)としては、より低いCTEを達成する観点、及び吸水率を低減する観点から、好ましくは非晶性樹脂(B1)~(B3)からなる群から選ばれる少なくとも1種、より好ましくは非晶性樹脂(B1)及び非晶性樹脂(B3)からなる群から選ばれる少なくとも1種、更に好ましくは非晶性樹脂(B3)である。
Component (B) can be used alone or in combination of two or more.
Among the above, the component (B) is preferably at least one selected from the group consisting of amorphous resins (B1) to (B3) from the viewpoint of achieving a lower CTE and reducing the water absorption rate. , more preferably at least one selected from the group consisting of the amorphous resin (B1) and the amorphous resin (B3), more preferably the amorphous resin (B3).
<質量比>
 ポリイミド樹脂組成物中のポリイミド樹脂(A)及び非晶性樹脂(B)の合計質量に対するポリイミド樹脂(A)の質量比[(A)/{(A)+(B)}]は、本発明の効果を得る観点から、好ましくは0.01以上0.99以下である。該質量比は、吸水率をより低減する観点から、より好ましくは0.1以上、更に好ましくは0.2以上、より更に好ましくは0.25以上、より更に好ましくは0.30以上、より更に好ましくは0.40以上、より更に好ましくは0.45以上であり、より低いCTEを達成する観点からは、より好ましくは0.9以下、更に好ましくは0.8以下、より更に好ましくは0.75以下、より更に好ましくは0.70以下、より更に好ましくは0.60以下、より更に好ましくは0.55以下である。
<mass ratio>
The mass ratio of the polyimide resin (A) to the total mass of the polyimide resin (A) and the amorphous resin (B) in the polyimide resin composition [(A) / {(A) + (B)}] is the present invention From the viewpoint of obtaining the effect of , it is preferably 0.01 or more and 0.99 or less. From the viewpoint of further reducing water absorption, the mass ratio is more preferably 0.1 or more, still more preferably 0.2 or more, still more preferably 0.25 or more, still more preferably 0.30 or more, and still more It is preferably 0.40 or more, still more preferably 0.45 or more, and from the viewpoint of achieving a lower CTE, it is more preferably 0.9 or less, still more preferably 0.8 or less, and even more preferably 0.8. It is 75 or less, more preferably 0.70 or less, still more preferably 0.60 or less, and even more preferably 0.55 or less.
 ポリイミド樹脂組成物中のポリイミド樹脂(A)及び非晶性樹脂(B)の合計含有量は、本発明の効果を得る観点から、好ましくは50質量%以上、より好ましくは70質量%以上、更に好ましくは80質量%以上、より更に好ましくは90質量%以上であり、また、100質量%以下である。 The total content of the polyimide resin (A) and the amorphous resin (B) in the polyimide resin composition is preferably 50% by mass or more, more preferably 70% by mass or more, from the viewpoint of obtaining the effects of the present invention. It is preferably 80% by mass or more, more preferably 90% by mass or more, and 100% by mass or less.
<添加剤>
 本発明のポリイミド樹脂組成物は、充填材、強化繊維、艶消剤、核剤、可塑剤、帯電防止剤、着色防止剤、ゲル化防止剤、難燃剤、着色剤、摺動性改良剤、酸化防止剤、紫外線吸収剤、導電剤、樹脂改質剤等の添加剤を、必要に応じて含有してもよい。
 上記添加剤の含有量には特に制限はないが、ポリイミド樹脂(A)及び非晶性樹脂(B)由来の物性を維持しつつ添加剤の効果を発現させる観点からは、ポリイミド樹脂組成物中、通常、50質量%以下であり、好ましくは0.0001~30質量%、より好ましくは0.0001~15質量%、更に好ましくは0.001~10質量%である。
<Additive>
The polyimide resin composition of the present invention contains a filler, a reinforcing fiber, a matting agent, a nucleating agent, a plasticizer, an antistatic agent, an anti-coloring agent, an anti-gelling agent, a flame retardant, a coloring agent, a slidability improver, Additives such as antioxidants, ultraviolet absorbers, conductive agents, and resin modifiers may be contained as necessary.
The content of the additive is not particularly limited, but from the viewpoint of expressing the effect of the additive while maintaining the physical properties derived from the polyimide resin (A) and the amorphous resin (B), the polyimide resin composition , usually 50% by mass or less, preferably 0.0001 to 30% by mass, more preferably 0.0001 to 15% by mass, still more preferably 0.001 to 10% by mass.
 本発明のポリイミド樹脂組成物は任意の形態をとることができるが、ペレットであることが好ましい。
 ポリイミド樹脂(A)及び非晶性樹脂(B)は熱可塑性を有するため、例えばポリイミド樹脂(A)、非晶性樹脂(B)、及び必要に応じて各種任意成分を押出機内で溶融混練してストランドを押出し、ストランドをカットすることによりペレット化することができる。また、得られたペレットを各種成形機に導入して後述の方法で熱成形することにより、所望の形状を有する成形体を容易に製造することができる。
Although the polyimide resin composition of the present invention can take any form, pellets are preferred.
Since the polyimide resin (A) and the amorphous resin (B) have thermoplasticity, for example, the polyimide resin (A), the amorphous resin (B), and optionally various optional components are melt-kneaded in an extruder. The strands can be extruded with a tumbler and pelletized by cutting the strands. Further, by introducing the obtained pellets into various molding machines and thermoforming them by the method described below, a molded article having a desired shape can be easily produced.
 本発明のポリイミド樹脂組成物のガラス転移温度は、耐熱性の観点から、好ましくは160℃以上、より好ましくは170℃以上、更に好ましくは180℃以上であり、高い成形加工性を発現する観点からは、好ましくは250℃以下、より好ましくは240℃以下である。ガラス転移温度は、前記と同様の方法で測定できる。 The glass transition temperature of the polyimide resin composition of the present invention, from the viewpoint of heat resistance, is preferably 160 ° C. or higher, more preferably 170 ° C. or higher, still more preferably 180 ° C. or higher, and from the viewpoint of expressing high moldability is preferably 250° C. or lower, more preferably 240° C. or lower. The glass transition temperature can be measured by a method similar to that described above.
<熱線膨張係数(CTE)>
 本発明のポリイミド樹脂組成物によれば、低CTEの成形体を作製することができる。例えば、ポリイミド樹脂組成物を成形して得られる厚さ4mmの成形体の、JIS K7197:2012に準拠して測定される熱線膨張係数の絶対値を、好ましくは60ppm/℃以下とすることができる。
 CTEの測定温度範囲は150~210℃又は150~220℃の範囲であり、好ましくは、非晶性樹脂(B)として前記非晶性樹脂(B1)を用いる場合は150~210℃、前記非晶性樹脂(B2)及び(B3)からなる群から選ばれる少なくとも1種を用いる場合は150~220℃の範囲である。
 なお、延伸が施された成形体であるとCTEの値が変動するため、CTE測定に用いる成形体は、好ましくは無延伸の成形体であり、より好ましくは射出成形体である。
 射出成形体においても、流れ方向(MD)とそれに直交する方向(TD)が存在し、MDとTDとでCTEが異なる場合がある。この場合は、MD又はTDのうち少なくとも一方の熱線膨張係数の絶対値が60ppm/℃以下であることが好ましく、MD及びTDの熱線膨張係数の絶対値が共に60ppm/℃以下であることがより好ましい。
<Coefficient of thermal expansion (CTE)>
According to the polyimide resin composition of the present invention, a low CTE molded article can be produced. For example, the absolute value of the linear thermal expansion coefficient measured according to JIS K7197: 2012 of a 4 mm thick molded body obtained by molding the polyimide resin composition is preferably 60 ppm / ° C. or less. .
The CTE measurement temperature range is 150 to 210 ° C. or 150 to 220 ° C., preferably 150 to 210 ° C. when the amorphous resin (B1) is used as the amorphous resin (B). When at least one selected from the group consisting of crystalline resins (B2) and (B3) is used, the range is 150 to 220°C.
Since the CTE value of a stretched molded article varies, the molded article used for CTE measurement is preferably a non-stretched molded article, more preferably an injection molded article.
Injection-molded articles also have a machine direction (MD) and a direction perpendicular to it (TD), and the MD and TD may have different CTEs. In this case, the absolute value of the coefficient of thermal expansion of at least one of MD and TD is preferably 60 ppm/°C or less, and more preferably the absolute value of the coefficient of thermal expansion of both MD and TD is 60 ppm/°C or less. preferable.
 ポリイミド樹脂組成物を成形して得られる、厚さ4mmの射出成形体においては、MD及びTDのうちより低い前記熱線膨張係数の絶対値を、より好ましくは55ppm/℃以下、更に好ましくは50ppm/℃以下、より更に好ましくは45ppm/℃以下、より更に好ましくは40ppm/℃以下、より更に好ましくは35ppm/℃以下、より更に好ましくは30ppm/℃以下、より更に好ましくは20ppm/℃以下、より更に好ましくは15ppm/℃以下、より更に好ましくは10ppm/℃以下とすることができる。
 また、ポリイミド樹脂組成物を成形して得られる、厚さ4mmの射出成形体においては、MD及びTDの前記熱線膨張係数の絶対値の合計値を、好ましくは100ppm/℃以下、より好ましくは95ppm/℃以下、更に好ましくは90ppm/℃以下、より更に好ましくは80ppm/℃以下、より更に好ましくは70ppm/℃以下、より更に好ましくは60ppm/℃以下とすることができる。
 成形体の熱線膨張係数は、熱機械分析(TMA法)により圧縮モードで測定される値であり、具体的には実施例に記載の方法で測定できる。
In an injection molded article having a thickness of 4 mm obtained by molding the polyimide resin composition, the absolute value of the linear thermal expansion coefficient, which is lower among MD and TD, is more preferably 55 ppm/° C. or less, more preferably 50 ppm/ ° C. or less, still more preferably 45 ppm/° C. or less, even more preferably 40 ppm/° C. or less, even more preferably 35 ppm/° C. or less, even more preferably 30 ppm/° C. or less, even more preferably 20 ppm/° C. or less, still more preferably It is preferably 15 ppm/°C or less, more preferably 10 ppm/°C or less.
Further, in an injection molded article having a thickness of 4 mm obtained by molding the polyimide resin composition, the total value of the absolute values of the thermal expansion coefficients in MD and TD is preferably 100 ppm/° C. or less, more preferably 95 ppm. /°C or less, more preferably 90 ppm/°C or less, even more preferably 80 ppm/°C or less, still more preferably 70 ppm/°C or less, and even more preferably 60 ppm/°C or less.
The linear thermal expansion coefficient of the molded product is a value measured in compression mode by thermomechanical analysis (TMA method), and can be specifically measured by the method described in Examples.
<吸水率>
 本発明のポリイミド樹脂組成物によれば、低吸水率の成形体を作製することができる。例えば、ポリイミド樹脂組成物を成形して得られる30mm×20mm×厚さ4mmの成形体の、JIS K7209:2000に準拠して測定される、23℃の水に24時間浸漬した際の吸水率を、好ましくは0.30%以下、より好ましくは0.25%以下、更に好ましくは0.20%以下、より更に好ましくは0.17%以下とすることができる。
 上記吸水率は、水への浸漬前の成形体の質量を(W)、23℃の水に24時間浸漬した後の成形体の質量を(W)をとした際に、下記式より算出される値である。
  吸水率(%)=[(W-W)/W]×100
 上記吸水率は、具体的には実施例に記載の方法で測定できる。
<Water absorption rate>
According to the polyimide resin composition of the present invention, a molded article with low water absorption can be produced. For example, the water absorption rate when immersed in water at 23 ° C. for 24 hours, measured in accordance with JIS K7209: 2000, of a molded body of 30 mm × 20 mm × thickness 4 mm obtained by molding a polyimide resin composition , preferably 0.30% or less, more preferably 0.25% or less, still more preferably 0.20% or less, and even more preferably 0.17% or less.
The water absorption rate is obtained from the following formula when the mass of the molded article before immersion in water is (W 0 ) and the mass of the molded article after immersion in water at 23° C. for 24 hours is (W 1 ). It is a calculated value.
Water absorption (%) = [(W 1 -W 0 )/W 0 ] x 100
Specifically, the water absorption can be measured by the method described in Examples.
[成形体]
 本発明は、前記ポリイミド樹脂組成物を含む成形体を提供する。
 本発明のポリイミド樹脂組成物は熱可塑性を有するため、熱成形することにより容易に本発明の成形体を製造できる。熱成形方法としては射出成形、押出成形、ブロー成形、熱プレス成形、真空成形、圧空成形、レーザー成形、溶接、溶着等が挙げられ、熱溶融工程を経る成形方法であればいずれの方法でも成形が可能である。
 成形温度はポリイミド樹脂組成物の熱特性(融点及びガラス転移温度)によっても異なるが、例えば射出成形においては、成形温度400℃未満、金型温度220℃以下での成形が可能である。
[Molded body]
The present invention provides a molded article containing the polyimide resin composition.
Since the polyimide resin composition of the present invention has thermoplasticity, the molded article of the present invention can be easily produced by thermoforming. Thermoforming methods include injection molding, extrusion molding, blow molding, hot press molding, vacuum molding, pressure molding, laser molding, welding, welding, etc. Any molding method involving a heat melting process can be used. is possible.
The molding temperature varies depending on the thermal properties (melting point and glass transition temperature) of the polyimide resin composition. For example, in injection molding, molding can be performed at a molding temperature of less than 400°C and a mold temperature of 220°C or less.
 成形体を製造する方法としては、ポリイミド樹脂組成物を400℃未満の温度で熱成形する工程を有することが好ましい。具体的な手順としては、例えば以下の方法が挙げられる。
 まず、ポリイミド樹脂(A)に、非晶性樹脂(B)、及び必要に応じて各種任意成分を添加してドライブレンドした後、これを押出機内に導入して、好ましくは400℃未満で溶融して押出機内で溶融混練及び押出し、ペレットを作製する。あるいは、ポリイミド樹脂(A)を押出機内に導入して、好ましくは400℃未満で溶融し、ここに非晶性樹脂(B)及び各種任意成分を導入して押出機内でポリイミド樹脂(A)と溶融混練し、押出すことで前述のペレットを作製してもよい。
 上記ペレットを乾燥させた後、各種成形機に導入して好ましくは400℃未満で熱成形し、所望の形状を有する成形体を製造することができる。
A method for producing a molded article preferably includes a step of thermoforming the polyimide resin composition at a temperature of less than 400°C. Specific procedures include, for example, the following method.
First, the polyimide resin (A), the amorphous resin (B), and optionally various optional components are added and dry blended, then introduced into an extruder, preferably melted at less than 400 ° C. The mixture is then melt-kneaded and extruded in an extruder to produce pellets. Alternatively, the polyimide resin (A) is introduced into the extruder, preferably melted at less than 400 ° C., and the amorphous resin (B) and various optional components are introduced into the extruder with the polyimide resin (A). The aforementioned pellets may be produced by melt-kneading and extrusion.
After drying the pellets, they can be introduced into various molding machines and thermoformed preferably at a temperature of less than 400° C. to produce a molded body having a desired shape.
 本発明の成形体は、熱線膨張係数が低く寸法安定性に優れ、さらに低吸水率であることから、例えば、低熱線膨張係数を要求されるフィルム、銅張積層板、電気、電子部材に好適である。 The molded article of the present invention has a low coefficient of linear thermal expansion, excellent dimensional stability, and low water absorption. Therefore, it is suitable for, for example, films, copper-clad laminates, electrical and electronic members that require a low coefficient of thermal expansion. is.
 次に実施例を挙げて本発明をより詳しく説明するが、本発明はこれに限定されるものではない。また、各製造例及び実施例における各種測定及び評価は以下のように行った。 Next, the present invention will be described in more detail with reference to examples, but the present invention is not limited to these. In addition, various measurements and evaluations in each production example and working example were performed as follows.
<赤外線分光分析(IR測定)>
 ポリイミド樹脂のIR測定は日本電子(株)製「JIR-WINSPEC50」を用いて行った。
<Infrared spectroscopic analysis (IR measurement)>
The IR measurement of the polyimide resin was performed using "JIR-WINSPEC50" manufactured by JEOL Ltd.
<対数粘度μ>
 ポリイミド樹脂を190~200℃で2時間乾燥した後、該ポリイミド樹脂0.100gを濃硫酸(96%、関東化学(株)製)20mLに溶解したポリイミド樹脂溶液を測定試料とし、キャノンフェンスケ粘度計を使用して30℃において測定を行った。対数粘度μは下記式により求めた。
μ=ln[(ts/t)/C]
:濃硫酸の流れる時間
ts:ポリイミド樹脂溶液の流れる時間
C:0.5g/dL
<Logarithmic Viscosity μ>
After drying the polyimide resin at 190 to 200 ° C. for 2 hours, 0.100 g of the polyimide resin was dissolved in 20 mL of concentrated sulfuric acid (96%, manufactured by Kanto Chemical Co., Ltd.). Measurements were made at 30°C using a meter. The logarithmic viscosity μ was determined by the following formula.
μ = ln [(ts/t 0 )/C]
t 0 : Flow time of concentrated sulfuric acid ts: Flow time of polyimide resin solution C: 0.5 g/dL
<融点、ガラス転移温度、結晶化温度、結晶化発熱量>
 ポリイミド樹脂の融点Tm、並びに、ポリイミド樹脂、非晶性樹脂、ポリイミド樹脂組成物のガラス転移温度Tg、結晶化温度Tc及び結晶化発熱量ΔHmは、示差走査熱量計装置(エスアイアイ・ナノテクノロジー(株)製「DSC-6220」)を用いて測定した。結晶化温度Tcの測定において、ポリイミド樹脂及び非晶性樹脂(B1)については樹脂粉末、非晶性樹脂(B2)、非晶性樹脂(B3)、及びポリイミド樹脂組成物についてはペレットを測定試料として用いた。
 窒素雰囲気下、測定試料に下記条件の熱履歴を課した。熱履歴の条件は、昇温1度目(昇温速度10℃/分)、その後冷却(降温速度20℃/分)、その後昇温2度目(昇温速度10℃/分)である。
 融点Tmは昇温2度目で観測された吸熱ピークのピークトップ値を読み取り決定した。ガラス転移温度Tgは昇温2度目で観測された値を読み取り決定した。結晶化温度Tcは冷却時に観測された発熱ピークのピークトップ値を読み取り決定した。なおTm、Tg及びTcに関して、ピークが複数観測されたものについては各ピークのピークトップ値を読み取った。
 また結晶化発熱量ΔHm(mJ/mg)は冷却時に観測された発熱ピークの面積から算出した。
<Melting point, glass transition temperature, crystallization temperature, crystallization heat value>
The melting point Tm of the polyimide resin, and the glass transition temperature Tg, crystallization temperature Tc, and crystallization heat value ΔHm of the polyimide resin, amorphous resin, and polyimide resin composition were measured using a differential scanning calorimeter (SII Nanotechnology ( Measured using a "DSC-6220" manufactured by Co., Ltd.). In the measurement of the crystallization temperature Tc, the resin powder for the polyimide resin and the amorphous resin (B1), the amorphous resin (B2), the amorphous resin (B3), and the pellet for the polyimide resin composition were used as measurement samples. used as
In a nitrogen atmosphere, the measurement sample was subjected to thermal history under the following conditions. The thermal history conditions were a first temperature increase (temperature increase rate of 10° C./min), then cooling (temperature decrease rate of 20° C./min), and then a second temperature increase (temperature increase rate of 10° C./min).
The melting point Tm was determined by reading the peak top value of the endothermic peak observed the second time the temperature was raised. The glass transition temperature Tg was determined by reading the value observed at the second heating. The crystallization temperature Tc was determined by reading the peak top value of the exothermic peak observed during cooling. For Tm, Tg and Tc, when multiple peaks were observed, the peak top value of each peak was read.
The crystallization heat value ΔHm (mJ/mg) was calculated from the area of the exothermic peak observed during cooling.
<半結晶化時間>
 ポリイミド樹脂の半結晶化時間は、示差走査熱量計装置(エスアイアイ・ナノテクノロジー(株)製「DSC-6220」)を用いて測定した。
 窒素雰囲気下、420℃で10分保持し、ポリイミド樹脂を完全に溶融させたのち、冷却速度70℃/分の急冷操作を行った際に、観測される結晶化ピークの出現時からピークトップに達するまでにかかった時間を計算した。なお表1中、半結晶化時間が20秒以下である場合は「<20」と表記した。
<Semi-crystallization time>
The semi-crystallization time of the polyimide resin was measured using a differential scanning calorimeter ("DSC-6220" manufactured by SII Nanotechnology Co., Ltd.).
After holding at 420 ° C. for 10 minutes in a nitrogen atmosphere to completely melt the polyimide resin, when performing a rapid cooling operation at a cooling rate of 70 ° C./min, the peak top from the appearance of the observed crystallization peak. Calculate the time it took to reach In addition, in Table 1, when the semi-crystallization time was 20 seconds or less, it was described as "<20".
<重量平均分子量>
 ポリイミド樹脂の重量平均分子量(Mw)は、昭和電工(株)製のゲルろ過クロマトグラフィー(GPC)測定装置「Shodex GPC-101」を用いて下記条件にて測定した。
 カラム:Shodex HFIP-806M
 移動相溶媒:トリフルオロ酢酸ナトリウム2mM含有ヘキサフルオロイソプロパノール(HFIP)
 カラム温度:40℃
 移動相流速:1.0mL/min
 試料濃度:約0.1質量%
 検出器:IR検出器
 注入量:100μm
 検量線:標準PMMA
<Weight average molecular weight>
The weight average molecular weight (Mw) of the polyimide resin was measured under the following conditions using a gel permeation chromatography (GPC) measuring device "Shodex GPC-101" manufactured by Showa Denko KK.
Column: Shodex HFIP-806M
Mobile phase solvent: hexafluoroisopropanol (HFIP) containing 2 mM sodium trifluoroacetate
Column temperature: 40°C
Mobile phase flow rate: 1.0 mL/min
Sample concentration: about 0.1% by mass
Detector: IR detector Injection volume: 100 μm
Calibration curve: standard PMMA
<吸水率>
 吸水率はJIS K7209:2000に準拠して測定した。製造例1のポリイミド樹脂、非晶性樹脂、又は各例で製造したポリイミド樹脂組成物を用いて、後述する方法により射出成形体を作製し、30mm×20mm×厚さ4mmのサイズに切り出した。これを23℃、相対湿度50%の環境下で24時間以上状態調節を行い、測定に使用した。
 上記成形体を50℃の熱風循環オーブン中で24時間乾燥した後、デシケーターで室温に戻し、23℃、相対湿度50%の環境下で質量(W)を測定した。続いて、この成形体を23℃の水中に24時間浸漬し、表面の水分を拭き取った後、1分後の質量(W)を測定した。下記式に基づいて吸水率を算出し、3回測定の平均値を表2に示した。
  吸水率(%)=[(W-W)/W]×100
<Water absorption rate>
Water absorption was measured according to JIS K7209:2000. Using the polyimide resin of Production Example 1, the amorphous resin, or the polyimide resin composition produced in each example, an injection molded body was produced by the method described later, and cut into a size of 30 mm × 20 mm × 4 mm in thickness. This was conditioned in an environment of 23° C. and relative humidity of 50% for 24 hours or longer before being used for measurement.
After the molded article was dried in a hot air circulation oven at 50°C for 24 hours, it was returned to room temperature in a desiccator, and the mass (W 0 ) was measured under an environment of 23°C and a relative humidity of 50%. Subsequently, this molded body was immersed in water at 23° C. for 24 hours, and after wiping off the water on the surface, the mass (W 1 ) was measured after 1 minute. The water absorption was calculated based on the following formula, and Table 2 shows the average value of three measurements.
Water absorption (%) = [(W 1 -W 0 )/W 0 ] x 100
<熱線膨張係数(CTE)>
 CTEはJIS K7197:2012に準拠して測定した。製造例1のポリイミド樹脂、非晶性樹脂、又は各例で製造したポリイミド樹脂組成物を用いて、後述する方法により射出成形体を作製し、5mm×4mm×10mmのサイズに切り出し、測定に使用した。
 上記射出成形体を測定試料として、(株)日立ハイテクサイエンス製の熱機械分析装置「TMA7100C」を用いて、窒素気流中(150mL/min)、圧縮モードで荷重49mN、昇温速度5℃/minの条件で23~300℃まで昇温して熱機械分析(TMA)測定を行った。TMA測定は射出成形体の流れ方向(MD)及びそれに直交する方向(TD)について行い、150~210℃又は150~220℃における測定値からCTEを求めた。
<Coefficient of thermal expansion (CTE)>
CTE was measured according to JIS K7197:2012. Using the polyimide resin of Production Example 1, the amorphous resin, or the polyimide resin composition produced in each example, an injection molded body is produced by the method described later, cut into a size of 5 mm × 4 mm × 10 mm, and used for measurement. bottom.
Using the above injection molded product as a measurement sample, a thermomechanical analyzer "TMA7100C" manufactured by Hitachi High-Tech Science Co., Ltd. was used in a nitrogen stream (150 mL/min) in a compression mode with a load of 49 mN and a heating rate of 5 ° C./min. The temperature was raised from 23 to 300° C. under the conditions of , and thermomechanical analysis (TMA) was measured. TMA measurements were performed in the machine direction (MD) and the direction perpendicular to it (TD) of the injection molded product, and the CTE was determined from the measured values at 150 to 210°C or 150 to 220°C.
製造例1(ポリイミド樹脂1の製造)
 ディーンスターク装置、リービッヒ冷却管、熱電対、4枚パドル翼を設置した2Lセパラブルフラスコ中に2-(2-メトキシエトキシ)エタノール(日本乳化剤(株)製)500gとピロメリット酸二無水物(三菱ガス化学(株)製)218.12g(1.00mol)を導入し、窒素フローした後、均一な懸濁溶液になるように150rpmで撹拌した。一方で、500mLビーカーを用いて、1,3-ビス(アミノメチル)シクロヘキサン(三菱ガス化学(株)製、シス/トランス比=7/3)49.79g(0.35mol)、1,8-オクタメチレンジアミン(関東化学(株)製)93.77g(0.65mol)を2-(2-メトキシエトキシ)エタノール250gに溶解させ、混合ジアミン溶液を調製した。この混合ジアミン溶液を、プランジャーポンプを使用して徐々に加えた。滴下により発熱が起こるが、内温は40~80℃に収まるよう調整した。混合ジアミン溶液の滴下中はすべて窒素フロー状態とし、撹拌翼回転数は250rpmとした。滴下が終わったのちに、2-(2-メトキシエトキシ)エタノール130gと、末端封止剤であるn-オクチルアミン(関東化学(株)製)1.284g(0.010mol)を加えさらに撹拌した。この段階で、淡黄色のポリアミド酸溶液が得られた。次に、撹拌速度を200rpmとした後に、2Lセパラブルフラスコ中のポリアミド酸溶液を190℃まで昇温した。昇温を行っていく過程において、液温度が120~140℃の間にポリイミド樹脂粉末の析出と、イミド化に伴う脱水が確認された。190℃で30分保持した後、室温まで放冷を行い、濾過を行った。得られたポリイミド樹脂粉末は2-(2-メトキシエトキシ)エタノール300gとメタノール300gにより洗浄、濾過を行った後、乾燥機で180℃、10時間乾燥を行い、317gの結晶性熱可塑性ポリイミド樹脂1(以下、単に「ポリイミド樹脂1」ともいう)の粉末を得た。
 ポリイミド樹脂1のIRスペクトルを測定したところ、ν(C=O)1768、1697(cm-1)にイミド環の特性吸収が認められた。対数粘度は1.30dL/g、Tmは323℃、Tgは184℃、Tcは266℃、結晶化発熱量は21.0mJ/mg、半結晶化時間は20秒以下、Mwは55,000であった。
Production Example 1 (Production of Polyimide Resin 1)
In a 2 L separable flask equipped with a Dean-Stark apparatus, a Liebig condenser, a thermocouple, and four paddle blades, 500 g of 2-(2-methoxyethoxy) ethanol (manufactured by Nippon Nyukazai Co., Ltd.) and pyromellitic dianhydride ( 218.12 g (1.00 mol) of Mitsubishi Gas Chemical Co., Ltd.) was introduced, and after nitrogen flow, the mixture was stirred at 150 rpm to form a uniform suspension. On the other hand, using a 500 mL beaker, 49.79 g (0.35 mol) of 1,3-bis(aminomethyl)cyclohexane (Mitsubishi Gas Chemical Co., Ltd., cis/trans ratio = 7/3), 1,8- A mixed diamine solution was prepared by dissolving 93.77 g (0.65 mol) of octamethylenediamine (manufactured by Kanto Chemical Co., Ltd.) in 250 g of 2-(2-methoxyethoxy)ethanol. The mixed diamine solution was added slowly using a plunger pump. Heat was generated by the dropwise addition, but the internal temperature was adjusted to be within the range of 40 to 80°C. During the dropwise addition of the mixed diamine solution, nitrogen flow was maintained and the rotation speed of the stirring blade was 250 rpm. After the dropping was completed, 130 g of 2-(2-methoxyethoxy)ethanol and 1.284 g (0.010 mol) of n-octylamine (manufactured by Kanto Kagaku Co., Ltd.) as a terminal blocker were added and further stirred. . At this stage, a pale yellow polyamic acid solution was obtained. Next, after setting the stirring speed to 200 rpm, the polyamic acid solution in the 2-L separable flask was heated to 190°C. In the process of increasing the temperature, deposition of polyimide resin powder and dehydration due to imidization were confirmed when the liquid temperature was 120 to 140°C. After holding at 190° C. for 30 minutes, the mixture was allowed to cool to room temperature and filtered. The obtained polyimide resin powder was washed with 300 g of 2-(2-methoxyethoxy)ethanol and 300 g of methanol, filtered, and then dried in a dryer at 180° C. for 10 hours to obtain 317 g of crystalline thermoplastic polyimide resin 1. (hereinafter also simply referred to as "polyimide resin 1") was obtained.
When the IR spectrum of polyimide resin 1 was measured, characteristic absorption of the imide ring was observed at ν(C═O) 1768, 1697 (cm −1 ). Logarithmic viscosity was 1.30 dL/g, Tm was 323°C, Tg was 184°C, Tc was 266°C, crystallization exotherm was 21.0 mJ/mg, semi-crystallization time was 20 seconds or less, and Mw was 55,000. there were.
 製造例1におけるポリイミド樹脂1の組成及び評価結果を表1に示す。なお、表1中のテトラカルボン酸成分及びジアミン成分のモル%は、ポリイミド樹脂製造時の各成分の仕込み量から算出した値である。 Table 1 shows the composition and evaluation results of polyimide resin 1 in Production Example 1. The mol % of the tetracarboxylic acid component and the diamine component in Table 1 are values calculated from the amount of each component charged during the production of the polyimide resin.
Figure JPOXMLDOC01-appb-T000032
Figure JPOXMLDOC01-appb-T000032
 表1中の略号は下記の通りである。
・PMDA;ピロメリット酸二無水物
・1,3-BAC;1,3-ビス(アミノメチル)シクロヘキサン
・OMDA;1,8-オクタメチレンジアミン
Abbreviations in Table 1 are as follows.
・PMDA; pyromellitic dianhydride ・1,3-BAC; 1,3-bis(aminomethyl)cyclohexane ・OMDA; 1,8-octamethylenediamine
実施例1(ポリイミド樹脂組成物、成形体の作製及び評価)
 製造例1で得られたポリイミド樹脂1の粉末と、非晶性樹脂(B1)(SABIC社製「ULTEM Resin 1000P」、Tg:217℃)とを、表2に示す割合でドライブレンドした後、同方向回転二軸混錬押出機((株)パーカーコーポレーション製「HK-25D」、スクリュー径25mmΦ、L/D=41)を用いて、バレル温度370℃、スクリュー回転数150rpmの条件で溶融混練し押し出した。押出機より押し出されたストランドを空冷後、ペレタイザー((株)星プラスチック製「ファンカッターFC-Mini-4/N」)によってペレット化した。得られたペレットは150℃、12時間乾燥を行った後、射出成形に使用した。
 射出成形機(ファナック(株)製「ロボショットα-S30iA」)を使用して、バレル温度385℃、金型温度165℃、成形サイクル60秒にて射出成形を行い、所定の大きさに切り出して、吸水率及びCTE測定用の射出成形体を作製した。
 得られた射出成形体を用いて、前述した方法で各種評価を行った。結果を表2に示す。
Example 1 (polyimide resin composition, production and evaluation of molded body)
After dry blending the polyimide resin 1 powder obtained in Production Example 1 and the amorphous resin (B1) ("ULTEM Resin 1000P" manufactured by SABIC, Tg: 217° C.) at the ratio shown in Table 2, Using a co-rotating twin-screw kneading extruder (“HK-25D” manufactured by Parker Corporation, screw diameter 25 mmΦ, L/D = 41), melt-kneading under the conditions of a barrel temperature of 370 ° C. and a screw rotation speed of 150 rpm. pushed out. After the strand extruded from the extruder was air-cooled, it was pelletized by a pelletizer ("Fan Cutter FC-Mini-4/N" manufactured by Hoshi Plastics Co., Ltd.). The obtained pellets were dried at 150° C. for 12 hours and then used for injection molding.
Using an injection molding machine (“Roboshot α-S30iA” manufactured by FANUC CORPORATION), injection molding is performed at a barrel temperature of 385°C, a mold temperature of 165°C, and a molding cycle of 60 seconds. Then, an injection-molded body for water absorption and CTE measurement was produced.
Various evaluations were performed by the methods described above using the obtained injection molded article. Table 2 shows the results.
実施例2~4
 表2に示す種類及び量の非晶性樹脂(B)を用い、該非晶性樹脂と、製造例1で得られたポリイミド樹脂1の粉末とを表2に示す割合で用いたこと以外は、実施例1と同様にして射出成形体を作製し、各種評価を行った。結果を表2に示す。
Examples 2-4
Except for using the amorphous resin (B) of the type and amount shown in Table 2, and using the amorphous resin and the powder of the polyimide resin 1 obtained in Production Example 1 in the ratio shown in Table 2, An injection molded article was produced in the same manner as in Example 1, and various evaluations were performed. Table 2 shows the results.
比較例1
 製造例1で得られたポリイミド樹脂1の粉末をラボプラストミル((株)東洋精機製作所製)を用いてバレル温度360℃、スクリュー回転数150rpmで溶融混錬し押し出した。押出機より押し出されたストランドを空冷後、ペレタイザー((株)星プラスチック製「ファンカッターFC-Mini-4/N」)によってペレット化した。得られたペレットは150℃、12時間乾燥を行った後、射出成形に使用した。
 射出成形機(ファナック(株)製「ROBOSHOT α-S30iA」)を使用して、バレル温度350℃、金型温度200℃、成形サイクル50秒として射出成形を行い、所定の大きさに切り出して、吸水率及びCTE測定用の射出成形体を作製した。
 得られた射出成形体を用いて、前述した方法で各種評価を行った。結果を表2に示す。
Comparative example 1
The polyimide resin 1 powder obtained in Production Example 1 was melt-kneaded and extruded using Laboplastomill (manufactured by Toyo Seiki Seisakusho Co., Ltd.) at a barrel temperature of 360° C. and a screw rotation speed of 150 rpm. After the strand extruded from the extruder was air-cooled, it was pelletized by a pelletizer ("Fan Cutter FC-Mini-4/N" manufactured by Hoshi Plastics Co., Ltd.). The obtained pellets were dried at 150° C. for 12 hours and then used for injection molding.
Using an injection molding machine ("ROBOSHOT α-S30iA" manufactured by FANUC CORPORATION), injection molding is performed with a barrel temperature of 350°C, a mold temperature of 200°C, and a molding cycle of 50 seconds. An injection molded body was prepared for water absorption and CTE measurements.
Various evaluations were performed by the methods described above using the obtained injection molded article. Table 2 shows the results.
比較例2
 非晶性樹脂(B1)(SABIC社製「ULTEM Resin 1000P」)をラボプラストミル((株)東洋精機製作所製)を用いてバレル温度360℃、スクリュー回転数150rpmで溶融混錬し押し出した。押出機より押し出されたストランドを空冷後、ペレタイザー((株)星プラスチック製「ファンカッターFC-Mini-4/N」)によってペレット化した。得られたペレットは160℃、6時間乾燥を行った後、射出成形に使用した。
 射出成形機(ファナック(株)製「ROBOSHOT α-S30iA」)を使用して、バレル温度350℃、金型温度180℃、成形サイクル60秒として射出成形を行い、所定の大きさに切り出して、吸水率及びCTE測定用の射出成形体を作製した。
 得られた射出成形体を用いて、前述した方法で各種評価を行った。結果を表2に示す。
Comparative example 2
Amorphous resin (B1) ("ULTEM Resin 1000P" manufactured by SABIC) was melt-kneaded and extruded using Laboplastomill (manufactured by Toyo Seiki Seisakusho Co., Ltd.) at a barrel temperature of 360°C and a screw rotation speed of 150 rpm. After the strand extruded from the extruder was air-cooled, it was pelletized by a pelletizer ("Fan Cutter FC-Mini-4/N" manufactured by Hoshi Plastics Co., Ltd.). The obtained pellets were dried at 160° C. for 6 hours and then used for injection molding.
Using an injection molding machine ("ROBOSHOT α-S30iA" manufactured by FANUC CORPORATION), injection molding is performed with a barrel temperature of 350°C, a mold temperature of 180°C, and a molding cycle of 60 seconds. An injection molded body was prepared for water absorption and CTE measurements.
Various evaluations were performed by the methods described above using the obtained injection molded article. Table 2 shows the results.
比較例3
 非晶性樹脂(B2)(SABIC社製「EXTEM Resin VH1003」)を、射出成形機(ファナック(株)製「ROBOSHOT α-S30iA」)を使用して、バレル温度370℃、金型温度160℃、成形サイクル60秒として射出成形を行い、所定の大きさに切り出して、吸水率及びCTE測定用の射出成形体を作製した。
 得られた射出成形体を用いて、前述した方法で各種評価を行った。結果を表2に示す。
Comparative example 3
Amorphous resin (B2) (“EXTEM Resin VH1003” manufactured by SABIC) was molded using an injection molding machine (“ROBOSHOT α-S30iA” manufactured by Fanuc Corporation) at a barrel temperature of 370 ° C. and a mold temperature of 160 ° C. , injection molding was performed with a molding cycle of 60 seconds, and a predetermined size was cut out to prepare an injection molded body for water absorption and CTE measurement.
Various evaluations were performed by the methods described above using the obtained injection molded article. Table 2 shows the results.
比較例4
 非晶性樹脂(B3)(SABIC社製「SILTEM resin STM1700」)を、射出成形機(ファナック(株)製「ROBOSHOT α-S30iA」)を使用して、バレル温度370℃、金型温度160℃、成形サイクル60秒として射出成形を行い、所定の大きさに切り出して、吸水率及びCTE測定用の射出成形体を作製した。
 得られた射出成形体を用いて、前述した方法で各種評価を行った。結果を表2に示す。
Comparative example 4
Amorphous resin (B3) ("SILTEM resin STM1700" manufactured by SABIC) was molded using an injection molding machine ("ROBOSHOT α-S30iA" manufactured by Fanuc Corporation) at a barrel temperature of 370°C and a mold temperature of 160°C. , injection molding was performed with a molding cycle of 60 seconds, and a predetermined size was cut out to prepare an injection molded body for water absorption and CTE measurement.
Various evaluations were performed by the methods described above using the obtained injection molded article. Table 2 shows the results.
Figure JPOXMLDOC01-appb-T000033
Figure JPOXMLDOC01-appb-T000033
 表2に示した各成分の詳細は下記の通りである。
<ポリイミド樹脂(A)>
(A1)ポリイミド樹脂1:製造例1で得られた結晶性熱可塑性ポリイミド樹脂1
<非晶性樹脂(B)>
(B1)1000P:SABIC社製「ULTEM Resin 1000P」、前記式(B1)で示される繰り返し構成単位からなる非晶性樹脂、Tg:185℃、MFR(温度337℃、荷重6.6kgf):9g/10分
(B2)VH1003:SABIC社製「EXTEM Resin VH1003」、前記式(B2)で示される繰り返し構成単位からなる非晶性樹脂、Tg:243℃、MFR(温度367℃、荷重6.6kgf):15.5g/10分
(B3)STM1700:SABIC社製「SILTEM resin STM1700」、前記式(B3)で示される繰り返し構成単位からなる非晶性樹脂、MFR(温度295℃、荷重6.6kgf):7g/10分
Details of each component shown in Table 2 are as follows.
<Polyimide resin (A)>
(A1) Polyimide resin 1: crystalline thermoplastic polyimide resin 1 obtained in Production Example 1
<Amorphous Resin (B)>
(B1) 1000P: "ULTEM Resin 1000P" manufactured by SABIC, an amorphous resin composed of a repeating structural unit represented by the formula (B1), Tg: 185°C, MFR (temperature: 337°C, load: 6.6 kgf): 9 g /10 minutes (B2) VH1003: "EXTEM Resin VH1003" manufactured by SABIC, an amorphous resin composed of the repeating structural unit represented by the formula (B2), Tg: 243 ° C., MFR (temperature 367 ° C., load 6.6 kgf ): 15.5 g/10 minutes (B3) STM1700: "SILTEM resin STM1700" manufactured by SABIC, an amorphous resin consisting of a repeating structural unit represented by the formula (B3), MFR (temperature 295 ° C., load 6.6 kgf ): 7 g/10 minutes
 表2に示すように、本発明のポリイミド樹脂組成物(実施例1~4)からなる成形体は、比較例1~4の成形体よりも熱線膨張係数が低く寸法安定性に優れる。また、非晶性樹脂(B)単独の成形体と比較して吸水率も低いことがわかる。 As shown in Table 2, the molded articles made of the polyimide resin compositions of the present invention (Examples 1 to 4) have a lower linear thermal expansion coefficient and superior dimensional stability than the molded articles of Comparative Examples 1 to 4. In addition, it can be seen that the water absorption rate is lower than that of the molded body of the amorphous resin (B) alone.
 さらに、実施例2で得られたペレットを用いて、ペレット中のポリイミド樹脂(A)及び非晶性樹脂(B1)の分散状態を以下の方法で確認した。
 実施例2で得られたペレットを、ミクロトーム(LEICA MICROSYSTEMS製「EM UC 7」)を用いて、図1に示すようにペレットの流れ方向(MD)に対し直交方向に(すなわち、TD断面が出るように)切断した。図1において、1はペレットである。
 この切断面を気相中で30分、四酸化ルテニウムにより染色した後、フィールドエミッション型走査型電子顕微鏡(FE-SEM、ZEISS製「GeminiSEM500」)を用いて、加速電圧1kV、観察倍率30,000倍で観察した(図2)。観察画像において、色が濃い部分(島)は、四酸化ルテニウムにより染色されにくいポリイミド樹脂(A)で構成されていると判断した。
 図2より、実施例2で得られたペレット中では、ポリイミド樹脂(A)と非晶性樹脂(B1)とが海島構造を形成していることがわかる。
Furthermore, using the pellets obtained in Example 2, the dispersion state of the polyimide resin (A) and the amorphous resin (B1) in the pellets was confirmed by the following method.
Using a microtome ("EM UC 7" manufactured by LEICA MICROSYSTEMS), the pellets obtained in Example 2 are perpendicular to the flow direction (MD) of the pellets as shown in FIG. like) cut. In FIG. 1, 1 is a pellet.
After staining this cut surface with ruthenium tetroxide for 30 minutes in the gas phase, a field emission scanning electron microscope (FE-SEM, "GeminiSEM500" manufactured by ZEISS) was used at an acceleration voltage of 1 kV and an observation magnification of 30,000. Observed under magnification (Fig. 2). In the observed image, dark-colored portions (islands) were determined to be composed of polyimide resin (A), which is difficult to be dyed with ruthenium tetroxide.
From FIG. 2, it can be seen that in the pellets obtained in Example 2, the polyimide resin (A) and the amorphous resin (B1) form a sea-island structure.
 本発明のポリイミド樹脂組成物及び成形体は、熱線膨張係数が低く寸法安定性に優れることから、例えば、低熱線膨張係数を要求されるフィルム、銅張積層板、電気、電子部材に好適である。 The polyimide resin composition and molded article of the present invention have a low coefficient of linear thermal expansion and excellent dimensional stability, and therefore are suitable for, for example, films, copper-clad laminates, electrical and electronic members that require a low coefficient of thermal expansion. .

Claims (5)

  1.  下記式(1)で示される繰り返し構成単位及び下記式(2)で示される繰り返し構成単位を含み、該式(1)の繰り返し構成単位と該式(2)の繰り返し構成単位の合計に対する該式(1)の繰り返し構成単位の含有比が20~70モル%のポリイミド樹脂(A)と、下記式(I)で示される繰り返し構成単位を含む非晶性樹脂(B)とを含有するポリイミド樹脂組成物。
    Figure JPOXMLDOC01-appb-C000001

    (Rは少なくとも1つの脂環式炭化水素構造を含む炭素数6~22の2価の基である。Rは炭素数5~16の2価の鎖状脂肪族基である。X及びXは、それぞれ独立に、少なくとも1つの芳香環を含む炭素数6~22の4価の基である。)
    Figure JPOXMLDOC01-appb-C000002

    (Rは少なくとも1つの芳香環を含む炭素数6~22の2価の基である。Rは下記式(R-5a)~(R-5c)のいずれかで示される2価の基のうち少なくとも1種である。)
    Figure JPOXMLDOC01-appb-C000003
    (R51は炭素数1~4のアルキル基、炭素数2~4のアルケニル基、又は炭素数2~4のアルキニル基である。m51はそれぞれ独立に0~2の整数であり、p51は0~4の整数である。*は結合手を示す。)
    Figure JPOXMLDOC01-appb-C000004

    (R52はそれぞれ独立に、炭素数1~4のアルキル基、炭素数2~4のアルケニル基、又は炭素数2~4のアルキニル基である。m52はそれぞれ独立に0~2の整数であり、p52はそれぞれ独立に0~4の整数である。*は結合手を示す。)
    Figure JPOXMLDOC01-appb-C000005

    (R53はそれぞれ独立に、炭素数1~4のアルキル基、又はフェニル基である。m53はそれぞれ独立に2~6の整数である。nは平均繰り返し構成単位数である。*は結合手を示す。)
    Including a repeating structural unit represented by the following formula (1) and a repeating structural unit represented by the following formula (2), the formula for the total of the repeating structural unit of the formula (1) and the repeating structural unit of the formula (2) A polyimide resin containing a polyimide resin (A) having a repeating structural unit content ratio of 20 to 70 mol% of (1) and an amorphous resin (B) containing a repeating structural unit represented by the following formula (I) Composition.
    Figure JPOXMLDOC01-appb-C000001

    (R 1 is a C 6-22 divalent group containing at least one alicyclic hydrocarbon structure. R 2 is a C 5-16 divalent chain aliphatic group. X 1 and X 2 are each independently a tetravalent group having 6 to 22 carbon atoms containing at least one aromatic ring.)
    Figure JPOXMLDOC01-appb-C000002

    (R 4 is a divalent group having 6 to 22 carbon atoms containing at least one aromatic ring; R 5 is a divalent group represented by any of the following formulas (R-5a) to (R-5c) at least one of
    Figure JPOXMLDOC01-appb-C000003
    (R 51 is an alkyl group having 1 to 4 carbon atoms, an alkenyl group having 2 to 4 carbon atoms, or an alkynyl group having 2 to 4 carbon atoms; m 51 is each independently an integer of 0 to 2; is an integer from 0 to 4. * indicates a bond.)
    Figure JPOXMLDOC01-appb-C000004

    (each R 52 is independently an alkyl group having 1 to 4 carbon atoms, an alkenyl group having 2 to 4 carbon atoms, or an alkynyl group having 2 to 4 carbon atoms; each m 52 is independently an integer of 0 to 2; and p 52 are each independently an integer of 0 to 4. * indicates a bond.)
    Figure JPOXMLDOC01-appb-C000005

    (each R 53 is independently an alkyl group having 1 to 4 carbon atoms or a phenyl group; each m 53 is independently an integer of 2 to 6; n is the average number of repeating units; * is a bond; show hand.)
  2.  前記式(I)において、Rが下記式(R-4a)~(R-4c)のいずれかで示される2価の基である、請求項1に記載のポリイミド樹脂組成物。
    Figure JPOXMLDOC01-appb-C000006

    (上記式中、*は結合手を示す。)
    The polyimide resin composition according to claim 1, wherein in formula (I), R 4 is a divalent group represented by any one of the following formulas (R-4a) to (R-4c).
    Figure JPOXMLDOC01-appb-C000006

    (In the above formula, * indicates a bond.)
  3.  前記ポリイミド樹脂組成物を成形して得られる厚さ4mmの成形体の、JIS K7197:2012に準拠して測定される熱線膨張係数の絶対値が60ppm/℃以下である、請求項1又は2に記載のポリイミド樹脂組成物。 According to claim 1 or 2, wherein the absolute value of the linear thermal expansion coefficient measured in accordance with JIS K7197:2012 is 60 ppm/° C. or less for a 4 mm-thick molded body obtained by molding the polyimide resin composition. The polyimide resin composition described.
  4.  前記ポリイミド樹脂組成物中の、前記ポリイミド樹脂(A)及び前記非晶性樹脂(B)の合計質量に対する前記ポリイミド樹脂(A)の質量比[(A)/{(A)+(B)}]が0.01以上0.99以下である、請求項1~3のいずれか1項に記載のポリイミド樹脂組成物。 Mass ratio of the polyimide resin (A) to the total mass of the polyimide resin (A) and the amorphous resin (B) in the polyimide resin composition [(A) / {(A) + (B)} ] is 0.01 or more and 0.99 or less, the polyimide resin composition according to any one of claims 1 to 3.
  5.  請求項1~4のいずれか1項に記載のポリイミド樹脂組成物を含む成形体。 A molded article containing the polyimide resin composition according to any one of claims 1 to 4.
PCT/JP2022/039908 2021-12-06 2022-10-26 Polyimide resin composition and molded body WO2023105969A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280079034.7A CN118318009A (en) 2021-12-06 2022-10-26 Polyimide resin composition and molded article
JP2023566146A JPWO2023105969A1 (en) 2021-12-06 2022-10-26

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021197947 2021-12-06
JP2021-197947 2021-12-06

Publications (1)

Publication Number Publication Date
WO2023105969A1 true WO2023105969A1 (en) 2023-06-15

Family

ID=86730098

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/039908 WO2023105969A1 (en) 2021-12-06 2022-10-26 Polyimide resin composition and molded body

Country Status (4)

Country Link
JP (1) JPWO2023105969A1 (en)
CN (1) CN118318009A (en)
TW (1) TW202337955A (en)
WO (1) WO2023105969A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016147996A1 (en) * 2015-03-19 2016-09-22 三菱瓦斯化学株式会社 Polyimide resin
JP2018070699A (en) * 2016-10-26 2018-05-10 三菱ケミカル株式会社 Polyimide resin composition
WO2019220969A1 (en) * 2018-05-17 2019-11-21 三菱瓦斯化学株式会社 Resin molding
WO2021131501A1 (en) * 2019-12-23 2021-07-01 三菱瓦斯化学株式会社 Polyimide resin composition and molded body
JP2021122990A (en) * 2020-02-03 2021-08-30 富士フイルムビジネスイノベーション株式会社 Resin composite
JP2022045273A (en) * 2020-09-08 2022-03-18 三菱ケミカル株式会社 Resin composition for substrate, film, laminate for substrate, circuit board, and electronic apparatus

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016147996A1 (en) * 2015-03-19 2016-09-22 三菱瓦斯化学株式会社 Polyimide resin
JP2018070699A (en) * 2016-10-26 2018-05-10 三菱ケミカル株式会社 Polyimide resin composition
WO2019220969A1 (en) * 2018-05-17 2019-11-21 三菱瓦斯化学株式会社 Resin molding
WO2021131501A1 (en) * 2019-12-23 2021-07-01 三菱瓦斯化学株式会社 Polyimide resin composition and molded body
JP2021122990A (en) * 2020-02-03 2021-08-30 富士フイルムビジネスイノベーション株式会社 Resin composite
JP2022045273A (en) * 2020-09-08 2022-03-18 三菱ケミカル株式会社 Resin composition for substrate, film, laminate for substrate, circuit board, and electronic apparatus

Also Published As

Publication number Publication date
JPWO2023105969A1 (en) 2023-06-15
TW202337955A (en) 2023-10-01
CN118318009A (en) 2024-07-09

Similar Documents

Publication Publication Date Title
JP7347415B2 (en) resin molded body
JP7497721B2 (en) Polyimide resin composition
TWI794491B (en) Polyimide resin composition
JP6927458B1 (en) Polyimide resin composition and molded product
WO2021024624A1 (en) Flame-retardant polyimide shaping material and shaped body
JP6856173B2 (en) Flame-retardant polyimide molding material and molded product
JP6879438B1 (en) Polyimide resin composition and molded product
JP7040692B1 (en) Polyimide resin composition and molded product
WO2023105969A1 (en) Polyimide resin composition and molded body
WO2023058334A1 (en) Polyimide resin composition and molded body
JP7259852B2 (en) polyimide resin composition
TWI857187B (en) Polyimide resin composition and molded article
WO2022004471A1 (en) Resin composition and molded article
TWI855096B (en) Fire-resistant polyimide molding material and molded article
WO2022220007A1 (en) Thermoplastic polyimide resin composition and molded product

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22903901

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023566146

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280079034.7

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE