[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2023195207A1 - Weather prediction system and meteoropathy prediction system - Google Patents

Weather prediction system and meteoropathy prediction system Download PDF

Info

Publication number
WO2023195207A1
WO2023195207A1 PCT/JP2022/048490 JP2022048490W WO2023195207A1 WO 2023195207 A1 WO2023195207 A1 WO 2023195207A1 JP 2022048490 W JP2022048490 W JP 2022048490W WO 2023195207 A1 WO2023195207 A1 WO 2023195207A1
Authority
WO
WIPO (PCT)
Prior art keywords
weather
vital
prediction
user
disease
Prior art date
Application number
PCT/JP2022/048490
Other languages
French (fr)
Japanese (ja)
Inventor
宗義 吹田
邦彦 西村
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to JP2024514153A priority Critical patent/JP7490162B2/en
Publication of WO2023195207A1 publication Critical patent/WO2023195207A1/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B5/00Measuring for diagnostic purposes; Identification of persons
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01WMETEOROLOGY
    • G01W1/00Meteorology
    • G01W1/10Devices for predicting weather conditions
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06QINFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES; SYSTEMS OR METHODS SPECIALLY ADAPTED FOR ADMINISTRATIVE, COMMERCIAL, FINANCIAL, MANAGERIAL OR SUPERVISORY PURPOSES, NOT OTHERWISE PROVIDED FOR
    • G06Q50/00Information and communication technology [ICT] specially adapted for implementation of business processes of specific business sectors, e.g. utilities or tourism
    • G06Q50/10Services
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16HHEALTHCARE INFORMATICS, i.e. INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR THE HANDLING OR PROCESSING OF MEDICAL OR HEALTHCARE DATA
    • G16H10/00ICT specially adapted for the handling or processing of patient-related medical or healthcare data

Definitions

  • the present disclosure relates to a weather prediction system that predicts the weather and a weather disease prediction system that predicts the onset of weather diseases.
  • weather prediction systems predict future weather based on weather observation data measured by weather measuring instruments installed in various places.
  • weather diseases diseases that develop due to changes in weather conditions.
  • a user's weather condition is determined based on predicted weather information and user's personal weather disease information.
  • a meteorological disease prediction system for predicting the onset of diseases has been disclosed.
  • the present disclosure has been made to solve the above-mentioned problems, and aims to improve the accuracy of local weather forecasting without increasing the number of weather measuring instruments installed.
  • the weather forecasting system includes a vital sign acquisition unit that acquires information on a person's vital signs and the appearance point and time of the vital signs, a weather observation data acquisition unit that acquires weather observation data, and a weather observation data acquisition unit that acquires weather observation data.
  • a weather prediction model obtained by learning the correlation between a sign and a change in weather at the point where the vital sign appears
  • the vital sign acquisition section acquires the person's vital signs and the point where the vital sign appears.
  • a weather prediction unit that performs weather prediction from weather observation data at the time of appearance.
  • the accuracy of local weather prediction can be improved without increasing the number of weather measuring instruments installed.
  • FIG. 1 is a diagram showing the configuration of a weather prediction system according to Embodiment 1.
  • FIG. FIG. 3 is a diagram showing an example of vital signs and weather observation data.
  • 3 is a flowchart showing the operation of the weather forecasting device according to the first embodiment.
  • 3 is a flowchart showing the operation of the weather prediction model creation device according to the first embodiment.
  • FIG. 2 is a diagram showing the configuration of a weather prediction system according to a second embodiment. 7 is a flowchart showing the operation of the weather forecasting device according to Embodiment 2.
  • FIG. FIG. 6 is a diagram showing a modification of the weather prediction system according to Embodiments 1 and 2.
  • FIG. 3 is a diagram showing the configuration of a meteorological disease prediction system according to Embodiment 3.
  • 12 is a flowchart showing the operation of the meteorological disease prediction device according to Embodiment 3. It is a figure showing the composition of the meteorological disease prediction system concerning Embodiment 4. 12 is a flowchart showing the operation of the meteorological disease prediction device according to Embodiment 4. It is a figure showing the 1st modification of the meteorological disease prediction system concerning Embodiment 3 and 4. It is a figure which shows the 2nd modification of the meteorological disease prediction system based on Embodiment 3 and 4.
  • 1 is a diagram illustrating an example of a hardware configuration of a weather prediction device, a weather prediction model creation device, and a weather disease prediction device. 1 is a diagram illustrating an example of a hardware configuration of a weather prediction device, a weather prediction model creation device, and a weather disease prediction device.
  • FIG. 1 is a diagram showing the configuration of a weather prediction system 100 according to the first embodiment.
  • the weather prediction system 100 according to the first embodiment includes a weather prediction device 10 that predicts weather, and a weather prediction model creation device 20 that creates a weather prediction model 23a used by the weather prediction device 10 for weather prediction.
  • the weather prediction model 23a created by the weather prediction model creation device 20 is a weather model obtained by learning the correlation between a person's vital signs and changes in the weather at the point where the vital signs appear.
  • weather prediction device 10 and the weather prediction model creation device 20 are shown as separate devices in FIG.
  • the prediction device 10 and the weather prediction model creation device 20 may be configured as an integrated device.
  • vital signs are information indicating the presence or absence or degree of symptoms of a disease. Since all kinds of diseases can be influenced by the weather, the diseases indicated by vital signs need not be limited to those generally recognized as "weather diseases” such as migraines and neuralgia. In addition, there are no particular restrictions on the symptoms that vital signs indicate, such as pain, malaise, itching, dizziness, diarrhea, lacrimation, runny nose, sensory imbalance, sensory imbalance, and changes in body balance. But that's fine.
  • the weather prediction device 10 includes a vital sign acquisition section 11, a weather observation data acquisition section 12, a weather prediction section 13, and a weather prediction transmission section 14.
  • the vital sign acquisition unit 11 acquires a person's vital signs and information on the appearance point and appearance time of the vital signs.
  • a user of a mobile terminal such as a mobile phone or a smartphone can transmit his or her vital signs to the weather prediction device 10 using the mobile terminal.
  • the mobile terminal adds its own position information and information on the input time of the vital sign to the vital sign as information on the point and time of appearance of the vital sign, and transmits it to the weather prediction device 10.
  • the vital sign acquisition unit 11 can acquire the person's vital signs and information on the appearance point and appearance time of the vital signs.
  • the "vital sign appearance point” is the location where the person was when the vital sign appeared
  • the “vital sign appearance time” is the time when the vital sign appeared.
  • the position and time of the mobile terminal at the time of inputting the vital signs is the same as the appearance of the vital signs.
  • the location and time of appearance may be significantly different. Therefore, in such a case, the user of the mobile terminal also needs to input information on the appearance point and appearance time of the vital signs into the mobile terminal.
  • the vital sign acquisition unit 11 acquires and analyzes texts or images posted by the user of the mobile terminal to a social networking service (SNS), thereby obtaining the vital signs of the person. Also, information on the appearance point and appearance time of the vital sign may be acquired. For example, the vital sign acquisition unit 11 searches and detects predetermined keywords such as "headache,” “low back pain,” “knee pain,” “neuralgia,” and "vertigo” from texts posted by users of mobile terminals. The searched keywords may be acquired as vital signs.
  • SNS social networking service
  • Keywords are not limited to the names of the diseases listed above, but include, for example, ⁇ pain,'' ⁇ feeling tired,'' ⁇ tension,'' ⁇ numbness,'' ⁇ throbbing,'' ⁇ light-headed,'' and ⁇ unable to walk straight.'' , "delayed sensation,” “feeling of pressure,” “feeling of expansion,” or other sensations may be used.
  • the vital sign acquisition unit 11 detects and analyzes the user's face and skin of hands and feet from an image posted by the user of the mobile terminal, and based on the facial expression, complexion, condition of the skin of the hands and feet, condition of pupils, etc. Vital signs may also be detected.
  • the vital sign acquisition unit 11 may acquire not only vital sign information but also weather information as information related to the vital sign from a text or image posted by a user of a mobile terminal to an SNS.
  • the vital sign acquisition unit 11 searches for predetermined keywords such as "sunny,” “rain,” “cloudy,” “snow,” and “typhoon” from sentences posted by the user of the mobile terminal, and The weather information corresponding to the keyword may be used as vital sign related information.
  • the keywords are not limited to those directly indicating the weather as described above, but may also be keywords expressing sensations such as “dazzling,” “hot,” “cold,” and “glaring.”
  • the vital sign acquisition unit 11 may analyze an image posted by a user of a mobile terminal and detect weather information from clouds, rain, snow, fog, puddles, snowfall, etc. appearing in the image.
  • weather information may be detected from cloud movements and changes, such as cloud speed and cloud thickness distribution changes.
  • a wearable or portable pain detection device may be used to automatically input the user's vital signs into the mobile terminal, and the mobile terminal may automatically transmit the vital signs to the weather forecasting device 10.
  • the mobile terminal acquires the output signal of the pressure sensor built into the shoes worn by the user of the mobile terminal, and the mobile terminal detects changes in the balance of the user's body as a vital sign and sends it to the weather forecasting device 10. You may.
  • the mobile terminal acquires the output signal of the brain wave detection sensor attached to the head of the mobile terminal user, and the mobile terminal detects changes in the user's body condition as vital signs and sends them to the weather forecasting device 10. Good too.
  • the weather observation data acquisition unit 12 acquires weather observation data from weather measuring instruments installed in various places.
  • the weather measuring instrument may be one used in conventional weather forecasting systems.
  • the weather observation data acquired by the weather observation data acquisition unit 12 includes at least data corresponding to the appearance point and appearance time of the vital sign acquired by the vital sign acquisition unit 11.
  • the meteorological observation data acquired by the meteorological observation data acquisition unit 12 includes data of a certain size area including the appearance point of vital signs, and data of a certain length of time including the appearance time of vital signs.
  • series data is included.
  • the weather prediction unit 13 uses the weather prediction model 23a held in the weather prediction model creation device 20 to obtain the vital signs acquired by the vital sign acquisition unit 11 and weather observation data at the appearance point and time of the vital signs. From this, weather forecasts are made.
  • the weather prediction model 23a is a weather model obtained by learning the correlation between a person's vital signs and changes in the weather at the point where the vital signs appear. Details of the weather prediction model creation device 20 and the weather prediction model 23a will be described later.
  • the weather prediction transmitting unit 14 transmits the results of the weather prediction by the weather prediction unit 13 to the users of the weather prediction system 100, for example, through a network such as the Internet.
  • a network such as the Internet.
  • broadcasters such as television and radio broadcasters who broadcast weather forecast programs, and businesses that operate websites that provide weather forecast information. Possible reasons include:
  • the weather prediction transmitter 14 may notify the user of the results of local weather prediction at a point specified by the user.
  • the specific user is assumed to be, for example, an owner of a business that is easily affected by the weather, such as an outdoor event organizer, a transportation company, a logistics company, or a producer of ice cream or the like.
  • the weather prediction model creation device 20 includes a data storage section 21, a weather prediction model creation section 22, and a weather prediction model storage section 23.
  • the data storage unit 21 stores the vital signs of the person acquired by the vital sign acquisition unit 11 of the weather prediction device 10 and information on the appearance point and time of the vital signs, and the information acquired by the weather observation data acquisition unit 12 of the weather prediction device 10. It is a storage medium that stores weather observation data.
  • FIG. 2 shows an example of vital sign information and weather observation data stored in the data storage unit 21.
  • Weather observation data items include observation point, observation time, temperature, air temperature, humidity (or water vapor amount), atmospheric pressure, precipitation (or snowfall amount), wind speed, wind direction, cloud shape and movement, and short information on these observation data. It can include anything such as data that shows changes over time.
  • the weather prediction model creation unit 22 uses the information accumulated in the data storage unit 21 to learn the correlation between a person's vital signs and changes in the weather at the point where the vital signs appear, and based on the learning results.
  • a weather prediction model 23a is created.
  • the learning method performed by the weather prediction model creation unit 22 may be any method.
  • the weather prediction model creation unit 22 classifies vital sign information and weather data by item, creates weather models according to all combinations of them, and for each weather model, A possible method is to learn a probable weather model by verifying the degree to which it matches vital sign information (stored in the data storage unit 21) and weather data (number of hits).
  • this method it is preferable to construct the weather prediction model 23a using only weather models whose degree of matching with actually obtained vital sign information and weather data is equal to or higher than a predetermined threshold.
  • the weather prediction model creation unit 22 classifies vital sign information and weather data by item, creates weather models according to all combinations of them, and calculates actual results for each weather model.
  • a possible method is to learn a probable weather model by verifying the vital sign information (stored in the data storage unit 21) and the degree of change (number of hits) in weather data over time.
  • the weather prediction model 23a it is preferable to construct the weather prediction model 23a using only information on actually obtained vital signs and weather models in which the degree of change in weather data with respect to time is equal to or greater than a predetermined threshold.
  • the weather prediction model 23a may also be constructed using the amount of change in weather data with respect to temperature, the amount of change in weather data with respect to sunshine hours, etc. I don't mind.
  • the created weather prediction model 23a is stored in the weather prediction model storage unit 23.
  • the weather prediction model storage unit 23 is accessible from the weather prediction device 10, and the weather prediction unit 13 of the weather prediction device 10 makes weather predictions using the weather prediction model 23a stored in the weather prediction model storage unit 23. It can be carried out.
  • the vital sign acquisition unit 11 acquires a person's vital signs and information on the appearance point and appearance time of the vital signs (step S101). Furthermore, the weather observation data acquisition unit 12 acquires weather observation data from weather measuring instruments installed in various places (step S102).
  • the weather prediction unit 13 uses the vital signs acquired by the vital sign acquisition unit 11 in step S101 and the weather observation data acquisition unit in step S102. Based on the meteorological observation data at the appearance point and appearance time of the vital sign acquired by 12, the weather prediction for the area including the appearance point of the vital sign is performed (step S103).
  • the weather forecasting unit 13 evaluates the credibility of the weather prediction results by comparing the weather prediction results with the weather observation data (step S104). For example, the weather prediction unit 13 calculates the degree of deviation between the result of the weather prediction and the current weather observation data, and if the calculated degree of deviation is equal to or less than a predetermined threshold, the reliability of the result of the weather prediction is high. Otherwise, it is determined that the credibility of the weather prediction results is low.
  • step S105 If it is determined that the reliability of the weather prediction result is high (YES in step S105), the weather prediction transmitter 14 transmits the weather prediction result to the outside (step S106), and returns to step S101. If it is determined that the credibility of the weather prediction result is low (NO in step S105), the weather prediction result is not transmitted to the outside and the process returns to step S101.
  • the operation of the weather prediction model creation device 20 will be described with reference to the flowchart in FIG. 4.
  • the data storage unit 21 has already accumulated enough information for learning to create the weather prediction model 23a.
  • the weather prediction unit 13 collects the information newly acquired by the weather prediction device 10, that is, the vital signs of the person newly acquired by the vital sign acquisition unit 11 of the weather prediction device 10, and the appearance point and appearance time of the vital signs. information and the newly acquired weather observation data by the weather observation data acquisition unit 12 of the weather forecasting device 10 (step S201).
  • the weather prediction model creation unit 22 uses the information accumulated in the data storage unit 21 to learn the correlation between a person's vital signs and changes in the weather at the point where the vital signs appear (step S202). . Then, the weather prediction model creation unit 22 creates a weather prediction model 23a based on the learning results (step S203).
  • step S204 the weather prediction model 23a created by the weather prediction model creation unit 22 is stored in the weather prediction model storage unit 23 (step S204), and the process returns to step S201.
  • weather forecasting is performed not only based on weather observation data measured by a weather measuring instrument, but also taking into account people's vital signs, so that weather forecasting can be performed regardless of the area where there are people. For example, it can be expected to improve the accuracy of local weather forecasts in the same way as increasing the number of weather measuring instruments installed. In other words, the accuracy of local weather prediction can be improved without increasing the number of weather measuring instruments installed.
  • FIG. 5 is a diagram showing the configuration of a weather prediction system 100 according to the second embodiment.
  • the configuration of the weather prediction system 100 in FIG. 5 is such that a vital data acquisition section 15 is added to the configuration in FIG.
  • the vital data acquisition unit 15 acquires the person's vital data and information on the measurement point and measurement time of the vital data, and provides the acquired information to the weather prediction unit 13.
  • vital data is biological information that can be measured from the human body, and representative examples include body temperature, blood pressure, heart rate, respiratory rate, brain waves, and blood sugar level.
  • Vital data is not limited to what can be directly measured from the human body, but may also be information obtained by analyzing, for example, blood, saliva, sweat, excrement collected from the human body, or food ingested by the human body.
  • Vital data can basically be measured as quantitative numbers, and there are already wearable vital data measurement devices such as watch-type, earphone-type, and hat-type devices, so vital data is information that is relatively easy to obtain. be.
  • a mobile terminal such as a mobile phone or a smartphone, for example, acquires the user's vital data at all times or at regular intervals and automatically transmits it to the weather forecasting device 10 with the user's consent.
  • the mobile terminal adds information about the vital data measurement point and measurement time to the vital data, and transmits the vital data to the weather forecasting device 10.
  • the vital data acquisition unit 15 can acquire vital data of the person and information on the measurement point and measurement time of the vital data.
  • the "vital data measurement point” is the location where the person was when the person's vital data was measured
  • the "vital data measurement point” is the time when the vital data was measured.
  • the vital data measurement point is the point where the person whose vital data is measured (the patient in the online medical treatment) is located. Furthermore, when vital data is measured from a specimen such as blood collected from a human body, the point and time at which the specimen is collected becomes the vital data measurement point and measurement time.
  • the sender of vital data is not limited to the mobile terminal user either.
  • a sensor and a transmitter that detect vital data and transmit it to the weather prediction device 10 may be installed in a toilet or bathroom of a medical institution or a general home.
  • the weather prediction model 23a held in the weather prediction model creation device 20 calculates not only the correlation between a person's vital signs and the weather change at the point where the vital signs appear, but also the This is obtained by learning the correlation between the data and changes in the weather at the measurement point of the vital data.
  • the weather prediction unit 13 uses the weather prediction model 23a to obtain the vital signs of the person acquired by the vital sign acquisition unit 11 and the meteorological observation data at the appearance point and time of the vital signs, and the vital data acquisition unit 15 acquires them. Weather predictions are made from the vital data of the person who has taken the test, as well as the meteorological observation data at the measurement point and time of the vital data.
  • FIG. 6 is a flowchart showing the operation of the weather prediction device 10 according to the second embodiment.
  • the flowchart in FIG. 6 is the flowchart in FIG. 3 with step S110 inserted.
  • step S110 the vital data acquisition unit 15 acquires the person's vital data and information on the measurement point and measurement time of the vital data. Furthermore, in step S103, the weather forecasting unit 13 performs weather forecasting taking into account the information acquired in step S110.
  • the other steps are the same as those shown in FIG. 3, so the description here will be omitted.
  • the configuration of the weather prediction model creation device 20 in the second embodiment is the same as that in FIG. 1, and its operation is basically the same as the flowchart in FIG. 4.
  • the data storage unit 21 stores not only the information on the person's vital signs acquired by the vital sign acquisition unit 11 and the meteorological observation data acquired by the weather observation data acquisition unit 12, but also the vital data acquisition unit 15. Vital data information acquired by the user is also stored.
  • the weather prediction model creation unit 22 uses the information accumulated in the data storage unit 21 to determine the correlation between a person's vital signs and changes in the weather at the point where the vital signs appear, and A weather prediction model 23a is created by learning the correlation between the data and changes in weather at the measurement point of the vital data.
  • weather prediction is performed taking into account not only the weather observation data measured by a weather measuring instrument but also the vital signs and vital data of the person. For regional areas, it can be expected to improve the accuracy of local weather forecasts in the same way as increasing the number of weather measuring instruments installed. In other words, the accuracy of local weather prediction can be improved without increasing the number of weather measuring instruments installed.
  • FIG. 7 is a diagram showing a modification of the weather prediction system 100.
  • the configuration of the weather prediction system 100 in FIG. 7 is such that a disaster prediction section 16 and a disaster prediction notification section 17 are added to the weather prediction system 100 in the first embodiment (FIG. 1).
  • the disaster prediction unit 16 predicts the occurrence of a disaster based on the results of the weather prediction by the weather prediction unit 13. Any method may be used to predict the occurrence of a disaster. For example, the disaster prediction unit 16 monitors the amount of precipitation, snowfall, wind speed, etc. predicted by the weather prediction unit 13 in each region, and identifies areas where any of these values exceeds a predetermined threshold. It may be determined that the area is a predicted area. Since the weather prediction device 10 can predict local weather with high accuracy, it is expected that the accuracy of disaster prediction by the disaster prediction unit 16 will improve.
  • the disaster prediction notification unit 17 notifies users in areas where a disaster is predicted to occur by the disaster prediction unit 16 of disaster prediction information. For example, the disaster prediction notification unit 17 transmits disaster prediction information to mobile terminals of users in areas where a disaster is predicted to occur.
  • FIG. 7 shows an example in which the disaster prediction unit 16 and disaster prediction notification unit 17 are added to the weather prediction system 100 of the first embodiment (FIG. 1), they are the same as those of the second embodiment (FIG. 5). It can also be applied to the weather prediction system 100.
  • FIG. 8 is a diagram showing the configuration of a meteorological disease prediction system 200 according to the third embodiment.
  • the meteorological disease prediction system 200 in FIG. 8 is based on the weather prediction system 100 according to Embodiment 1 or 2 (the weather prediction system 100 shown in FIG. 8 is according to Embodiment 1, but the weather prediction system 100 according to Embodiment 2 ) and a meteorological disease prediction device 30 that predicts the onset of a weather disease in a user based on the results of weather prediction by the weather prediction system 100.
  • the weather prediction system 100 is as described in Embodiment 1 or 2, so the description here will be omitted.
  • the weather disease prediction device 30 includes a user information storage section 31, a user position acquisition section 32, a weather disease prediction section 33, and a weather disease prediction notification section 34.
  • the user information storage unit 31 is a storage medium in which information regarding weather diseases of users of the weather disease prediction system 200 is registered.
  • a user can register information regarding his or her weather disease in the user information storage unit 31 using a communication terminal (for example, a mobile terminal or a personal computer).
  • Information regarding meteorological diseases may include the type (name) of the weather disease, its symptoms, and the conditions under which it is likely to develop (for example, weather conditions, time of day, location, etc.).
  • Conditions that are likely to cause symptoms do not need to be medically backed, and may be based on the user's past experience (for example, ⁇ when a heavy rain warning is issued'', ⁇ when the distance between isobars in the east-west direction is narrow'', ⁇ (e.g., "in the morning,” “while at work,” etc.)
  • the user location acquisition unit 32 acquires information on the user's current location.
  • the user's location information can be acquired from, for example, the user's mobile terminal or the navigation system of the vehicle in which the user rides. Furthermore, if the user's location information cannot be acquired, a pre-registered location such as the user's home or workplace may be regarded as the user's current location.
  • the meteorological disease prediction unit 33 acquires the weather prediction result for the user's current location from the weather prediction device 10 of the weather prediction system 100, and records the weather prediction result for the user's current location and the information registered in the user information storage unit 31.
  • the onset of a user's weather disease is predicted based on information regarding the user's weather disease. In other words, the weather disease prediction unit 33 predicts the time period and probability that the weather at the user's current location will be in a state where the weather disease is likely to develop.
  • the meteorological disease prediction notification unit 34 notifies users predicted to develop a weather disease by the weather disease prediction unit 33 of weather disease prediction information (for example, the time period in which the weather disease will develop, the probability of onset, etc.). .
  • the weather disease prediction notification unit 34 transmits weather disease prediction information to the mobile terminal of a user who is predicted to develop a weather disease, for example, through a network such as the Internet.
  • the user location acquisition unit 32 acquires information on the user's current location (step S301).
  • the meteorological disease prediction unit 33 acquires the weather prediction results for the user's current location (excluding those determined to have low credibility) from the weather prediction device 10 of the weather prediction system 100 (step S302). Then, the meteorological illness prediction unit 33 determines whether the user has a meteorological illness based on the weather prediction result for the user's current location acquired in step S302 and the information regarding the user's meteorological illness registered in the user information storage unit 31. The onset of the disease is predicted (step S303).
  • the weather disease prediction notification unit 34 notifies the user predicted to develop a weather disease in step S303 of weather disease prediction information (for example, the time period in which the weather disease will develop, the probability of onset, etc.) Step S304).
  • the onset prediction of the user's weather illness is performed based on the highly accurate weather prediction predicted by the weather forecasting device 10, so it can be expected that the accuracy of the prediction of the onset of the weather illness will be improved.
  • the weather prediction system 100 is included in the weather disease prediction system 200, but for example, the weather disease prediction device 30 and the weather prediction model storage unit 23 are provided in a mobile terminal to perform weather prediction.
  • the weather prediction results from the weather prediction unit 13 may be obtained from the user via the network. In that case, when the weather prediction device 10 newly acquires information, the weather prediction model in the weather prediction model storage unit 23 can be updated via the network.
  • FIG. 10 is a diagram showing the configuration of a meteorological disease prediction system 200 according to the fourth embodiment.
  • the configuration of the meteorological disease prediction system 200 in FIG. 10 is such that a user vital data acquisition section 35 is added to the configuration in FIG.
  • the user vital data acquisition unit 35 acquires the vital data of the user of the meteorological illness prediction system 200 and information on the measurement point and measurement time of the vital data, and provides the acquired information to the meteorological illness prediction unit 33.
  • Embodiment 4 it is assumed that a user uses a mobile terminal such as a mobile phone or a smartphone to transmit his or her own vital data to the meteorological disease prediction device 30 at all times or at regular intervals. At this time, the mobile terminal adds information on the vital data measurement point and measurement time to the vital data, and transmits the vital data to the meteorological disease prediction device 30. By receiving this information, the user vital data acquisition unit 35 can acquire the user's vital data and information on the measurement point and measurement time of the vital data.
  • a mobile terminal such as a mobile phone or a smartphone to transmit his or her own vital data to the meteorological disease prediction device 30 at all times or at regular intervals.
  • the mobile terminal adds information on the vital data measurement point and measurement time to the vital data, and transmits the vital data to the meteorological disease prediction device 30.
  • the user vital data acquisition unit 35 can acquire the user's vital data and information on the measurement point and measurement time of the vital data.
  • the means for transmitting the user's vital data is not limited to mobile terminals.
  • a sensor and a transmitter that detect the user's vital data and transmit it to the meteorological disease prediction device 30 may be installed in the toilet or bathroom of the user's home.
  • the meteorological disease prediction unit 33 uses the weather prediction result of the user's current position acquired from the weather prediction device 10 of the weather prediction system 100 and the user's information registered in the user information storage unit 31.
  • the onset of a weather disease in a user is predicted based on the information regarding the weather disease and the user's vital data acquired by the user vital data acquisition unit 35. Since vital data can sometimes give signs of weather disease, incorporating vital data into the prediction of the onset of weather disease will further improve the accuracy of predicting the onset of weather disease.
  • FIG. 11 is a flowchart showing the operation of the weather prediction device 10 according to the fourth embodiment.
  • the flowchart in FIG. 11 is the flowchart in FIG. 9 with step S310 inserted.
  • step S310 the user vital data acquisition unit 35 acquires the user's vital data and information on the measurement point and measurement time of the vital data. Furthermore, in step S303, the meteorological disease prediction unit 33 performs weather prediction, taking into account the information acquired in step S310.
  • the other steps are the same as those shown in FIG. 9, so the description here will be omitted.
  • the weather disease prediction system 200 since the vital data of the user is taken into account when predicting the onset of the user's weather disease, the accuracy of predicting the onset of the user's weather disease can be improved compared to the third embodiment. can be improved.
  • the meteorological disease prediction unit 33 since vital data is considered to be influenced by the time of day and location, when adding vital data to the user's weather disease onset prediction, the meteorological disease prediction unit 33 also includes the measurement time and measurement point of the vital data. May be taken into consideration. This can be expected to further improve the accuracy of users' predictions of the onset of weather diseases.
  • the weather prediction system 100 is included in the weather disease prediction system 200, but for example, the weather disease prediction device 30 and the weather prediction model storage unit 23 are provided in a mobile terminal to perform weather prediction.
  • the weather prediction results from the weather prediction unit 13 may be obtained from the user via the network. In that case, when the weather prediction device 10 newly acquires information, the weather prediction model in the weather prediction model storage unit 23 can be updated via the network.
  • FIG. 12 is a diagram showing a first modification of the meteorological disease prediction system 200.
  • the configuration of the weather disease prediction system 200 in FIG. 12 is the same as the weather disease prediction system 200 in the third embodiment (FIG. 8) by adding a dosage timing notification section 36.
  • the dosing timing notification unit 36 notifies the user who is predicted to develop a weather disease by the weather disease prediction unit 33 of the timing to take a medicine to suppress the onset of the weather disease. For example, the dosing timing notification unit 36 transmits a notification of the dosing timing of the medicine to the user's mobile terminal.
  • the timing for taking the medicine may be a certain period of time before the predicted time when the weather disease will develop. By prompting the user to take medicine before the weather disease develops, it is possible to prevent the onset of the weather disease.
  • FIG. 13 is a diagram showing a second modification of the weather disease prediction system 200.
  • the configuration of the weather disease prediction system 200 in FIG. 13 is such that a recommended action notification section 37 is added to the weather disease prediction system 200 in the third embodiment (FIG. 8).
  • the recommended action notification unit 37 notifies the user predicted to develop a weather disease by the weather disease prediction unit 33 of recommended actions before or after the onset of the weather disease.
  • the recommended behavior notification unit 37 notifies the user's mobile terminal of the recommended behavior.
  • Recommended actions before and after the onset of a weather disease include, for example, refraining from going out, going to the hospital, refraining from driving, refraining from exercise, refraining from eating certain foods, and refraining from eating certain foods. It may encourage intake, but this varies depending on the type of weather disease. By informing the user of recommended actions before the onset of a weather disease, the user can take actions to prevent the onset of the weather disease or accidents caused by it.
  • FIGS. 12 and 13 show an example in which the dosing timing notification unit 36 or the recommended action notification unit 37 is added to the meteorological disease prediction system 200 of the third embodiment (FIG. 8); 4 (FIG. 10). Furthermore, when the meteorological disease prediction system 200 is provided with the dosing timing notification section 36 or the recommended action notification section 37, the meteorological disease prediction notification section 34 may be omitted.
  • the weather prediction device 10, the weather prediction model creation device 20, and the weather disease prediction device 30 shown above can be realized by a hardware configuration as shown in FIG. 14 or 15, respectively.
  • the weather forecasting device 10 When the weather forecasting device 10 is realized by the processing circuit 50 shown in FIG. 14, the weather forecasting device 10 acquires the vital signs of the person, the appearance point and time of appearance of the vital signs, and acquires weather observation data. , a processing circuit 50 is provided for making weather predictions from a person's vital signs and weather observation data at the appearance point and appearance time of the vital signs using a weather prediction model.
  • a processing circuit 50 is provided for creating a weather prediction model by learning the correlation between a person's vital signs and weather changes at the point where the vital signs appear, using the accumulated information.
  • a processing circuit 50 is provided for predicting the onset of a weather disease in a user based on information regarding the weather disease.
  • the processing circuit 50 may be dedicated hardware, or may be a processor (Central Processing Unit (CPU), processing device, arithmetic device, microprocessor, microcomputer, etc.) that executes a program stored in memory. It may be configured using a DSP (also called Digital Signal Processor).
  • processor Central Processing Unit (CPU)
  • CPU Central Processing Unit
  • DSP Digital Signal Processor
  • the processing circuit 50 may be, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), or an FPGA (Field-Programmable Circuit). Gate Array), or a combination of these.
  • the functions of each component of the weather forecasting device 10 may be realized by separate processing circuits, or these functions may be realized by a single processing circuit.
  • FIG. 15 shows an example of the hardware configuration of the weather prediction device 10, the weather prediction model creation device 20, and the weather disease prediction device 30 in a case where the processing circuit 50 is configured using a processor 51 that executes a program.
  • the functions of the components of the weather prediction device 10, the weather prediction model creation device 20, and the weather disease prediction device 30 are realized by software or the like (software, firmware, or a combination of software and firmware).
  • Software etc. are written as programs and stored in the memory 52.
  • the processor 51 implements the functions of each section by reading and executing programs stored in the memory 52.
  • the weather prediction device 10 When the weather prediction device 10 is realized by the processor 51 and memory 52 shown in FIG. 15, the weather prediction device 10, when executed by the processor 51, calculates the vital signs of a person and the point and time of appearance of the vital signs.
  • the process includes a process of acquiring information, a process of acquiring weather observation data, and a process of making weather predictions using a weather prediction model from the person's vital signs and the weather observation data at the appearance point and time of the vital signs.
  • a memory 52 is provided for storing programs that will eventually be executed.
  • a weather prediction model is created by accumulating information on the appearance point and time of appearance, and using this accumulated information to learn the correlation between a person's vital signs and changes in the weather at the appearance point of the vital sign. , and a memory 52 for storing a program to be executed as a result.
  • the weather disease prediction device 30 is realized by the processor 51 and the memory 52 shown in FIG. , a process for predicting the onset of a user's weather disease based on the weather prediction results for the user's current location and information regarding the user's weather disease; and a memory for storing a program that will be executed as a result. 52.
  • each of the above programs can be said to cause a computer to execute the operating procedures and methods of the components of the weather prediction device 10, the weather prediction model creation device 20, or the weather disease prediction device 30.
  • the memory 52 is, for example, a non-volatile or Volatile semiconductor memory, HDD (Hard Disk Drive), magnetic disk, flexible disk, optical disk, compact disk, mini disk, DVD (Digital Versatile Disc) and their drive devices, as well as all storage media that will be used in the future. Good too.
  • HDD Hard Disk Drive
  • magnetic disk flexible disk
  • optical disk compact disk
  • mini disk mini disk
  • DVD Digital Versatile Disc
  • the present invention is not limited to this, and some of the components of the weather forecasting device 10, the weather forecasting model creation device 20, and the weather disease prediction device 30 may be realized by dedicated hardware, and other components may be realized by software.
  • the configuration may be realized by, etc.
  • the functions are realized by the processing circuit 50 as dedicated hardware, and for some other components, the processing circuit 50 as the processor 51 executes the program stored in the memory 52. The function can be realized by reading and executing it.
  • the weather prediction device 10 can implement the above-mentioned functions using hardware, software, etc., or a combination thereof.
  • a vital sign acquisition unit that acquires information on a person's vital signs and the point and time of appearance of the vital signs
  • a weather observation data acquisition unit that acquires weather observation data
  • Using a weather prediction model obtained by learning the correlation between a person's vital signs and changes in the weather at the point where the vital signs appear, the vital signs of the person acquired by the vital sign acquisition unit and the vital signs of the person concerned are a weather forecasting unit that makes weather predictions from weather observation data at the appearance point and appearance time;
  • the weather prediction model learns not only the correlation between a person's vital signs and changes in the weather at the point where the vital signs appear, but also the correlation between the person's vital data and changes in the weather at the point where the vital data is measured.
  • This is a weather prediction model obtained by The weather prediction unit uses the weather prediction model to obtain the human vital signs acquired by the vital sign acquisition unit, weather observation data at the appearance point and time of the vital signs, and the vital signs acquired by the vital data acquisition unit. Making weather predictions from human vital data and meteorological observation data at the measurement point and time of the vital data; The weather prediction system described in Appendix 1.
  • the vital sign acquisition unit analyzes a text or image posted to a social networking service and extracts the vital signs of the person who posted the text or image.
  • the weather forecasting system described in Supplementary Note 1 or Supplementary Note 2.
  • a disaster prediction unit that predicts the occurrence of a disaster based on the results of the weather prediction by the weather prediction unit; a disaster prediction and notification unit that notifies users in areas where a disaster is predicted to occur, of disaster prediction information; further comprising, The weather prediction system according to any one of Supplementary notes 1 to 4.
  • Appendix 6 a data storage unit that stores information on the person's vital signs acquired by the vital sign acquisition unit and the appearance point and time of the vital signs, and weather observation data acquired by the weather observation data acquisition unit; a weather prediction model creation unit that creates the weather prediction model by learning the correlation between a person's vital signs and weather changes at the point where the vital signs appear, using the information accumulated in the data storage unit; , further comprising, The weather prediction system described in Appendix 1.
  • (Appendix 7) Information on the person's vital signs acquired by the vital sign acquisition unit and the appearance point and time of appearance of the vital signs, and information on the person's vital data acquired by the vital data acquisition unit and the measurement point and measurement time of the vital data. and a data storage unit that stores the weather observation data acquired by the weather observation data acquisition unit; Using the information accumulated in the data storage unit, the correlation between a person's vital signs and changes in the weather at the point where the vital signs appear, and the changes in the person's vital data and the weather at the measurement point of the vital data. a weather prediction model creation unit that creates the weather prediction model by learning the correlation between the further comprising, The weather prediction system described in Appendix 2.
  • (Appendix 8) a user information storage unit in which information regarding the user's meteorological illness is registered; a user location acquisition unit that acquires information on the current location of the user; Based on the result of the weather prediction of the user's current location obtained from the weather prediction system according to any one of Supplementary Notes 1 to 7 and information regarding the weather disease of the user, the onset of the weather disease of the user.
  • a meteorological disease forecasting department that predicts Equipped with Meteorological disease prediction system.
  • Appendix 9 further comprising a user vital data acquisition unit that acquires the user's vital data, The weather disease prediction unit predicts the onset of a weather disease in the user, taking into account the user's vital data.
  • the user vital data acquisition unit acquires information on the measurement time and measurement point of the vital data in addition to the user's vital data,
  • the meteorological disease prediction unit predicts the onset of a meteorological disease in the user, taking into consideration the measurement time and measurement point of the user's vital data.
  • Appendix 12 further comprising a dosing timing notification unit that notifies a user who is predicted to develop a weather disease of the timing of taking a medicine to suppress the onset of the weather disease;
  • the meteorological disease prediction system according to any one of Supplementary notes 8 to 11.
  • Weather prediction system 10 Weather prediction device, 11 Vital sign acquisition unit, 12 Weather observation data acquisition unit, 13 Weather prediction unit, 14 Weather prediction transmission unit, 15 Vital data acquisition unit, 16 Disaster prediction unit, 17 Disaster prediction notification unit , 20 Weather prediction model creation device, 21 Data storage unit, 22 Weather prediction model creation unit, 23 Weather prediction model storage unit, 23a Weather prediction model, 200 Weather disease prediction system, 30 Weather disease prediction device, 31 User information storage unit, 32 User position acquisition section, 33 Weather disease prediction section, 34 Weather disease prediction notification section, 35 User vital data acquisition section, 36 Dosing timing notification section, 37 Recommended action notification section, 50 Processing circuit, 51 Processor, 52 Memory.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Business, Economics & Management (AREA)
  • General Health & Medical Sciences (AREA)
  • Medical Informatics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Primary Health Care (AREA)
  • Tourism & Hospitality (AREA)
  • Public Health (AREA)
  • Physics & Mathematics (AREA)
  • Animal Behavior & Ethology (AREA)
  • Economics (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Surgery (AREA)
  • Pathology (AREA)
  • Biophysics (AREA)
  • Environmental Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Ecology (AREA)
  • Biodiversity & Conservation Biology (AREA)
  • Heart & Thoracic Surgery (AREA)
  • Human Resources & Organizations (AREA)
  • Marketing (AREA)
  • Atmospheric Sciences (AREA)
  • Strategic Management (AREA)
  • General Business, Economics & Management (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Epidemiology (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)

Abstract

A vital sign acquisition unit (11) of a weather prediction system (100) acquires a vital sign for a person as well as information about the place of occurrence and time of occurrence of the vital sign. A weather observation data acquisition unit (12) acquires weather observation data. A weather prediction unit (13) uses a weather prediction model (23a) trained using the correlation between persons' vital signs and changes in the weather at the places of occurrence of the vital signs to predict the weather from the vital sign for the person acquired by the vital sign acquisition unit (11) and weather observation data acquired by the weather observation data acquisition unit (12) for the place of occurrence and time of occurrence of the vital sign. The results of the weather prediction made by the weather prediction unit (13) are sent to a user of the weather prediction system (100).

Description

気象予測システムおよび気象病予測システムWeather prediction system and meteorological disease prediction system
 本開示は、気象を予測する気象予測システムおよび気象病の発症を予測する気象病予測システムに関するものである。 The present disclosure relates to a weather prediction system that predicts the weather and a weather disease prediction system that predicts the onset of weather diseases.
 従来、気象予測システムは、各地に設置された気象測定器により測定された気象観測データに基づいて将来の気象を予測している。 Conventionally, weather prediction systems predict future weather based on weather observation data measured by weather measuring instruments installed in various places.
 また、気象条件の変化によって発症する疾患は「気象病」と呼ばれ、例えば下記の特許文献1には、予測された気象の情報とユーザ個人の気象病の情報とに基づいて、ユーザの気象病の発症を予測する気象病予測システムが開示されている。 In addition, diseases that develop due to changes in weather conditions are called "weather diseases." For example, in Patent Document 1 below, a user's weather condition is determined based on predicted weather information and user's personal weather disease information. A meteorological disease prediction system for predicting the onset of diseases has been disclosed.
特開2002-311158号公報Japanese Patent Application Publication No. 2002-311158
 従来の気象予測システムにおいて、局所的な地域の気象予測の精度を向上させるためには、気象測定器の設置数を増やす必要がある。しかし、気象測定器の設置数を増やすためには新たな気象測定器の設置場所の確保が必要であり、また、気象測定器の設置数が増えると気象測定器のメンテナンスコストが増加するなどの課題もある。 In conventional weather forecasting systems, in order to improve the accuracy of local weather forecasting, it is necessary to increase the number of weather measuring instruments installed. However, in order to increase the number of meteorological measuring instruments installed, it is necessary to secure a new location for installing the meteorological measuring instruments, and as the number of installed meteorological measuring instruments increases, the maintenance cost of the meteorological measuring instruments also increases. There are also challenges.
 本開示は以上のような課題を解決するためになされたものであり、気象測定器の設置数を増やすことなく、局所的な地域の気象予測の精度を向上させることを目的とする。 The present disclosure has been made to solve the above-mentioned problems, and aims to improve the accuracy of local weather forecasting without increasing the number of weather measuring instruments installed.
 本開示に係る気象予測システムは、人のバイタルサインならびに当該バイタルサインの出現地点および出現時刻の情報を取得するバイタルサイン取得部と、気象観測データを取得する気象観測データ取得部と、人のバイタルサインと当該バイタルサインの出現地点の気象の変化との相関関係を学習して得られた気象予測モデルを用いて、前記バイタルサイン取得部が取得した人のバイタルサインならびに当該バイタルサインの出現地点および出現時刻における気象観測データから気象予測を行う気象予測部と、を備える。 The weather forecasting system according to the present disclosure includes a vital sign acquisition unit that acquires information on a person's vital signs and the appearance point and time of the vital signs, a weather observation data acquisition unit that acquires weather observation data, and a weather observation data acquisition unit that acquires weather observation data. Using a weather prediction model obtained by learning the correlation between a sign and a change in weather at the point where the vital sign appears, the vital sign acquisition section acquires the person's vital signs and the point where the vital sign appears. A weather prediction unit that performs weather prediction from weather observation data at the time of appearance.
 本開示によれば、気象予測に人のバイタルサインの情報が加味されるため、気象測定器の設置数を増やすことなく、局所的な地域の気象予測の精度を向上させることができる効果がある。 According to the present disclosure, since information on a person's vital signs is taken into account in weather prediction, the accuracy of local weather prediction can be improved without increasing the number of weather measuring instruments installed. .
実施の形態1に係る気象予測システムの構成を示す図である。1 is a diagram showing the configuration of a weather prediction system according to Embodiment 1. FIG. バイタルサインおよび気象観測データの例を示す図である。FIG. 3 is a diagram showing an example of vital signs and weather observation data. 実施の形態1に係る気象予測装置の動作を示すフローチャートである。3 is a flowchart showing the operation of the weather forecasting device according to the first embodiment. 実施の形態1に係る気象予測モデル作成装置の動作を示すフローチャートである。3 is a flowchart showing the operation of the weather prediction model creation device according to the first embodiment. 実施の形態2に係る気象予測システムの構成を示す図である。FIG. 2 is a diagram showing the configuration of a weather prediction system according to a second embodiment. 実施の形態2に係る気象予測装置の動作を示すフローチャートである。7 is a flowchart showing the operation of the weather forecasting device according to Embodiment 2. FIG. 実施の形態1および2に係る気象予測システムの変形例を示す図である。FIG. 6 is a diagram showing a modification of the weather prediction system according to Embodiments 1 and 2. FIG. 実施の形態3に係る気象病予測システムの構成を示す図である。3 is a diagram showing the configuration of a meteorological disease prediction system according to Embodiment 3. FIG. 実施の形態3に係る気象病予測装置の動作を示すフローチャートである。12 is a flowchart showing the operation of the meteorological disease prediction device according to Embodiment 3. 実施の形態4に係る気象病予測システムの構成を示す図である。It is a figure showing the composition of the meteorological disease prediction system concerning Embodiment 4. 実施の形態4に係る気象病予測装置の動作を示すフローチャートである。12 is a flowchart showing the operation of the meteorological disease prediction device according to Embodiment 4. 実施の形態3および4に係る気象病予測システムの第1の変形例を示す図である。It is a figure showing the 1st modification of the meteorological disease prediction system concerning Embodiment 3 and 4. 実施の形態3および4に係る気象病予測システムの第2の変形例を示す図である。It is a figure which shows the 2nd modification of the meteorological disease prediction system based on Embodiment 3 and 4. 気象予測装置、気象予測モデル作成装置および気象病予測装置のハードウェア構成例を示す図である。1 is a diagram illustrating an example of a hardware configuration of a weather prediction device, a weather prediction model creation device, and a weather disease prediction device. 気象予測装置、気象予測モデル作成装置および気象病予測装置のハードウェア構成例を示す図である。1 is a diagram illustrating an example of a hardware configuration of a weather prediction device, a weather prediction model creation device, and a weather disease prediction device.
 <実施の形態1>
 図1は、実施の形態1に係る気象予測システム100の構成を示す図である。図1のように、実施の形態1に係る気象予測システム100は、気象を予測する気象予測装置10と、気象予測装置10が気象予測に用いる気象予測モデル23aを作成する気象予測モデル作成装置20とを含んでいる。気象予測モデル作成装置20により作成される気象予測モデル23aは、人のバイタルサインと当該バイタルサインの出現地点の気象の変化との相関関係を学習して得られる気象モデルである。
<Embodiment 1>
FIG. 1 is a diagram showing the configuration of a weather prediction system 100 according to the first embodiment. As shown in FIG. 1, the weather prediction system 100 according to the first embodiment includes a weather prediction device 10 that predicts weather, and a weather prediction model creation device 20 that creates a weather prediction model 23a used by the weather prediction device 10 for weather prediction. Contains. The weather prediction model 23a created by the weather prediction model creation device 20 is a weather model obtained by learning the correlation between a person's vital signs and changes in the weather at the point where the vital signs appear.
 なお、図1では、気象予測装置10と気象予測モデル作成装置20とを、それぞれ別の装置として記載しているが、例えば気象予測装置10に気象予測モデル作成装置20が内蔵されるなど、気象予測装置10および気象予測モデル作成装置20は一体的な装置として構成されていてもよい。 Although the weather prediction device 10 and the weather prediction model creation device 20 are shown as separate devices in FIG. The prediction device 10 and the weather prediction model creation device 20 may be configured as an integrated device.
 ここで、バイタルサインとは、疾患の症状の有無あるいは程度を示す情報である。あらゆる疾患が気象の影響を受ける可能性があるため、バイタルサインが示す疾患は、偏頭痛や神経痛など一般に「気象病」と認識されているものに限る必要はない。また、バイタルサインが示す症状にも特に制約はなく、例えば、痛み、だるさ、痒み、目眩、下痢、涕涙、鼻水、感覚のズレ、感覚の不調、体のバランスの変化など、どのようなものでもよい。 Here, vital signs are information indicating the presence or absence or degree of symptoms of a disease. Since all kinds of diseases can be influenced by the weather, the diseases indicated by vital signs need not be limited to those generally recognized as "weather diseases" such as migraines and neuralgia. In addition, there are no particular restrictions on the symptoms that vital signs indicate, such as pain, malaise, itching, dizziness, diarrhea, lacrimation, runny nose, sensory imbalance, sensory imbalance, and changes in body balance. But that's fine.
 まず、気象予測装置10の構成について説明する。図1に示すように、気象予測装置10は、バイタルサイン取得部11、気象観測データ取得部12、気象予測部13および気象予測送信部14を備えている。 First, the configuration of the weather forecasting device 10 will be explained. As shown in FIG. 1, the weather prediction device 10 includes a vital sign acquisition section 11, a weather observation data acquisition section 12, a weather prediction section 13, and a weather prediction transmission section 14.
 バイタルサイン取得部11は、人のバイタルサインならびに当該バイタルサインの出現地点および出現時刻の情報を取得する。実施の形態1では、例えば携帯電話やスマートフォンなどの携帯端末のユーザが、自己のバイタルサインを携帯端末を用いて気象予測装置10に送信できるものとする。その際、携帯端末は、バイタルサインの出現地点および出現時刻の情報として、自己の位置情報およびバイタルサインの入力時刻の情報を、バイタルサインに付加して、気象予測装置10に送信する。バイタルサイン取得部11は、これらの情報を受信することで、人のバイタルサインならびに当該バイタルサインの出現地点および出現時刻の情報を取得することができる。ここで、「バイタルサインの出現地点」は、人にバイタルサインが出現したときにその人がいた地点であり、「バイタルサインの出現時刻」はそのバイタルサインが出現したときの時刻である。例えば、携帯端末のユーザが、バイタルサインが出現した後しばらく経ってから、バイタルサインの情報を携帯端末に入力する場合は、バイタルサインを入力する時点の携帯端末の位置および時刻がバイタルサインの出現地点および出現時刻と大きく異なることもある。よって、そのような場合、携帯端末のユーザは、バイタルサインの出現地点および出現時刻の情報も、携帯端末に入力する必要がある。 The vital sign acquisition unit 11 acquires a person's vital signs and information on the appearance point and appearance time of the vital signs. In the first embodiment, it is assumed that a user of a mobile terminal such as a mobile phone or a smartphone can transmit his or her vital signs to the weather prediction device 10 using the mobile terminal. At this time, the mobile terminal adds its own position information and information on the input time of the vital sign to the vital sign as information on the point and time of appearance of the vital sign, and transmits it to the weather prediction device 10. By receiving these pieces of information, the vital sign acquisition unit 11 can acquire the person's vital signs and information on the appearance point and appearance time of the vital signs. Here, the "vital sign appearance point" is the location where the person was when the vital sign appeared, and the "vital sign appearance time" is the time when the vital sign appeared. For example, if a mobile terminal user inputs vital sign information into the mobile terminal some time after the vital signs appear, the position and time of the mobile terminal at the time of inputting the vital signs is the same as the appearance of the vital signs. The location and time of appearance may be significantly different. Therefore, in such a case, the user of the mobile terminal also needs to input information on the appearance point and appearance time of the vital signs into the mobile terminal.
 また、携帯端末のユーザの承諾が得られれば、バイタルサイン取得部11は、携帯端末のユーザがソーシャルネットワーキングサービス(SNS)へ投稿した文章もしくは画像を取得して解析することで、人のバイタルサインならびに当該バイタルサインの出現地点および出現時刻の情報を取得してもよい。例えば、バイタルサイン取得部11は、携帯端末のユーザが投稿した文章から「頭痛」、「腰痛」、「膝痛」、「神経痛」、「目眩」などの予め定められたキーワードを検索し、検出されたキーワードをバイタルサインとして取得してもよい。キーワードは上記のような疾患の名称に限られず、例えば、「痛い」、「だるい」、「張りがある」、「痺れがある」、「ズキズキする」、「フラつく」、「まっすぐ歩けない」、「感覚が遅れる」、「圧迫感」、「膨張感」など感覚を表すものでもよい。また例えば、バイタルサイン取得部11は、携帯端末のユーザが投稿した画像から当該ユーザの顔や手足の肌を検出して解析し、表情や顔色、手足の皮膚の状態、瞳孔の状態などから、バイタルサインを検出してもよい。 Furthermore, if the consent of the user of the mobile terminal is obtained, the vital sign acquisition unit 11 acquires and analyzes texts or images posted by the user of the mobile terminal to a social networking service (SNS), thereby obtaining the vital signs of the person. Also, information on the appearance point and appearance time of the vital sign may be acquired. For example, the vital sign acquisition unit 11 searches and detects predetermined keywords such as "headache," "low back pain," "knee pain," "neuralgia," and "vertigo" from texts posted by users of mobile terminals. The searched keywords may be acquired as vital signs. Keywords are not limited to the names of the diseases listed above, but include, for example, ``pain,'' ``feeling tired,'' ``tension,'' ``numbness,'' ``throbbing,'' ``light-headed,'' and ``unable to walk straight.'' , "delayed sensation," "feeling of pressure," "feeling of expansion," or other sensations may be used. For example, the vital sign acquisition unit 11 detects and analyzes the user's face and skin of hands and feet from an image posted by the user of the mobile terminal, and based on the facial expression, complexion, condition of the skin of the hands and feet, condition of pupils, etc. Vital signs may also be detected.
 さらに、バイタルサイン取得部11は、携帯端末のユーザがSNSへ投稿した文章もしくは画像から、バイタルサインの情報とともに、当該バイタルサインの関連情報として気象の情報を取得してもよい。例えば、バイタルサイン取得部11は、携帯端末のユーザが投稿した文章から「晴れ」、「雨」、「曇り」、「雪」、「台風」などの予め定められたキーワードを検索し、検出されたキーワードに対応する気象の情報をバイタルサインの関連情報としてもよい。キーワードは上記のような天候を直接示すものに限られず、例えば、「眩しい」、「暑い」、「寒い」、「ギラギラしている」など感覚を表すものでもよい。また例えば、バイタルサイン取得部11は、携帯端末のユーザが投稿した画像を解析し、画像に写った雲、雨、雪、霧、水たまり、積雪などから、気象の情報を検出してもよい。また例えば、雲に関しては、雲の動きや変化、例えば、雲の速さや雲の厚さの分布変化などから、気象の情報を検出してもよい。 Further, the vital sign acquisition unit 11 may acquire not only vital sign information but also weather information as information related to the vital sign from a text or image posted by a user of a mobile terminal to an SNS. For example, the vital sign acquisition unit 11 searches for predetermined keywords such as "sunny," "rain," "cloudy," "snow," and "typhoon" from sentences posted by the user of the mobile terminal, and The weather information corresponding to the keyword may be used as vital sign related information. The keywords are not limited to those directly indicating the weather as described above, but may also be keywords expressing sensations such as "dazzling," "hot," "cold," and "glaring." For example, the vital sign acquisition unit 11 may analyze an image posted by a user of a mobile terminal and detect weather information from clouds, rain, snow, fog, puddles, snowfall, etc. appearing in the image. For example, with respect to clouds, weather information may be detected from cloud movements and changes, such as cloud speed and cloud thickness distribution changes.
 また、ウェアラブルもしくは持ち運び可能な痛みの検出装置を利用して、携帯端末にユーザのバイタルサインを自動的に入力し、それを携帯端末が自動的に気象予測装置10に送信するようにしてもよい。また、携帯端末のユーザが履いた靴に内蔵された圧力センサの出力信号を携帯端末で取得し、携帯端末がユーザの体のバランスの変化をバイタルサインとして検出して、気象予測装置10に送信してもよい。また、携帯端末のユーザが頭に取り付けた脳波検出センサの出力信号を携帯端末で取得し、携帯端末がユーザの体の状態の変化をバイタルサインとして検出して、気象予測装置10に送信してもよい。 Alternatively, a wearable or portable pain detection device may be used to automatically input the user's vital signs into the mobile terminal, and the mobile terminal may automatically transmit the vital signs to the weather forecasting device 10. . In addition, the mobile terminal acquires the output signal of the pressure sensor built into the shoes worn by the user of the mobile terminal, and the mobile terminal detects changes in the balance of the user's body as a vital sign and sends it to the weather forecasting device 10. You may. In addition, the mobile terminal acquires the output signal of the brain wave detection sensor attached to the head of the mobile terminal user, and the mobile terminal detects changes in the user's body condition as vital signs and sends them to the weather forecasting device 10. Good too.
 気象観測データ取得部12は、各地に設置された気象測定器から、気象観測データを取得する。気象測定器は、従来の気象予測システムで用いられているものでよい。気象観測データ取得部12が取得する気象観測データは、少なくともバイタルサイン取得部11により取得されたバイタルサインの出現地点および出現時刻に対応するデータを含むものとする。ただし、気象観測データ取得部12が取得する気象観測データには、バイタルサインの出現地点を含むある程度の広さの領域のデータ、および、バイタルサインの出現時刻を含むある程度の長さの時間の時系列データが含まれることが好ましい。 The weather observation data acquisition unit 12 acquires weather observation data from weather measuring instruments installed in various places. The weather measuring instrument may be one used in conventional weather forecasting systems. The weather observation data acquired by the weather observation data acquisition unit 12 includes at least data corresponding to the appearance point and appearance time of the vital sign acquired by the vital sign acquisition unit 11. However, the meteorological observation data acquired by the meteorological observation data acquisition unit 12 includes data of a certain size area including the appearance point of vital signs, and data of a certain length of time including the appearance time of vital signs. Preferably, series data is included.
 気象予測部13は、気象予測モデル作成装置20に保持されている気象予測モデル23aを用いて、バイタルサイン取得部11が取得したバイタルサインと、当該バイタルサインの出現地点および出現時刻における気象観測データとから、気象予測を行う。上述したように、気象予測モデル23aは、人のバイタルサインと当該バイタルサインの出現地点の気象の変化との相関関係を学習して得られた気象モデルである。気象予測モデル作成装置20および気象予測モデル23aの詳細は後述する。 The weather prediction unit 13 uses the weather prediction model 23a held in the weather prediction model creation device 20 to obtain the vital signs acquired by the vital sign acquisition unit 11 and weather observation data at the appearance point and time of the vital signs. From this, weather forecasts are made. As described above, the weather prediction model 23a is a weather model obtained by learning the correlation between a person's vital signs and changes in the weather at the point where the vital signs appear. Details of the weather prediction model creation device 20 and the weather prediction model 23a will be described later.
 気象予測送信部14は、気象予測部13による気象予測の結果を、例えばインターネット等のネットワークを通して、気象予測システム100のユーザへ発信する。気象予測システム100のユーザ(すなわち、気象予測結果の発信先)に制約はなく、例えば、天気予報番組を放送するテレビやラジオなどの放送事業者や、気象予測情報を提供するウェブサイトの運営事業者などが考えられる。 The weather prediction transmitting unit 14 transmits the results of the weather prediction by the weather prediction unit 13 to the users of the weather prediction system 100, for example, through a network such as the Internet. There are no restrictions on the users of the weather forecasting system 100 (that is, the recipients of the weather forecast results); for example, there are broadcasters such as television and radio broadcasters who broadcast weather forecast programs, and businesses that operate websites that provide weather forecast information. Possible reasons include:
 また、気象予測送信部14は、気象予測システム100の特定のユーザからの要求に応じて、当該ユーザが指定した地点の局所的な気象予測の結果を、当該ユーザに通知してもよい。特定のユーザとしては、例えば、野外イベント主催事業者、交通事業者、物流事業者、アイスクリーム等の生産事業者など、気象の影響を受けやすい事業の事業主が想定される。 Furthermore, in response to a request from a specific user of the weather prediction system 100, the weather prediction transmitter 14 may notify the user of the results of local weather prediction at a point specified by the user. The specific user is assumed to be, for example, an owner of a business that is easily affected by the weather, such as an outdoor event organizer, a transportation company, a logistics company, or a producer of ice cream or the like.
 次に、気象予測モデル作成装置20の構成について説明する。図1に示すように、気象予測モデル作成装置20は、データ蓄積部21、気象予測モデル作成部22および気象予測モデル記憶部23を備えている。 Next, the configuration of the weather prediction model creation device 20 will be explained. As shown in FIG. 1, the weather prediction model creation device 20 includes a data storage section 21, a weather prediction model creation section 22, and a weather prediction model storage section 23.
 データ蓄積部21は、気象予測装置10のバイタルサイン取得部11が取得した人のバイタルサインならびに当該バイタルサインの出現地点および出現時刻の情報と、気象予測装置10の気象観測データ取得部12が取得した気象観測データとを蓄積する記憶媒体である。図2に、データ蓄積部21に蓄積されるバイタルサインの情報および気象観測データの例を示す。気象観測データの項目には、観測地点、観測時刻、温度、気温、湿度(または水蒸気量)、気圧、降水量(または積雪量)、風速、風向、雲の形状や動き、これら観測データの短時間的変化が汲み取れるデータなど、あらゆるものが含まれてよい。 The data storage unit 21 stores the vital signs of the person acquired by the vital sign acquisition unit 11 of the weather prediction device 10 and information on the appearance point and time of the vital signs, and the information acquired by the weather observation data acquisition unit 12 of the weather prediction device 10. It is a storage medium that stores weather observation data. FIG. 2 shows an example of vital sign information and weather observation data stored in the data storage unit 21. Weather observation data items include observation point, observation time, temperature, air temperature, humidity (or water vapor amount), atmospheric pressure, precipitation (or snowfall amount), wind speed, wind direction, cloud shape and movement, and short information on these observation data. It can include anything such as data that shows changes over time.
 気象予測モデル作成部22は、データ蓄積部21に蓄積された情報を用いて、人のバイタルサインと当該バイタルサインの出現地点の気象の変化との相関関係を学習し、その学習の結果に基づいて気象予測モデル23aを作成する。 The weather prediction model creation unit 22 uses the information accumulated in the data storage unit 21 to learn the correlation between a person's vital signs and changes in the weather at the point where the vital signs appear, and based on the learning results. A weather prediction model 23a is created.
 気象予測モデル作成部22が行う学習の方法は、任意の方法でよい。例えば、気象予測モデル作成部22は、バイタルサインの情報および気象データを項目ごとに分類して、それらの全ての組み合わせに応じた気象モデルを作成し、それぞれの気象モデルについて、実際に得られた(データ蓄積部21に蓄積された)バイタルサインの情報および気象データと合致する度合い(ヒット数)を検証することで、確からしい気象モデルを学習するという方法が考えられる。この方法をとる場合、実際に得られたバイタルサインの情報および気象データと合致する度合いが予め定められた閾値以上の気象モデルだけを用いて、気象予測モデル23aを構築するとよい。 The learning method performed by the weather prediction model creation unit 22 may be any method. For example, the weather prediction model creation unit 22 classifies vital sign information and weather data by item, creates weather models according to all combinations of them, and for each weather model, A possible method is to learn a probable weather model by verifying the degree to which it matches vital sign information (stored in the data storage unit 21) and weather data (number of hits). When this method is adopted, it is preferable to construct the weather prediction model 23a using only weather models whose degree of matching with actually obtained vital sign information and weather data is equal to or higher than a predetermined threshold.
 また、例えば、気象予測モデル作成部22は、バイタルサインの情報および気象データを項目ごとに分類して、それらの全ての組み合わせに応じた気象モデルを作成し、それぞれの気象モデルについて、実際に得られた(データ蓄積部21に蓄積された)バイタルサインの情報および時間に対する気象データの変化量の度合い(ヒット数)を検証することで、確からしい気象モデルを学習するという方法が考えられる。この方法をとる場合、実際に得られたバイタルサインの情報および時間に対する気象データの変化量の度合いが予め定められた閾値以上の気象モデルだけを用いて、気象予測モデル23aを構築するとよい。ここでは、時間に対する気象データの変化量について説明したが、それ以外にも、温度に対する気象データの変化量、日照時間に対する気象データの変化量などを用いて、気象予測モデル23aを構築してもかまわない。 Further, for example, the weather prediction model creation unit 22 classifies vital sign information and weather data by item, creates weather models according to all combinations of them, and calculates actual results for each weather model. A possible method is to learn a probable weather model by verifying the vital sign information (stored in the data storage unit 21) and the degree of change (number of hits) in weather data over time. When this method is adopted, it is preferable to construct the weather prediction model 23a using only information on actually obtained vital signs and weather models in which the degree of change in weather data with respect to time is equal to or greater than a predetermined threshold. Although the amount of change in weather data with respect to time has been explained here, the weather prediction model 23a may also be constructed using the amount of change in weather data with respect to temperature, the amount of change in weather data with respect to sunshine hours, etc. I don't mind.
 作成された気象予測モデル23aは、気象予測モデル記憶部23に格納される。気象予測モデル記憶部23は、気象予測装置10からアクセス可能であり、気象予測装置10の気象予測部13は、気象予測モデル記憶部23に格納されている気象予測モデル23aを用いて気象予測を行うことができる。 The created weather prediction model 23a is stored in the weather prediction model storage unit 23. The weather prediction model storage unit 23 is accessible from the weather prediction device 10, and the weather prediction unit 13 of the weather prediction device 10 makes weather predictions using the weather prediction model 23a stored in the weather prediction model storage unit 23. It can be carried out.
 次に、図3のフローチャートを参照しつつ、気象予測装置10の動作を説明する。ここでは、説明の簡略化のため、バイタルサインの発信者が常に存在するものと仮定する。 Next, the operation of the weather forecasting device 10 will be explained with reference to the flowchart in FIG. 3. Here, to simplify the explanation, it is assumed that the sender of the vital signs is always present.
 まず、バイタルサイン取得部11が、人のバイタルサインならびに当該バイタルサインの出現地点および出現時刻の情報を取得する(ステップS101)。また、気象観測データ取得部12が、各地に設置された気象測定器から、気象観測データを取得する(ステップS102)。 First, the vital sign acquisition unit 11 acquires a person's vital signs and information on the appearance point and appearance time of the vital signs (step S101). Furthermore, the weather observation data acquisition unit 12 acquires weather observation data from weather measuring instruments installed in various places (step S102).
 そして、気象予測部13は、気象予測モデル作成装置20に保持されている気象予測モデル23aを用いて、ステップS101でバイタルサイン取得部11が取得したバイタルサインと、ステップS102で気象観測データ取得部12が取得した、当該バイタルサインの出現地点および出現時刻における気象観測データとから、当該バイタルサインの出現地点を含む地域の気象予測を行う(ステップS103)。 Then, using the weather prediction model 23a held in the weather prediction model creation device 20, the weather prediction unit 13 uses the vital signs acquired by the vital sign acquisition unit 11 in step S101 and the weather observation data acquisition unit in step S102. Based on the meteorological observation data at the appearance point and appearance time of the vital sign acquired by 12, the weather prediction for the area including the appearance point of the vital sign is performed (step S103).
 その後、気象予測部13は、気象予測の結果と気象観測データとを照合することで、気象予測の結果の信憑性を評価する(ステップS104)。例えば、気象予測部13は、気象予測の結果と現在の気象観測データとの乖離度を算出し、算出した乖離度が予め定められた閾値以下であれば、気象予測の結果の信憑性は高いと判断し、そうでなければ気象予測の結果の信憑性は低いと判断する。 Thereafter, the weather forecasting unit 13 evaluates the credibility of the weather prediction results by comparing the weather prediction results with the weather observation data (step S104). For example, the weather prediction unit 13 calculates the degree of deviation between the result of the weather prediction and the current weather observation data, and if the calculated degree of deviation is equal to or less than a predetermined threshold, the reliability of the result of the weather prediction is high. Otherwise, it is determined that the credibility of the weather prediction results is low.
 気象予測の結果の信憑性が高いと判断された場合(ステップS105でYES)、気象予測送信部14は、気象予測の結果を外部へ発信して(ステップS106)、ステップS101へ戻る。気象予測の結果の信憑性が低いと判断された場合(ステップS105でNO)、気象予測の結果は外部へ発信されず、ステップS101へ戻る。 If it is determined that the reliability of the weather prediction result is high (YES in step S105), the weather prediction transmitter 14 transmits the weather prediction result to the outside (step S106), and returns to step S101. If it is determined that the credibility of the weather prediction result is low (NO in step S105), the weather prediction result is not transmitted to the outside and the process returns to step S101.
 次に、図4のフローチャートを参照しつつ、気象予測モデル作成装置20の動作を説明する。ここでは、説明の簡略化のため、データ蓄積部21には気象予測モデル23aを作成するための学習に十分な量の情報が既に蓄積されているものと仮定する。 Next, the operation of the weather prediction model creation device 20 will be described with reference to the flowchart in FIG. 4. Here, to simplify the explanation, it is assumed that the data storage unit 21 has already accumulated enough information for learning to create the weather prediction model 23a.
 まず、気象予測部13が、気象予測装置10が新たに取得した情報、すなわち、気象予測装置10のバイタルサイン取得部11が新たに取得した人のバイタルサインならびに当該バイタルサインの出現地点および出現時刻の情報、および、気象予測装置10の気象観測データ取得部12が新たに取得した気象観測データを保存する(ステップS201)。 First, the weather prediction unit 13 collects the information newly acquired by the weather prediction device 10, that is, the vital signs of the person newly acquired by the vital sign acquisition unit 11 of the weather prediction device 10, and the appearance point and appearance time of the vital signs. information and the newly acquired weather observation data by the weather observation data acquisition unit 12 of the weather forecasting device 10 (step S201).
 続いて、気象予測モデル作成部22が、データ蓄積部21に蓄積された情報を用いて、人のバイタルサインと当該バイタルサインの出現地点の気象の変化との相関関係を学習する(ステップS202)。そして、気象予測モデル作成部22は、学習の結果に基づいて気象予測モデル23aを作成する(ステップS203)。 Next, the weather prediction model creation unit 22 uses the information accumulated in the data storage unit 21 to learn the correlation between a person's vital signs and changes in the weather at the point where the vital signs appear (step S202). . Then, the weather prediction model creation unit 22 creates a weather prediction model 23a based on the learning results (step S203).
 その後、気象予測モデル作成部22が作成した気象予測モデル23aを気象予測モデル記憶部23に保存し(ステップS204)、ステップS201に戻る。 Thereafter, the weather prediction model 23a created by the weather prediction model creation unit 22 is stored in the weather prediction model storage unit 23 (step S204), and the process returns to step S201.
 実施の形態1に係る気象予測システム100によれば、気象測定器で測定される気象観測データだけでなく、人のバイタルサインを考慮して気象予測が行われるため、人が存在する地域であれば、気象測定器の設置数を増やしたのと同様に、局所的な地域の気象予測の精度を向上することが期待できる。つまり、気象測定器の設置数を増やすことなく、局所的な地域の気象予測の精度を向上させることができる。 According to the weather forecasting system 100 according to the first embodiment, weather forecasting is performed not only based on weather observation data measured by a weather measuring instrument, but also taking into account people's vital signs, so that weather forecasting can be performed regardless of the area where there are people. For example, it can be expected to improve the accuracy of local weather forecasts in the same way as increasing the number of weather measuring instruments installed. In other words, the accuracy of local weather prediction can be improved without increasing the number of weather measuring instruments installed.
 <実施の形態2>
 図5は、実施の形態2に係る気象予測システム100の構成を示す図である。図5の気象予測システム100の構成は、図1の構成に対し、バイタルデータ取得部15を追加したものである。
<Embodiment 2>
FIG. 5 is a diagram showing the configuration of a weather prediction system 100 according to the second embodiment. The configuration of the weather prediction system 100 in FIG. 5 is such that a vital data acquisition section 15 is added to the configuration in FIG.
 バイタルデータ取得部15は、人のバイタルデータならびに当該バイタルデータの測定地点および測定時刻の情報を取得して、取得した情報を気象予測部13に提供する。 The vital data acquisition unit 15 acquires the person's vital data and information on the measurement point and measurement time of the vital data, and provides the acquired information to the weather prediction unit 13.
 ここで、バイタルデータとは、人体から測定できる生体情報であり、例えば、体温、血圧、心拍数、呼吸回数、脳波、血糖値などが代表的である。バイタルデータは人体から直接測定できるものに限られず、例えば、人体から採取した血液、唾液、汗、排泄物や、人体が摂取した食事などを分析して得られる情報であってもよい。バイタルデータは基本的に定量的な数値として測定可能であり、例えば時計型、イヤホン型、帽子型などのウェアラブルなバイタルデータの測定器も既に存在するため、バイタルデータは比較的取得しやすい情報である。 Here, vital data is biological information that can be measured from the human body, and representative examples include body temperature, blood pressure, heart rate, respiratory rate, brain waves, and blood sugar level. Vital data is not limited to what can be directly measured from the human body, but may also be information obtained by analyzing, for example, blood, saliva, sweat, excrement collected from the human body, or food ingested by the human body. Vital data can basically be measured as quantitative numbers, and there are already wearable vital data measurement devices such as watch-type, earphone-type, and hat-type devices, so vital data is information that is relatively easy to obtain. be.
 実施の形態2では、例えば携帯電話やスマートフォンなどの携帯端末が、ユーザの承諾の上、ユーザのバイタルデータを常にまたは一定周期で取得して気象予測装置10に自動的に送信するものとする。その際、携帯端末は、バイタルデータの測定地点および測定時刻の情報を、バイタルデータに付加して、気象予測装置10に送信する。バイタルデータ取得部15は、これらの情報を受信することで、人のバイタルデータならびに当該バイタルデータの測定地点および測定時刻の情報を取得することができる。ここで、「バイタルデータの測定地点」は、人のバイタルデータが測定されたときにその人がいた地点であり、「バイタルデータの測定地点」はそのバイタルデータが測定された時刻である。例えば、オンライン診療などで、バイタルデータの測定が遠隔地で行われたとしても、バイタルデータの測定地点はバイタルデータを測定された人(オンライン診療の患者)がいる地点である。また、人体から採取した血液などの検体からバイタルデータが測定される場合は、検体が採取された地点および時刻が、バイタルデータの測定地点および測定時刻となる。 In the second embodiment, it is assumed that a mobile terminal such as a mobile phone or a smartphone, for example, acquires the user's vital data at all times or at regular intervals and automatically transmits it to the weather forecasting device 10 with the user's consent. At this time, the mobile terminal adds information about the vital data measurement point and measurement time to the vital data, and transmits the vital data to the weather forecasting device 10. By receiving these pieces of information, the vital data acquisition unit 15 can acquire vital data of the person and information on the measurement point and measurement time of the vital data. Here, the "vital data measurement point" is the location where the person was when the person's vital data was measured, and the "vital data measurement point" is the time when the vital data was measured. For example, even if vital data is measured at a remote location in online medical treatment, the vital data measurement point is the point where the person whose vital data is measured (the patient in the online medical treatment) is located. Furthermore, when vital data is measured from a specimen such as blood collected from a human body, the point and time at which the specimen is collected becomes the vital data measurement point and measurement time.
 バイタルデータの発信者も携帯端末にユーザに限られない。例えば医療機関や一般家庭のトイレや浴室に、バイタルデータを検出して気象予測装置10に送信するセンサおよび送信機が設置されてもよい。 The sender of vital data is not limited to the mobile terminal user either. For example, a sensor and a transmitter that detect vital data and transmit it to the weather prediction device 10 may be installed in a toilet or bathroom of a medical institution or a general home.
 また、実施の形態2において、気象予測モデル作成装置20に保持されている気象予測モデル23aは、人のバイタルサインと当該バイタルサインの出現地点の気象の変化との相関関係に加え、人のバイタルデータと当該バイタルデータの測定地点の気象の変化との相関関係を学習して得られたものである。 In addition, in the second embodiment, the weather prediction model 23a held in the weather prediction model creation device 20 calculates not only the correlation between a person's vital signs and the weather change at the point where the vital signs appear, but also the This is obtained by learning the correlation between the data and changes in the weather at the measurement point of the vital data.
 気象予測部13は、この気象予測モデル23aを用いて、バイタルサイン取得部11が取得した人のバイタルサインならびに当該バイタルサインの出現地点および出現時刻における気象観測データと、バイタルデータ取得部15が取得した人のバイタルデータならびに当該バイタルデータの測定地点および測定時刻における気象観測データとから、気象予測を行う。 The weather prediction unit 13 uses the weather prediction model 23a to obtain the vital signs of the person acquired by the vital sign acquisition unit 11 and the meteorological observation data at the appearance point and time of the vital signs, and the vital data acquisition unit 15 acquires them. Weather predictions are made from the vital data of the person who has taken the test, as well as the meteorological observation data at the measurement point and time of the vital data.
 図6は、実施の形態2に係る気象予測装置10の動作を示すフローチャートである。図6のフローチャートは、図3のフローチャートに対し、ステップS110を挿入したものである。 FIG. 6 is a flowchart showing the operation of the weather prediction device 10 according to the second embodiment. The flowchart in FIG. 6 is the flowchart in FIG. 3 with step S110 inserted.
 ステップS110では、バイタルデータ取得部15が、人のバイタルデータならびに当該バイタルデータの測定地点および測定時刻の情報を取得する。また、ステップS103では、気象予測部13が、ステップS110で取得された情報を加味して気象予測を行う。他のステップは、図3に示したものと同様であるので、ここでの説明は省略する。 In step S110, the vital data acquisition unit 15 acquires the person's vital data and information on the measurement point and measurement time of the vital data. Furthermore, in step S103, the weather forecasting unit 13 performs weather forecasting taking into account the information acquired in step S110. The other steps are the same as those shown in FIG. 3, so the description here will be omitted.
 実施の形態2における気象予測モデル作成装置20の構成は図1と同様であり、その動作は、基本的に図4のフローチャートと同様である。ただし、実施の形態2では、データ蓄積部21に、バイタルサイン取得部11が取得した人のバイタルサインの情報および気象観測データ取得部12が取得した気象観測データだけでなく、バイタルデータ取得部15が取得したバイタルデータの情報も蓄積される。また、気象予測モデル作成部22は、データ蓄積部21に蓄積されたそれらの情報を用いて、人のバイタルサインと当該バイタルサインの出現地点の気象の変化との相関関係、および、人のバイタルデータと当該バイタルデータの測定地点の気象の変化との相関関係を学習することで、気象予測モデル23aを作成する。 The configuration of the weather prediction model creation device 20 in the second embodiment is the same as that in FIG. 1, and its operation is basically the same as the flowchart in FIG. 4. However, in the second embodiment, the data storage unit 21 stores not only the information on the person's vital signs acquired by the vital sign acquisition unit 11 and the meteorological observation data acquired by the weather observation data acquisition unit 12, but also the vital data acquisition unit 15. Vital data information acquired by the user is also stored. In addition, the weather prediction model creation unit 22 uses the information accumulated in the data storage unit 21 to determine the correlation between a person's vital signs and changes in the weather at the point where the vital signs appear, and A weather prediction model 23a is created by learning the correlation between the data and changes in weather at the measurement point of the vital data.
 実施の形態2に係る気象予測システム100によれば、気象測定器で測定される気象観測データだけでなく、人のバイタルサインおよびバイタルデータを考慮して気象予測が行われるため、人が存在する地域であれば、気象測定器の設置数を増やしたのと同様に、局所的な地域の気象予測の精度を向上することが期待できる。つまり、気象測定器の設置数を増やすことなく、局所的な地域の気象予測の精度を向上させることができる。 According to the weather prediction system 100 according to the second embodiment, weather prediction is performed taking into account not only the weather observation data measured by a weather measuring instrument but also the vital signs and vital data of the person. For regional areas, it can be expected to improve the accuracy of local weather forecasts in the same way as increasing the number of weather measuring instruments installed. In other words, the accuracy of local weather prediction can be improved without increasing the number of weather measuring instruments installed.
 <実施の形態1および2の変形例>
 図7は、気象予測システム100の変形例を示す図である。図7の気象予測システム100の構成は、実施の形態1(図1)の気象予測システム100に対し、災害予測部16および災害予測通知部17を追加したものである。
<Modifications of Embodiments 1 and 2>
FIG. 7 is a diagram showing a modification of the weather prediction system 100. The configuration of the weather prediction system 100 in FIG. 7 is such that a disaster prediction section 16 and a disaster prediction notification section 17 are added to the weather prediction system 100 in the first embodiment (FIG. 1).
 災害予測部16は、気象予測部13による気象予測の結果に基づいて、災害の発生を予測する。災害発生の予測方法は、任意の方法でよい。例えば、災害予測部16は、気象予測部13が予測した各地の降水量、積雪量、風速などを監視し、それらのいずれかの値が予め定められた閾値を超える地域を、災害の発生が予測される地域と判断してもよい。気象予測装置10が局所的な地域の気象を高い精度で予測できるため、災害予測部16による災害予測の精度向上が期待できる。 The disaster prediction unit 16 predicts the occurrence of a disaster based on the results of the weather prediction by the weather prediction unit 13. Any method may be used to predict the occurrence of a disaster. For example, the disaster prediction unit 16 monitors the amount of precipitation, snowfall, wind speed, etc. predicted by the weather prediction unit 13 in each region, and identifies areas where any of these values exceeds a predetermined threshold. It may be determined that the area is a predicted area. Since the weather prediction device 10 can predict local weather with high accuracy, it is expected that the accuracy of disaster prediction by the disaster prediction unit 16 will improve.
 災害予測通知部17は、災害予測部16によって災害が発生すると予測された地域のユーザに対し、災害予測の情報を通知する。例えば、災害予測通知部17は、災害が発生すると予測された地域のユーザの携帯端末に対し、災害予測の情報を送信する。 The disaster prediction notification unit 17 notifies users in areas where a disaster is predicted to occur by the disaster prediction unit 16 of disaster prediction information. For example, the disaster prediction notification unit 17 transmits disaster prediction information to mobile terminals of users in areas where a disaster is predicted to occur.
 なお、図7では、災害予測部16および災害予測通知部17を実施の形態1(図1)の気象予測システム100に追加した例を示したが、それらは実施の形態2(図5)の気象予測システム100にも適用できる。 Although FIG. 7 shows an example in which the disaster prediction unit 16 and disaster prediction notification unit 17 are added to the weather prediction system 100 of the first embodiment (FIG. 1), they are the same as those of the second embodiment (FIG. 5). It can also be applied to the weather prediction system 100.
 <実施の形態3>
 図8は、実施の形態3に係る気象病予測システム200の構成を示す図である。図8の気象病予測システム200は、実施の形態1または2に係る気象予測システム100(図8に示されている気象予測システム100は実施の形態1に係るものであるが、実施の形態2に係るものでもよい)と、気象予測システム100による気象予測の結果に基づいてユーザの気象病の発症を予測する気象病予測装置30とを備えている。気象予測システム100については、実施の形態1または2で説明したとおりであるので、ここでの説明は省略する。
<Embodiment 3>
FIG. 8 is a diagram showing the configuration of a meteorological disease prediction system 200 according to the third embodiment. The meteorological disease prediction system 200 in FIG. 8 is based on the weather prediction system 100 according to Embodiment 1 or 2 (the weather prediction system 100 shown in FIG. 8 is according to Embodiment 1, but the weather prediction system 100 according to Embodiment 2 ) and a meteorological disease prediction device 30 that predicts the onset of a weather disease in a user based on the results of weather prediction by the weather prediction system 100. The weather prediction system 100 is as described in Embodiment 1 or 2, so the description here will be omitted.
 図8に示すように、気象病予測装置30は、ユーザ情報記憶部31、ユーザ位置取得部32、気象病予測部33および気象病予測通知部34を備えている。 As shown in FIG. 8, the weather disease prediction device 30 includes a user information storage section 31, a user position acquisition section 32, a weather disease prediction section 33, and a weather disease prediction notification section 34.
 ユーザ情報記憶部31は、気象病予測システム200のユーザの気象病に関する情報が登録された記憶媒体である。ユーザは、通信端末(例えば携帯端末やパーソナルコンピュータなど)を用いて、自己の気象病に関する情報をユーザ情報記憶部31に登録することができる。気象病に関する情報としては、気象病の種類(名称)、症状、発症しやすい条件(例えば、気象条件、時間帯、場所など)が考えられる。発症しやすい条件は、医学的な裏付けがある必要はなく、ユーザの過去の経験に基づくものでよい(例えば「大雨警報がでたとき」、「等圧線の東西方向の間隔が狭いとき」、「午前中」、「会社に出勤しているとき」など)。 The user information storage unit 31 is a storage medium in which information regarding weather diseases of users of the weather disease prediction system 200 is registered. A user can register information regarding his or her weather disease in the user information storage unit 31 using a communication terminal (for example, a mobile terminal or a personal computer). Information regarding meteorological diseases may include the type (name) of the weather disease, its symptoms, and the conditions under which it is likely to develop (for example, weather conditions, time of day, location, etc.). Conditions that are likely to cause symptoms do not need to be medically backed, and may be based on the user's past experience (for example, ``when a heavy rain warning is issued'', ``when the distance between isobars in the east-west direction is narrow'', `` (e.g., "in the morning," "while at work," etc.)
 ユーザ位置取得部32は、ユーザの現在位置の情報を取得する。ユーザの位置情報は、例えば、ユーザの携帯端末や、ユーザが搭乗する車両のナビゲーションシステムなどから取得することができる。また、ユーザの位置情報を取得できない場合は、ユーザの自宅や勤務先など、予め登録された場所をユーザの現在位置とみなしてもよい。 The user location acquisition unit 32 acquires information on the user's current location. The user's location information can be acquired from, for example, the user's mobile terminal or the navigation system of the vehicle in which the user rides. Furthermore, if the user's location information cannot be acquired, a pre-registered location such as the user's home or workplace may be regarded as the user's current location.
 気象病予測部33は、気象予測システム100の気象予測装置10からユーザの現在位置の気象予測の結果を取得し、ユーザの現在位置の気象予測の結果と、ユーザ情報記憶部31に登録されているユーザの気象病に関する情報とに基づいて、ユーザの気象病の発症を予測する。つまり、気象病予測部33は、ユーザの現在位置の気象が気象病の発症しやすい状態になる時間帯や確率を予測する。 The meteorological disease prediction unit 33 acquires the weather prediction result for the user's current location from the weather prediction device 10 of the weather prediction system 100, and records the weather prediction result for the user's current location and the information registered in the user information storage unit 31. The onset of a user's weather disease is predicted based on information regarding the user's weather disease. In other words, the weather disease prediction unit 33 predicts the time period and probability that the weather at the user's current location will be in a state where the weather disease is likely to develop.
 気象病予測通知部34は、気象病予測部33によって気象病を発症すると予測されたユーザに対し、気象病予測の情報(例えば、気象病が発症する時間帯や、発症確率など)を通知する。例えば、気象病予測通知部34は、気象病を発症すると予測されたユーザの携帯端末に対し、例えばインターネット等のネットワークを通して、気象病予測の情報を送信する。 The meteorological disease prediction notification unit 34 notifies users predicted to develop a weather disease by the weather disease prediction unit 33 of weather disease prediction information (for example, the time period in which the weather disease will develop, the probability of onset, etc.). . For example, the weather disease prediction notification unit 34 transmits weather disease prediction information to the mobile terminal of a user who is predicted to develop a weather disease, for example, through a network such as the Internet.
 次に、図9のフローチャートを参照しつつ、気象病予測装置30の動作を説明する。ここでは、説明の簡略化のため、ユーザ情報記憶部31にユーザの気象病に関する情報が既に登録されているものと仮定する。 Next, the operation of the meteorological disease prediction device 30 will be explained with reference to the flowchart in FIG. Here, to simplify the explanation, it is assumed that information regarding the user's weather disease has already been registered in the user information storage unit 31.
 まず、ユーザ位置取得部32が、ユーザの現在位置の情報を取得する(ステップS301)。 First, the user location acquisition unit 32 acquires information on the user's current location (step S301).
 続いて、気象病予測部33が、気象予測システム100の気象予測装置10からユーザの現在位置の気象予測の結果(信憑性が低いと判断されたものを除く)を取得する(ステップS302)。そして、気象病予測部33は、ステップS302で取得したユーザの現在位置の気象予測の結果と、ユーザ情報記憶部31に登録されているユーザの気象病に関する情報とに基づいて、ユーザの気象病の発症を予測する(ステップS303)。 Subsequently, the meteorological disease prediction unit 33 acquires the weather prediction results for the user's current location (excluding those determined to have low credibility) from the weather prediction device 10 of the weather prediction system 100 (step S302). Then, the meteorological illness prediction unit 33 determines whether the user has a meteorological illness based on the weather prediction result for the user's current location acquired in step S302 and the information regarding the user's meteorological illness registered in the user information storage unit 31. The onset of the disease is predicted (step S303).
 その後、気象病予測通知部34は、ステップS303で気象病を発症すると予測されたユーザに対し、気象病予測の情報(例えば、気象病が発症する時間帯や、発症確率など)を通知する(ステップS304)。 Thereafter, the weather disease prediction notification unit 34 notifies the user predicted to develop a weather disease in step S303 of weather disease prediction information (for example, the time period in which the weather disease will develop, the probability of onset, etc.) Step S304).
 本実施の形態によれば、気象予測装置10が予測した精度の高い気象予測に基づいて、ユーザの気象病の発症予測が行われるため、気象病の発症予測の精度向上が期待できる。 According to the present embodiment, the onset prediction of the user's weather illness is performed based on the highly accurate weather prediction predicted by the weather forecasting device 10, so it can be expected that the accuracy of the prediction of the onset of the weather illness will be improved.
 ここで、気象病予測システム200内に、気象予測システム100を備える構成を説明したが、例えば、気象病予測装置30及び気象予測モデル記憶部23が携帯端末内に設けられ、気象予測を行っているユーザからネットワークを介して、気象予測部13からの気象予測の結果を取得しても構わない。その場合、気象予測装置10が新たに情報を取得したとき、気象予測モデル記憶部23内の気象予測モデルはネットワークを介して更新させることができる。 Here, a configuration has been described in which the weather prediction system 100 is included in the weather disease prediction system 200, but for example, the weather disease prediction device 30 and the weather prediction model storage unit 23 are provided in a mobile terminal to perform weather prediction. The weather prediction results from the weather prediction unit 13 may be obtained from the user via the network. In that case, when the weather prediction device 10 newly acquires information, the weather prediction model in the weather prediction model storage unit 23 can be updated via the network.
 <実施の形態4>
 図10は、実施の形態4に係る気象病予測システム200の構成を示す図である。図10の気象病予測システム200の構成は、図8の構成に対し、ユーザバイタルデータ取得部35を追加したものである。
<Embodiment 4>
FIG. 10 is a diagram showing the configuration of a meteorological disease prediction system 200 according to the fourth embodiment. The configuration of the meteorological disease prediction system 200 in FIG. 10 is such that a user vital data acquisition section 35 is added to the configuration in FIG.
 ユーザバイタルデータ取得部35は、気象病予測システム200のユーザのバイタルデータならびに当該バイタルデータの測定地点および測定時刻の情報を取得して、取得した情報を気象病予測部33に提供する。 The user vital data acquisition unit 35 acquires the vital data of the user of the meteorological illness prediction system 200 and information on the measurement point and measurement time of the vital data, and provides the acquired information to the meteorological illness prediction unit 33.
 実施の形態4では、ユーザが、例えば携帯電話やスマートフォンなどの携帯端末を用いて、自己のバイタルデータを常にまたは一定周期で気象病予測装置30に送信するものとする。その際、携帯端末は、バイタルデータの測定地点および測定時刻の情報を、バイタルデータに付加して、気象病予測装置30に送信する。ユーザバイタルデータ取得部35は、これらの情報を受信することで、ユーザのバイタルデータならびに当該バイタルデータの測定地点および測定時刻の情報を取得することができる。 In Embodiment 4, it is assumed that a user uses a mobile terminal such as a mobile phone or a smartphone to transmit his or her own vital data to the meteorological disease prediction device 30 at all times or at regular intervals. At this time, the mobile terminal adds information on the vital data measurement point and measurement time to the vital data, and transmits the vital data to the meteorological disease prediction device 30. By receiving this information, the user vital data acquisition unit 35 can acquire the user's vital data and information on the measurement point and measurement time of the vital data.
 ユーザのバイタルデータの発信手段は携帯端末に限られない。例えばユーザの自宅のトイレや浴室に、当該ユーザのバイタルデータを検出して気象病予測装置30に送信するセンサおよび送信機が設置されてもよい。 The means for transmitting the user's vital data is not limited to mobile terminals. For example, a sensor and a transmitter that detect the user's vital data and transmit it to the meteorological disease prediction device 30 may be installed in the toilet or bathroom of the user's home.
 また、実施の形態4において、気象病予測部33は、気象予測システム100の気象予測装置10から取得したユーザの現在位置の気象予測の結果と、ユーザ情報記憶部31に登録されているユーザの気象病に関する情報と、ユーザバイタルデータ取得部35が取得したユーザのバイタルデータとに基づいて、ユーザの気象病の発症を予測する。バイタルデータには気象病の予兆が現れることがあるため、気象病の発症予測にバイタルデータが加味されることで、気象病の発症予測の精度がさらに向上する。 In addition, in the fourth embodiment, the meteorological disease prediction unit 33 uses the weather prediction result of the user's current position acquired from the weather prediction device 10 of the weather prediction system 100 and the user's information registered in the user information storage unit 31. The onset of a weather disease in a user is predicted based on the information regarding the weather disease and the user's vital data acquired by the user vital data acquisition unit 35. Since vital data can sometimes give signs of weather disease, incorporating vital data into the prediction of the onset of weather disease will further improve the accuracy of predicting the onset of weather disease.
 図11は、実施の形態4に係る気象予測装置10の動作を示すフローチャートである。図11のフローチャートは、図9のフローチャートに対し、ステップS310を挿入したものである。 FIG. 11 is a flowchart showing the operation of the weather prediction device 10 according to the fourth embodiment. The flowchart in FIG. 11 is the flowchart in FIG. 9 with step S310 inserted.
 ステップS310では、ユーザバイタルデータ取得部35が、ユーザのバイタルデータならびに当該バイタルデータの測定地点および測定時刻の情報を取得する。また、ステップS303では、気象病予測部33が、ステップS310で取得された情報を加味して気象予測を行う。他のステップは、図9に示したものと同様であるので、ここでの説明は省略する。 In step S310, the user vital data acquisition unit 35 acquires the user's vital data and information on the measurement point and measurement time of the vital data. Furthermore, in step S303, the meteorological disease prediction unit 33 performs weather prediction, taking into account the information acquired in step S310. The other steps are the same as those shown in FIG. 9, so the description here will be omitted.
 実施の形態4に係る気象病予測システム200によれば、ユーザの気象病の発症予測に当該ユーザのバイタルデータが加味されるため、ユーザの気象病の発症予測の精度を実施の形態3よりも向上させることができる。 According to the weather disease prediction system 200 according to the fourth embodiment, since the vital data of the user is taken into account when predicting the onset of the user's weather disease, the accuracy of predicting the onset of the user's weather disease can be improved compared to the third embodiment. can be improved.
 なお、バイタルデータは時間帯や場所の影響を受けると考えられるため、気象病予測部33は、ユーザの気象病の発症予測にバイタルデータを加味する際、当該バイタルデータの測定時刻および測定地点も考慮に加えてもよい。それにより、ユーザの気象病の発症予測のさらなる精度向上が期待できる。 In addition, since vital data is considered to be influenced by the time of day and location, when adding vital data to the user's weather disease onset prediction, the meteorological disease prediction unit 33 also includes the measurement time and measurement point of the vital data. May be taken into consideration. This can be expected to further improve the accuracy of users' predictions of the onset of weather diseases.
 ここで、気象病予測システム200内に、気象予測システム100を備える構成を説明したが、例えば、気象病予測装置30及び気象予測モデル記憶部23が携帯端末内に設けられ、気象予測を行っているユーザからネットワークを介して、気象予測部13からの気象予測の結果を取得しても構わない。その場合、気象予測装置10が新たに情報を取得したとき、気象予測モデル記憶部23内の気象予測モデルはネットワークを介して更新させることができる。 Here, a configuration has been described in which the weather prediction system 100 is included in the weather disease prediction system 200, but for example, the weather disease prediction device 30 and the weather prediction model storage unit 23 are provided in a mobile terminal to perform weather prediction. The weather prediction results from the weather prediction unit 13 may be obtained from the user via the network. In that case, when the weather prediction device 10 newly acquires information, the weather prediction model in the weather prediction model storage unit 23 can be updated via the network.
 <実施の形態3および4の変形例>
 図12は、気象病予測システム200の第1の変形例を示す図である。図12の気象病予測システム200の構成は、実施の形態3(図8)の気象病予測システム200に対し、服用タイミング通知部36を追加したものである。
<Modifications of Embodiments 3 and 4>
FIG. 12 is a diagram showing a first modification of the meteorological disease prediction system 200. The configuration of the weather disease prediction system 200 in FIG. 12 is the same as the weather disease prediction system 200 in the third embodiment (FIG. 8) by adding a dosage timing notification section 36.
 服用タイミング通知部36は、気象病予測部33によって気象病を発症すると予測されたユーザに対し、当該気象病の発症を抑える薬の服用タイミングを通知する。例えば、服用タイミング通知部36は、当該ユーザの携帯端末に対し、薬の服用タイミングの通知を送信する。 The dosing timing notification unit 36 notifies the user who is predicted to develop a weather disease by the weather disease prediction unit 33 of the timing to take a medicine to suppress the onset of the weather disease. For example, the dosing timing notification unit 36 transmits a notification of the dosing timing of the medicine to the user's mobile terminal.
 薬の服用タイミングの決定方法は、任意の方法でよい。例えば、気象病が発症する予測時刻の一定時間前などを薬の服用タイミングとしてもよい。気象病が発症する前に、ユーザに薬の服用を促すことで、気象病の発症を未然に防ぐことができる。 Any method may be used to determine the timing of taking the medicine. For example, the timing for taking the medicine may be a certain period of time before the predicted time when the weather disease will develop. By prompting the user to take medicine before the weather disease develops, it is possible to prevent the onset of the weather disease.
 図13は、気象病予測システム200の第2の変形例を示す図である。図13の気象病予測システム200の構成は、実施の形態3(図8)の気象病予測システム200に対し、推奨行動通知部37を追加したものである。 FIG. 13 is a diagram showing a second modification of the weather disease prediction system 200. The configuration of the weather disease prediction system 200 in FIG. 13 is such that a recommended action notification section 37 is added to the weather disease prediction system 200 in the third embodiment (FIG. 8).
 推奨行動通知部37は、気象病予測部33によって気象病を発症すると予測されたユーザに対し、当該気象病の発症前または発症後に推奨される行動を通知する。例えば、推奨行動通知部37は、当該ユーザの携帯端末に対し、推奨される行動を通知する。 The recommended action notification unit 37 notifies the user predicted to develop a weather disease by the weather disease prediction unit 33 of recommended actions before or after the onset of the weather disease. For example, the recommended behavior notification unit 37 notifies the user's mobile terminal of the recommended behavior.
 気象病の発症前後に推奨される行動としては、例えば、外出を控えること、病院へ行くこと、車両の運転を控えること、運動を控えること、特定の食材の摂取を控えること、特定の食材の摂取を促すことなどがあるが、気象病の種類によって異なる。気象病が発症する前に、ユーザに推奨される行動を知らせることで、ユーザは気象病の発症またはそれに起因する事故を防止するための行動をとることができる。 Recommended actions before and after the onset of a weather disease include, for example, refraining from going out, going to the hospital, refraining from driving, refraining from exercise, refraining from eating certain foods, and refraining from eating certain foods. It may encourage intake, but this varies depending on the type of weather disease. By informing the user of recommended actions before the onset of a weather disease, the user can take actions to prevent the onset of the weather disease or accidents caused by it.
 なお、図12および図13では、服用タイミング通知部36または推奨行動通知部37を実施の形態3(図8))の気象病予測システム200に追加した例を示したが、それらは実施の形態4(図10)の気象病予測システム200にも適用できる。また、気象病予測システム200に服用タイミング通知部36または推奨行動通知部37を設ける場合、気象病予測通知部34は省略されてもよい。 Note that FIGS. 12 and 13 show an example in which the dosing timing notification unit 36 or the recommended action notification unit 37 is added to the meteorological disease prediction system 200 of the third embodiment (FIG. 8); 4 (FIG. 10). Furthermore, when the meteorological disease prediction system 200 is provided with the dosing timing notification section 36 or the recommended action notification section 37, the meteorological disease prediction notification section 34 may be omitted.
 <ハードウェア構成例>
 上に示した気象予測装置10、気象予測モデル作成装置20および気象病予測装置30は、それぞれ図14または図15のようなハードウェア構成により実現することができる。
<Hardware configuration example>
The weather prediction device 10, the weather prediction model creation device 20, and the weather disease prediction device 30 shown above can be realized by a hardware configuration as shown in FIG. 14 or 15, respectively.
 気象予測装置10が図14に示す処理回路50により実現される場合、気象予測装置10は、人のバイタルサインならびに当該バイタルサインの出現地点および出現時刻の情報を取得し、気象観測データを取得し、気象予測モデルを用いて、人のバイタルサインならびに当該バイタルサインの出現地点および出現時刻における気象観測データから気象予測を行うための処理回路50を備える。 When the weather forecasting device 10 is realized by the processing circuit 50 shown in FIG. 14, the weather forecasting device 10 acquires the vital signs of the person, the appearance point and time of appearance of the vital signs, and acquires weather observation data. , a processing circuit 50 is provided for making weather predictions from a person's vital signs and weather observation data at the appearance point and appearance time of the vital signs using a weather prediction model.
 また、気象予測モデル作成装置20が図14に示す処理回路50により実現される場合、気象予測モデル作成装置20は、人のバイタルサインならびに当該バイタルサインの出現地点および出現時刻の情報を蓄積し、蓄積されたそれらの情報を用いて、人のバイタルサインと当該バイタルサインの出現地点の気象の変化との相関関係を学習することで気象予測モデルを作成するための処理回路50を備える。 Furthermore, when the weather prediction model creation device 20 is realized by the processing circuit 50 shown in FIG. A processing circuit 50 is provided for creating a weather prediction model by learning the correlation between a person's vital signs and weather changes at the point where the vital signs appear, using the accumulated information.
 さらに、気象病予測装置30が図14に示す処理回路50により実現される場合、気象病予測装置30は、ユーザの現在位置の情報を取得し、ユーザの現在位置の気象予測の結果およびユーザの気象病に関する情報に基づいて、ユーザの気象病の発症を予測するための処理回路50を備える。 Furthermore, when the weather disease prediction device 30 is realized by the processing circuit 50 shown in FIG. A processing circuit 50 is provided for predicting the onset of a weather disease in a user based on information regarding the weather disease.
 処理回路50は、専用のハードウェアであってもよいし、メモリに格納されたプログラムを実行するプロセッサ(中央処理装置(CPU:Central Processing Unit)、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、DSP(Digital Signal Processor)とも呼ばれる)を用いて構成されていてもよい。 The processing circuit 50 may be dedicated hardware, or may be a processor (Central Processing Unit (CPU), processing device, arithmetic device, microprocessor, microcomputer, etc.) that executes a program stored in memory. It may be configured using a DSP (also called Digital Signal Processor).
 処理回路50が専用のハードウェアである場合、処理回路50は、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、またはこれらを組み合わせたものなどが該当する。気象予測装置10の構成要素の各々の機能が個別の処理回路で実現されてもよいし、それらの機能がまとめて一つの処理回路で実現されてもよい。 When the processing circuit 50 is dedicated hardware, the processing circuit 50 may be, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, an ASIC (Application Specific Integrated Circuit), or an FPGA (Field-Programmable Circuit). Gate Array), or a combination of these. The functions of each component of the weather forecasting device 10 may be realized by separate processing circuits, or these functions may be realized by a single processing circuit.
 図15は、処理回路50がプログラムを実行するプロセッサ51を用いて構成されている場合における気象予測装置10、気象予測モデル作成装置20および気象病予測装置30のハードウェア構成の例を示している。この場合、気象予測装置10、気象予測モデル作成装置20および気象病予測装置30の構成要素の機能は、ソフトウェア等(ソフトウェア、ファームウェア、またはソフトウェアとファームウェアとの組み合わせ)により実現される。ソフトウェア等はプログラムとして記述され、メモリ52に格納される。プロセッサ51は、メモリ52に記憶されたプログラムを読み出して実行することにより、各部の機能を実現する。 FIG. 15 shows an example of the hardware configuration of the weather prediction device 10, the weather prediction model creation device 20, and the weather disease prediction device 30 in a case where the processing circuit 50 is configured using a processor 51 that executes a program. . In this case, the functions of the components of the weather prediction device 10, the weather prediction model creation device 20, and the weather disease prediction device 30 are realized by software or the like (software, firmware, or a combination of software and firmware). Software etc. are written as programs and stored in the memory 52. The processor 51 implements the functions of each section by reading and executing programs stored in the memory 52.
 気象予測装置10が図15に示すプロセッサ51およびメモリ52により実現される場合、気象予測装置10は、プロセッサ51により実行されるときに、人のバイタルサインならびに当該バイタルサインの出現地点および出現時刻の情報を取得する処理と、気象観測データを取得する処理と、気象予測モデルを用いて、人のバイタルサインならびに当該バイタルサインの出現地点および出現時刻における気象観測データから気象予測を行う処理と、が結果的に実行されることになるプログラムを格納するためのメモリ52を備える。 When the weather prediction device 10 is realized by the processor 51 and memory 52 shown in FIG. 15, the weather prediction device 10, when executed by the processor 51, calculates the vital signs of a person and the point and time of appearance of the vital signs. The process includes a process of acquiring information, a process of acquiring weather observation data, and a process of making weather predictions using a weather prediction model from the person's vital signs and the weather observation data at the appearance point and time of the vital signs. A memory 52 is provided for storing programs that will eventually be executed.
 また、気象予測モデル作成装置20が図15に示すプロセッサ51およびメモリ52により実現される場合、気象予測モデル作成装置20は、プロセッサ51により実行されるときに、人のバイタルサインならびに当該バイタルサインの出現地点および出現時刻の情報を蓄積する処理と、蓄積されたそれらの情報を用いて、人のバイタルサインと当該バイタルサインの出現地点の気象の変化との相関関係を学習することで気象予測モデルを作成する処理と、が結果的に実行されることになるプログラムを格納するためのメモリ52を備える。 Further, when the weather prediction model creation device 20 is realized by the processor 51 and the memory 52 shown in FIG. A weather prediction model is created by accumulating information on the appearance point and time of appearance, and using this accumulated information to learn the correlation between a person's vital signs and changes in the weather at the appearance point of the vital sign. , and a memory 52 for storing a program to be executed as a result.
 さらに、気象病予測装置30が図15に示すプロセッサ51およびメモリ52により実現される場合、気象病予測装置30は、プロセッサ51により実行されるときに、ユーザの現在位置の情報を取得する処理と、ユーザの現在位置の気象予測の結果およびユーザの気象病に関する情報に基づいて、ユーザの気象病の発症を予測する処理と、が結果的に実行されることになるプログラムを格納するためのメモリ52を備える。 Furthermore, when the weather disease prediction device 30 is realized by the processor 51 and the memory 52 shown in FIG. , a process for predicting the onset of a user's weather disease based on the weather prediction results for the user's current location and information regarding the user's weather disease; and a memory for storing a program that will be executed as a result. 52.
 換言すれば、上記の各プログラムは、気象予測装置10、気象予測モデル作成装置20または気象病予測装置30の構成要素の動作の手順や方法をコンピュータに実行させるものであるともいえる。 In other words, each of the above programs can be said to cause a computer to execute the operating procedures and methods of the components of the weather prediction device 10, the weather prediction model creation device 20, or the weather disease prediction device 30.
 ここで、メモリ52は、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable Read Only Memory)、EEPROM(Electrically Erasable Programmable Read Only Memory)などの、不揮発性または揮発性の半導体メモリ、HDD(Hard Disk Drive)、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、DVD(Digital Versatile Disc)およびそのドライブ装置のほか、今後使用されるあらゆる記憶媒体であってもよい。 Here, the memory 52 is, for example, a non-volatile or Volatile semiconductor memory, HDD (Hard Disk Drive), magnetic disk, flexible disk, optical disk, compact disk, mini disk, DVD (Digital Versatile Disc) and their drive devices, as well as all storage media that will be used in the future. Good too.
 以上、気象予測装置10、気象予測モデル作成装置20および気象病予測装置30の構成要素の機能が、ハードウェアおよびソフトウェア等のいずれか一方で実現される構成について説明した。しかしこれに限ったものではなく、気象予測装置10、気象予測モデル作成装置20および気象病予測装置30の一部の構成要素を専用のハードウェアで実現し、別の一部の構成要素をソフトウェア等で実現する構成であってもよい。例えば、一部の構成要素については専用のハードウェアとしての処理回路50でその機能を実現し、他の一部の構成要素についてはプロセッサ51としての処理回路50がメモリ52に格納されたプログラムを読み出して実行することによってその機能を実現することが可能である。 The above describes the configuration in which the functions of the constituent elements of the weather prediction device 10, the weather prediction model creation device 20, and the weather disease prediction device 30 are realized by either hardware, software, or the like. However, the present invention is not limited to this, and some of the components of the weather forecasting device 10, the weather forecasting model creation device 20, and the weather disease prediction device 30 may be realized by dedicated hardware, and other components may be realized by software. The configuration may be realized by, etc. For example, for some components, the functions are realized by the processing circuit 50 as dedicated hardware, and for some other components, the processing circuit 50 as the processor 51 executes the program stored in the memory 52. The function can be realized by reading and executing it.
 以上のように、気象予測装置10、気象予測モデル作成装置20および気象病予測装置30は、ハードウェア、ソフトウェア等、またはこれらの組み合わせによって、上述の各機能を実現することができる。 As described above, the weather prediction device 10, the weather prediction model creation device 20, and the weather disease prediction device 30 can implement the above-mentioned functions using hardware, software, etc., or a combination thereof.
 なお、各実施の形態を自由に組み合わせたり、各実施の形態を適宜、変形、省略したりすることが可能である。 Note that it is possible to freely combine each embodiment, or to modify or omit each embodiment as appropriate.
 以下、本開示の諸態様を付記としてまとめて記載する。 Hereinafter, various aspects of the present disclosure will be collectively described as supplementary notes.
 (付記1)
 人のバイタルサインならびに当該バイタルサインの出現地点および出現時刻の情報を取得するバイタルサイン取得部と、
 気象観測データを取得する気象観測データ取得部と、
 人のバイタルサインと当該バイタルサインの出現地点の気象の変化との相関関係を学習して得られた気象予測モデルを用いて、前記バイタルサイン取得部が取得した人のバイタルサインならびに当該バイタルサインの出現地点および出現時刻における気象観測データから気象予測を行う気象予測部と、
を備える気象予測システム。
(Additional note 1)
a vital sign acquisition unit that acquires information on a person's vital signs and the point and time of appearance of the vital signs;
a weather observation data acquisition unit that acquires weather observation data;
Using a weather prediction model obtained by learning the correlation between a person's vital signs and changes in the weather at the point where the vital signs appear, the vital signs of the person acquired by the vital sign acquisition unit and the vital signs of the person concerned are a weather forecasting unit that makes weather predictions from weather observation data at the appearance point and appearance time;
A weather forecasting system equipped with
 (付記2)
 人のバイタルデータならびに当該バイタルデータの測定地点および測定時刻の情報を取得するバイタルデータ取得部をさらに備え、
 前記気象予測モデルは、人のバイタルサインと当該バイタルサインの出現地点の気象の変化との相関関係に加え、人のバイタルデータと当該バイタルデータの測定地点の気象の変化との相関関係を学習して得られた気象予測モデルであり、
 前記気象予測部は、前記気象予測モデルを用いて、前記バイタルサイン取得部が取得した人のバイタルサインならびに当該バイタルサインの出現地点および出現時刻における気象観測データと、前記バイタルデータ取得部が取得した人のバイタルデータならびに当該バイタルデータの測定地点および測定時刻における気象観測データとから、気象予測を行う、
付記1に記載の気象予測システム。
(Additional note 2)
further comprising a vital data acquisition unit that acquires the person's vital data and information on the measurement point and measurement time of the vital data,
The weather prediction model learns not only the correlation between a person's vital signs and changes in the weather at the point where the vital signs appear, but also the correlation between the person's vital data and changes in the weather at the point where the vital data is measured. This is a weather prediction model obtained by
The weather prediction unit uses the weather prediction model to obtain the human vital signs acquired by the vital sign acquisition unit, weather observation data at the appearance point and time of the vital signs, and the vital signs acquired by the vital data acquisition unit. Making weather predictions from human vital data and meteorological observation data at the measurement point and time of the vital data;
The weather prediction system described in Appendix 1.
 (付記3)
 前記バイタルサイン取得部は、ソーシャルネットワーキングサービスへ投稿された文章もしくは画像を解析して、当該文章もしくは画像を投稿した人のバイタルサインを抽出する、
付記1または付記2に記載の気象予測システム。
(Additional note 3)
The vital sign acquisition unit analyzes a text or image posted to a social networking service and extracts the vital signs of the person who posted the text or image.
The weather forecasting system described in Supplementary Note 1 or Supplementary Note 2.
 (付記4)
 ユーザからの要求に応じて、当該ユーザが指定した地点の前記気象予測の結果を、当該ユーザに通知する気象予測送信部をさらに備える、
付記1から付記3のいずれか一項に記載の気象予測システム。
(Additional note 4)
Further comprising a weather forecast transmission unit that notifies the user of the result of the weather forecast for a point specified by the user in response to a request from the user.
The weather prediction system according to any one of Supplementary notes 1 to 3.
 (付記5)
 前記気象予測部による前記気象予測の結果に基づいて、災害の発生を予測する災害予測部と、
 災害が発生すると予測された地域のユーザに対し、災害予測の情報を通知する災害予測通知部と、
をさらに備える、
付記1から付記4のいずれか一項に記載の気象予測システム。
(Appendix 5)
a disaster prediction unit that predicts the occurrence of a disaster based on the results of the weather prediction by the weather prediction unit;
a disaster prediction and notification unit that notifies users in areas where a disaster is predicted to occur, of disaster prediction information;
further comprising,
The weather prediction system according to any one of Supplementary notes 1 to 4.
 (付記6)
 前記バイタルサイン取得部が取得した人のバイタルサインならびに当該バイタルサインの出現地点および出現時刻の情報と、前記気象観測データ取得部が取得した気象観測データとを蓄積するデータ蓄積部と、
 前記データ蓄積部に蓄積された情報を用いて、人のバイタルサインと当該バイタルサインの出現地点の気象の変化との相関関係を学習することで前記気象予測モデルを作成する気象予測モデル作成部と、
をさらに備える、
付記1に記載の気象予測システム。
(Appendix 6)
a data storage unit that stores information on the person's vital signs acquired by the vital sign acquisition unit and the appearance point and time of the vital signs, and weather observation data acquired by the weather observation data acquisition unit;
a weather prediction model creation unit that creates the weather prediction model by learning the correlation between a person's vital signs and weather changes at the point where the vital signs appear, using the information accumulated in the data storage unit; ,
further comprising,
The weather prediction system described in Appendix 1.
 (付記7)
 前記バイタルサイン取得部が取得した人のバイタルサインならびに当該バイタルサインの出現地点および出現時刻の情報と、前記バイタルデータ取得部が取得した人のバイタルデータならびに当該バイタルデータの測定地点および測定時刻の情報と、前記気象観測データ取得部が取得した気象観測データとを蓄積するデータ蓄積部と、
 前記データ蓄積部に蓄積された情報を用いて、人のバイタルサインと当該バイタルサインの出現地点の気象の変化との相関関係、および、人のバイタルデータと当該バイタルデータの測定地点の気象の変化との相関関係を学習することで、前記気象予測モデルを作成する気象予測モデル作成部と、
をさらに備える、
付記2に記載の気象予測システム。
(Appendix 7)
Information on the person's vital signs acquired by the vital sign acquisition unit and the appearance point and time of appearance of the vital signs, and information on the person's vital data acquired by the vital data acquisition unit and the measurement point and measurement time of the vital data. and a data storage unit that stores the weather observation data acquired by the weather observation data acquisition unit;
Using the information accumulated in the data storage unit, the correlation between a person's vital signs and changes in the weather at the point where the vital signs appear, and the changes in the person's vital data and the weather at the measurement point of the vital data. a weather prediction model creation unit that creates the weather prediction model by learning the correlation between the
further comprising,
The weather prediction system described in Appendix 2.
 (付記8)
 ユーザの気象病に関する情報が登録されたユーザ情報記憶部と、
 前記ユーザの現在位置の情報を取得するユーザ位置取得部と、
 付記1から付記7のいずれか一項に記載の気象予測システムから取得された前記ユーザの現在位置の前記気象予測の結果および前記ユーザの気象病に関する情報に基づいて、前記ユーザの気象病の発症を予測する気象病予測部と、
を備える、
気象病予測システム。
(Appendix 8)
a user information storage unit in which information regarding the user's meteorological illness is registered;
a user location acquisition unit that acquires information on the current location of the user;
Based on the result of the weather prediction of the user's current location obtained from the weather prediction system according to any one of Supplementary Notes 1 to 7 and information regarding the weather disease of the user, the onset of the weather disease of the user. A meteorological disease forecasting department that predicts
Equipped with
Meteorological disease prediction system.
 (付記9)
 前記ユーザのバイタルデータを取得するユーザバイタルデータ取得部をさらに備え、
 前記気象病予測部は、前記ユーザのバイタルデータを加味して、前記ユーザの気象病の発症を予測する、
付記8に記載の気象病予測システム。
(Appendix 9)
further comprising a user vital data acquisition unit that acquires the user's vital data,
The weather disease prediction unit predicts the onset of a weather disease in the user, taking into account the user's vital data.
The meteorological disease prediction system described in Appendix 8.
 (付記10)
 前記ユーザバイタルデータ取得部は、前記ユーザのバイタルデータに加え、当該バイタルデータの測定時刻および測定地点の情報を取得し、
 前記気象病予測部は、前記ユーザのバイタルデータの測定時刻および測定地点を加味して、前記ユーザの気象病の発症を予測する、
付記9に記載の気象病予測システム。
(Appendix 10)
The user vital data acquisition unit acquires information on the measurement time and measurement point of the vital data in addition to the user's vital data,
The meteorological disease prediction unit predicts the onset of a meteorological disease in the user, taking into consideration the measurement time and measurement point of the user's vital data.
The meteorological disease prediction system described in Appendix 9.
 (付記11)
 気象病を発症すると予測されたユーザに対し、気象病予測の情報を通知する気象病予測通知部をさらに備える、
付記8から付記10のいずれか一項に記載の気象病予測システム。
(Appendix 11)
further comprising a weather disease prediction notification unit that notifies a user who is predicted to develop a weather disease of weather disease prediction information;
The meteorological disease prediction system according to any one of Supplementary notes 8 to 10.
 (付記12)
 気象病を発症すると予測されたユーザに対し、当該気象病の発症を抑える薬の服用タイミングを通知する服用タイミング通知部をさらに備える、
付記8から付記11のいずれか一項に記載の気象病予測システム。
(Appendix 12)
further comprising a dosing timing notification unit that notifies a user who is predicted to develop a weather disease of the timing of taking a medicine to suppress the onset of the weather disease;
The meteorological disease prediction system according to any one of Supplementary notes 8 to 11.
 (付記13)
 気象病を発症すると予測されたユーザに対し、当該気象病の発症前または発症後に推奨される行動を通知する推奨行動通知部をさらに備える、
付記8から付記12のいずれか一項に記載の気象病予測システム。
(Appendix 13)
further comprising a recommended action notification unit that notifies a user who is predicted to develop a weather disease of recommended actions before or after the onset of the weather disease;
The meteorological disease prediction system according to any one of Supplementary notes 8 to 12.
 100 気象予測システム、10 気象予測装置、11 バイタルサイン取得部、12 気象観測データ取得部、13 気象予測部、14 気象予測送信部、15 バイタルデータ取得部、16 災害予測部、17 災害予測通知部、20 気象予測モデル作成装置、21 データ蓄積部、22 気象予測モデル作成部、23 気象予測モデル記憶部、23a 気象予測モデル、200 気象病予測システム、30 気象病予測装置、31 ユーザ情報記憶部、32 ユーザ位置取得部、33 気象病予測部、34 気象病予測通知部、35 ユーザバイタルデータ取得部、36 服用タイミング通知部、37 推奨行動通知部、50 処理回路、51 プロセッサ、52 メモリ。 100 Weather prediction system, 10 Weather prediction device, 11 Vital sign acquisition unit, 12 Weather observation data acquisition unit, 13 Weather prediction unit, 14 Weather prediction transmission unit, 15 Vital data acquisition unit, 16 Disaster prediction unit, 17 Disaster prediction notification unit , 20 Weather prediction model creation device, 21 Data storage unit, 22 Weather prediction model creation unit, 23 Weather prediction model storage unit, 23a Weather prediction model, 200 Weather disease prediction system, 30 Weather disease prediction device, 31 User information storage unit, 32 User position acquisition section, 33 Weather disease prediction section, 34 Weather disease prediction notification section, 35 User vital data acquisition section, 36 Dosing timing notification section, 37 Recommended action notification section, 50 Processing circuit, 51 Processor, 52 Memory.

Claims (13)

  1.  人のバイタルサインならびに当該バイタルサインの出現地点および出現時刻の情報を取得するバイタルサイン取得部と、
     気象観測データを取得する気象観測データ取得部と、
     人のバイタルサインと当該バイタルサインの出現地点の気象の変化との相関関係を学習して得られた気象予測モデルを用いて、前記バイタルサイン取得部が取得した人のバイタルサインならびに当該バイタルサインの出現地点および出現時刻における気象観測データから気象予測を行う気象予測部と、
    を備える気象予測システム。
    a vital sign acquisition unit that acquires information on a person's vital signs and the point and time of appearance of the vital signs;
    a weather observation data acquisition unit that acquires weather observation data;
    Using a weather prediction model obtained by learning the correlation between a person's vital signs and changes in the weather at the point where the vital signs appear, the vital signs of the person acquired by the vital sign acquisition unit and the vital signs of the person concerned are a weather forecasting unit that makes weather predictions from weather observation data at the appearance point and appearance time;
    A weather forecasting system equipped with
  2.  人のバイタルデータならびに当該バイタルデータの測定地点および測定時刻の情報を取得するバイタルデータ取得部をさらに備え、
     前記気象予測モデルは、人のバイタルサインと当該バイタルサインの出現地点の気象の変化との相関関係に加え、人のバイタルデータと当該バイタルデータの測定地点の気象の変化との相関関係を学習して得られた気象予測モデルであり、
     前記気象予測部は、前記気象予測モデルを用いて、前記バイタルサイン取得部が取得した人のバイタルサインならびに当該バイタルサインの出現地点および出現時刻における気象観測データと、前記バイタルデータ取得部が取得した人のバイタルデータならびに当該バイタルデータの測定地点および測定時刻における気象観測データとから、気象予測を行う、
    請求項1に記載の気象予測システム。
    further comprising a vital data acquisition unit that acquires the person's vital data and information on the measurement point and measurement time of the vital data,
    The weather prediction model learns not only the correlation between a person's vital signs and changes in the weather at the point where the vital signs appear, but also the correlation between the person's vital data and changes in the weather at the point where the vital data is measured. This is a weather prediction model obtained by
    The weather prediction unit uses the weather prediction model to obtain the human vital signs acquired by the vital sign acquisition unit, weather observation data at the appearance point and time of the vital signs, and the vital signs acquired by the vital data acquisition unit. Making weather predictions from human vital data and meteorological observation data at the measurement point and time of the vital data;
    The weather prediction system according to claim 1.
  3.  前記バイタルサイン取得部は、ソーシャルネットワーキングサービスへ投稿された文章もしくは画像を解析して、当該文章もしくは画像を投稿した人のバイタルサインを抽出する、
    請求項1または請求項2に記載の気象予測システム。
    The vital sign acquisition unit analyzes a text or image posted to a social networking service and extracts the vital signs of the person who posted the text or image.
    The weather prediction system according to claim 1 or 2.
  4.  ユーザからの要求に応じて、当該ユーザが指定した地点の前記気象予測の結果を、当該ユーザに通知する気象予測送信部をさらに備える、
    請求項1から請求項3のいずれか一項に記載の気象予測システム。
    Further comprising a weather forecast transmission unit that notifies the user of the result of the weather forecast for a point specified by the user in response to a request from the user.
    The weather prediction system according to any one of claims 1 to 3.
  5.  前記気象予測部による前記気象予測の結果に基づいて、災害の発生を予測する災害予測部と、
     災害が発生すると予測された地域のユーザに対し、災害予測の情報を通知する災害予測通知部と、
    をさらに備える、
    請求項1から請求項4のいずれか一項に記載の気象予測システム。
    a disaster prediction unit that predicts the occurrence of a disaster based on the results of the weather prediction by the weather prediction unit;
    a disaster prediction and notification unit that notifies users in areas where a disaster is predicted to occur, of disaster prediction information;
    further comprising,
    The weather prediction system according to any one of claims 1 to 4.
  6.  前記バイタルサイン取得部が取得した人のバイタルサインならびに当該バイタルサインの出現地点および出現時刻の情報と、前記気象観測データ取得部が取得した気象観測データとを蓄積するデータ蓄積部と、
     前記データ蓄積部に蓄積された情報を用いて、人のバイタルサインと当該バイタルサインの出現地点の気象の変化との相関関係を学習することで前記気象予測モデルを作成する気象予測モデル作成部と、
    をさらに備える、
    請求項1に記載の気象予測システム。
    a data storage unit that stores information on the person's vital signs acquired by the vital sign acquisition unit and the appearance point and time of the vital signs, and weather observation data acquired by the weather observation data acquisition unit;
    a weather prediction model creation unit that creates the weather prediction model by learning the correlation between a person's vital signs and weather changes at the point where the vital signs appear, using the information accumulated in the data storage unit; ,
    further comprising,
    The weather prediction system according to claim 1.
  7.  前記バイタルサイン取得部が取得した人のバイタルサインならびに当該バイタルサインの出現地点および出現時刻の情報と、前記バイタルデータ取得部が取得した人のバイタルデータならびに当該バイタルデータの測定地点および測定時刻の情報と、前記気象観測データ取得部が取得した気象観測データとを蓄積するデータ蓄積部と、
     前記データ蓄積部に蓄積された情報を用いて、人のバイタルサインと当該バイタルサインの出現地点の気象の変化との相関関係、および、人のバイタルデータと当該バイタルデータの測定地点の気象の変化との相関関係を学習することで、前記気象予測モデルを作成する気象予測モデル作成部と、
    をさらに備える、
    請求項2に記載の気象予測システム。
    Information on the person's vital signs acquired by the vital sign acquisition unit and the appearance point and time of appearance of the vital signs, and information on the person's vital data acquired by the vital data acquisition unit and the measurement point and measurement time of the vital data. and a data storage unit that stores the weather observation data acquired by the weather observation data acquisition unit;
    Using the information accumulated in the data storage unit, the correlation between a person's vital signs and changes in the weather at the point where the vital signs appear, and the changes in the person's vital data and the weather at the measurement point of the vital data. a weather prediction model creation unit that creates the weather prediction model by learning the correlation between the
    further comprising,
    The weather prediction system according to claim 2.
  8.  ユーザの気象病に関する情報が登録されたユーザ情報記憶部と、
     前記ユーザの現在位置の情報を取得するユーザ位置取得部と、
     請求項1から請求項7のいずれか一項に記載の気象予測システムから取得された前記ユーザの現在位置の前記気象予測の結果および前記ユーザの気象病に関する情報に基づいて、前記ユーザの気象病の発症を予測する気象病予測部と、
    を備える、
    気象病予測システム。
    a user information storage unit in which information regarding the user's meteorological illness is registered;
    a user location acquisition unit that acquires information on the current location of the user;
    The weather disease of the user is determined based on the result of the weather prediction of the current location of the user obtained from the weather prediction system according to any one of claims 1 to 7 and information regarding the weather disease of the user. a meteorological disease prediction department that predicts the onset of
    Equipped with
    Meteorological disease prediction system.
  9.  前記ユーザのバイタルデータを取得するユーザバイタルデータ取得部をさらに備え、
     前記気象病予測部は、前記ユーザのバイタルデータを加味して、前記ユーザの気象病の発症を予測する、
    請求項8に記載の気象病予測システム。
    further comprising a user vital data acquisition unit that acquires the user's vital data,
    The weather disease prediction unit predicts the onset of a weather disease in the user, taking into account the user's vital data.
    The meteorological disease prediction system according to claim 8.
  10.  前記ユーザバイタルデータ取得部は、前記ユーザのバイタルデータに加え、当該バイタルデータの測定時刻および測定地点の情報を取得し、
     前記気象病予測部は、前記ユーザのバイタルデータの測定時刻および測定地点を加味して、前記ユーザの気象病の発症を予測する、
    請求項9に記載の気象病予測システム。
    The user vital data acquisition unit acquires information on the measurement time and measurement point of the vital data in addition to the user's vital data,
    The meteorological disease prediction unit predicts the onset of a meteorological disease in the user, taking into consideration the measurement time and measurement point of the user's vital data.
    The meteorological disease prediction system according to claim 9.
  11.  気象病を発症すると予測されたユーザに対し、気象病予測の情報を通知する気象病予測通知部をさらに備える、
    請求項8から請求項10のいずれか一項に記載の気象病予測システム。
    further comprising a weather disease prediction notification unit that notifies a user who is predicted to develop a weather disease of weather disease prediction information;
    The meteorological disease prediction system according to any one of claims 8 to 10.
  12.  気象病を発症すると予測されたユーザに対し、当該気象病の発症を抑える薬の服用タイミングを通知する服用タイミング通知部をさらに備える、
    請求項8から請求項11のいずれか一項に記載の気象病予測システム。
    further comprising a dosing timing notification unit that notifies a user who is predicted to develop a weather disease of the timing of taking a medicine to suppress the onset of the weather disease;
    The meteorological disease prediction system according to any one of claims 8 to 11.
  13.  気象病を発症すると予測されたユーザに対し、当該気象病の発症前または発症後に推奨される行動を通知する推奨行動通知部をさらに備える、
    請求項8から請求項12のいずれか一項に記載の気象病予測システム。
    further comprising a recommended action notification unit that notifies a user who is predicted to develop a weather disease of recommended actions before or after the onset of the weather disease;
    The meteorological disease prediction system according to any one of claims 8 to 12.
PCT/JP2022/048490 2022-04-07 2022-12-28 Weather prediction system and meteoropathy prediction system WO2023195207A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2024514153A JP7490162B2 (en) 2022-04-07 2022-12-28 Weather forecasting system and weather-related disease forecasting system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-063974 2022-04-07
JP2022063974 2022-04-07

Publications (1)

Publication Number Publication Date
WO2023195207A1 true WO2023195207A1 (en) 2023-10-12

Family

ID=88242693

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/048490 WO2023195207A1 (en) 2022-04-07 2022-12-28 Weather prediction system and meteoropathy prediction system

Country Status (2)

Country Link
JP (1) JP7490162B2 (en)
WO (1) WO2023195207A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013238970A (en) * 2012-05-14 2013-11-28 Secom Co Ltd Health management system
JP2018200567A (en) * 2017-05-26 2018-12-20 一般財団法人日本気象協会 Computer program, terminal device, method, and server
JP2021069283A (en) * 2019-10-29 2021-05-06 三菱電機株式会社 Control device and control system
JP2021174013A (en) * 2020-04-17 2021-11-01 シンメトリー・ディメンションズ・インク Disaster prediction system and disaster prediction method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001067403A (en) 1999-08-25 2001-03-16 Care Network:Kk Home health management system
JP3861136B2 (en) 2001-04-19 2006-12-20 いであ株式会社 Medical weather forecast distribution system, medical weather forecast distribution method, medical weather forecast distribution program
WO2017187495A1 (en) 2016-04-26 2017-11-02 株式会社オプティム Concierge system, method and program
JP2019037548A (en) 2017-08-25 2019-03-14 京セラ株式会社 Massage support device, massage support method, and massage support program

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013238970A (en) * 2012-05-14 2013-11-28 Secom Co Ltd Health management system
JP2018200567A (en) * 2017-05-26 2018-12-20 一般財団法人日本気象協会 Computer program, terminal device, method, and server
JP2021069283A (en) * 2019-10-29 2021-05-06 三菱電機株式会社 Control device and control system
JP2021174013A (en) * 2020-04-17 2021-11-01 シンメトリー・ディメンションズ・インク Disaster prediction system and disaster prediction method

Also Published As

Publication number Publication date
JP7490162B2 (en) 2024-05-24
JPWO2023195207A1 (en) 2023-10-12

Similar Documents

Publication Publication Date Title
Li et al. A dynamic panel data analysis of climate and tourism demand: Additional evidence
Christensen et al. Road traffic and railway noise exposures and adiposity in adults: a cross-sectional analysis of the Danish diet, cancer, and health cohort
US20200357503A1 (en) Information processing apparatus, information processing method, and program
Sanmartin et al. Comparing health and health care use in Canada and the United States
DiMaggio Small-area spatiotemporal analysis of pedestrian and bicyclist injuries in New York City
Wilson Weather, social distancing, and the spread of COVID-19
Fitzpatrick et al. Benchmarking the cost per person of mass treatment for selected neglected tropical diseases: an approach based on literature review and meta-regression with web-based software application
JP6192888B2 (en) Selecting sensor data stream metadata
JP7025131B2 (en) Computer programs, terminals, methods and servers
US20200194125A1 (en) Method and System for Tracking, Storing, and Processing Data to Identify Risk Factors and Predict Health-Related Conditions
Kaffash-Charandabi et al. A ubiquitous asthma monitoring framework based on ambient air pollutants and individuals’ contexts
Wang et al. The threat of Asian dust storms on asthma patients: a population-based study in Taiwan
Teke et al. The design and implementation of road condition warning system for drivers
Ibrahim et al. Recognising intrinsic motivation using smartphone trajectories
Corcoran et al. The effect of weather on assault
Ong et al. Enhancing Migraine Management System through Weather Forecasting for a Better Daily Life
KR102293433B1 (en) System for providing mental health care service using smartphone sensors
WO2023195207A1 (en) Weather prediction system and meteoropathy prediction system
Woodward et al. Climate change and human health
Hanke et al. Measuring community mobility in survivors of stroke using global positioning system technology: a prospective observational study
Tadros et al. Emergency department visits coded for swimming pool diving injuries
JP7042197B2 (en) Information processing equipment, information processing methods, and information processing programs
Wong et al. Geospatial context of social and environmental factors associated with health risk during temperature extremes: Review and discussion
JP7018857B2 (en) Information processing equipment, information processing methods, and information processing programs
JP6981946B2 (en) Information processing equipment, information processing methods, and information processing programs

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22936602

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2024514153

Country of ref document: JP