[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2023101487A1 - Cold forging wire rod and steel part having improved delayed fracture resistance, and method for manufacturing same - Google Patents

Cold forging wire rod and steel part having improved delayed fracture resistance, and method for manufacturing same Download PDF

Info

Publication number
WO2023101487A1
WO2023101487A1 PCT/KR2022/019409 KR2022019409W WO2023101487A1 WO 2023101487 A1 WO2023101487 A1 WO 2023101487A1 KR 2022019409 W KR2022019409 W KR 2022019409W WO 2023101487 A1 WO2023101487 A1 WO 2023101487A1
Authority
WO
WIPO (PCT)
Prior art keywords
less
delayed fracture
steel
wire rod
improved
Prior art date
Application number
PCT/KR2022/019409
Other languages
French (fr)
Korean (ko)
Inventor
전영수
노정표
김단비
김영태
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to CN202280078714.7A priority Critical patent/CN118318058A/en
Priority to EP22901845.2A priority patent/EP4424861A1/en
Publication of WO2023101487A1 publication Critical patent/WO2023101487A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B1/00Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations
    • B21B1/16Metal-rolling methods or mills for making semi-finished products of solid or profiled cross-section; Sequence of operations in milling trains; Layout of rolling-mill plant, e.g. grouping of stands; Succession of passes or of sectional pass alternations for rolling wire rods, bars, merchant bars, rounds wire or material of like small cross-section
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C47/00Winding-up, coiling or winding-off metal wire, metal band or other flexible metal material characterised by features relevant to metal processing only
    • B21C47/02Winding-up or coiling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • C21D1/32Soft annealing, e.g. spheroidising
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • C21D8/065Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/525Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length for wire, for rods
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/28Ferrous alloys, e.g. steel alloys containing chromium with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/32Ferrous alloys, e.g. steel alloys containing chromium with boron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite

Definitions

  • the present invention relates to a wire rod for cold forging with improved delayed fracture resistance, steel parts, and a manufacturing method thereof, and more particularly, to a wire rod for cold forging with improved delayed fracture resistance by controlling the microstructure, steel parts and It is about their manufacturing method.
  • Wire rods used as fastening bolts for automobiles and structures are required to have high strength in order to reduce the weight of automobiles and reduce the size of structures.
  • metal strengthening mechanisms such as cold working, crystal grain refinement, martensite strengthening, and precipitation hardening are utilized.
  • dislocations, grain boundaries, martensitic lath boundaries, fine precipitate boundaries, etc. used as the strengthening mechanism act as traps for hydrogen in the steel and act as a cause of inferior delayed fracture. Therefore, in high-strength bolts having a tensile strength of 1 GPa or more, there is a problem in that delayed fracture is inferior.
  • An object of the present invention for solving the above problems is to provide a wire rod for cold forging, steel parts, and a manufacturing method thereof with improved delayed fracture resistance while cost reduction is possible by controlling the microstructure through the alloy composition and manufacturing method. is to provide
  • Steel parts with improved delayed fracture resistance according to an embodiment of the present invention, in weight%, C: 0.18% or more and 0.25% or less, Si: 0.30% or more and 0.50% or less, Mn: 0.35% or more and 0.50% or less, P : More than 0% and 0.03% or less, S: More than 0% and 0.03% or less, Cr: 0.45% or more and 0.60% or less, Ti: 0.015% or more and 0.03% or less, B: 0.001% or more and 0.004% or less, the remaining Fe and unavoidable impurities Including, in terms of volume fraction, autotempered martensite may be 90% or more.
  • the average thickness of carbides in prior austenite crystal grains may be 15 nm or less.
  • the steel component having improved delayed fracture resistance according to an embodiment of the present invention may have a tensile strength of 1200 MPa or more.
  • the finish rolling may be performed at 880 to 980 ° C, and the winding may be performed at 830 to 930 ° C.
  • the spheroidizing heat treatment may be performed at a maximum temperature in the range of 745 to 765 °C.
  • the austenizing may be performed at 870 to 940 ° C.
  • the quenching may be performed with a refrigerant at 10 to 80 °C.
  • the wire rod for cold forging according to an embodiment of the present invention, in weight%, C: 0.18% or more and 0.25% or less, Si: 0.30% or more and 0.50% or less, Mn: 0.35% or more and 0.50% or less, P: 0 % more than 0.03%, S: more than 0% and less than 0.03%, Cr: more than 0.45% and less than 0.60%, Ti: more than 0.015% and less than 0.03%, B: more than 0.001% and less than 0.004%, the remainder including Fe and unavoidable impurities, , and may have a diameter of 5.5 to 20 mm.
  • the microstructure by controlling the microstructure through the alloy composition and manufacturing method, it is possible to provide a wire rod for cold forging, steel parts and their manufacturing method with improved delayed fracture resistance while cost reduction is possible.
  • Steel parts with improved delayed fracture resistance according to an embodiment of the present invention, in weight%, C: 0.18% or more and 0.25% or less, Si: 0.30% or more and 0.50% or less, Mn: 0.35% or more and 0.50% or less, P : More than 0% and 0.03% or less, S: More than 0% and 0.03% or less, Cr: 0.45% or more and 0.60% or less, Ti: 0.015% or more and 0.03% or less, B: 0.001% or more and 0.004% or less, the remaining Fe and unavoidable impurities Including, in terms of volume fraction, autotempered martensite is 90% or more.
  • Steel parts with improved delayed fracture resistance according to an embodiment of the present invention, in weight%, C: 0.18% or more and 0.25% or less, Si: 0.30% or more and 0.50% or less, Mn: 0.35% or more and 0.50% or less, P : More than 0% and 0.03% or less, S: More than 0% and 0.03% or less, Cr: 0.45% or more and 0.60% or less, Ti: 0.015% or more and 0.03% or less, B: 0.001% or more and 0.004% or less, the remaining Fe and unavoidable impurities can include
  • the content of C (carbon) may be 0.18% or more and 0.25% or less.
  • C is an element added to ensure product strength. Considering this, C may be added in an amount of 0.18% or more. However, if the content of C is excessive, it may cause delayed fracture due to an increase in strength. Considering this, the upper limit of the C content may be limited to 0.25%.
  • the content of Si may be 0.30% or more and 0.50% or less.
  • Si can be added for deoxidation of steel.
  • Si is an element effective in securing strength through solid solution strengthening.
  • Si may be added in an amount of 0.30% or more.
  • the upper limit of the Si content may be limited to 0.50%.
  • the content of Si may be 0.31% or more and 0.48% or less.
  • the content of Mn may be 0.35% or more and 0.50% or less.
  • Mn is a very effective element for improving hardenability and forming a substitutional solid solution in the matrix structure to produce a solid solution strengthening effect.
  • Mn may be added in an amount of 0.35% or more.
  • the upper limit of the Mn content may be limited to 0.50%.
  • the content of Mn may be 0.36% or more and 0.49% or less.
  • the content of P may be greater than 0% and 0.03% or less.
  • the P is segregated at the grain boundary and acts as a cause of lowering toughness and reducing delayed fracture resistance. Therefore, in the present invention, impurities can be managed.
  • the upper limit of the P content may be limited to 0.03%, and the closer to 0% is preferable.
  • the content of S may be greater than 0% and 0.03% or less.
  • S like P
  • S is segregated at grain boundaries to reduce toughness and acts as a cause of inhibiting hot rolling by forming low melting point emulsifiers. Therefore, in the present invention, impurities can be managed.
  • the upper limit of the S content may be limited to 0.03%, and the closer to 0% is preferable.
  • the content of Cr may be 0.45% or more and 0.60% or less.
  • Cr is a very effective element for enhancing hardenability and forming a substitutional solid solution in the base structure to produce a solid solution strengthening effect.
  • Cr may be added in an amount of 0.45% or more.
  • the upper limit of the Cr content may be limited to 0.60%.
  • the Cr content may be 0.46% or more and 0.59% or less.
  • the content of Ti may be 0.015% or more and 0.03% or less.
  • Ti is an element effective in preventing boron (B) from combining with N by forming titanium nitride by combining with N (nitrogen) introduced into steel. Considering this, Ti may be added in an amount of 0.015% or more. However, if the content of Ti is excessive, coarse carbonitrides may be formed and delayed fracture resistance may be inferior. Considering this, the upper limit of the Ti content may be limited to 0.03%. Preferably, the content of Ti may be 0.023% or more and 0.026% or less.
  • the content of B may be 0.001% or more and 0.004% or less.
  • B is an element effective in improving hardenability. Considering this, B may be added in an amount of 0.001% or more. However, when the content of B is excessive, by forming Fe 23 (CB) 6 carbides at grain boundaries, brittleness of austenite grain boundaries may be caused, and delayed fracture resistance may be inferior. Considering this, the upper limit of the B content may be limited to 0.004%. Preferably, the content of B may be 0.0018% or more and 0.0023% or less.
  • the remaining component of the present invention is iron (Fe).
  • Fe iron
  • the volume fraction of auto-tempered martensite may be 90% or more.
  • the auto-tempered martensite When the auto-tempered martensite is less than 90%, it is difficult to secure sufficient toughness and delayed fracture resistance may be inferior. Therefore, in the present invention, it is possible to control the auto-tempered martensite to be 90% or more through the alloy components and the manufacturing process.
  • the auto-tempered martensitic structure is characterized in that it can be automatically tempered during quenching without an additional tempering heat treatment process.
  • the steel parts with improved resistance to delayed fracture according to an embodiment of the present invention can be automatically tempered during quenching without an additional tempering heat treatment process, so that the average thickness of carbides in old austenite grains is 15 nm or less You can control it.
  • the surface direction of the carbide precipitated during auto-tempering in a plate-type is not effective as a hydrogen trap due to its high coherency, and the side part of the plate-type has low coherency, making it a non-diffusible hydrogen trap. By acting, it is known to improve hydrogen retardation resistance.
  • the delayed fracture resistance is improved by controlling the average thickness of carbides in the prior austenite crystal grains to be 15 nm or less.
  • the steel component having improved delayed fracture resistance according to an embodiment of the present invention may have a tensile strength of 1200 MPa or more by controlling the alloy composition and manufacturing method.
  • a series of finish rolling, winding, spheroidization heat treatment, forming, austenizing and quenching may be performed.
  • the steel material may be finish-rolled at 880 to 980 ° C to prepare a wire rod, and the wire rod may be wound at 830 to 930 ° C.
  • the finish rolling temperature or coiling temperature When the finish rolling temperature or coiling temperature is low, since the surface layer is a quasi-two-phase inverse, a surface ferrite decarburized layer may be formed by phase transformation. Therefore, when the finish rolling temperature or coiling temperature is low, a ferrite decarburized layer is formed on the surface even during heat treatment of the steel part, and delayed fracture resistance may be inferior. Considering this, the finish rolling temperature may be 880°C or higher, or the coiling temperature may be 830°C or higher.
  • the finish rolling temperature or coiling temperature when the finish rolling temperature or coiling temperature is high, decarburization is accelerated by diffusion and a ferrite decarburized layer is formed on the surface, so that delayed fracture resistance may be inferior.
  • the finish rolling temperature may be 980°C or less, or the coiling temperature may be 930°C or less.
  • spheroidizing heat treatment may be performed at a maximum temperature in the range of 745 to 765 ° C.
  • the maximum temperature of the spheroidization heat treatment may be performed at 745 to 765 ° C.
  • the wire rod subjected to the spheroidizing heat treatment may be molded to suit the purpose and prepared as a steel part, and then austenizing may be performed at 870 to 940 ° C.
  • the austenizing temperature When the austenizing temperature is low, since reverse austenite transformation does not sufficiently occur, the martensitic structure after quenching may be non-uniform, resulting in inferior toughness. Considering this, the austenizing temperature may be 870°C or higher. However, when the austenizing temperature is high, the grain size of austenite becomes coarse, and delayed fracture resistance may deteriorate. Considering this, the upper limit of the austenizing temperature may be limited to 940°C.
  • the austenized steel parts may be quenched with a refrigerant at 10 to 80°C.
  • the temperature of the quenching refrigerant When the temperature of the quenching refrigerant is low, fine quenching cracks may occur due to thermal deformation of steel parts, causing delayed fracture. Considering this, the temperature of the quenching refrigerant may be 10 °C or higher. However, when the temperature of the quenching refrigerant is high, the auto-tempering effect increases, making it difficult to achieve the desired strength. Considering this, the upper limit of the temperature of the quenching refrigerant may be limited to 80°C.
  • the final microstructure of the steel part can realize an auto-tempered martensite structure of 90% or more without a tempering process, and a structure in which carbides with an average thickness of 15 nm or less in old austenite crystal grains are precipitated can be implemented. . Accordingly, delayed fracture resistance may be improved by controlling the microstructure.
  • C 0.18% or more and 0.25% or less
  • Si 0.30% or more and 0.50% or less
  • Mn 0.35% or more and 0.50% or less
  • P more than 0% 0.03% or less
  • S more than 0% and 0.03% or less
  • Cr 0.45% or more and 0.60% or less
  • Ti 0.005% or more and 0.03% or less
  • B 0.001% or more and 0.004% or less, including the remainder Fe and unavoidable impurities, diameter It may be 5.5 to 20 mm.
  • the wire rod for cold forging according to an example of the present invention may be manufactured with a diameter of 5.5 to 20 mm. However, it is not limited thereto, and may be manufactured in various diameters depending on the purpose.
  • steel materials were prepared, finished rolled at 910 ° C to prepare a wire rod having a diameter of 15 mm, and then wound into a coil at 880 ° C.
  • the wound wire rod was subjected to spheroidization heat treatment at a maximum temperature of 755 ° C, molded into a screw M12 standard bolt, austenized at 890 ° C, and quenched in a refrigerant at 60 ° C.
  • the spheroidization heat treatment temperature means the highest heating temperature.
  • Example 1 0.18 0.40 0.46 0.011 0.005 0.53 0.024 0.0018
  • Example 2 0.25 0.41 0.45 0.010 0.005 0.54 0.024 0.0021
  • Example 3 0.20 0.40 0.36 0.009 0.005 0.52 0.026 0.0023
  • Example 4 0.21 0.44 0.49 0.011 0.005 0.52 0.023 0.0021
  • Example 5 0.19 0.41 0.44 0.011 0.005 0.46 0.024 0.0020
  • Example 6 0.22 0.41 0.43 0.010 0.005 0.59 0.025 0.0021
  • Example 7 0.23 0.31 0.42 0.009 0.005 0.52 0.024 0.0022
  • Example 8 0.21 0.48 0.44 0.010 0.005 0.53 0.024 0.0018 Comparative Example 1 0.17 0.41 0.46 0.011 0.005 0.52 0.024 0.0021 Comparative Example 2 0.26 0.42 0.47 0.010 0.005 0.52 0.023 0.0023 Comparative Example 3 0.18 0.25 0.45 0.011 0.005
  • Table 2 below shows the presence or absence of cracks according to the tensile strength, carbide thickness, and delayed fracture performance evaluation of the manufactured bolts.
  • the tensile strength was measured using a Zwick/Roell ZWICK Z250 tensile tester.
  • the tensile strength measurement test was performed using a tensile specimen having a diameter of 10 mm and a gauge part diameter of 6.25 mm.
  • Carbide thickness measurements were made with a FEI Tecnai OSIRIS transmission electron microscope (TEM). At this time, the carbide thickness was measured by randomly measuring 5 places on the replica specimen and expressed as an average thickness, and the short axis of the carbide formed in a plate-type was defined as the thickness and measured.
  • TEM transmission electron microscope
  • the test method for evaluating the delayed failure performance is to fasten the bolt to the structure with the fastening force of the yield strength, and then observe the presence or absence of cracks in the screw thread, which is the stress concentration part, before / after immersing the bolt in 5% hydrochloric acid + 95% distilled water solution for 10 minutes.
  • the delayed failure simulation method was used.
  • Examples 1 to 8 satisfied the alloy composition, component range and manufacturing process presented in the present invention. Therefore, Examples 1 to 8 satisfied tensile strength of 1200 MPa or more, carbide thickness of 15 nm or less, and no cracks occurred as a result of delayed fracture performance evaluation. However, Comparative Example 1 had a low C content, so the tensile strength 1200MPa or more was not satisfied.
  • Comparative Example 2 the thickness of the carbide exceeded 15 nm due to the high C content, and cracks occurred as a result of the delayed fracture performance evaluation.
  • Comparative Example 3 did not satisfy the tensile strength of 1200 MPa or more due to the low Si content.
  • Comparative Example 6 had a high Cr content, and sharp corrosion pits were formed when corroded by hydrochloric acid, resulting in cracks as a result of delayed fracture performance evaluation.
  • Comparative Example 7 the finish rolling temperature and coiling temperature were high, and the grain size of prior austenite increased, resulting in cracks as a result of the delayed fracture performance evaluation. Due to this formation, cracks occurred as a result of delayed fracture performance evaluation.
  • Comparative Examples 11 and 12 since the maximum temperature of the spheroidization heat treatment was low or high, respectively, the spheroidization heat treatment was not sufficiently performed, resulting in poor formability. Therefore, in Comparative Examples 11 and 12, cracks were formed during thread forming, and as a result of the delayed fracture performance evaluation, cracks occurred.
  • Comparative Examples 13 to 16 used steel materials having the same alloy components and composition ranges as Example 5, and compared to Example 5, the auto martensite fraction and carbide thickness did not satisfy the ranges of the present application, resulting in delayed fracture performance evaluation. It can be seen that cracks occur.
  • the present invention by controlling the microstructure through the alloy composition and manufacturing method, it is possible to provide a wire rod and steel parts for cold forging with improved resistance to delayed fracture while reducing costs, and thus industrial applicability is recognized. .

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

Disclosed are: a cold forging wire rod and a steel part in which the microstructure is controlled through the alloy composition and manufacturing method, thus enabling cost reduction and enhancing delayed fracture resistance; and a method for manufacturing same. The steel part having improved delayed fracture resistance according to an embodiment of the present invention contains, in weight percent, 0.18-0.25% of C, 0.30-0.50% of Si, 0.35-0.50% of Mn, more than 0% and no more than 0.03% of P, more than 0% and no more than 0.03% of S, 0.45-0.60% of Cr, 0.015-0.03% of Ti, and 0.001-0.004% of B, with the remainder comprising Fe and inevitable impurities, and may include at least 90% by volume of auto-tempered martensite.

Description

내지연파괴 저항성이 향상된 냉간단조용 선재, 강부품 및 이들의 제조방법Wire rods and steel parts for cold forging with improved resistance to delayed fracture and their manufacturing method
본 발명은 내지연파괴 저항성이 향상된 냉간단조용 선재, 강부품 및 이들의 제조방법에 관한 것으로, 보다 상세하게는, 미세조직을 제어함으로써 내지연파괴 저항성을 향상시킨 냉간단조용 선재, 강부품 및 이들의 제조방법에 관한 것이다.The present invention relates to a wire rod for cold forging with improved delayed fracture resistance, steel parts, and a manufacturing method thereof, and more particularly, to a wire rod for cold forging with improved delayed fracture resistance by controlling the microstructure, steel parts and It is about their manufacturing method.
자동차, 구조물의 체결용 볼트로 사용하는 선재는 자동차의 경량화, 구조물의 소형화 등을 위해서 강재의 고강도화가 요구되고 있다. 강재의 강도 증가를 위해서 금속의 강화기구인 냉간가공, 결정립 미세화, 마르텐사이트 강화, 석출강화 등을 활용하게 된다. 그러나, 상기 강화기구로 활용된 전위, 결정립계, 마르텐사이트 래쓰 경계, 미세 석출물 경계 등은 강재 내 수소의 트랩부로 작용되어 지연파괴를 열위시키는 원인으로 작용한다. 따라서, 인장강도 1GPa 이상의 고강도 볼트에서는 지연파괴가 열위해지는 문제점이 있다.Wire rods used as fastening bolts for automobiles and structures are required to have high strength in order to reduce the weight of automobiles and reduce the size of structures. In order to increase the strength of steel, metal strengthening mechanisms such as cold working, crystal grain refinement, martensite strengthening, and precipitation hardening are utilized. However, dislocations, grain boundaries, martensitic lath boundaries, fine precipitate boundaries, etc. used as the strengthening mechanism act as traps for hydrogen in the steel and act as a cause of inferior delayed fracture. Therefore, in high-strength bolts having a tensile strength of 1 GPa or more, there is a problem in that delayed fracture is inferior.
이러한 문제점을 해결하기 위해서, 종래 템퍼드 마르텐사이트 조직을 갖는 1GPa 이상의 볼트용 강재의 경우에는, Mo를 첨가한 Cr-Mo 합금강을 사용하고 있었다. 그러나, 볼트 제조공정 기술의 발전에 따른 원가절감 니즈에 대응하기 위해서, 보론첨가강으로 1GPa 이상의 고강도 강을 대체하려는 노력이 있었다. 그 결과, 보론첨가강을 활용하여 원가절감을 구현하였고, 그 안전성을 확인한 후, 자동차의 일부 체결용 볼트에도 보론첨가강을 적용 중에 있다.In order to solve this problem, in the case of conventional steel for bolts of 1 GPa or more having a tempered martensitic structure, Cr-Mo alloy steel to which Mo is added has been used. However, in order to respond to the need for cost reduction according to the development of bolt manufacturing process technology, efforts have been made to replace high-strength steel with a strength of 1 GPa or more with boron-added steel. As a result, cost reduction was realized by utilizing boron-added steel, and after confirming its safety, boron-added steel is being applied to some fastening bolts of automobiles.
그러나, 보론첨가강을 1.1GPa 이상으로 사용할 경우에는, 수소지연파괴가 발생하는 문제점이 있었다. (Ref. N.Uno et al., Nippon Steel Technical Report No.97 (2008)) 따라서 1.1GPa 이상의 고강도 강은, Mo를 첨가한 규격강을 적용하거나, Mo, V을 첨가한 철강사 고유개발 강종을 사용하고 있었다. 그러나, 원가경쟁력을 위하여, Mo, V 등의 고가 탄화물 원소를 생략한 고강도강 개발 니즈가 있다.However, when boron-added steel is used at 1.1 GPa or more, there is a problem in that delayed hydrogen fracture occurs. (Ref. N.Uno et al., Nippon Steel Technical Report No.97 (2008)) Therefore, for high-strength steel with a strength of 1.1 GPa or higher, Mo-added standard steel is applied, or steel companies' proprietary steel types with Mo and V added are used. was using However, for cost competitiveness, there is a need to develop high-strength steel omitting expensive carbide elements such as Mo and V.
상술한 문제를 해결하기 위한 본 발명의 목적은, 합금조성과 제조방법을 통해 미세조직을 제어함으로써, 원가절감이 가능하면서도 내지연파괴 저항성이 향상된 냉간단조용 선재, 강부품 및 이들의 제조방법을 제공하는 것이다.An object of the present invention for solving the above problems is to provide a wire rod for cold forging, steel parts, and a manufacturing method thereof with improved delayed fracture resistance while cost reduction is possible by controlling the microstructure through the alloy composition and manufacturing method. is to provide
본 발명의 일 실시예에 따른 내지연파괴 저항성이 향상된 강부품은, 중량%로, C: 0.18% 이상 0.25% 이하, Si: 0.30% 이상 0.50% 이하, Mn: 0.35% 이상 0.50% 이하, P: 0% 초과 0.03% 이하, S: 0% 초과 0.03% 이하, Cr: 0.45% 이상 0.60% 이하, Ti: 0.015% 이상 0.03% 이하, B: 0.001% 이상 0.004% 이하, 나머지 Fe 및 불가피한 불순물을 포함하고, 부피분율로, 오토템퍼드 마르텐사이트가 90% 이상일 수 있다.Steel parts with improved delayed fracture resistance according to an embodiment of the present invention, in weight%, C: 0.18% or more and 0.25% or less, Si: 0.30% or more and 0.50% or less, Mn: 0.35% or more and 0.50% or less, P : More than 0% and 0.03% or less, S: More than 0% and 0.03% or less, Cr: 0.45% or more and 0.60% or less, Ti: 0.015% or more and 0.03% or less, B: 0.001% or more and 0.004% or less, the remaining Fe and unavoidable impurities Including, in terms of volume fraction, autotempered martensite may be 90% or more.
또한, 본 발명의 일 실시예에 따른 내지연파괴 저항성이 향상된 강부품은, 구오스테나이트 결정립 내 탄화물의 평균 두께가 15nm 이하일 수 있다.In addition, in the steel component having improved delayed fracture resistance according to an embodiment of the present invention, the average thickness of carbides in prior austenite crystal grains may be 15 nm or less.
또한, 본 발명의 일 실시예에 따른 내지연파괴 저항성이 향상된 강부품은, 인장강도가 1200MPa 이상일 수 있다.In addition, the steel component having improved delayed fracture resistance according to an embodiment of the present invention may have a tensile strength of 1200 MPa or more.
또한, 본 발명의 일 실시예에 따른 내지연파괴 저항성이 향상된 강부품의 제조방법은, 중량%로, C: 0.18% 이상 0.25% 이하, Si: 0.30% 이상 0.50% 이하, Mn: 0.35% 이상 0.50% 이하, P: 0% 초과 0.03% 이하, S: 0% 초과 0.03% 이하, Cr: 0.45% 이상 0.60% 이하, Ti: 0.015% 이상 0.03% 이하, B: 0.001% 이상 0.004% 이하, 나머지 Fe 및 불가피한 불순물을 포함하는 강재를 마련하는 단계; 상기 강재를 마무리 압연하여 선재를 마련하는 단계; 상기 선재를 권취하는 단계; 상기 권취된 선재를 신선한 다음, 구상화 열처리하는 단계; 상기 구상화 열처리한 선재를 성형하여 부품으로 마련하는 단계; 상기 부품을 오스테나이징 후 퀜칭하는 단계를 포함할 수 있다.In addition, in the method of manufacturing a steel part having improved resistance to delayed fracture according to an embodiment of the present invention, in weight%, C: 0.18% or more and 0.25% or less, Si: 0.30% or more and 0.50% or less, Mn: 0.35% or more 0.50% or less, P: more than 0% and 0.03% or less, S: more than 0% and 0.03% or less, Cr: 0.45% or more and 0.60% or less, Ti: 0.015% or more and 0.03% or less, B: 0.001% or more and 0.004% or less, the rest Preparing a steel material containing Fe and unavoidable impurities; preparing a wire rod by finish rolling the steel; winding the wire rod; After freshening the wound wire, subjecting it to spheroidizing heat treatment; Forming the wire rod subjected to the spheroidization heat treatment to prepare a part; A step of quenching the part after austenizing may be included.
또한, 본 발명의 일 실시예에 따른 내지연파괴 저항성이 향상된 강부품의 제조방법에서, 상기 마무리 압연은 880 내지 980℃에서 수행하고, 상기 권취는 830 내지 930℃에서 수행할 수 있다.In addition, in the method for manufacturing a steel part with improved delayed fracture resistance according to an embodiment of the present invention, the finish rolling may be performed at 880 to 980 ° C, and the winding may be performed at 830 to 930 ° C.
또한, 본 발명의 일 실시예에 따른 내지연파괴 저항성이 향상된 강부품의 제조방법에서, 상기 구상화 열처리는 최대온도가 745 내지 765℃인 범위에서 수행할 수 있다.In addition, in the method for manufacturing a steel part having improved delayed fracture resistance according to an embodiment of the present invention, the spheroidizing heat treatment may be performed at a maximum temperature in the range of 745 to 765 °C.
또한, 본 발명의 일 실시예에 따른 내지연파괴 저항성이 향상된 강부품의 제조방법에서, 상기 오스테나이징은 870 내지 940℃에서 수행할 수 있다.In addition, in the method for manufacturing a steel component with improved delayed fracture resistance according to an embodiment of the present invention, the austenizing may be performed at 870 to 940 ° C.
또한, 본 발명의 일 실시예에 따른 내지연파괴 저항성이 향상된 강부품의 제조방법에서, 상기 퀜칭은 10 내지 80℃의 냉매로 수행할 수 있다.In addition, in the method for manufacturing a steel part having improved resistance to delayed fracture according to an embodiment of the present invention, the quenching may be performed with a refrigerant at 10 to 80 °C.
또한, 본 발명의 일 실시예에 따른 냉간단조용 선재는, 중량%로, C: 0.18% 이상 0.25% 이하, Si: 0.30% 이상 0.50% 이하, Mn: 0.35% 이상 0.50% 이하, P: 0% 초과 0.03% 이하, S: 0% 초과 0.03% 이하, Cr: 0.45% 이상 0.60% 이하, Ti: 0.015% 이상 0.03% 이하, B: 0.001% 이상 0.004% 이하, 나머지 Fe 및 불가피한 불순물을 포함하고, 직경이 5.5 내지 20mm일 수 있다.In addition, the wire rod for cold forging according to an embodiment of the present invention, in weight%, C: 0.18% or more and 0.25% or less, Si: 0.30% or more and 0.50% or less, Mn: 0.35% or more and 0.50% or less, P: 0 % more than 0.03%, S: more than 0% and less than 0.03%, Cr: more than 0.45% and less than 0.60%, Ti: more than 0.015% and less than 0.03%, B: more than 0.001% and less than 0.004%, the remainder including Fe and unavoidable impurities, , and may have a diameter of 5.5 to 20 mm.
본 발명의 일 실시예에 따르면, 합금조성과 제조방법을 통해 미세조직을 제어함으로써, 원가절감이 가능하면서도 내지연파괴 저항성이 향상된 냉간단조용 선재, 강부품 및 이들의 제조방법을 제공할 수 있다.According to one embodiment of the present invention, by controlling the microstructure through the alloy composition and manufacturing method, it is possible to provide a wire rod for cold forging, steel parts and their manufacturing method with improved delayed fracture resistance while cost reduction is possible. .
본 발명의 일 실시예에 따른 내지연파괴 저항성이 향상된 강부품은, 중량%로, C: 0.18% 이상 0.25% 이하, Si: 0.30% 이상 0.50% 이하, Mn: 0.35% 이상 0.50% 이하, P: 0% 초과 0.03% 이하, S: 0% 초과 0.03% 이하, Cr: 0.45% 이상 0.60% 이하, Ti: 0.015% 이상 0.03% 이하, B: 0.001% 이상 0.004% 이하, 나머지 Fe 및 불가피한 불순물을 포함하고, 부피분율로, 오토템퍼드 마르텐사이트가 90% 이상이다.Steel parts with improved delayed fracture resistance according to an embodiment of the present invention, in weight%, C: 0.18% or more and 0.25% or less, Si: 0.30% or more and 0.50% or less, Mn: 0.35% or more and 0.50% or less, P : More than 0% and 0.03% or less, S: More than 0% and 0.03% or less, Cr: 0.45% or more and 0.60% or less, Ti: 0.015% or more and 0.03% or less, B: 0.001% or more and 0.004% or less, the remaining Fe and unavoidable impurities Including, in terms of volume fraction, autotempered martensite is 90% or more.
이하의 실시 예는 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자에게 본 발명의 사상을 충분히 전달하기 위해 제시하는 것이다. 본 발명은 여기서 제시한 실시 예만으로 한정되지 않고 다른 형태로 구체화될 수도 있다. 도면은 본 발명을 명확히 하기 위해 설명과 관계 없는 부분의 도시를 생략하고, 이해를 돕기 위해 구성요소의 크기를 다소 과장하여 표현할 수 있다.The following examples are presented to sufficiently convey the spirit of the present invention to those skilled in the art. The present invention may be embodied in other forms without being limited to only the embodiments presented herein. In the drawings, in order to clarify the present invention, illustration of parts irrelevant to the description may be omitted, and the size of components may be slightly exaggerated to aid understanding.
명세서 전체에서, 어떤 부분이 어떤 구성요소를 "포함"한다고 할 때, 이는 특별히 반대되는 기재가 없는 한 다른 구성요소를 제외하는 것이 아니라 다른 구성요소를 더 포함할 수 있는 것을 의미한다.Throughout the specification, when a certain component is said to "include", it means that it may further include other components without excluding other components unless otherwise stated.
단수의 표현은 문맥상 명백하게 예외가 있지 않는 한, 복수의 표현을 포함한다.Expressions in the singular number include plural expressions unless the context clearly dictates otherwise.
이하, 본 발명의 실시예에서의 합금성분 함량의 수치 한정 이유에 대하여 설명한다. 이하에서는 특별한 언급이 없는 한 단위는 중량%이다.Hereinafter, the reason for limiting the numerical value of the alloy component content in the embodiments of the present invention will be described. Hereinafter, unless otherwise specified, units are % by weight.
본 발명의 일 실시예에 따른 내지연파괴 저항성이 향상된 강부품은, 중량%로, C: 0.18% 이상 0.25% 이하, Si: 0.30% 이상 0.50% 이하, Mn: 0.35% 이상 0.50% 이하, P: 0% 초과 0.03% 이하, S: 0% 초과 0.03% 이하, Cr: 0.45% 이상 0.60% 이하, Ti: 0.015% 이상 0.03% 이하, B: 0.001% 이상 0.004% 이하, 나머지 Fe 및 불가피한 불순물을 포함할 수 있다.Steel parts with improved delayed fracture resistance according to an embodiment of the present invention, in weight%, C: 0.18% or more and 0.25% or less, Si: 0.30% or more and 0.50% or less, Mn: 0.35% or more and 0.50% or less, P : More than 0% and 0.03% or less, S: More than 0% and 0.03% or less, Cr: 0.45% or more and 0.60% or less, Ti: 0.015% or more and 0.03% or less, B: 0.001% or more and 0.004% or less, the remaining Fe and unavoidable impurities can include
C(탄소)의 함량은 0.18% 이상 0.25% 이하일 수 있다.The content of C (carbon) may be 0.18% or more and 0.25% or less.
C는 제품의 강도를 확보하기 위해 첨가되는 원소이다. 이를 고려하여, C는 0.18% 이상 첨가될 수 있다. 그러나, C의 함량이 과다한 경우에는, 강도 상승에 의한 지연파괴를 유발할 수 있다. 이를 고려하여, C 함량의 상한은 0.25%로 제한될 수 있다.C is an element added to ensure product strength. Considering this, C may be added in an amount of 0.18% or more. However, if the content of C is excessive, it may cause delayed fracture due to an increase in strength. Considering this, the upper limit of the C content may be limited to 0.25%.
Si(실리콘)의 함량은 0.30% 이상 0.50% 이하일 수 있다.The content of Si (silicon) may be 0.30% or more and 0.50% or less.
Si은 강의 탈산을 위해 첨가될 수 있다. 또한, Si은 고용강화를 통한 강도 확보에 효과적인 원소이다. 이를 고려하여, Si은 0.30% 이상 첨가될 수 있다. 그러나, Si의 함량이 과다한 경우에는, 충격특성 및 성형성이 열위해질 수 있다. 이를 고려하여, Si 함량의 상한은 0.50%로 제한될 수 있다. 바람직하게는, Si의 함량은 0.31% 이상 0.48% 이하일 수 있다.Si can be added for deoxidation of steel. In addition, Si is an element effective in securing strength through solid solution strengthening. Considering this, Si may be added in an amount of 0.30% or more. However, when the content of Si is excessive, impact properties and formability may be inferior. Considering this, the upper limit of the Si content may be limited to 0.50%. Preferably, the content of Si may be 0.31% or more and 0.48% or less.
Mn(망간)의 함량은 0.35% 이상 0.50% 이하일 수 있다.The content of Mn (manganese) may be 0.35% or more and 0.50% or less.
Mn은 경화능을 향상시키고, 기지조직 내에 치환형 고용체를 형성하여 고용강화 효과를 내는데 매우 효과적인 원소이다. 또한, Mn의 함량이 낮은 경우에는, 강 내 불순물로 유입되는 S(황)과 충분히 결합하지 못하여 연주크랙 등을 유발할 수 있다. 이를 고려하여, Mn은 0.35% 이상 첨가될 수 있다. 그러나, Mn의 함량이 과도한 경우에는, 조대한 MnS를 형성시킴으로써 지연파괴 저항성이 열위해질 수 있다. 이를 고려하여, Mn 함량의 상한은 0.50%로 제한될 수 있다. 바람직하게는, Mn의 함량은 0.36% 이상 0.49% 이하일 수 있다.Mn is a very effective element for improving hardenability and forming a substitutional solid solution in the matrix structure to produce a solid solution strengthening effect. In addition, when the content of Mn is low, it is not sufficiently combined with S (sulfur) introduced as impurities in the steel, which may cause casting cracks and the like. Considering this, Mn may be added in an amount of 0.35% or more. However, when the Mn content is excessive, delayed fracture resistance may be deteriorated by forming coarse MnS. Considering this, the upper limit of the Mn content may be limited to 0.50%. Preferably, the content of Mn may be 0.36% or more and 0.49% or less.
P(인)의 함량은 0% 초과 0.03% 이하일 수 있다.The content of P (phosphorus) may be greater than 0% and 0.03% or less.
P은 결정립계에 편석되어 인성을 저하시키고, 지연파괴 저항성을 감소시키는 원인으로 작용한다. 따라서, 본 발명에서는 불순물로 관리할 수 있다. 이를 고려하여, P 함량의 상한은 0.03%로 제한될 수 있고, 0%에 가까울수록 바람직하다.P is segregated at the grain boundary and acts as a cause of lowering toughness and reducing delayed fracture resistance. Therefore, in the present invention, impurities can be managed. In consideration of this, the upper limit of the P content may be limited to 0.03%, and the closer to 0% is preferable.
S(황)의 함량은 0% 초과 0.03% 이하일 수 있다.The content of S (sulfur) may be greater than 0% and 0.03% or less.
S은 P과 마찬가지로, 결정립계에 편석되어 인성을 저하시키고, 저융점 유화물을 형성시켜 열간 압연을 저해하는 원인으로 작용한다. 따라서, 본 발명에서는 불순물로 관리할 수 있다. 이를 고려하여, S 함량의 상한은 0.03%로 제한될 수 있고, 0%에 가까울수록 바람직하다.S, like P, is segregated at grain boundaries to reduce toughness and acts as a cause of inhibiting hot rolling by forming low melting point emulsifiers. Therefore, in the present invention, impurities can be managed. Considering this, the upper limit of the S content may be limited to 0.03%, and the closer to 0% is preferable.
Cr(크롬)의 함량은 0.45% 이상 0.60% 이하일 수 있다.The content of Cr (chromium) may be 0.45% or more and 0.60% or less.
Cr은 경화능을 향상시키고, 기지조직 내에 치환형 고용체를 형성하여 고용강화 효과를 내는데 매우 효과적인 원소이다. 이를 고려하여, Cr은 0.45% 이상 첨가될 수 있다. 그러나, Cr의 함량이 과도한 경우에는, 표면의 크롬산화층 형성에 의해 부식 피트의 c/a ratio 가 커지게 되므로, 노치효과에 의해 지연파괴 저항성이 열위해질 수 있다. 이를 고려하여, Cr 함량의 상한은 0.60%로 제한될 수 있다. 바람직하게는, Cr의 함량은 0.46% 이상 0.59% 이하일 수 있다.Cr is a very effective element for enhancing hardenability and forming a substitutional solid solution in the base structure to produce a solid solution strengthening effect. Considering this, Cr may be added in an amount of 0.45% or more. However, when the Cr content is excessive, the c/a ratio of the corrosion pit increases due to the formation of a chromium oxide layer on the surface, so that delayed fracture resistance may be inferior due to the notch effect. Considering this, the upper limit of the Cr content may be limited to 0.60%. Preferably, the Cr content may be 0.46% or more and 0.59% or less.
Ti(티타늄)의 함량은 0.015% 이상 0.03% 이하일 수 있다.The content of Ti (titanium) may be 0.015% or more and 0.03% or less.
Ti은 강 내 유입되는 N(질소)와 결합하여 티타늄 질화물을 형성함으로써, B(보론)이 N와 결합하는 것을 방지하는데 효과적인 원소이다. 이를 고려하여, Ti은 0.015% 이상 첨가될 수 있다. 그러나, Ti의 함량이 과도한 경우에는, 조대한 탄질화물이 형성되어 지연파괴 저항성이 열위해질 수 있다. 이를 고려하여, Ti 함량의 상한은 0.03%로 제한될 수 있다. 바람직하게는, Ti의 함량은 0.023% 이상 0.026% 이하일 수 있다.Ti is an element effective in preventing boron (B) from combining with N by forming titanium nitride by combining with N (nitrogen) introduced into steel. Considering this, Ti may be added in an amount of 0.015% or more. However, if the content of Ti is excessive, coarse carbonitrides may be formed and delayed fracture resistance may be inferior. Considering this, the upper limit of the Ti content may be limited to 0.03%. Preferably, the content of Ti may be 0.023% or more and 0.026% or less.
B(보론)의 함량은 0.001% 이상 0.004% 이하일 수 있다.The content of B (boron) may be 0.001% or more and 0.004% or less.
B은 경화능을 향상시키는데 효과적인 원소이다. 이를 고려하여, B은 0.001% 이상 첨가될 수 있다. 그러나, B의 함량이 과도한 경우에는, 결정립계에 Fe23(CB)6 탄화물을 형성시킴으로써 오스테나이트 결정립계의 취성을 유발하여 지연파괴 저항성이 열위해질 수 있다. 이를 고려하여, B 함량의 상한은 0.004%로 제한될 수 있다. 바람직하게는, B의 함량은 0.0018% 이상 0.0023% 이하일 수 있다.B is an element effective in improving hardenability. Considering this, B may be added in an amount of 0.001% or more. However, when the content of B is excessive, by forming Fe 23 (CB) 6 carbides at grain boundaries, brittleness of austenite grain boundaries may be caused, and delayed fracture resistance may be inferior. Considering this, the upper limit of the B content may be limited to 0.004%. Preferably, the content of B may be 0.0018% or more and 0.0023% or less.
본 발명의 나머지 성분은 철(Fe)이다. 다만, 통상의 제조과정에서는 원료 또는 주위 환경으로부터 의도되지 않는 불순물들이 불가피하게 혼입될 수 있으므로, 이를 배제할 수는 없다. 이들 불순물들은 통상의 제조과정의 기술자라면 누구라도 알 수 있는 것이기 때문에 그 모든 내용을 특별히 본 명세서에서 언급하지는 않는다.The remaining component of the present invention is iron (Fe). However, since unintended impurities from raw materials or the surrounding environment may inevitably be mixed in a normal manufacturing process, this cannot be excluded. Since these impurities are known to anyone skilled in the ordinary manufacturing process, not all of them are specifically mentioned in this specification.
본 발명의 일 실시예에 따른 내지연파괴 저항성이 향상된 강부품은, 부피분율로, 오토템퍼드 마르텐사이트가 90% 이상일 수 있다.In the steel part having improved resistance to delayed fracture according to an embodiment of the present invention, the volume fraction of auto-tempered martensite may be 90% or more.
오토템퍼드 마르텐사이트가 90% 미만일 경우에는, 충분한 인성을 확보하기 어렵고, 지연파괴 저항성이 열위해질 수 있다. 따라서, 본 발명에서는 합금성분 및 제조공정을 통해 오토템퍼드 마르텐사이트가 90% 이상이 될 수 있도록 제어할 수 있다. 특히, 상기 오토템퍼드 마르텐사이트 조직은, 추가 템퍼링 열처리공정 없이, 퀜칭 시 자동으로 템퍼링 될 수 있도록 하는 점에 일 특징이 있다.When the auto-tempered martensite is less than 90%, it is difficult to secure sufficient toughness and delayed fracture resistance may be inferior. Therefore, in the present invention, it is possible to control the auto-tempered martensite to be 90% or more through the alloy components and the manufacturing process. In particular, the auto-tempered martensitic structure is characterized in that it can be automatically tempered during quenching without an additional tempering heat treatment process.
또한, 본 발명의 일 실시예에 따른 내지연파괴 저항성이 향상된 강부품은, 추가 템퍼링 열처리공정 없이, 퀜칭 시 자동으로 템퍼링 될 수 있도록 하여, 구오스테나이트 결정립 내 탄화물의 평균 두께가 15nm 이하가 되도록 제어할 수 있다.In addition, the steel parts with improved resistance to delayed fracture according to an embodiment of the present invention can be automatically tempered during quenching without an additional tempering heat treatment process, so that the average thickness of carbides in old austenite grains is 15 nm or less You can control it.
판형(plate-type)으로 오토템퍼링 시 석출되는 탄화물의 면방향은 정합(coherency)이 높아 수소트랩부로 효과적이지 못하고, 판형(plate-type)의 측면부는 정합(coherency)이 낮아져 비확산성 수소트랩부로 작용함으로써, 수소지연파괴 저항성을 개선하는 것으로 알려져 있다.The surface direction of the carbide precipitated during auto-tempering in a plate-type is not effective as a hydrogen trap due to its high coherency, and the side part of the plate-type has low coherency, making it a non-diffusible hydrogen trap. By acting, it is known to improve hydrogen retardation resistance.
따라서, 구오스테나이트 결정립 내 탄화물의 평균 두께가 얇은 경우에는, 탄화물 계면의 정합(coherency)이 높아지게 되어, 수소지연파괴 저항성을 향상시키기 어려울 수 있다. 반면, 구오스테나이트 결정립 내 탄화물의 평균 두께가 두꺼운 경우에는, 탄화물의 개수가 줄어들어 지연파괴 저항성을 개선하기 어려울 수 있다. 따라서, 본 발명에서는 구오스테나이트 결정립 내 탄화물의 평균 두께가 15nm 이하가 되도록 제어하여 지연파괴 저항성을 향상시키고자 한다.Therefore, when the average thickness of the carbide in the prior austenite crystal grain is small, the coherency of the carbide interface is increased, and it may be difficult to improve the hydrogen delayed fracture resistance. On the other hand, when the average thickness of carbides in old austenite crystal grains is large, the number of carbides decreases, making it difficult to improve delayed fracture resistance. Therefore, in the present invention, the delayed fracture resistance is improved by controlling the average thickness of carbides in the prior austenite crystal grains to be 15 nm or less.
또한, 본 발명의 일 실시예에 따른 내지연파괴 저항성이 향상된 강부품은, 합금조성 및 제조방법을 제어함으로써, 인장강도가 1200MPa 이상일 수 있다.In addition, the steel component having improved delayed fracture resistance according to an embodiment of the present invention may have a tensile strength of 1200 MPa or more by controlling the alloy composition and manufacturing method.
다음으로, 본 발명의 다른 일 측면에 따른 내지연파괴 저항성이 향상된 강부품의 제조방법에 대하여 설명한다.Next, a method for manufacturing a steel part having improved resistance to delayed fracture according to another aspect of the present invention will be described.
본 발명의 일 실시예에 따른 내지연파괴 저항성이 향상된 강부품의 제조방법은, 중량%로, C: 0.18% 이상 0.25% 이하, Si: 0.30% 이상 0.50% 이하, Mn: 0.35% 이상 0.50% 이하, P: 0% 초과0.03% 이하, S: 0% 초과 0.03% 이하, Cr: 0.45% 이상 0.60% 이하, Ti: 0.005% 이상 0.03% 이하, B: 0.001% 이상 0.004% 이하, 나머지 Fe 및 불가피한 불순물을 포함하는 강재를 마련하는 단계; 상기 강재를 마무리 압연하여 선재를 마련하는 단계; 상기 선재를 권취하는 단계; 상기 권취된 선재를 신선한 다음, 구상화 열처리하는 단계; 상기 구상화 열처리한 선재를 성형하여 부품으로 마련하는 단계; 상기 부품을 오스테나이징 후 퀜칭하는 단계를 포함할 수 있다.In the method for manufacturing a steel part with improved delayed fracture resistance according to an embodiment of the present invention, in weight%, C: 0.18% or more and 0.25% or less, Si: 0.30% or more and 0.50% or less, Mn: 0.35% or more 0.50% Below, P: more than 0% and 0.03% or less, S: more than 0% and 0.03% or less, Cr: 0.45% or more and 0.60% or less, Ti: 0.005% or more and 0.03% or less, B: 0.001% or more and 0.004% or less, the remainder Fe and Preparing a steel material containing unavoidable impurities; preparing a wire rod by finish rolling the steel; winding the wire rod; After freshening the wound wire, subjecting it to spheroidizing heat treatment; Forming the wire rod subjected to the spheroidization heat treatment to prepare a part; A step of quenching the part after austenizing may be included.
상기 각 합금조성의 성분범위의 수치 한정 이유는 상술한 바와 같으며, 이하 각 제조단계에 대하여 보다 상세히 설명한다.The reasons for limiting the range of components of each alloy composition are as described above, and each manufacturing step will be described in detail below.
먼저, 상기 합금조성을 만족하는 강재를 마련한 후, 일련의 마무리 압연, 권취, 구상화 열처리, 성형, 오스테나이징 및 퀜칭하는 공정을 거칠 수 있다.First, after preparing a steel material satisfying the alloy composition, a series of finish rolling, winding, spheroidization heat treatment, forming, austenizing and quenching may be performed.
먼저, 상기 강재를 880 내지 980℃에서 마무리 압연하여 선재를 마련하고, 상기 선재를 830 내지 930℃에서 권취할 수 있다.First, the steel material may be finish-rolled at 880 to 980 ° C to prepare a wire rod, and the wire rod may be wound at 830 to 930 ° C.
마무리 압연 온도 또는 권취 온도가 낮을 경우에는, 표면층이 준2상 역이므로, 상변태에 의한 표면 페라이트 탈탄층이 형성될 수 있다. 따라서, 마무리 압연 온도 또는 권취 온도가 낮을 경우에는, 강부품의 열처리 시에도 표면의 페라이트 탈탄층이 형성되어, 지연파괴 저항성이 열위해질 수 있다. 이를 고려하여, 마무리 압연 온도가 880℃ 이상, 또는 권취 온도가 830℃ 이상일 수 있다.When the finish rolling temperature or coiling temperature is low, since the surface layer is a quasi-two-phase inverse, a surface ferrite decarburized layer may be formed by phase transformation. Therefore, when the finish rolling temperature or coiling temperature is low, a ferrite decarburized layer is formed on the surface even during heat treatment of the steel part, and delayed fracture resistance may be inferior. Considering this, the finish rolling temperature may be 880°C or higher, or the coiling temperature may be 830°C or higher.
반면, 마무리 압연온도 또는 권취 온도가 높을 경우에는, 확산에 의해 탈탄이 가속화되어 표면에 페라이트 탈탄층이 형성됨으로써, 지연파괴 저항성이 열위해질 수 있다. 이를 고려하여, 마무리 압연 온도가 980℃ 이하, 또는 권취 온도가 930℃ 이하일 수 있다.On the other hand, when the finish rolling temperature or coiling temperature is high, decarburization is accelerated by diffusion and a ferrite decarburized layer is formed on the surface, so that delayed fracture resistance may be inferior. Considering this, the finish rolling temperature may be 980°C or less, or the coiling temperature may be 930°C or less.
다음으로, 상기 권취된 선재를 목적에 맞게 신선한 후, 최대온도가 745 내지 765℃인 범위에서 구상화 열처리를 수행할 수 있다.Next, after the wound wire is fresh for the purpose, spheroidizing heat treatment may be performed at a maximum temperature in the range of 745 to 765 ° C.
구상화 열처리 최대온도가 너무 낮거나 높을 경우에는, 낮은 구상화율에 의해 구상화 열처리재의 경도가 높아지게 됨으로써, 강부품 가공 시 성형성 열위에 의한 크랙을 유발할 수 있다. 이를 고려하여, 구상화 열처리 최대온도는 745 내지 765℃에서 수행할 수 있다.When the maximum temperature of the spheroidization heat treatment is too low or too high, the hardness of the spheroidization heat treatment material increases due to the low spheroidization rate, thereby causing cracks due to poor formability during processing of steel parts. In consideration of this, the maximum temperature of the spheroidization heat treatment may be performed at 745 to 765 ° C.
상기 구상화 열처리한 선재는 목적에 맞게 성형하여 강부품으로 마련한 다음, 870 내지 940℃에서 오스테나이징을 수행할 수 있다.The wire rod subjected to the spheroidizing heat treatment may be molded to suit the purpose and prepared as a steel part, and then austenizing may be performed at 870 to 940 ° C.
오스테나이징 온도가 낮은 경우에는, 오스테나이트 역변태가 충분히 일어나지 않으므로, 퀜칭 후 마르텐사이트 조직이 불균일하여 인성이 열위해질 수 있다. 이를 고려하여, 오스테나이징 온도는 870℃ 이상일 수 있다. 그러나, 오스테나이징 온도가 높을 경우에는, 오스테나이트 결정립도가 조대해짐으로써, 지연파괴 저항성이 열위해질 수 있다. 이를 고려하여, 오스테나이징 온도의 상한은 940℃로 제한될 수 있다.When the austenizing temperature is low, since reverse austenite transformation does not sufficiently occur, the martensitic structure after quenching may be non-uniform, resulting in inferior toughness. Considering this, the austenizing temperature may be 870°C or higher. However, when the austenizing temperature is high, the grain size of austenite becomes coarse, and delayed fracture resistance may deteriorate. Considering this, the upper limit of the austenizing temperature may be limited to 940°C.
다음으로, 상기 오스테나이징한 강부품을 10 내지 80℃의 냉매로 퀜칭할 수 있다.Next, the austenized steel parts may be quenched with a refrigerant at 10 to 80°C.
퀜칭 냉매의 온도가 낮을 경우에는, 강부품의 열변형에 의한 미세 퀜칭크랙이 발생하여 지연파괴를 유발할 수 있다. 이를 고려하여, 퀜칭 냉매의 온도는 10℃ 이상일 수 있다. 그러나, 퀜칭 냉매의 온도가 높을 경우에는, 오토템퍼링 효과가 높아짐으로써, 목적하는 강도를 구현하기 어려울 수 있다. 이를 고려하여, 퀜칭 냉매의 온도의 상한은 80℃로 제한될 수 있다.When the temperature of the quenching refrigerant is low, fine quenching cracks may occur due to thermal deformation of steel parts, causing delayed fracture. Considering this, the temperature of the quenching refrigerant may be 10 °C or higher. However, when the temperature of the quenching refrigerant is high, the auto-tempering effect increases, making it difficult to achieve the desired strength. Considering this, the upper limit of the temperature of the quenching refrigerant may be limited to 80°C.
상술한 공정으로부터, 강부품의 최종 미세조직은, 템퍼링 공정 없이 90% 이상의 오토템퍼드 마르텐사이트 조직을 구현할 수 있고, 구오스테나이트 결정립내 평균 두께가 15nm 이하의 탄화물이 석출된 조직을 구현할 수 있다. 따라서, 상기 미세조직을 제어함으로써 지연파괴 저항성을 향상시킬 수 있다.From the above-described process, the final microstructure of the steel part can realize an auto-tempered martensite structure of 90% or more without a tempering process, and a structure in which carbides with an average thickness of 15 nm or less in old austenite crystal grains are precipitated can be implemented. . Accordingly, delayed fracture resistance may be improved by controlling the microstructure.
다음으로, 본 발명의 다른 일 측면에 따른 냉간단조용 선재에 대하여 설명한다.Next, a wire rod for cold forging according to another aspect of the present invention will be described.
본 발명의 일 실시예에 따른 냉간단조용 선재는, 중량%로, C: 0.18% 이상 0.25% 이하, Si: 0.30% 이상 0.50% 이하, Mn: 0.35% 이상 0.50% 이하, P: 0% 초과0.03% 이하, S: 0% 초과 0.03% 이하, Cr: 0.45% 이상 0.60% 이하, Ti: 0.005% 이상 0.03% 이하, B: 0.001% 이상 0.004% 이하, 나머지 Fe 및 불가피한 불순물을 포함하고, 직경이 5.5 내지 20mm일 수 있다.In the wire rod for cold forging according to an embodiment of the present invention, in weight%, C: 0.18% or more and 0.25% or less, Si: 0.30% or more and 0.50% or less, Mn: 0.35% or more and 0.50% or less, P: more than 0% 0.03% or less, S: more than 0% and 0.03% or less, Cr: 0.45% or more and 0.60% or less, Ti: 0.005% or more and 0.03% or less, B: 0.001% or more and 0.004% or less, including the remainder Fe and unavoidable impurities, diameter It may be 5.5 to 20 mm.
상기 각 합금조성의 성분범위의 수치 한정 이유는 상술한 바와 같으며, 본 발명의 일 예에 따른 냉간단조용 선재는 5.5 내지 20mm의 직경으로 제조될 수 있다. 다만, 이에 한정되지 않고, 목적에 따라 다양한 직경으로 제조될 수 있다.The reasons for limiting the range of components of each alloy composition are as described above, and the wire rod for cold forging according to an example of the present invention may be manufactured with a diameter of 5.5 to 20 mm. However, it is not limited thereto, and may be manufactured in various diameters depending on the purpose.
이하, 본 발명을 실시예를 통하여 보다 상세하게 설명한다. 그러나, 이러한 실시예의 기재는 본 발명의 실시를 예시하기 위한 것일 뿐 이러한 실시예의 기재에 의하여 본 발명이 제한되는 것은 아니다. 본 발명의 권리범위는 특허청구범위에 기재된 사항과 이로부터 합리적으로 유추되는 사항에 의하여 결정되는 것이기 때문이다.Hereinafter, the present invention will be described in more detail through examples. However, the description of these examples is only for exemplifying the practice of the present invention, and the present invention is not limited by the description of these examples. This is because the scope of the present invention is determined by the matters described in the claims and the matters reasonably inferred therefrom.
{실시예}{Example}
아래 표 1에 나타낸 다양한 합금 성분범위에 대하여, 강재를 제조하고, 910℃에서 마무리 압연하여 15mm 직경의 선재를 마련한 후, 880℃에서 코일 형상으로 권취하였다. 권취한 선재는 최대온도가 755℃인 범위에서 구상화 열처리한 후, 나사M12 규격의 볼트로 성형한 다음, 890℃에서 오스테나이징한 후 60℃의 냉매에서 퀜칭하였다. 한편, 상기 구상화 열처리 온도는 가장 높은 가열온도를 의미한다.For the various alloy composition ranges shown in Table 1 below, steel materials were prepared, finished rolled at 910 ° C to prepare a wire rod having a diameter of 15 mm, and then wound into a coil at 880 ° C. The wound wire rod was subjected to spheroidization heat treatment at a maximum temperature of 755 ° C, molded into a screw M12 standard bolt, austenized at 890 ° C, and quenched in a refrigerant at 60 ° C. On the other hand, the spheroidization heat treatment temperature means the highest heating temperature.
구분division 합금성분alloy component
CC SiSi MnMn PP SS CrCr TiTi BB
실시예1Example 1 0.180.18 0.400.40 0.460.46 0.0110.011 0.0050.005 0.530.53 0.0240.024 0.00180.0018
실시예2Example 2 0.250.25 0.410.41 0.450.45 0.0100.010 0.0050.005 0.540.54 0.0240.024 0.00210.0021
실시예3Example 3 0.200.20 0.400.40 0.360.36 0.0090.009 0.0050.005 0.520.52 0.0260.026 0.00230.0023
실시예4Example 4 0.210.21 0.440.44 0.490.49 0.0110.011 0.0050.005 0.520.52 0.0230.023 0.00210.0021
실시예5Example 5 0.190.19 0.410.41 0.440.44 0.0110.011 0.0050.005 0.460.46 0.0240.024 0.00200.0020
실시예6Example 6 0.220.22 0.410.41 0.430.43 0.0100.010 0.0050.005 0.590.59 0.0250.025 0.00210.0021
실시예7Example 7 0.230.23 0.310.31 0.420.42 0.0090.009 0.0050.005 0.520.52 0.0240.024 0.00220.0022
실시예8Example 8 0.210.21 0.480.48 0.440.44 0.0100.010 0.0050.005 0.530.53 0.0240.024 0.00180.0018
비교예1Comparative Example 1 0.170.17 0.410.41 0.460.46 0.0110.011 0.0050.005 0.520.52 0.0240.024 0.00210.0021
비교예2Comparative Example 2 0.260.26 0.420.42 0.470.47 0.0100.010 0.0050.005 0.520.52 0.0230.023 0.00230.0023
비교예3Comparative Example 3 0.180.18 0.250.25 0.450.45 0.0110.011 0.0050.005 0.500.50 0.0240.024 0.00220.0022
비교예4Comparative Example 4 0.240.24 0.400.40 0.530.53 0.0110.011 0.0050.005 0.510.51 0.0240.024 0.00200.0020
비교예5Comparative Example 5 0.230.23 0.370.37 0.490.49 0.0090.009 0.0050.005 0.420.42 0.0230.023 0.00190.0019
비교예6Comparative Example 6 0.220.22 0.420.42 0.470.47 0.0090.009 0.0050.005 0.640.64 0.0220.022 0.00210.0021
아래 표 2에는 상기 제조된 볼트의 인장강도, 탄화물 두께 및 지연파괴 성능평가에 따른 크랙유무를 나타냈다.인장강도는, Zwick/Roell사의 ZWICK Z250 인장시험기를 통해 측정했다. 인장강도 측정시험은 지름 10mm, 게이지부 지름 6.25mm를 갖는 인장시편으로 수행했다.Table 2 below shows the presence or absence of cracks according to the tensile strength, carbide thickness, and delayed fracture performance evaluation of the manufactured bolts. The tensile strength was measured using a Zwick/Roell ZWICK Z250 tensile tester. The tensile strength measurement test was performed using a tensile specimen having a diameter of 10 mm and a gauge part diameter of 6.25 mm.
탄화물 두께 측정은, FEI Tecnai OSIRIS 투과전자현미경 (TEM)으로 측정하였다. 이때 탄화물 두께는, Replica 시편에 대해 임의의 5곳을 측정하여, 평균 두께로 나타내었고, 판형(plate-type)으로 형성되는 탄화물의 단축을 두께로 정의하여 측정하였다.Carbide thickness measurements were made with a FEI Tecnai OSIRIS transmission electron microscope (TEM). At this time, the carbide thickness was measured by randomly measuring 5 places on the replica specimen and expressed as an average thickness, and the short axis of the carbide formed in a plate-type was defined as the thickness and measured.
지연파괴 성능평가 실험방법은, 상기 볼트를 항복강도의 체결력으로 구조물에 체결한 다음, 5% 염산 + 95% 증류수 용액에 10분간 침지하기 전/후에, 응력집중부인 나사산에 크랙 유무를 관찰하는, 지연파괴 모사법으로 진행되었다.The test method for evaluating the delayed failure performance is to fasten the bolt to the structure with the fastening force of the yield strength, and then observe the presence or absence of cracks in the screw thread, which is the stress concentration part, before / after immersing the bolt in 5% hydrochloric acid + 95% distilled water solution for 10 minutes. The delayed failure simulation method was used.
지연파괴 성능평가 결과, 크랙이 일어난 경우에는 'O'로 표기하고, 크랙이 일어나지 않은 경우에는 'X'로 표기했다.As a result of the delayed fracture performance evaluation, when cracks occurred, 'O' was marked, and when cracks did not occur, 'X' was marked.
구분division 인장강도(MPa)Tensile strength (MPa) 탄화물 두께(nm)Carbide thickness (nm) 크랙 유무presence or absence of cracks
실시예1Example 1 12131213 1212 XX
실시예2Example 2 16801680 1313 XX
실시예3Example 3 13651365 1111 XX
실시예4Example 4 13911391 1111 XX
실시예5Example 5 12651265 1212 XX
실시예6Example 6 13541354 1313 XX
실시예7Example 7 15661566 1414 XX
실시예8Example 8 14211421 1010 XX
비교예1Comparative Example 1 11851185 1313 XX
비교예2Comparative Example 2 16931693 1616 OO
비교예3Comparative Example 3 11931193 1616 OO
비교예4Comparative Example 4 16551655 1414 OO
비교예5Comparative Example 5 15861586 1313 OO
비교예6Comparative Example 6 15431543 1515 OO
표 2를 참고하면, 실시예 1 내지 8은 본 발명에서 제시하는 합금조성, 성분범위 및 제조공정을 만족했다. 따라서, 실시예 1 내지 8은 인장강도가 1200MPa 이상을 만족했고, 탄화물 두께가 15nm 이하를 만족했고, 지연파괴 성능평가 결과 크랙이 발생하지 않았다.그러나, 비교예 1은 C 함량이 낮아 인장강도가 1200MPa 이상을 만족하지 못했다.Referring to Table 2, Examples 1 to 8 satisfied the alloy composition, component range and manufacturing process presented in the present invention. Therefore, Examples 1 to 8 satisfied tensile strength of 1200 MPa or more, carbide thickness of 15 nm or less, and no cracks occurred as a result of delayed fracture performance evaluation. However, Comparative Example 1 had a low C content, so the tensile strength 1200MPa or more was not satisfied.
또한, 비교예 2는 C 함량이 높아 탄화물의 두께가 15nm를 초과하였는바, 지연파괴 성능평가 결과 크랙이 발생했다.In Comparative Example 2, the thickness of the carbide exceeded 15 nm due to the high C content, and cracks occurred as a result of the delayed fracture performance evaluation.
또한, 비교예 3은 Si 함량이 낮아 인장강도가 1200MPa 이상을 만족하지 못했다.In addition, Comparative Example 3 did not satisfy the tensile strength of 1200 MPa or more due to the low Si content.
또한, 비교예 4는 Mn 함량이 높아 조대한 MnS가 형성됨으로써, 지연파괴 성능평가 결과 크랙이 발생했다.In Comparative Example 4, coarse MnS was formed due to the high Mn content, resulting in cracks as a result of the delayed fracture performance evaluation.
또한, 비교예 5는 Cr 함랑이 낮아 미세조직 내 베이나이트 혼입 조직이 형성됨으로써, 지연파괴 성능평가 결과 크랙이 발생했다.In addition, in Comparative Example 5, a bainite-mixed structure was formed in the microstructure because the Cr content was low, and cracks occurred as a result of the delayed fracture performance evaluation.
또한, 비교예 6은 Cr 함량이 높아 염산에 의해 부식 시 날카로운 부식 피트가 형성됨으로써, 지연파괴 성능평가 결과 크랙이 발생했다.In addition, Comparative Example 6 had a high Cr content, and sharp corrosion pits were formed when corroded by hydrochloric acid, resulting in cracks as a result of delayed fracture performance evaluation.
다음으로, 아래 표 3에는, 상기 표 1의 실시예 5의 합금성분에 대하여, 강재를 제조하고, 아래 표 3에 나타난 마무리 압연온도, 권취 온도, 구상화 열처리 최대온도 및 오스테나이징 온도로 볼트를 제조한 다음, 지연파괴 성능평가 결과 크랙 유무를 나타냈다.Next, in Table 3 below, with respect to the alloy components of Example 5 of Table 1, steel materials were prepared, and bolts were prepared at the finish rolling temperature, coiling temperature, maximum spheroidizing heat treatment temperature, and austenizing temperature shown in Table 3 below. After manufacturing, as a result of the delayed fracture performance evaluation, the presence or absence of cracks was shown.
구분division 온도 (℃)Temperature (℃) 크랙 유무presence or absence of cracks
마무리 압연finish rolling 권취winding 구상화 열처리Spheroidization heat treatment 오스테나이징austenizing
실시예5Example 5 910910 880880 755755 890890 XX
비교예7Comparative Example 7 985985 935935 755755 890890 OO
비교예8Comparative Example 8 865865 825825 755755 890890 OO
비교예9Comparative Example 9 910910 880880 755755 950950 OO
비교예10Comparative Example 10 910910 880880 755755 860860 OO
비교예11Comparative Example 11 910910 880880 740740 890890 OO
비교예12Comparative Example 12 910910 880880 770770 890890 OO
비교예 7은 마무리 압연 온도 및 권취 온도가 높아, 구오스테나이트 결정립 크기가 커지게 됨으로써 지연파괴 성능평가 결과 크랙이 발생했다.비교예 8은 마무리 압연 온도 및 권취 온도가 낮아, 선재에서 페라이트 탈탄층이 형성됨으로써 지연파괴 성능평가 결과 크랙이 발생했다.In Comparative Example 7, the finish rolling temperature and coiling temperature were high, and the grain size of prior austenite increased, resulting in cracks as a result of the delayed fracture performance evaluation. Due to this formation, cracks occurred as a result of delayed fracture performance evaluation.
비교예 9는 오스테나이징 온도가 높아, 구오스테나이트 결정립 크기가 커지게 됨으로써 지연파괴 성능평가 결과 크랙이 발생했다.In Comparative Example 9, the austenizing temperature was high, and the prior austenite crystal grain size increased, so cracks occurred as a result of the delayed fracture performance evaluation.
비교예 10은 오스테나이징 온도가 낮아 준2상역으로 진입하게 되어, 가열 중 페라이트 탈탄층이 형성됨으로써 지연파괴 성능평가 결과 크랙이 발생했다.In Comparative Example 10, the austenizing temperature was low and entered the quasi-2 phase region, and a ferrite decarburized layer was formed during heating, resulting in cracks as a result of the delayed fracture performance evaluation.
비교예 11 및 12는 각각 구상화 열처리 최대온도가 낮거나 높으므로, 구상화 열처리가 충분히 되지 않아 성형성이 열위해졌다. 따라서, 비교예 11 및 12는 나사부 성형 시 크랙이 형성되어 지연파괴 성능평가 결과 크랙이 발생했다.In Comparative Examples 11 and 12, since the maximum temperature of the spheroidization heat treatment was low or high, respectively, the spheroidization heat treatment was not sufficiently performed, resulting in poor formability. Therefore, in Comparative Examples 11 and 12, cracks were formed during thread forming, and as a result of the delayed fracture performance evaluation, cracks occurred.
오스테나이징 온도(℃)Austenizing temperature (℃) 퀜칭유 온도 (℃)Quenching oil temperature (℃) 오토마르텐사이트 분율(%)Otomartensite fraction (%) 탄화물 두께
(nm)
carbide thickness
(nm)
지연파괴
크랙유무
delayed destruction
presence or absence of cracks
실시예5Example 5 910910 6060 95%95% 1212 XX
비교예13Comparative Example 13 910910 8585 89%89% 1616 OO
비교예14Comparative Example 14 910910 9595 86%86% 1818 OO
비교예15Comparative Example 15 910910 105105 85%85% 2121 OO
비교예16Comparative Example 16 910910 115115 85%85% 2222 OO
비교예 13 내지 16은 실시예 5과 동일한 합금성분 및 조성범위를 가지는 강재를 이용한 것으로, 실시예 5와 대비하여 오토마르텐사이트 분율, 탄화물 두께를 본원의 범위를 만족하지 않아, 지연파괴 성능평가 결과 크랙이 발생하는 것을 확인할 수 있다.Comparative Examples 13 to 16 used steel materials having the same alloy components and composition ranges as Example 5, and compared to Example 5, the auto martensite fraction and carbide thickness did not satisfy the ranges of the present application, resulting in delayed fracture performance evaluation. It can be seen that cracks occur.
본 발명에 따르면, 합금조성과 제조방법을 통해 미세조직을 제어함으로써, 원가절감이 가능하면서도 내지연파괴 저항성이 향상된 냉간단조용 선재, 강부품을 제공할 수 있는 바, 산업상 이용가능성이 인정된다.According to the present invention, by controlling the microstructure through the alloy composition and manufacturing method, it is possible to provide a wire rod and steel parts for cold forging with improved resistance to delayed fracture while reducing costs, and thus industrial applicability is recognized. .

Claims (9)

  1. 중량%로, C: 0.18% 이상 0.25% 이하, Si: 0.30% 이상 0.50% 이하, Mn: 0.35% 이상 0.50% 이하, P: 0% 초과 0.03% 이하, S: 0% 초과 0.03% 이하, Cr: 0.45% 이상 0.60% 이하, Ti: 0.015% 이상 0.03% 이하, B: 0.001% 이상 0.004% 이하, 나머지 Fe 및 불가피한 불순물을 포함하고,In weight percent, C: 0.18% or more and 0.25% or less, Si: 0.30% or more and 0.50% or less, Mn: 0.35% or more and 0.50% or less, P: 0% or more and 0.03% or less, S: 0% or more and 0.03% or less, Cr : 0.45% or more and 0.60% or less, Ti: 0.015% or more and 0.03% or less, B: 0.001% or more and 0.004% or less, including the remainder Fe and unavoidable impurities,
    부피분율로, 오토템퍼드 마르텐사이트가 90% 이상인, 내지연파괴 저항성이 향상된 강부품.Steel parts with improved resistance to delayed fracture, with an autotempered martensite of 90% or more by volume fraction.
  2. 청구항 1에 있어서,The method of claim 1,
    구오스테나이트 결정립 내 탄화물의 평균 두께가 15nm 이하인, 내지연파괴 저항성이 향상된 강부품.Steel parts with improved resistance to delayed fracture, with an average thickness of carbides in the old austenite crystal grains of 15 nm or less.
  3. 청구항 1에 있어서,The method of claim 1,
    인장강도가 1200MPa 이상인, 내지연파괴 저항성이 향상된 강부품.Steel parts with improved resistance to delayed fracture with a tensile strength of 1200 MPa or more.
  4. 중량%로, C: 0.18% 이상 0.25% 이하, Si: 0.30% 이상 0.50% 이하, Mn: 0.35% 이상 0.50% 이하, P: 0% 초과 0.03% 이하, S: 0% 초과 0.03% 이하, Cr: 0.45% 이상 0.60% 이하, Ti: 0.015% 이상 0.03% 이하, B: 0.001% 이상 0.004% 이하, 나머지 Fe 및 불가피한 불순물을 포함하는 강재를 마련하는 단계;In weight percent, C: 0.18% or more and 0.25% or less, Si: 0.30% or more and 0.50% or less, Mn: 0.35% or more and 0.50% or less, P: 0% or more and 0.03% or less, S: 0% or more and 0.03% or less, Cr : 0.45% or more and 0.60% or less, Ti: 0.015% or more and 0.03% or less, B: 0.001% or more and 0.004% or less, preparing a steel material containing the remaining Fe and unavoidable impurities;
    상기 강재를 마무리 압연하여 선재를 마련하는 단계;preparing a wire rod by finish rolling the steel;
    상기 선재를 권취하는 단계;winding the wire rod;
    상기 권취된 선재를 신선한 다음, 구상화 열처리하는 단계;After freshening the wound wire rod, spheroidization heat treatment step;
    상기 구상화 열처리한 선재를 성형하여 부품으로 마련하는 단계;Forming the wire rod subjected to the spheroidization heat treatment to prepare a part;
    상기 부품을 오스테나이징 후 퀜칭하는 단계를 포함하는, 내지연파괴 저항성이 향상된 강부품의 제조방법.A method of manufacturing a steel part having improved delayed fracture resistance, comprising the step of quenching the part after austenizing.
  5. 청구항 4에 있어서,The method of claim 4,
    상기 마무리 압연은 880 내지 980℃에서 수행하고, The finish rolling is performed at 880 to 980 ° C,
    상기 권취는 830 내지 930℃에서 수행하는, 내지연파괴 저항성이 향상된 강부품의 제조방법.The winding is performed at 830 to 930 ° C., a method of manufacturing a steel part with improved delayed fracture resistance.
  6. 청구항 4에 있어서,The method of claim 4,
    상기 구상화 열처리는 최대온도가 745 내지 765℃인 범위에서 수행하는, 내지연파괴 저항성이 향상된 강부품의 제조방법.The spheroidizing heat treatment is a method of manufacturing a steel part having improved delayed fracture resistance, which is performed in a range of a maximum temperature of 745 to 765 ° C.
  7. 청구항 4에 있어서,The method of claim 4,
    상기 오스테나이징은 870 내지 940℃에서 수행하는, 내지연파괴 저항성이 향상된 강부품의 제조방법.The austenizing is performed at 870 to 940 ° C., a method of manufacturing a steel part with improved delayed fracture resistance.
  8. 청구항 4에 있어서,The method of claim 4,
    상기 퀜칭은 10 내지 80℃의 냉매로 수행하는, 내지연파괴 저항성이 향상된 강부품의 제조방법.The quenching is performed with a refrigerant of 10 to 80 ° C., a method of manufacturing a steel part with improved delayed fracture resistance.
  9. 중량%로, C: 0.18% 이상 0.25% 이하, Si: 0.30% 이상 0.50% 이하, Mn: 0.35% 이상 0.50% 이하, P: 0% 초과 0.03% 이하, S: 0% 초과 0.03% 이하, Cr: 0.45% 이상 0.60% 이하, Ti: 0.015% 이상 0.03% 이하, B: 0.001% 이상 0.004% 이하, 나머지 Fe 및 불가피한 불순물을 포함하고,In weight percent, C: 0.18% or more and 0.25% or less, Si: 0.30% or more and 0.50% or less, Mn: 0.35% or more and 0.50% or less, P: 0% or more and 0.03% or less, S: 0% or more and 0.03% or less, Cr : 0.45% or more and 0.60% or less, Ti: 0.015% or more and 0.03% or less, B: 0.001% or more and 0.004% or less, including the remainder Fe and unavoidable impurities,
    직경이 5.5 내지 20mm인, 냉간단조용 선재.A wire rod for cold forging with a diameter of 5.5 to 20 mm.
PCT/KR2022/019409 2021-12-01 2022-12-01 Cold forging wire rod and steel part having improved delayed fracture resistance, and method for manufacturing same WO2023101487A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280078714.7A CN118318058A (en) 2021-12-01 2022-12-01 Cold-forged wire and steel part with improved delayed fracture resistance and method for manufacturing the same
EP22901845.2A EP4424861A1 (en) 2021-12-01 2022-12-01 Cold forging wire rod and steel part having improved delayed fracture resistance, and method for manufacturing same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020210169678A KR20230082090A (en) 2021-12-01 2021-12-01 Wire rods and steel parts for cold forging with improved resistance to delayed fracture, and manufacturing method thereof
KR10-2021-0169678 2021-12-01

Publications (1)

Publication Number Publication Date
WO2023101487A1 true WO2023101487A1 (en) 2023-06-08

Family

ID=86612827

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2022/019409 WO2023101487A1 (en) 2021-12-01 2022-12-01 Cold forging wire rod and steel part having improved delayed fracture resistance, and method for manufacturing same

Country Status (4)

Country Link
EP (1) EP4424861A1 (en)
KR (1) KR20230082090A (en)
CN (1) CN118318058A (en)
WO (1) WO2023101487A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11236617A (en) * 1998-02-24 1999-08-31 Kobe Steel Ltd Steel for high strength bolt excellent in cold workability and delayed fracture resistance and its production
KR101225404B1 (en) * 2008-01-31 2013-01-22 제이에프이 스틸 가부시키가이샤 High-strength steel sheet and process for production therof
KR101322534B1 (en) * 2010-03-11 2013-10-28 신닛테츠스미킨 카부시키카이샤 High-strength steel and high-strength bolt with excellent resistance to delayed fracture, and manufacturing method therefor
KR20140123111A (en) * 2012-03-26 2014-10-21 가부시키가이샤 고베 세이코쇼 Boron-added high strength bolt steel having excellent delayed fracture resistance and high strength bolt
KR20210078116A (en) * 2019-12-18 2021-06-28 주식회사 포스코 Steel wire rod, part for cold forging having excellent delayed fracture resistance, and manufacturing method thereof

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11236617A (en) * 1998-02-24 1999-08-31 Kobe Steel Ltd Steel for high strength bolt excellent in cold workability and delayed fracture resistance and its production
KR101225404B1 (en) * 2008-01-31 2013-01-22 제이에프이 스틸 가부시키가이샤 High-strength steel sheet and process for production therof
KR101322534B1 (en) * 2010-03-11 2013-10-28 신닛테츠스미킨 카부시키카이샤 High-strength steel and high-strength bolt with excellent resistance to delayed fracture, and manufacturing method therefor
KR20140123111A (en) * 2012-03-26 2014-10-21 가부시키가이샤 고베 세이코쇼 Boron-added high strength bolt steel having excellent delayed fracture resistance and high strength bolt
KR20210078116A (en) * 2019-12-18 2021-06-28 주식회사 포스코 Steel wire rod, part for cold forging having excellent delayed fracture resistance, and manufacturing method thereof

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
REF. N.UNO ET AL., NIPPON STEEL TECHNICAL REPORT, 2008, pages 97

Also Published As

Publication number Publication date
CN118318058A (en) 2024-07-09
KR20230082090A (en) 2023-06-08
EP4424861A1 (en) 2024-09-04

Similar Documents

Publication Publication Date Title
WO2020067685A1 (en) Wear resistant steel having excellent hardness and impact toughness and method of manufacturing the same
WO2019117536A1 (en) Steel sheet for pressure vessel having excellent tensile strength and low-temperature impact resistance and method for producing same
WO2020046016A1 (en) Wire rod for cold heading, processed product using same, and manufacturing methods therefor
WO2017111290A1 (en) Steel sheet having excellent pwht resistance for low-temperature pressure vessel and method for manufacturing same
WO2020054999A1 (en) Austenitic stainless steel having excellent pipe-expandability and age cracking resistance
WO2021125793A1 (en) Wire rod for high strength cold head quality steel with excellent resistance to hydrogen embrittlement, and manufacturing method thereof
WO2021125555A1 (en) Wire rod and component, for cold forging, each having excellent delayed fracture resistance characteristics, and manufacturing methods therefor
WO2023018028A2 (en) Steel and steel wire, which are for spring, and manufacturing methods therefor
WO2022131589A1 (en) High-strength wire rod for cold heading, having excellent heat treatment characteristics and hydrogen delayed fracture characteristics, heat treatment component, and manufacturing methods therefor
WO2020040388A1 (en) Wire rod and steel wire for spring, having enhanced toughness and corrosion fatigue properties, and respective manufacturing methods therefor
WO2021172604A1 (en) Non-heat treated wire rod with excellent wire drawability and impact toughness and manufacturing method therefor
WO2015099214A1 (en) Quenched steel sheet having excellent strength and ductility and method for manufacturing same
WO2023101487A1 (en) Cold forging wire rod and steel part having improved delayed fracture resistance, and method for manufacturing same
WO2019125076A1 (en) Wear-resistant steel having excellent hardness and impact toughness, and method for producing same
WO2022131752A1 (en) Wire rod and parts with improved delayed fracture resistance, and methods for manufacturing same
WO2021125471A1 (en) Wire rod for ultra-high strength spring, steel wire and manufacturing method thereof
WO2018110850A1 (en) High-strength wire rod having superior impact toughness and manufacturing method therefor
WO2023113442A1 (en) Methods for manufacturing wire rod for cold forging and screw part, having excellent drilling characteristics
WO2023234501A1 (en) Hot stamping part
WO2020085687A1 (en) High-strength ferritic stainless steel for clamp and method for manufacturing same
WO2022139277A1 (en) Steel for tool and manufacturing method for same
WO2024136562A1 (en) Wire rod and steel wire for spring, spring, and method for manufacturing same
WO2018117449A1 (en) Heavy-walled steel material having 450mpa-grade tensile strength and excellent resistance to hydrogen induced crack and method for manufacturing same
WO2023234503A1 (en) Ultra-high strength cold-rolled steel sheet and manufacturing method therefor
WO2022131749A1 (en) Wire rod and part, having improved delayed fracture resistance, for use in bolt and method for manufacturing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22901845

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18708942

Country of ref document: US

WWE Wipo information: entry into national phase

Ref document number: 2022901845

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 202280078714.7

Country of ref document: CN

ENP Entry into the national phase

Ref document number: 2024532841

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2022901845

Country of ref document: EP

Effective date: 20240527

NENP Non-entry into the national phase

Ref country code: DE