WO2023191534A1 - Cnt film using click reaction, cnt-based hydrogen gas sensor using same, and method for manufacturing same - Google Patents
Cnt film using click reaction, cnt-based hydrogen gas sensor using same, and method for manufacturing same Download PDFInfo
- Publication number
- WO2023191534A1 WO2023191534A1 PCT/KR2023/004256 KR2023004256W WO2023191534A1 WO 2023191534 A1 WO2023191534 A1 WO 2023191534A1 KR 2023004256 W KR2023004256 W KR 2023004256W WO 2023191534 A1 WO2023191534 A1 WO 2023191534A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polymer
- formula
- hydrogen gas
- gas sensor
- layer
- Prior art date
Links
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 title claims abstract description 170
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 55
- 238000012650 click reaction Methods 0.000 title claims abstract description 28
- 238000000034 method Methods 0.000 title abstract description 45
- 239000000758 substrate Substances 0.000 claims abstract description 85
- 229920000642 polymer Polymers 0.000 claims description 212
- 239000010410 layer Substances 0.000 claims description 147
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 claims description 95
- 239000002131 composite material Substances 0.000 claims description 85
- 239000002904 solvent Substances 0.000 claims description 72
- 229920001577 copolymer Polymers 0.000 claims description 56
- 125000000524 functional group Chemical group 0.000 claims description 55
- 239000000178 monomer Substances 0.000 claims description 51
- 229910052763 palladium Inorganic materials 0.000 claims description 46
- 239000002105 nanoparticle Substances 0.000 claims description 45
- 150000001875 compounds Chemical class 0.000 claims description 40
- 238000000576 coating method Methods 0.000 claims description 38
- 239000011248 coating agent Substances 0.000 claims description 37
- 239000011247 coating layer Substances 0.000 claims description 33
- 125000000217 alkyl group Chemical group 0.000 claims description 32
- 125000002947 alkylene group Chemical group 0.000 claims description 28
- 238000005406 washing Methods 0.000 claims description 27
- 239000002094 self assembled monolayer Substances 0.000 claims description 26
- 239000013545 self-assembled monolayer Substances 0.000 claims description 26
- 125000000304 alkynyl group Chemical group 0.000 claims description 25
- 239000002041 carbon nanotube Substances 0.000 claims description 24
- NIHNNTQXNPWCJQ-UHFFFAOYSA-N o-biphenylenemethane Natural products C1=CC=C2CC3=CC=CC=C3C2=C1 NIHNNTQXNPWCJQ-UHFFFAOYSA-N 0.000 claims description 24
- 229910052739 hydrogen Inorganic materials 0.000 claims description 22
- 239000001257 hydrogen Substances 0.000 claims description 22
- -1 nitro, cyano, amino, carboxyl Chemical group 0.000 claims description 19
- 150000003852 triazoles Chemical class 0.000 claims description 17
- 229910052751 metal Inorganic materials 0.000 claims description 15
- 239000002184 metal Substances 0.000 claims description 15
- 239000004593 Epoxy Substances 0.000 claims description 14
- 238000010438 heat treatment Methods 0.000 claims description 14
- 125000000732 arylene group Chemical group 0.000 claims description 13
- 229910052736 halogen Inorganic materials 0.000 claims description 12
- 150000002367 halogens Chemical class 0.000 claims description 12
- 125000003118 aryl group Chemical group 0.000 claims description 11
- 125000000753 cycloalkyl group Chemical group 0.000 claims description 11
- 125000005549 heteroarylene group Chemical group 0.000 claims description 11
- 229920003229 poly(methyl methacrylate) Polymers 0.000 claims description 11
- 239000004926 polymethyl methacrylate Substances 0.000 claims description 11
- 239000002109 single walled nanotube Substances 0.000 claims description 11
- 238000003848 UV Light-Curing Methods 0.000 claims description 10
- 125000004453 alkoxycarbonyl group Chemical group 0.000 claims description 10
- 125000001188 haloalkyl group Chemical group 0.000 claims description 10
- 125000004356 hydroxy functional group Chemical group O* 0.000 claims description 10
- 125000003545 alkoxy group Chemical group 0.000 claims description 9
- IVRMZWNICZWHMI-UHFFFAOYSA-N azide group Chemical group [N-]=[N+]=[N-] IVRMZWNICZWHMI-UHFFFAOYSA-N 0.000 claims description 9
- 238000006243 chemical reaction Methods 0.000 claims description 9
- 125000002993 cycloalkylene group Chemical group 0.000 claims description 9
- NIXOWILDQLNWCW-UHFFFAOYSA-M Acrylate Chemical compound [O-]C(=O)C=C NIXOWILDQLNWCW-UHFFFAOYSA-M 0.000 claims description 8
- 125000001072 heteroaryl group Chemical group 0.000 claims description 6
- 229920006243 acrylic copolymer Polymers 0.000 claims description 5
- 150000007942 carboxylates Chemical class 0.000 claims description 5
- 238000001035 drying Methods 0.000 claims description 5
- 125000002496 methyl group Chemical group [H]C([H])([H])* 0.000 claims description 5
- 125000006649 (C2-C20) alkynyl group Chemical group 0.000 claims description 4
- 238000002207 thermal evaporation Methods 0.000 claims description 4
- 125000003983 fluorenyl group Chemical group C1(=CC=CC=2C3=CC=CC=C3CC12)* 0.000 claims description 3
- 230000003100 immobilizing effect Effects 0.000 claims description 3
- 230000008018 melting Effects 0.000 claims description 3
- 238000002844 melting Methods 0.000 claims description 3
- NAWXUBYGYWOOIX-SFHVURJKSA-N (2s)-2-[[4-[2-(2,4-diaminoquinazolin-6-yl)ethyl]benzoyl]amino]-4-methylidenepentanedioic acid Chemical compound C1=CC2=NC(N)=NC(N)=C2C=C1CCC1=CC=C(C(=O)N[C@@H](CC(=C)C(O)=O)C(O)=O)C=C1 NAWXUBYGYWOOIX-SFHVURJKSA-N 0.000 claims 1
- 239000002238 carbon nanotube film Substances 0.000 abstract description 25
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 abstract description 23
- 230000035945 sensitivity Effects 0.000 abstract description 22
- 239000003960 organic solvent Substances 0.000 abstract description 19
- 230000000704 physical effect Effects 0.000 abstract description 7
- 238000004528 spin coating Methods 0.000 abstract description 6
- 238000005507 spraying Methods 0.000 abstract description 6
- 238000013459 approach Methods 0.000 abstract 1
- YXFVVABEGXRONW-UHFFFAOYSA-N Toluene Chemical compound CC1=CC=CC=C1 YXFVVABEGXRONW-UHFFFAOYSA-N 0.000 description 72
- 239000000243 solution Substances 0.000 description 52
- HEDRZPFGACZZDS-UHFFFAOYSA-N Chloroform Chemical compound ClC(Cl)Cl HEDRZPFGACZZDS-UHFFFAOYSA-N 0.000 description 34
- ZMXDDKWLCZADIW-UHFFFAOYSA-N N,N-Dimethylformamide Chemical compound CN(C)C=O ZMXDDKWLCZADIW-UHFFFAOYSA-N 0.000 description 32
- 238000002360 preparation method Methods 0.000 description 29
- WYURNTSHIVDZCO-UHFFFAOYSA-N Tetrahydrofuran Chemical compound C1CCOC1 WYURNTSHIVDZCO-UHFFFAOYSA-N 0.000 description 26
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 24
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 21
- 239000000126 substance Substances 0.000 description 21
- 239000007789 gas Substances 0.000 description 19
- 238000001514 detection method Methods 0.000 description 18
- 238000005481 NMR spectroscopy Methods 0.000 description 17
- CSCPPACGZOOCGX-UHFFFAOYSA-N Acetone Chemical compound CC(C)=O CSCPPACGZOOCGX-UHFFFAOYSA-N 0.000 description 16
- 239000000203 mixture Substances 0.000 description 16
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 15
- XEKOWRVHYACXOJ-UHFFFAOYSA-N Ethyl acetate Chemical compound CCOC(C)=O XEKOWRVHYACXOJ-UHFFFAOYSA-N 0.000 description 15
- 230000008569 process Effects 0.000 description 15
- 238000006116 polymerization reaction Methods 0.000 description 14
- 239000004065 semiconductor Substances 0.000 description 14
- YLQBMQCUIZJEEH-UHFFFAOYSA-N tetrahydrofuran Natural products C=1C=COC=1 YLQBMQCUIZJEEH-UHFFFAOYSA-N 0.000 description 13
- OZAIFHULBGXAKX-UHFFFAOYSA-N 2-(2-cyanopropan-2-yldiazenyl)-2-methylpropanenitrile Chemical compound N#CC(C)(C)N=NC(C)(C)C#N OZAIFHULBGXAKX-UHFFFAOYSA-N 0.000 description 12
- KFZMGEQAYNKOFK-UHFFFAOYSA-N Isopropanol Chemical compound CC(C)O KFZMGEQAYNKOFK-UHFFFAOYSA-N 0.000 description 12
- VLKZOEOYAKHREP-UHFFFAOYSA-N n-Hexane Chemical compound CCCCCC VLKZOEOYAKHREP-UHFFFAOYSA-N 0.000 description 12
- QAOWNCQODCNURD-UHFFFAOYSA-N Sulfuric acid Chemical compound OS(O)(=O)=O QAOWNCQODCNURD-UHFFFAOYSA-N 0.000 description 10
- UAEPNZWRGJTJPN-UHFFFAOYSA-N methylcyclohexane Chemical compound CC1CCCCC1 UAEPNZWRGJTJPN-UHFFFAOYSA-N 0.000 description 10
- 238000012360 testing method Methods 0.000 description 10
- RTZKZFJDLAIYFH-UHFFFAOYSA-N Diethyl ether Chemical compound CCOCC RTZKZFJDLAIYFH-UHFFFAOYSA-N 0.000 description 9
- HEMHJVSKTPXQMS-UHFFFAOYSA-M Sodium hydroxide Chemical compound [OH-].[Na+] HEMHJVSKTPXQMS-UHFFFAOYSA-M 0.000 description 9
- 230000000052 comparative effect Effects 0.000 description 9
- 229910052757 nitrogen Inorganic materials 0.000 description 9
- UHOVQNZJYSORNB-UHFFFAOYSA-N Benzene Chemical compound C1=CC=CC=C1 UHOVQNZJYSORNB-UHFFFAOYSA-N 0.000 description 8
- MHAJPDPJQMAIIY-UHFFFAOYSA-N Hydrogen peroxide Chemical compound OO MHAJPDPJQMAIIY-UHFFFAOYSA-N 0.000 description 8
- 229910001873 dinitrogen Inorganic materials 0.000 description 8
- RYHBNJHYFVUHQT-UHFFFAOYSA-N 1,4-Dioxane Chemical compound C1COCCO1 RYHBNJHYFVUHQT-UHFFFAOYSA-N 0.000 description 7
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 7
- NIXOWILDQLNWCW-UHFFFAOYSA-N acrylic acid group Chemical group C(C=C)(=O)O NIXOWILDQLNWCW-UHFFFAOYSA-N 0.000 description 7
- YMWUJEATGCHHMB-UHFFFAOYSA-N Dichloromethane Chemical compound ClCCl YMWUJEATGCHHMB-UHFFFAOYSA-N 0.000 description 6
- FXHOOIRPVKKKFG-UHFFFAOYSA-N N,N-Dimethylacetamide Chemical compound CN(C)C(C)=O FXHOOIRPVKKKFG-UHFFFAOYSA-N 0.000 description 6
- HEDRZPFGACZZDS-MICDWDOJSA-N Trichloro(2H)methane Chemical compound [2H]C(Cl)(Cl)Cl HEDRZPFGACZZDS-MICDWDOJSA-N 0.000 description 6
- 125000004432 carbon atom Chemical group C* 0.000 description 6
- 125000003178 carboxy group Chemical group [H]OC(*)=O 0.000 description 6
- KIALCSMRIHRFPL-UHFFFAOYSA-N n-(2,5-diphenylpyrazol-3-yl)-4-nitrobenzamide Chemical compound C1=CC([N+](=O)[O-])=CC=C1C(=O)NC1=CC(C=2C=CC=CC=2)=NN1C1=CC=CC=C1 KIALCSMRIHRFPL-UHFFFAOYSA-N 0.000 description 6
- 230000004044 response Effects 0.000 description 6
- 238000012546 transfer Methods 0.000 description 6
- COIOYMYWGDAQPM-UHFFFAOYSA-N tris(2-methylphenyl)phosphane Chemical compound CC1=CC=CC=C1P(C=1C(=CC=CC=1)C)C1=CC=CC=C1C COIOYMYWGDAQPM-UHFFFAOYSA-N 0.000 description 6
- 229910052731 fluorine Inorganic materials 0.000 description 5
- 230000000670 limiting effect Effects 0.000 description 5
- 239000000463 material Substances 0.000 description 5
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 5
- GYNNXHKOJHMOHS-UHFFFAOYSA-N methyl-cycloheptane Natural products CC1CCCCCC1 GYNNXHKOJHMOHS-UHFFFAOYSA-N 0.000 description 5
- 239000000047 product Substances 0.000 description 5
- 229920005604 random copolymer Polymers 0.000 description 5
- 239000007787 solid Substances 0.000 description 5
- 238000000870 ultraviolet spectroscopy Methods 0.000 description 5
- VHYFNPMBLIVWCW-UHFFFAOYSA-N 4-Dimethylaminopyridine Chemical compound CN(C)C1=CC=NC=C1 VHYFNPMBLIVWCW-UHFFFAOYSA-N 0.000 description 4
- NPFYZDNDJHZQKY-UHFFFAOYSA-N 4-Hydroxybenzophenone Chemical compound C1=CC(O)=CC=C1C(=O)C1=CC=CC=C1 NPFYZDNDJHZQKY-UHFFFAOYSA-N 0.000 description 4
- QNVNLUSHGRBCLO-UHFFFAOYSA-N 5-hydroxybenzene-1,3-dicarboxylic acid Chemical compound OC(=O)C1=CC(O)=CC(C(O)=O)=C1 QNVNLUSHGRBCLO-UHFFFAOYSA-N 0.000 description 4
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- QOSSAOTZNIDXMA-UHFFFAOYSA-N Dicylcohexylcarbodiimide Chemical compound C1CCCCC1N=C=NC1CCCCC1 QOSSAOTZNIDXMA-UHFFFAOYSA-N 0.000 description 4
- IMNFDUFMRHMDMM-UHFFFAOYSA-N N-Heptane Chemical compound CCCCCCC IMNFDUFMRHMDMM-UHFFFAOYSA-N 0.000 description 4
- 238000012644 addition polymerization Methods 0.000 description 4
- RDOXTESZEPMUJZ-UHFFFAOYSA-N anisole Chemical compound COC1=CC=CC=C1 RDOXTESZEPMUJZ-UHFFFAOYSA-N 0.000 description 4
- 229910021393 carbon nanotube Inorganic materials 0.000 description 4
- 239000003054 catalyst Substances 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 238000000151 deposition Methods 0.000 description 4
- 238000003618 dip coating Methods 0.000 description 4
- 238000001914 filtration Methods 0.000 description 4
- 239000011737 fluorine Substances 0.000 description 4
- 150000002431 hydrogen Chemical class 0.000 description 4
- 239000003999 initiator Substances 0.000 description 4
- 230000003993 interaction Effects 0.000 description 4
- 125000005395 methacrylic acid group Chemical group 0.000 description 4
- WPBNLDNIZUGLJL-UHFFFAOYSA-N prop-2-ynyl prop-2-enoate Chemical compound C=CC(=O)OCC#C WPBNLDNIZUGLJL-UHFFFAOYSA-N 0.000 description 4
- 238000000425 proton nuclear magnetic resonance spectrum Methods 0.000 description 4
- 229940073455 tetraethylammonium hydroxide Drugs 0.000 description 4
- LRGJRHZIDJQFCL-UHFFFAOYSA-M tetraethylazanium;hydroxide Chemical compound [OH-].CC[N+](CC)(CC)CC LRGJRHZIDJQFCL-UHFFFAOYSA-M 0.000 description 4
- 238000009210 therapy by ultrasound Methods 0.000 description 4
- CYPYTURSJDMMMP-WVCUSYJESA-N (1e,4e)-1,5-diphenylpenta-1,4-dien-3-one;palladium Chemical compound [Pd].[Pd].C=1C=CC=CC=1\C=C\C(=O)\C=C\C1=CC=CC=C1.C=1C=CC=CC=1\C=C\C(=O)\C=C\C1=CC=CC=C1.C=1C=CC=CC=1\C=C\C(=O)\C=C\C1=CC=CC=C1 CYPYTURSJDMMMP-WVCUSYJESA-N 0.000 description 3
- GFPPDTSBPULCFW-UHFFFAOYSA-N 2-[9,9-didodecyl-7-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)fluoren-2-yl]-4,4,5,5-tetramethyl-1,3,2-dioxaborolane Chemical compound C1=C2C(CCCCCCCCCCCC)(CCCCCCCCCCCC)C3=CC(B4OC(C)(C)C(C)(C)O4)=CC=C3C2=CC=C1B1OC(C)(C)C(C)(C)O1 GFPPDTSBPULCFW-UHFFFAOYSA-N 0.000 description 3
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 3
- SPEUIVXLLWOEMJ-UHFFFAOYSA-N acetaldehyde dimethyl acetal Natural products COC(C)OC SPEUIVXLLWOEMJ-UHFFFAOYSA-N 0.000 description 3
- 125000003342 alkenyl group Chemical group 0.000 description 3
- 229920005603 alternating copolymer Polymers 0.000 description 3
- RWCCWEUUXYIKHB-UHFFFAOYSA-N benzophenone Chemical group C=1C=CC=CC=1C(=O)C1=CC=CC=C1 RWCCWEUUXYIKHB-UHFFFAOYSA-N 0.000 description 3
- 229910052799 carbon Inorganic materials 0.000 description 3
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 3
- 239000000460 chlorine Substances 0.000 description 3
- 229910052801 chlorine Inorganic materials 0.000 description 3
- 238000004140 cleaning Methods 0.000 description 3
- 229910052802 copper Inorganic materials 0.000 description 3
- 239000010949 copper Substances 0.000 description 3
- ARUVKPQLZAKDPS-UHFFFAOYSA-L copper(II) sulfate Chemical compound [Cu+2].[O-][S+2]([O-])([O-])[O-] ARUVKPQLZAKDPS-UHFFFAOYSA-L 0.000 description 3
- 125000004435 hydrogen atom Chemical group [H]* 0.000 description 3
- 229920002521 macromolecule Polymers 0.000 description 3
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 3
- 238000012643 polycondensation polymerization Methods 0.000 description 3
- 238000001556 precipitation Methods 0.000 description 3
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 3
- 238000010526 radical polymerization reaction Methods 0.000 description 3
- 150000003254 radicals Chemical class 0.000 description 3
- 238000011160 research Methods 0.000 description 3
- 229920006395 saturated elastomer Polymers 0.000 description 3
- 239000011734 sodium Substances 0.000 description 3
- 238000003756 stirring Methods 0.000 description 3
- 125000000391 vinyl group Chemical group [H]C([*])=C([H])[H] 0.000 description 3
- 229920002554 vinyl polymer Polymers 0.000 description 3
- XLOMVQKBTHCTTD-UHFFFAOYSA-N zinc oxide Inorganic materials [Zn]=O XLOMVQKBTHCTTD-UHFFFAOYSA-N 0.000 description 3
- 239000011787 zinc oxide Substances 0.000 description 3
- KFOUJVGPGBSIFB-UHFFFAOYSA-N 2,7-dibromo-9,9-didodecylfluorene Chemical compound C1=C(Br)C=C2C(CCCCCCCCCCCC)(CCCCCCCCCCCC)C3=CC(Br)=CC=C3C2=C1 KFOUJVGPGBSIFB-UHFFFAOYSA-N 0.000 description 2
- VALVFKHPFYCPMX-UHFFFAOYSA-N 5-prop-2-enoyloxybenzene-1,3-dicarboxylic acid Chemical compound C(C=C)(=O)OC=1C=C(C=C(C(=O)O)C=1)C(=O)O VALVFKHPFYCPMX-UHFFFAOYSA-N 0.000 description 2
- UJOBWOGCFQCDNV-UHFFFAOYSA-N 9H-carbazole Chemical compound C1=CC=C2C3=CC=CC=C3NC2=C1 UJOBWOGCFQCDNV-UHFFFAOYSA-N 0.000 description 2
- WKBOTKDWSSQWDR-UHFFFAOYSA-N Bromine atom Chemical compound [Br] WKBOTKDWSSQWDR-UHFFFAOYSA-N 0.000 description 2
- 125000003358 C2-C20 alkenyl group Chemical group 0.000 description 2
- HARCBXUHOPRKTJ-UHFFFAOYSA-N C=CC(OC1=CC(C(OCC#C)=O)=CC(C(OCC#C)=O)=C1)=O Chemical compound C=CC(OC1=CC(C(OCC#C)=O)=CC(C(OCC#C)=O)=C1)=O HARCBXUHOPRKTJ-UHFFFAOYSA-N 0.000 description 2
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 description 2
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 2
- XDTMQSROBMDMFD-UHFFFAOYSA-N Cyclohexane Chemical compound C1CCCCC1 XDTMQSROBMDMFD-UHFFFAOYSA-N 0.000 description 2
- VGGSQFUCUMXWEO-UHFFFAOYSA-N Ethene Chemical compound C=C VGGSQFUCUMXWEO-UHFFFAOYSA-N 0.000 description 2
- 239000005977 Ethylene Substances 0.000 description 2
- CTQNGGLPUBDAKN-UHFFFAOYSA-N O-Xylene Chemical compound CC1=CC=CC=C1C CTQNGGLPUBDAKN-UHFFFAOYSA-N 0.000 description 2
- 229910004298 SiO 2 Inorganic materials 0.000 description 2
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 2
- PXIPVTKHYLBLMZ-UHFFFAOYSA-N Sodium azide Chemical compound [Na+].[N-]=[N+]=[N-] PXIPVTKHYLBLMZ-UHFFFAOYSA-N 0.000 description 2
- YTPLMLYBLZKORZ-UHFFFAOYSA-N Thiophene Chemical compound C=1C=CSC=1 YTPLMLYBLZKORZ-UHFFFAOYSA-N 0.000 description 2
- 229910052783 alkali metal Inorganic materials 0.000 description 2
- 150000001340 alkali metals Chemical class 0.000 description 2
- 229910052784 alkaline earth metal Inorganic materials 0.000 description 2
- 150000001336 alkenes Chemical class 0.000 description 2
- 125000004450 alkenylene group Chemical group 0.000 description 2
- 150000004945 aromatic hydrocarbons Chemical class 0.000 description 2
- 230000008901 benefit Effects 0.000 description 2
- GDTBXPJZTBHREO-UHFFFAOYSA-N bromine Substances BrBr GDTBXPJZTBHREO-UHFFFAOYSA-N 0.000 description 2
- 229910052794 bromium Inorganic materials 0.000 description 2
- 239000011575 calcium Substances 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 229910002091 carbon monoxide Inorganic materials 0.000 description 2
- 238000005266 casting Methods 0.000 description 2
- 239000007795 chemical reaction product Substances 0.000 description 2
- 229910000365 copper sulfate Inorganic materials 0.000 description 2
- 238000004132 cross linking Methods 0.000 description 2
- 239000012043 crude product Substances 0.000 description 2
- 125000004093 cyano group Chemical group *C#N 0.000 description 2
- DMEGYFMYUHOHGS-UHFFFAOYSA-N cycloheptane Chemical compound C1CCCCCC1 DMEGYFMYUHOHGS-UHFFFAOYSA-N 0.000 description 2
- 239000012153 distilled water Substances 0.000 description 2
- 230000009881 electrostatic interaction Effects 0.000 description 2
- 238000001704 evaporation Methods 0.000 description 2
- 238000010528 free radical solution polymerization reaction Methods 0.000 description 2
- 239000000446 fuel Substances 0.000 description 2
- 125000005843 halogen group Chemical group 0.000 description 2
- 239000003049 inorganic solvent Substances 0.000 description 2
- 229910001867 inorganic solvent Inorganic materials 0.000 description 2
- 239000011777 magnesium Substances 0.000 description 2
- 238000005259 measurement Methods 0.000 description 2
- UZKWTJUDCOPSNM-UHFFFAOYSA-N methoxybenzene Substances CCCCOC=C UZKWTJUDCOPSNM-UHFFFAOYSA-N 0.000 description 2
- 238000012986 modification Methods 0.000 description 2
- 230000004048 modification Effects 0.000 description 2
- 125000002950 monocyclic group Chemical group 0.000 description 2
- 239000002048 multi walled nanotube Substances 0.000 description 2
- 239000012299 nitrogen atmosphere Substances 0.000 description 2
- 239000012454 non-polar solvent Substances 0.000 description 2
- TVMXDCGIABBOFY-UHFFFAOYSA-N octane Chemical compound CCCCCCCC TVMXDCGIABBOFY-UHFFFAOYSA-N 0.000 description 2
- 239000012074 organic phase Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 230000000737 periodic effect Effects 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 229910052697 platinum Inorganic materials 0.000 description 2
- 229920000098 polyolefin Polymers 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- BWHMMNNQKKPAPP-UHFFFAOYSA-L potassium carbonate Chemical compound [K+].[K+].[O-]C([O-])=O BWHMMNNQKKPAPP-UHFFFAOYSA-L 0.000 description 2
- 239000000843 powder Substances 0.000 description 2
- 239000002244 precipitate Substances 0.000 description 2
- 239000000376 reactant Substances 0.000 description 2
- 239000011541 reaction mixture Substances 0.000 description 2
- 239000000523 sample Substances 0.000 description 2
- 238000000926 separation method Methods 0.000 description 2
- 239000010703 silicon Substances 0.000 description 2
- 229910052710 silicon Inorganic materials 0.000 description 2
- 235000010378 sodium ascorbate Nutrition 0.000 description 2
- PPASLZSBLFJQEF-RKJRWTFHSA-M sodium ascorbate Substances [Na+].OC[C@@H](O)[C@H]1OC(=O)C(O)=C1[O-] PPASLZSBLFJQEF-RKJRWTFHSA-M 0.000 description 2
- 229960005055 sodium ascorbate Drugs 0.000 description 2
- PPASLZSBLFJQEF-RXSVEWSESA-M sodium-L-ascorbate Chemical compound [Na+].OC[C@H](O)[C@H]1OC(=O)C(O)=C1[O-] PPASLZSBLFJQEF-RXSVEWSESA-M 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 150000003573 thiols Chemical class 0.000 description 2
- XOLBLPGZBRYERU-UHFFFAOYSA-N tin dioxide Chemical compound O=[Sn]=O XOLBLPGZBRYERU-UHFFFAOYSA-N 0.000 description 2
- 238000004506 ultrasonic cleaning Methods 0.000 description 2
- 239000008096 xylene Substances 0.000 description 2
- 125000000229 (C1-C4)alkoxy group Chemical group 0.000 description 1
- 125000006376 (C3-C10) cycloalkyl group Chemical group 0.000 description 1
- ZJJATABWMGVVRZ-UHFFFAOYSA-N 1,12-dibromododecane Chemical compound BrCCCCCCCCCCCCBr ZJJATABWMGVVRZ-UHFFFAOYSA-N 0.000 description 1
- YBYIRNPNPLQARY-UHFFFAOYSA-N 1H-indene Natural products C1=CC=C2CC=CC2=C1 YBYIRNPNPLQARY-UHFFFAOYSA-N 0.000 description 1
- ZCYVEMRRCGMTRW-UHFFFAOYSA-N 7553-56-2 Chemical compound [I] ZCYVEMRRCGMTRW-UHFFFAOYSA-N 0.000 description 1
- 239000004925 Acrylic resin Substances 0.000 description 1
- 229920000178 Acrylic resin Polymers 0.000 description 1
- CIWBSHSKHKDKBQ-JLAZNSOCSA-N Ascorbic acid Chemical compound OC[C@H](O)[C@H]1OC(=O)C(O)=C1O CIWBSHSKHKDKBQ-JLAZNSOCSA-N 0.000 description 1
- BVKZGUZCCUSVTD-UHFFFAOYSA-M Bicarbonate Chemical compound OC([O-])=O BVKZGUZCCUSVTD-UHFFFAOYSA-M 0.000 description 1
- OYPRJOBELJOOCE-UHFFFAOYSA-N Calcium Chemical compound [Ca] OYPRJOBELJOOCE-UHFFFAOYSA-N 0.000 description 1
- JOYRKODLDBILNP-UHFFFAOYSA-N Ethyl urethane Chemical compound CCOC(N)=O JOYRKODLDBILNP-UHFFFAOYSA-N 0.000 description 1
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 1
- 238000001157 Fourier transform infrared spectrum Methods 0.000 description 1
- GYHNNYVSQQEPJS-UHFFFAOYSA-N Gallium Chemical compound [Ga] GYHNNYVSQQEPJS-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- WHXSMMKQMYFTQS-UHFFFAOYSA-N Lithium Chemical compound [Li] WHXSMMKQMYFTQS-UHFFFAOYSA-N 0.000 description 1
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 description 1
- CERQOIWHTDAKMF-UHFFFAOYSA-M Methacrylate Chemical compound CC(=C)C([O-])=O CERQOIWHTDAKMF-UHFFFAOYSA-M 0.000 description 1
- GRYLNZFGIOXLOG-UHFFFAOYSA-N Nitric acid Chemical compound O[N+]([O-])=O GRYLNZFGIOXLOG-UHFFFAOYSA-N 0.000 description 1
- 229920002319 Poly(methyl acrylate) Polymers 0.000 description 1
- 239000004698 Polyethylene Substances 0.000 description 1
- 239000004642 Polyimide Substances 0.000 description 1
- 239000004743 Polypropylene Substances 0.000 description 1
- 239000004793 Polystyrene Substances 0.000 description 1
- ZLMJMSJWJFRBEC-UHFFFAOYSA-N Potassium Chemical compound [K] ZLMJMSJWJFRBEC-UHFFFAOYSA-N 0.000 description 1
- 238000001069 Raman spectroscopy Methods 0.000 description 1
- 239000006087 Silane Coupling Agent Substances 0.000 description 1
- PMZURENOXWZQFD-UHFFFAOYSA-L Sodium Sulfate Chemical compound [Na+].[Na+].[O-]S([O-])(=O)=O PMZURENOXWZQFD-UHFFFAOYSA-L 0.000 description 1
- XSQUKJJJFZCRTK-UHFFFAOYSA-N Urea Chemical compound NC(N)=O XSQUKJJJFZCRTK-UHFFFAOYSA-N 0.000 description 1
- DZSGNDLBNGJEML-UHFFFAOYSA-N [N-]=[N+]=NCCCCCCCCCCCCC1(CCCCCCCCCCCCN=[N+]=[N-])C2=CC(Br)=CC=C2C(C=C2)=C1C=C2Br Chemical compound [N-]=[N+]=NCCCCCCCCCCCCC1(CCCCCCCCCCCCN=[N+]=[N-])C2=CC(Br)=CC=C2C(C=C2)=C1C=C2Br DZSGNDLBNGJEML-UHFFFAOYSA-N 0.000 description 1
- HFBMWMNUJJDEQZ-UHFFFAOYSA-N acryloyl chloride Chemical compound ClC(=O)C=C HFBMWMNUJJDEQZ-UHFFFAOYSA-N 0.000 description 1
- 150000001335 aliphatic alkanes Chemical class 0.000 description 1
- 150000001338 aliphatic hydrocarbons Chemical class 0.000 description 1
- 150000001342 alkaline earth metals Chemical class 0.000 description 1
- 125000005233 alkylalcohol group Chemical group 0.000 description 1
- 125000004419 alkynylene group Chemical group 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- BHELZAPQIKSEDF-UHFFFAOYSA-N allyl bromide Chemical compound BrCC=C BHELZAPQIKSEDF-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 150000001408 amides Chemical class 0.000 description 1
- 238000004458 analytical method Methods 0.000 description 1
- 125000002178 anthracenyl group Chemical group C1(=CC=CC2=CC3=CC=CC=C3C=C12)* 0.000 description 1
- 125000003710 aryl alkyl group Chemical group 0.000 description 1
- 125000004429 atom Chemical group 0.000 description 1
- 125000003828 azulenyl group Chemical group 0.000 description 1
- 229910052788 barium Inorganic materials 0.000 description 1
- DSAJWYNOEDNPEQ-UHFFFAOYSA-N barium atom Chemical compound [Ba] DSAJWYNOEDNPEQ-UHFFFAOYSA-N 0.000 description 1
- 239000012965 benzophenone Substances 0.000 description 1
- 125000001797 benzyl group Chemical group [H]C1=C([H])C([H])=C(C([H])=C1[H])C([H])([H])* 0.000 description 1
- 229910052790 beryllium Inorganic materials 0.000 description 1
- ATBAMAFKBVZNFJ-UHFFFAOYSA-N beryllium atom Chemical compound [Be] ATBAMAFKBVZNFJ-UHFFFAOYSA-N 0.000 description 1
- 125000002619 bicyclic group Chemical group 0.000 description 1
- 229920001400 block copolymer Polymers 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- 125000004744 butyloxycarbonyl group Chemical group 0.000 description 1
- 229910052792 caesium Inorganic materials 0.000 description 1
- TVFDJXOCXUVLDH-UHFFFAOYSA-N caesium atom Chemical compound [Cs] TVFDJXOCXUVLDH-UHFFFAOYSA-N 0.000 description 1
- 229910052791 calcium Inorganic materials 0.000 description 1
- 239000004202 carbamide Substances 0.000 description 1
- CREMABGTGYGIQB-UHFFFAOYSA-N carbon carbon Chemical compound C.C CREMABGTGYGIQB-UHFFFAOYSA-N 0.000 description 1
- 238000001460 carbon-13 nuclear magnetic resonance spectrum Methods 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 238000005119 centrifugation Methods 0.000 description 1
- 229910052729 chemical element Inorganic materials 0.000 description 1
- 238000005229 chemical vapour deposition Methods 0.000 description 1
- QABCGOSYZHCPGN-UHFFFAOYSA-N chloro(dimethyl)silicon Chemical compound C[Si](C)Cl QABCGOSYZHCPGN-UHFFFAOYSA-N 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 229920000547 conjugated polymer Polymers 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000007334 copolymerization reaction Methods 0.000 description 1
- 229910000366 copper(II) sulfate Inorganic materials 0.000 description 1
- 238000007766 curtain coating Methods 0.000 description 1
- 150000001924 cycloalkanes Chemical class 0.000 description 1
- 125000001995 cyclobutyl group Chemical group [H]C1([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000000582 cycloheptyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- 125000000113 cyclohexyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C([H])([H])C1([H])[H] 0.000 description 1
- GPTJTTCOVDDHER-UHFFFAOYSA-N cyclononane Chemical compound C1CCCCCCCC1 GPTJTTCOVDDHER-UHFFFAOYSA-N 0.000 description 1
- WJTCGQSWYFHTAC-UHFFFAOYSA-N cyclooctane Chemical compound C1CCCCCCC1 WJTCGQSWYFHTAC-UHFFFAOYSA-N 0.000 description 1
- 239000004914 cyclooctane Substances 0.000 description 1
- 125000001511 cyclopentyl group Chemical group [H]C1([H])C([H])([H])C([H])([H])C([H])(*)C1([H])[H] 0.000 description 1
- 125000001559 cyclopropyl group Chemical group [H]C1([H])C([H])([H])C1([H])* 0.000 description 1
- DIOQZVSQGTUSAI-NJFSPNSNSA-N decane Chemical compound CCCCCCCCC[14CH3] DIOQZVSQGTUSAI-NJFSPNSNSA-N 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 230000008021 deposition Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000004205 dimethyl polysiloxane Substances 0.000 description 1
- 235000013870 dimethyl polysiloxane Nutrition 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000007606 doctor blade method Methods 0.000 description 1
- 239000002079 double walled nanotube Substances 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 238000005566 electron beam evaporation Methods 0.000 description 1
- 238000009713 electroplating Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 238000003912 environmental pollution Methods 0.000 description 1
- 125000003754 ethoxycarbonyl group Chemical group C(=O)(OCC)* 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 239000002360 explosive Substances 0.000 description 1
- 239000007888 film coating Substances 0.000 description 1
- 238000009501 film coating Methods 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- 229910052730 francium Inorganic materials 0.000 description 1
- KLMCZVJOEAUDNE-UHFFFAOYSA-N francium atom Chemical compound [Fr] KLMCZVJOEAUDNE-UHFFFAOYSA-N 0.000 description 1
- 230000004927 fusion Effects 0.000 description 1
- 229910052733 gallium Inorganic materials 0.000 description 1
- 230000014509 gene expression Effects 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- VOZRXNHHFUQHIL-UHFFFAOYSA-N glycidyl methacrylate Chemical compound CC(=C)C(=O)OCC1CO1 VOZRXNHHFUQHIL-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 238000007756 gravure coating Methods 0.000 description 1
- 238000013007 heat curing Methods 0.000 description 1
- 125000005842 heteroatom Chemical group 0.000 description 1
- 238000007654 immersion Methods 0.000 description 1
- 230000001771 impaired effect Effects 0.000 description 1
- 239000012535 impurity Substances 0.000 description 1
- 125000003454 indenyl group Chemical group C1(C=CC2=CC=CC=C12)* 0.000 description 1
- 229910003437 indium oxide Inorganic materials 0.000 description 1
- PJXISJQVUVHSOJ-UHFFFAOYSA-N indium(iii) oxide Chemical compound [O-2].[O-2].[O-2].[In+3].[In+3] PJXISJQVUVHSOJ-UHFFFAOYSA-N 0.000 description 1
- AMGQUBHHOARCQH-UHFFFAOYSA-N indium;oxotin Chemical compound [In].[Sn]=O AMGQUBHHOARCQH-UHFFFAOYSA-N 0.000 description 1
- 239000012770 industrial material Substances 0.000 description 1
- 229910052740 iodine Inorganic materials 0.000 description 1
- 239000011630 iodine Substances 0.000 description 1
- 125000005929 isobutyloxycarbonyl group Chemical group [H]C([H])([H])C([H])(C([H])([H])[H])C([H])([H])OC(*)=O 0.000 description 1
- 125000005928 isopropyloxycarbonyl group Chemical group [H]C([H])([H])C([H])(OC(*)=O)C([H])([H])[H] 0.000 description 1
- 239000007788 liquid Substances 0.000 description 1
- 229910052744 lithium Inorganic materials 0.000 description 1
- 229910052749 magnesium Inorganic materials 0.000 description 1
- 239000012528 membrane Substances 0.000 description 1
- AUHZEENZYGFFBQ-UHFFFAOYSA-N mesitylene Substances CC1=CC(C)=CC(C)=C1 AUHZEENZYGFFBQ-UHFFFAOYSA-N 0.000 description 1
- 125000001827 mesitylenyl group Chemical group [H]C1=C(C(*)=C(C([H])=C1C([H])([H])[H])C([H])([H])[H])C([H])([H])[H] 0.000 description 1
- 125000005641 methacryl group Chemical group 0.000 description 1
- 125000001160 methoxycarbonyl group Chemical group [H]C([H])([H])OC(*)=O 0.000 description 1
- 125000000325 methylidene group Chemical group [H]C([H])=* 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- DIOQZVSQGTUSAI-UHFFFAOYSA-N n-butylhexane Natural products CCCCCCCCCC DIOQZVSQGTUSAI-UHFFFAOYSA-N 0.000 description 1
- 239000002070 nanowire Substances 0.000 description 1
- 125000001624 naphthyl group Chemical group 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- 229910017604 nitric acid Inorganic materials 0.000 description 1
- 125000000449 nitro group Chemical group [O-][N+](*)=O 0.000 description 1
- ZCYXXKJEDCHMGH-UHFFFAOYSA-N nonane Chemical compound CCCC[CH]CCCC ZCYXXKJEDCHMGH-UHFFFAOYSA-N 0.000 description 1
- BKIMMITUMNQMOS-UHFFFAOYSA-N normal nonane Natural products CCCCCCCCC BKIMMITUMNQMOS-UHFFFAOYSA-N 0.000 description 1
- CXQXSVUQTKDNFP-UHFFFAOYSA-N octamethyltrisiloxane Chemical compound C[Si](C)(C)O[Si](C)(C)O[Si](C)(C)C CXQXSVUQTKDNFP-UHFFFAOYSA-N 0.000 description 1
- 238000000399 optical microscopy Methods 0.000 description 1
- KYKLWYKWCAYAJY-UHFFFAOYSA-N oxotin;zinc Chemical compound [Zn].[Sn]=O KYKLWYKWCAYAJY-UHFFFAOYSA-N 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 150000002940 palladium Chemical class 0.000 description 1
- 230000036961 partial effect Effects 0.000 description 1
- 239000008188 pellet Substances 0.000 description 1
- 239000012071 phase Substances 0.000 description 1
- 125000001997 phenyl group Chemical group [H]C1=C([H])C([H])=C(*)C([H])=C1[H] 0.000 description 1
- VRWGRLFEHAONPN-UHFFFAOYSA-N phenyl-(4-prop-2-enoxyphenyl)methanone Chemical compound C1=CC(OCC=C)=CC=C1C(=O)C1=CC=CC=C1 VRWGRLFEHAONPN-UHFFFAOYSA-N 0.000 description 1
- 238000005240 physical vapour deposition Methods 0.000 description 1
- 238000004987 plasma desorption mass spectroscopy Methods 0.000 description 1
- 229920003023 plastic Polymers 0.000 description 1
- 239000004033 plastic Substances 0.000 description 1
- 239000002798 polar solvent Substances 0.000 description 1
- 229920000435 poly(dimethylsiloxane) Polymers 0.000 description 1
- 229920003055 poly(ester-imide) Polymers 0.000 description 1
- 229920001483 poly(ethyl methacrylate) polymer Polymers 0.000 description 1
- 229920000515 polycarbonate Polymers 0.000 description 1
- 239000004417 polycarbonate Substances 0.000 description 1
- 125000003367 polycyclic group Chemical group 0.000 description 1
- 229920000728 polyester Polymers 0.000 description 1
- 229920000120 polyethyl acrylate Polymers 0.000 description 1
- 229920000573 polyethylene Polymers 0.000 description 1
- 229920000139 polyethylene terephthalate Polymers 0.000 description 1
- 239000005020 polyethylene terephthalate Substances 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 230000000379 polymerizing effect Effects 0.000 description 1
- 229920000193 polymethacrylate Polymers 0.000 description 1
- 229920001155 polypropylene Polymers 0.000 description 1
- 229920002223 polystyrene Polymers 0.000 description 1
- 229910052700 potassium Inorganic materials 0.000 description 1
- 239000011591 potassium Substances 0.000 description 1
- 229910000027 potassium carbonate Inorganic materials 0.000 description 1
- 125000002924 primary amino group Chemical group [H]N([H])* 0.000 description 1
- TVDSBUOJIPERQY-UHFFFAOYSA-N prop-2-yn-1-ol Chemical compound OCC#C TVDSBUOJIPERQY-UHFFFAOYSA-N 0.000 description 1
- 125000004742 propyloxycarbonyl group Chemical group 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 239000010453 quartz Substances 0.000 description 1
- 229910052705 radium Inorganic materials 0.000 description 1
- HCWPIIXVSYCSAN-UHFFFAOYSA-N radium atom Chemical compound [Ra] HCWPIIXVSYCSAN-UHFFFAOYSA-N 0.000 description 1
- 230000009257 reactivity Effects 0.000 description 1
- 230000002829 reductive effect Effects 0.000 description 1
- 238000012827 research and development Methods 0.000 description 1
- 125000006413 ring segment Chemical group 0.000 description 1
- 229910052701 rubidium Inorganic materials 0.000 description 1
- IGLNJRXAVVLDKE-UHFFFAOYSA-N rubidium atom Chemical compound [Rb] IGLNJRXAVVLDKE-UHFFFAOYSA-N 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- 238000004626 scanning electron microscopy Methods 0.000 description 1
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000010944 silver (metal) Substances 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 229910052938 sodium sulfate Inorganic materials 0.000 description 1
- 235000011152 sodium sulphate Nutrition 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 238000004544 sputter deposition Methods 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
- 229910052712 strontium Inorganic materials 0.000 description 1
- CIOAGBVUUVVLOB-UHFFFAOYSA-N strontium atom Chemical compound [Sr] CIOAGBVUUVVLOB-UHFFFAOYSA-N 0.000 description 1
- 150000003457 sulfones Chemical class 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
- 238000010345 tape casting Methods 0.000 description 1
- 125000001712 tetrahydronaphthyl group Chemical group C1(CCCC2=CC=CC=C12)* 0.000 description 1
- 229930192474 thiophene Natural products 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
- 125000003944 tolyl group Chemical group 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 229910052720 vanadium Inorganic materials 0.000 description 1
- 125000005023 xylyl group Chemical group 0.000 description 1
- YVTHLONGBIQYBO-UHFFFAOYSA-N zinc indium(3+) oxygen(2-) Chemical compound [O--].[Zn++].[In+3] YVTHLONGBIQYBO-UHFFFAOYSA-N 0.000 description 1
- 229910052726 zirconium Inorganic materials 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/15—Nano-sized carbon materials
- C01B32/158—Carbon nanotubes
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K3/00—Use of inorganic substances as compounding ingredients
- C08K3/02—Elements
- C08K3/04—Carbon
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08K—Use of inorganic or non-macromolecular organic substances as compounding ingredients
- C08K9/00—Use of pretreated ingredients
- C08K9/08—Ingredients agglomerated by treatment with a binding agent
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D133/00—Coating compositions based on homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Coating compositions based on derivatives of such polymers
- C09D133/04—Homopolymers or copolymers of esters
- C09D133/06—Homopolymers or copolymers of esters of esters containing only carbon, hydrogen and oxygen, the oxygen atom being present only as part of the carboxyl radical
- C09D133/10—Homopolymers or copolymers of methacrylic acid esters
- C09D133/12—Homopolymers or copolymers of methyl methacrylate
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09D—COATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
- C09D7/00—Features of coating compositions, not provided for in group C09D5/00; Processes for incorporating ingredients in coating compositions
- C09D7/40—Additives
- C09D7/60—Additives non-macromolecular
- C09D7/61—Additives non-macromolecular inorganic
- C09D7/62—Additives non-macromolecular inorganic modified by treatment with other compounds
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N27/00—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
- G01N27/02—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance
- G01N27/04—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance
- G01N27/12—Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating impedance by investigating resistance of a solid body in dependence upon absorption of a fluid; of a solid body in dependence upon reaction with a fluid, for detecting components in the fluid
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N33/00—Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
Definitions
- the present invention relates to a CNT film using a click reaction and a CNT-based hydrogen gas sensor using the same. Specifically, it has excellent stability against water or organic solvents, has high reliability manufactured through a click reaction, and is capable of sensing even low concentrations of hydrogen gas with high sensitivity. This relates to a possible CNT-based hydrogen gas sensor and its manufacturing method.
- Hydrogen energy which is emerging due to the depletion of fossil fuels and environmental pollution problems, has the potential to be used in almost all fields used in the current energy system, including basic industrial materials, general fuel, hydrogen cars, hydrogen airplanes, fuel cells, and nuclear fusion energy. I have it.
- hydrogen gas has a wide explosive concentration range (4-75%) and small ignition energy, so it is easily ignited by even the slightest static electricity, so even a small amount of hydrogen gas leaked can be very dangerous. Accordingly, in order to reduce major accidents and casualties caused by hydrogen leaks, high-performance gas sensors that can quickly and accurately detect hydrogen gas are required.
- the adhesion to the substrate is good and the CNT film is formed at high density and uniformity, resulting in excellent inter-device reliability and excellent stability against water or organic solvents, while at the same time excellent selectivity, sensitivity and fast response to hydrogen gas at room temperature.
- the present invention aims to provide a CNT-based hydrogen gas sensor that has excellent stability and high reliability in organic solvents and exhibits excellent selectivity, sensitivity and fast response speed to hydrogen gas. .
- Another object of the present invention is to provide a method of manufacturing a CNT-based hydrogen gas sensor using a click reaction, which is relatively easy to process.
- the present inventors developed a hydrogen gas sensor in which a high-density CNT film has excellent stability against water or organic solvents and at the same time can realize excellent selectivity, sensitivity, and fast response speed to hydrogen gas at room temperature.
- a hydrogen gas sensor is manufactured using a click reaction
- the CNT film is formed at high density and uniformity, and has excellent stability against water or organic solvents, so it does not peel off even after washing and is reliable.
- the present invention was completed by discovering that it is possible to manufacture a hydrogen gas sensor that is not only excellent, but also exhibits excellent selectivity, sensitivity, and fast response speed to hydrogen gas.
- the present invention relates to a substrate; and a hydrogen gas sensor including a sensing unit, wherein the sensing unit includes a polymer layer formed from a first polymer on the substrate; A composite layer formed from a second polymer-CNT composite on the polymer layer; a metal electrode formed on the composite layer; A palladium nanoparticle layer formed on the composite layer; and a polymer coating layer located on the palladium nanoparticle layer, wherein the second polymer-CNT composite is CNTs wrapped by a second polymer, and the polymer layer and the composite layer are connected through triazole.
- the sensing unit includes a polymer layer formed from a first polymer on the substrate; A composite layer formed from a second polymer-CNT composite on the polymer layer; a metal electrode formed on the composite layer; A palladium nanoparticle layer formed on the composite layer; and a polymer coating layer located on the palladium nanoparticle layer, wherein the second polymer-CNT composite is CNTs wrapped by a second polymer, and
- the metal electrode includes a source electrode and a drain electrode spaced apart from each other on the composite layer, and the palladium nanoparticle layer may be located in an area where the source electrode and the drain electrode are spaced apart.
- the polymer coating layer may include an acrylate-based polymer.
- the polymer coating layer may include non-porous polymethyl methacrylate.
- the triazole may be represented by the following formula (1).
- connection points with different layers is each independently a connection point with the first polymer of the polymer layer or the second polymer of the composite layer, and the two * are connection points with different layers.
- the first polymer is represented by the following formula (2)
- the second polymer is represented by the following formula (3)
- the triazole is produced by a click reaction between the first polymer and the second polymer. is formed, and the click reaction can be expressed as Scheme 1 below.
- P 1 is a residue derived from the first polymer
- P 2 is a residue derived from the second polymer
- P 2 (CNT) is a residue derived from the second polymer-CNT complex
- FG 1 is an alkynyl functional group
- FG 2 is an azide functional group
- x and y are integers greater than or equal to 1.
- the first polymer may be an acrylic copolymer.
- Formula 2 may be expressed as Formula 4 or Formula 5 below.
- FG 1 is an alkynyl functional group
- FG 3 is an epoxy functional group
- p 1 to p 2 are repeating units derived from a monomer having a FG 1 functional group at the end;
- p 3 is a repeating unit derived from a monomer having a FG 3 functional group at the terminal;
- z, k and t are integers from 1 to 7;
- a, b and c are integers greater than or equal to 1.
- Formula 4 may be represented by Formula 6 below, and Formula 5 may be represented by Formula 8 below.
- Ar is a trivalent aromatic radical
- R 1 , R 2 and R 4 are independently of each other C 1-50 alkylene, C 3-50 cycloalkylene, C 6-50 arylene, C 3-50 heteroarylene, C 1-50 alkoxycarbonylene or It is a combination of these;
- alkylene, cycloalkylene, arylene, heteroarylene and alkoxycarbonylene are optionally hydroxy, halogen, nitro, cyano, amino, carboxyl, carboxylate, C 1-20 alkyl, C 2-20 alkyl.
- FG 1 is an alkynyl functional group
- FG 3 is an epoxy functional group
- z, k and t are independently integers from 1 to 7;
- a, b and c are independently integers of 1 or more.
- Formula 6 may be represented by Formula 7 below, and Formula 8 may be represented by Formula 9 below.
- R 2 to R 4 are each independently C 1-10 alkylene
- R 5 is hydrogen or methyl
- a, b and c are independently integers of 1 or more.
- the second polymer may be a fluorene-based copolymer.
- Formula 3 may be a copolymer containing a repeating unit (n) of Formula 10 below and a repeating unit (m) of Formula 11 below.
- R 6 to R 7 are independently C 5-50 alkylene
- R 8 to R 9 are independently C 5-50 alkyl.
- the CNT in the second polymer-CNT composite, may be a semiconducting single-walled carbon nanotube (sc-SWCNT).
- sc-SWCNT semiconducting single-walled carbon nanotube
- the present invention relates to a substrate; and a hydrogen gas sensor including a sensing unit, wherein the sensing unit includes a polymer layer formed from a first polymer on the substrate; A composite layer formed from a second polymer-CNT composite on the polymer layer; a metal electrode formed on the composite layer; A palladium nanoparticle layer formed on the composite layer; and a polymer coating layer located on the palladium nanoparticle layer, wherein the second polymer-CNT composite is CNTs wrapped by a second polymer, and the polymer layer and the composite layer are connected through triazole.
- a method of manufacturing a hydrogen gas sensor can be provided.
- the manufacturing method of the hydrogen gas sensor is
- step (e) may include thermal evaporation under temperature conditions lower than the melting point of palladium nanoparticles.
- the temperature condition may be 80 to 500°C.
- step (f) may include dissolving the polymer in a solvent and then coating and drying the palladium nanoparticle layer.
- the solvent may be a halogenated alkoxy benzene compound.
- step (a) includes (a-1) washing the substrate with a solvent; (a-2) coating a self-assembled monolayer (SAM); (a-3) coating the first polymer; (a-4) UV curing step; and (a-5) washing the compound unfixed to the substrate with a solvent.
- SAM self-assembled monolayer
- the first polymer in step (a-3), may be represented by the following formula (4).
- FG 1 is an alkynyl functional group
- p 1 to p 2 are repeating units derived from a monomer having a FG 1 functional group at the end;
- z and k are integers from 1 to 7;
- a and b are integers greater than or equal to 1.
- step (a-4) may further include a pattern forming step.
- step (a) includes (a'-1) washing the substrate with a solvent; (a'-2) coating the first polymer; (a'-3) heat treatment step; and (a'-4) washing the unfixed compound on the substrate with a solvent.
- the first polymer in step (a'-2), may be represented by the following formula (5).
- FG 1 is an alkynyl functional group
- FG 3 is an epoxy functional group
- p 1 to p 2 are repeating units derived from a monomer having a FG 1 functional group at the end;
- p 3 is a repeating unit derived from a monomer having a FG 3 functional group at the terminal;
- z, k and t are integers from 1 to 7;
- a, b and c are integers greater than or equal to 1.
- the hydrogen gas sensor according to the present invention uses a click reaction to form a CNT film at high density and uniformity, so it can have high stability against water or organic solvents.
- a click reaction to form a CNT film at high density and uniformity, so it can have high stability against water or organic solvents.
- the hydrogen gas sensor according to the present invention provides hydrogen gas with high reproducibility and reliability in a relatively simple method.
- the present invention uses a click reaction to form a CNT film at high density and uniformity, and has excellent stability in water or organic solvents, so it does not peel off even after washing, and is not only highly reliable, but also has excellent selectivity, sensitivity and stability to hydrogen gas.
- a hydrogen gas sensor with a fast response speed can be manufactured.
- FIG. 1 is a schematic diagram briefly showing a hydrogen gas sensor according to an embodiment of the present invention.
- Figure 2 is an image measuring the contact angle of the coating layer after coating the self-assembled monolayer (SAM) in Example 1 of the present invention.
- Figure 3 shows the results of ultraviolet-visible spectroscopy (UV-Vis spectroscopy) before and after UV curing the acrylate copolymer (i) solution coated in Example 1 according to the present invention and washing with a solvent. is a graph showing, and (b) is a graph showing the results of ultraviolet-visible spectroscopy analysis before and after heat curing the acrylate copolymer (ii) solution coated in Example 2 according to the present invention and then washing with a solvent.
- UV-Vis spectroscopy ultraviolet-visible spectroscopy
- Figure 4 is a graph showing electrical characteristic curves (output curve and transfer curve) for CNT semiconductor devices according to Examples 1 and 2 and Comparative Example 1.
- Figure 5 is a graph of the detection test results of the hydrogen gas sensor according to Example 1 for each hydrogen concentration of 0.5 (500 ppb) to 1000 ppm.
- Figure 6 is a graph showing the results of repeated tests of the hydrogen gas sensor according to Example 1 at a hydrogen gas concentration of 100 ppm in the air.
- Figure 7 is a graph showing the results of a detection test according to gas type using hydrogen, carbon monoxide, carbon dioxide, ethylene, and methane gas of the hydrogen gas sensor according to Example 1.
- units used without special mention in this specification are based on weight, and as an example, the unit of % or ratio means weight % or weight ratio, and weight % refers to the amount of any one component of the entire composition unless otherwise defined. It refers to the weight percent occupied in the composition.
- the numerical range used in this specification includes the lower limit and upper limit and all values within the range, increments logically derived from the shape and width of the defined range, all double-defined values, and the upper limit of the numerical range defined in different forms. and all possible combinations of the lower bounds. Unless otherwise specified in the specification of the present invention, values outside the numerical range that may occur due to experimental error or rounding of values are also included in the defined numerical range.
- a layer when a layer is said to be located “on” another layer, this includes not only the case where a layer is in contact with another layer, but also the case where one or more other layers exist between the two layers.
- polymer herein includes polymers and copolymers.
- copolymer generally refers to any polymer derived from more than one species of monomer, wherein the polymer comprises corresponding repeat units of more than one species. Copolymers are the reaction product of two or more types of monomers and therefore may contain two or more species of corresponding repeat units. Copolymers may exist as block copolymers, random copolymers, and/or alternating copolymers.
- acrylic in this specification includes both methacrylic and acrylic.
- acrylate herein includes both methacrylate and acrylate.
- residue in this specification refers to the remaining portion of a polymer excluding a specific functional group, and the type of the polymer is not particularly limited.
- wrapping in this specification means that a polymer surrounds a CNT by electrostatic interaction, and may also include coating, application, bonding, and attachment. Additionally, the electrostatic interaction may mean ⁇ electron interaction ( ⁇ - ⁇ stacking interaction).
- alkyl in this specification includes both straight chain and branched forms, and may have 1 to 30 carbon atoms, specifically 1 to 20 carbon atoms.
- halogen and “halo” herein mean fluorine, chlorine, bromine or iodine.
- haloalkyl refers to an alkyl group in which one or more hydrogen atoms are each replaced with a halogen atom.
- haloalkyl is -CF 3 , -CHF 2 , -CH 2 F, -CBr 3 , -CHBr 2 , -CH 2 Br, -CC1 3 , -CHC1 2 , -CH 2 CI, -CI 3 , -CHI 2 , -CH 2 I, -CH 2 -CF 3 , -CH 2 -CHF 2 , -CH 2 -CH 2 F, -CH 2 -CBr 3 , -CH 2 -CHBr 2 , -CH 2 -CH 2 Br, -CH 2 -CC1 3 , -CH 2 -CHC1 2 , -CH 2 -CH 2 CI, -CH 2 -CI 3 , -CH 2 -CHI 2 , -
- alkenyl herein refers to a saturated straight-chain or branched non-cyclic hydrocarbon containing 2 to 30 carbon atoms, specifically 2 to 20 carbon atoms and at least one carbon-carbon double bond.
- alkynyl herein refers to a saturated straight-chain or branched non-cyclic hydrocarbon containing 2 to 30 carbon atoms, specifically 2 to 20 carbon atoms and at least one carbon-carbon triple bond.
- alkoxy in this specification refers to -OCH 3 , -OCH 2 CH 3 , -O(CH 2 ) 2 CH 3 , -O(CH 2 ) 3 CH 3 , -O(CH 2 ) 4 CH 3 , -O means -O-(alkyl), including (CH 2 ) 5 CH 3 , and the like, where alkyl is as defined above.
- alkoxycarbonyl radicals include, but are not limited to, methoxycarbonyl, ethoxycarbonyl, isopropoxycarbonyl, propoxycarbonyl, butoxycarbonyl, isobutoxycarbonyl, t-butoxycarbonyl, etc. It is not limited.
- cycloalkyl refers to a monocyclic or polycyclic saturated ring having carbon and hydrogen atoms and no carbon-carbon multiple bonds.
- cycloalkyl groups include, but are not limited to, C 3-10 cycloalkyl (e.g., cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, and cycloheptyl). Cycloalkyl groups may be optionally substituted.
- the cycloalkyl group is a monocyclic or bicyclic ring.
- aralkyl in this specification refers to alkyl in which one or more hydrogens are replaced with aryl, and includes benzyl, etc.
- alkylene alkenylene, alkynylene, cycloalkylene, “arylene”, “heteroarylene”, and “alkoxycarbonylene” are respectively “alkyl” and “alkenyl” , “alkynyl”, “cycloalkyl”, “aryl”, “heteroaryl” and “alkoxycarbonyl” refers to a divalent organic radical derived by removal of one hydrogen from said alkyl, alkenyl, alkynyl, cyclo The respective definitions of alkyl, aryl, heteroaryl and alkoxycarbonyl follow.
- hydroxy means -OH
- nitro means -NO 2
- cyano means -CN
- amino means -NH 2
- Carboxyl means -COOH
- carboxylate means -COOM.
- the M may be an alkali metal or an earth metal.
- alkali metal in this specification refers to chemical elements other than hydrogen in group 1 of the periodic table, such as lithium (Li), sodium (Na), potassium (K), rubidium (Rb), cesium (Cs), and francium (Fr).
- alkaline earth metals refer to group 2 elements of the periodic table: beryllium (Be), magnesium (Mg), calcium (Ca), strontium (Sr), barium (Ba), and radium (Ra).
- the present invention relates to a substrate; and a hydrogen gas sensor including a sensing unit, wherein the sensing unit includes a polymer layer formed from a first polymer on the substrate; A composite layer formed from a second polymer-CNT composite on the polymer layer; a metal electrode formed on the composite layer; A palladium nanoparticle layer formed on the composite layer; and a polymer coating layer located on the palladium nanoparticle layer, wherein the second polymer-CNT composite is CNTs wrapped by a second polymer, and the polymer layer and the composite layer are connected through triazole.
- the sensing unit includes a polymer layer formed from a first polymer on the substrate; A composite layer formed from a second polymer-CNT composite on the polymer layer; a metal electrode formed on the composite layer; A palladium nanoparticle layer formed on the composite layer; and a polymer coating layer located on the palladium nanoparticle layer, wherein the second polymer-CNT composite is CNTs wrapped by a second polymer, and
- the substrate may be an inorganic substrate including glass, quartz, silicon, etc., or polyethylene terephthalate, polyethylene sulfone, polycarbonate, polystyrene, polypropylene, polyester, polyimide, polyetheresterketone, polyesterimide, acrylic resin, and olefin polymer. It may be an organic substrate including a mid copolymer, but is not limited thereto.
- the substrate may be a typical silicon wafer or a substrate in which an oxide film is formed on the inorganic substrate, and may be a flexible substrate including the organic substrate and plastic, but there are special restrictions if a CNT film can be formed on the substrate. It doesn't work. Additionally, physical or chemical treatment may be performed to improve the adhesion between the substrate and the CNT film.
- a CNT film may be formed on the substrate to be applied to semiconductor devices, transparent electrodes, displays, etc.
- the triazole may be represented by the following formula (1).
- * is each independently a connection point with the first polymer of the polymer layer or the second polymer of the composite layer, and the two * are connection points with different layers.
- the first polymer is represented by the formula 2 below
- the second polymer is represented by the formula 3 below
- the triazole is the first polymer and the second polymer It is formed by a click reaction, and the click reaction can be expressed in Scheme 1 below.
- P 1 is a residue derived from the first polymer
- P 2 is a residue derived from the second polymer
- * is the portion where P 1 is fixed to the substrate
- P 2 (CNT) is a residue derived from the second polymer-CNT complex
- FG 1 is an alkynyl functional group
- FG 2 is an azide functional group
- x and y are integers of 1 or more.
- the residue derived from the first polymer refers to the remaining portion of the first polymer excluding the FG 1 functional group, and the first polymer is the same as described later.
- the residue derived from the second polymer refers to the remaining portion of the second polymer excluding the FG 2 functional group, and the second polymer is the same as described later.
- the residue derived from the second polymer-CNT complex refers to the remaining portion of the second polymer-CNT complex excluding the FG 2 functional group, and the second polymer-CNT complex is the same as described later.
- Reaction Scheme 1 If Reaction Scheme 1 is specifically expressed, it may be Reaction Scheme 2 below.
- the alkynyl functional group of Chemical Formula 2 and the azide functional group of Chemical Formula 3 can form a triazole ring through a click reaction in the presence of a copper catalyst.
- P 1 and P 2 (CNT) By chemically bonding P 1 and P 2 (CNT) through the triazole ring, a polymer layer and a composite layer can be formed on the substrate.
- the type of the first polymer is not particularly limited if it has an alkynyl functional group
- the type of the second polymer is not particularly limited if it has an azide functional group.
- the first polymer can be broadly divided into types as long as it has hydroxy, epoxy, carboxyl, thiol, alkene and alkynyl, specifically epoxy and alkynyl functional groups in the side chain. It can be used without restrictions.
- the first polymer may be an acrylic copolymer, the acrylic copolymer may be a polymerization of two or more types of monomers, and the monomer may be an acrylic monomer or a methacrylic monomer.
- the monomer may have hydroxy, epoxy, carboxyl, thiol, alkene, and alkynyl functional groups at the terminal, and may specifically have epoxy and alkynyl functional groups.
- the monomer can be directly synthesized and used, or a commercially available product can be used, but is not limited thereto.
- the acrylic copolymer may be synthesized by a commonly used polymerization method. Specifically, it may be solution polymerization, but is not limited thereto.
- the solution polymerization may be polymerized including the monomer, initiator, and solvent.
- the initiator and solvent are not particularly limited as long as they are commonly used, but specifically, azobisisobutyronitrile (AIBN) may be used as the initiator.
- the solvent may be dimethylformamide (DMF). Additionally, the content is not particularly limited as long as it does not impair the physical properties described in the present invention.
- the first polymer may have a number average molecular weight (Mn) of 5,000 to 100,000 Da, specifically 10,000 to 60,000 Da, and more specifically 10,000 to 30,000 Da, but is not limited thereto.
- Mn number average molecular weight
- the number average molecular weight can be adjusted by the monomer content ratio and polymerization conditions.
- the first polymer or Formula 2 may be a copolymer represented by Formula 4 or Formula 5 below.
- FG 1 is an alkynyl functional group
- p 1 to p 2 are repeating units derived from monomers having a FG 1 functional group at the terminal
- z and k are independently integers of 1 to 7
- a is an integer greater than or equal to 1.
- z and k may independently be integers of 1 to 3
- a and b may satisfy 0.1 to 10:1, specifically 0.5 to 5:1, and more specifically 0.8 to 2:1. It may satisfy, but is not particularly limited thereto.
- the alkynyl functional group may click-react with the azide functional group of Formula 3 to form a triazole ring.
- p 1 to p 2 are repeating units derived from monomers having a FG 1 functional group at the terminal, and specifically, the monomer is not greatly limited as long as it is a monomer capable of condensation polymerization or addition polymerization, but specifically, it is an acrylic type capable of radical polymerization. , it may be one or more monomers selected from methacryl-based, vinyl-based, etc.
- a and b may refer to the number of moles of each p 1 and p 2 repeating unit in the first polymer.
- the ratio of a and b (a:b) can be adjusted by adjusting the molar ratio of monomers corresponding to the p 1 and p 2 repeating units or by adjusting the polymerization conditions, but is not limited to this.
- the first polymer or Chemical Formula 4 according to an embodiment of the present invention may be represented by Chemical Formula 6 below.
- Ar is a trivalent aromatic radical;
- R 1 to R 2 are independently C 1-50 alkylene, C 3-50 cycloalkylene, C 6-50 arylene, C 3-50 heteroarylene, C 1-50 alkoxycarbonylene, or a combination thereof.
- the alkylene, cycloalkylene, arylene, heteroarylene and alkoxycarbonylene are optionally hydroxy, halogen, nitro, cyano, amino, carboxyl, carboxylate, C 1-20 alkyl, C 2-20 Alkenyl, C 2-20 alkynyl, C 1-20 haloalkyl, C 1-20 alkoxy, C 1-20 alkoxycarbonyl, C 3-30 cycloalkyl, (C 6-30 )ar(C 1-20 ) may be substituted with one or more selected from alkyl, C 6-30 aryl, and C 3-30 heteroaryl, z and k are integers of 1 to 7, and a and b are integers of 1 or more.
- R 1 to R 2 may independently be C 1-20 alkylene, C 6-20 arylene, C 1-20 alkoxycarbonylene, or a combination thereof, and the alkylene or arylene and heteroarylene is optionally hydroxy, halogen, carboxyl, C 1-7 alkyl, C 1-7 haloalkyl, C 1-7 alkoxy, C 1-7 alkoxycarbonyl, (C 6-20 )ar(C 1-7 ) may be substituted with one or more selected from alkyl and C 6-20 aryl, z and k are integers of 1 to 3, and a and b are 0.1 to 10:1, specifically 0.5 to 5: It may satisfy 1.
- the first polymer or Chemical Formula 6 may be represented by Chemical Formula 7 below.
- R 2 to R 3 are independently a direct bond or C 1-10 alkylene, and a and b are integers of 1 or more. Specifically, R 2 to R 3 may independently be C 1-3 alkylene, more specifically R 2 to R 3 may be methylene, and a and b may specifically satisfy 0.8 to 2:1. there is.
- z and k in Formula 4 refer to the number of FG 1 included in the p 1 and p 2 repeating units, respectively. In the case of Formula 7, for example, z may be 2 and k may be 1.
- FG 1 is an alkynyl functional group
- FG 3 is an epoxy functional group
- p 1 to p 2 are repeating units derived from a monomer having a FG 1 functional group at the terminal
- p 3 is a FG 3 functional group at the terminal. It is a repeating unit derived from a monomer having, z, k, and t are independently integers of 1 to 7, and a, b, and c are integers of 1 or more.
- z, k, and t may independently be integers of 1 to 3, and the ratio of the sum of a and b and c (a+b:c) is 1 to 10:1, preferably 1 to 7:1. It may satisfy the ratio of, but is not limited to this.
- the epoxy functional group may react chemically with the substrate, and the alkynyl functional group may click-react with the azide functional group of Formula 3 to form a triazole ring.
- p 1 to p 2 may be a repeating unit derived from a monomer having a FG 1 functional group at the terminal
- p 3 may be a repeating unit derived from a monomer having an FG 3 functional group at the terminal.
- the monomer may be a condensation There is no significant limitation as long as it is a monomer capable of polymerization or addition polymerization, but specifically, it may be one or more monomers selected from acrylic-based, methacrylic-based, and vinyl-based monomers capable of radical polymerization.
- a to c may refer to the number of moles of p 1 to p 3 repeating units in the first polymer.
- the ratio of a to c can be adjusted by adjusting the input molar ratio of the monomers corresponding to the p 1 to p 3 repeating units or by adjusting the polymerization conditions, but is not limited to this.
- the first polymer or Chemical Formula 5 may be represented by Chemical Formula 8 below.
- Ar is a trivalent aromatic radical;
- R 1 , R 2 and R 4 are independently C 1-50 alkylene, C 3-50 cycloalkylene, C 6-50 arylene, C 3-50 heteroarylene, C 1-50 alkoxycarbonylene or these It is a combination of, and the alkylene, cycloalkylene, arylene, heteroarylene and alkoxycarbonylene are optionally hydroxy, halogen, nitro, cyano, amino, carboxyl, carboxylate, C 1-20 alkyl, C 2-20 alkenyl, C 2-20 alkynyl, C 1-20 haloalkyl, C 1-20 alkoxy, C 1-20 alkoxycarbonyl, C 3-30 cycloalkyl, (C 6-30 )ar(C 1-20 ) may be substituted with one or more selected from alkyl, C 6-30 aryl and C 3-30 heteroaryl, R 5 is hydrogen or C 1-3 alkyl, and z, k and t are 1 to 7 is an
- Ar is a trivalent aromatic radical
- R 1 , R 2 and R 4 may independently be C 1-20 alkylene, C 6-20 arylene, C 1-20 alkoxycarbonylene, or a combination thereof, and the alkylene, arylene and heteroarylene is optionally hydroxy, halogen, carboxyl, C 1-7 alkyl, C 1-7 haloalkyl, C 1-7 alkoxy, C 1-7 alkoxycarbonyl, (C 6-20 )ar(C 1-7 ) may be substituted with one or more selected from alkyl and C 6-20 aryl
- R 5 is hydrogen or methyl
- z and k are integers from 1 to 3
- the sum of a and b and the ratio of c (a+ b:c) may satisfy a ratio of 1 to 10:1, preferably 1 to 7:1.
- the first polymer or Chemical Formula 8 may be represented by Chemical Formula 9 below.
- R 2 to R 4 are independently C 1-10 alkylene, R 5 is hydrogen or methyl, and a, b and c are integers of 1 or more. Specifically, R 2 to R 4 are independently C 1-3 alkylene, and R 5 may be methyl, and the ratio of the sum of a and b and c (a+b:c) is 1 to 7:1. It may be that the ratio is satisfied.
- z, k and t in Formula 5 refer to the number of FG 1 and FG 3 included in the p 1, p 2 and p 3 repeating units, respectively.
- z is 2 and k is 1, t may be 1.
- p 1 to p 3 may independently refer to repeating units constituting the first polymer of Chemical Formula 2.
- the p 1 and p 2 repeating units may be independently derived from monomers containing one or more FG 1 functional groups at the terminals, and the p 3 repeating units in Formula 5 may have one or more FG 3 functional groups at the terminals. It may be derived from a monomer containing a functional group.
- the FG 1 functional group may be an alkynyl functional group, and the FG 3 functional group may be an epoxy functional group.
- the type of the monomer is not greatly limited as long as it can be copolymerized.
- the type is particularly limited as long as it is a monomer capable of condensation polymerization or addition polymerization. It doesn't work. Specifically, it may include monomers capable of radical polymerization such as acrylic, methacrylic, and vinyl monomers, but is not limited thereto.
- the ratio of a and b in Formula 4 can be adjusted by adjusting the molar ratio of the monomers added to the polymerization, and the ratio of a to c in Formula 5 can be adjusted. That is, the molar ratio of the corresponding monomers added to the polymerization and the ratio of the repeating units p 1 to p 3 may be similar or identical. Specifically, the number of moles of the repeating unit p 1 corresponds to a, the number of moles of p 2 corresponds to b, and the number of moles of p 3 corresponds to c, and the monomers corresponding to each p 1 to p 3 are added at a molar ratio of 2: 2: 1. When polymerized, a:b:c may be the same or similar to 2:2:1, but is not particularly limited thereto, and the ratio may be adjusted depending on the reactivity of each monomer and polymerization conditions.
- the type of the second polymer according to an embodiment of the present invention is not particularly limited as long as it has an azide functional group in the side chain.
- the second polymer may be selected from acrylic, urethane, epoxy, fluorene, carbazole, thiophene, and olefin polymers, but is not limited thereto.
- the second polymer may be synthesized by polymerizing one or more monomers, and the polymerization may be synthesized in the form of condensation polymerization or addition polymerization, but is not particularly limited, and the monomer has an azide functional group at the end and is CNT. If you can wrap it, you can use it without any particular restrictions.
- the second polymer can be used to produce a second polymer-CNT composite by wrapping CNTs, and may specifically be a fluorene-based copolymer.
- the fluorene-based copolymer may be a copolymerization of two or more types of fluorene-based monomers.
- the second polymer is a fluorene-based copolymer, which is an electrically conductive conjugated polymer, CNTs can be wrapped more effectively, and thus a film with high-density CNTs can be manufactured, and this can be used to produce CNTs with excellent electrical properties.
- Semiconductor devices and hydrogen gas sensors can be manufactured.
- the second polymer or the compound represented by Formula 3 may be a copolymer that simultaneously includes a repeating unit (n) of Formula 10 below and a repeating unit (m) of Formula 11 below. .
- R 6 to R 7 are independently C 5-50 alkylene, and R 8 to R 9 are independently C 5-50 alkyl. Specifically, R 6 to R 7 may independently be C 5-20 alkylene, and R 8 to R 9 may independently be C 5-20 alkyl.
- CNTs can be effectively wrapped through ⁇ -electron interaction ( ⁇ - ⁇ stacking interaction) with the CNT sidewall.
- a second polymer-CNT composite can be prepared by selectively wrapping the sc-SWCNT and using this to form a composite layer.
- the number average molecular weight of the copolymer containing the repeating unit (n) and the repeating unit (m) may be 1,000 to 500,000 Da, preferably 3,000 to 50,000 Da, and more preferably 5,000 to 35,000 Da, but in the present invention There is no limitation thereto as long as it does not impair the intended physical properties.
- the copolymer containing the repeating unit (n) and the repeating unit (m) may be a random copolymer in which each repeating unit is randomly polymerized, or it may be an alternating copolymer in which each repeating unit is crossed and bonded. And specifically, it may be a random copolymer.
- n+m may be 1, and n is 0.9 or less, 0.7 or less, preferably 0.5 or less.
- the copolymer containing the repeating unit (n) and the repeating unit (m) may have further improved selectivity for sc-SWCNT, and as a result, a CNT film with a higher density of sc-SWCNT can be coated.
- the hydrogen gas sensor coated with the high-density sc-SWCNT it is good to realize further improved sensitivity and selectivity.
- the mole fraction can be used without major limitations as long as it is a commonly used or known method for analyzing the mole fraction of a copolymer, and can be specifically confirmed through NMR analysis.
- the second polymer or a copolymer containing the repeating unit (n) of Formula 10 and the repeating unit (m) of Formula 11 may be represented by Formula 14 below.
- R 6 and R 7 may independently be C 5-20 alkylene
- R 8 , R 9 , R 18 and R 19 may independently be C 5-20 alkyl
- n may be 0.5 or less, 0.4 or less, more preferably 0.3 or less, 0.2 or less, or 0.1 or less
- the upper limit is not greatly limited, but may be 0.0001 or more, provided that the physical properties targeted by the present invention are not impaired. Not limited.
- the copolymer may be a random copolymer in which each repeating unit is randomly polymerized, or it may be an alternating copolymer in which each repeating unit is crossed and bonded, and specifically, it may be a random copolymer.
- the hydrogen gas sensor according to an embodiment of the present invention may further include a self-assembled monolayer (SAM) between the substrate and the polymer layer formed from the first polymer.
- SAM self-assembled monolayer
- the self-assembled monolayer contains a material that easily reacts with the surface of the substrate layer, such as a silane coupling agent, and a photopolymerization initiator that can effectively absorb energy and form radicals to cause a crosslinking reaction, such as a benzophenone structure. It may be a unit derived from a compound.
- the self-assembled monolayer (SAM) of the hydrogen gas sensor according to an embodiment of the present invention may be a self-assembled monolayer formed from a compound represented by Formula 12 below.
- R 10 is C 1-10 alkylene, and R 11 to R 13 are independently hydroxy, halogen, C 1-10 alkyl, C 1-10 haloalkyl, C 1-10 alkoxy, or C 1 It is -10 alkoxycarbonyl.
- R 10 is C 1-7 alkylene, R 11 to R 13 may independently be halogen, C 1-7 alkyl, or C 1-7 haloalkyl, and the halogen may be Cl or F, More specifically, Formula 12 may be represented by Formula 13 below.
- the compounds represented by Formulas 12 and 13 include a benzophenone structure and can effectively absorb an energy beam and react with the alkyl chain of the polymer in contact with the electrons of the n-orbital of the carbonyl group of benzophenone. Accordingly, the compounds represented by Formulas 12 and 13 and the first polymer may be crosslinked by irradiation with an energy beam.
- the energy beam may be ultraviolet (UV) light.
- the self-assembled monolayer may be formed from the compound represented by Formula 12, and the self-assembled monolayer is chemically bonded to the substrate and simultaneously cross-linked with the first polymer, thereby forming a polymer formed from the first polymer on the substrate.
- the metal electrode of the hydrogen gas sensor is for measuring changes in resistance or current and may include a source electrode and a drain electrode spaced apart from each other on the composite layer.
- the metal electrode is one or more selected from the group consisting of Pt, Al, Au, Cu, Cr, Ni, Ru, Mo, V, Zr, Ti, W, and alloys thereof, or ITO (indium tin oxide), AZO (Al -doped ZnO), IZO (Indium zinc oxide), FTO (F-doped SnO2), GZO (Ga-doped ZnO), ZTO (zinc tin oxide), GIO (gallium indium oxide), ZnO, Pd, Ag and their It may be an electrode formed by one or more elements selected from the group consisting of combinations.
- the thickness of the metal electrode may be 5 to 100 nm, preferably 20 to 80 nm, but is not limited thereto.
- the palladium nanoparticle layer of the hydrogen gas sensor is a sensing unit that detects hydrogen, and may be located in an area where the source electrode and the drain electrode are spaced apart, and hydrogen gas can be sensed by the palladium nanoparticle layer. do. Specifically, when hydrogen is exposed to the palladium nanoparticle layer while power is supplied to the metal electrode, hydrogen is adsorbed and electrical characteristics change, allowing hydrogen to be detected.
- the palladium nanoparticle layer of the hydrogen gas sensor according to an embodiment of the present invention may be formed to have a thickness of 1 to 20 nm, specifically 2 to 10 nm.
- the palladium nanoparticle layer may be made of palladium nanoparticles in the form of clusters or dispersed particles. As a specific example, it may be made of cluster-type palladium nanoparticles with an average particle diameter of 0.1 to 10 nm, preferably 0.5 to 5 nm.
- This palladium nanoparticle layer has excellent conductivity and hydrogen adsorption performance at the same time, allowing it to adsorb a large amount of hydrogen gas and enable highly sensitive sensing.
- the palladium nanoparticle layer is located in a specific area, that is, an area where the source electrode and the drain electrode are spaced apart.
- the palladium nanoparticles may be distributed uniformly or non-uniformly in the area.
- the palladium nanoparticles are distributed only in a partial area on the surface of the composite layer in the area where the source electrode and drain electrode are spaced apart, and the source electrode and the drain electrode
- the surface of the composite layer in the area where the drain electrodes are spaced apart may include a first area where the palladium nanoparticle layer is located and a second area where the palladium nanoparticle layer is not located.
- the area of the second region may be 50% to 90%, preferably 60% to 80%, of the total area of the surface of the composite layer partitioned by the source electrode and the drain electrode.
- the hydrogen gas sensor including the palladium nanoparticle layer composite layer as described above not only provides high sensitivity sensing, but also provides highly sensitive sensing of hydrogen gas even under various environmental conditions, specifically at a temperature of -50°C to 300°C and humidity of 10 to 80%. Sensing may be possible.
- the polymer coating layer of the hydrogen gas sensor according to an embodiment of the present invention allows hydrogen gas to selectively pass through, enabling more highly sensitive hydrogen gas sensing. Furthermore, the polymer coating layer plays a role in protecting the sensing unit by preventing the palladium nanoparticles from escaping from external environments such as moisture and air, and prevents hydrogen gas sensitivity from being reduced due to moisture, etc. when exposed to the outside for a long period of time. In other words, the polymer coating layer can significantly improve the sensitivity, hydrogen selectivity, and physical and chemical stability of the sensing unit. Specifically, the polymer coating layer may include an acrylate-based polymer.
- the thickness of the polymer coating layer is not particularly limited as long as it can sufficiently protect the palladium nanoparticle layer, but may be 100 nm or more, or 500 nm or more, specifically 1 ⁇ m to 10 ⁇ m, but is not limited thereto.
- the polymer coating layer may be formed to be thicker than the thickness of the electrode, so that the edge of the polymer coating layer may be located on the electrode. Such a polymer coating layer can serve to further increase the durability of the hydrogen gas sensor by protecting the electrodes of the hydrogen gas sensor from the external environment.
- the polymer coating layer of the hydrogen gas sensor includes an acrylate-based polymer.
- the weight average molecular weight of the acrylate-based polymer may be 1,000 to 1,000,000 g/mol, and the specific It may be 5,000 to 500,000 g/mol, more specifically 20,000 to 400,000 g/mol.
- the acrylate-based polymer may include poly(C 1-4 )alkyl methacrylate, specifically, polymethacrylate, polymethylacrylate, polymethyl methacrylate ( It may include one or more selected from PMMA), polyethylacrylate, polyethylmethacrylate, or mixtures thereof.
- the polymer coating layer may include polymethyl methacrylate, and at the same time, it may be advantageous in improving the selectivity of hydrogen gas by having a non-porous structure.
- a polymer coating layer containing non-porous polymethyl methacrylate is desirable because it can have excellent hydrogen gas selectivity, high sensitivity, and high reliability in hydrogen gas sensing.
- non-porous means that no pores are observed with the naked eye when observing the surface of the polymer coating layer in a 25 ⁇ m ⁇ 20 ⁇ m photograph measured with a scanning electron microscope. Specifically, this may mean that pores with a diameter of about 10 nm or more are not found.
- the method of detecting hydrogen gas of the present invention through a CNT-based hydrogen gas sensor can be accomplished by measuring current or resistance before and after exposing the detection target gas to the sensor. For example, setting a standard by measuring the drain current (Ids(ref)) of a hydrogen gas sensor; introducing a gas to be detected between the source electrode and the drain electrode; A detection step of measuring the drain current (Ids(detect)) when the detection target gas is introduced; and analyzing the concentration of the detection gas using the measured drain current value.
- the detection gas may be detected based on the drain current value changed (increased) before and after introduction of the detection target gas.
- detection of the detection gas may be performed by measuring the changed resistance value rather than the drain current value changed before and after the introduction of the detection target gas.
- the operating (detection) temperature of the hydrogen gas sensor may be in the range of -50 to 300 °C, specifically -10 to 200 °C, more specifically 4 to 100 °C, and this method of detecting hydrogen gas is 0.1 to 100000 ppm, specifically 1 It can detect hydrogen gas having a concentration range of 80,000 ppm, and the CNT-based hydrogen gas sensor according to an embodiment of the present invention can sense hydrogen gas with high sensitivity even at a low concentration of 200 ppm or less.
- the present invention relates to a substrate; and a hydrogen gas sensor including a sensing unit, wherein the sensing unit includes a polymer layer formed from a first polymer on the substrate; A composite layer formed from a second polymer-CNT composite on the polymer layer; a metal electrode formed on the composite layer; A palladium nanoparticle layer formed on the composite layer; and a polymer coating layer located on the palladium nanoparticle layer, wherein the second polymer-CNT composite is CNTs wrapped by a second polymer, and the polymer layer and the composite layer are connected through triazole.
- a method of manufacturing a hydrogen gas sensor can be provided.
- the method for manufacturing a hydrogen gas sensor according to an embodiment of the present invention is
- the first polymer may be represented by Formula 2
- the second polymer may be represented by Formula 3
- the first polymer and the second polymer may be represented by Formula 3. 2
- the specific description of the polymer is the same as described above.
- step (a) includes (a-1) washing the substrate with a solvent; (a-2) coating a self-assembled monolayer (SAM); (a-3) coating the first polymer; (a-4) UV curing step; and (a-5) washing the compound unfixed to the substrate with a solvent.
- SAM self-assembled monolayer
- the step (a-1) of washing the substrate with a solvent may be performed to remove impurities on the surface of the substrate, and the solvent may be a commonly used inorganic solvent, Organic solvents or mixtures thereof can be used.
- the solvent may be one or more selected from the group consisting of water, nitric acid, sulfuric acid, hydrogen peroxide, acetone, IPA, THF, benzene, chloroform, methanol, DMF, and toluene, or a mixture thereof, preferably sulfuric acid.
- the step (a-2) of coating the self-assembled monolayer may be performed by spin coating, dip coating, gas phase deposition, doctor blade coating, and curtain coating methods. .
- it may be a dip coating method, and the dip coating method may include immersing the cleaned substrate in a self-assembled monolayer solution for 1 to 20 hours, preferably for 3 to 10 hours. .
- the immersion process may be washed with one or more solvents selected from the group consisting of acetone, methanol, ethanol, isopropyl alcohol (IPA), toluene, and tetrahydrofuran (THF), preferably ethanol.
- solvents selected from the group consisting of acetone, methanol, ethanol, isopropyl alcohol (IPA), toluene, and tetrahydrofuran (THF), preferably ethanol.
- This may be a first wash with toluene and a second wash with toluene.
- Whether the self-assembled monomolecular layer is coated can be confirmed by measuring the contact angle, and when the contact angle is 40° or more, it can be determined that the self-assembled monomolecular layer is coated.
- the self-assembled monomolecular layer solution may include a compound represented by Formula 12 and a solvent, and the self-assembled monomolecular layer solution may include the compound represented by Formula 12.
- the concentration may preferably be 0.001 to 3 M, but is not particularly limited.
- Chemical Formula 12 may be represented by Chemical Formula 13, and the descriptions of Chemical Formulas 12 and 13 are the same as those described above.
- the solvent of the self-assembled monolayer solution may be a solvent that does not react with the compound represented by Formula 12.
- the solvent may include aromatic hydrocarbons including toluene, xylene, and mesitylene; cycloalkanes including cyclohexane, cycloheptane, cyclooctane, and cyclononane; It may be one or more selected from alkanes including hexane, heptane, octane, nonane, and decane, and alkyl alcohols including methanol, ethanol, 1-propanol, and 2-propanol, and preferably toluene, but the formula (12) There is no particular limitation as long as the solvent does not react with the compound represented by .
- the step (a-3) of coating the first polymer includes spin coating, dip coating, dropping, spray coating, solution casting, and bar coating. It may be coated by a method selected from coating, roll coating, and gravure coating, and preferably, it may be selected from spin coating, spray coating, solution casting, and roll coating. Additionally, coating may be performed by preparing a coating solution containing the first polymer.
- the coating liquid may include the first polymer and a solvent, and the solvent is not particularly limited as long as the first polymer is dissolved, but non-limiting examples include ethyl acetate (EA), toluene, acetone, 1 , one selected from 1,4,-Dioxane, dimethylacetamide (DMA, N,N-dimethylacetamide), dimethylformamide (DMF), tetrahydrofuran (THF), and chloroform. It may be more than 1,4-dioxane or chloroform.
- the coating solution may contain the first polymer at a concentration of 0.1 to 40 mg/ml, but is not limited thereto, and the concentration may be adjusted according to the desired coating thickness. By preparing a coating solution containing the first polymer, an appropriate method can be selected among the above methods depending on the characteristics of the coating solution and the intended use.
- the first polymer may be represented by the formula 2, and specifically, the formula 2 is represented by the formula 4. You can. Specifically, Formula 4 may be represented by Formula 6, and Formula 6 may be represented by Formula 7. The description of Chemical Formulas 2, 4, 6, and 7 is the same as previously described.
- the UV curing step (a-4) involves crosslinking the compound represented by Formula 12 and the first polymer to immobilize the polymer layer formed from the first polymer on the substrate. This can be performed to manufacture a hydrogen gas sensor that is stable in water and organic solvents and has excellent inter-device reproducibility by uniformly coating the CNT film on the substrate layer at high density.
- the UV curing time may be from 0.1 to 30 minutes, but is not limited thereto.
- the UV curing may be performed using a 365 nm UV lamp, and the UV lamp may have an intensity of 500 to 1500 mJ/cm2, but is not limited thereto.
- the substrate layer may be washed with a solvent to remove unreacted compounds.
- the solvent may be a commonly used solvent, and is not particularly limited as long as it is a solvent in which the unreacted compound is dissolved. Non-limiting examples include toluene, acetone, 1,4-dioxane, EA, DMA, DMF, and THF. and one or more solvents selected from chloroform, etc. may be used.
- step (a) includes (a'-1) washing the substrate with a solvent; (a'-2) coating the first polymer; (a'-3) heat treatment step; and (a'-4) washing the unfixed compound on the substrate with a solvent.
- the step (a'-1) of washing the substrate with a solvent is performed to remove unreacted organic and inorganic substances remaining on the substrate, and the solvent is Commonly used inorganic solvents, organic solvents, or mixtures thereof can be used. Examples of specific compounds may be the same as or different from the solvent used in the step of washing the substrate with solvent (a-1).
- step (a'-2) of coating the first polymer may be performed in the same manner as step (a-3) of coating the first polymer.
- the first polymer may be represented by the formula 2, and specifically, the first polymer or the formula 2 is It may be represented by Chemical Formula 5. Specifically, the first polymer or Formula 5 may be represented by Formula 8, and more specifically, the first polymer or Formula 8 may be represented by Formula 9. The description of Chemical Formulas 2, 5, 8, and 9 is the same as previously described.
- the heat treatment step (a'-3) may be a process in which the substrate and the first polymer are chemically bonded to form a polymer layer formed from the first polymer on the substrate.
- the heat treatment temperature is 100 to 150°C
- the heat treatment time may be 1 hour or more, but the temperature and time may be adjusted depending on the thickness of the polymer layer, etc., and if the temperature does not impair the physical properties targeted by the present invention, and the time range is not particularly limited.
- the substrate layer may be washed with a solvent to remove unreacted compounds.
- the solvent may be a commonly used solvent, and is not particularly limited as long as it is a solvent in which the unreacted compound is dissolved. Non-limiting examples include toluene, acetone, 1,4-dioxane, EA, DMA, DMF, and THF. and one or more solvents selected from chloroform, etc. may be used.
- the second polymer-CNT composite solution according to an embodiment of the present invention may include a second polymer, CNTs, and a solvent.
- the second polymer-CNT composite solution may be a solution in which a second polymer obtained by wrapping CNTs is dissolved in a solvent.
- the CNTs include single-walled carbon nanotubes (SWCNTs), double-walled carbon nanotubes, multi-walled carbon nanotubes (Multi-walled carbon nanotubes), and bundled carbon nanotubes (Rope). It may be one or more selected from the group consisting of carbon nanotubes, or it may be single-walled carbon nanotubes (SWCNTs). Preferably, it may be conductive single-walled carbon nanotubes (m-SWCNT), semiconducting single-walled carbon nanotubes (sc-SWCNT), or a mixture thereof. When semiconducting single-walled carbon nanotubes (sc-SWCNT) are used, , it may be desirable to manufacture semiconductor devices and hydrogen gas sensors with better electrical performance.
- CNTs with appropriate properties can be selected to form a CNT film on the base substrate.
- the CNT may have an outer diameter of 0.1 nm or more, preferably 0.1 to 10 nm, and more preferably 0.1 to 5 nm, but is not particularly limited as long as it does not affect dispersibility when preparing the second polymer-CNT composite solution.
- the solvent of the second polymer-CNT composite solution is not particularly limited as long as the second polymer of the present invention can be dissolved, and preferably a non-polar solvent can be used.
- Non-limiting examples of the non-polar solvent include aromatic hydrocarbon solvents such as benzene, toluene, and xylene, and aliphatic hydrocarbon solvents such as hexane, heptane, octane, cyclohexane, and methylcyclohexane (MCH).
- aromatic hydrocarbon solvents such as benzene, toluene, and xylene
- aliphatic hydrocarbon solvents such as hexane, heptane, octane, cyclohexane, and methylcyclohexane (MCH).
- Toluene or methylcyclohexane can be used.
- Polar solvents such as chloroform or tetrahydrofuran (THF) may
- the method for producing a second polymer-CNT composite solution may include dissolving the second polymer in a solvent and then dispersing the CNTs.
- the second polymer may be included at a concentration of 0.1 to 30 mg/ml, more preferably 0.1 to 20 mg/ml relative to the solvent, but is not limited thereto, and the CNT may be included at a concentration of 0.05 to 5 mg/ml. You can.
- the second polymer is preferably completely dissolved in the solvent, and may be dissolved in a temperature range of 50 to 100°C.
- the second polymer (second polymer-CNT composite) wrapping the carbon nanotubes may be separated through centrifugation, and then manufactured through a filtration process and redispersion process, but is not limited to this.
- the concentration of the second polymer-CNT complex in the second polymer-CNT complex solution after the redispersion process may be 0.001 to 10 mg/ml, and the density of the CNT film is adjusted by adjusting the concentration. It may be, but is not limited to this.
- the solvent used in the redispersion process may be the same as or different from the specific example of the solvent of the second polymer-CNT composite solution described above, and the dispersion and redispersion process may be carried out through ultrasonic treatment.
- a substrate is manufactured with a second polymer-CNT composite solution that satisfies the above range, a CNT film of appropriate density can be formed on the substrate layer, and the high-stability and high-density CNT film targeted by the present invention can be manufactured. Even better, the prepared second polymer-CNT composite solution can be used in the step (b) of immersing the coated substrate in the second polymer-CNT composite solution.
- the second polymer may be a copolymer simultaneously containing the repeating unit (n) of Formula 10 and the repeating unit (m) of Formula 11, and the description of the copolymer was given above. It is the same as described.
- the step (c) of forming a polymer layer and a composite layer by clicking reaction of the first polymer and the second polymer is performed through heating or ultrasonic treatment under a copper catalyst. It may be something that is going on.
- step (c) a polymer layer formed from the first polymer and a composite layer formed from the second polymer-CNT composite may be formed, and the polymer layer and the composite layer may be connected through a triazole ring.
- ultrasonic treatment may be performed at an intensity of 90 to 120 W at a temperature of 50 to 60° C.
- the ultrasonic treatment time is 1 minute or more, preferably 2 minutes to 6 hours, more preferably 5 minutes to 2 hours.
- the temperature, intensity and time are not particularly limited as long as they do not impair the physical properties targeted by the present invention.
- the reaction can be carried out by variously adjusting the time to achieve the desired CNT film density.
- the density of the CNT film can be confirmed by observing the surface of the coating layer through Raman spectroscopy, scanning electron microscopy (SEM), or optical microscopy.
- a high-density CNT film when manufacturing a hydrogen gas sensor through the click reaction, can be uniformly coated in a short time, so not only is the work easy and efficient, but the CNT film is chemically bonded. By being coated on the substrate layer, it has excellent adhesion and stability against water and organic solvents, so the CNT film does not peel off even after washing. In addition, when using the click reaction, the CNT film is uniformly coated, improving reliability. It is good to be able to manufacture a hydrogen gas sensor with excellent sensitivity and selectivity even at low hydrogen gas concentrations.
- a step of washing unreacted compounds with an organic solvent may be performed, which may include removing the catalyst, monomer and This may be done to manufacture a high-purity CNT film by removing unreacted compounds such as polymers.
- the organic solvent may be any commonly used solvent without particular limitation, and non-limiting examples include one or more solvents selected from toluene, acetone, 1,4-dioxane, EA, DMA, DMF, THF, and chloroform. there is.
- the cleaning process may be performed through ultrasonic cleaning, and the ultrasonic intensity may be strong at 170 to 230 W.
- the CNT-based hydrogen gas sensor according to the present invention is very good because it can maintain a high-density CNT film even after multiple ultrasonic cleaning processes and ensure stability against water and organic solvents.
- the step (d) of forming a source electrode and a drain electrode on the composite layer may be performed using a known or conventional electrode forming method.
- a method of heat treating the composite layer formed from the second polymer-CNT composite at 100 to 200° C. for 10 to 60 minutes and then depositing the source electrode and drain electrode using a shadow mask may be used.
- the shadow mask may be a metal shadow mask, a polymer shadow mask such as PDMS or PMMA, etc.
- Detailed descriptions of the source electrode and drain electrode and examples of compounds are the same as described above and are therefore omitted.
- step (e) is a step of forming a palladium nanoparticle layer in an area where the source electrode and the drain electrode are spaced apart, including physical or chemical vapor deposition of palladium nanoparticles, For example, it can be performed through sputtering, thermal evaporation, electron beam evaporation, electroplating, and spraying an aqueous metal solution on the sample surface. Specifically, it is performed by thermal evaporation at a temperature lower than the melting point of palladium nanoparticles. You can.
- the temperature conditions may be 80 to 500°C, preferably 100 to 400°C.
- step (f) is a step of dissolving a polymer in a solvent and then coating and drying the palladium nanoparticle layer to form a polymer coating layer
- the coating method Can be performed according to a commonly used or known method, for example, may be performed according to any one method selected from spin coating, spray coating, knife coating, and roll coating, but is not limited thereto.
- PMMA polymethyl methacrylate
- a polymer coating layer can be formed by coating a solution in which the polymer is dissolved in a solvent and then drying the solution by evaporating the solvent.
- the drying is not limited as long as the temperature conditions are capable of evaporating the solvent, but may be performed at a temperature of 100 to 300°C, specifically 120 to 200°C.
- Detailed descriptions of the polymer coating layer and examples of compounds are the same as described above, so they are omitted.
- the solution in which the polymer is dissolved may contain the polymer at a concentration of 0.1 to 50 mg/mL, preferably 1 to 10 mg/mL, and more preferably 2 to 8 mg/mL, but is not limited thereto.
- the concentration can be easily adjusted depending on the thickness of the target polymer coating layer.
- the solvent may be a halogenated alkoxy benzene compound, and the halogen may be chlorine, fluorine, or bromine.
- the halogenated alkoxy benzene compound may be a chlorinated (C 1-4 ) alkoxy benzene compound, and specifically may be anisole.
- the polymer coating layer produced using such a solvent can have a non-porous surface and can effectively achieve improved selectivity for hydrogen gas.
- an acrylate copolymer represented by the following formula (6) can be provided.
- Formula 6 is the same as described above, and Formula 6 may be represented by the following compound, but is not limited thereto.
- an acrylate copolymer represented by the following formula (8) can be provided.
- Formula 8 is the same as described above, and Formula 8 may be represented by the following compound, but is not limited thereto.
- Ar may be two identical R 1s connected to each other, or two different R 1s may be connected to each other.
- the R 1 may include z numbers of FG 1 , and when two different R 1s are connected to the Ar, z of each different R 1 may independently be an integer of 1 to 7.
- the obtained polymer was analyzed by 1 H NMR to confirm that the target product acrylate copolymer (i) was prepared, and analyzed by GPC to confirm that the number average molecular weight (Mn) was 16,762 Da and PDI was 3.3.
- the obtained polymer was analyzed by 1 H NMR to confirm that the target product acrylate copolymer (ii) was prepared, and analyzed by GPC to confirm that the number average molecular weight (Mn) was 17,800 Da and PDI was 2.11.
- Copolymer (iii) in the form of a yellow solid was obtained by precipitation and filtration using chloroform and methanol. (Yield 45%)
- the number average molecular weight of the copolymer was measured to be 28000 Da.
- Copolymer (IV) in the form of a yellow solid was obtained by precipitation and filtration using chloroform and methanol. (Yield 53%)
- the number average molecular weight of the copolymer (IV) was measured to be 31000 Da. Through NMR analysis, it was confirmed that n was about 0.3.
- Copolymer (V) in the form of a yellow solid was obtained by precipitation and filtration using chloroform and methanol. (Yield 61%)
- the number average molecular weight of the copolymer (V) was measured to be 37000 Da. Through NMR analysis, it was confirmed that n was about 0.1.
- the fluorene-based copolymer (iii) of Preparation Example 4 was added to 20 ml of methylcyclohexane (MCH) at a concentration of 1 mg/ml and heated at 80°C for 1 hour to completely dissolve. After cooling, 20 mg of Purified Powder SWCNT (Nanointegris Inc., RN-220) was added, dispersed at room temperature using an ultrasonicator (Sonics & Materials Inc., VCX-750, 750W), and centrifuged (Hanil Scientific Inc.). , Supra R30) was centrifuged at 85,000 g for 1 hour.
- MCH methylcyclohexane
- the solution excluding the precipitate was filtered through a 0.20 ⁇ m MCE (Mixed Cellulose Ester) membrane to obtain fluorene-based copolymer (iii) wrapping sc-SWCNTs.
- the obtained pellet was washed several times, then added to 10 ml of toluene at a concentration of 0.02 mg/ml, sonicated for 5 minutes, and redispersed to prepare a second polymer-CNT composite solution.
- the 100 nm SiO 2 /Si substrate layer (Chung King Enterprises) was thoroughly washed with a 7:3 solution of sulfuric acid (H 2 SO 4 ) and hydrogen peroxide (H 2 O 2 ), and then washed again with water and toluene. After washing, the solvent was completely removed through nitrogen gas and heat treatment at 110°C for 10 minutes.
- the dried substrate layer was immersed in the BPS solution of Preparation Example 8 and left for 12 hours, then washed in ethanol and toluene for 3 minutes each using an ultrasonic cleaner, and coated with a self-assembled monolayer (SAM).
- SAM self-assembled monolayer
- a solution of the acrylate copolymer (i) of Preparation Example 2 dissolved in 1,4-dioxane at a concentration of 5 mg/ml was spin-coated on the SAM-coated substrate layer at 1000 rpm for 50 seconds, and 727 mJ/ml.
- the substrate fixation step was performed by UV curing for 1 minute at an intensity of cm2.
- the compound unfixed to the substrate layer was removed by ultrasonic washing in chloroform for 1 hour, the solvent was removed with nitrogen gas, and heat treatment was performed at 100°C for 10 minutes.
- the self-assembled monolayer (SAM) coating was confirmed by confirming that the contact angle measurement result for water was 70° or more, as shown in (a) of Figure 3.
- SAM self-assembled monolayer
- the substrate layer coated with the acrylate copolymer (i) was placed in a vial and immersed in 1 ml of the second polymer-CNT composite solution of Preparation Example 7, followed by 0.003 g of copper sulfate (CuSO 4 ) and sodium ascorbate. ) 0.019 g and 0.5 ml of distilled water were added and nitrogen purged.
- the vial was immersed in an ultrasonic cleaner and sonicated at a temperature of 50°C and an intensity of 110W for 5 minutes to perform a click reaction. After completion of the reaction, the substrate was ultrasonic washed in toluene to remove unreacted compounds, the solvent was removed with nitrogen gas, and the substrate was heat treated at 150°C for 30 minutes.
- a CNT semiconductor device was manufactured by depositing Ti to a thickness of 5nm and Au to a thickness of 60nm and a separation distance of 200 ⁇ m using a shadow mask on a completely dried substrate to form source and drain electrodes.
- the electrical characteristic curve (output curve and transfer curve) of the manufactured CNT semiconductor device was measured and shown in Figure 4 (a).
- Pd was deposited on the CNT semiconductor device using a thermal evaporator at a speed of 0.1 ⁇ /s to form a palladium nanoparticle layer with an average thickness of 3 nm.
- 4 mg/ml of PMMA (solvent anisole) was spin-coated (2000 rpm, 30 seconds) and then heat treated at 175°C for 10 minutes to form a PMMA coating layer, ultimately manufacturing a hydrogen gas sensor.
- the 100 nm SiO 2 /Si substrate layer (Chung King Enterprises) was thoroughly washed with a 7:3 solution of sulfuric acid (H 2 SO 4 ) and hydrogen peroxide (H 2 O 2 ), and then washed again with water and toluene. After washing, the solvent was completely removed through nitrogen gas and heat treatment at 110°C for 10 minutes.
- a solution of the acrylate copolymer (ii) of Preparation Example 3 dissolved in 1,4-dioxane at a concentration of 5 mg/ml was spin-coated on the dried substrate layer at 1000 rpm for 50 seconds, and 2 times at 110°C.
- the substrate fixation step was performed by heat treatment for a period of time.
- the compound unfixed to the substrate layer was removed by ultrasonic washing in chloroform for 1 hour, the solvent was removed with nitrogen gas, and heat treatment was performed at 100°C for 10 minutes.
- the acrylate copolymer (ii) solution was coated and heat cured through UV-Vis spectroscopy, and then before and after washing the substrate layer with chloroform. The results were compared.
- the substrate layer coated with the acrylate copolymer (ii) was placed in a vial and immersed in 1 ml of the second polymer-CNT composite solution of Preparation Example 7, followed by 0.003 g of copper sulfate (CuSO4) and sodium ascorbate. Nitrogen purge was performed by adding 0.019 g and 0.5 ml of distilled water. The vial was immersed in an ultrasonic cleaner and sonicated at a temperature of 50°C and an intensity of 110W for 5 minutes to perform a click reaction. The subsequent steps were performed in the same manner as in Example 1, and finally, the CNT semiconductor device and hydrogen gas sensor according to Example 2 were manufactured. The shadow mask used was the same as that used in Example 1, and the electrical characteristic curves (output curve and transfer curve) for the CNT semiconductor device manufactured according to Example 2 are shown in Figure 4 (b). ) is shown in.
- the second polymer-CNT composite solution of Preparation Example 7 was spin-coated on the substrate layer coated with the acrylate copolymer (i) in Example 1 under conditions of 2000 rpm, not using a click reaction, and dried on a hot plate. The above process was repeated twice, and after film coating, the substrate was ultrasonic washed in toluene to remove unreacted compounds, and the solvent was removed with nitrogen gas, followed by heat treatment at 150°C for 30 minutes.
- a CNT semiconductor device according to Comparative Example 1 was formed by depositing Ti to a thickness of 5 nm and Au to a thickness of 60 nm and a separation distance of 200 ⁇ m using a shadow mask on a completely dried substrate to form a source electrode and a drain electrode. Manufactured. Electrical characteristic curves (output curve and transfer curve) for all elements of the hydrogen gas sensor according to Comparative Example 1 are shown in FIG. 4(c).
- Figure 5 shows the detection test results of the hydrogen gas sensor according to Example 1 at hydrogen concentrations of 0.5 (500 ppb) to 1000 ppm
- Figure 6 shows the results of repeated tests at a hydrogen concentration of 100 ppm in the air
- Figure 7 shows the results of hydrogen, carbon monoxide, carbon dioxide, ethylene, and methane gas detection tests.
- the hydrogen gas sensor according to Example 1 of the present invention showed a sensitive current change even at low concentrations, specifically hydrogen gas concentrations of 500 ppb or more, and furthermore, even in repeated tests in Figure 6, a constant change was observed. It was confirmed that reliability could be easily secured by presenting the results.
- the CNT-based hydrogen gas sensor according to the present invention exhibits excellent selectivity and high sensitivity to hydrogen gas in that it reacts selectively to hydrogen gas over other gases.
- the hydrogen gas sensor according to Example 2 also showed sensitivity and selectivity equivalent to Example 1.
- the hydrogen gas sensor according to Comparative Example 1 showed no change in current at a hydrogen gas concentration of 500ppb or more, and when tested repeatedly, it showed different result values, making it difficult to secure reproducibility and reliability.
- the hydrogen gas sensor according to the present invention has the advantage of being stable in water and organic solvents as the CNTs rarely peel off even if the cleaning process is performed several times, and at the same time, reproducibility between devices can be easily secured.
- a hydrogen gas sensor was manufactured using a click reaction to solve the problems of the conventional CNT-based hydrogen gas sensor, which is easily peeled off, vulnerable to organic solvents, and has poor reliability between devices.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Health & Medical Sciences (AREA)
- Materials Engineering (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Immunology (AREA)
- General Physics & Mathematics (AREA)
- Pathology (AREA)
- Nanotechnology (AREA)
- General Health & Medical Sciences (AREA)
- Physics & Mathematics (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- Polymers & Plastics (AREA)
- Wood Science & Technology (AREA)
- Inorganic Chemistry (AREA)
- Electrochemistry (AREA)
- Food Science & Technology (AREA)
- Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
- Combustion & Propulsion (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
Abstract
The present invention makes it possible to: manufacture a CNT-coated substrate, which has a highly dense and uniform CNT film formed thereon and thus exhibits high stability against water or an organic solvent, by using a click reaction; and manufacture a hydrogen gas sensor having excellent reliability and sensitivity by using same. In particular, in contrast to conventional approaches involving spray coating and spin coating of a CNT solution, wherein reproducibility and reliability could not be achieved due to significant differences in physical properties between devices, the present invention makes it possible to manufacture a hydrogen gas sensor having excellent selectivity and sensitivity to hydrogen gas, while also having high reproducibility and reliability, using a relatively simple method.
Description
본 발명은 클릭반응을 이용한 CNT 필름 및 이를 이용한 CNT 기반 수소 가스 센서에 대한 것으로, 구체적으로 물이나 유기 용매에 대한 안정성이 우수하고 클릭반응을 통해 제조된 높은 신뢰성을 가지며 저농도의 수소 가스도 고감도 센싱이 가능한 CNT 기반 수소 가스 센서 및 이의 제조방법에 관한 것이다.The present invention relates to a CNT film using a click reaction and a CNT-based hydrogen gas sensor using the same. Specifically, it has excellent stability against water or organic solvents, has high reliability manufactured through a click reaction, and is capable of sensing even low concentrations of hydrogen gas with high sensitivity. This relates to a possible CNT-based hydrogen gas sensor and its manufacturing method.
화석연료의 고갈 및 환경오염 문제로 인해 대두되고 있는 수소 에너지는 산업용 기초소재로부터 일반 연료, 수소자동차, 수소비행기, 연료전지, 핵융합에너지 등 현재의 에너지 시스템에서 사용되는 거의 모든 분야에 이용될 가능성을 지니고 있다. Hydrogen energy, which is emerging due to the depletion of fossil fuels and environmental pollution problems, has the potential to be used in almost all fields used in the current energy system, including basic industrial materials, general fuel, hydrogen cars, hydrogen airplanes, fuel cells, and nuclear fusion energy. I have it.
하지만, 수소가스는 폭발농도범위가 넓고(4~75%), 발화에너지가 작아 미세한 정전기에도 쉽게 발화되기 때문에 누출된 양이 미량이라도 매우 위험할 수 있다. 이에, 수소 누출에 의한 대형사고 및 인명 피해를 줄이기 위해 수소가스를 빠르고 정확하게 탐지할 수 있는 고성능 가스 센서가 요구된다.However, hydrogen gas has a wide explosive concentration range (4-75%) and small ignition energy, so it is easily ignited by even the slightest static electricity, so even a small amount of hydrogen gas leaked can be very dangerous. Accordingly, in order to reduce major accidents and casualties caused by hydrogen leaks, high-performance gas sensors that can quickly and accurately detect hydrogen gas are required.
이에, 대한민국 등록특허공보 제10-0870126호 'Pd 나노와이어를 이용한 수소 가스 센서 제조방법'에 개시된 바와 같이, 수소 가스 센서로서 성능을 최적화할 수 있는 수소 가스 센서 재료 및 구조에 대한 연구가 진행중에 있으나, 여전히 상온에서 수소 가스에 대한 높은 선택도, 민감도 및 빠른 응답 속도를 가질 수 있도록 작동하는 센서에 대한 개발이 필요한 실정이다.Accordingly, as disclosed in Republic of Korea Patent Publication No. 10-0870126, 'Method for manufacturing hydrogen gas sensor using Pd nanowire', research on hydrogen gas sensor materials and structures that can optimize performance as a hydrogen gas sensor is in progress. However, there is still a need to develop a sensor that operates with high selectivity, sensitivity, and fast response speed to hydrogen gas at room temperature.
한편 CNT(탄소 나노 튜브)를 이용한 가스 센서에 대한 연구도 진행되고 있지만, 종래의 방법으로는 기재와 CNT의 결합력이 미흡하여 세척공정 물이나 유기용매에 의하여 CNT 필름이 쉽게 박리될 수 있고, 따라서 필름 내 CNT 간의 연결성이 균일하지 못하여 제조한 소자 간의 신뢰성이 떨어질 수 밖에 없다.Meanwhile, research on gas sensors using CNTs (carbon nanotubes) is also in progress, but with conventional methods, the bonding strength between the substrate and CNTs is insufficient, so the CNT film can be easily peeled off by water or organic solvents during the cleaning process. Since the connectivity between CNTs in the film is not uniform, the reliability of the manufactured devices inevitably decreases.
따라서, 기재와의 접착력이 좋고 CNT 필름이 고밀도로 균일하게 형성되어 소자간의 신뢰성이 우수하며, 물이나 유기 용매에 대하여 탁월한 안정성을 가지면서도 동시에 상온에서 수소 가스에 대한 탁월한 선택도, 민감도 및 빠른 응답 속도를 구현할 수 있는 수소 가스 센서에 대한 연구개발이 절실히 요구되고 있다.Therefore, the adhesion to the substrate is good and the CNT film is formed at high density and uniformity, resulting in excellent inter-device reliability and excellent stability against water or organic solvents, while at the same time excellent selectivity, sensitivity and fast response to hydrogen gas at room temperature. There is an urgent need for research and development on hydrogen gas sensors that can realize speed.
상기 종래 기술의 문제점을 해결하기 위해 본 발명은 유기용매에 대한 우수한 안정성과 높은 신뢰성을 가지며 수소 가스에 대한 탁월한 선택도, 민감도 및 빠른 응답 속도를 나타내는 CNT 기반 수소 가스 센서를 제공하는 것을 목적으로 한다.In order to solve the problems of the prior art, the present invention aims to provide a CNT-based hydrogen gas sensor that has excellent stability and high reliability in organic solvents and exhibits excellent selectivity, sensitivity and fast response speed to hydrogen gas. .
또한, 본 발명의 또다른 목적은 클릭반응을 이용하여 공정이 비교적 용이한 CNT 기반 수소 가스 센서의 제조방법을 제공하는 것이다.In addition, another object of the present invention is to provide a method of manufacturing a CNT-based hydrogen gas sensor using a click reaction, which is relatively easy to process.
상기 목적을 달성하기 위하여 본 발명자들은 고밀도 CNT 필름이 물이나 유기 용매에 대하여 탁월한 안정성을 가지면서도 동시에 상온에서 수소 가스에 대한 탁월한 선택도, 민감도 및 빠른 응답 속도를 구현할 수 있는 수소 가스 센서를 개발하기 위하여 끊임없는 연구를 거듭한 끝에, 놀랍게도 클릭반응을 이용하여 수소 가스 센서를 제조할 경우, CNT 필름이 고밀도로 균일하게 형성되고, 물이나 유기 용매에 대한 안정성이 우수하여 세척 후에도 박리되지 않으며 신뢰성이 우수할 뿐만이 아니라 수소 가스에 대한 탁월한 선택도, 민감도 및 빠른 응답 속도를 나타내는 수소 가스 센서를 제조할 수 있다는 것을 발견하여 본 발명을 완성하였다.In order to achieve the above objective, the present inventors developed a hydrogen gas sensor in which a high-density CNT film has excellent stability against water or organic solvents and at the same time can realize excellent selectivity, sensitivity, and fast response speed to hydrogen gas at room temperature. Surprisingly, after continuous research for this purpose, when a hydrogen gas sensor is manufactured using a click reaction, the CNT film is formed at high density and uniformity, and has excellent stability against water or organic solvents, so it does not peel off even after washing and is reliable. The present invention was completed by discovering that it is possible to manufacture a hydrogen gas sensor that is not only excellent, but also exhibits excellent selectivity, sensitivity, and fast response speed to hydrogen gas.
본 발명은 기판; 및 센싱부를 포함하는 수소 가스 센서로서, 상기 센싱부는 상기 기판 상에 제1 고분자로부터 형성된 고분자층; 상기 고분자층 상에 제2 고분자-CNT 복합체로부터 형성된 복합체층; 상기 복합체층 상에 형성된 금속 전극; 상기 복합체층 상에 형성된 팔라듐 나노입자층; 및 상기 팔라듐 나노입자층 상에 위치하는 고분자 코팅층;을 포함하며, 상기 제2 고분자-CNT복합체는 제2 고분자에 의해 CNT가 랩핑된 것이고, 상기 고분자층과 복합체층은 트리아졸을 통해 연결되는 것인 수소 가스 센서를 제공한다.The present invention relates to a substrate; and a hydrogen gas sensor including a sensing unit, wherein the sensing unit includes a polymer layer formed from a first polymer on the substrate; A composite layer formed from a second polymer-CNT composite on the polymer layer; a metal electrode formed on the composite layer; A palladium nanoparticle layer formed on the composite layer; and a polymer coating layer located on the palladium nanoparticle layer, wherein the second polymer-CNT composite is CNTs wrapped by a second polymer, and the polymer layer and the composite layer are connected through triazole. Provides a hydrogen gas sensor.
본 발명의 일 실시예에 따라, 상기 금속 전극은 상기 복합체층 상에서 서로 이격 위치하는 소스 전극과 드레인 전극을 포함하고, 상기 팔라듐 나노입자층은 상기 소스 전극 및 드레인 전극이 이격된 영역에 위치한 것일 수 있다.According to one embodiment of the present invention, the metal electrode includes a source electrode and a drain electrode spaced apart from each other on the composite layer, and the palladium nanoparticle layer may be located in an area where the source electrode and the drain electrode are spaced apart. .
본 발명의 일 실시예에 따라, 상기 고분자 코팅층은 아크릴레이트계 고분자를 포함할 수 있다.According to one embodiment of the present invention, the polymer coating layer may include an acrylate-based polymer.
본 발명의 일 실시예에 따라, 상기 고분자 코팅층은 비다공질 폴리메틸메타크릴레이트를 포함할 수 있다.According to one embodiment of the present invention, the polymer coating layer may include non-porous polymethyl methacrylate.
본 발명의 일 실시예에 따라, 상기 트리아졸은 하기 화학식 1로 표시될 수 있다.According to one embodiment of the present invention, the triazole may be represented by the following formula (1).
[화학식 1][Formula 1]
상기 화학식 1에서,In Formula 1,
*는 각각 독립적으로 고분자층의 제1고분자 또는 복합체층의 제2고분자와의연결점이고, 상기 두 개의 *는 서로 다른 층과의 연결점이다.* is each independently a connection point with the first polymer of the polymer layer or the second polymer of the composite layer, and the two * are connection points with different layers.
본 발명의 일 실시예에 따라, 상기 제1 고분자는 하기 화학식 2로 표시되고, 상기 제2 고분자는 하기 화학식 3으로 표시되며, 상기 트리아졸은 상기 제1 고분자와 제2 고분자의 클릭반응에 의해 형성되는 것이고, 상기 클릭반응은 하기 반응식 1로 표시될 수 있다.According to one embodiment of the present invention, the first polymer is represented by the following formula (2), the second polymer is represented by the following formula (3), and the triazole is produced by a click reaction between the first polymer and the second polymer. is formed, and the click reaction can be expressed as Scheme 1 below.
[화학식 2][Formula 2]
P1-(FG1)x
P 1 -(FG 1 ) x
[화학식 3][Formula 3]
P2-(FG2)y
P 2 -(FG 2 ) y
[반응식 1][Scheme 1]
상기 화학식 2 내지 3 및 반응식 1에서, In Formulas 2 to 3 and Scheme 1,
P1은 제1 고분자로부터 유래된 잔기이고;P 1 is a residue derived from the first polymer;
P2는 제2 고분자로부터 유래된 잔기이고;P 2 is a residue derived from the second polymer;
*는 P1이 기판에 고정된 부분이고,* is the part where P1 is fixed to the board,
P2(CNT)는 제2 고분자-CNT복합체로부터 유래된 잔기이고; P 2 (CNT) is a residue derived from the second polymer-CNT complex;
FG1은 알키닐 작용기이고;FG 1 is an alkynyl functional group;
FG2은 아자이드 작용기이고;FG 2 is an azide functional group;
x 및 y는 1 이상의 정수이다.x and y are integers greater than or equal to 1.
본 발명의 일 실시예에 따라, 상기 제1 고분자는 아크릴계 공중합체일 수 있다.According to one embodiment of the present invention, the first polymer may be an acrylic copolymer.
본 발명의 일 실시예에 따라, 상기 화학식 2는 하기 화학식 4 또는 화학식 5로 표시될 수 있다.According to an embodiment of the present invention, Formula 2 may be expressed as Formula 4 or Formula 5 below.
[화학식 4][Formula 4]
[화학식 5][Formula 5]
상기 화학식 4 및 5에서,In Formulas 4 and 5 above,
FG1은 알키닐 작용기이고;FG 1 is an alkynyl functional group;
FG3는 에폭시 작용기이고;FG 3 is an epoxy functional group;
p1 내지 p2는 말단에 FG1 작용기를 갖는 단량체로부터 유래된 반복단위고;p 1 to p 2 are repeating units derived from a monomer having a FG 1 functional group at the end;
p3는 말단에 FG3 작용기를 갖는 단량체로부터 유래된 반복단위고;p 3 is a repeating unit derived from a monomer having a FG 3 functional group at the terminal;
z, k 및 t는 1 내지 7의 정수이고;z, k and t are integers from 1 to 7;
a, b 및 c는 1 이상의 정수이다.a, b and c are integers greater than or equal to 1.
본 발명의 일 실시예에 따라, 상기 화학식 4은 하기 화학식 6으로 표시되고, 상기 화학식 5는 하기 화학식 8로 표시될 수 있다.According to an embodiment of the present invention, Formula 4 may be represented by Formula 6 below, and Formula 5 may be represented by Formula 8 below.
[화학식 6][Formula 6]
[화학식 8][Formula 8]
상기 화학식 6 및 8에서, In Formulas 6 and 8 above,
Ar은 3가 방향족 라디칼이고;Ar is a trivalent aromatic radical;
R1, R2 및 R4는 서로 독립적으로 C1-50알킬렌, C3-50시클로알킬렌, C6-50아릴렌, C3-50헤테로아릴렌, C1-50알콕시카보닐렌 또는 이들의 조합이고;R 1 , R 2 and R 4 are independently of each other C 1-50 alkylene, C 3-50 cycloalkylene, C 6-50 arylene, C 3-50 heteroarylene, C 1-50 alkoxycarbonylene or It is a combination of these;
상기 알킬렌, 시클로알킬렌, 아릴렌, 헤테로아릴렌 및 알콕시카보닐렌은 선택적으로 하이드록시, 할로겐, 나이트로, 시아노, 아미노, 카복실, 카복실산염, C1-20알킬, C2-20알케닐, C2-20알키닐, C1-20할로알킬, C1-20알콕시, C1-20알콕시카보닐, C3-30시클로알킬, (C6-30)아르(C1-20)알킬, C6-30아릴 및 C3-30헤테로아릴에서 선택되는 하나 이상으로 치환될 수 있으며,The alkylene, cycloalkylene, arylene, heteroarylene and alkoxycarbonylene are optionally hydroxy, halogen, nitro, cyano, amino, carboxyl, carboxylate, C 1-20 alkyl, C 2-20 alkyl. Kenyl, C 2-20 alkynyl, C 1-20 haloalkyl, C 1-20 alkoxy, C 1-20 alkoxycarbonyl, C 3-30 cycloalkyl, (C 6-30 )ar(C 1-20 ) It may be substituted with one or more selected from alkyl, C 6-30 aryl, and C 3-30 heteroaryl,
FG1은 알키닐 작용기이고;FG 1 is an alkynyl functional group;
FG3는 에폭시 작용기이고;FG 3 is an epoxy functional group;
z, k 및 t는 서로 독립적으로 1 내지 7의 정수이고;z, k and t are independently integers from 1 to 7;
a, b 및 c는 서로 독립적으로 1 이상의 정수이다.a, b and c are independently integers of 1 or more.
본 발명의 일 실시예에 따라, 상기 화학식 6는 하기 화학식 7로 표시되고, 상기 화학식 8은 하기 화학식 9로 표시될 수 있다.According to an embodiment of the present invention, Formula 6 may be represented by Formula 7 below, and Formula 8 may be represented by Formula 9 below.
[화학식 7][Formula 7]
[화학식 9][Formula 9]
상기 화학식 7 및 9에서, In Formulas 7 and 9 above,
R2 내지 R4는 서로 독립적으로 C1-10알킬렌이고;R 2 to R 4 are each independently C 1-10 alkylene;
R5는 수소 또는 메틸이고;R 5 is hydrogen or methyl;
a, b 및 c는 서로 독립적으로 1 이상의 정수이다.a, b and c are independently integers of 1 or more.
본 발명의 일 실시예에 따라, 상기 제2 고분자는 플루오렌기반 공중합체일 수 있다.According to one embodiment of the present invention, the second polymer may be a fluorene-based copolymer.
본 발명의 일 실시예에 따라, 상기 화학식 3은 하기 화학식 10의 반복단위(n) 및 하기 화학식 11의 반복단위(m)를 포함하는 공중합체일 수 있다.According to one embodiment of the present invention, Formula 3 may be a copolymer containing a repeating unit (n) of Formula 10 below and a repeating unit (m) of Formula 11 below.
[화학식 10] [Formula 10]
[화학식 11] [Formula 11]
상기 화학식 10 및 11에서,In Formulas 10 and 11 above,
R6 내지 R7은 독립적으로 C5-50알킬렌이고;R 6 to R 7 are independently C 5-50 alkylene;
R8 내지 R9는 독립적으로 C5-50알킬이다.R 8 to R 9 are independently C 5-50 alkyl.
본 발명의 일 실시예에 따라, 상기 제2 고분자-CNT 복합체에서 상기 CNT는 반도체성 단일벽 탄소나노튜브(sc-SWCNT)일 수 있다.According to one embodiment of the present invention, in the second polymer-CNT composite, the CNT may be a semiconducting single-walled carbon nanotube (sc-SWCNT).
본 발명은 기판; 및 센싱부를 포함하는 수소 가스 센서로서, 상기 센싱부는 상기 기판 상에 제1 고분자로부터 형성된 고분자층; 상기 고분자층 상에 제2 고분자-CNT 복합체로부터 형성된 복합체층; 상기 복합체층 상에 형성된 금속 전극; 상기 복합체층 상에 형성된 팔라듐 나노입자층; 및 상기 팔라듐 나노입자층 상에 위치하는 고분자 코팅층;을 포함하며, 상기 제2 고분자-CNT복합체는 제2 고분자에 의해 CNT가 랩핑된 것이고, 상기 고분자층과 복합체층은 트리아졸을 통해 연결되는 것인 수소 가스 센서의 제조방법을 제공할 수 있다.The present invention relates to a substrate; and a hydrogen gas sensor including a sensing unit, wherein the sensing unit includes a polymer layer formed from a first polymer on the substrate; A composite layer formed from a second polymer-CNT composite on the polymer layer; a metal electrode formed on the composite layer; A palladium nanoparticle layer formed on the composite layer; and a polymer coating layer located on the palladium nanoparticle layer, wherein the second polymer-CNT composite is CNTs wrapped by a second polymer, and the polymer layer and the composite layer are connected through triazole. A method of manufacturing a hydrogen gas sensor can be provided.
본 발명의 일 실시예에 따라, 상기 수소 가스 센서의 제조방법은According to an embodiment of the present invention, the manufacturing method of the hydrogen gas sensor is
(a) 기판 상에 제1 고분자를 코팅 및 고정화하는 단계;(a) coating and immobilizing the first polymer on a substrate;
(b) 상기 제1 고분자가 코팅된 기판을 제2 고분자-CNT 복합체 용액에 침지하는 단계;(b) immersing the first polymer-coated substrate in a second polymer-CNT composite solution;
(c) 상기 제1 고분자와 제2 고분자가 클릭반응하여 고분자층 및 복합체층을 형성하는 단계;(c) forming a polymer layer and a composite layer through a click reaction between the first polymer and the second polymer;
(d) 상기 복합체층 상에 소스 전극과 드레인 전극을 형성하는 단계;(d) forming a source electrode and a drain electrode on the composite layer;
(e) 상기 복합체층 상에 팔라듐 나노입자층을 형성하는 단계; 및(e) forming a palladium nanoparticle layer on the composite layer; and
(f) 상기 팔라듐 나노입자층 상에 고분자 코팅층을 형성하는 단계;를 포함할 수 있다.(f) forming a polymer coating layer on the palladium nanoparticle layer.
본 발명의 일 실시예에 따라, 상기 (e) 단계는 팔라듐 나노입자의 녹는점보다 낮은 온도 조건에서 열증착하는 단계를 포함할 수 있다.According to one embodiment of the present invention, step (e) may include thermal evaporation under temperature conditions lower than the melting point of palladium nanoparticles.
본 발명의 일 실시예에 따라, 상기 온도 조건은 80 내지 500℃일 수 있다.According to one embodiment of the present invention, the temperature condition may be 80 to 500°C.
본 발명의 일 실시예에 따라, 상기 (f) 단계는 고분자를 용매에 용해시킨 뒤, 상기 팔라듐 나노입자층 상에 코팅 및 건조하는 단계를 포함할 수 있다.According to one embodiment of the present invention, step (f) may include dissolving the polymer in a solvent and then coating and drying the palladium nanoparticle layer.
본 발명의 일 실시예에 따라, 상기 용매는 할로겐화 알콕시 벤젠 화합물일 수 있다.According to one embodiment of the present invention, the solvent may be a halogenated alkoxy benzene compound.
본 발명의 일 실시예에 따라, 상기 (a) 단계는, (a-1) 용매로 기판을 세척하는 단계; (a-2) 자기 조립 단분자층(SAM)을 코팅하는 단계; (a-3) 상기 제1 고분자를 코팅하는 단계; (a-4) UV 경화 단계; 및 (a-5) 용매로 기판에 미고정된 화합물을 세척하는 단계;를 포함할 수 있다.According to one embodiment of the present invention, step (a) includes (a-1) washing the substrate with a solvent; (a-2) coating a self-assembled monolayer (SAM); (a-3) coating the first polymer; (a-4) UV curing step; and (a-5) washing the compound unfixed to the substrate with a solvent.
본 발명의 일 실시예에 따라, 상기 (a-3) 단계에서, 상기 제1 고분자는 하기 화학식 4로 표시될 수 있다.According to one embodiment of the present invention, in step (a-3), the first polymer may be represented by the following formula (4).
[화학식 4][Formula 4]
상기 화학식 4에서,In Formula 4 above,
FG1은 알키닐 작용기이고;FG 1 is an alkynyl functional group;
p1 내지 p2는 말단에 FG1 작용기를 갖는 단량체로부터 유래된 반복단위고;p 1 to p 2 are repeating units derived from a monomer having a FG 1 functional group at the end;
z 및 k는 1 내지 7의 정수이고;z and k are integers from 1 to 7;
a 및 b는 1 이상의 정수이다.a and b are integers greater than or equal to 1.
본 발명의 일 실시예에 따라, 상기 (a-4) 단계는 패턴 형성 단계를 더 포함할 수 있다.According to one embodiment of the present invention, step (a-4) may further include a pattern forming step.
본 발명의 일 실시예에 따라, 상기 (a) 단계는 (a'-1) 용매로 기판을 세척하는 단계; (a'-2) 상기 제1 고분자를 코팅하는 단계; (a'-3) 열처리 단계; 및 (a'-4) 용매로 기판에 미고정된 화합물을 세척하는 단계;를 포함할 수 있다.According to one embodiment of the present invention, step (a) includes (a'-1) washing the substrate with a solvent; (a'-2) coating the first polymer; (a'-3) heat treatment step; and (a'-4) washing the unfixed compound on the substrate with a solvent.
본 발명의 일 실시예에 따라, 상기 (a'-2) 단계에서, 상기 제1 고분자는 하기 화학식 5로 표시될 수 있다.According to one embodiment of the present invention, in step (a'-2), the first polymer may be represented by the following formula (5).
[화학식 5][Formula 5]
상기 화학식 5에서,In Formula 5 above,
FG1은 알키닐 작용기이고;FG 1 is an alkynyl functional group;
FG3는 에폭시 작용기이고;FG 3 is an epoxy functional group;
p1 내지 p2는 말단에 FG1 작용기를 갖는 단량체로부터 유래된 반복단위고;p 1 to p 2 are repeating units derived from a monomer having a FG 1 functional group at the end;
p3는 말단에 FG3 작용기를 갖는 단량체로부터 유래된 반복단위고;p 3 is a repeating unit derived from a monomer having a FG 3 functional group at the terminal;
z, k 및 t는 1 내지 7의 정수이고;z, k and t are integers from 1 to 7;
a, b 및 c는 1 이상의 정수이다.a, b and c are integers greater than or equal to 1.
본 발명에 따른 수소 가스 센서는 클릭반응을 이용하여 CNT 필름이 고밀도로 균일하게 형성되어 물이나 유기 용매에 대한 높은 안정성을 가질 수 있다. 특히, 종래에 CNT 용액을 스프레이 코팅 및 스핀 코팅할 경우, 쉽게 박리되어 재현성 및 신뢰성을 용이하게 확보할 수 없었던 반면, 본 발명에 따른 수소 가스 센서는 비교적 간단한 방법으로 높은 재현성 및 신뢰성이 높은 수소 가스 센서를 제조할 수 있고, 이에 따라 상용성을 용이하게 확보할 수 있다는 장점이 있다.The hydrogen gas sensor according to the present invention uses a click reaction to form a CNT film at high density and uniformity, so it can have high stability against water or organic solvents. In particular, when spray coating or spin coating a CNT solution in the past, it was easily peeled off, making it difficult to easily secure reproducibility and reliability, whereas the hydrogen gas sensor according to the present invention provides hydrogen gas with high reproducibility and reliability in a relatively simple method. There is an advantage that sensors can be manufactured and thus compatibility can be easily secured.
이에 본 발명은 클릭반응을 이용하여 CNT 필름이 고밀도로 균일하게 형성되고, 물이나 유기 용매에 대한 안정성이 우수하여 세척 후에도 박리되지 않으며 신뢰성이 우수할 뿐만이 아니라 수소 가스에 대한 탁월한 선택도, 민감도 및 빠른 응답 속도 나타내는 수소 가스 센서를 제조할 수 있다.Accordingly, the present invention uses a click reaction to form a CNT film at high density and uniformity, and has excellent stability in water or organic solvents, so it does not peel off even after washing, and is not only highly reliable, but also has excellent selectivity, sensitivity and stability to hydrogen gas. A hydrogen gas sensor with a fast response speed can be manufactured.
도 1은 본 발명의 일 실시예에 따른 수소 가스 센서를 간략하게 나타낸 모식도이다.1 is a schematic diagram briefly showing a hydrogen gas sensor according to an embodiment of the present invention.
도 2는 본 발명의 실시예 1에서 자기 조립 단분자층(SAM) 코팅 후 코팅층의 접촉각(Contact angle)을 측정한 이미지이다.Figure 2 is an image measuring the contact angle of the coating layer after coating the self-assembled monolayer (SAM) in Example 1 of the present invention.
도 3은 (a)는 본 발명에 따른 실시예 1에서 코팅한 아크릴레이트 공중합체(i) 용액을 UV 경화한 후, 용매로 세척하기 전과 후의 자외선-가시광선 분광분석(UV-Vis spectroscopy) 결과를 나타낸 그래프이고, (b)는 본 발명에 따른 실시예 2에서 코팅한 아크릴레이트 공중합체(ii)용액을 열 경화한 후 용매로 세척하기 전과 후의 자외선-가시광선 분광분석 결과를 나타낸 그래프이다.Figure 3 (a) shows the results of ultraviolet-visible spectroscopy (UV-Vis spectroscopy) before and after UV curing the acrylate copolymer (i) solution coated in Example 1 according to the present invention and washing with a solvent. is a graph showing, and (b) is a graph showing the results of ultraviolet-visible spectroscopy analysis before and after heat curing the acrylate copolymer (ii) solution coated in Example 2 according to the present invention and then washing with a solvent.
도 4는 실시예 1 내지 2, 비교예 1에 따른 CNT 반도체 소자들에 대한 전기적특성곡선 (출력 곡선(output curve) 및 트랜스퍼 곡선(transfer curve))을 나타낸 그래프이다.Figure 4 is a graph showing electrical characteristic curves (output curve and transfer curve) for CNT semiconductor devices according to Examples 1 and 2 and Comparative Example 1.
도 5는 실시예 1에 따른 수소 가스 센서의 0.5(500ppb) 내지 1000 ppm의 수소 농도 별 검지 테스트 결과 그래프이다.Figure 5 is a graph of the detection test results of the hydrogen gas sensor according to Example 1 for each hydrogen concentration of 0.5 (500 ppb) to 1000 ppm.
도 6은 실시예 1에 따른 수소 가스 센서의 공기중 100 ppm의 수소 가스 농도에서 반복적으로 테스트한 결과 그래프이다.Figure 6 is a graph showing the results of repeated tests of the hydrogen gas sensor according to Example 1 at a hydrogen gas concentration of 100 ppm in the air.
도 7은 실시예 1에 따른 수소 가스 센서의 수소, 일산화탄소, 이산화탄소, 에틸렌 및 메탄 가스를 이용하여 가스 종류에 따른 검지 테스트 결과 그래프이다.Figure 7 is a graph showing the results of a detection test according to gas type using hydrogen, carbon monoxide, carbon dioxide, ethylene, and methane gas of the hydrogen gas sensor according to Example 1.
이하, 본 발명에 따른 클릭반응을 이용한 수소 가스 센서 및 이의 제조방법에 대하여 상세히 설명한다. 이때, 사용되는 기술 용어 및 과학 용어에 있어서 다른 정의가 없다면, 이 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 통상적으로 이해하고 있는 의미를 가지며, 하기의 설명에서 본 발명의 요지를 불필요하게 흐릴 수 있는 공지 기능 및 구성에 대한 설명은 생략한다.Hereinafter, the hydrogen gas sensor using the click reaction according to the present invention and its manufacturing method will be described in detail. At this time, if there is no other definition in the technical and scientific terms used, they have meanings commonly understood by those skilled in the art to which this invention pertains, and the following description will not unnecessarily obscure the gist of the present invention. Descriptions of possible notification functions and configurations are omitted.
본 명세서에서 사용되는 단수 형태는 문맥에서 특별한 지시가 없는 한 복수 형태도 포함하는 것으로 의도할 수 있다.As used herein, the singular forms “a,” “an,” and “the” are intended to include the plural forms as well, unless the context clearly dictates otherwise.
또한, 본 명세서에서 특별한 언급 없이 사용된 단위는 중량을 기준으로 하며, 일 예로 % 또는 비의 단위는 중량% 또는 중량비를 의미하고, 중량%는 달리 정의되지 않는 한 전체 조성물 중 어느 하나의 성분이 조성물 내에서 차지하는 중량%를 의미한다.In addition, units used without special mention in this specification are based on weight, and as an example, the unit of % or ratio means weight % or weight ratio, and weight % refers to the amount of any one component of the entire composition unless otherwise defined. It refers to the weight percent occupied in the composition.
또한, 본 명세서에서 사용되는 수치 범위는 하한치와 상한치와 그 범위 내에서의 모든 값, 정의되는 범위의 형태와 폭에서 논리적으로 유도되는 증분, 이중 한정된 모든 값 및 서로 다른 형태로 한정된 수치 범위의 상한 및 하한의 모든 가능한 조합을 포함한다. 본 발명의 명세서에서 특별한 정의가 없는 한 실험 오차 또는 값의 반올림으로 인해 발생할 가능성이 있는 수치범위 외의 값 역시 정의된 수치범위에 포함된다.In addition, the numerical range used in this specification includes the lower limit and upper limit and all values within the range, increments logically derived from the shape and width of the defined range, all double-defined values, and the upper limit of the numerical range defined in different forms. and all possible combinations of the lower bounds. Unless otherwise specified in the specification of the present invention, values outside the numerical range that may occur due to experimental error or rounding of values are also included in the defined numerical range.
또한, 본 발명에서 어떤 층이 다른 층 "상에" 위치하고 있다고 할 때, 이는 어떤 층이 다른 층에 접해있는 경우뿐 아니라 두 층 사이에 하나 이상의 다른 층이 존재하는 경우도 포함한다.Additionally, in the present invention, when a layer is said to be located “on” another layer, this includes not only the case where a layer is in contact with another layer, but also the case where one or more other layers exist between the two layers.
본 명세서의 용어 "고분자"는 중합체 및 공중합체를 포함한다.The term “polymer” herein includes polymers and copolymers.
본 명세서의 용어, "공중합체"는 일반적으로 하나 초과의 종의 단량체로부터 유래된 임의의 중합체를 의미하며, 여기서 중합체는 하나 초과의 종의 대응하는 반복 단위를 포함한다. 공중합체는 2 종 이상의 단량체의 반응 생성물이며, 따라서 대응하는 반복 단위의 2 종 이상의 종을 포함할 수 있다. 공중합체는 블록공중합체, 랜덤 공중합체 및/또는 교호 공중합체로 존재할 수 있다.As used herein, the term “copolymer” generally refers to any polymer derived from more than one species of monomer, wherein the polymer comprises corresponding repeat units of more than one species. Copolymers are the reaction product of two or more types of monomers and therefore may contain two or more species of corresponding repeat units. Copolymers may exist as block copolymers, random copolymers, and/or alternating copolymers.
본 명세서의 용어 "아크릴계"는 메타크릴계 및 아크릴계를 모두 포함한다.The term “acrylic” in this specification includes both methacrylic and acrylic.
본 명세서의 용어 "아크릴레이트"는 메타크릴레이트 및 아크릴레이트를 모두 포함한다.The term “acrylate” herein includes both methacrylate and acrylate.
본 명세서의 용어 "잔기"는 고분자에서 특정 작용기를 제외한 나머지 부분을 의미하며, 상기 고분자의 종류는 특별히 제한되지 않는다.The term “residue” in this specification refers to the remaining portion of a polymer excluding a specific functional group, and the type of the polymer is not particularly limited.
본 명세서의 용어 "랩핑(wrapping)"은 정전기적 상호작용에 의하여 고분자가 CNT를 감싸는 것을 의미하며, 코팅, 도포, 결합 및 부착의 의미도 포함할 수 있다. 또한, 상기 정전기적 상호작용은 π 전자 상호작용(π-π stacking interaction)을 의미할 수 있다.The term “wrapping” in this specification means that a polymer surrounds a CNT by electrostatic interaction, and may also include coating, application, bonding, and attachment. Additionally, the electrostatic interaction may mean π electron interaction (π-π stacking interaction).
본 명세서의 용어 "알킬"은 직쇄 또는 분쇄 형태를 모두 포함하며, 1 내지 30개의 탄소원자, 구체적으로 1 내지 20개의 탄소원자일 수 있다.The term “alkyl” in this specification includes both straight chain and branched forms, and may have 1 to 30 carbon atoms, specifically 1 to 20 carbon atoms.
본 명세서의 용어 "할로겐" 및 "할로"는 플루오린, 클로린, 브로민 또는 아이오딘을 의미한다.The terms “halogen” and “halo” herein mean fluorine, chlorine, bromine or iodine.
본 명세서의 용어 "할로알킬"은 각각 하나 이상의 수소 원자가 할로겐 원자로 치환된 알킬 그룹을 의미한다. 예를 들어, 할로알킬은 -CF3, -CHF2, -CH2F, -CBr3, -CHBr2, -CH2Br, -CC13, -CHC12, -CH2CI, -CI3, -CHI2, -CH2I, -CH2-CF3, -CH2-CHF2, -CH2-CH2F, -CH2-CBr3, -CH2-CHBr2, -CH2-CH2Br, -CH2-CC13, -CH2-CHC12, -CH2-CH2CI, -CH2-CI3, -CH2-CHI2, -CH2-CH2I, 및 이와 유사한 것을 포함한다. 여기에서 알킬 및 할로겐은 위에서 정의된 것과 같다.As used herein, the term “haloalkyl” refers to an alkyl group in which one or more hydrogen atoms are each replaced with a halogen atom. For example, haloalkyl is -CF 3 , -CHF 2 , -CH 2 F, -CBr 3 , -CHBr 2 , -CH 2 Br, -CC1 3 , -CHC1 2 , -CH 2 CI, -CI 3 , -CHI 2 , -CH 2 I, -CH 2 -CF 3 , -CH 2 -CHF 2 , -CH 2 -CH 2 F, -CH 2 -CBr 3 , -CH 2 -CHBr 2 , -CH 2 -CH 2 Br, -CH 2 -CC1 3 , -CH 2 -CHC1 2 , -CH 2 -CH 2 CI, -CH 2 -CI 3 , -CH 2 -CHI 2 , -CH 2 -CH 2 I, and similar It includes wherein alkyl and halogen are as defined above.
본 명세서의 용어 "알케닐"은 2 내지 30개, 구체적으로 2 내지 20의 탄소 원자 및 적어도 하나의 탄소-탄소 이중 결합을 포함하는 포화된 직쇄상 또는 분지상 비-고리 탄화수소를 의미한다.The term “alkenyl” herein refers to a saturated straight-chain or branched non-cyclic hydrocarbon containing 2 to 30 carbon atoms, specifically 2 to 20 carbon atoms and at least one carbon-carbon double bond.
본 명세서의 용어 "알키닐"은 2 내지 30개, 구체적으로 2 내지 20의 탄소 원자 및 적어도 하나의 탄소-탄소 삼중 결합을 포함하는 포화된 직쇄상 또는 분지상 비-고리 탄화수소를 의미한다.The term “alkynyl” herein refers to a saturated straight-chain or branched non-cyclic hydrocarbon containing 2 to 30 carbon atoms, specifically 2 to 20 carbon atoms and at least one carbon-carbon triple bond.
본 명세서의 용어 "알콕시"는 -OCH3, -OCH2CH3, -O(CH2)2CH3, -O(CH2)3CH3, -O(CH2)4CH3, -O(CH2)5CH3, 및 이와 유사한 것을 포함하는 -O-(알킬)을 의미하며, 여기에서 알킬은 위에서 정의된 것과 같다.The term “alkoxy” in this specification refers to -OCH 3 , -OCH 2 CH 3 , -O(CH 2 ) 2 CH 3 , -O(CH 2 ) 3 CH 3 , -O(CH 2 ) 4 CH 3 , -O means -O-(alkyl), including (CH 2 ) 5 CH 3 , and the like, where alkyl is as defined above.
본 명세서의 용어 "아릴"은 5 내지 10의 고리 원자를 함유하는 탄소고리 방향족 그룹을 의미한다. 대표적인 예는 페닐, 톨일(tolyl), 자이릴(xylyl), 나프틸, 테트라하이드로나프틸, 안트라세닐(anthracenyl), 플루오레닐(Fluorenyl), 인데닐(indenyl), 아주레닐(azulenyl) 등을 포함하나 이에 이에 한정되지는 않는다. 나아가 아릴은 탄소고리 방향족 그룹과 그룹이 알킬렌 또는 알케닐렌으로 연결되거나, B, O, N, C(=O), P, P(=O), S, S(=O)2 및 Si원자로부터 선택되는 하나 이상의 헤테로 원자로 연결된 것도 포함한다. The term “aryl” herein refers to a carbocyclic aromatic group containing 5 to 10 ring atoms. Representative examples include phenyl, tolyl, xylyl, naphthyl, tetrahydronaphthyl, anthracenyl, fluorenyl, indenyl, azulenyl, etc. Including but not limited to this. Furthermore, aryl is a carbocyclic aromatic group and the group is connected to alkylene or alkenylene, or B, O, N, C(=O), P, P(=O), S, S(=O) 2 and Si atoms. It also includes those connected with one or more heteroatoms selected from.
본 명세서의 용어 “알콕시카보닐”은 알콕시-C(=O)-* 라디칼을 의미하는 것으로, 여기서 ‘알콕시’는 상기 정의한 바와 같다. 이러한 알콕시카보닐 라디칼의 예는 메톡시카보닐, 에톡시카보닐, 이소프로폭시카보닐, 프로폭시카보닐, 부톡시카보닐, 이소부톡시카보닐, t-부톡시카보닐 등을 포함하지만 이에 한정되지는 않는다.The term “alkoxycarbonyl” in this specification refers to an alkoxy-C(=O)-* radical, where ‘alkoxy’ is as defined above. Examples of such alkoxycarbonyl radicals include, but are not limited to, methoxycarbonyl, ethoxycarbonyl, isopropoxycarbonyl, propoxycarbonyl, butoxycarbonyl, isobutoxycarbonyl, t-butoxycarbonyl, etc. It is not limited.
본 명세서의 용어 "시클로알킬(cycloalkyl)"은 탄소 및 수소 원자를 가지며 탄소-탄소 다중 결합을 가지지 않는 모노시클릭 또는 폴리시클릭 포화 고리(ring)를 의미한다. 시클로알킬 그룹의 예는 C3-10시클로알킬(예를 들어, 시클로프로필, 시클로부틸, 시클로펜틸, 시클로헥실 및 시클로헵틸)을 포함하나 이에 한정되지는 않는다. 시클로알킬 그룹은 선택적으로 치환될 수 있다. 일 실시예에서, 시클로알킬 그룹은 모노시클릭 또는 바이시클릭 링(고리)이다.As used herein, the term “cycloalkyl” refers to a monocyclic or polycyclic saturated ring having carbon and hydrogen atoms and no carbon-carbon multiple bonds. Examples of cycloalkyl groups include, but are not limited to, C 3-10 cycloalkyl (e.g., cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, and cycloheptyl). Cycloalkyl groups may be optionally substituted. In one embodiment, the cycloalkyl group is a monocyclic or bicyclic ring.
본 명세서의 용어 "아르알킬"은 알킬의 하나 이상의 수소가 아릴로 치환된 것으로, 벤질 등이 포함된다.The term “aralkyl” in this specification refers to alkyl in which one or more hydrogens are replaced with aryl, and includes benzyl, etc.
본 명세서의 용어 "알킬렌", "알케닐렌", "알키닐렌", "시클로알킬렌", "아릴렌", "헤테로아릴렌" 및 "알콕시카보닐렌"은 각각 "알킬", 알케닐", "알키닐 "시클로알킬", "아릴", "헤테로아릴" 및 "알콕시카보닐"에서 하나의 수소 제거에 의해 유도된 2가 유기 라디칼을 의미하며, 상기 알킬, 알케닐, 알키닐, 시클로알킬, 아릴, 헤테로아릴 및 알콕시카보닐의 각각의 정의를 따른다. As used herein, the terms "alkylene", "alkenylene", "alkynylene", "cycloalkylene", "arylene", "heteroarylene", and "alkoxycarbonylene" are respectively "alkyl" and "alkenyl" , "alkynyl", "cycloalkyl", "aryl", "heteroaryl" and "alkoxycarbonyl" refers to a divalent organic radical derived by removal of one hydrogen from said alkyl, alkenyl, alkynyl, cyclo The respective definitions of alkyl, aryl, heteroaryl and alkoxycarbonyl follow.
본 명세서의 용어 "하이드록시"는 -OH를 의미하고, "나이트로"는 -NO2를 의미하고, "시아노"는 -CN을 의미하고, "아미노"는 -NH2를 의미하고, "카복실"은 -COOH를 의미하고, "카복실산염"은 -COOM을 의미한다. 상기 M은 알칼리 금속 또는 토금속일 수 있다.As used herein, the term "hydroxy" means -OH, "nitro" means -NO 2 , "cyano" means -CN, "amino" means -NH 2 , and " “Carboxyl” means -COOH, and “carboxylate” means -COOM. The M may be an alkali metal or an earth metal.
본 명세서의 용어 "알칼리 금속"은 주기율표의 1족 가운데 수소를 제외한 나머지 화학 원소인, 리튬(Li), 나트륨(Na), 칼륨(K), 루비듐(Rb), 세슘(Cs), 프랑슘(Fr)을 의미하고, "알칼리 토금속"은 주기율표의 2족 원소인 베릴륨(Be), 마그네슘(Mg), 칼슘(Ca), 스트론튬(Sr), 바륨(Ba), 라듐(Ra)을 의미한다.The term "alkali metal" in this specification refers to chemical elements other than hydrogen in group 1 of the periodic table, such as lithium (Li), sodium (Na), potassium (K), rubidium (Rb), cesium (Cs), and francium (Fr). ), and “alkaline earth metals” refer to group 2 elements of the periodic table: beryllium (Be), magnesium (Mg), calcium (Ca), strontium (Sr), barium (Ba), and radium (Ra).
본 발명에 기재된 "포함한다"는 "구비한다", "함유한다", "가진다" 또는 "특징으로 한다" 등의 표현과 등가의 의미를 가지는 개방형 기재이며, 추가로 열거되어 있지 않은 요소, 재료 또는 공정을 배제하지 않는다.As used in the present invention, “comprises” is an open description with the same meaning as expressions such as “comprises,” “contains,” “has,” or “features,” and includes elements and materials that are not additionally listed. or does not exclude the process.
이하, 본 발명의 일 실시예에 따른 수소 가스 센서에 대하여 자세하게 설명한다.Hereinafter, a hydrogen gas sensor according to an embodiment of the present invention will be described in detail.
본 발명은 기판; 및 센싱부를 포함하는 수소 가스 센서로서, 상기 센싱부는 상기 기판 상에 제1 고분자로부터 형성된 고분자층; 상기 고분자층 상에 제2 고분자-CNT 복합체로부터 형성된 복합체층; 상기 복합체층 상에 형성된 금속 전극; 상기 복합체층 상에 형성된 팔라듐 나노입자층; 및 상기 팔라듐 나노입자층 상에 위치하는 고분자 코팅층;을 포함하며, 상기 제2 고분자-CNT복합체는 제2 고분자에 의해 CNT가 랩핑된 것이고, 상기 고분자층과 복합체층은 트리아졸을 통해 연결되는 것인 수소 가스 센서를 제공한다.The present invention relates to a substrate; and a hydrogen gas sensor including a sensing unit, wherein the sensing unit includes a polymer layer formed from a first polymer on the substrate; A composite layer formed from a second polymer-CNT composite on the polymer layer; a metal electrode formed on the composite layer; A palladium nanoparticle layer formed on the composite layer; and a polymer coating layer located on the palladium nanoparticle layer, wherein the second polymer-CNT composite is CNTs wrapped by a second polymer, and the polymer layer and the composite layer are connected through triazole. Provides a hydrogen gas sensor.
상기 기판은 유리, 석영 및 실리콘 등을 포함하는 무기 기판 또는 폴리에틸렌 테레프탈레이트, 폴리에틸렌 설폰, 폴리카보네이트, 폴리스티렌, 폴리프로필렌, 폴리에스테르, 폴리이미드, 폴리이써이써케톤, 폴리이써이미드, 아크릴 수지 및 올레핀 말레이미드 공중합체 등을 포함하는 유기 기판일 수 있지만, 이에 제한되지 않는다. 또한, 상기 기판은 통상적인 실리콘 웨이퍼나 상기 무기 기판에 산화막을 형성한 기판일 수 있고, 상기 유기 기판 및 플라스틱 등을 포함하는 플렉서블 기판일 수 있지만, 기판 상에 CNT 필름이 형성될 수 있다면 특별히 제한되지 않는다. 추가적으로 상기 기판과 CNT 필름의 접착력을 향상시키기 위하여 물리적, 화학적 처리를 하는 것일 수 있다. 상기 기판에 CNT 필름을 형성하여 반도체 소자, 투명전극 및 디스플레이 등에 응용되는 것일 수 있다.The substrate may be an inorganic substrate including glass, quartz, silicon, etc., or polyethylene terephthalate, polyethylene sulfone, polycarbonate, polystyrene, polypropylene, polyester, polyimide, polyetheresterketone, polyesterimide, acrylic resin, and olefin polymer. It may be an organic substrate including a mid copolymer, but is not limited thereto. In addition, the substrate may be a typical silicon wafer or a substrate in which an oxide film is formed on the inorganic substrate, and may be a flexible substrate including the organic substrate and plastic, but there are special restrictions if a CNT film can be formed on the substrate. It doesn't work. Additionally, physical or chemical treatment may be performed to improve the adhesion between the substrate and the CNT film. A CNT film may be formed on the substrate to be applied to semiconductor devices, transparent electrodes, displays, etc.
본 발명의 일 실시예에 따른 수소 가스 센서에 있어서, 상기 트리아졸은 하기 화학식 1로 표시될 수 있다.In the hydrogen gas sensor according to an embodiment of the present invention, the triazole may be represented by the following formula (1).
[화학식 1][Formula 1]
상기 화학식 1에서, *는 각각 독립적으로 고분자층의 제1고분자 또는 복합체층의 제2고분자와의 연결점이고, 상기 두 개의 *는 서로 다른 층과의 연결점이다.In Formula 1, * is each independently a connection point with the first polymer of the polymer layer or the second polymer of the composite layer, and the two * are connection points with different layers.
본 발명의 일 실시예에 따른 수소 가스 센서에 있어서, 상기 제1 고분자는 하기 화학식 2로 표시되고, 상기 제2 고분자는 하기 화학식 3으로 표시되며, 상기 트리아졸은 상기 제1 고분자와 제2 고분자의 클릭반응에 의해 형성되는 것이고, 상기 클릭반응은 하기 반응식 1로 표시될 수 있다.In the hydrogen gas sensor according to an embodiment of the present invention, the first polymer is represented by the formula 2 below, the second polymer is represented by the formula 3 below, and the triazole is the first polymer and the second polymer It is formed by a click reaction, and the click reaction can be expressed in Scheme 1 below.
[화학식 2][Formula 2]
P1-(FG1)x
P 1 -(FG 1 ) x
[화학식 3][Formula 3]
P2-(FG2)y
P 2 -(FG 2 ) y
[반응식 1][Scheme 1]
상기 화학식 2 내지 3 및 반응식 1에서, P1은 제1 고분자로부터 유래된 잔기이고, P2는 제2 고분자로부터 유래된 잔기이고, *는 P1이 기판에 고정된 부분이고, P2(CNT)는 제2 고분자-CNT복합체로부터 유래된 잔기이고, FG1은 알키닐 작용기이고, FG2은 아자이드 작용기이고, x 및 y는 1 이상의 정수이다.In Formulas 2 to 3 and Scheme 1, P 1 is a residue derived from the first polymer, P 2 is a residue derived from the second polymer, * is the portion where P 1 is fixed to the substrate, and P 2 (CNT) is a residue derived from the second polymer-CNT complex, FG 1 is an alkynyl functional group, FG 2 is an azide functional group, and x and y are integers of 1 or more.
상기 제1 고분자로부터 유래된 잔기는 상기 제1 고분자에서 상기 FG1 작용기를 제외한 나머지 부분을 의미하며, 상기 제1 고분자는 후술하는 내용과 동일하다.The residue derived from the first polymer refers to the remaining portion of the first polymer excluding the FG 1 functional group, and the first polymer is the same as described later.
상기 제2 고분자로부터 유래된 잔기 상기 제2 고분자에서 상기 FG2 작용기를 제외한 나머지 부분을 의미하며, 상기 제2 고분자는 후술하는 내용과 동일하다.The residue derived from the second polymer refers to the remaining portion of the second polymer excluding the FG 2 functional group, and the second polymer is the same as described later.
상기 제2 고분자-CNT복합체로부터 유래된 잔기 상기 제2 고분자-CNT복합체에서 상기 FG2 작용기를 제외한 나머지 부분을 의미하며, 상기 제2 고분자-CNT복합체는 후술하는 내용과 동일하다.The residue derived from the second polymer-CNT complex refers to the remaining portion of the second polymer-CNT complex excluding the FG 2 functional group, and the second polymer-CNT complex is the same as described later.
상기 반응식 1을 구체적으로 표현하면 하기 반응식 2일 수 있다.If Reaction Scheme 1 is specifically expressed, it may be Reaction Scheme 2 below.
[반응식 2][Scheme 2]
상기 반응식 1 내지 2에서 보는 바와 같이, 상기 화학식 2의 알키닐 작용기와 상기 화학식 3의 아자이드 작용기는 구리 촉매 존재 하에 클릭반응을 통해 트리아졸 고리를 형성할 수 있다. 상기 트리아졸 고리에 의하여 P1과 P2(CNT)가 화학적으로 결합됨으로써 상기 기판 상에 고분자층과 복합체층을 형성할 수 있다. 상기 제1 고분자는 알키닐 작용기가 있다면 그 종류가 특별히 제한되지 않고, 상기 제2 고분자도 아자이드 작용기가 있다면 그 종류가 특별히 제한되지 않는다.As shown in Schemes 1 and 2, the alkynyl functional group of Chemical Formula 2 and the azide functional group of Chemical Formula 3 can form a triazole ring through a click reaction in the presence of a copper catalyst. By chemically bonding P 1 and P 2 (CNT) through the triazole ring, a polymer layer and a composite layer can be formed on the substrate. The type of the first polymer is not particularly limited if it has an alkynyl functional group, and the type of the second polymer is not particularly limited if it has an azide functional group.
구체적으로 본 발명의 일 실시예에 따라, 상기 제1 고분자는 측쇄(side chain)에 하이드록시, 에폭시, 카르복실, 티올, 알켄 및 알키닐, 구체적으로 에폭시 및 알키닐 작용기를 갖는 것이라면 종류에 크게 제한없이 사용할 수 있다. 구체적으로 상기 제1 고분자는 아크릴계 공중합체일 수 있으며, 상기 아크릴계 공중합체는 2종 이상의 단량체를 중합한 것일 수 있고, 상기 단량체는 아크릴계 단량체 또는 메타아크릴계 단량체일 수 있다. 상기 단량체는 말단에 하이드록시, 에폭시, 카르복실, 티올, 알켄 및 알키닐을 작용기로 갖는 것일 수 있고, 구체적으로 에폭시 및 알키닐 작용기를 갖는 것일 수 있다. 상기 단량체는 직접 합성하여 사용할 수 있고, 시판되는 제품을 사용할 수 있지만, 이에 제한되지 않는다.Specifically, according to one embodiment of the present invention, the first polymer can be broadly divided into types as long as it has hydroxy, epoxy, carboxyl, thiol, alkene and alkynyl, specifically epoxy and alkynyl functional groups in the side chain. It can be used without restrictions. Specifically, the first polymer may be an acrylic copolymer, the acrylic copolymer may be a polymerization of two or more types of monomers, and the monomer may be an acrylic monomer or a methacrylic monomer. The monomer may have hydroxy, epoxy, carboxyl, thiol, alkene, and alkynyl functional groups at the terminal, and may specifically have epoxy and alkynyl functional groups. The monomer can be directly synthesized and used, or a commercially available product can be used, but is not limited thereto.
또한, 상기 아크릴계 공중합체는 통상적으로 사용되는 중합법에 의하여 합성되는 것일 수 있다. 구체적으로 용액중합일 수 있지만, 이에 제한되는 것은 아니다. 상기 용액중합은 상기 단량체, 개시제 및 용매를 포함하여 중합되는 것일 수 있고, 상기 개시제 및 용매는 통상적으로 사용하는 것이라면 특별히 제한되지 않지만, 구체적으로 개시제는 아조비스이소부티로니트릴(AIBN)을 사용할 수 있고, 용매는 디메틸포름아마이드(DMF)일 수 있다. 또한, 그 함량은 본 발명에서 서술하는 물성을 저해하지 않는다면 특별히 제한되는 것은 아니다.Additionally, the acrylic copolymer may be synthesized by a commonly used polymerization method. Specifically, it may be solution polymerization, but is not limited thereto. The solution polymerization may be polymerized including the monomer, initiator, and solvent. The initiator and solvent are not particularly limited as long as they are commonly used, but specifically, azobisisobutyronitrile (AIBN) may be used as the initiator. and the solvent may be dimethylformamide (DMF). Additionally, the content is not particularly limited as long as it does not impair the physical properties described in the present invention.
또한, 상기 제1 고분자는 수평균분자량(Mn)이 5,000 내지 100,000 Da, 구체적으로 10,000 내지 60,000 Da, 더욱 구체적으로 10,000 내지 30,000 Da일 수 있지만, 이에 제한되는 것은 아니다. 상기 수평균분자량은 상기 단량체의 함량비 및 중합조건에 의하여 조절될 수 있다.Additionally, the first polymer may have a number average molecular weight (Mn) of 5,000 to 100,000 Da, specifically 10,000 to 60,000 Da, and more specifically 10,000 to 30,000 Da, but is not limited thereto. The number average molecular weight can be adjusted by the monomer content ratio and polymerization conditions.
구체적으로 본 발명의 일 실시예에 따른 상기 제1고분자 또는 화학식 2는 하기 화학식 4 또는 화학식 5로 표시되는 공중합체일 수 있다.Specifically, the first polymer or Formula 2 according to an embodiment of the present invention may be a copolymer represented by Formula 4 or Formula 5 below.
[화학식 4][Formula 4]
상기 화학식 4에서, FG1은 알키닐 작용기이고, p1 내지 p2는 말단에 FG1 작용기를 갖는 단량체로부터 유래된 반복단위고, z 및 k는 독립적으로 1 내지 7의 정수이고, a, 및 b는 1 이상의 정수이다. 구체적으로 상기 z 및 k는 독립적으로 1 내지 3 의 정수일 수 있으며, 상기 a 및 b는 0.1 내지 10 : 1을 만족하는 것일 수 있고, 구체적으로 0.5 내지 5 : 1, 더욱 구체적으로 0.8 내지 2 : 1을 만족하는 것일 수 있지만, 이에 특별히 제한되지 않는다. 또한, 상기 알키닐 작용기는 상기 화학식 3의 아자이드 작용기와 클릭반응하여 트리아졸 고리를 형성할 수 있다.In Formula 4, FG 1 is an alkynyl functional group, p 1 to p 2 are repeating units derived from monomers having a FG 1 functional group at the terminal, z and k are independently integers of 1 to 7, a, and b is an integer greater than or equal to 1. Specifically, z and k may independently be integers of 1 to 3, and a and b may satisfy 0.1 to 10:1, specifically 0.5 to 5:1, and more specifically 0.8 to 2:1. It may satisfy, but is not particularly limited thereto. Additionally, the alkynyl functional group may click-react with the azide functional group of Formula 3 to form a triazole ring.
또한, 상기 p1 내지 p2는 말단에 FG1 작용기를 갖는 단량체로부터 유래된 반복단위고, 구체적으로 상기 단량체는 축합중합 또는 부가중합이 가능한 단량체라면 크게 제한되지 않지만, 구체적으로 라디칼 중합이 가능한 아크릴계, 메타크릴계 및 비닐계 등에서 선택되는 하나 이상의 단량체일 수 있다.In addition, p 1 to p 2 are repeating units derived from monomers having a FG 1 functional group at the terminal, and specifically, the monomer is not greatly limited as long as it is a monomer capable of condensation polymerization or addition polymerization, but specifically, it is an acrylic type capable of radical polymerization. , it may be one or more monomers selected from methacryl-based, vinyl-based, etc.
상기 화학식 4에서 a 및 b는 제1 고분자에서 p1 및 p2 반복단위 각각의 몰수를 의미할 수 있다. p1 및 p2 반복단위에 해당하는 단량체의 투입 몰비를 조절하거나 중합조건을 조절하여 a 및 b의 비율(a:b)을 조절할 수 있지만, 이에 제한되지 않는다.In Formula 4, a and b may refer to the number of moles of each p 1 and p 2 repeating unit in the first polymer. The ratio of a and b (a:b) can be adjusted by adjusting the molar ratio of monomers corresponding to the p 1 and p 2 repeating units or by adjusting the polymerization conditions, but is not limited to this.
구체적으로 본 발명의 일 실시예에 따른 상기 제1고분자 또는 화학식 4는 하기 화학식 6으로 표시되는 것일 수 있다.Specifically, the first polymer or Chemical Formula 4 according to an embodiment of the present invention may be represented by Chemical Formula 6 below.
[화학식 6][Formula 6]
상기 화학식 6에서, Ar은 3가 방향족 라디칼이고; R1 내지 R2는 독립적으로 C1-50알킬렌, C3-50시클로알킬렌, C6-50아릴렌, C3-50헤테로아릴렌, C1-50알콕시카보닐렌 또는 이들의 조합이고, 상기 알킬렌, 시클로알킬렌, 아릴렌, 헤테로아릴렌 및 알콕시카보닐렌은 선택적으로 하이드록시, 할로겐, 나이트로, 시아노, 아미노, 카복실, 카복실산염, C1-20알킬, C2-20알케닐, C2-20알키닐, C1-20할로알킬, C1-20알콕시, C1-20알콕시카보닐, C3-30시클로알킬, (C6-30)아르(C1-20)알킬, C6-30아릴 및 C3-30헤테로아릴 등에서 선택되는 하나 이상으로 치환될 수 있으며, z 및 k는 1 내지 7의 정수이고, a 및 b는 1 이상의 정수이다.In Formula 6, Ar is a trivalent aromatic radical; R 1 to R 2 are independently C 1-50 alkylene, C 3-50 cycloalkylene, C 6-50 arylene, C 3-50 heteroarylene, C 1-50 alkoxycarbonylene, or a combination thereof. , the alkylene, cycloalkylene, arylene, heteroarylene and alkoxycarbonylene are optionally hydroxy, halogen, nitro, cyano, amino, carboxyl, carboxylate, C 1-20 alkyl, C 2-20 Alkenyl, C 2-20 alkynyl, C 1-20 haloalkyl, C 1-20 alkoxy, C 1-20 alkoxycarbonyl, C 3-30 cycloalkyl, (C 6-30 )ar(C 1-20 ) may be substituted with one or more selected from alkyl, C 6-30 aryl, and C 3-30 heteroaryl, z and k are integers of 1 to 7, and a and b are integers of 1 or more.
구체적으로 상기 화학식 6에서, R1 내지 R2는 독립적으로 C1-20알킬렌, C6-20아릴렌, C1-20알콕시카보닐렌 또는 이들의 조합일 수 있고, 상기 알킬렌, 아릴렌 및 헤테로아릴렌은 선택적으로 하이드록시, 할로겐, 카복실, C1-7알킬, C1-7할로알킬, C1-7알콕시, C1-7알콕시카보닐, (C6-20)아르(C1-7)알킬 및 C6-20아릴에서 선택되는 하나 이상으로 치환될 수 있으며, z 및 k는 1 내지 3의 정수이고, 상기 a 및 b는 0.1 내지 10 : 1, 구체적으로 0.5 내지 5 : 1을 만족하는 것일 수 있다.Specifically, in Formula 6, R 1 to R 2 may independently be C 1-20 alkylene, C 6-20 arylene, C 1-20 alkoxycarbonylene, or a combination thereof, and the alkylene or arylene and heteroarylene is optionally hydroxy, halogen, carboxyl, C 1-7 alkyl, C 1-7 haloalkyl, C 1-7 alkoxy, C 1-7 alkoxycarbonyl, (C 6-20 )ar(C 1-7 ) may be substituted with one or more selected from alkyl and C 6-20 aryl, z and k are integers of 1 to 3, and a and b are 0.1 to 10:1, specifically 0.5 to 5: It may satisfy 1.
구체적으로 본 발명의 일 실시예에 따른 상기 제1고분자 또는 화학식 6는 하기 화학식 7로 표시되는 것일 수 있다.Specifically, the first polymer or Chemical Formula 6 according to an embodiment of the present invention may be represented by Chemical Formula 7 below.
[화학식 7][Formula 7]
상기 화학식 7에서, R2 내지 R3은 독립적으로 직접결합 또는 C1-10알킬렌이고, a 및 b는 1 이상의 정수이다. 구체적으로 R2 내지 R3은 독립적으로 C1-3알킬렌일 수 있고, 더욱 구체적으로 R2 내지 R3은 메틸렌일 수 있으며, 상기 a 및 b는 구체적으로 0.8 내지 2 : 1을 만족하는 것일 수 있다.In Formula 7, R 2 to R 3 are independently a direct bond or C 1-10 alkylene, and a and b are integers of 1 or more. Specifically, R 2 to R 3 may independently be C 1-3 alkylene, more specifically R 2 to R 3 may be methylene, and a and b may specifically satisfy 0.8 to 2:1. there is.
또한, 상기 화학식 4의 z 및 k는 각각 p1 및 p2 반복단위에 포함된 FG1의 갯수를 의미하는데 상기 화학식 7의 경우를 예로 들면 z는 2이고 k는 1일 수 있다.In addition, z and k in Formula 4 refer to the number of FG 1 included in the p 1 and p 2 repeating units, respectively. In the case of Formula 7, for example, z may be 2 and k may be 1.
[화학식 5][Formula 5]
상기 화학식 5에서, FG1은 알키닐 작용기이고, FG3는 에폭시 작용기이고, p1 내지 p2는 말단에 FG1 작용기를 갖는 단량체로부터 유래된 반복단위고, p3는 말단에 FG3 작용기를 갖는 단량체로부터 유래된 반복단위고, z, k 및 t는 독립적으로 1 내지 7의 정수이고, a, b 및 c는 1 이상의 정수이다. 구체적으로 상기 z, k 및 t는 독립적으로 1 내지 3 의 정수일 수 있으며, 상기 a와 b의 합 및 c의 비율(a+b:c)은 1 내지 10 : 1, 좋게는 1 내지 7 : 1의 비율을 만족하는 것일 수 있지만, 이에 제한되는 것은 아니다. 또한, 상기 에폭시 작용기는 상기 기판과 화학적으로 반응할 수 있고, 상기 알키닐 작용기는 상기 화학식 3의 아자이드 작용기와 클릭반응하여 트리아졸 고리를 형성할 수 있다.In Formula 5, FG 1 is an alkynyl functional group, FG 3 is an epoxy functional group, p 1 to p 2 are repeating units derived from a monomer having a FG 1 functional group at the terminal, and p 3 is a FG 3 functional group at the terminal. It is a repeating unit derived from a monomer having, z, k, and t are independently integers of 1 to 7, and a, b, and c are integers of 1 or more. Specifically, z, k, and t may independently be integers of 1 to 3, and the ratio of the sum of a and b and c (a+b:c) is 1 to 10:1, preferably 1 to 7:1. It may satisfy the ratio of, but is not limited to this. Additionally, the epoxy functional group may react chemically with the substrate, and the alkynyl functional group may click-react with the azide functional group of Formula 3 to form a triazole ring.
또한, 상기 p1 내지 p2는 말단에 FG1 작용기를 갖는 단량체로부터 유래된 반복단위고, p3는 말단에 FG3 작용기를 갖는 단량체로부터 유래된 반복단위일 수 있으며, 구체적으로 상기 단량체는 축합중합 또는 부가중합이 가능한 단량체라면 크게 제한되지 않지만, 구체적으로 라디칼 중합이 가능한 아크릴계, 메타크릴계 및 비닐계 등에서 선택되는 하나 이상의 단량체일 수 있다.In addition, p 1 to p 2 may be a repeating unit derived from a monomer having a FG 1 functional group at the terminal, and p 3 may be a repeating unit derived from a monomer having an FG 3 functional group at the terminal. Specifically, the monomer may be a condensation There is no significant limitation as long as it is a monomer capable of polymerization or addition polymerization, but specifically, it may be one or more monomers selected from acrylic-based, methacrylic-based, and vinyl-based monomers capable of radical polymerization.
상기 화학식 5에서 a 내지 c는 제1 고분자에서 p1 내지 p3 반복단위의 몰수를 의미할 수 있다. p1 내지 p3 반복단위에 해당하는 단량체의 투입 몰비를 조절하거나 중합조건을 조절하여 a 내지 c의 비율을 조절할 수 있지만, 이에 제한되지 않는다.In Formula 5, a to c may refer to the number of moles of p 1 to p 3 repeating units in the first polymer. The ratio of a to c can be adjusted by adjusting the input molar ratio of the monomers corresponding to the p 1 to p 3 repeating units or by adjusting the polymerization conditions, but is not limited to this.
구체적으로 본 발명의 일 실시예에 따른 상기 제1고분자 또는 화학식 5는 하기 화학식 8로 표시되는 것일 수 있다.Specifically, the first polymer or Chemical Formula 5 according to an embodiment of the present invention may be represented by Chemical Formula 8 below.
[화학식 8][Formula 8]
상기 화학식 8에서, Ar은 3가 방향족 라디칼이고; R1, R2 및 R4는 독립적으로 C1-50알킬렌, C3-50시클로알킬렌, C6-50아릴렌, C3-50헤테로아릴렌, C1-50알콕시카보닐렌 또는 이들의 조합이고, 상기 알킬렌, 시클로알킬렌, 아릴렌, 헤테로아릴렌 및 알콕시카보닐렌은 선택적으로 하이드록시, 할로겐, 나이트로, 시아노, 아미노, 카복실, 카복실산염, C1-20알킬, C2-20알케닐, C2-20알키닐, C1-20할로알킬, C1-20알콕시, C1-20알콕시카보닐, C3-30시클로알킬, (C6-30)아르(C1-20)알킬, C6-30아릴 및 C3-30헤테로아릴에서 선택되는 하나 이상으로 치환될 수 있으며, R5는 수소 또는 C1-3알킬이고, z, k 및 t는 1 내지 7의 정수이고, a, b 및 c는 1 이상의 정수이다.In Formula 8, Ar is a trivalent aromatic radical; R 1 , R 2 and R 4 are independently C 1-50 alkylene, C 3-50 cycloalkylene, C 6-50 arylene, C 3-50 heteroarylene, C 1-50 alkoxycarbonylene or these It is a combination of, and the alkylene, cycloalkylene, arylene, heteroarylene and alkoxycarbonylene are optionally hydroxy, halogen, nitro, cyano, amino, carboxyl, carboxylate, C 1-20 alkyl, C 2-20 alkenyl, C 2-20 alkynyl, C 1-20 haloalkyl, C 1-20 alkoxy, C 1-20 alkoxycarbonyl, C 3-30 cycloalkyl, (C 6-30 )ar(C 1-20 ) may be substituted with one or more selected from alkyl, C 6-30 aryl and C 3-30 heteroaryl, R 5 is hydrogen or C 1-3 alkyl, and z, k and t are 1 to 7 is an integer, and a, b, and c are integers of 1 or more.
구체적으로 상기 화학식 8에서, Ar은 3가 방향족 라디칼이고; R1, R2 및 R4는 독립적으로 C1-20알킬렌, C6-20아릴렌, C1-20알콕시카보닐렌 또는 이들의 조합일 수 있고, 상기 알킬렌, 아릴렌 및 헤테로아릴렌은 선택적으로 하이드록시, 할로겐, 카복실, C1-7알킬, C1-7할로알킬, C1-7알콕시, C1-7알콕시카보닐, (C6-20)아르(C1-7)알킬 및 C6-20아릴에서 선택되는 하나 이상으로 치환될 수 있으며, R5는 수소 또는 메틸이고, z 및 k는 1 내지 3의 정수이며, 상기 a와 b의 합 및 c의 비율(a+b:c)은 1 내지 10 : 1, 좋게는 1 내지 7 : 1의 비율을 만족하는 것일 수 있다.Specifically, in Formula 8, Ar is a trivalent aromatic radical; R 1 , R 2 and R 4 may independently be C 1-20 alkylene, C 6-20 arylene, C 1-20 alkoxycarbonylene, or a combination thereof, and the alkylene, arylene and heteroarylene is optionally hydroxy, halogen, carboxyl, C 1-7 alkyl, C 1-7 haloalkyl, C 1-7 alkoxy, C 1-7 alkoxycarbonyl, (C 6-20 )ar(C 1-7 ) may be substituted with one or more selected from alkyl and C 6-20 aryl, R 5 is hydrogen or methyl, z and k are integers from 1 to 3, and the sum of a and b and the ratio of c (a+ b:c) may satisfy a ratio of 1 to 10:1, preferably 1 to 7:1.
구체적으로 본 발명의 일 실시예에 따른 상기 제1고분자 또는 화학식 8은 하기 화학식 9로 표시되는 것일 수 있다.Specifically, the first polymer or Chemical Formula 8 according to an embodiment of the present invention may be represented by Chemical Formula 9 below.
[화학식 9][Formula 9]
상기 화학식 9에서, R2 내지 R4는 독립적으로 C1-10알킬렌이고, R5는 수소 또는 메틸이고, a, b 및 c는 1 이상의 정수이다. 구체적으로 R2 내지 R4는 독립적으로 C1-3알킬렌이고, R5는 메틸일 수 있으며, 상기 a와 b의 합 및 c의 비율(a+b:c)은 1 내지 7 : 1의 비율을 만족하는 것일 수 있다.In Formula 9, R 2 to R 4 are independently C 1-10 alkylene, R 5 is hydrogen or methyl, and a, b and c are integers of 1 or more. Specifically, R 2 to R 4 are independently C 1-3 alkylene, and R 5 may be methyl, and the ratio of the sum of a and b and c (a+b:c) is 1 to 7:1. It may be that the ratio is satisfied.
또한, 상기 화학식 5의 z, k 및 t는 각각 p1, p2 및 p3 반복단위에 포함된 FG1 및 FG3의 갯수를 의미하는데 상기 화학식 9의 경우를 예로 들면 z는 2, k는 1, t는 1인 것일 수 있다.In addition, z, k and t in Formula 5 refer to the number of FG 1 and FG 3 included in the p 1, p 2 and p 3 repeating units, respectively. In the case of Formula 9, for example, z is 2 and k is 1, t may be 1.
본 발명의 일 실시예에 따른 화학식 4 및 5에서 p1 내지 p3는 서로 독립적으로 화학식 2의 제1 고분자를 구성하고 있는 반복단위를 의미할 수 있다. 상기 화학식 4 및 5에서 p1 및 p2 반복단위는 서로 독립적으로 말단에 하나 이상의 FG1 작용기를 포함하는 단량체로부터 유래된 것일 수 있고, 상기 화학식 5에서 p3 반복단위는 말단에 하나 이상의 FG3 작용기를 포함하는 단량체로부터 유래된 것일 수 있다. 상기 FG1 작용기는 알키닐 작용기이고, FG3 작용기는 에폭시 작용기일 수 있으며, 상기 단량체는 공중합이 가능하다면 종류에 크게 제한되지 않고, 구체적으로는 축합 중합 또는 부가 중합이 가능한 단량체라면 종류가 특별히 제한되지 않는다. 구체적으로는 라디칼 중합이 가능한 아크릴계, 메타크릴계 및 비닐계 등의 단량체를 포함할 수 있지만, 이에 제한되는 것은 아니다.In Chemical Formulas 4 and 5 according to an embodiment of the present invention, p 1 to p 3 may independently refer to repeating units constituting the first polymer of Chemical Formula 2. In Formulas 4 and 5, the p 1 and p 2 repeating units may be independently derived from monomers containing one or more FG 1 functional groups at the terminals, and the p 3 repeating units in Formula 5 may have one or more FG 3 functional groups at the terminals. It may be derived from a monomer containing a functional group. The FG 1 functional group may be an alkynyl functional group, and the FG 3 functional group may be an epoxy functional group. The type of the monomer is not greatly limited as long as it can be copolymerized. Specifically, the type is particularly limited as long as it is a monomer capable of condensation polymerization or addition polymerization. It doesn't work. Specifically, it may include monomers capable of radical polymerization such as acrylic, methacrylic, and vinyl monomers, but is not limited thereto.
구체적으로 중합에 투입하는 단량체의 몰비를 조절하여 상기 화학식 4의 a 및 b의 비율을 조절할 수 있고, 상기 화학식 5의 a 내지 c의 비율을 조절할 수 있다. 즉, 중합에 투입된 해당 단량체의 몰비와 반복단위 p1 내지 p3의 비율이 유사 혹은 동일할 수 있다. 구체적으로 반복단위 p1의 몰수는 a, p2 의 몰수는 b, p3 의 몰수는 c에 대응하며, 각각의 p1 내지 p3에 해당하는 단량체를 2 : 2 : 1 의 몰비로 투입하여 중합했을 경우, a : b : c는 2 : 2 : 1과 동일 혹은 유사할 수 있지만, 이에 특별히 제한되지 않으며, 각 단량체의 반응성과 중합조건에 따라 상기 비율은 조절될 수 있다.Specifically, the ratio of a and b in Formula 4 can be adjusted by adjusting the molar ratio of the monomers added to the polymerization, and the ratio of a to c in Formula 5 can be adjusted. That is, the molar ratio of the corresponding monomers added to the polymerization and the ratio of the repeating units p 1 to p 3 may be similar or identical. Specifically, the number of moles of the repeating unit p 1 corresponds to a, the number of moles of p 2 corresponds to b, and the number of moles of p 3 corresponds to c, and the monomers corresponding to each p 1 to p 3 are added at a molar ratio of 2: 2: 1. When polymerized, a:b:c may be the same or similar to 2:2:1, but is not particularly limited thereto, and the ratio may be adjusted depending on the reactivity of each monomer and polymerization conditions.
본 발명의 일 실시예에 따른 상기 제2 고분자는 측쇄(side chain)에 아자이드 작용기를 갖는 것이라면 그 종류가 특별히 제한되지 않는다. 구체적으로 상기 제2 고분자는 아크릴계, 우레탄계, 에폭시계, 플루오렌계, 카바졸계, 싸이오펜계 및 올레핀계 고분자 등에서 선택될 수 있지만, 이에 제한되지 않는다. 상기 제2 고분자는 1종 이상의 단량체를 중합하여 합성되는 것일 수 있고, 상기 중합은 축합중합 또는 부가중합의 형식으로 합성되는 것일 수 있지만 특별히 제한되지 않으며, 상기 단량체는 말단에 아자이드 작용기를 갖고 CNT를 래핑할 수 있다면 특별히 제한되지 않고 사용할 수 있다.The type of the second polymer according to an embodiment of the present invention is not particularly limited as long as it has an azide functional group in the side chain. Specifically, the second polymer may be selected from acrylic, urethane, epoxy, fluorene, carbazole, thiophene, and olefin polymers, but is not limited thereto. The second polymer may be synthesized by polymerizing one or more monomers, and the polymerization may be synthesized in the form of condensation polymerization or addition polymerization, but is not particularly limited, and the monomer has an azide functional group at the end and is CNT. If you can wrap it, you can use it without any particular restrictions.
상기 제2 고분자는 CNT를 랩핑하여 제2 고분자-CNT복합체를 제조할 수 있으며, 구체적으로 플루오렌기반 공중합체일 수 있다. 구체적으로 상기 플루오렌기반 공중합체는 2종 이상의 플루오렌기반 단량체를 공중합한 것일 수 있다. 상기 제2 고분자가 전기전도성을 띄는 공액형 고분자인 플루오렌기반 공중합체일 경우, 더욱 효과적으로 CNT를 랩핑할 수 있고, 따라서 고밀도 CNT가 형성된 필름을 제조할 수 있으며, 이를 이용하여 전기적 특성이 탁월한 CNT 반도체 소자 및 수소 가스 센서를 제조할 수 있다.The second polymer can be used to produce a second polymer-CNT composite by wrapping CNTs, and may specifically be a fluorene-based copolymer. Specifically, the fluorene-based copolymer may be a copolymerization of two or more types of fluorene-based monomers. When the second polymer is a fluorene-based copolymer, which is an electrically conductive conjugated polymer, CNTs can be wrapped more effectively, and thus a film with high-density CNTs can be manufactured, and this can be used to produce CNTs with excellent electrical properties. Semiconductor devices and hydrogen gas sensors can be manufactured.
구체적으로 본 발명의 일 실시예에 따른 상기 제2고분자 또는 화학식 3으로 표시되는 화합물은 하기 화학식 10의 반복단위(n) 및 하기 화학식 11의 반복단위(m)를 동시에 포함하는 공중합체일 수 있다.Specifically, the second polymer or the compound represented by Formula 3 according to an embodiment of the present invention may be a copolymer that simultaneously includes a repeating unit (n) of Formula 10 below and a repeating unit (m) of Formula 11 below. .
[화학식 10] [Formula 10]
[화학식 11] [Formula 11]
상기 화학식 10 및 11에서, R6 내지 R7은 독립적으로 C5-50알킬렌이고, R8 내지 R9는 독립적으로 C5-50알킬이다. 구체적으로 R6 내지 R7은 독립적으로 C5-20알킬렌이고, R8 내지 R9는 독립적으로 C5-20알킬일 수 있으며, 상기 범위의 탄소 갯수를 만족하는 알킬렌 및 알킬의 경우, CNT 측벽면과 π전자 상호작용(π-π stacking interaction)을 통해 효과적으로 CNT를 랩핑할 수 있다. 특히, 상기 반복단위(n) 및 반복단위(m)를 포함하는 공중합체를 사용할 경우, 선택적으로 sc-SWCNT를 랩핑하여 제2 고분자-CNT복합체를 제조할 수 있고 이를 이용하여 복합체층을 형성함으로써, 더욱 향상된 민감도 및 선택도를 갖는 수소 가스 센서를 제조할 수 있어 매우 바람직하다. 또한, 상기 반복단위(n) 및 반복단위(m)를 포함하는 공중합체의 수평균분자량은 1,000 내지 500,000 Da, 좋게는 3,000 내지 50,000 Da, 더 좋게는 5,000 내지 35,000 Da일 수 있지만, 본 발명에서 목적으로 하는 물성을 저해하지 않는다면 이에 제한되지 않는다.In Formulas 10 and 11, R 6 to R 7 are independently C 5-50 alkylene, and R 8 to R 9 are independently C 5-50 alkyl. Specifically, R 6 to R 7 may independently be C 5-20 alkylene, and R 8 to R 9 may independently be C 5-20 alkyl. In the case of alkylene and alkyl satisfying the above range of carbon numbers, CNTs can be effectively wrapped through π-electron interaction (π-π stacking interaction) with the CNT sidewall. In particular, when using a copolymer containing the repeating unit (n) and the repeating unit (m), a second polymer-CNT composite can be prepared by selectively wrapping the sc-SWCNT and using this to form a composite layer. , it is highly desirable to manufacture a hydrogen gas sensor with improved sensitivity and selectivity. In addition, the number average molecular weight of the copolymer containing the repeating unit (n) and the repeating unit (m) may be 1,000 to 500,000 Da, preferably 3,000 to 50,000 Da, and more preferably 5,000 to 35,000 Da, but in the present invention There is no limitation thereto as long as it does not impair the intended physical properties.
상기 반복단위(n) 및 반복단위(m)를 포함하는 공중합체는 각 반복단위가 랜덤하게 중합된 랜덤공중합체 일 수 있고, 각 반복단위가 교차되어 결합된 교호 공중합체(alternating copolymer)일 수 있으며, 구체적으로, 랜덤 공중합체 일 수 있다. 상기 공중합체에서의 반복단위(n)의 몰분율을 n, 반복단위(m)의 몰분율을 m 라고 할 때, n+m=1 일 수 있고, 상기 n는 0.9 이하, 0.7 이하, 좋게는 0.5 이하, 0.4 이하, 더 좋게는 0.3 이하, 0.2 이하 또는 0.1 이하일 수 있고, 상한은 크게 제한되지 않지만, 0.0001 이상일 수 있고, 본 발명이 목적으로 하는 물성을 저해하지 않는다면, 이에 제한되지 않는다. 상기 범위를 만족할 경우, 상기 반복단위(n) 및 반복단위(m)를 포함하는 공중합체가 sc-SWCNT에 대하여 더욱 향상된 선택도를 가질 수 있고, 이를 통해 더욱 고밀도의 sc-SWCNT를 갖는 CNT 필름을 코팅할 수 있다. 상기 고밀도의 sc-SWCNT가 코팅된 수소 가스 센서의 경우, 더욱 향상된 민감도 및 선택도를 구현할 수 있어 좋다. 상기 몰분율은 공중합체의 몰분율 분석을 위해 통상적으로 사용하거나 공지된 방법이라면 크게 제한되지 않고 사용가능하며, 구체적으로 NMR 분석을 통해 확인할 수 있다.The copolymer containing the repeating unit (n) and the repeating unit (m) may be a random copolymer in which each repeating unit is randomly polymerized, or it may be an alternating copolymer in which each repeating unit is crossed and bonded. And specifically, it may be a random copolymer. When the mole fraction of the repeating unit (n) in the copolymer is n and the mole fraction of the repeating unit (m) is m, n+m may be 1, and n is 0.9 or less, 0.7 or less, preferably 0.5 or less. , may be 0.4 or less, better 0.3 or less, 0.2 or less, or 0.1 or less, and the upper limit is not greatly limited, but may be 0.0001 or more, and is not limited thereto, as long as it does not impair the physical properties targeted by the present invention. When the above range is satisfied, the copolymer containing the repeating unit (n) and the repeating unit (m) may have further improved selectivity for sc-SWCNT, and as a result, a CNT film with a higher density of sc-SWCNT can be coated. In the case of the hydrogen gas sensor coated with the high-density sc-SWCNT, it is good to realize further improved sensitivity and selectivity. The mole fraction can be used without major limitations as long as it is a commonly used or known method for analyzing the mole fraction of a copolymer, and can be specifically confirmed through NMR analysis.
본 발명의 또다른 양태에 따라, 상기 제2고분자 또는 상기 화학식 10의 반복단위(n) 및 상기 화학식 11의 반복단위(m)를 포함하는 공중합체는 하기 화학식 14로 표시될 수 있다.According to another aspect of the present invention, the second polymer or a copolymer containing the repeating unit (n) of Formula 10 and the repeating unit (m) of Formula 11 may be represented by Formula 14 below.
[화학식 14][Formula 14]
상기 화학식 14에서, R6 및 R7은 독립적으로 C5-20알킬렌이고, R8, R9, R18 및 R19는 독립적으로 C5-20알킬일 수 있으며, 상기 v, w, n, m, g 및 h는 독립적으로 상기 공중합체에서 해당 반복단위의 몰분율이고, v+w=1이고, n+m+g+h=1이다. 좋게는 상기 n는 0.5 이하, 0.4 이하, 더 좋게는 0.3 이하, 0.2 이하 또는 0.1 이하일 수 있고, 상한은 크게 제한되지 않지만, 0.0001 이상일 수 있지만, 본 발명이 목적으로 하는 물성을 저해하지 않는다면, 이에 제한되지 않는다. 또한, 상기 공중합체는 각 반복단위가 랜덤하게 중합된 랜덤공중합체 일 수 있고, 각 반복단위가 교차되어 결합된 교호 공중합체(alternating copolymer)일 수 있으며, 구체적으로 랜덤 공중합체 일 수 있다.In Formula 14, R 6 and R 7 may independently be C 5-20 alkylene, R 8 , R 9 , R 18 and R 19 may independently be C 5-20 alkyl, and v, w, n , m, g and h are independently the mole fraction of the corresponding repeating unit in the copolymer, v+w=1, and n+m+g+h=1. Preferably, n may be 0.5 or less, 0.4 or less, more preferably 0.3 or less, 0.2 or less, or 0.1 or less, and the upper limit is not greatly limited, but may be 0.0001 or more, provided that the physical properties targeted by the present invention are not impaired. Not limited. Additionally, the copolymer may be a random copolymer in which each repeating unit is randomly polymerized, or it may be an alternating copolymer in which each repeating unit is crossed and bonded, and specifically, it may be a random copolymer.
본 발명의 일 실시예에 따른 수소 가스 센서는 기판과 상기 제1 고분자로부터 형성된 고분자층 사이에 자기 조립 단분자층(SAM)을 더 포함할 수 있다. 구체적으로 자기조립 단분자층은 기판층 표면과 쉽게 반응하는 물질, 일예로 실란 커플링제를 포함하며, 에너지를 효과적으로 흡수해서 라디칼을 형성하여 가교 반응을 일으킬 수 있는 광중합 개시제, 일예로 벤조페논 구조를 포함하는 화합물로부터 유도된 단위일 수 있다.The hydrogen gas sensor according to an embodiment of the present invention may further include a self-assembled monolayer (SAM) between the substrate and the polymer layer formed from the first polymer. Specifically, the self-assembled monolayer contains a material that easily reacts with the surface of the substrate layer, such as a silane coupling agent, and a photopolymerization initiator that can effectively absorb energy and form radicals to cause a crosslinking reaction, such as a benzophenone structure. It may be a unit derived from a compound.
구체적으로 본 발명의 일 실시예에 따른 수소 가스 센서의 자기 조립 단분자층(SAM)은 하기 화학식 12로 표시되는 화합물로부터 형성된 자기 조립 단분자층일 수 있다.Specifically, the self-assembled monolayer (SAM) of the hydrogen gas sensor according to an embodiment of the present invention may be a self-assembled monolayer formed from a compound represented by Formula 12 below.
[화학식 12][Formula 12]
상기 화학식 12에서, R10는 C1-10알킬렌이고, R11 내지 R13은 독립적으로 하이드록시, 할로겐, C1-10알킬, C1-10할로알킬, C1-10알콕시 또는 C1-10알콕시카보닐이다. 구체적으로 R10는 C1-7알킬렌이고, R11 내지 R13은 독립적으로 할로겐, C1-7알킬, 또는 C1-7할로알킬일 수 있고, 상기 할로겐은 Cl 또는 F일 수 있으며, 더욱 구체적으로 상기 화학식 12는 하기 화학식 13으로 표시되는 것일 수 있다.In Formula 12, R 10 is C 1-10 alkylene, and R 11 to R 13 are independently hydroxy, halogen, C 1-10 alkyl, C 1-10 haloalkyl, C 1-10 alkoxy, or C 1 It is -10 alkoxycarbonyl. Specifically, R 10 is C 1-7 alkylene, R 11 to R 13 may independently be halogen, C 1-7 alkyl, or C 1-7 haloalkyl, and the halogen may be Cl or F, More specifically, Formula 12 may be represented by Formula 13 below.
[화학식 13][Formula 13]
상기 화학식 12 및 13으로 표시되는 화합물은 벤조페논 구조를 포함하여 에너지 빔을 효과적으로 흡수하여 벤조페논의 카르보닐기의 n-궤도의 전자와 접촉하는 고분자의 알킬 사슬과 반응할 수 있다. 따라서, 상기 화학식 12 및 13으로 표시되는 화합물과 상기 제1 고분자가 에너지 빔 조사에 의해 가교될 수 있으며, 비제한적인 예로 상기 에너지 빔은 자외선(UV)일 수 있다.The compounds represented by Formulas 12 and 13 include a benzophenone structure and can effectively absorb an energy beam and react with the alkyl chain of the polymer in contact with the electrons of the n-orbital of the carbonyl group of benzophenone. Accordingly, the compounds represented by Formulas 12 and 13 and the first polymer may be crosslinked by irradiation with an energy beam. As a non-limiting example, the energy beam may be ultraviolet (UV) light.
상기 자기조립 단분자층은 상기 화학식 12로 표시되는 화합물로부터 형성될 수 있으며, 상기 자기조립 단분자층은 상기 기판과 화학적으로 결합함과 동시에 상기 제1 고분자와도 가교됨으로써, 기판 상에 제1 고분자로부터 형성된 고분자층을 고정화하여, 본 발명이 목적으로 하는 물과 유기 용매에 안정적이고 소자간 재현성이 우수하며, 수소 가스에 대하여 향상된 민감도 및 선택도를 갖는 수소 가스 센서를 제조할 수 있어 좋다.The self-assembled monolayer may be formed from the compound represented by Formula 12, and the self-assembled monolayer is chemically bonded to the substrate and simultaneously cross-linked with the first polymer, thereby forming a polymer formed from the first polymer on the substrate. By fixing the layer, it is possible to manufacture a hydrogen gas sensor that is stable in water and organic solvents, has excellent inter-device reproducibility, and has improved sensitivity and selectivity to hydrogen gas, which is the goal of the present invention.
본 발명의 일 실시예에 따른 수소 가스 센서의 금속 전극은 저항 또는 전류의 변화를 측정하기 위한 것으로 상기 복합체층 상에서 서로 이격 위치하는 소스 전극과 드레인 전극을 포함할 수 있다. 상기 금속 전극은 Pt, Al, Au, Cu, Cr, Ni, Ru, Mo, V, Zr, Ti, W, 및 이들의 합금으로 이루어진 군에서 선택된 하나 이상 또는 ITO(Indium tin oxide), AZO(Al-doped ZnO), IZO(Indium zinc oxide), FTO(F-doped SnO2), GZO(Ga-doped ZnO), ZTO(zinc tin oxide), GIO(gallium indium oxide), ZnO, Pd, Ag 및 이들의 조합으로 이루어진 군에서 선택된 하나 이상에 의해 형성된 전극일 수 있다. 상기 금속 전극의 두께는 5 내지 100㎚, 좋게는 20 내지 80㎚일 수 있지만, 이에 제한되지 않는다.The metal electrode of the hydrogen gas sensor according to an embodiment of the present invention is for measuring changes in resistance or current and may include a source electrode and a drain electrode spaced apart from each other on the composite layer. The metal electrode is one or more selected from the group consisting of Pt, Al, Au, Cu, Cr, Ni, Ru, Mo, V, Zr, Ti, W, and alloys thereof, or ITO (indium tin oxide), AZO (Al -doped ZnO), IZO (Indium zinc oxide), FTO (F-doped SnO2), GZO (Ga-doped ZnO), ZTO (zinc tin oxide), GIO (gallium indium oxide), ZnO, Pd, Ag and their It may be an electrode formed by one or more elements selected from the group consisting of combinations. The thickness of the metal electrode may be 5 to 100 nm, preferably 20 to 80 nm, but is not limited thereto.
본 발명의 일 실시예에 따른 수소 가스 센서의 팔라듐 나노입자층은 수소를 감지하는 감지부로, 상기 소스 전극 및 드레인 전극이 이격된 영역에 위치한 것일 수 있으며, 팔라듐 나노입자층에 의해 수소 가스의 센싱이 가능하다. 구체적으로, 상기 금속 전극에 전원을 공급한 상태에서 팔라듐 나노입자층에 수소가 노출될 경우, 수소가 흡착되며 전기적 특성이 변화되어 수소를 검지할 수 있다.The palladium nanoparticle layer of the hydrogen gas sensor according to an embodiment of the present invention is a sensing unit that detects hydrogen, and may be located in an area where the source electrode and the drain electrode are spaced apart, and hydrogen gas can be sensed by the palladium nanoparticle layer. do. Specifically, when hydrogen is exposed to the palladium nanoparticle layer while power is supplied to the metal electrode, hydrogen is adsorbed and electrical characteristics change, allowing hydrogen to be detected.
본 발명의 일 실시예에 따른 수소 가스 센서의 팔라듐 나노입자층은 1 내지 20㎚, 구체적으로 2 내지 10㎚의 두께로 형성될 수 있다. 팔라듐 나노입자층은 클러스터 또는 분산된 입자형태의 팔라듐 나노입자로 이루어질 수 있다. 구체예로, 평균 입경이 0.1 내지 10nm, 좋게는 0.5 내지 5nm인 클러스터 형 팔라듐 나노입자로 이루어질 수 있다. 이와 같은 팔라듐 나노입자층은 우수한 전도성과 수소흡착성능을 동시에 가짐에 따라 다량의 수소 가스를 흡착할 수 있으며, 고감도 센싱이 가능하도록 한다.The palladium nanoparticle layer of the hydrogen gas sensor according to an embodiment of the present invention may be formed to have a thickness of 1 to 20 nm, specifically 2 to 10 nm. The palladium nanoparticle layer may be made of palladium nanoparticles in the form of clusters or dispersed particles. As a specific example, it may be made of cluster-type palladium nanoparticles with an average particle diameter of 0.1 to 10 nm, preferably 0.5 to 5 nm. This palladium nanoparticle layer has excellent conductivity and hydrogen adsorption performance at the same time, allowing it to adsorb a large amount of hydrogen gas and enable highly sensitive sensing.
구체적으로 상기 팔라듐 나노입자층이 특정영역, 즉, 상기 소스 전극 및 드레인 전극이 이격된 영역에 위치함에 따라 높은 민감도로 수소가스 센싱이 가능하다. 상기 팔라듐 나노입자는 상기 영역에서 균일 또는 불균일하게 분포되어 있을 수 있으며, 구체적으로 상기 팔라듐 나노입자는 상기 소스 전극 및 드레인 전극이 이격된 영역의 복합체층 표면에 일부영역에만 분포되어, 상기 소스 전극 및 드레인 전극이 이격된 영역의 복합체층 표면이 팔라듐 나노입자층이 위치하는 제1영역과, 팔라듐 나노입자층이 위치하지 않는 제2영역을 포함할 수 있다. Specifically, hydrogen gas sensing is possible with high sensitivity as the palladium nanoparticle layer is located in a specific area, that is, an area where the source electrode and the drain electrode are spaced apart. The palladium nanoparticles may be distributed uniformly or non-uniformly in the area. Specifically, the palladium nanoparticles are distributed only in a partial area on the surface of the composite layer in the area where the source electrode and drain electrode are spaced apart, and the source electrode and the drain electrode The surface of the composite layer in the area where the drain electrodes are spaced apart may include a first area where the palladium nanoparticle layer is located and a second area where the palladium nanoparticle layer is not located.
보다 구체적으로 상기 제2영역의 면적은 상기 소스 전극 및 드레인 전극에 의해 구획된 복합체층 표면의 총 면적 중 50% 내지 90%, 바람직하게는 60% 내지 80%일 수 있다. 상기와 같은 팔라듐 나노입자층 복합체층을 포함하는 수소 가스 센서는 고민감도 센싱뿐만 아니라, 다양한 환경조건 하에서도, 구체적으로 -50℃내지 300℃의 온도 10 내지 80%의 습도 하에서도 고감도의 수소 가스의 센싱이 가능할 수 있다.More specifically, the area of the second region may be 50% to 90%, preferably 60% to 80%, of the total area of the surface of the composite layer partitioned by the source electrode and the drain electrode. The hydrogen gas sensor including the palladium nanoparticle layer composite layer as described above not only provides high sensitivity sensing, but also provides highly sensitive sensing of hydrogen gas even under various environmental conditions, specifically at a temperature of -50°C to 300°C and humidity of 10 to 80%. Sensing may be possible.
본 발명의 일 실시예에 따른 수소 가스 센서의 고분자 코팅층은 수소 가스를 선택적으로 투과할 수 있도록 하여 더욱 고감도의 수소 가스 센싱이 가능하도록 한다. 나아가 고분자 코팅층은 수분, 공기 등 외부 환경에서 팔라듐 나노입자의 이탈 방지 등 감지부를 보호하는 역할을 하여 장시간 동안 외부 노출 시 수분 등에 의해 수소 가스 민감도가 떨어지는 것을 방지한다. 즉, 고분자 코팅층은 감지부의 민감도, 수소선택성, 물리적 및 화학적 안정성을 현저히 향상시킬 수 있다. 구체적으로 상기 고분자 코팅층은 아크릴레이트계 고분자를 포함할 수 있다.The polymer coating layer of the hydrogen gas sensor according to an embodiment of the present invention allows hydrogen gas to selectively pass through, enabling more highly sensitive hydrogen gas sensing. Furthermore, the polymer coating layer plays a role in protecting the sensing unit by preventing the palladium nanoparticles from escaping from external environments such as moisture and air, and prevents hydrogen gas sensitivity from being reduced due to moisture, etc. when exposed to the outside for a long period of time. In other words, the polymer coating layer can significantly improve the sensitivity, hydrogen selectivity, and physical and chemical stability of the sensing unit. Specifically, the polymer coating layer may include an acrylate-based polymer.
또한, 상기 고분자 코팅층의 두께는 팔라듐 나노입자층을 충분히 보호할 수 있는 두께라면 특별히 한정되지 않지만, 100㎚ 이상, 또는 500 nm 이상, 구체적으로 1㎛ 내지 10㎛ 일 수 있으나 이에 한정되지 않는다. 또한, 상기 고분자 코팅층은 상기 전극의 두께보다 두껍게 형성되어 고분자 코팅층의 가장자리가 전극 상에 위치할 수 있다. 이와 같은 고분자 코팅층은 수소 가스 센서의 전극도 외부 환경으로부터 보호함에 따라, 수소 가스 센서의 내구성을 더욱 높이는 역할을 할 수 있다.In addition, the thickness of the polymer coating layer is not particularly limited as long as it can sufficiently protect the palladium nanoparticle layer, but may be 100 nm or more, or 500 nm or more, specifically 1 μm to 10 μm, but is not limited thereto. Additionally, the polymer coating layer may be formed to be thicker than the thickness of the electrode, so that the edge of the polymer coating layer may be located on the electrode. Such a polymer coating layer can serve to further increase the durability of the hydrogen gas sensor by protecting the electrodes of the hydrogen gas sensor from the external environment.
본 발명의 일 실시예에 따른 수소 가스 센서의 고분자 코팅층은 상술한 바와 같이, 아크릴레이트계 고분자를 포함하는 것으로, 상기 아크릴레이트계 고분자의 중량평균분자량은 1,000 내지 1,000,000 g/mol일 수 있고, 구체적으로 5,000 내지 500,000 g/mol, 보다 구체적으로 20,000 내지 400,000 g/mol일 수 있다. 일예로 상기 아크릴레이트계 고분자는 폴리(C1-4)알킬메타크릴레이트를 포함할 수 있고, 구체적으로, 폴리메타크릴레이트(polymethacrylate), 폴리메틸아크릴레이트(polymethylacrylate), 폴리메틸메타크릴레이트(PMMA), 폴리에틸아크릴레이트(polyethylacrylate), 폴리에틸메타크릴레이트(polyethylmetacrylate) 또는 이들의 혼합물에서 선택되는 하나 이상을 포함할 수 있다. As described above, the polymer coating layer of the hydrogen gas sensor according to an embodiment of the present invention includes an acrylate-based polymer. The weight average molecular weight of the acrylate-based polymer may be 1,000 to 1,000,000 g/mol, and the specific It may be 5,000 to 500,000 g/mol, more specifically 20,000 to 400,000 g/mol. For example, the acrylate-based polymer may include poly(C 1-4 )alkyl methacrylate, specifically, polymethacrylate, polymethylacrylate, polymethyl methacrylate ( It may include one or more selected from PMMA), polyethylacrylate, polyethylmethacrylate, or mixtures thereof.
바람직하게 상기 고분자 코팅층은 폴리메틸메타크릴레이트를 포함할 수 있으며, 동시에 비다공질 구조를 가짐으로써 수소 가스의 선택도 향상에 있어서 유리할 수 있다. 특히, 비다공질 폴리메틸메타크릴레이트를 포함하는 고분자 코팅층의 경우, 수소 가스 센싱에 있어 탁월한 수소 가스 선택성, 고감도 및 높은 신뢰성을 가질 수 있어 바람직하다. 여기서, 비다공질이란 고분자 코팅층의 표면을 주사전자현미경으로 측정된 25㎛ X 20㎛의 사진으로 관찰 시, 육안으로 기공이 관찰되지 않는 것을 의미한다. 구체적으로, 약 10㎚ 이상의 직경을 가지는 크기의 기공이 발견되지 않는 것을 의미할 수 있다.Preferably, the polymer coating layer may include polymethyl methacrylate, and at the same time, it may be advantageous in improving the selectivity of hydrogen gas by having a non-porous structure. In particular, a polymer coating layer containing non-porous polymethyl methacrylate is desirable because it can have excellent hydrogen gas selectivity, high sensitivity, and high reliability in hydrogen gas sensing. Here, non-porous means that no pores are observed with the naked eye when observing the surface of the polymer coating layer in a 25㎛ × 20㎛ photograph measured with a scanning electron microscope. Specifically, this may mean that pores with a diameter of about 10 nm or more are not found.
본 발명의 일 실시예에 따른 CNT 기반 수소 가스 센서를 통해 본 발명의 수소 가스를 검출하는 방법은 감지부에 검출 대상 가스를 노출시킨 전 후의 전류 또는 저항을 측정하여 이루어질 수 있다. 일 예로, 수소 가스 센서의 드레인 전류(Ids(ref))를 측정하여 기준을 설정하는 단계; 상기 소스 전극 및 드레인 전극 사이에 검출 대상 가스를 도입하는 단계; 검출 대상 가스가 도입되었을 때의 드레인 전류(Ids(detect))를 측정하는 검출 단계; 및 측정된 드레인 전류값을 이용하여 검출 가스의 농도를 분석하는 단계;를 포함할 수 있으며, 검출 대상 가스의 도입 전 후 변화된(증가된) 드레인 전류값을 기준으로 검출 가스를 검출할 수 있다. 이와 달리, 검출 대상 가스의 도입 전 후에 따라 변화된 드레인 전류값이 아닌, 변화된 저항값을 측정하여 검출 가스의 검지가 수행될 수 있다. 또한 수소 가스 센서의 작동(검출) 온도는 -50 내지 300 ℃ 구체적으로 -10 내지 200 ℃ 보다 구체적으로 4 내지 100 ℃범위일 수 있고, 이와 같은 수소 가스 검출 방법은 0.1 내지 100000 ppm, 구체적으로 1 내지 80000 ppm의 농도 범위를 가지는 수소 가스를 검출할 수 있으며, 본 발명의 일 실시예에 따른 CNT 기반 수소 가스 센서는 200 ppm 이하의 저농도에서도 고감도로 수소 가스를 센싱할 수 있다.The method of detecting hydrogen gas of the present invention through a CNT-based hydrogen gas sensor according to an embodiment of the present invention can be accomplished by measuring current or resistance before and after exposing the detection target gas to the sensor. For example, setting a standard by measuring the drain current (Ids(ref)) of a hydrogen gas sensor; introducing a gas to be detected between the source electrode and the drain electrode; A detection step of measuring the drain current (Ids(detect)) when the detection target gas is introduced; and analyzing the concentration of the detection gas using the measured drain current value. The detection gas may be detected based on the drain current value changed (increased) before and after introduction of the detection target gas. In contrast, detection of the detection gas may be performed by measuring the changed resistance value rather than the drain current value changed before and after the introduction of the detection target gas. In addition, the operating (detection) temperature of the hydrogen gas sensor may be in the range of -50 to 300 ℃, specifically -10 to 200 ℃, more specifically 4 to 100 ℃, and this method of detecting hydrogen gas is 0.1 to 100000 ppm, specifically 1 It can detect hydrogen gas having a concentration range of 80,000 ppm, and the CNT-based hydrogen gas sensor according to an embodiment of the present invention can sense hydrogen gas with high sensitivity even at a low concentration of 200 ppm or less.
이하, 본 발명의 일 실시예에 따른 수소 가스 센서의 제조방법에 대해 상세히 설명한다.Hereinafter, a method for manufacturing a hydrogen gas sensor according to an embodiment of the present invention will be described in detail.
본 발명은 기판; 및 센싱부를 포함하는 수소 가스 센서로서, 상기 센싱부는 상기 기판 상에 제1 고분자로부터 형성된 고분자층; 상기 고분자층 상에 제2 고분자-CNT 복합체로부터 형성된 복합체층; 상기 복합체층 상에 형성된 금속 전극; 상기 복합체층 상에 형성된 팔라듐 나노입자층; 및 상기 팔라듐 나노입자층 상에 위치하는 고분자 코팅층;을 포함하며, 상기 제2 고분자-CNT복합체는 제2 고분자에 의해 CNT가 랩핑된 것이고, 상기 고분자층과 복합체층은 트리아졸을 통해 연결되는 것인 수소 가스 센서의 제조방법을 제공할 수 있다.The present invention relates to a substrate; and a hydrogen gas sensor including a sensing unit, wherein the sensing unit includes a polymer layer formed from a first polymer on the substrate; A composite layer formed from a second polymer-CNT composite on the polymer layer; a metal electrode formed on the composite layer; A palladium nanoparticle layer formed on the composite layer; and a polymer coating layer located on the palladium nanoparticle layer, wherein the second polymer-CNT composite is CNTs wrapped by a second polymer, and the polymer layer and the composite layer are connected through triazole. A method of manufacturing a hydrogen gas sensor can be provided.
구체적으로 본 발명의 일 실시예에 따른 수소 가스 센서의 제조방법은Specifically, the method for manufacturing a hydrogen gas sensor according to an embodiment of the present invention is
(a) 기판 상에 제1 고분자를 코팅 및 고정화하는 단계; (b) 상기 제1 고분자가 코팅된 기판을 제2 고분자-CNT 복합체 용액에 침지하는 단계; (c) 상기 제1 고분자와 제2 고분자가 클릭반응하여 고분자층 및 복합체층을 형성하는 단계; (d) 상기 복합체층 상에 소스 전극과 드레인 전극을 형성하는 단계; (e) 상기 복합체층 상에 팔라듐 나노입자층을 형성하는 단계; 및 (f) 상기 팔라듐 나노입자층 상에 고분자 코팅층을 형성하는 단계;를 포함할 수 있다.(a) coating and immobilizing the first polymer on a substrate; (b) immersing the first polymer-coated substrate in a second polymer-CNT composite solution; (c) forming a polymer layer and a composite layer through a click reaction between the first polymer and the second polymer; (d) forming a source electrode and a drain electrode on the composite layer; (e) forming a palladium nanoparticle layer on the composite layer; and (f) forming a polymer coating layer on the palladium nanoparticle layer.
본 발명의 일 실시예에 따른 수소 가스 센서의 제조방법에서, 상기 제1 고분자는 상기 화학식 2로 표시될 수 있고, 상기 제2 고분자는 상기 화학식 3으로 표시될 수 있으며, 상기 제1 고분자 및 제2 고분자에 대한 구체적인 설명은 상기 서술한 바와 동일하다.In the method of manufacturing a hydrogen gas sensor according to an embodiment of the present invention, the first polymer may be represented by Formula 2, the second polymer may be represented by Formula 3, and the first polymer and the second polymer may be represented by Formula 3. 2 The specific description of the polymer is the same as described above.
더욱 구체적으로 본 발명의 일 실시예에 따른 수소 가스 센서의 제조방법에 있어서, 상기 (a) 단계는, (a-1) 용매로 기판을 세척하는 단계; (a-2) 자기 조립 단분자층(SAM)을 코팅하는 단계; (a-3) 상기 제1 고분자를 코팅하는 단계; (a-4) UV 경화 단계; 및 (a-5) 용매로 기판에 미고정된 화합물을 세척하는 단계;를 포함할 수 있다.More specifically, in the method of manufacturing a hydrogen gas sensor according to an embodiment of the present invention, step (a) includes (a-1) washing the substrate with a solvent; (a-2) coating a self-assembled monolayer (SAM); (a-3) coating the first polymer; (a-4) UV curing step; and (a-5) washing the compound unfixed to the substrate with a solvent.
본 발명의 일 실시예에 따른 수소 가스 센서의 제조방법에서 (a-1) 용매로 기판을 세척하는 단계는 기판 표면의 불순물을 제거하기 위해 행해질 수 있고, 상기 용매는 통상적으로 사용하는 무기 용매, 유기 용매 또는 이들의 혼합물을 사용할 수 있다. 비제한적인 예로 상기 용매는 물, 질산, 황산, 과산화수소, 아세톤, IPA, THF, 벤젠, 클로로포름, 메탄올, DMF 및 톨루엔 등으로 이루어진 군에서 선택되는 하나 이상이거나 이들의 혼합물일 수 있고, 좋게는 황산과 과산화수소의 혼합물로 1차 세척하고, 물로 2차 세척한 뒤, 톨루엔으로 3차 세척하는 것일 수 있으며, 상기 황산과 과산화수소의 중량비는 1 내지 9 : 9 내지 1을 만족하는 것일 수 있지만, 이에 제한되는 것은 아니다.In the method of manufacturing a hydrogen gas sensor according to an embodiment of the present invention, the step (a-1) of washing the substrate with a solvent may be performed to remove impurities on the surface of the substrate, and the solvent may be a commonly used inorganic solvent, Organic solvents or mixtures thereof can be used. As a non-limiting example, the solvent may be one or more selected from the group consisting of water, nitric acid, sulfuric acid, hydrogen peroxide, acetone, IPA, THF, benzene, chloroform, methanol, DMF, and toluene, or a mixture thereof, preferably sulfuric acid. It may be first washed with a mixture of hydrogen peroxide, second washed with water, and third washed with toluene, and the weight ratio of sulfuric acid and hydrogen peroxide may satisfy 1 to 9:9 to 1, but is limited thereto. It doesn't work.
본 발명의 일 실시예에 따른 수소 가스 센서의 제조방법에서 (a-2) 자기 조립 단분자층을 코팅하는 단계는 스핀 코팅, 침지 코팅, 기체상 증착, 닥터 블레이드 코팅 및 커튼 코팅 방법 등으로 진행될 수 있다. 구체적으로 침지 코팅 방법일 수 있으며, 상기 침지 코팅 방법은 세척한 기판을 자기 조립 단분자층 용액에 1 내지 20시간 동안 침지하는 과정을 포함하는 것일 수 있고, 좋게는 3 내지 10 시간 동안 침지하는 것일 수 있다. In the method for manufacturing a hydrogen gas sensor according to an embodiment of the present invention, the step (a-2) of coating the self-assembled monolayer may be performed by spin coating, dip coating, gas phase deposition, doctor blade coating, and curtain coating methods. . Specifically, it may be a dip coating method, and the dip coating method may include immersing the cleaned substrate in a self-assembled monolayer solution for 1 to 20 hours, preferably for 3 to 10 hours. .
또한, 침지하는 과정이 완료된 후, 아세톤, 메탄올, 에탄올, 아이소프로필알코올(IPA), 톨루엔 및 테트라하이드로퓨란(THF) 등으로 이루어진 군에서 선택되는 하나 이상의 용매로 세척하는 것일 수 있으며, 좋게는 에탄올로 1차 세척하고 톨루엔으로 2차 세척하는 것일 수 있다. 상기 자기 조립 단분자층 코팅여부는 접촉각 측정을 통해 확인할 수 있으며, 접촉각이 40° 이상일 경우에 자기 조립 단분자층이 코팅되었다고 판단할 수 있다.In addition, after the immersion process is completed, it may be washed with one or more solvents selected from the group consisting of acetone, methanol, ethanol, isopropyl alcohol (IPA), toluene, and tetrahydrofuran (THF), preferably ethanol. This may be a first wash with toluene and a second wash with toluene. Whether the self-assembled monomolecular layer is coated can be confirmed by measuring the contact angle, and when the contact angle is 40° or more, it can be determined that the self-assembled monomolecular layer is coated.
본 발명의 일 실시예에 따른 수소 가스 센서의 제조방법에서 상기 자기 조립 단분자층 용액은 상기 화학식 12로 표시되는 화합물 및 용매를 포함할 수 있고, 상기 자기 조립 단분자층 용액에서 상기 화학식 12로 표시되는 화합물의 농도는 좋게는 0.001 내지 3 M일 수 있지만, 특별히 제한되지 않는다. 또한, 상기 화학식 12은 상기 화학식 13로 표시되는 것일 수 있으며, 상기 화학식 12 및 13에 대한 설명은 앞서 서술한 바와 동일하다.In the method for manufacturing a hydrogen gas sensor according to an embodiment of the present invention, the self-assembled monomolecular layer solution may include a compound represented by Formula 12 and a solvent, and the self-assembled monomolecular layer solution may include the compound represented by Formula 12. The concentration may preferably be 0.001 to 3 M, but is not particularly limited. Additionally, Chemical Formula 12 may be represented by Chemical Formula 13, and the descriptions of Chemical Formulas 12 and 13 are the same as those described above.
구체적으로 상기 자기 조립 단분자층 용액의 용매는 상기 화학식 12로 표시되는 화합물과 반응하지 않는 용매일 수 있고, 비제한적인 예로 상기 용매는 톨루엔, 크실렌 및 메시틸렌 등을 포함하는 방향족 탄화수소; 시클로헥산, 시클로헵탄, 시클로옥탄 및 시클로노난 등을 포함하는 시클로알칸; 헥산, 헵탄, 옥탄, 노난 및 데칸 등을 포함하는 알칸 및 메탄올, 에탄올, 1-프로판올 및 2-프로판올 등을 포함하는 알킬알콜 등에서 선택되는 하나 이상인 것일 수 있고 좋게는 톨루엔일 수 있지만, 상기 화학식 12로 표시되는 화합물과 반응하지 않는 용매라면 특별히 제한되지 않는다.Specifically, the solvent of the self-assembled monolayer solution may be a solvent that does not react with the compound represented by Formula 12. As a non-limiting example, the solvent may include aromatic hydrocarbons including toluene, xylene, and mesitylene; cycloalkanes including cyclohexane, cycloheptane, cyclooctane, and cyclononane; It may be one or more selected from alkanes including hexane, heptane, octane, nonane, and decane, and alkyl alcohols including methanol, ethanol, 1-propanol, and 2-propanol, and preferably toluene, but the formula (12) There is no particular limitation as long as the solvent does not react with the compound represented by .
본 발명의 일 실시예에 따른 수소 가스 센서의 제조방법에서 (a-3) 상기 제1 고분자를 코팅하는 단계는 상기 제1 고분자를 스핀 코팅, 딥 코팅, 드롭핑, 스프레이 코팅, 솔루션 케스팅, 바코팅, 롤코팅 및 그라비아 코팅 등에서 선택되는 하나의 방법으로 코팅하는 것일 수 있고, 좋게는 스핀 코팅, 스프레이 코팅, 솔루션 케스팅 및 롤코팅 등에서 선택되는 것일 수 있다. 또한, 상기 제1 고분자를 포함하는 코팅액을 제조하여 코팅하는 것일 수 있다. 상기 코팅액은 상기 제1 고분자 및 용매를 포함하는 것일 수 있고, 상기 용매는 상기 제1 고분자가 용해되는 것이라면 특별히 제한되지 않지만, 비제한적인 예로 에틸아세테이트(EA, Ethyl Acetate), 톨루엔, 아세톤, 1,4-다이옥세인(1,4,-Dioxane), 디메틸아세트아미드(DMA, N,N-dimethylacetamide), 디메틸포름아마이드(DMF, Dimethylformamide), 테트라하이드로퓨란(THF, Tetrahydrofuran) 및 클로로포름 등에서 선택되는 하나 이상인 것일 수 있고 좋게는 1,4-다이옥세인 또는 클로로포름일 수 있다. 상기 코팅액은 제1 고분자를 0.1 내지 40 mg/ml의 농도로 포함하는 것일 수 있지만, 이에 제한되는 것은 아니며, 원하는 코팅 두께에 따라 그 농도를 조절하는 것일 수 있다. 상기 제1 고분자가 포함된 코팅액을 제조하여 상기의 방법들 중에서 코팅액의 특성과 사용하는 용도에 따라 적절한 방법을 선택할 수 있다.In the method of manufacturing a hydrogen gas sensor according to an embodiment of the present invention, the step (a-3) of coating the first polymer includes spin coating, dip coating, dropping, spray coating, solution casting, and bar coating. It may be coated by a method selected from coating, roll coating, and gravure coating, and preferably, it may be selected from spin coating, spray coating, solution casting, and roll coating. Additionally, coating may be performed by preparing a coating solution containing the first polymer. The coating liquid may include the first polymer and a solvent, and the solvent is not particularly limited as long as the first polymer is dissolved, but non-limiting examples include ethyl acetate (EA), toluene, acetone, 1 , one selected from 1,4,-Dioxane, dimethylacetamide (DMA, N,N-dimethylacetamide), dimethylformamide (DMF), tetrahydrofuran (THF), and chloroform. It may be more than 1,4-dioxane or chloroform. The coating solution may contain the first polymer at a concentration of 0.1 to 40 mg/ml, but is not limited thereto, and the concentration may be adjusted according to the desired coating thickness. By preparing a coating solution containing the first polymer, an appropriate method can be selected among the above methods depending on the characteristics of the coating solution and the intended use.
본 발명의 일 실시예에 따른 수소 가스 센서의 제조방법의 (a-3) 단계에서 상기 제1고분자는 상기 화학식 2로 표시되는 것일 수 있고, 구체적으로 상기 화학식 2는 상기 화학식 4로 표시되는 것일 수 있다. 구체적으로 상기 화학식 4는 상기 화학식 6으로 표시되는 것일 수 있고, 상기 화학식 6은 상기 화학식 7로 표시되는 것일 수 있다. 상기 화학식 2, 4, 6 및 7에 대한 설명은 앞서 서술한 바와 동일하다.In step (a-3) of the method for manufacturing a hydrogen gas sensor according to an embodiment of the present invention, the first polymer may be represented by the formula 2, and specifically, the formula 2 is represented by the formula 4. You can. Specifically, Formula 4 may be represented by Formula 6, and Formula 6 may be represented by Formula 7. The description of Chemical Formulas 2, 4, 6, and 7 is the same as previously described.
본 발명의 일 실시예에 따른 수소 가스 센서의 제조방법에서 (a-4) UV 경화 단계는 상기 화학식 12로 표시되는 화합물과 제1 고분자를 가교시켜 기판 상에 제1 고분자로부터 형성된 고분자층을 고정화하기 위해 수행될 수 있으며, 이를 통해 기판층 상에 CNT 필름을 고밀도로 균일하게 코팅하여 물과 유기 용매에 안정적이고 소자간 재현성이 우수한 수소 가스 센서를 제조할 수 있다. 상기 UV 경화시간은 0.1 내지 30 분 동안 이루어지는 것일 수 있지만, 이에 제한되는 것은 아니다. 예를 들어 상기 UV 경화는 365nm의 UV 램프를 사용하여 수행될 수 있으며, 상기 UV 램프는 세기가 500 내지 1500 mJ/㎠일 수 있지만, 이에 제한되지 않는다.In the method for manufacturing a hydrogen gas sensor according to an embodiment of the present invention, the UV curing step (a-4) involves crosslinking the compound represented by Formula 12 and the first polymer to immobilize the polymer layer formed from the first polymer on the substrate. This can be performed to manufacture a hydrogen gas sensor that is stable in water and organic solvents and has excellent inter-device reproducibility by uniformly coating the CNT film on the substrate layer at high density. The UV curing time may be from 0.1 to 30 minutes, but is not limited thereto. For example, the UV curing may be performed using a 365 nm UV lamp, and the UV lamp may have an intensity of 500 to 1500 mJ/cm2, but is not limited thereto.
본 발명의 일 실시예에 따른 수소 가스 센서의 제조방법에서 상기 UV 경화 단계 후, 미반응된 화합물을 제거하기 위하여 용매로 기판층을 세척할 수 있다. 상기 용매는 통상적으로 사용되는 용매를 사용할 수 있으며, 상기 미반응된 화합물이 용해되는 용매라면 특별히 제한되지 않지만, 비제한적인 예로 톨루엔, 아세톤, 1,4-다이옥세인, EA, DMA, DMF, THF 및 클로로포름 등에서 선택되는 하나 이상의 용매를 사용할 수 있다.In the method for manufacturing a hydrogen gas sensor according to an embodiment of the present invention, after the UV curing step, the substrate layer may be washed with a solvent to remove unreacted compounds. The solvent may be a commonly used solvent, and is not particularly limited as long as it is a solvent in which the unreacted compound is dissolved. Non-limiting examples include toluene, acetone, 1,4-dioxane, EA, DMA, DMF, and THF. and one or more solvents selected from chloroform, etc. may be used.
또한, 본 발명의 일 실시예에 따른 수소 가스 센서의 제조방법에서 상기 (a) 단계는 (a'-1) 용매로 기판을 세척하는 단계; (a'-2) 상기 제1 고분자를 코팅하는 단계; (a'-3) 열처리 단계; 및 (a'-4) 용매로 기판에 미고정된 화합물을 세척하는 단계;를 포함할 수 있다.In addition, in the method of manufacturing a hydrogen gas sensor according to an embodiment of the present invention, step (a) includes (a'-1) washing the substrate with a solvent; (a'-2) coating the first polymer; (a'-3) heat treatment step; and (a'-4) washing the unfixed compound on the substrate with a solvent.
본 발명의 일 실시예에 따른 수소 가스 센서의 제조방법에서 (a'-1) 용매로 기판을 세척하는 단계는 기판에 남아있는 미반응된 유, 무기 물질을 제거하기 위해 행해지며, 상기 용매는 통상적으로 사용하는 무기 용매, 유기 용매 또는 이들의 혼합물을 사용할 수 있다. 구체적인 화합물의 예는 (a-1) 용매로 기판을 세척하는 단계에서 사용한 용매와 동일하거나 다를 수 있다.In the method of manufacturing a hydrogen gas sensor according to an embodiment of the present invention, the step (a'-1) of washing the substrate with a solvent is performed to remove unreacted organic and inorganic substances remaining on the substrate, and the solvent is Commonly used inorganic solvents, organic solvents, or mixtures thereof can be used. Examples of specific compounds may be the same as or different from the solvent used in the step of washing the substrate with solvent (a-1).
본 발명의 일 실시예에 따른 수소 가스 센서의 제조방법의 (a'-2) 상기 제1 고분자를 코팅하는 단계는 상기 (a-3) 상기 제1 고분자를 코팅하는 단계와 동일하게 진행할 수 있다.In the method for manufacturing a hydrogen gas sensor according to an embodiment of the present invention, step (a'-2) of coating the first polymer may be performed in the same manner as step (a-3) of coating the first polymer. .
본 발명의 일 실시예에 따른 수소 가스 센서의 제조방법의 (a'-2) 단계에서 상기 제1 고분자는 상기 화학식 2로 표시되는 것일 수 있고, 구체적으로 사이 제1고분자 또는 상기 화학식 2는 상기 화학식 5로 표시되는 것일 수 있다. 구체적으로 상기 제1고분자 또는 화학식 5는 상기 화학식 8로 표시되는 것일 수 있고 더욱 구체적으로 상기 제1고분자 또는 화학식 8은 상기 화학식 9로 표시되는 것일 수 있다. 상기 화학식 2, 5, 8 및 9의 설명은 앞서 서술한 바와 동일하다.In step (a'-2) of the method for manufacturing a hydrogen gas sensor according to an embodiment of the present invention, the first polymer may be represented by the formula 2, and specifically, the first polymer or the formula 2 is It may be represented by Chemical Formula 5. Specifically, the first polymer or Formula 5 may be represented by Formula 8, and more specifically, the first polymer or Formula 8 may be represented by Formula 9. The description of Chemical Formulas 2, 5, 8, and 9 is the same as previously described.
본 발명의 일 실시예에 따른 수소 가스 센서의 제조방법에서 (a'-3) 열처리 단계는 상기 기판과 제1 고분자가 화학적으로 결합되어 기판 상에 제1 고분자로부터 형성된 고분자층이 형성되는 것일 수 있다. 좋게는 열처리 온도는 100 내지 150℃이고, 열처리 시간은 1 시간 이상일 수 있지만, 상기 고분자층의 두께 등에 따라 상기 온도 및 시간이 조절될 수 있으며, 본 발명이 목적으로 하는 물성을 저해하지 않는다면 상기 온도 및 시간의 범위는 특별히 제한되지 않는다.In the method of manufacturing a hydrogen gas sensor according to an embodiment of the present invention, the heat treatment step (a'-3) may be a process in which the substrate and the first polymer are chemically bonded to form a polymer layer formed from the first polymer on the substrate. there is. Preferably, the heat treatment temperature is 100 to 150°C, and the heat treatment time may be 1 hour or more, but the temperature and time may be adjusted depending on the thickness of the polymer layer, etc., and if the temperature does not impair the physical properties targeted by the present invention, and the time range is not particularly limited.
상기 열처리 단계 후, 미반응된 화합물을 제거하기 위하여 용매로 기판층을 세척할 수 있다. 상기 용매는 통상적으로 사용되는 용매를 사용할 수 있으며, 상기 미반응된 화합물이 용해되는 용매라면 특별히 제한되지 않지만, 비제한적인 예로 톨루엔, 아세톤, 1,4-다이옥세인, EA, DMA, DMF, THF 및 클로로포름 등에서 선택되는 하나 이상의 용매를 사용할 수 있다.After the heat treatment step, the substrate layer may be washed with a solvent to remove unreacted compounds. The solvent may be a commonly used solvent, and is not particularly limited as long as it is a solvent in which the unreacted compound is dissolved. Non-limiting examples include toluene, acetone, 1,4-dioxane, EA, DMA, DMF, and THF. and one or more solvents selected from chloroform, etc. may be used.
본 발명의 일 실시예에 따른 제2 고분자-CNT 복합체 용액은 제2 고분자, CNT 및 용매를 포함하는 것일 수 있다. 구체적으로 상기 제2 고분자-CNT 복합체 용액은 용매에 CNT를 랩핑한 제2 고분자가 용해된 용액일 수 있다.The second polymer-CNT composite solution according to an embodiment of the present invention may include a second polymer, CNTs, and a solvent. Specifically, the second polymer-CNT composite solution may be a solution in which a second polymer obtained by wrapping CNTs is dissolved in a solvent.
상기 CNT는 단일벽 탄소나노튜브(SWCNT, Single-walled Carbon Nanotube), 이중벽 탄소나노튜브 (double-walled Carbon Nanotube), 다중벽 탄소나노튜브(Multi-walled Carbon Nanotube) 및 다발형 탄소나노튜브(Rope Carbon Nanotube)로 이루어진 군으로부터 선택되는 하나 이상인 것일 수 있고, 또는 단일벽 탄소나노튜브(SWCNT)일 수 있다. 좋게는 도체성 단일벽 탄소나노튜브(m-SWCNT), 반도체성 단일벽 탄소나노튜브(sc-SWCNT) 또는 이들의 혼합물일 수 있으며, 반도체성 단일벽 탄소나노튜브(sc-SWCNT)를 사용할 경우, 전기적 성능이 더욱 우수한 반도체 소자 및 수소 가스 센서를 제조할 수 있어 바람직할 수 있다. 해당 응용 분야에 따라 적합한 물성의 CNT를 선택하여 베이스 기판상에 CNT 필름을 형성할 수 있다. 또한, 상기 CNT는 외경이 0.1nm 이상, 좋게는 0.1 내지 10 nm, 더욱 좋게는 0.1 내지 5 nm일 수 있지만, 제2 고분자-CNT 복합체 용액 제조시 분산성에 영향을 주지 않는다면 특별히 제한되지 않는다. The CNTs include single-walled carbon nanotubes (SWCNTs), double-walled carbon nanotubes, multi-walled carbon nanotubes (Multi-walled carbon nanotubes), and bundled carbon nanotubes (Rope). It may be one or more selected from the group consisting of carbon nanotubes, or it may be single-walled carbon nanotubes (SWCNTs). Preferably, it may be conductive single-walled carbon nanotubes (m-SWCNT), semiconducting single-walled carbon nanotubes (sc-SWCNT), or a mixture thereof. When semiconducting single-walled carbon nanotubes (sc-SWCNT) are used, , it may be desirable to manufacture semiconductor devices and hydrogen gas sensors with better electrical performance. Depending on the application field, CNTs with appropriate properties can be selected to form a CNT film on the base substrate. In addition, the CNT may have an outer diameter of 0.1 nm or more, preferably 0.1 to 10 nm, and more preferably 0.1 to 5 nm, but is not particularly limited as long as it does not affect dispersibility when preparing the second polymer-CNT composite solution.
상기 제2 고분자-CNT 복합체 용액의 용매는 본 발명의 제2 고분자가 용해될 수 있다면 특별히 제한되지 않으며, 좋게는 비극성 용매를 사용할 수 있다. 상기 비극성 용매의 비제한적인 예로는 벤젠, 톨루엔 및 크실렌 등의 방향족 탄화수소계 용매 및 헥산, 헵탄, 옥탄, 시클로헥산 및 메틸시클로헥산(MCH) 등의 지방족 탄화수소계 용매를 들 수 있고, 구체적으로는 톨루엔 또는 메틸시클로헥산을 사용할 수 있다. 클로로포름 또는 테트라하이드로퓨란(THF) 등과 같은 극성 용매도 사용할 수 있지만, 이에 제한되는 것은 아니다. The solvent of the second polymer-CNT composite solution is not particularly limited as long as the second polymer of the present invention can be dissolved, and preferably a non-polar solvent can be used. Non-limiting examples of the non-polar solvent include aromatic hydrocarbon solvents such as benzene, toluene, and xylene, and aliphatic hydrocarbon solvents such as hexane, heptane, octane, cyclohexane, and methylcyclohexane (MCH). Specifically, Toluene or methylcyclohexane can be used. Polar solvents such as chloroform or tetrahydrofuran (THF) may also be used, but are not limited thereto.
본 발명의 일 실시예에 따른 제2 고분자-CNT 복합체 용액의 제조방법은 제2 고분자를 용매에 용해시킨 후, CNT를 분산시키는 과정을 포함할 수 있다. 좋게는 상기 제2 고분자는 용매에 대하여 0.1 내지 30 mg/ml, 더욱 좋게는 0.1 내지 20 mg/ml의 농도로 포함될 수 있지만, 이에 제한되지 않으며, 상기 CNT는 0.05 내지 5 mg/ml의 농도일 수 있다. 상기 제2 고분자는 용매에 완전히 용해시키는 것이 바람직하며, 50 내지 100 ℃의 온도범위에서 용해시키는 것일 수 있다. 이후 원심분리를 통해 탄소나노튜브를 랩핑한 제2 고분자(제2 고분자-CNT복합체)를 분리하고, 여과과정 및 재분산 과정을 거쳐 제조하는 것일 수 있지만, 이에 제한되는 것은 아니다. 상기 재분산 과정에서, 재분산 과정 후의 제2 고분자-CNT 복합체 용액에서의 제2 고분자-CNT복합체의 농도는 0.001 내지 10 mg/ml일 수 있으며, 상기 농도를 조절하여 CNT 필름의 밀도를 조절하는 것일 수 있지만 이에 제한되는 것은 아니다. 상기 재분산 과정에서 사용되는 용매는 상기 서술된 제2 고분자-CNT복합체 용액의 용매의 구체적인 화합물의 예와 동일하거나 다를 수 있으며, 상기 분산 및 재분산 과정은 초음파 처리를 통하여 진행되는 것일 수 있지만 이에 제한되는 것은 아니다. 상기 범위를 만족하는 제2 고분자-CNT복합체 용액으로 기판을 제조할 경우 기판층상에 적절한 밀도의 CNT 필름이 형성될 수 있고, 본 발명이 목적으로 하는 고안정성 및 고밀도의 CNT 필름을 제조할 수 있어 더욱 좋으며, 상기 제조된 제2 고분자-CNT복합체 용액은 상기 (b) 상기 코팅된 기판을 제2 고분자-CNT복합체 용액에 침지하는 단계에서 사용할 수 있다.The method for producing a second polymer-CNT composite solution according to an embodiment of the present invention may include dissolving the second polymer in a solvent and then dispersing the CNTs. Preferably, the second polymer may be included at a concentration of 0.1 to 30 mg/ml, more preferably 0.1 to 20 mg/ml relative to the solvent, but is not limited thereto, and the CNT may be included at a concentration of 0.05 to 5 mg/ml. You can. The second polymer is preferably completely dissolved in the solvent, and may be dissolved in a temperature range of 50 to 100°C. Afterwards, the second polymer (second polymer-CNT composite) wrapping the carbon nanotubes may be separated through centrifugation, and then manufactured through a filtration process and redispersion process, but is not limited to this. In the redispersion process, the concentration of the second polymer-CNT complex in the second polymer-CNT complex solution after the redispersion process may be 0.001 to 10 mg/ml, and the density of the CNT film is adjusted by adjusting the concentration. It may be, but is not limited to this. The solvent used in the redispersion process may be the same as or different from the specific example of the solvent of the second polymer-CNT composite solution described above, and the dispersion and redispersion process may be carried out through ultrasonic treatment. It is not limited. When a substrate is manufactured with a second polymer-CNT composite solution that satisfies the above range, a CNT film of appropriate density can be formed on the substrate layer, and the high-stability and high-density CNT film targeted by the present invention can be manufactured. Even better, the prepared second polymer-CNT composite solution can be used in the step (b) of immersing the coated substrate in the second polymer-CNT composite solution.
구체적으로 상기 (b) 단계에서 상기 제2 고분자는 상기 화학식 10의 반복단위(n) 및 상기 화학식 11의 반복단위(m)를 동시에 포함하는 공중합체일 수 있으며, 해당 공중합체에 대한 설명은 앞서 서술한 바와 동일하다.Specifically, in step (b), the second polymer may be a copolymer simultaneously containing the repeating unit (n) of Formula 10 and the repeating unit (m) of Formula 11, and the description of the copolymer was given above. It is the same as described.
본 발명의 일 실시예에 따른 수소 가스 센서의 제조방법에서 (c) 상기 제1 고분자와 제2 고분자가 클릭반응하여 고분자층 및 복합체층을 형성하는 단계는 구리촉매 하에 가열 혹은 초음파 처리 과정을 통해 진행되는 것일 수 있다. 상기 (c) 단계를 통하여 상기 제1 고분자로부터 형성되는 고분자층 및 제2 고분자-CNT 복합체로부터 형성된 복합체층이 형성될 수 있고, 상기 고분자층 및 복합체층은 트리아졸 고리를 통해 연결되어 있을 수 있다. 구체적으로 질소분위기 하에서 50 내지 60 ℃의 온도에서 90 내지 120 W의 세기로 초음파 처리하는 것일 수 있고, 상기 초음파 처리 시간은 1분 이상, 좋게는 2분 내지 6시간, 더욱 좋게는 5분 내지 2시간 동안 이루어 지는 것일 수 있지만, 상기 온도, 세기 및 시간은 본 발명에서 목적으로 하는 물성을 저해하지 않는다면 특별히 제한되지 않는다. 또한, 상기 범위가 아니더라도 원하는 CNT 필름 밀도를 구현하기 위하여 다양하게 시간을 조절하여 반응을 진행할 수 있다. 상기 CNT 필름의 밀도는 라만 분광분석(Raman spectroscopy)하거나 주사 전자 현미경(SEM) 또는 광학현미경을 통해 코팅층 표면을 관찰함으로써 확인할 수 있다. In the method of manufacturing a hydrogen gas sensor according to an embodiment of the present invention, the step (c) of forming a polymer layer and a composite layer by clicking reaction of the first polymer and the second polymer is performed through heating or ultrasonic treatment under a copper catalyst. It may be something that is going on. Through step (c), a polymer layer formed from the first polymer and a composite layer formed from the second polymer-CNT composite may be formed, and the polymer layer and the composite layer may be connected through a triazole ring. . Specifically, ultrasonic treatment may be performed at an intensity of 90 to 120 W at a temperature of 50 to 60° C. under a nitrogen atmosphere, and the ultrasonic treatment time is 1 minute or more, preferably 2 minutes to 6 hours, more preferably 5 minutes to 2 hours. Although this may be done over a period of time, the temperature, intensity and time are not particularly limited as long as they do not impair the physical properties targeted by the present invention. In addition, even if it is not within the above range, the reaction can be carried out by variously adjusting the time to achieve the desired CNT film density. The density of the CNT film can be confirmed by observing the surface of the coating layer through Raman spectroscopy, scanning electron microscopy (SEM), or optical microscopy.
또한, 상기 제1 고분자와 제2 고분자가 클릭반응하는 과정은 상기 반응식 1로 표시될 수 있고, 구체적으로 상기 반응식 2로 표시될 수 있다. 상기 반응식 1 및 2에 대한 설명은 상기 서술한 바와 동일하다.Additionally, the process of click reaction between the first polymer and the second polymer can be represented by Scheme 1, and specifically, by Scheme 2. The description of Schemes 1 and 2 is the same as described above.
본 발명의 일 실시예에 따르면, 상기 클릭반응을 통해 수소 가스 센서를 제조할 경우, 빠른 시간에 고밀도의 CNT 필름을 균일하게 코팅할 수 있어, 작업이 용이하고 효율적일 뿐만이 아니라, CNT 필름이 화학적 결합을 통해 기판층에 코팅됨으로써 접착력이 우수하고 물과 유기 용매에 대한 안정성이 확보되어 세척 후에도 CNT 필름이 박리되지 않아서 좋다, 또한, 상기 클릭반응을 이용할 경우, CNT 필름이 균일하게 코팅되어 신뢰성을 용이하게 확보할 수 있고, 저농도의 수소 가스 농도에서도 탁월한 민감도 및 선택도를 갖는 수소 가스 센서를 제조할 수 있어 좋다.According to one embodiment of the present invention, when manufacturing a hydrogen gas sensor through the click reaction, a high-density CNT film can be uniformly coated in a short time, so not only is the work easy and efficient, but the CNT film is chemically bonded. By being coated on the substrate layer, it has excellent adhesion and stability against water and organic solvents, so the CNT film does not peel off even after washing. In addition, when using the click reaction, the CNT film is uniformly coated, improving reliability. It is good to be able to manufacture a hydrogen gas sensor with excellent sensitivity and selectivity even at low hydrogen gas concentrations.
본 발명의 일 실시예에 따른 수소 가스 센서의 제조방법에서 (d) 단계 전, 반응 종결 후, 유기 용매로 미반응 화합물을 세척하는 단계를 수행할 수 있고, 이는 반응에서 사용된 촉매, 단량체 및 고분자와 같은 미반응 화합물을 제거하여 고순도의 CNT 필름을 제조하기 위해 행해지는 것일 수 있다. 상기 유기 용매는 통상적으로 사용하는 용매라면 특별한 제한없이 사용할 수 있으며, 비제한적인 예로 톨루엔, 아세톤, 1,4-다이옥세인, EA, DMA, DMF, THF 및 클로로포름 등에서 선택되는 하나 이상의 용매를 사용할 수 있다. 상기 세척 과정은 초음파 세척을 통해 진행될 수 있으며, 초음파 세기는 170 내지 230W에서 강하게 진행할 수 있다. 본 발명에 따른 CNT 기반 수소 가스 센서는 다회의 초음파 세척 과정 후에도 고밀도의 CNT 필름을 유지하여 물 및 유기 용매에 대한 안정성을 확보할 수 있어 매우 좋다.In the method for manufacturing a hydrogen gas sensor according to an embodiment of the present invention, before step (d) and after completion of the reaction, a step of washing unreacted compounds with an organic solvent may be performed, which may include removing the catalyst, monomer and This may be done to manufacture a high-purity CNT film by removing unreacted compounds such as polymers. The organic solvent may be any commonly used solvent without particular limitation, and non-limiting examples include one or more solvents selected from toluene, acetone, 1,4-dioxane, EA, DMA, DMF, THF, and chloroform. there is. The cleaning process may be performed through ultrasonic cleaning, and the ultrasonic intensity may be strong at 170 to 230 W. The CNT-based hydrogen gas sensor according to the present invention is very good because it can maintain a high-density CNT film even after multiple ultrasonic cleaning processes and ensure stability against water and organic solvents.
본 발명의 일 실시예에 따른 수소 가스 센서의 제조방법에서 (d) 상기 복합체층 상에 소스 전극과 드레인 전극을 형성하는 단계는 공지되거나 통상적으로 전극을 형성하는 방법을 이용하여 수행될 수 있다. 예를 들면, 상기 제2 고분자-CNT 복합체로부터 형성된 복합체층을 100 내지 200℃에서 10 내지 60분 동안 열처리한 뒤, 쉐도우 마스크(Shadow Mask)를 이용하여 소스 전극과 드레인 전극을 증착하는 방법을 사용할 수 있다. 상기 쉐도우 마스크는 메탈 쉐도우 마스크, PDMS 또는 PMMA와 같은 고분자 쉐도우 마스크 등을 사용할 수 있다. 상기 소스 전극 및 드레인 전극에 대한 구체적은 설명 및 화합물의 예시는 상술한 바와 동일하므로 생략한다.In the method of manufacturing a hydrogen gas sensor according to an embodiment of the present invention, the step (d) of forming a source electrode and a drain electrode on the composite layer may be performed using a known or conventional electrode forming method. For example, a method of heat treating the composite layer formed from the second polymer-CNT composite at 100 to 200° C. for 10 to 60 minutes and then depositing the source electrode and drain electrode using a shadow mask may be used. You can. The shadow mask may be a metal shadow mask, a polymer shadow mask such as PDMS or PMMA, etc. Detailed descriptions of the source electrode and drain electrode and examples of compounds are the same as described above and are therefore omitted.
본 발명의 일 실시예에 따른 수소 가스 센서의 제조방법에서 상기 (e) 단계는 상기 소스 전극과 드레인 전극이 이격된 영역에 팔라듐 나노입자층을 형성하는 단계로서, 팔라듐 나노입자의 물리적 또는 화학적 증착, 일 예로 스퍼터링법, 열증착법, 전자빔증착법, 전기도금법 및 금속 수용액을 샘플 표면에 뿌리는 형식 등을 통해 수행될 수 있고, 구체적으로 팔라듐 나노입자의 녹는점보다 낮은 온도 조건에서 열증착하여 수행되는 것일 수 있다. 상기 온도 조건은 80 내지 500℃, 좋게는 100 내지 400℃일 수 있다.In the method of manufacturing a hydrogen gas sensor according to an embodiment of the present invention, step (e) is a step of forming a palladium nanoparticle layer in an area where the source electrode and the drain electrode are spaced apart, including physical or chemical vapor deposition of palladium nanoparticles, For example, it can be performed through sputtering, thermal evaporation, electron beam evaporation, electroplating, and spraying an aqueous metal solution on the sample surface. Specifically, it is performed by thermal evaporation at a temperature lower than the melting point of palladium nanoparticles. You can. The temperature conditions may be 80 to 500°C, preferably 100 to 400°C.
본 발명의 일 실시예에 따른 수소 가스 센서의 제조방법에서 상기 (f) 단계는 고분자를 용매에 용해시킨 뒤, 상기 팔라듐 나노입자층 상에 코팅 및 건조하여 고분자 코팅층을 형성하는 단계로서, 상기 코팅방법은 통상적으로 사용되거나 공지된 방법에 따라 수행될 수 있고, 일 예로 스핀코팅, 스프레이코팅, 나이프코팅 및 롤 코팅 등에서 선택되는 어느 하나의 방법에 따라 수행될 수 있지만, 이에 제한되지 않는다. 예를 들면, 상기 고분자로 폴리메틸메타크릴레이트(PMMA)를 사용할 경우 용매에 상기 고분자를 용해시킨 용액을 코팅한 후, 용매를 증발시킴으로써 건조하여 고분자 코팅층을 형성할 수 있다. 또한 상기 건조는 용매를 증발시킬 수 있는 온도 조건이라면 한정되지 않으나, 100 내지 300 ℃ 구체적으로 120 내지 200℃의 온도에서 수행될 수 있다. 상기 고분자 코팅층에 대한 구체적인 설명 및 화합물의 예시는 상술한 바와 동일하므로 생략한다.In the method for manufacturing a hydrogen gas sensor according to an embodiment of the present invention, step (f) is a step of dissolving a polymer in a solvent and then coating and drying the palladium nanoparticle layer to form a polymer coating layer, the coating method Can be performed according to a commonly used or known method, for example, may be performed according to any one method selected from spin coating, spray coating, knife coating, and roll coating, but is not limited thereto. For example, when polymethyl methacrylate (PMMA) is used as the polymer, a polymer coating layer can be formed by coating a solution in which the polymer is dissolved in a solvent and then drying the solution by evaporating the solvent. Additionally, the drying is not limited as long as the temperature conditions are capable of evaporating the solvent, but may be performed at a temperature of 100 to 300°C, specifically 120 to 200°C. Detailed descriptions of the polymer coating layer and examples of compounds are the same as described above, so they are omitted.
또한, 상기 고분자를 용해시킨 용액은 상기 고분자를 0.1 내지 50 ㎎/㎖, 좋게는 1 내지 10 ㎎/㎖, 더 좋게는 2 내지 8 ㎎/㎖의 농도로 포함할 수 있지만, 이에 제한되지 않으며, 목적으로 하는 고분자 코팅층의 두께에 따라서 상기 농도는 용이하게 조절될 수 있다. 상기 용매는 할로겐화 알콕시 벤젠 화합물일 수 있으며, 상기 할로겐은 염소, 플루오르 또는 브롬일 수 있다. 일 예로, 할로겐화 알콕시 벤젠 화합물은 염소화(C1-4)알콕시 벤젠 화합물일 수 있으며, 구체적으로 아니솔(Anisole)일 수 있다. 이와 같은 용매를 통해 제조되는 고분자 코팅층은 비다공질 표면을 가질 수 있고, 보다 향상된 수소 가스의 선택성을 효과적으로 구현할 수 있다.In addition, the solution in which the polymer is dissolved may contain the polymer at a concentration of 0.1 to 50 mg/mL, preferably 1 to 10 mg/mL, and more preferably 2 to 8 mg/mL, but is not limited thereto. The concentration can be easily adjusted depending on the thickness of the target polymer coating layer. The solvent may be a halogenated alkoxy benzene compound, and the halogen may be chlorine, fluorine, or bromine. As an example, the halogenated alkoxy benzene compound may be a chlorinated (C 1-4 ) alkoxy benzene compound, and specifically may be anisole. The polymer coating layer produced using such a solvent can have a non-porous surface and can effectively achieve improved selectivity for hydrogen gas.
본 발명의 일 실시예에 따른 하기 화학식 6으로 표시되는 아크릴레이트 공중합체를 제공할 수 있다.According to an embodiment of the present invention, an acrylate copolymer represented by the following formula (6) can be provided.
[화학식 6][Formula 6]
상기 화학식 6에 대한 설명은 상기 서술한 바와 동일하며, 상기 화학식 6은 하기 화합물로 표시될 수 있지만, 이에 제한되는 것은 아니다.The description of Formula 6 is the same as described above, and Formula 6 may be represented by the following compound, but is not limited thereto.
상기 화합물의 a 및 b는 상기 화학식 6에서 서술한 바와 동일하다.a and b of the above compound are the same as described in Formula 6 above.
본 발명의 일 실시예에 따른 하기 화학식 8로 표시되는 아크릴레이트 공중합체를 제공할 수 있다.According to an embodiment of the present invention, an acrylate copolymer represented by the following formula (8) can be provided.
[화학식 8][Formula 8]
상기 화학식 8에 대한 설명은 상기 서술한 바와 동일하고, 상기 화학식 8은 하기 화합물로 표시될 수 있지만 이에 제한되는 것은 아니다.The description of Formula 8 is the same as described above, and Formula 8 may be represented by the following compound, but is not limited thereto.
상기 화합물의 a, b 및 c는 상기 화학식 8에서 서술한 바와 동일하다.a, b and c of the above compound are the same as described in Formula 8 above.
또한, 본 발명의 일 실시예에 따른 화학식 6 및 8에서, 상기 Ar은 두 개의 동일한 R1이 연결된 것일 수 있고, 두 개의 각각 다른 R1이 연결된 것일 수 있다. 상기 R1은 FG1을 z개 포함하는 것일 수 있고, 상기 Ar에 두 개의 각각 다른 R1이 연결된 것일 경우 각각 다른 R1의 z는 독립적으로 1 내지 7의 정수일 수 있다. Additionally, in Formulas 6 and 8 according to an embodiment of the present invention, Ar may be two identical R 1s connected to each other, or two different R 1s may be connected to each other. The R 1 may include z numbers of FG 1 , and when two different R 1s are connected to the Ar, z of each different R 1 may independently be an integer of 1 to 7.
이하 실시예를 통해 본 발명에 따른 클릭반응을 이용한 수소 가스 센서 및 이의 제조방법에 대하여 더욱 상세히 설명한다. 다만 하기 실시예는 본 발명을 상세히 설명하기 위한 하나의 참조일 뿐 본 발명이 이에 한정되는 것은 아니며, 여러 형태로 구현될 수 있다. 또한 달리 정의되지 않은 한, 모든 기술적 용어 및 과학적 용어는 본 발명이 속하는 당업자 중 하나에 의해 일반적으로 이해되는 의미와 동일한 의미를 갖는다. 또한, 본 발명에서 설명에 사용되는 용어는 단지 특정 실시예를 효과적으로 기술하기 위함이고, 본 발명을 제한하는 것으로 의도되지 않는다.The hydrogen gas sensor using the click reaction and its manufacturing method according to the present invention will be described in more detail through examples below. However, the following examples are only a reference for explaining the present invention in detail, and the present invention is not limited thereto, and may be implemented in various forms. Additionally, unless otherwise defined, all technical and scientific terms have the same meaning as commonly understood by one of ordinary skill in the art to which the present invention pertains. Additionally, the terms used in the description in the present invention are only intended to effectively describe specific embodiments and are not intended to limit the present invention.
또한, 하기 실시예 및 비교예에서 제조사가 기재되지 않은 물질은 Sigma-Aldrich에서 구입하여 사용하였다. Additionally, in the following Examples and Comparative Examples, materials whose manufacturers were not described were purchased from Sigma-Aldrich and used.
[제조예 1] 화합물 DPAP(Dipropargyl-5-acryloyloxyisophthalate)의 제조[Preparation Example 1] Preparation of compound DPAP (Dipropargyl-5-acryloyloxyisophthalate)
-APA(5-Acryloyloxyisophthalic acid)의 제조-Manufacture of APA (5-Acryloyloxyisophthalic acid)
5-하이드록시 이소프탈산(5-HPA, 5-Hydroxyisophthalic acid) 5.5 mmol(1 g)을 10mL의 2M 수산화 나트륨(NaOH)용액으로 채워진 3구 플라스크에 첨가하고 10분 동안 질소 퍼징시켰다. 상기 혼합물을 0 내지 5 ℃로 냉각 및 유지시키며 아크릴로일 클로라이드(Acryloyl chloride) 5.8 mmol을 1 시간 동안 매우 천천히 드로핑하여 첨가한 뒤, 실온에서 1 시간 동안 교반시켰다. 이에 HCl을 첨가하여 생성물 5-아크릴로일옥시이소프탈산(APA, 5-Acryloyloxyisophthalic acid)를 침전시켰다. 침전된 생성물을 여과 및 세척하고 알코올로 재결정한 뒤, 50 ℃에서 24시간 동안 진공 상태에서 건조하여 APA를 수득하였다. (수율 55 %)5.5 mmol (1 g) of 5-HPA (5-Hydroxyisophthalic acid) was added to a three-necked flask filled with 10 mL of 2M sodium hydroxide (NaOH) solution and purged with nitrogen for 10 minutes. The mixture was cooled and maintained at 0 to 5 °C, and 5.8 mmol of acryloyl chloride was added by dropping very slowly over 1 hour, and then stirred at room temperature for 1 hour. HCl was added to precipitate the product 5-Acryloyloxyisophthalic acid (APA). The precipitated product was filtered, washed, recrystallized with alcohol, and dried in vacuum at 50°C for 24 hours to obtain APA. (55% yield)
APA의 1H NMR 스펙트럼 1H NMR spectrum of APA
1H NMR (300 MHz, DMSO-d6) δ (ppm): 13.54 (s, 2H), 8.37 (t, J = 1.5 Hz, 1H), 7.94 (d, J = 1.5 Hz, 2H), 6.59 (dd, J = 17.2, 1.5 Hz, 1H), 6.43 (dd, J = 17.2, 10.2 Hz, 1H), 6.19 (dd, J = 10.2, 1.5 Hz, 1H) 1 H NMR (300 MHz, DMSO-d 6 ) δ (ppm): 13.54 (s, 2H), 8.37 (t, J = 1.5 Hz, 1H), 7.94 (d, J = 1.5 Hz, 2H), 6.59 ( dd, J = 17.2, 1.5 Hz, 1H), 6.43 (dd, J = 17.2, 10.2 Hz, 1H), 6.19 (dd, J = 10.2, 1.5 Hz, 1H)
- DPAP(Dipropargyl-5-acryloyloxyisophthalate)의 제조- Manufacture of DPAP (Dipropargyl-5-acryloyloxyisophthalate)
플라스크에 테트라하이드로퓨란(THF) 40 mL와 상기 APA 16.34 mmol(3.86 g)을 준비하였다. 여기에 프로파길 알코올(Propargyl alcohol) 163.4 mmol(8.2g)와 APA 100mol에 대하여 4-디메틸 아미노피리딘(DMAP, 4-dimethylaminopyridine) 15 mol%를 첨가하였다. 상기 혼합물을 0 내지 5 ℃로 냉각시키고, 질소 분위기 하에서 1시간 동안 교반시켰다. 여기에 THF 30 mL에 N,N'-디사이클로헥실카보디이미드(DCC, N,N'-Dicyclohexylcarbodiimide) 24.51 mmol(5 g)을 용해시킨 용액을 천천히 드로핑하고, 천천히 온도를 실온으로 올린 후 20시간 동안 더 교반시킨 뒤, 침전물을 여과해주었다. 다음 클로로포름(Chloroform)에 용해시키고 다시 여과하여 잔류 우레아(요소)를 제거하였다. 이를 10 % 중탄산 수용액(aqueous bicarbonate solution)으로 3 회 세척 및 정제하여 백색 분말의 표제 화합물 DPAP을 수득하였다. (수율 29 %)40 mL of tetrahydrofuran (THF) and 16.34 mmol (3.86 g) of the APA were prepared in a flask. Here, 163.4 mmol (8.2 g) of Propargyl alcohol and 15 mol% of 4-dimethylaminopyridine (DMAP) were added to 100 mol of APA. The mixture was cooled to 0 to 5 °C and stirred for 1 hour under nitrogen atmosphere. Slowly drop a solution of 24.51 mmol (5 g) of N,N'-Dicyclohexylcarbodiimide (DCC) dissolved in 30 mL of THF, and slowly raise the temperature to room temperature. After stirring for another 20 hours, the precipitate was filtered. Next, it was dissolved in chloroform and filtered again to remove residual urea. This was washed and purified three times with 10% aqueous bicarbonate solution to obtain the title compound DPAP as a white powder. (yield 29%)
DPAP의 1H NMR, 13C NMR 및 FT-IR 스펙트럼 1 H NMR, 13 C NMR and FT-IR spectra of DPAP
1H NMR (300 MHz, Chloroform-d) δ (ppm): 8.64 (t, J = 1.5 Hz, 1H), 8.05 (d, 2H), 6.66 (m, 1H), 6.34 (m, 1H), 6.09 (m, 1H), 4.96 (d, 4H), 2.55 (t, 2H) 1 H NMR (300 MHz, Chloroform-d) δ (ppm): 8.64 (t, J = 1.5 Hz, 1H), 8.05 (d, 2H), 6.66 (m, 1H), 6.34 (m, 1H), 6.09 (m, 1H), 4.96 (d, 4H), 2.55 (t, 2H)
13C NMR (75 MHz, Chloroform-d) δ (ppm): 164.13, 164.09, 150.77, 133.95, 131.51, 128.63, 127.92, 127.27, 77.29, 75.68, 53.17 13 C NMR (75 MHz, Chloroform-d) δ (ppm): 164.13, 164.09, 150.77, 133.95, 131.51, 128.63, 127.92, 127.27, 77.29, 75.68, 53.17
FT-IR (cm-1, KBr): 1731 (ester C=O); 1630 (CH2=CH-); 3305 (HC≡CH);FT-IR (cm -1 , KBr): 1731 (ester C=O); 1630 (CH 2 =CH-); 3305 (HC≡CH);
[제조예 2] 아크릴레이트 공중합체(i)의 제조[Preparation Example 2] Preparation of acrylate copolymer (i)
플라스크에 상기 제조예 1의 DPAP 0.8mmol(0.25)g, 프로파길 아크릴레이트(propargyl acrylate, PA) 0.8mmol(0.088g) 및 아조비스이소부티로니트릴(AIBN) 0.008mmol(1.3mg)을 디메틸포름아마이드(DMF, Dimethylformamide) 0.6 mL과 함께 투입하고 20분간 질소 퍼징시켰다. 상기 혼합물을 80 ℃에서 16 시간 동안 교반하여 중합을 진행한 뒤, 중합 매질을 다이클로로메테인(dichloromethane)에 희석하고, 상기 반응물을 다이에틸 에터(diethyl ether)에 2회 침전시킨 뒤 진공하에 건조시켜 아크릴레이트 공중합체(i)를 수득하였다.In a flask, 0.8 mmol (0.25) g of DPAP, 0.8 mmol (0.088 g) of propargyl acrylate (PA), and 0.008 mmol (1.3 mg) of azobisisobutyronitrile (AIBN) of Preparation Example 1 were added to the flask in dimethylform. It was added along with 0.6 mL of amide (DMF, Dimethylformamide) and purged with nitrogen for 20 minutes. After polymerization was performed by stirring the mixture at 80° C. for 16 hours, the polymerization medium was diluted with dichloromethane, the reactant was precipitated twice in diethyl ether, and dried under vacuum. Acrylate copolymer (i) was obtained.
수득된 고분자는 1H NMR로 분석하여 목표 생성물 아크릴레이트 공중합체(i)가 제조되었음을 확인하였으며, GPC로 분석하여 수평균분자량(Mn)이 16,762 Da, PDI가 3.3인 것을 확인하였다.The obtained polymer was analyzed by 1 H NMR to confirm that the target product acrylate copolymer (i) was prepared, and analyzed by GPC to confirm that the number average molecular weight (Mn) was 16,762 Da and PDI was 3.3.
1H NMR (300 MHz, Chloroform-d) δ (ppm): 8.49 (br, 1H), 7.92 (br, 2H), 4.78 (br, 6H), 2.89 (br, 1H), 2.54 (s, 4H) 1 H NMR (300 MHz, Chloroform-d) δ (ppm): 8.49 (br, 1H), 7.92 (br, 2H), 4.78 (br, 6H), 2.89 (br, 1H), 2.54 (s, 4H)
[제조예 3] 아크릴레이트 공중합체(ii)의 제조[Preparation Example 3] Preparation of acrylate copolymer (ii)
플라스크에 상기 제조예 1의 DPAP 0.8 mmol(0.25 g), 프로파길 아크릴레이트(propargyl acrylate, PA) 0.8 mmol(0.088 g), 글리시딜 메타아크릴레이트(Glycidyl methacrylate, GMA) 0.4 mmol(0.057 g) 및 아조비스이소부티로니트릴(AIBN) 0.001 mmol(1.6 mg)을 디메틸포름아마이드(DMF) 0.6 mL과 함께 투입하고 20분간 질소 퍼징시켰다. 상기 혼합물을 80 ℃에서 16 시간 동안 교반하여 중합을 진행했다. 중합 매질을 다이클로로메테인에 희석하고, 상기 반응물을 다이에틸 에터에 2 회 침전시킨 뒤 진공 하에 건조시켜 아크릴레이트 공중합체(ii)를 수득하였다.In the flask, 0.8 mmol (0.25 g) of DPAP, 0.8 mmol (0.088 g) of propargyl acrylate (PA), and 0.4 mmol (0.057 g) of glycidyl methacrylate (GMA) of Preparation Example 1 were added to the flask. and 0.001 mmol (1.6 mg) of azobisisobutyronitrile (AIBN) were added together with 0.6 mL of dimethylformamide (DMF) and purged with nitrogen for 20 minutes. Polymerization was performed by stirring the mixture at 80°C for 16 hours. The polymerization medium was diluted in dichloromethane, and the reaction product was precipitated twice in diethyl ether and dried under vacuum to obtain acrylate copolymer (ii).
수득된 고분자는 1H NMR로 분석하여 목표 생성물 아크릴레이트 공중합체(ii)가 제조되었음을 확인하였으며, GPC로 분석하여 수평균분자량(Mn)이 17,800 Da, PDI가 2.11인 것을 확인하였다.The obtained polymer was analyzed by 1 H NMR to confirm that the target product acrylate copolymer (ii) was prepared, and analyzed by GPC to confirm that the number average molecular weight (Mn) was 17,800 Da and PDI was 2.11.
1H NMR (300 MHz, Chloroform-d) δ (ppm): 8.49 (br, 1H), 7.92 (br, 2H), 4.78 (br, 6H), 2.89 (br, 1H), 2.54 (s, 4H) 1 H NMR (300 MHz, Chloroform-d) δ (ppm): 8.49 (br, 1H), 7.92 (br, 2H), 4.78 (br, 6H), 2.89 (br, 1H), 2.54 (s, 4H)
[제조예 4] 플루오렌기반 공중합체(iii)의 제조[Preparation Example 4] Preparation of fluorene-based copolymer (iii)
- 9,9-bis(12-azidododecyl)-2,7-dibromo-9h Fluorine 단량체의 제조- Preparation of 9,9-bis(12-azidododecyl)-2,7-dibromo-9h Fluorine monomer
2,7-dibromo-9H-Fluorine (15.43 mmol, 5 g), 1,12-dibromododecane (46 mmol, 15 g) 및 Toluene (60 mL)를 쉬링크 플라스크에 투입하고, 질소가스를 퍼지한 후, 80℃에서 20시간동안 교반시켰다. 반응혼합물을 클로로포름으로 추출하고, 유기상을 물로 세척하고, 농축하였다. 조생성물을 컬럼으로 정제하고, 헥산과 에탄올로 재결정하여 화합물(X)을 흰색 고체로서 수득하였다. (수율 63.1 %).2,7-dibromo-9H-Fluorine (15.43 mmol, 5 g), 1,12-dibromododecane (46 mmol, 15 g), and Toluene (60 mL) were added to the Shrink flask, and nitrogen gas was purged. It was stirred at 80°C for 20 hours. The reaction mixture was extracted with chloroform, and the organic phase was washed with water and concentrated. The crude product was purified by column and recrystallized from hexane and ethanol to obtain compound (X) as a white solid. (yield 63.1%).
1H NMR(300 MHz, CDCl3) δ= 7.50-7.43 (m, 6H), 3.39 (m, 4H), 1.85(m, 8H), 1.39 (br, 4H), 1.34-1.10 (m, 18H), 1.00 (s, 10H) 0.61 (br, 4H). 1 H NMR (300 MHz, CDCl 3 ) δ= 7.50-7.43 (m, 6H), 3.39 (m, 4H), 1.85 (m, 8H), 1.39 (br, 4H), 1.34-1.10 (m, 18H) , 1.00 (s, 10H) 0.61 (br, 4H).
상기 화합물(X) (4.39 mmol, 3.6 g), Sodium azide (17.5 mmol, 1.14g), DMF (Dimethylformamide) (10 mL)를 쉬링크 플라스크에 투입하고, 질소가스를 퍼지한 후, 80℃에서 12시간동안 교반시켰다. 반응혼합물을 클로로포름으로 추출하고, 유기상을 물로 세척하고, 농축하였다. 조생성물을 컬럼으로 정제하고, 헥산과 에탄올로 재결정하여 단량체를 흰색 고체로서 수득하였다. (수율 82.2%).The compound (X) (4.39 mmol, 3.6 g), sodium azide (17.5 mmol, 1.14g), and DMF (Dimethylformamide) (10 mL) were added to a Shrink flask, purged with nitrogen gas, and incubated at 80°C for 12 hours. It was stirred for some time. The reaction mixture was extracted with chloroform, and the organic phase was washed with water and concentrated. The crude product was purified by column and recrystallized from hexane and ethanol to obtain the monomer as a white solid. (yield 82.2%).
1H NMR(300 MHz, CDCl3) δ= 7.50-7.43 (m, 6H), 3.24 (m, 4H), 1.90 (m, 4H), 1.56(m, 4H), 1.41-1.0 (br, 32H), 1.09 (br, 10H), 0.56 (br, 4H). 1 H NMR (300 MHz, CDCl 3 ) δ= 7.50-7.43 (m, 6H), 3.24 (m, 4H), 1.90 (m, 4H), 1.56 (m, 4H), 1.41-1.0 (br, 32H) , 1.09 (br, 10H), 0.56 (br, 4H).
- 공중합체(iii)의 제조- Preparation of copolymer (iii)
플라스크에 2,2'-(9,9-Didodecyl-9H-Fluorene-2,7-diyl)bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolane)(Macromolecules 2018, 51, 3, 755-762의 방법에 따라 제조됨.) 0.5 mmol(0.3774 g), 상기 제조된 9,9-bis(12-azidododecyl)-2,7-dibromo-9h Fluorene 0.5 mmol(0.3713 g), Pd3(dba)2(Tris(dibenzylideneacetone)dipalladium) 0.01 mmol(0.0092 g), Tris(o-tolyl)phosphine 0.04 mmol(0.012 g), Toluene(톨루엔) 8 ml 및 Tetraethylammonium hydroxide(테트라에틸암모늄 하이드록사이드) 1 ml을 투입하고 질소 퍼징시켰다. 상기 혼합물을 80℃로 승온하여 20시간 동안 교반시켰다. 클로로포름과 메탄올을 이용하여 침전 및 여과시켜 노란색 고체 형태의 공중합체(iii)를 수득하였다. (수율 45%) 상기 공중합체의 수평균분자량은 28000 Da로 측정되었다.2,2'-(9,9-Didodecyl-9H-Fluorene-2,7-diyl)bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolane) (Macromolecules 2018, 51, 3, prepared according to the method of 755-762.) 0.5 mmol (0.3774 g), 9,9-bis(12-azidododecyl)-2,7-dibromo-9h Fluorene prepared above 0.5 mmol (0.3713 g), Pd 3 (dba) 2 (Tris(dibenzylideneacetone)dipalladium) 0.01 mmol (0.0092 g), Tris(o-tolyl)phosphine 0.04 mmol (0.012 g), Toluene 8 ml and Tetraethylammonium hydroxide 1 ml was added and nitrogen purged. The mixture was heated to 80°C and stirred for 20 hours. Copolymer (iii) in the form of a yellow solid was obtained by precipitation and filtration using chloroform and methanol. (Yield 45%) The number average molecular weight of the copolymer was measured to be 28000 Da.
1H NMR(300 MHz, CDCl3) δ= 7.85-7.71 (m, 12H), 3.25 (m, 4H), 2.15 (br, 8H), 1.24 (br, 80H), 0.88(m, 6H) 1 H NMR (300 MHz, CDCl 3 ) δ= 7.85-7.71 (m, 12H), 3.25 (m, 4H), 2.15 (br, 8H), 1.24 (br, 80H), 0.88 (m, 6H)
[제조예 5 및 6] 플루오렌기반 공중합체(Ⅳ 및 V)의 제조[Preparation Examples 5 and 6] Preparation of fluorene-based copolymers (IV and V)
(상기 제조예 5 및 6의 반응식에서 v, w, n, m, g 및 h는 독립적으로 상기 공중합체에서 해당 반복단위의 몰분율이고, v+w=1이고, n+m+g+h=1이다.)(In the reaction formulas of Preparation Examples 5 and 6, v, w, n, m, g, and h are independently the mole fraction of the corresponding repeating unit in the copolymer, v+w=1, n+m+g+h= It is 1.)
- 플루오렌기반 공중합체(Ⅳ)의 제조 - Preparation of fluorene-based copolymer (IV)
플라스크에 2,2'-(9,9-Didodecyl-9H-Fluorene-2,7-diyl)bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolane)(Macromolecules 2018, 51, 3, 755-762의 방법에 따라 제조됨.) 0.25 mmol(0.1887 g), 2,7-dibromo-9,9-didodecyl-9H-Fluorene(Solarmer사) 0.1 mmol(0.0660g), 상기 제조된 9,9-bis(12-azidododecyl)-2,7-dibromo-9H-Fluorene 0.15 mmol(0.1114g), Pd3(dba)2(Tris(dibenzylideneacetone)dipalladium) 0.005 mmol(0.0048 g), Tris(o-tolyl)phosphine 0.02 mmol(0.0061 g), Toluene 4 ml 및 Tetraethylammonium hydroxide(TEAH) 0.5 ml을 투입하고 질소 퍼징시켰다. 상기 혼합물을 85℃로 승온하여 20시간 동안 교반시켰다. 클로로포름과 메탄올을 이용하여 침전 및 여과시켜 노란색 고체 형태의 공중합체(Ⅳ)를 수득하였다. (수율 53%) 상기 공중합체(Ⅳ)의 수평균분자량은 31000 Da로 측정되었다. NMR 분석을 통해 상기 n이 약 0.3임을 확인하였다.2,2'-(9,9-Didodecyl-9H-Fluorene-2,7-diyl)bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolane) (Macromolecules 2018, 51, 3, prepared according to the method of 755-762.) 0.25 mmol (0.1887 g), 2,7-dibromo-9,9-didodecyl-9H-Fluorene (Solarmer) 0.1 mmol (0.0660g), 9 prepared above ,9-bis(12-azidododecyl)-2,7-dibromo-9H-Fluorene 0.15 mmol (0.1114g), Pd 3 (dba) 2 (Tris(dibenzylideneacetone)dipalladium) 0.005 mmol (0.0048 g), Tris(o- Tolyl)phosphine 0.02 mmol (0.0061 g), Toluene 4 ml, and Tetraethylammonium hydroxide (TEAH) 0.5 ml were added and nitrogen purged. The mixture was heated to 85°C and stirred for 20 hours. Copolymer (IV) in the form of a yellow solid was obtained by precipitation and filtration using chloroform and methanol. (Yield 53%) The number average molecular weight of the copolymer (IV) was measured to be 31000 Da. Through NMR analysis, it was confirmed that n was about 0.3.
1H NMR(300 MHz, CDCl3) δ= 7.83-7.68 (m, 12H), 3.22 (m, 3H), 2.14 (br, 7H), 1.24 (br, 80H), 0.86(m, 14H) 1 H NMR (300 MHz, CDCl 3 ) δ= 7.83-7.68 (m, 12H), 3.22 (m, 3H), 2.14 (br, 7H), 1.24 (br, 80H), 0.86 (m, 14H)
- 플루오렌기반 공중합체(V)의 제조 - Preparation of fluorene-based copolymer (V)
플라스크에 2,2'-(9,9-Didodecyl-9H-Fluorene-2,7-diyl)bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolane)(Macromolecules 2018, 51, 3, 755-762의 방법에 따라 제조됨.) 0.25 mmol(0.1887 g), 2,7-dibromo-9,9-didodecyl-9H-Fluorene(Solarmer사) 0.2 mmol(0.1322g), 상기 제조된 9,9-bis(12-azidododecyl)-2,7-dibromo-9H-Fluorene 0.05 mmol(0.0372g), Pd3(dba)2(Tris(dibenzylideneacetone)dipalladium) 0.005 mmol(0.0048 g), Tris(o-tolyl)phosphine 0.02 mmol(0.0061 g), Toluene 4 ml 및 Tetraethylammonium hydroxide 0.5 ml을 투입하고 질소 퍼징시켰다. 상기 혼합물을 85℃로 승온하여 20시간 동안 교반시켰다. 클로로포름과 메탄올을 이용하여 침전 및 여과시켜 노란색 고체 형태의 공중합체(V)를 수득하였다. (수율 61%) 상기 공중합체(V)의 수평균분자량은 37000 Da로 측정되었다. NMR 분석을 통해 상기 n은 약 0.1임을 확인하였다.2,2'-(9,9-Didodecyl-9H-Fluorene-2,7-diyl)bis(4,4,5,5-tetramethyl-1,3,2-dioxaborolane) (Macromolecules 2018, 51, 3, prepared according to the method of 755-762.) 0.25 mmol (0.1887 g), 2,7-dibromo-9,9-didodecyl-9H-Fluorene (Solarmer) 0.2 mmol (0.1322g), 9 prepared above ,9-bis(12-azidododecyl)-2,7-dibromo-9H-Fluorene 0.05 mmol (0.0372g), Pd 3 (dba) 2 (Tris(dibenzylideneacetone)dipalladium) 0.005 mmol (0.0048 g), Tris(o- Tolyl)phosphine 0.02 mmol (0.0061 g), Toluene 4 ml, and Tetraethylammonium hydroxide 0.5 ml were added and nitrogen purged. The mixture was heated to 85°C and stirred for 20 hours. Copolymer (V) in the form of a yellow solid was obtained by precipitation and filtration using chloroform and methanol. (Yield 61%) The number average molecular weight of the copolymer (V) was measured to be 37000 Da. Through NMR analysis, it was confirmed that n was about 0.1.
1H NMR(300 MHz, CDCl3) δ= 7.85-7.68 (m, 12H), 3.22 (m, 1H), 2.13 (br, 9H), 1.24 (br, 80H), 0.86(m, 18H) 1 H NMR (300 MHz, CDCl 3 ) δ= 7.85-7.68 (m, 12H), 3.22 (m, 1H), 2.13 (br, 9H), 1.24 (br, 80H), 0.86 (m, 18H)
[제조예 7] 제2 고분자-CNT 복합체 용액의 제조 [Preparation Example 7] Preparation of second polymer-CNT composite solution
제조예 4의 플루오렌기반 공중합체(iii)를 메틸시클로헥산(MCH) 20 ml에 1 mg/ml의 농도로 투입하고 80℃에서 1시간 동안 가열하여 완전히 용해시켰다. 이를 냉각한 뒤, Purified Powder SWCNT (Nanointegris Inc., RN-220)를 20 mg 투입하여 상온에서 초음파 처리기(Sonics & Materials Inc., VCX-750, 750W)로 분산시키고, 원심 분리기(Hanil Scientific Inc., Supra R30)를 이용하여 85,000 g에서 1시간 동안 원심분리하였다. 침전물을 제외한 용액을 0.20 ㎛ MCE(Mixed Cellulose Ester) 멤브레인으로 여과하여 sc-SWCNT를 랩핑하고 있는 플루오렌기반 공중합체(iii)를 수득하였다. 수득한 펠렛을 여러 번 세척한 뒤 톨루엔 10 ml에 0.02 mg/ml의 농도로 투입하여 5분 동안 초음파 처리 및 재분산시켜 제2 고분자-CNT 복합체 용액을 제조하였다. The fluorene-based copolymer (iii) of Preparation Example 4 was added to 20 ml of methylcyclohexane (MCH) at a concentration of 1 mg/ml and heated at 80°C for 1 hour to completely dissolve. After cooling, 20 mg of Purified Powder SWCNT (Nanointegris Inc., RN-220) was added, dispersed at room temperature using an ultrasonicator (Sonics & Materials Inc., VCX-750, 750W), and centrifuged (Hanil Scientific Inc.). , Supra R30) was centrifuged at 85,000 g for 1 hour. The solution excluding the precipitate was filtered through a 0.20 ㎛ MCE (Mixed Cellulose Ester) membrane to obtain fluorene-based copolymer (iii) wrapping sc-SWCNTs. The obtained pellet was washed several times, then added to 10 ml of toluene at a concentration of 0.02 mg/ml, sonicated for 5 minutes, and redispersed to prepare a second polymer-CNT composite solution.
[제조예 8] 자기 조립 단분자층 용액(BPS 용액)의 제조[Preparation Example 8] Preparation of self-assembled monolayer solution (BPS solution)
-ABP(4-Allyloxybenzophenone)의 제조-Manufacture of ABP (4-Allyloxybenzophenone)
무수 아세톤(Anhydrous acetone) 10 mL에 4-하이드록시벤조페논(4-HBP, 4-hydroxybenzophenone) 5.2 mmol(1.02 g)과 알릴 브로마이드(allyl bromide) 7.8 mmol(0.945 g)를 용해시키고 탄산 칼륨(K2CO3) 1.08 g을 첨가하였다. 상기 혼합물을 75 ℃로 승온하여 8 시간 동안 교반시킨 뒤, 실온으로 냉각시켰다. 물을 첨가하고 생성된 용액을 50 mL의 디에틸에테르(diethyl ether)로 추출하고, 이어서 50 mL의 10% NaOH로 2회 세척하고 황산나트륨(Na2SO4)으로 건조시키고 용매를 증발시켰다. 이를 메탄올로 재결정하여 살짝 노란빛이 도는 ABP를 수득하였다. (수율 80%)Dissolve 5.2 mmol (1.02 g) of 4-hydroxybenzophenone (4-HBP) and 7.8 mmol (0.945 g) of allyl bromide in 10 mL of anhydrous acetone and dissolve it in potassium carbonate (K). 2 CO 3 ) 1.08 g was added. The mixture was heated to 75°C, stirred for 8 hours, and then cooled to room temperature. Water was added and the resulting solution was extracted with 50 mL of diethyl ether, then washed twice with 50 mL of 10% NaOH, dried with sodium sulfate (Na 2 SO 4 ), and the solvent was evaporated. This was recrystallized from methanol to obtain slightly yellow ABP. (yield 80%)
ABP의 1H NMR 스펙트럼 1H NMR spectrum of ABP
1H NMR (300 MHz, Chloroform-d) δ (ppm): 7.82 (d, J = 8.9 Hz, 2H), 7.78 - 7.72 (m, 2H), 7.60 - 7.53 (m, 1H), 7.50 - 7.44 (m, 2H), 6.98 (d, J = 8.9 Hz, 2H), 6.14 - 6.00 (m, 1H), 5.49 - 5.30 (m, 2H), 4.62 (m, 2H) 1 H NMR (300 MHz, Chloroform-d) δ (ppm): 7.82 (d, J = 8.9 Hz, 2H), 7.78 - 7.72 (m, 2H), 7.60 - 7.53 (m, 1H), 7.50 - 7.44 ( m, 2H), 6.98 (d, J = 8.9 Hz, 2H), 6.14 - 6.00 (m, 1H), 5.49 - 5.30 (m, 2H), 4.62 (m, 2H)
- BPS(4-(3'-Chlorodimethylsilyl)propyloxybenzophenone) 및 BPS 용액의 제조- Preparation of BPS (4-(3'-Chlorodimethylsilyl)propyloxybenzophenone) and BPS solution
플라스크에 상기 ABP 2 g과 디메틸 클로로실란(dimethyl chlorosilane) 20 mL를 넣고 교반시켜 현탁액을 준비하였다. 여기에 Pt-C(10 % Pt) 10 mg을 첨가하고 50 ℃에서 8 시간 동안 교반 및 환류시켰다. 톨루엔에 상기 반응물을 0.01M의 농도로 용해시킨 뒤 여과하여 촉매를 제거한 뒤, 화합물 BPS를 포함한 오일형태의 자기 조립 단분자층 용액인 BPS 용액을 수득하였다. 2 g of the ABP and 20 mL of dimethyl chlorosilane were added to the flask and stirred to prepare a suspension. 10 mg of Pt-C (10% Pt) was added thereto and stirred and refluxed at 50°C for 8 hours. The reactant was dissolved in toluene at a concentration of 0.01M, filtered to remove the catalyst, and then a BPS solution, which is an oil-type self-assembled monolayer solution containing the compound BPS, was obtained.
BPS의 1H NMR 스펙트럼 1H NMR spectrum of BPS
1H NMR (300 MHz, Chloroform-d) δ (ppm): 7.91 (m, 2H), 7.84 (m, 2H), 7.60 (m, 1H), 7.55 - 7.48 (m, 2H), 7.01 (m, 2H), 4.08 - 4.00 (m, 2H), 2.02 - 1.89 (m, 2H), 1.05 - 0.94 (m, 2H), 0.26 - 0.21 (s, 6H) 1 H NMR (300 MHz, Chloroform-d) δ (ppm): 7.91 (m, 2H), 7.84 (m, 2H), 7.60 (m, 1H), 7.55 - 7.48 (m, 2H), 7.01 (m, 2H), 4.08 - 4.00 (m, 2H), 2.02 - 1.89 (m, 2H), 1.05 - 0.94 (m, 2H), 0.26 - 0.21 (s, 6H)
[실시예 1][Example 1]
100 nm의 SiO2/Si 기판층(Chung king enterprise사)을 황산(H2SO4)과 과산화수소(H2O2)를 7:3으로 혼합한 용액으로 깨끗이 세척한 뒤, 물과 톨루엔으로 다시 세척하여 질소가스 및 110℃에서 10분 열처리하여 용매를 완전히 제거해주었다. 건조된 기판층을 상기 제조예 8의 BPS 용액에 침지하고 12시간 방치 후, 초음파 세척기로 에탄올과 톨루엔에서 각각 3분간 세척하여, 자기 조립 단분자층(SAM, Self-assembled monolayer)을 코팅하였다. SAM이 코팅된 기판층 상에 제조예 2의 아크릴레이트 공중합체(i)를 1,4-다이옥산에 5 mg/ml의 농도로 용해시킨 용액을 1000 rpm, 50초의 조건에서 스핀코팅하고, 727mJ/㎠의 세기로 1분 동안 UV 경화하여 기판 고정화 단계를 진행하였다. 다음 클로로포름에서 1 시간 초음파 세척하여 기판층에 미고정된 화합물을 제거하고, 질소가스로 용매 제거 후 100℃에서 10분간 열처리하였다. 이때, 도 2에서 보는 바와 같이, 물에 대한 접촉각(Contact angle)측정결과가 70°이상이라는 것을 확인함으로써, 자기 조립 단분자층(SAM) 코팅 여부를 확인하였고, 도 3의 (a)에 도시한 바와 같이 자외선-가시광선 분광분석(UV-Vis spectroscopy)을 통하여 아크릴레이트 공중합체(i) 용액을 코팅하여 UV 경화한 뒤, 클로로포름으로 기판층을 세척하기 전과 후의 결과를 비교하였다.The 100 nm SiO 2 /Si substrate layer (Chung King Enterprises) was thoroughly washed with a 7:3 solution of sulfuric acid (H 2 SO 4 ) and hydrogen peroxide (H 2 O 2 ), and then washed again with water and toluene. After washing, the solvent was completely removed through nitrogen gas and heat treatment at 110°C for 10 minutes. The dried substrate layer was immersed in the BPS solution of Preparation Example 8 and left for 12 hours, then washed in ethanol and toluene for 3 minutes each using an ultrasonic cleaner, and coated with a self-assembled monolayer (SAM). A solution of the acrylate copolymer (i) of Preparation Example 2 dissolved in 1,4-dioxane at a concentration of 5 mg/ml was spin-coated on the SAM-coated substrate layer at 1000 rpm for 50 seconds, and 727 mJ/ml. The substrate fixation step was performed by UV curing for 1 minute at an intensity of ㎠. Next, the compound unfixed to the substrate layer was removed by ultrasonic washing in chloroform for 1 hour, the solvent was removed with nitrogen gas, and heat treatment was performed at 100°C for 10 minutes. At this time, as shown in Figure 2, the self-assembled monolayer (SAM) coating was confirmed by confirming that the contact angle measurement result for water was 70° or more, as shown in (a) of Figure 3. Likewise, through UV-Vis spectroscopy, the results before and after coating the acrylate copolymer (i) solution and UV curing it, and then washing the substrate layer with chloroform, were compared.
바이알에 상기 아크릴레이트 공중합체(i)가 코팅된 기판층을 투입하고 제조예 7의 제2고분자-CNT 복합체 용액 1 ml에 침지시킨 뒤, 황산구리(CuSO4) 0.003 g, 아스코르브산 나트륨(Sodium ascorbate) 0.019 g 및 증류수 0.5 ml를 투입하여 질소 퍼징하였다. 상기 바이알을 초음파 세척기에 담가 50℃의 온도에서 110W의 세기로 5분 동안 초음파 처리하여 클릭반응을 진행하였다. 반응 종결 후 톨루엔에서 초음파 세척하여 기판과 미반응한 화합물을 제거하고, 질소가스로 용매 제거 후 150℃에서 30분간 열처리하였다.The substrate layer coated with the acrylate copolymer (i) was placed in a vial and immersed in 1 ml of the second polymer-CNT composite solution of Preparation Example 7, followed by 0.003 g of copper sulfate (CuSO 4 ) and sodium ascorbate. ) 0.019 g and 0.5 ml of distilled water were added and nitrogen purged. The vial was immersed in an ultrasonic cleaner and sonicated at a temperature of 50°C and an intensity of 110W for 5 minutes to perform a click reaction. After completion of the reaction, the substrate was ultrasonic washed in toluene to remove unreacted compounds, the solvent was removed with nitrogen gas, and the substrate was heat treated at 150°C for 30 minutes.
완전히 건조된 상태의 기판에 쉐도우 마스크를 이용하여 Ti를 두께 5㎚로, Au를 두께 60㎚로 하고 이격 거리는 200㎛로 증착하여 소스 전극과 드레인 전극을 형성해줌으로써 CNT 반도체 소자를 제조하였다. 제조된 CNT 반도체 소자의 전기적특성곡선 (출력 곡선(output curve) 및 트랜스퍼 곡선(transfer curve))를 측정하여 도 4 (a)에 도시하였다.A CNT semiconductor device was manufactured by depositing Ti to a thickness of 5nm and Au to a thickness of 60nm and a separation distance of 200㎛ using a shadow mask on a completely dried substrate to form source and drain electrodes. The electrical characteristic curve (output curve and transfer curve) of the manufactured CNT semiconductor device was measured and shown in Figure 4 (a).
이어서 상기 CNT 반도체 소자 상에 thermal evaporator으로 0.1Å/s의 속도 조건 하에서 Pd을 증착하여 평균 3㎚ 두께의 팔라듐 나노입자층을 형성하였다. 다음으로 4㎎/㎖의 PMMA(용매 아니솔)를 스핀코팅(2000rpm, 30초)한 다음 175℃에서 10분간 열처리하여 PMMA 코팅층을 형성함으로써, 최종적으로 수소 가스 센서를 제조하였다.Next, Pd was deposited on the CNT semiconductor device using a thermal evaporator at a speed of 0.1 Å/s to form a palladium nanoparticle layer with an average thickness of 3 nm. Next, 4 mg/ml of PMMA (solvent anisole) was spin-coated (2000 rpm, 30 seconds) and then heat treated at 175°C for 10 minutes to form a PMMA coating layer, ultimately manufacturing a hydrogen gas sensor.
[실시예 2][Example 2]
100 nm의 SiO2/Si 기판층(Chung king enterprise사)을 황산(H2SO4)과 과산화수소(H2O2)를 7:3으로 혼합한 용액으로 깨끗이 세척한 뒤, 물과 톨루엔으로 다시 세척하여 질소가스 및 110℃에서 10분 열처리하여 용매를 완전히 제거해주었다. 건조된 기판층 상에 제조예 3의 아크릴레이트 공중합체(ii)를 1,4-다이옥산에 5 mg/ml의 농도로 용해시킨 용액을 1000 rpm, 50초의 조건에서 스핀코팅하고, 110℃에서 2시간 동안 열처리하여 기판 고정화 단계를 진행하였다. 다음 클로로포름에서 1 시간 초음파 세척하여 기판층에 미고정된 화합물을 제거하고, 질소가스로 용매 제거 후 100℃에서 10분간 열처리하였다. 도 3의 (b)에 도시한 바와 같이 자외선-가시광선 분광분석(UV-Vis spectroscopy)을 통하여 아크릴레이트 공중합체(ii) 용액을 코팅하여 열 경화한 뒤, 클로로포름으로 기판층을 세척하기 전과 후의 결과를 비교하였다.The 100 nm SiO 2 /Si substrate layer (Chung King Enterprises) was thoroughly washed with a 7:3 solution of sulfuric acid (H 2 SO 4 ) and hydrogen peroxide (H 2 O 2 ), and then washed again with water and toluene. After washing, the solvent was completely removed through nitrogen gas and heat treatment at 110°C for 10 minutes. A solution of the acrylate copolymer (ii) of Preparation Example 3 dissolved in 1,4-dioxane at a concentration of 5 mg/ml was spin-coated on the dried substrate layer at 1000 rpm for 50 seconds, and 2 times at 110°C. The substrate fixation step was performed by heat treatment for a period of time. Next, the compound unfixed to the substrate layer was removed by ultrasonic washing in chloroform for 1 hour, the solvent was removed with nitrogen gas, and heat treatment was performed at 100°C for 10 minutes. As shown in (b) of Figure 3, the acrylate copolymer (ii) solution was coated and heat cured through UV-Vis spectroscopy, and then before and after washing the substrate layer with chloroform. The results were compared.
바이알에 상기 아크릴레이트 공중합체(ii)가 코팅된 기판층을 투입하고 제조예 7의 제2고분자-CNT 복합체 용액 1 ml에 침지시킨 뒤, 황산구리(CuSO4) 0.003 g, 아스코르브산 나트륨(Sodium ascorbate) 0.019 g 및 증류수 0.5 ml를 투입하여 질소 퍼징하였다. 상기 바이알을 초음파 세척기에 담가 50℃의 온도에서 110W의 세기로 5분 동안 초음파 처리하여 클릭반응을 진행하였다. 이후 단계는 상기 실시예 1과 동일하게 수행하였으며, 최종적으로 실시예 2에 따른 CNT 반도체 소자 및 수소 가스 센서를 제조하였다. 사용한 쉐도우 마스크는 실시예 1에서 사용한 것과 동일한 것으로 사용하였으며, 제조된 실시예 2에 따른 CNT 반도체 소자에 대한 전기적특성곡선 (출력 곡선(output curve) 및 트랜스퍼 곡선(transfer curve))를 도 4 (b)에 도시하였다.The substrate layer coated with the acrylate copolymer (ii) was placed in a vial and immersed in 1 ml of the second polymer-CNT composite solution of Preparation Example 7, followed by 0.003 g of copper sulfate (CuSO4) and sodium ascorbate. Nitrogen purge was performed by adding 0.019 g and 0.5 ml of distilled water. The vial was immersed in an ultrasonic cleaner and sonicated at a temperature of 50°C and an intensity of 110W for 5 minutes to perform a click reaction. The subsequent steps were performed in the same manner as in Example 1, and finally, the CNT semiconductor device and hydrogen gas sensor according to Example 2 were manufactured. The shadow mask used was the same as that used in Example 1, and the electrical characteristic curves (output curve and transfer curve) for the CNT semiconductor device manufactured according to Example 2 are shown in Figure 4 (b). ) is shown in.
[비교예 1][Comparative Example 1]
실시예 1에서 상기 아크릴레이트 공중합체(i)가 코팅된 기판층 상에 제조예 7의 제2고분자-CNT 복합체 용액을 클릭반응이 아닌, 2000 rpm의 조건에서 스핀 코팅하고 핫플레이트에서 건조하였다. 상기 과정을 2회 반복하여 필름 코팅 후 톨루엔에서 초음파 세척하여 기판과 미반응한 화합물을 제거하고, 질소가스로 용매 제거 후 150℃에서 30분간 열처리하였다. 완전히 건조된 상태의 기판에 쉐도우 마스크를 이용하여 Ti를 두께 5㎚로, Au를 두께 60㎚로 하고 이격 거리는 200㎛로 증착하여 소스 전극과 드레인 전극을 형성해줌으로써 비교예 1에 따른 CNT 반도체 소자를 제조하였다. 상기 비교예 1에 따른 수소 가스 센서의 모든 소자들에 대한 전기적특성곡선 (출력 곡선(output curve) 및 트랜스퍼 곡선(transfer curve))를 도 4 (c)에 도시하였다.The second polymer-CNT composite solution of Preparation Example 7 was spin-coated on the substrate layer coated with the acrylate copolymer (i) in Example 1 under conditions of 2000 rpm, not using a click reaction, and dried on a hot plate. The above process was repeated twice, and after film coating, the substrate was ultrasonic washed in toluene to remove unreacted compounds, and the solvent was removed with nitrogen gas, followed by heat treatment at 150°C for 30 minutes. A CNT semiconductor device according to Comparative Example 1 was formed by depositing Ti to a thickness of 5 nm and Au to a thickness of 60 nm and a separation distance of 200 μm using a shadow mask on a completely dried substrate to form a source electrode and a drain electrode. Manufactured. Electrical characteristic curves (output curve and transfer curve) for all elements of the hydrogen gas sensor according to Comparative Example 1 are shown in FIG. 4(c).
상기 실시예 1, 2 및 비교예 1에 따른 반도체 소자를 상온에서 I-V Measurement Software Source Measure Unit (B1500A, Agilent)을 통해 전기적특성곡선 (출력 곡선(output curve) 및 트랜스퍼 곡선(transfer curve))를 측정하여 도 4에 도시하였다. 도 4에서 보는 바와 같이, 실시예 1 및 2에 따른 클릭반응을 이용한 반도체 소자는 출력 곡선 및 트랜스퍼 곡선이 균일하게 측정되어 소자간 재현성 및 신뢰성이 확보될 수 있음을 확인하였다. 반면 비교예 1의 경우 소자간 측정결과가 불균일하게 나타난다는 것을 확인할 수 있었다.Electrical characteristic curves (output curve and transfer curve) of the semiconductor devices according to Examples 1 and 2 and Comparative Example 1 were measured at room temperature using an I-V Measurement Software Source Measure Unit (B1500A, Agilent). This is shown in Figure 4. As shown in Figure 4, it was confirmed that the output curve and transfer curve of the semiconductor devices using the click reaction according to Examples 1 and 2 were measured uniformly, ensuring inter-device reproducibility and reliability. On the other hand, in the case of Comparative Example 1, it was confirmed that the measurement results between devices appeared uneven.
[평가예] 수소가스 검지 테스트 [Evaluation example] Hydrogen gas detection test
가스 검지 테스트는 MFC 시스템이 있는 MS TECH 프로브 스테이션의 반도체 매개변수 분석기 (B15000A, Agilent)를 사용하여 측정하였다. 수소 가스 센서는 가스 튜브 아래 약 1cm 거리에 위치시키고, 요구되는 농도의 가스에 직접적으로 노출시켰으며, 수소가스 검지 테스트는 상온에서 진행하였다. MFC를 이용해서 H2 가스 (100ppm, 1%, 10% in N2) 와 dry air를 혼합하여 원하는 농도의 수소 가스 제작하였다. 검지 성능은 수소 가스에 노출되기 전과 후의 수소 가스 센서의 전류비교를 통해 나타내었다.Gas detection tests were performed using a semiconductor parameter analyzer (B15000A, Agilent) on an MS TECH probe station with an MFC system. The hydrogen gas sensor was placed approximately 1cm below the gas tube and directly exposed to gas of the required concentration, and the hydrogen gas detection test was conducted at room temperature. Using MFC, H 2 gas (100ppm, 1%, 10% in N 2 ) and dry air were mixed to produce hydrogen gas of the desired concentration. Detection performance was expressed through comparison of the current of the hydrogen gas sensor before and after exposure to hydrogen gas.
도 5에 실시예 1에 따른 수소 가스 센서의 0.5(500ppb) 내지 1000 ppm의 수소 농도 별 검지 테스트 결과를 나타내었고, 도 6에 공기중 100 ppm의 수소 농도에서 반복적으로 테스트한 결과를 나타내었고, 도 7에 수소, 일산화탄소, 이산화탄소, 에틸렌 및 메탄 가스 검지 테스트 결과를 나타내었다.Figure 5 shows the detection test results of the hydrogen gas sensor according to Example 1 at hydrogen concentrations of 0.5 (500 ppb) to 1000 ppm, and Figure 6 shows the results of repeated tests at a hydrogen concentration of 100 ppm in the air. Figure 7 shows the results of hydrogen, carbon monoxide, carbon dioxide, ethylene, and methane gas detection tests.
도 5에서 보는 바와 같이, 본 발명의 실시예 1에 따른 수소 가스 센서는 낮은 농도, 구체적으로 500ppb 이상의 수소 가스 농도에서도 민감하게 전류변화를 나타내었으며, 나아가 도 6에서도 반복적으로 테스트를 진행하여도 일정한 결과를 나타내어 용이하게 신뢰성을 확보할 수 있음을 확인하였다. 또한, 도 7에서 보는 바와 같이, 다른 가스보다 수소 가스에 선택적으로 반응한다는 점에서, 본 발명에 따른 CNT 기반 수소 가스 센서는 수소 가스에 대하여 탁월한 선택도 및 고민감도를 나타냄을 확인할 수 있었다.As shown in Figure 5, the hydrogen gas sensor according to Example 1 of the present invention showed a sensitive current change even at low concentrations, specifically hydrogen gas concentrations of 500 ppb or more, and furthermore, even in repeated tests in Figure 6, a constant change was observed. It was confirmed that reliability could be easily secured by presenting the results. In addition, as shown in FIG. 7, it was confirmed that the CNT-based hydrogen gas sensor according to the present invention exhibits excellent selectivity and high sensitivity to hydrogen gas in that it reacts selectively to hydrogen gas over other gases.
또한, 실시예 2에 따른 수소 가스 센서도 실시예 1과 동등 유사한 민감도, 선택도를 나타냈다. 반면 비교예 1에 따른 수소 가스 센서는 500ppb 이상의 수소 가스 농도에서 전류 변화가 없었으며, 반복적으로 테스트를 진행할 경우, 상이한 결과값을 나타내어 재현성 및 신뢰성 확보가 어렵다는 점을 확인하였다.In addition, the hydrogen gas sensor according to Example 2 also showed sensitivity and selectivity equivalent to Example 1. On the other hand, the hydrogen gas sensor according to Comparative Example 1 showed no change in current at a hydrogen gas concentration of 500ppb or more, and when tested repeatedly, it showed different result values, making it difficult to secure reproducibility and reliability.
본 발명에 따른 수소 가스 센서는 세척과정을 여러 번 수행하더라도 CNT가 거의 박리되지 않아 물 및 유기용매에 안정적이며, 동시에 소자간 재현성을 용이하게 확보할 수 있다는 장점이 있다.The hydrogen gas sensor according to the present invention has the advantage of being stable in water and organic solvents as the CNTs rarely peel off even if the cleaning process is performed several times, and at the same time, reproducibility between devices can be easily secured.
본 발명에서는 종래에 쉽게 박리되고 유기용매에 취약하며, 소자간 미흡한 신뢰도를 갖는 CNT 기반 수소 가스 센서의 문제점을 해결하기 위하여 클릭반응을 이용하여 수소 가스 센서를 제조하였으며, 상기 수소 가스 센서는 소자간 전기적 특성곡선이 균일하게 나타나는 반도체 소자를 이용하여 제조됨에 따라 우수한 신뢰성을 구현할 수 있고, 낮은 수소 가스 농도에서도 고민감도, 탁월한 선택도를 나타내었다. 이를 통해 효과적으로 상용성, 상업성을 향상시킬 수 있고, 보다 다양한 진단 센서 분야에 폭넓게 적용할 수 있음을 확인하였다.In the present invention, a hydrogen gas sensor was manufactured using a click reaction to solve the problems of the conventional CNT-based hydrogen gas sensor, which is easily peeled off, vulnerable to organic solvents, and has poor reliability between devices. As it is manufactured using a semiconductor device that exhibits a uniform electrical characteristic curve, excellent reliability can be realized, and it shows high sensitivity and excellent selectivity even at low hydrogen gas concentrations. Through this, it was confirmed that compatibility and commercialization can be effectively improved and that it can be widely applied to a wider range of diagnostic sensor fields.
이상과 같이 본 발명에서는 특정된 사항들과 한정된 실시예 및 비교예에 의해 설명되었으나 이는 본 발명의 보다 전반적인 이해를 돕기 위해서 제공된 것일 뿐, 본 발명은 상기의 실시예에 한정되는 것은 아니며, 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 이러한 기재로부터 다양한 수정 및 변형이 가능하다.As described above, the present invention has been described with specific details and limited examples and comparative examples, but these are provided only to facilitate a more general understanding of the present invention, and the present invention is not limited to the above examples. Those skilled in the art can make various modifications and variations from this description.
따라서, 본 발명의 사상은 설명된 실시예에 국한되어 정해져서는 아니되며, 후술하는 특허청구범위뿐 아니라 이 특허청구범위와 균등하거나 등가적 변형이 있는 모든 것들은 본 발명 사상의 범주에 속한다고 할 것이다.Accordingly, the spirit of the present invention should not be limited to the described embodiments, and the scope of the patent claims described below as well as all modifications that are equivalent or equivalent to the scope of this patent claim shall fall within the scope of the spirit of the present invention. .
Claims (24)
- 기판; 및 센싱부를 포함하는 수소 가스 센서로서,Board; And a hydrogen gas sensor including a sensing unit,상기 센싱부는 상기 기판 상에 제1 고분자로부터 형성된 고분자층;The sensing unit includes a polymer layer formed from a first polymer on the substrate;상기 고분자층 상에 제2 고분자-CNT 복합체로부터 형성된 복합체층;A composite layer formed from a second polymer-CNT composite on the polymer layer;상기 복합체층 상에 형성된 금속 전극;a metal electrode formed on the composite layer;상기 복합체층 상에 형성된 팔라듐 나노입자층; 및A palladium nanoparticle layer formed on the composite layer; and상기 팔라듐 나노입자층 상에 위치하는 고분자 코팅층;을 포함하며,It includes a polymer coating layer located on the palladium nanoparticle layer,상기 제2 고분자-CNT복합체는 제2 고분자에 의해 CNT가 랩핑된 것이고,The second polymer-CNT composite is one in which CNTs are wrapped by a second polymer,상기 고분자층과 복합체층은 트리아졸을 통해 연결되는 것인 수소 가스 센서.A hydrogen gas sensor wherein the polymer layer and the composite layer are connected through triazole.
- 제 1항에 있어서,According to clause 1,상기 금속 전극은 상기 복합체층 상에서 서로 이격 위치하는 소스 전극과 드레인 전극을 포함하고, 상기 팔라듐 나노입자층은 상기 소스 전극 및 드레인 전극이 이격된 영역에 위치하는 것인 수소 가스 센서.The metal electrode includes a source electrode and a drain electrode spaced apart from each other on the composite layer, and the palladium nanoparticle layer is located in a region where the source electrode and the drain electrode are spaced apart from each other.
- 제 1항에 있어서,According to clause 1,상기 고분자 코팅층은 아크릴레이트계 고분자를 포함하는 수소 가스 센서.The polymer coating layer is a hydrogen gas sensor comprising an acrylate-based polymer.
- 제 1항에 있어서,According to clause 1,상기 고분자 코팅층은 비다공질 폴리메틸메타크릴레이트를 포함하는 수소 가스 센서.The polymer coating layer is a hydrogen gas sensor comprising non-porous polymethyl methacrylate.
- 제 1항에 있어서,According to clause 1,상기 제1 고분자는 하기 화학식 2로 표시되고,The first polymer is represented by the following formula 2,상기 제2 고분자는 하기 화학식 3으로 표시되며, The second polymer is represented by the following formula 3,상기 트리아졸은 상기 제1 고분자와 제2 고분자의 클릭반응에 의해 형성되는 것이고, 상기 클릭반응은 하기 반응식 1로 표시되는 반응인 수소 가스 센서.The triazole is formed by a click reaction between the first polymer and the second polymer, and the click reaction is a reaction represented by Scheme 1 below.[화학식 2][Formula 2]P1-(FG1)x P 1 -(FG 1 ) x[화학식 3][Formula 3]P2-(FG2)y P 2 -(FG 2 ) y[반응식 1][Scheme 1]상기 화학식 2 내지 3 및 반응식 1에서, In Formulas 2 to 3 and Scheme 1,P1은 제1 고분자로부터 유래된 잔기이고;P 1 is a residue derived from the first polymer;P2는 제2 고분자로부터 유래된 잔기이고;P 2 is a residue derived from the second polymer;P2(CNT)는 제2 고분자-CNT복합체로부터 유래된 잔기이고; P 2 (CNT) is a residue derived from the second polymer-CNT complex;FG1은 알키닐 작용기이고;FG 1 is an alkynyl functional group;FG2은 아자이드 작용기이고;FG 2 is an azide functional group;x 및 y는 1 이상의 정수이다.x and y are integers greater than or equal to 1.
- 제 1항에 있어서,According to clause 1,상기 제1 고분자는 아크릴계 공중합체인 수소 가스 센서.A hydrogen gas sensor in which the first polymer is an acrylic copolymer.
- 제 6항에 있어서,According to clause 6,상기 화학식 2는 하기 화학식 4 또는 화학식 5로 표시되는 것인 수소 가스 센서.A hydrogen gas sensor where Formula 2 is represented by Formula 4 or Formula 5 below.[화학식 4][Formula 4][화학식 5][Formula 5]상기 화학식 4 및 5에서,In Formulas 4 and 5 above,FG1은 알키닐 작용기이고;FG 1 is an alkynyl functional group;FG3는 에폭시 작용기이고;FG 3 is an epoxy functional group;p1 내지 p2는 말단에 FG1 작용기를 갖는 단량체로부터 유래된 반복단위고;p 1 to p 2 are repeating units derived from a monomer having a FG 1 functional group at the end;p3는 말단에 FG3 작용기를 갖는 단량체로부터 유래된 반복단위고;p 3 is a repeating unit derived from a monomer having a FG 3 functional group at the terminal;z, k 및 t는 1 내지 7의 정수이고;z, k and t are integers from 1 to 7;a, b 및 c는 1 이상의 정수이다.a, b and c are integers greater than or equal to 1.
- 제 8항에 있어서,According to clause 8,상기 화학식 4은 하기 화학식 6으로 표시되고, The formula 4 is represented by the formula 6 below,상기 화학식 5는 하기 화학식 8로 표시되는 것인 수소 가스 센서.A hydrogen gas sensor where Formula 5 is represented by Formula 8 below.[화학식 6][Formula 6][화학식 8][Formula 8]상기 화학식 6 및 8에서, In Formulas 6 and 8 above,Ar은 3가 방향족 라디칼이고;Ar is a trivalent aromatic radical;R1, R2 및 R4는 서로 독립적으로 C1-50알킬렌, C3-50시클로알킬렌, C6-50아릴렌, C3-50헤테로아릴렌, C1-50알콕시카보닐렌 또는 이들의 조합이고;R 1 , R 2 and R 4 are independently of each other C 1-50 alkylene, C 3-50 cycloalkylene, C 6-50 arylene, C 3-50 heteroarylene, C 1-50 alkoxycarbonylene or It is a combination of these;상기 알킬렌, 시클로알킬렌, 아릴렌, 헤테로아릴렌 및 알콕시카보닐렌은 선택적으로 하이드록시, 할로겐, 나이트로, 시아노, 아미노, 카복실, 카복실산염, C1-20알킬, C2-20알케닐, C2-20알키닐, C1-20할로알킬, C1-20알콕시, C1-20알콕시카보닐, C3-30시클로알킬, (C6-30)아르(C1-20)알킬, C6-30아릴 및 C3-30헤테로아릴에서 선택되는 하나 이상으로 치환될 수 있으며,The alkylene, cycloalkylene, arylene, heteroarylene and alkoxycarbonylene are optionally hydroxy, halogen, nitro, cyano, amino, carboxyl, carboxylate, C 1-20 alkyl, C 2-20 alkyl. Kenyl, C 2-20 alkynyl, C 1-20 haloalkyl, C 1-20 alkoxy, C 1-20 alkoxycarbonyl, C 3-30 cycloalkyl, (C 6-30 )ar(C 1-20 ) It may be substituted with one or more selected from alkyl, C 6-30 aryl, and C 3-30 heteroaryl,FG1은 알키닐 작용기이고;FG 1 is an alkynyl functional group;FG3는 에폭시 작용기이고;FG 3 is an epoxy functional group;z, k 및 t는 서로 독립적으로 1 내지 7의 정수이고;z, k and t are independently integers from 1 to 7;a, b 및 c는 서로 독립적으로 1 이상의 정수이다.a, b and c are independently integers of 1 or more.
- 제 9항에 있어서,According to clause 9,상기 화학식 6는 하기 화학식 7로 표시되고,The formula (6) is represented by the formula (7) below,상기 화학식 8은 하기 화학식 9로 표시되는 것인 수소 가스 센서.The formula 8 is a hydrogen gas sensor represented by the formula 9 below.[화학식 7][Formula 7][화학식 9][Formula 9]상기 화학식 7 및 9에서, In Formulas 7 and 9 above,R2 내지 R4는 서로 독립적으로 C1-10알킬렌이고;R 2 to R 4 are each independently C 1-10 alkylene;R5는 수소 또는 메틸이고;R 5 is hydrogen or methyl;a, b 및 c는 서로 독립적으로 1 이상의 정수이다.a, b and c are independently integers of 1 or more.
- 제 1항에 있어서,According to clause 1,상기 제2 고분자는 플루오렌기반 공중합체인 수소 가스 센서.A hydrogen gas sensor in which the second polymer is a fluorene-based copolymer.
- 제 6항에 있어서,According to clause 6,상기 화학식 3은 하기 화학식 10의 반복단위(n) 및 하기 화학식 11의 반복단위(m)를 포함하는 공중합체인 수소 가스 센서.The formula (3) is a hydrogen gas sensor that is a copolymer comprising a repeating unit (n) of the formula (10) and a repeating unit (m) of the formula (11).[화학식 10] [Formula 10][화학식 11] [Formula 11]상기 화학식 10 및 11에서,In Formulas 10 and 11 above,R6 내지 R7은 독립적으로 C5-50알킬렌이고;R 6 to R 7 are independently C 5-50 alkylene;R8 내지 R9는 독립적으로 C5-50알킬이다.R 8 to R 9 are independently C 5-50 alkyl.
- 제 1항에 있어서,According to clause 1,상기 제2 고분자-CNT 복합체에서 상기 CNT는 반도체성 단일벽 탄소나노튜브(sc-SWCNT)인 수소 가스 센서.In the second polymer-CNT composite, the CNT is a semiconducting single-walled carbon nanotube (sc-SWCNT).
- 기판; 및 센싱부를 포함하는 수소 가스 센서로서,Board; And a hydrogen gas sensor including a sensing unit,상기 센싱부는 상기 기판 상에 제1 고분자로부터 형성된 고분자층;The sensing unit includes a polymer layer formed from a first polymer on the substrate;상기 고분자층 상에 제2 고분자-CNT 복합체로부터 형성된 복합체층;A composite layer formed from a second polymer-CNT composite on the polymer layer;상기 복합체층 상에 형성된 금속 전극;a metal electrode formed on the composite layer;상기 복합체층 상에 형성된 팔라듐 나노입자층; 및A palladium nanoparticle layer formed on the composite layer; and상기 팔라듐 나노입자층 상에 위치하는 고분자 코팅층;을 포함하며,It includes a polymer coating layer located on the palladium nanoparticle layer,상기 제2 고분자-CNT복합체는 제2 고분자에 의해 CNT가 랩핑된 것이고,The second polymer-CNT composite is one in which CNTs are wrapped by a second polymer,상기 고분자층과 복합체층은 트리아졸을 통해 연결되는 것인 수소 가스 센서의 제조방법.A method of manufacturing a hydrogen gas sensor wherein the polymer layer and the composite layer are connected through triazole.
- 제 14항에 있어서,According to clause 14,상기 수소 가스 센서의 제조방법은The manufacturing method of the hydrogen gas sensor is(a) 기판 상에 제1 고분자를 코팅 및 고정화하는 단계;(a) coating and immobilizing the first polymer on a substrate;(b) 상기 제1 고분자가 코팅된 기판을 제2 고분자-CNT 복합체 용액에 침지하는 단계;(b) immersing the first polymer-coated substrate in a second polymer-CNT composite solution;(c) 상기 제1 고분자와 제2 고분자가 클릭반응하여 고분자층 및 복합체층을 형성하는 단계;(c) forming a polymer layer and a composite layer through a click reaction between the first polymer and the second polymer;(d) 상기 복합체층 상에 소스 전극과 드레인 전극을 형성하는 단계;(d) forming a source electrode and a drain electrode on the composite layer;(e) 상기 복합체층 상에 팔라듐 나노입자층을 형성하는 단계; 및(e) forming a palladium nanoparticle layer on the composite layer; and(f) 상기 팔라듐 나노입자층 상에 고분자 코팅층을 형성하는 단계;를 포함하는 수소 가스 센서의 제조방법.(f) forming a polymer coating layer on the palladium nanoparticle layer.
- 제 15항에 있어서,According to clause 15,상기 (e) 단계는 팔라듐 나노입자의 녹는점보다 낮은 온도 조건에서 열증착하는 단계를 포함하는 수소 가스 센서의 제조방법.Step (e) is a method of manufacturing a hydrogen gas sensor comprising thermal evaporation under temperature conditions lower than the melting point of palladium nanoparticles.
- 제 16항에 있어서,According to clause 16,상기 온도 조건은 80 내지 500℃인 수소 가스 센서의 제조방법.A method of manufacturing a hydrogen gas sensor where the temperature condition is 80 to 500°C.
- 제 15항에 있어서,According to clause 15,상기 (f) 단계는 고분자를 용매에 용해시킨 뒤, 상기 팔라듐 나노입자층 상에 코팅 및 건조하는 단계를 포함하는 수소 가스 센서의 제조방법.Step (f) is a method of manufacturing a hydrogen gas sensor comprising dissolving the polymer in a solvent and then coating and drying the palladium nanoparticle layer.
- 제 18항에 있어서,According to clause 18,상기 용매는 할로겐화 알콕시 벤젠 화합물인 수소 가스 센서의 제조방법.A method of manufacturing a hydrogen gas sensor wherein the solvent is a halogenated alkoxy benzene compound.
- 제 15항에 있어서,According to clause 15,상기 (a) 단계는, In step (a),(a-1) 용매로 기판을 세척하는 단계;(a-1) washing the substrate with a solvent;(a-2) 자기 조립 단분자층(SAM)을 코팅하는 단계;(a-2) coating a self-assembled monolayer (SAM);(a-3) 상기 제1 고분자를 코팅하는 단계; (a-3) coating the first polymer;(a-4) UV 경화 단계; 및(a-4) UV curing step; and(a-5) 용매로 기판에 미고정된 화합물을 세척하는 단계;를 포함하는 것인 수소 가스 센서의 제조방법.(a-5) A method of manufacturing a hydrogen gas sensor comprising the step of washing the compound unfixed to the substrate with a solvent.
- 제 20항에 있어서,According to clause 20,상기 (a-3) 단계에서, 상기 제1 고분자는 하기 화학식 4로 표시되는 것인 수소 가스 센서의 제조방법.In step (a-3), the first polymer is represented by the following formula (4).[화학식 4][Formula 4]상기 화학식 4에서,In Formula 4 above,FG1은 알키닐 작용기이고;FG 1 is an alkynyl functional group;p1 내지 p2는 말단에 FG1 작용기를 갖는 단량체로부터 유래된 반복단위고;p 1 to p 2 are repeating units derived from a monomer having a FG 1 functional group at the end;z 및 k는 1 내지 7의 정수이고;z and k are integers from 1 to 7;a 및 b는 1 이상의 정수이다.a and b are integers greater than or equal to 1.
- 제 20항에 있어서,According to clause 20,상기 (a-4) 단계는 패턴 형성 단계를 더 포함하는 것인 수소 가스 센서의 제조방법.The method of manufacturing a hydrogen gas sensor wherein step (a-4) further includes a pattern forming step.
- 제 15항에 있어서,According to clause 15,상기 (a) 단계는The step (a) is(a'-1) 용매로 기판을 세척하는 단계;(a'-1) washing the substrate with a solvent;(a'-2) 상기 제1 고분자를 코팅하는 단계;(a'-2) coating the first polymer;(a'-3) 열처리 단계; 및(a'-3) heat treatment step; and(a'-4) 용매로 기판에 미고정된 화합물을 세척하는 단계;를 포함하는 것인 수소 가스 센서의 제조방법.(a'-4) A method of manufacturing a hydrogen gas sensor comprising the step of washing the compound unfixed to the substrate with a solvent.
- 제 23항에 있어서,According to clause 23,상기 (a'-2) 단계에서, 상기 제1 고분자는 하기 화학식 5로 표시되는 것인 수소 가스 센서의 제조방법.In the step (a'-2), the first polymer is represented by the following formula (5).[화학식 5][Formula 5]상기 화학식 5에서,In Formula 5 above,FG1은 알키닐 작용기이고;FG 1 is an alkynyl functional group;FG3는 에폭시 작용기이고;FG 3 is an epoxy functional group;p1 내지 p2는 말단에 FG1 작용기를 갖는 단량체로부터 유래된 반복단위고;p 1 to p 2 are repeating units derived from a monomer having a FG 1 functional group at the end;p3는 말단에 FG3 작용기를 갖는 단량체로부터 유래된 반복단위고;p 3 is a repeating unit derived from a monomer having a FG 3 functional group at the terminal;z, k 및 t는 1 내지 7의 정수이고;z, k and t are integers from 1 to 7;a, b 및 c는 1 이상의 정수이다.a, b and c are integers greater than or equal to 1.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR10-2022-0039535 | 2022-03-30 | ||
KR1020220039535A KR102545620B1 (en) | 2022-03-30 | 2022-03-30 | Cnt film using click reaction, cnt-based hydrogen gas sensor using the same, and manufacturing method thereof |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023191534A1 true WO2023191534A1 (en) | 2023-10-05 |
Family
ID=86989557
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/KR2023/004256 WO2023191534A1 (en) | 2022-03-30 | 2023-03-30 | Cnt film using click reaction, cnt-based hydrogen gas sensor using same, and method for manufacturing same |
Country Status (2)
Country | Link |
---|---|
KR (1) | KR102545620B1 (en) |
WO (1) | WO2023191534A1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20050039016A (en) * | 2003-10-23 | 2005-04-29 | 한국화학연구원 | Hydrogen sensor using palladium coated carbon nanotube |
KR20130125183A (en) * | 2012-05-08 | 2013-11-18 | 연세대학교 산학협력단 | Hydrogen sensor and method for manufacturing the same |
KR20140033555A (en) * | 2012-08-29 | 2014-03-19 | 삼성전자주식회사 | Method for separating carbon nanotubes |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100990815B1 (en) * | 2008-07-07 | 2010-10-29 | 재단법인서울대학교산학협력재단 | Hydrogen Sensor And Method For Manufacturing The Same |
-
2022
- 2022-03-30 KR KR1020220039535A patent/KR102545620B1/en active IP Right Grant
-
2023
- 2023-03-30 WO PCT/KR2023/004256 patent/WO2023191534A1/en unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR20050039016A (en) * | 2003-10-23 | 2005-04-29 | 한국화학연구원 | Hydrogen sensor using palladium coated carbon nanotube |
KR20130125183A (en) * | 2012-05-08 | 2013-11-18 | 연세대학교 산학협력단 | Hydrogen sensor and method for manufacturing the same |
KR20140033555A (en) * | 2012-08-29 | 2014-03-19 | 삼성전자주식회사 | Method for separating carbon nanotubes |
Non-Patent Citations (2)
Title |
---|
HUAMING LI, FUYONG CHENG, ANDY M. DUFT, ALEX ADRONOV: "Functionalization of Single-Walled Carbon Nanotubes with Well-Defined Polystyrene by "Click" Coupling", JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, AMERICAN CHEMICAL SOCIETY, vol. 127, no. 41, 1 October 2005 (2005-10-01), pages 14518 - 14524, XP055092760, ISSN: 00027863, DOI: 10.1021/ja054958b * |
JI XIAOLI, GUANG SHANYI, XU HONGYAO, KE FUYOU, QIN XIAOYUN: "Fluorene‐based click polymers: Relationship between molecular structure and nonlinear optical properties", JOURNAL OF APPLIED POLYMER SCIENCE, JOHN WILEY & SONS, INC., US, vol. 131, no. 19, 5 October 2014 (2014-10-05), US , XP093092751, ISSN: 0021-8995, DOI: 10.1002/app.40878 * |
Also Published As
Publication number | Publication date |
---|---|
KR102545620B1 (en) | 2023-06-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2015084121A1 (en) | Block copolymer | |
WO2015084124A1 (en) | Block copolymer | |
WO2015084122A1 (en) | Block copolymer | |
WO2016053007A1 (en) | Method for producing patterned substrate | |
WO2015084120A1 (en) | Monomer and block copolymer | |
WO2015084125A1 (en) | Block copolymer | |
WO2016053014A1 (en) | Method for producing patterned substrate | |
WO2012060601A2 (en) | Method of selective separation of semiconducting carbon nanotubes, dispersion of semiconducting carbon nanotubes, and electronic device including carbon nanotubes separated by using the method | |
WO2016053011A9 (en) | Block copolymer | |
WO2018034411A1 (en) | Film touch sensor and structure for film touch sensor | |
WO2014157856A1 (en) | Photosensitive coating composition, coating conductive film using photosensitive coating composition, and method for forming coating conductive film | |
WO2018236100A1 (en) | Organic solar cell | |
WO2018230848A1 (en) | Compound, coating composition comprising same, organic light-emitting device using same and method for preparing same | |
WO2015190762A2 (en) | Fused ring derivative and organic solar cell including same | |
WO2023177186A1 (en) | Cnt film using click reaction, cnt-based biosensor using same, and manufacturing method therefor | |
WO2014181986A1 (en) | Organic electronic element comprising fullerene derivative | |
WO2023191535A1 (en) | Patterned cnt film-coated substrate using click reaction and manufacturing method therefor | |
WO2015037966A1 (en) | Copolymer and organic solar cell comprising same | |
WO2017213379A1 (en) | Organic transistor and gas sensor | |
WO2023191534A1 (en) | Cnt film using click reaction, cnt-based hydrogen gas sensor using same, and method for manufacturing same | |
WO2019225989A1 (en) | Compound, coating composition comprising same, and organic light emitting diode | |
WO2014104496A1 (en) | Monomer, hardmask composition including monomer, and method for forming pattern by using hardmask composition | |
WO2017213419A1 (en) | Color transformation photonic crystal structure, color transformation photonic crystal sensor using same, and counterfeit petroleum detecting photosensor using same | |
WO2018164353A1 (en) | Polymer and organic solar cell comprising same | |
WO2022045837A1 (en) | Method for preparing deuterated aromatic compound and deuterated composition |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23781386 Country of ref document: EP Kind code of ref document: A1 |