[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2023189972A1 - Computation device, computation method, and program - Google Patents

Computation device, computation method, and program Download PDF

Info

Publication number
WO2023189972A1
WO2023189972A1 PCT/JP2023/011323 JP2023011323W WO2023189972A1 WO 2023189972 A1 WO2023189972 A1 WO 2023189972A1 JP 2023011323 W JP2023011323 W JP 2023011323W WO 2023189972 A1 WO2023189972 A1 WO 2023189972A1
Authority
WO
WIPO (PCT)
Prior art keywords
information
section
road surface
vehicle
road
Prior art date
Application number
PCT/JP2023/011323
Other languages
French (fr)
Japanese (ja)
Inventor
陽支 増渕
伸一 ▲高▼松
敦俊 長谷部
悠 首藤
Original Assignee
Kyb株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyb株式会社 filed Critical Kyb株式会社
Publication of WO2023189972A1 publication Critical patent/WO2023189972A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C23/00Auxiliary devices or arrangements for constructing, repairing, reconditioning, or taking-up road or like surfaces
    • E01C23/01Devices or auxiliary means for setting-out or checking the configuration of new surfacing, e.g. templates, screed or reference line supports; Applications of apparatus for measuring, indicating, or recording the surface configuration of existing surfacing, e.g. profilographs
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N20/00Machine learning
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06NCOMPUTING ARRANGEMENTS BASED ON SPECIFIC COMPUTATIONAL MODELS
    • G06N3/00Computing arrangements based on biological models
    • G06N3/02Neural networks

Definitions

  • the present invention relates to an arithmetic device, an arithmetic method, and a program.
  • Patent Document 1 a technique is known that estimates the state of the road surface by detecting the acceleration of a vehicle running on a road and inputting the acceleration data to a learning model.
  • IRI International Roughness Index
  • JP2020-86960A Japanese Patent Application Publication No. 2010-66040
  • the present invention has been made in view of the above, and it is an object of the present invention to provide a calculation device, a calculation method, and a program that allow detailed understanding of road surface conditions at each location.
  • a computing device acquires position information of a position sensor detected by a position sensor mounted on a vehicle moving on a road.
  • a relationship information acquisition unit that acquires relationship information indicating a positional relationship between the position of the position sensor in the vehicle and the position of a wheel in the vehicle, based on the position information of the position sensor and the relationship information.
  • a wheel position calculation unit that calculates position information of the wheel; including.
  • a calculation method includes the steps of: acquiring position information of a vehicle that is detected by a position sensor mounted on a vehicle moving on a road; acquiring relationship information indicating a positional relationship between the position of the position sensor on the vehicle and the position of a wheel on the vehicle; and calculating position information of the wheel based on the position information and the relationship information. and, including.
  • a program includes the steps of acquiring position information of a vehicle that is detected by a position sensor mounted on a vehicle moving on a road; acquiring relationship information indicating a positional relationship between the position of the position sensor and the position of a wheel on the vehicle; and calculating position information of the wheel based on the position information and the relationship information. , cause the computer to execute.
  • FIG. 1 is a schematic block diagram of a detection system according to this embodiment.
  • FIG. 2 is a schematic diagram of the vehicle.
  • FIG. 3 is a schematic block diagram of the arithmetic device.
  • FIG. 4 is a schematic diagram showing an example of each position on the road.
  • FIG. 5 is a schematic diagram for explaining the calculation of IRI.
  • FIG. 6 is a flowchart illustrating a calculation flow of road surface conditions in non-overlapping sections.
  • FIG. 7 is a schematic block diagram of the arithmetic device according to the second embodiment.
  • FIG. 8 is a schematic diagram showing an example of the positional relationship between the position sensor and the wheels.
  • FIG. 1 is a schematic block diagram of a detection system according to this embodiment.
  • the detection system 1 includes a vehicle 10, a measurement data acquisition device 12, and a calculation device 14.
  • the detection system 1 uses the calculation device 14 to calculate the road surface condition of the road based on the behavior information.
  • the road surface condition is an index indicating the degree of unevenness of the road surface. More specifically, in this embodiment, the road surface condition is an index based on IRI (International Roughness Index).
  • the vehicle 10 detects behavior information and position information while traveling on a road, and transmits the detected behavior information and position information to the measurement data acquisition device 12. Behavior information and position information will be described later.
  • the measurement data acquisition device 12 is, for example, a device (computer) managed by a road management entity.
  • the measurement data acquisition device 12 transmits the behavior information and position information transmitted from the vehicle 10 to the calculation device 14.
  • the calculation device 14 acquires behavior information and position information via the measurement data acquisition device 12, but is not limited thereto.
  • the detection system 1 may not include the measurement data acquisition device 12, and the calculation device 14 may acquire behavior information and position information from the vehicle 10.
  • FIG. 2 is a schematic diagram of the vehicle.
  • the vehicle 10 includes a position sensor 10A, a behavior sensor 10B, and a measuring device 10C.
  • the position sensor 10A is a sensor that acquires its own position information.
  • the position information of the position sensor 10A is information indicating the earth coordinates of the position sensor 10A.
  • the position information of the position sensor 10A detected by the position sensor 10A is treated as the position information (earth coordinates) of the vehicle 10.
  • the position sensor 10A is a module for GNSS (Global Navigation Satellite System).
  • GNSS Global Navigation Satellite System
  • the behavior sensor 10B is a sensor that detects behavior information indicating the behavior of the vehicle 10.
  • the behavior information may be any information that indicates the behavior of the vehicle 10 while traveling on the road.
  • the behavior sensor 10B is an acceleration sensor that detects acceleration, more preferably an acceleration sensor that detects acceleration in three axes.
  • the behavior information detected by the behavior sensor 10B is not limited to acceleration, and includes, for example, acceleration, image data captured around the vehicle 10, speed of the vehicle 10, angular velocity of the vehicle 10, steering angle of the vehicle 10, It may be at least one of the amount of braking of the vehicle 10, the operation of the wiper of the vehicle 10, and the amount of operation of the suspension of the vehicle 10. Note that the image data around the vehicle 10 changes depending on the movement of the vehicle 10, and therefore can be said to be information indicating the behavior of the vehicle 10.
  • the behavior sensor 10B that detects a captured image around the vehicle 10 is, for example, a camera
  • the behavior sensor 10B that detects the speed of the vehicle 10 is, for example, a speed sensor
  • the behavior sensor 10B that detects the speed of the vehicle 10 is, for example, a three-axis sensor.
  • the behavior sensor 10B, which is a gyro sensor and detects the steering angle of the vehicle 10, is, for example, a steering sensor
  • the behavior sensor 10B, which detects the amount of braking of the vehicle 10 is, for example, a brake sensor, and detects the operation of the wiper of the vehicle 10.
  • An example of the behavior sensor 10B is a wiper sensor
  • an example of the behavior sensor 10B that detects the amount of operation of the suspension of the vehicle 10 is a suspension sensor.
  • the vehicle 10 is equipped with a plurality of behavior sensors 10B.
  • the respective behavior sensors 10B are mounted at different positions in the vehicle 10.
  • the behavior sensors 10B include a behavior sensor 10B1 provided on the Z direction side (upward side in the vertical direction) of the left front wheel TR1, and a behavior sensor 10B1 provided on the Z direction side of the right front wheel TR2.
  • a behavior sensor 10B2 provided on the Z direction side of the wheel TR3 which is the left rear wheel, and a behavior sensor 10B4 provided on the Z direction side of the right rear wheel TR4.
  • the position where the behavior sensor 10B is provided is arbitrary.
  • the number of behavior sensors 10B is not limited to four, and may be any number. Further, in the example of FIG.
  • the number of wheels TR is four, but the number may be arbitrary, for example, an arbitrary number of two or more.
  • the behavior sensors 10B1 to 10B4 detect the same type of behavior information (here, acceleration), but each behavior sensor 10B detects different types of behavior information. It's good.
  • a plurality of behavior sensors 10B for example, a plurality of acceleration sensors
  • a behavior sensor 10B for example, a speed sensor
  • the measuring device 10C is a device that controls the position sensor 10A and the behavior sensor 10B to detect the position information and behavior information of the vehicle 10, and records the detected position information and behavior information. That is, the measuring device 10C functions as a data logger that records position information and behavior information.
  • the measuring device 10C can be said to be a computer, and includes a control section 10C1, a storage section 10C2, and a communication section 10C3.
  • the control unit 10C1 is an arithmetic device, and includes, for example, an arithmetic circuit such as a CPU (Central Processing Unit).
  • the storage unit 10C2 is a memory that stores various information such as calculation contents and programs of the control unit 10C1, position information and behavior information of the vehicle 10, and includes, for example, RAM (Random Access Memory) and ROM (Read Only Memory).
  • the storage device includes at least one of a main storage device such as the above, and a nonvolatile storage device such as a flash memory or a hard disk drive (HDD).
  • the program for the control unit 10C1 stored in the storage unit 10C2 may be stored in a recording medium readable by the measuring device 10C.
  • the communication unit 10C3 is a communication module that communicates with an external device, and is, for example, an antenna.
  • the control unit 10C1 reads the program stored in the storage unit 10C2 and executes control of the position sensor 10A and the behavior sensor 10B. While the vehicle 10 is traveling on the road, the control unit 10C1 causes the position sensor 10A to detect the position information of the vehicle 10 at predetermined time intervals, and causes the behavior sensor 10B to detect behavior information at predetermined time intervals. Obtain location information and behavior information. That is, the control unit 10C1 causes the position sensor 10A and the behavior sensor 10B to perform detection every time the vehicle 10 travels for a predetermined period of time.
  • the predetermined time here is preferably a fixed time, such as one minute, but the predetermined time is not limited to a fixed time and may be any length. That is, the predetermined time may change each time.
  • the control unit 10C1 associates the acquired behavior information and position information and stores them in the storage unit 10C2. That is, behavior information and position information detected at the same timing are associated.
  • the associated information is stored in the storage unit 10C2 at each detected timing. Note that although these pieces of associated information are detected at the same timing, they are not limited to strictly the same timing, and may be detected at different timings. In this case, for example, behavior information and position information for which the difference in detection timing is less than or equal to a predetermined value are treated as being detected at the same timing and are associated with each other.
  • the above description was made on the assumption that the sampling periods of all the sensors are the same, if the sampling periods of each sensor are different, adjustments are made as appropriate.
  • the control unit 10C1 transmits the associated behavior information and position information to the measurement data acquisition device 12 via the communication unit 10C3.
  • the measurement data acquisition device 12 transmits the behavior information and position information received from the vehicle 10 to the calculation device 14. Note that if the measurement data acquisition device 12 is not provided, the control unit 10C1 may directly transmit the behavior information and position information to the arithmetic device 14.
  • FIG. 3 is a schematic block diagram of the arithmetic device.
  • the arithmetic device 14 is, for example, a computer, and includes a communication section 20, a storage section 22, and a control section 24.
  • the communication unit 20 is a communication module that communicates with an external device, and is, for example, an antenna.
  • the storage unit 22 is a memory that stores calculation contents and programs of the control unit 24, and includes at least one of a RAM, a main storage device such as a ROM, and a non-volatile storage device such as a flash memory or an HDD. Including one. Note that the program for the control unit 24 stored in the storage unit 22 may be stored in a recording medium that can be read by the arithmetic unit 14.
  • the control unit 24 is an arithmetic device, and includes, for example, an arithmetic circuit such as a CPU.
  • the control unit 24 includes a road surface information acquisition unit 30, an IRI calculation unit 32, a road condition calculation unit 34, a position information acquisition unit 36, a behavior information acquisition unit 38, a learning unit 40, and a calculation unit 42.
  • the control unit 24 reads the program (software) from the storage unit 22 and executes it, thereby controlling the road surface information acquisition unit 30, the IRI calculation unit 32, the road surface condition calculation unit 34, the position information acquisition unit 36, and the behavior information acquisition unit 38.
  • a learning section 40 and a calculation section 42 are implemented to execute their processing.
  • control unit 24 may execute these processes using one CPU, or may include a plurality of CPUs and execute the processes using the plurality of CPUs. Further, at least a portion of the road surface information acquisition section 30, the IRI calculation section 32, the road surface condition calculation section 34, the position information acquisition section 36, the behavior information acquisition section 38, the learning section 40, and the calculation section 42 are realized by hardware. It's okay.
  • the calculation device 14 uses behavior information of the vehicle 10 traveling on a road whose position (height) in the Z direction at each position on the road surface is known and the road surface condition of the road as training data. , Machine learning is performed on a learning model to determine the correspondence between behavior information and road surface conditions. Then, the arithmetic device 14 calculates the road surface condition of the road by inputting the behavior information of the vehicle 10 that has traveled on a road whose position in the Z direction and road surface condition are unknown to the machine-learned learning model.
  • IRI the road surface condition used for the teacher data.
  • IRI is calculated as an average value of road surface conditions over a unit distance of 20 m or more. In this way, since the unit distance in IRI is long, the sampling rate becomes long, and if IRI is used as teacher data, there is a risk that the accuracy of the learning model will decrease. In contrast, in the present embodiment, as will be described later, the road surface condition in the non-overlapping section S3 is calculated and used as the road surface condition for teacher data, thereby suppressing a decrease in the accuracy of the learning model.
  • FIG. 4 is a schematic diagram showing an example of each position on the road.
  • the road surface information acquisition unit 30 acquires road surface height information indicating the position (height) of the road surface in the Z direction.
  • the road surface information acquisition unit 30 acquires road surface height information for each position on the road. It is preferable that the road surface information acquisition unit 30 acquires road surface height information for each position in the extending direction of the road, and also acquires road surface height information for each position in a direction intersecting the extending direction of the road.
  • FIG. 4 shows each position P on the road R, and the road surface information acquisition unit 30 acquires the position of the road surface in the Z direction at each position P as road surface height information.
  • FIG. 4 shows each position P on the road R, and the road surface information acquisition unit 30 acquires the position of the road surface in the Z direction at each position P as road surface height information.
  • positions PA1 to PA8 are aligned in the extending direction of the road
  • positions PB1 to PB8 are aligned in the extending direction of the road
  • positions PC1 to PC8 are aligned in the extending direction of the road. It is shown.
  • Positions PA1 to PA8, positions PB1 to PB8, and positions PC1 to PC8 are lined up in a direction intersecting the extending direction of the road. Note that the distance between adjacent positions P, that is, the distance between the positions where road surface height information is acquired, may be any length, but may be shorter than 20 m, which is the unit distance of IRI, for example, 0.1 m. It may be.
  • the road surface information acquisition unit 30 may acquire road surface height information for each position P using any method.
  • the road surface height information may be set (measured) in advance, and the road surface information acquisition unit 30 acquires information on the position of the road surface measured in advance in the Z direction and information on the measurement position of the road surface height information (for example, (Earth coordinates of the measurement position) may be acquired as the road surface height information.
  • the road surface height information may be measured by a measurement vehicle using LIDAR (Light Detection and Ranging), and the road surface information acquisition unit 30 may obtain the measurement results.
  • LIDAR Light Detection and Ranging
  • FIG. 5 is a schematic diagram for explaining the calculation of IRI.
  • the IRI calculation unit 32 calculates the IRI in the first section and the IRI in the second section on the road R based on the road surface height information for each position P.
  • the IRI calculation unit 32 calculates the IRI using a known method. That is, the IRI calculation unit 32 calculates the IRI by executing a simulation in which a one-wheeled vehicle model travels at 80 km/h in the section for which the IRI is to be calculated. Specifically, the IRI calculation unit 32 sets the position (height) in the Z direction of each position in the section for which IRI is to be calculated from the road surface height information for each position P. Then, the IRI calculation unit 32 executes an analysis in which a one-wheeled vehicle model travels at a speed of 80 km/h in a section with a set height, and calculates the unsprung Z-direction position of the wheel suspension for each unit time, The position on the spring in the Z direction is calculated. The IRI calculation unit 32 calculates the IRI in that section from the difference between the unsprung Z-direction position of the wheel suspension and the sprung Z-direction position. Specifically, the IRI calculation unit 32 calculates the IRI using the following equation (1).
  • L is the length (distance) of the section
  • v is the speed of the vehicle model
  • Z S is the position on the spring in the Z direction
  • Z u is the Z It is the position of the direction. That is, the IRI calculation unit 32 sums up the difference between the Z-direction position on the spring and the Z-direction position on the unsprung part for each position in the section, and divides the total value by the distance of the section. Calculated as IRI.
  • the IRI calculation unit 32 calculates the IRI in the first section on the road R based on the road surface height information for each position P.
  • the IRI calculation unit 32 sets a starting point position (starting point) PS1a and an ending point position (goal point) PS1b on the road R.
  • the IRI calculation unit 32 sets the starting point position PS1a to an arbitrary position (earth coordinates) on the road R, and sets a position separated by the first unit distance from the starting point position PS1a to the ending point position PS1b.
  • the first unit distance is longer than the unit distance in IRI, in other words, it is 20 m or more.
  • the IRI calculation unit 32 sets the section from the start point position PS1a set in this way to the end point position PS1b as the first section S1. Then, the IRI calculation unit 32 sets the position (height) in the Z direction at each position on the first section S1 based on the road surface height information for each position P, and uses the method described above to set the position (height) in the Z direction at each position on the first section S1. Calculate the IRI of S1. Note that the IRI calculation unit 32 sets the starting point position PS1a and the ending point position PS1b so that they overlap with any of the positions P indicated by the road surface height information, and determines the Z-direction position of each position P that overlaps with the first section S1. is the position in the Z direction at each position on the first section S1. However, the present invention is not limited thereto, and the IRI calculation unit 32 may set at least one of the starting point position PS1a and the ending point position PS1b so as to be shifted from the position P indicated by the road surface height information.
  • the IRI calculation unit 32 calculates the IRI in the second section S2 on the road R based on the road surface height information for each position P.
  • the IRI calculation unit 32 sets the second section so that it overlaps with the first section S1 and is longer than the first section S1 by a predetermined distance W.
  • the predetermined distance W here may be set to any length, but is preferably less than the unit distance (20 m) in IRI, and the distance between adjacent positions P (the position where road surface height information is acquired) is preferably less than the unit distance (20 m) in IRI. It is more preferable that the distance between the two is the same.
  • the second section S2 is longer than the first section S1 (first unit distance) and less than twice as long as the first section S1 (first unit distance).
  • the IRI calculation unit 32 defines the section from the start point PA1a of the first section S1 to the end point PS2b, which is a predetermined distance W from the end point PS1b, passing through the end point PS1b of the first section S1, as the second section S2. Set. That is, the second section S2 overlaps with the first section S1 from the start point PA1a to the end point PS1b, and does not overlap with the first section S1 from the end point PS1b to the end point PS2b.
  • the IRI calculation unit 32 sets the position (height) in the Z direction at each position on the second section S2 based on the road surface height information for each position P, and calculates the height of the second section S2 by the above method. Calculate IRI.
  • the IRI calculation unit 32 changes the positions of the first section S1 and the second section S2, and calculates the IRI in the first section S1 and the IRI in the second section S2 for each position of the first section S1 and the second section S2. Calculated as follows. For example, the first section S1 for which the IRI has been calculated is defined as the first section S1A, and the first section S1 and the second section S2 for which the IRI is calculated are defined as the first section S1B and the second section S2B. In this case, the IRI calculation unit 32 sets the starting point PS1a of the first section S1B from which the IRI is to be calculated at a different position from the starting point PS1a of the first section S1A.
  • the IRI calculation unit 32 sets the first section S1B by setting a position separated by the first unit distance from the starting point PS1a of the first section S1B as the end point PS1b of the first section S1B.
  • the IRI calculation unit 32 calculates the IRI of this first section S1B using the same method as described above.
  • the first sections S1 having different positions have the same length.
  • the distance (first unit distance) from the starting point PS1a to the ending point PS1b of each first section S1 is as follows: Preferably they are the same.
  • the IRI calculation unit 32 sets the second section S2B so that it overlaps with the first section S1B and is longer than the first section S1B by a predetermined distance W. That is, the IRI calculation unit 32 converts the section from the starting point PS1a of the first section S1B, passing through the ending point PS1b of the first section S1B, to the ending point PS2b, which is a predetermined distance W away from the ending point PS1b, as the second section. Set as S2B.
  • the IRI calculation unit 32 calculates the IRI of this second section S2B using the same method as described above. In this case, it is preferable that the second sections S2 having different positions have the same length.
  • the distances from the starting point PS1a to the ending point PS2b of the respective second sections S2 are the same. . That is, it is preferable that the predetermined distance W (length of the non-overlapping section S3) of each second section S2 is the same.
  • FIG. 4 The above-described calculation of IRI for each position in the first section S1 and the second section S2 will be explained using FIG. 4 as an example.
  • a first section S1A starting from position PA1 and ending at position PA4, and a second section S2A starting from position PA1, passing through position PA4, and ending at position PA5 are set.
  • the IRI calculation unit 32 calculates the IRI of the first section S1A from the position PA1 to the position PA4, and the IRI of the second section S2A from the position PA1 to the position PA5.
  • the IRI calculation unit 32 further sets a first section S1B in which the starting point is at the position PA2 and an ending point in the position PA5, and a second section S2B in which the starting point is at the position PA2 and the ending point is at the position PA6. , the IRI of the first section S1B from position PA2 to position PA5 and the IRI of the second section S2B from position PA2 to position PA6 are calculated. In this way, the IRI calculation unit 32 makes the positions of the first section S1 and the second section S2 different by shifting the starting point position and the ending point position while keeping the lengths of the first section S1 and the second section S2 constant. In addition, the IRI of the first section S1 and the second section S2 at each position is calculated.
  • the road surface condition calculation unit 34 calculates the road surface condition in a non-overlapping section S3 that does not overlap with the first section S1 in the second section S2, based on the IRI of the first section S1 and the IRI of the second section. In this embodiment, the road surface condition calculation unit 34 calculates the road surface condition of the non-overlapping section S3 based on the difference between the IRI of the second section and the IRI of the first section S1. Furthermore, it is preferable that the road surface condition calculation unit 34 calculates the road surface condition IRI S3 of the non-overlapping section S3 using the following equation (2).
  • IRI S3 (IRIS 2 ⁇ L S2 - IRI S1 ⁇ L S1 )/L S2 (2)
  • IRI S1 is the IRI of the first section S1
  • L S1 is the length of the first section
  • IRI S2 is the IRI of the second section S2
  • L S2 is the IRI of the second section S1. It is the length.
  • the road surface condition of section S3 is calculated.
  • the road surface condition of the non-overlapping section S3 can be said to be a value corresponding to the IRI at the length (predetermined distance W) of the non-overlapping section S3.
  • the road surface condition calculation unit 34 calculates the road surface condition of the non-overlapping section S3 for each of the first section S1 and the second section S2, which are located at different positions. That is, for each set of the first section S1 and the second section S2 having different positions, the position of the non-overlapping section S3 will also be different, so the road surface condition calculation unit 34 By executing calculations similar to those described above, the road surface condition for each non-overlapping section S3 at a different position is calculated. That is, in the example of FIG. 4, the road surface condition calculation unit 34 calculates the IRI from position PA4 to position PA4 based on the IRI of first section S1 from position PA1 to position PA4 and the IRI of second section S2 from position PA1 to position PA5.
  • the road surface condition of the non-overlapping section S3 up to the position PA5 is calculated. Furthermore, the road surface condition calculation unit 34 calculates the non-standard area from the position PA5 to the position PA6 based on the IRI of the first section S1 from the position PA2 to the position PA5 and the IRI of the second section S2 from the position PA2 to the position PA6.
  • the road surface condition of the overlapping section S3 is calculated. That is, it can be said that the road surface condition calculation unit 34 calculates the road surface condition for each position on the road R for each distance between adjacent positions P (every predetermined distance W).
  • FIG. 6 is a flowchart illustrating a calculation flow of road surface conditions in non-overlapping sections.
  • the calculation device 14 uses the road surface information acquisition unit 30 to acquire road surface height information indicating the height of each road surface position of the road R (step S10), and the IRI calculation unit 32 acquires road surface height information indicating the height of each road surface position of the road R.
  • the IRI of the first section and the IRI of the second section are calculated based on the IRI of the first section and the IRI of the second section (step S12).
  • the road surface condition (IRI) of section S3 is calculated (step S14).
  • step S16; No if road surface height information at other road surface positions remains (step S16; No), that is, the calculation process of the road surface condition of the non-overlapping section S3 using the road surface height information at all road surface positions is performed. If it has not been completed, shift the starting point position (step S18), return to step S12, calculate the IRI of the first section S1 and the second section S2 at a different position, and calculate the non-overlapping section S3 for each road surface position. Calculate the road surface condition. On the other hand, if there is no road surface height information remaining at other road surface positions (step S16; Yes), that is, the calculation process of the road surface condition of the non-overlapping section S3 using the road surface height information at all road surface positions is performed.
  • this process is finished.
  • the process of calculating the IRI of the first section S1 and the second section S2 and the process of calculating the non-overlapping section S3 are repeated, but the process is not limited to repeating the processes in this order. For example, after calculating the IRI of the first section and the IRI of the second section at each position, the road surface condition of the non-overlapping section S3 at each position may be calculated.
  • the road surface condition calculation unit 34 calculates the road surface condition of the non-overlapping section S3 whose length is the predetermined distance W for each position on the road R. Therefore, it is possible to calculate the road surface condition for each section which is shorter than the IRI, which has a unit distance of 20 m, so that the road surface condition for each position can be grasped in detail.
  • the behavior information and the position information of the vehicle 10 are acquired while the vehicle 10 is traveling on the road R on which the road surface condition of the non-overlapping section S3 has been calculated (the road R with a known height). Let it be detected.
  • the position information acquisition unit 36 of the calculation device 14 acquires the position information of the vehicle 10 detected by the position sensor 10A while traveling on the road R.
  • the behavior information acquisition unit 38 of the arithmetic device 14 acquires behavior information of the vehicle 10 detected by the behavior sensor 10B while traveling on the road R.
  • the learning unit 40 causes the learning model to perform machine learning using the behavior information of the vehicle 10 that has moved on the road R and the road surface condition in the non-overlapping section S3 as training data. Specifically, the learning unit 40 associates the behavior information of the vehicle 10 with the road surface condition in the non-overlapping section S3 based on the position information of the vehicle 10 that is associated with the behavior information of the vehicle 10 that has moved on the road R. . That is, for example, the learning unit 40 extracts a non-overlapping section S3 that is within a predetermined distance (preferably a position that overlaps with the position of the vehicle 10) from the position information of the vehicle 10.
  • the learning unit 40 then associates the behavior information associated with the position information of the vehicle 10 with the road surface condition of the extracted non-overlapping section S3.
  • the learning unit 40 sets, as teacher data, a data set in which the behavior information is an input value and the road surface condition of the non-overlapping section S3 associated with the behavior information is an output value, and the teacher data is used as a learning model. input.
  • the learning unit 40 prepares a plurality of data sets consisting of the behavior information and the road surface condition of the non-overlapping section S3 for each behavior information of the vehicle 10, that is, for each position, and learns each of the plurality of data sets. Preferably input into the model.
  • the learning model performs machine learning on the correspondence between behavior information and the road surface condition at the position where the behavior information is detected. It becomes a model (program) that can be calculated.
  • the learning model is a learning model learned by deep learning, and is composed of a model (neural network configuration information) that defines a neural network that constitutes a classifier learned by deep learning, and variables.
  • a learning model can determine the label of input data based on that data.
  • the learning model is a CNN (Conventional Neural Network) model, but is not limited to the CNN model, and may be any type of learning model.
  • the calculation unit 42 of the calculation device 14 uses the learned learning model to calculate the road surface condition of a road whose road surface condition and height are unknown. Specifically, the position information acquisition unit 36 and the behavior information acquisition unit 38 acquire position information and behavior information of the vehicle 10 detected by the vehicle 10 moving on a road with an unknown road surface condition. The calculation unit 42 inputs the acquired behavior information into the trained learning model. In the learning model, behavior information is input as input data and calculations are executed. As a result, the learning model outputs the road surface condition at the position where the behavior information was detected as output data. It can be said that the calculation unit 42 calculates the road surface condition output as output data as the road surface condition of the road. The calculation unit 42 inputs the behavior information for each position indicated by the position information of the vehicle 10 into the learning model, and calculates the road surface condition for each position of the road.
  • the road surface condition of the road is calculated using a learning model that uses the road surface condition of the non-overlapping section S3 as teacher data.
  • the road surface condition of the non-overlapping section S3 which can be set for each shorter section, as training data, rather than the IRI whose unit distance is defined as 20 m, the road surface condition at each position can be grasped in detail. This allows the learning model to improve the accuracy of calculating road surface conditions.
  • the use of the road surface condition in the non-overlapping section S3 is not limited to teacher data for a learning model, and may be used for any purpose.
  • the calculation device 14 may output information on the calculated road surface condition of the non-overlapping section S3, may perform arbitrary processing based on the road surface condition of the non-overlapping section S3, or may output information on the calculated road surface condition of the non-overlapping section S3.
  • the road surface condition at S3 may be transmitted to another device, or may be displayed on a display device of the arithmetic device 14 (not shown).
  • the calculation device 14 uses the road surface information acquisition unit 30 that acquires road surface height information indicating the height position of the road surface of the road R in the vertical direction for each road surface position on the road R. , based on the road surface height information for each road surface position, the IRI in the first section S1 of the unit distance (first unit distance) on the road, and the IRI of the unit distance (first unit distance) that overlaps with the first section and ) and an IRI in a second section S2 whose length is less than twice the unit distance (first unit distance), and an IRI in the first section S1 and IRI in the second section S2.
  • a road surface condition calculation unit 34 that calculates a road surface condition (IRI) in a non-overlapping section S3 that does not overlap with the first section S1 in the second section S2 based on the following.
  • the road surface condition of the non-overlapping section S3, which is a predetermined distance W is calculated from the IRI of the first section S1 and the IRI of the second section S2.
  • the non-overlapping section S3 can be made shorter than the first section S1
  • the second section S2 is less than twice the first section, the non-overlapping section S3 can be made shorter than the first section S1.
  • the road surface condition at each position it is possible to grasp the road surface condition at each position in detail.
  • the first section S1 first unit distance
  • the second section S2 is longer than 20 m and less than 40 m
  • the non-overlapping section S3 is longer than 0 m (for example, 0.1 m) and 20 m. (for example, 19 m, etc.)
  • the road surface condition at each position can be grasped in more detail than in the first section S1. Therefore, according to this embodiment, it is possible to grasp the road surface condition in detail for each position.
  • the IRI calculation section 32 calculates the IRI in the first section S1 and the IRI in the second section S2 for each position by differentiating the starting point positions of the first section S1 and the second section S2, and calculates the IRI in the first section S1 and the IRI in the second section S2 for each position. calculates the road surface condition (IRI) in the non-overlapping section S3 for each position of the non-overlapping section.
  • IRI road surface condition
  • the IRI calculation unit 32 makes the distance of the first section S1 the same for each position, and the distance of the second section S2 for each position the same. According to this embodiment, since the lengths of the first section S1 and the second section S2 are the same, the road surface condition for each position can be calculated with high accuracy.
  • the IRI calculation unit 32 calculates the IRI in the second section S2, with the section from the start point PS1a of the first section S1 passing through the end point PS1b of the first section S1 to the end point PS2b of the non-overlapping section S3 as the second section S2. do. According to this embodiment, by setting the second section S2 in this way, the road surface condition for each position can be calculated with high accuracy.
  • the arithmetic device 14 further includes a learning section 40.
  • the learning unit 40 uses the behavior information indicating the behavior of the vehicle 10 that has traveled in the non-overlapping section S3 and the road surface condition in the non-overlapping section S3 as training data, and automatically creates a correspondence relationship between the behavior information and the road surface condition in the learning model. Let them learn.
  • the road surface state of the non-overlapping section S3 as the teacher data, it is possible to improve the calculation accuracy of the road surface state by the learning model.
  • the position information of the position sensor 10A detected by the position sensor 10A is treated as the position information of the vehicle 10.
  • the position information of the wheel TR is calculated based on the position information of the position sensor 10A and the relationship information indicating the relative position between the position sensor 10A and the wheel TR, and The position information is treated as position information of the vehicle 10.
  • descriptions of parts that have the same configuration as the first embodiment will be omitted.
  • FIG. 7 is a schematic block diagram of the arithmetic device according to the second embodiment.
  • FIG. 8 is a schematic diagram showing an example of the positional relationship between the position sensor and the wheels.
  • the control unit 24 of the arithmetic device 14a according to the second embodiment further includes a relational information acquisition unit 44, a wheel position calculation unit 46, and a traveling direction acquisition unit 48.
  • the relationship information acquisition unit 44 acquires relationship information indicating the relative position between the position sensor 10A and the wheel TR.
  • the related information includes the position of the position sensor 10A in the vehicle 10 (the position of the position sensor 10A in a coordinate system with the vehicle 10 as a reference) and the position of the wheel TR in the vehicle (the position of the wheel TR in the coordinate system with the vehicle 10 as a reference). ) can be said to be information indicating the positional relationship with
  • the related information acquisition unit 44 acquires the position of the position sensor 10A in the vehicle 10, the width of the vehicle 10 (vehicle width), and the wheelbase of the vehicle 10 (from the center of the front wheels when the vehicle is viewed from the side).
  • the relational information acquisition unit 44 may obtain the relational information using any method.
  • the relationship information may be set (measured) in advance, and the relationship information acquisition unit 44 may acquire the set relationship information.
  • the position information acquisition unit 36 acquires the position information of the position sensor 10A detected by the position sensor 10A while the vehicle is traveling on the road R.
  • the wheel position calculation unit 46 calculates the position information of the wheel TR based on the position information of the position sensor 10A and related information.
  • the position information of the wheel TR is, for example, information indicating the position of the wheel TR in the earth coordinate system.
  • the wheel position calculating unit 46 calculates, as the position of the wheel TR, a position shifted from the position of the position sensor 10A by the relative position of the wheel TR with respect to the position sensor 10A indicated by the related information. In the example of FIG.
  • the wheel position calculation unit 46 determines the position P of the position sensor 10A in the coordinate system of the vehicle 10 based on the position of the position sensor 10A in the vehicle 10, the width of the vehicle 10, and the wheel base.
  • Position PTR1 relative position of wheel TR1
  • position PTR2 relative position of wheel TR2
  • position PTR3 of wheel TR3 with respect to position P10A of position sensor 10A The relative position of the wheel TR3
  • the position P of the wheel TR4 with respect to the position P10A of the position sensor 10A (the relative position of the wheel TR4) are calculated.
  • the wheel position calculation unit 46 calculates a position that is shifted by the relative position of the wheel TR1 from the position of the position sensor 10A as the position of the wheel TR1, and a position that is shifted by the relative position of the wheel TR2 from the position of the position sensor 10A.
  • the position of the wheel TR2 is calculated as the position of the wheel TR2
  • the position that is shifted by the relative position of the wheel TR3 from the position of the position sensor 10A is calculated as the position of the wheel TR3
  • the position that is shifted by the relative position of the wheel TR4 from the position of the position sensor 10A is calculated as the position of the wheel TR3.
  • the wheel position calculation unit 46 uses, in addition to the position information of the position sensor 10A and the related information, the traveling direction of the vehicle 10 (orientation of the vehicle 10 in the earth coordinate system) acquired by the traveling direction acquisition unit 48.
  • the position information of the wheel TR is calculated based also on the information. That is, the relative position of the position sensor 10A and the wheel TR in the coordinate system of the vehicle 10 is constant regardless of the traveling direction of the vehicle 10, but the position of the wheel TR with respect to the position sensor 10A in the earth coordinate system is Depends on the direction of travel. Therefore, the wheel position calculation unit 46 can calculate the position information of the wheels TR with high accuracy by calculating the position information of the wheels TR also using the traveling direction of the vehicle 10.
  • the traveling direction acquisition unit 48 may acquire the traveling direction of the vehicle 10 using any method, but for example, the steering angle of the vehicle 10 at the timing when the position information of the position sensor 10A is detected, or the position information of the position sensor 10A. Information on the traveling direction detected by the gyro sensor at the timing when the gyro sensor is detected may be used.
  • the traveling direction of the vehicle 10 it is not essential to calculate the position information of the wheels TR using the traveling direction of the vehicle 10.
  • the position sensor 10A is provided for each wheel TR, the position of the wheel TR with respect to the position sensor 10A in the earth coordinate system is constant, so the traveling direction of the vehicle 10 is not required.
  • the position information of the wheels TR calculated in this way is treated as the position information of the vehicle 10.
  • the learning model is made to learn the behavior information and the road surface condition in the non-overlapping section S3 as teacher data
  • the position information of the wheels TR is used as the position information of the vehicle 10.
  • the learning unit 40 determines the behavior information of the vehicle 10 and the non-overlapping section S3 based on the position information of the wheels TR (position information of the vehicle 10) that is associated with the behavior information of the vehicle 10. and the road surface condition.
  • the learning unit 40 extracts a non-overlapping section S3 that is within a predetermined distance from the position of the wheel TR (preferably at a position that overlaps with the position of the wheel TR). Then, the learning unit 40 associates the behavior information associated with the position of the wheel TR with the extracted road surface condition of the non-overlapping section S3, and creates a data set of teacher data.
  • the wheel position calculation unit 46 calculates the position information of the wheel TR based on the position information of the position sensor 10A detected by the vehicle 10 moving on a road with an unknown road surface condition and related information. do.
  • the calculation unit 42 uses the position information of the wheels TR as the position information of the vehicle 10, and inputs the behavior information when the position information of the wheels TR (position information of the position sensor 10A) is detected into the learning model.
  • the road surface condition at the position of the wheel TR (position of the vehicle 10) when the behavior information is detected is calculated.
  • the calculation unit 42 is not limited to calculating the road surface condition by inputting behavior information into a learning model, and may not use a learning model. That is, based on the behavior information when the position information of the wheel TR (position information of the position sensor 10A) is detected, the calculation unit 42 uses any method to determine the position (of the wheel TR) when the behavior information is detected. The road surface condition at the location of the vehicle 10 may also be calculated.
  • the behavior information and the road surface condition in the non-overlapping section S3 are associated using the position information of the wheels TR. Therefore, it becomes possible to set the position where the behavior information is detected with higher precision, and the correspondence between the behavior information and the road surface condition can be made more precise, and the calculation accuracy of the learning model can be improved.
  • the behavior information and the road surface condition in the non-overlapping section S3 are used as the teacher data, but the present invention is not limited to this.
  • Road surface conditions may be used as training data.
  • IRI in a 20 m section may be used as training data.
  • the position information of the wheels TR in the second embodiment is not limited to the use of associating the behavior information for teacher data with the road surface condition or the use of calculating the road surface condition at the position where the behavior information is detected, but can be used for any purpose. May be used for.
  • the calculation device 14 may output position information of the wheels TR, may perform arbitrary processing based on the position information of the wheels TR, or may output position information of the wheels TR to another device. It may be transmitted or may be displayed on a display device of the arithmetic device 14 (not shown).
  • the calculation device 14a includes the position information acquisition unit 36 that acquires the position information of the position sensor 10A detected by the position sensor 10A mounted on the vehicle 10 moving on the road. , a relationship information acquisition unit 44 that acquires relationship information indicating the positional relationship between the position of the position sensor 10A in the vehicle 10 and the position of the wheel TR in the vehicle 10, and based on the position information and the relationship information of the position sensor 10A, A wheel position calculation unit 46 that calculates position information of the wheel TR is included. According to the present embodiment, by calculating the position information of the wheels TR, it is possible to grasp the position of the vehicle 10 in more detail. Therefore, by using the position information of the wheels TR, the road surface condition for each position can be determined in detail.
  • the road surface condition for each position is calculated in detail (for example, in units of tens of centimeters).
  • the position where the behavior information is detected can be determined in detail (for example, in units of tens of centimeters) based on the position information of the wheel TR.
  • the wheel position calculation unit 46 calculates position information of the wheels TR based also on the traveling direction of the vehicle 10. Thereby, the position of the wheel TR can be calculated with higher accuracy.
  • the arithmetic device 14a includes a learning section 40.
  • the learning unit 40 associates the behavior information with the road surface condition of the road R based on the position information of the wheels TR, and uses the correlated behavior information and road surface condition as training data to add the behavior information and the road surface condition to the learning model. machine learning the correspondence relationship. Thereby, it is possible to make the correspondence between the behavior information and the road surface condition more accurate, and improve the calculation accuracy of the learning model.
  • the calculation device 14a includes a behavior information acquisition section 38 and a calculation section 42.
  • the behavior information acquisition unit 38 acquires behavior information indicating the behavior of the vehicle 10 moving on the road.
  • the calculation unit 42 calculates the road surface condition of the road at the position indicated by the position information of the wheel TR based on the behavior information. More preferably, the calculation unit 42 calculates the road surface condition of the road at the position indicated by the position information of the wheel TR by inputting the acquired behavior information into a learning model that performs machine learning on the correspondence between the behavior information and the road surface condition. Calculate.
  • the positions of the wheels TR calculated by the wheel position calculation unit 46 are used when calculating the road surface condition. That is, in the second embodiment, by treating the position where behavior information is detected as the position of the wheel TR and calculating the road surface condition at the position of the wheel TR, it is possible to calculate the road surface condition for each position with high accuracy. It becomes possible.

Landscapes

  • Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Software Systems (AREA)
  • Physics & Mathematics (AREA)
  • Computing Systems (AREA)
  • Artificial Intelligence (AREA)
  • Mathematical Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Data Mining & Analysis (AREA)
  • Evolutionary Computation (AREA)
  • General Engineering & Computer Science (AREA)
  • Biophysics (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • General Health & Medical Sciences (AREA)
  • Computational Linguistics (AREA)
  • Biomedical Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Medical Informatics (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Road Repair (AREA)
  • Traffic Control Systems (AREA)

Abstract

The present invention minutely ascertains the road surface condition on a per-position basis. This computation device includes: a position information acquisition unit that acquires position information regarding a position sensor (10A) installed in a vehicle (10) traveling on a road, said position information having been detected by the position sensor (10A); a relationship information acquisition unit that acquires relationship information indicating the positional relationship between the position of the position sensor (10A) of the vehicle (10) and the position of a vehicle wheel (TR) of the vehicle (10); and a vehicle wheel position calculation unit that, on the basis of the position information regarding the position sensor (10A) and the relationship information, calculates position information regarding the vehicle wheel (TR).

Description

演算装置、演算方法及びプログラムArithmetic device, arithmetic method and program
 本発明は、演算装置、演算方法及びプログラムに関する。 The present invention relates to an arithmetic device, an arithmetic method, and a program.
 例えば特許文献1に示すように、道路を走行している車両の加速度を検出し、その加速度データを学習モデルに入力することで、路面の状態を推定する技術が知られている。路面状態を示す指標としては、例えば特許文献2に示すように、IRI(International Roughness Index;国際ラフネス指数)が用いられる場合がある。 For example, as shown in Patent Document 1, a technique is known that estimates the state of the road surface by detecting the acceleration of a vehicle running on a road and inputting the acceleration data to a learning model. As an index indicating the road surface condition, for example, as shown in Patent Document 2, IRI (International Roughness Index) may be used.
特開2020-86960号公報JP2020-86960A 特開2010-66040号公報Japanese Patent Application Publication No. 2010-66040
 路面状態を推定する際には、位置毎の路面状態をより細かく把握することが求められている。 When estimating road surface conditions, it is required to understand the road surface conditions at each location in more detail.
 本発明は、上記に鑑みてなされたものであって、位置毎の路面状態を細かく把握可能な演算装置、演算方法及びプログラムを提供することを目的とする。 The present invention has been made in view of the above, and it is an object of the present invention to provide a calculation device, a calculation method, and a program that allow detailed understanding of road surface conditions at each location.
 上述した課題を解決し、目的を達成するために、本開示に係る演算装置は、道路を移動する車両に搭載された位置センサによって検出された、前記位置センサの位置情報を取得する位置情報取得部と、前記車両における前記位置センサの位置と、前記車両における車輪の位置との位置関係を示す関係情報を取得する関係情報取得部と、前記位置センサの位置情報と前記関係情報とに基づいて、前記車輪の位置情報を算出する車輪位置算出部と、
を含む。
In order to solve the above-mentioned problems and achieve the objective, a computing device according to the present disclosure acquires position information of a position sensor detected by a position sensor mounted on a vehicle moving on a road. a relationship information acquisition unit that acquires relationship information indicating a positional relationship between the position of the position sensor in the vehicle and the position of a wheel in the vehicle, based on the position information of the position sensor and the relationship information. , a wheel position calculation unit that calculates position information of the wheel;
including.
 上述した課題を解決し、目的を達成するために、本開示に係る演算方法は、道路を移動する車両に搭載された位置センサによって検出された、前記車両の位置情報を取得するステップと、前記車両における前記位置センサの位置と、前記車両における車輪の位置との位置関係を示す関係情報を取得するステップと、前記位置情報と前記関係情報とに基づいて、前記車輪の位置情報を算出するステップと、を含む。 In order to solve the above-mentioned problems and achieve the objective, a calculation method according to the present disclosure includes the steps of: acquiring position information of a vehicle that is detected by a position sensor mounted on a vehicle moving on a road; acquiring relationship information indicating a positional relationship between the position of the position sensor on the vehicle and the position of a wheel on the vehicle; and calculating position information of the wheel based on the position information and the relationship information. and, including.
 上述した課題を解決し、目的を達成するために、本開示に係るプログラムは、道路を移動する車両に搭載された位置センサによって検出された、前記車両の位置情報を取得するステップと、前記車両における前記位置センサの位置と、前記車両における車輪の位置との位置関係を示す関係情報を取得するステップと、前記位置情報と前記関係情報とに基づいて、前記車輪の位置情報を算出するステップと、をコンピュータに実行させる。 In order to solve the above-mentioned problems and achieve the purpose, a program according to the present disclosure includes the steps of acquiring position information of a vehicle that is detected by a position sensor mounted on a vehicle moving on a road; acquiring relationship information indicating a positional relationship between the position of the position sensor and the position of a wheel on the vehicle; and calculating position information of the wheel based on the position information and the relationship information. , cause the computer to execute.
図1は、本実施形態に係る検出システムの模式的なブロック図である。FIG. 1 is a schematic block diagram of a detection system according to this embodiment. 図2は、車両の模式図である。FIG. 2 is a schematic diagram of the vehicle. 図3は、演算装置の模式的なブロック図である。FIG. 3 is a schematic block diagram of the arithmetic device. 図4は、道路上の各位置の例を示す模式図である。FIG. 4 is a schematic diagram showing an example of each position on the road. 図5は、IRIの算出を説明するための模式図である。FIG. 5 is a schematic diagram for explaining the calculation of IRI. 図6は、非重複区間の路面状態の算出フローを説明するフローチャートである。FIG. 6 is a flowchart illustrating a calculation flow of road surface conditions in non-overlapping sections. 図7は、第2実施形態に係る演算装置の模式的なブロック図である。FIG. 7 is a schematic block diagram of the arithmetic device according to the second embodiment. 図8は、位置センサと車輪の位置関係の例を示す模式図である。FIG. 8 is a schematic diagram showing an example of the positional relationship between the position sensor and the wheels.
 以下に、本発明の好適な実施形態を図面に基づいて詳細に説明する。なお、以下に説明する実施形態により本発明が限定されるものではない。 Below, preferred embodiments of the present invention will be described in detail based on the drawings. Note that the present invention is not limited to the embodiments described below.
 (検出システム)
 図1は、本実施形態に係る検出システムの模式的なブロック図である。図1に示すように、本実施形態に係る検出システム1は、車両10と、測定データ取得装置12と、演算装置14とを含む。検出システム1は、演算装置14によって、挙動情報に基づいて道路の路面状態を算出する。路面状態は、本実施形態では路面の凹凸度合いを示す指標である。より詳しくは、本実施形態においては、路面状態とは、IRI(International Roughness Index;国際ラフネス指数)に基づく指標である。
(Detection system)
FIG. 1 is a schematic block diagram of a detection system according to this embodiment. As shown in FIG. 1, the detection system 1 according to the present embodiment includes a vehicle 10, a measurement data acquisition device 12, and a calculation device 14. The detection system 1 uses the calculation device 14 to calculate the road surface condition of the road based on the behavior information. In this embodiment, the road surface condition is an index indicating the degree of unevenness of the road surface. More specifically, in this embodiment, the road surface condition is an index based on IRI (International Roughness Index).
 検出システム1においては、車両10が、道路を走行しながら挙動情報及び位置情報を検出しつつ、検出した挙動情報及び位置情報を測定データ取得装置12に送信する。挙動情報及び位置情報については後述する。測定データ取得装置12は、例えば道路を管理する主体に管理される装置(コンピュータ)である。測定データ取得装置12は、車両10から送信された挙動情報及び位置情報を、演算装置14に送信する。このように、演算装置14は、測定データ取得装置12を介して挙動情報及び位置情報を取得するが、それに限られない。例えば、検出システム1は、測定データ取得装置12が設けられておらず、演算装置14が、車両10から挙動情報及び位置情報を取得してもよい。 In the detection system 1, the vehicle 10 detects behavior information and position information while traveling on a road, and transmits the detected behavior information and position information to the measurement data acquisition device 12. Behavior information and position information will be described later. The measurement data acquisition device 12 is, for example, a device (computer) managed by a road management entity. The measurement data acquisition device 12 transmits the behavior information and position information transmitted from the vehicle 10 to the calculation device 14. In this way, the calculation device 14 acquires behavior information and position information via the measurement data acquisition device 12, but is not limited thereto. For example, the detection system 1 may not include the measurement data acquisition device 12, and the calculation device 14 may acquire behavior information and position information from the vehicle 10.
 (車両)
 図2は、車両の模式図である。図2に示すように、車両10は、位置センサ10Aと、挙動センサ10Bと、測定装置10Cとを備える。位置センサ10Aは、自身の位置情報を取得するセンサである。位置センサ10Aの位置情報とは、位置センサ10Aの地球座標を示す情報である。本実施形態では、位置センサ10Aが検出した位置センサ10Aの位置情報を、車両10の位置情報(地球座標)として扱う。位置センサ10Aは、本実施形態ではGNSS(Global Navivation Satelite System)用のモジュールである。なお、図2におけるZ方向は、鉛直方向の上方を指し、図2は鉛直方向上方から車両10を見た場合の模式図といえる。
(vehicle)
FIG. 2 is a schematic diagram of the vehicle. As shown in FIG. 2, the vehicle 10 includes a position sensor 10A, a behavior sensor 10B, and a measuring device 10C. The position sensor 10A is a sensor that acquires its own position information. The position information of the position sensor 10A is information indicating the earth coordinates of the position sensor 10A. In this embodiment, the position information of the position sensor 10A detected by the position sensor 10A is treated as the position information (earth coordinates) of the vehicle 10. In this embodiment, the position sensor 10A is a module for GNSS (Global Navigation Satellite System). Note that the Z direction in FIG. 2 refers to the upper side in the vertical direction, and FIG. 2 can be said to be a schematic diagram when the vehicle 10 is viewed from above in the vertical direction.
 挙動センサ10Bは、車両10の挙動を示す挙動情報を検出するセンサである。挙動情報は、道路を走行中の車両10の挙動を示す情報であれば任意の情報であってよい。本実施形態では、挙動センサ10Bは、車両10の加速度を挙動情報として検出することが好ましい。この場合、挙動センサ10Bは、加速度を検出する加速度センサであり、より好ましくは3軸での加速度を検出する加速度センサである。また、挙動センサ10Bが検出する挙動情報は、加速度であることに限られず、例えば、加速度、車両10の周囲を撮像した画像データ、車両10の速度、車両10の角速度、車両10のステアリング角度、車両10のブレーキ量、車両10のワイパの動作、及び車両10のサスペンションの作動量の少なくとも1つであってよい。なお、車両10の周囲の画像データは、車両10の動きによって変化するため、車両10の挙動を示す情報であるといえる。車両10の周囲の撮像画像を検出する挙動センサ10Bは例えばカメラであり、車両10の速度を検出する挙動センサ10Bは例えば速度センサであり、車両10の速度を検出する挙動センサ10Bは例えば3軸ジャイロセンサであり、車両10のステアリング角度を検出する挙動センサ10Bは例えばステアリングセンサであり、車両10のブレーキ量を検出する挙動センサ10Bは例えばブレーキセンサであり、車両10のワイパの動作を検出する挙動センサ10Bは例えばワイパセンサが挙げられ、車両10のサスペンションの作動量を検出する挙動センサ10Bは例えばサスペンションセンサが挙げられる。 The behavior sensor 10B is a sensor that detects behavior information indicating the behavior of the vehicle 10. The behavior information may be any information that indicates the behavior of the vehicle 10 while traveling on the road. In this embodiment, it is preferable that the behavior sensor 10B detects the acceleration of the vehicle 10 as behavior information. In this case, the behavior sensor 10B is an acceleration sensor that detects acceleration, more preferably an acceleration sensor that detects acceleration in three axes. Further, the behavior information detected by the behavior sensor 10B is not limited to acceleration, and includes, for example, acceleration, image data captured around the vehicle 10, speed of the vehicle 10, angular velocity of the vehicle 10, steering angle of the vehicle 10, It may be at least one of the amount of braking of the vehicle 10, the operation of the wiper of the vehicle 10, and the amount of operation of the suspension of the vehicle 10. Note that the image data around the vehicle 10 changes depending on the movement of the vehicle 10, and therefore can be said to be information indicating the behavior of the vehicle 10. The behavior sensor 10B that detects a captured image around the vehicle 10 is, for example, a camera, the behavior sensor 10B that detects the speed of the vehicle 10 is, for example, a speed sensor, and the behavior sensor 10B that detects the speed of the vehicle 10 is, for example, a three-axis sensor. The behavior sensor 10B, which is a gyro sensor and detects the steering angle of the vehicle 10, is, for example, a steering sensor, and the behavior sensor 10B, which detects the amount of braking of the vehicle 10, is, for example, a brake sensor, and detects the operation of the wiper of the vehicle 10. An example of the behavior sensor 10B is a wiper sensor, and an example of the behavior sensor 10B that detects the amount of operation of the suspension of the vehicle 10 is a suspension sensor.
 本実施形態では、車両10には、複数の挙動センサ10Bが搭載されている。それぞれの挙動センサ10Bは、車両10において、互いに異なる位置に搭載されている。図2の例では、挙動センサ10Bとして、左側の前輪である車輪TR1のZ方向側(鉛直方向上方向側)に設けられる挙動センサ10B1と、右側の前輪である車輪TR2のZ方向側に設けられる挙動センサ10B2と、左側の後輪である車輪TR3のZ方向側に設けられる挙動センサ10B3と、右側の後輪である車輪TR4のZ方向側に設けられる挙動センサ10B4とを含む。ただし、挙動センサ10Bの設けられる位置は任意である。また、挙動センサ10Bの数も、4つであることに限られず任意であり、任意の数であってよい。また、図2の例では車輪TRの数は4つであるが、その数は任意であり、例えば、2つ以上の任意の数であってよい。また、図2の例では、挙動センサ10B1~10B4は、同じ種類の挙動情報(ここでは加速度)を検出するものであるが、それぞれの挙動センサ10Bは、異なる種類の挙動情報を検出するものであってよい。例えば、同じ種類の挙動情報を検出する複数の挙動センサ10B(例えば複数の加速度センサ)と、それとは異なる挙動情報を検出する挙動センサ10B(例えば速度センサ)とを設けてもよい。 In this embodiment, the vehicle 10 is equipped with a plurality of behavior sensors 10B. The respective behavior sensors 10B are mounted at different positions in the vehicle 10. In the example of FIG. 2, the behavior sensors 10B include a behavior sensor 10B1 provided on the Z direction side (upward side in the vertical direction) of the left front wheel TR1, and a behavior sensor 10B1 provided on the Z direction side of the right front wheel TR2. A behavior sensor 10B2 provided on the Z direction side of the wheel TR3 which is the left rear wheel, and a behavior sensor 10B4 provided on the Z direction side of the right rear wheel TR4. However, the position where the behavior sensor 10B is provided is arbitrary. Further, the number of behavior sensors 10B is not limited to four, and may be any number. Further, in the example of FIG. 2, the number of wheels TR is four, but the number may be arbitrary, for example, an arbitrary number of two or more. Furthermore, in the example of FIG. 2, the behavior sensors 10B1 to 10B4 detect the same type of behavior information (here, acceleration), but each behavior sensor 10B detects different types of behavior information. It's good. For example, a plurality of behavior sensors 10B (for example, a plurality of acceleration sensors) that detect the same type of behavior information and a behavior sensor 10B (for example, a speed sensor) that detects different behavior information may be provided.
 測定装置10Cは、位置センサ10A及び挙動センサ10Bを制御して車両10の位置情報と挙動情報を検出させて、検出させた位置情報と挙動情報とを記録する装置である。すなわち、測定装置10Cは、位置情報と挙動情報とを記録するデータロガーとして機能する。測定装置10Cは、コンピュータであるとも言え、制御部10C1と、記憶部10C2と、通信部10C3とを含む。制御部10C1は、演算装置であり、例えばCPU(Central Processing Unit)などの演算回路を含む。記憶部10C2は、制御部10C1の演算内容やプログラム、車両10の位置情報及び挙動情報などの各種情報を記憶するメモリであり、例えば、RAM(Random Access Memory)と、ROM(Read Only Memory)のような主記憶装置と、フラッシュメモリやHDD(Hard Disk Drive)などの不揮発性の記憶装置のうち、少なくとも1つ含む。なお、記憶部10C2が保存する制御部10C1用のプログラムは、測定装置10Cが読み取り可能な記録媒体に記憶されていてもよい。通信部10C3は、外部の装置と通信を行う通信モジュールであり、例えばアンテナなどである。 The measuring device 10C is a device that controls the position sensor 10A and the behavior sensor 10B to detect the position information and behavior information of the vehicle 10, and records the detected position information and behavior information. That is, the measuring device 10C functions as a data logger that records position information and behavior information. The measuring device 10C can be said to be a computer, and includes a control section 10C1, a storage section 10C2, and a communication section 10C3. The control unit 10C1 is an arithmetic device, and includes, for example, an arithmetic circuit such as a CPU (Central Processing Unit). The storage unit 10C2 is a memory that stores various information such as calculation contents and programs of the control unit 10C1, position information and behavior information of the vehicle 10, and includes, for example, RAM (Random Access Memory) and ROM (Read Only Memory). The storage device includes at least one of a main storage device such as the above, and a nonvolatile storage device such as a flash memory or a hard disk drive (HDD). Note that the program for the control unit 10C1 stored in the storage unit 10C2 may be stored in a recording medium readable by the measuring device 10C. The communication unit 10C3 is a communication module that communicates with an external device, and is, for example, an antenna.
 制御部10C1は、記憶部10C2に記憶されたプログラムを読み出して、位置センサ10A及び挙動センサ10Bの制御を実行する。制御部10C1は、車両10が道路を走行中に、所定時間ごとに位置センサ10Aに車両10の位置情報を検出させて、所定時間毎に挙動センサ10Bに挙動情報を検出させて、検出させた位置情報及び挙動情報を取得する。すなわち、制御部10C1は、車両10が所定時間走行するたびに、位置センサ10A及び挙動センサ10Bに検出を実行させる。ここでの所定時間とは、例えば1分など、一定の時間であることが好ましいが、所定時間は一定の時間であることに限られず、任意の長さであってよい。すなわち、所定時間は都度変化してもよい。 The control unit 10C1 reads the program stored in the storage unit 10C2 and executes control of the position sensor 10A and the behavior sensor 10B. While the vehicle 10 is traveling on the road, the control unit 10C1 causes the position sensor 10A to detect the position information of the vehicle 10 at predetermined time intervals, and causes the behavior sensor 10B to detect behavior information at predetermined time intervals. Obtain location information and behavior information. That is, the control unit 10C1 causes the position sensor 10A and the behavior sensor 10B to perform detection every time the vehicle 10 travels for a predetermined period of time. The predetermined time here is preferably a fixed time, such as one minute, but the predetermined time is not limited to a fixed time and may be any length. That is, the predetermined time may change each time.
 制御部10C1は、取得した挙動情報と位置情報とを関連付けて、記憶部10C2に記憶させる。すなわち、同じタイミングで検出された挙動情報と位置情報とが関連付けられる。記憶部10C2には、関連付けられたこれらの情報が、検出されたタイミング毎に記憶される。なお、関連付けられたこれらの情報は、同じタイミングで検出されたものであるが、厳密に同じタイミングであることに限られず、異なるタイミングで検出されたものであってよい。この場合、例えば、検出タイミングの差が所定値以下となる挙動情報と位置情報とが、同じタイミングで検出されたものとして扱われて、対応付けられる。なお、上記では全てのセンサのサンプリング周期が同じ前提で説明したが、各センサのサンプリング周期が異なる場合には適宜調整を行う。 The control unit 10C1 associates the acquired behavior information and position information and stores them in the storage unit 10C2. That is, behavior information and position information detected at the same timing are associated. The associated information is stored in the storage unit 10C2 at each detected timing. Note that although these pieces of associated information are detected at the same timing, they are not limited to strictly the same timing, and may be detected at different timings. In this case, for example, behavior information and position information for which the difference in detection timing is less than or equal to a predetermined value are treated as being detected at the same timing and are associated with each other. In addition, although the above description was made on the assumption that the sampling periods of all the sensors are the same, if the sampling periods of each sensor are different, adjustments are made as appropriate.
 制御部10C1は、関連付けられた挙動情報と位置情報とを、通信部10C3を介して、測定データ取得装置12に送信する。測定データ取得装置12は、車両10から受信した挙動情報と位置情報とを、演算装置14に送信する。なお、測定データ取得装置12を設けない場合は、制御部10C1は、挙動情報と位置情報とを、演算装置14に直接送信してもよい。 The control unit 10C1 transmits the associated behavior information and position information to the measurement data acquisition device 12 via the communication unit 10C3. The measurement data acquisition device 12 transmits the behavior information and position information received from the vehicle 10 to the calculation device 14. Note that if the measurement data acquisition device 12 is not provided, the control unit 10C1 may directly transmit the behavior information and position information to the arithmetic device 14.
 (演算装置)
 図3は、演算装置の模式的なブロック図である。図3に示すように、演算装置14は、例えばコンピュータであり、通信部20と、記憶部22と、制御部24とを含む。通信部20は、外部の装置と通信を行う通信モジュールであり、例えばアンテナなどである。記憶部22は、制御部24の演算内容やプログラムを記憶するメモリであり、例えば、RAMと、ROMのような主記憶装置と、フラッシュメモリやHDDなどの不揮発性の記憶装置のうち、少なくとも1つを含む。なお、記憶部22が保存する制御部24用のプログラムは、演算装置14が読み取り可能な記録媒体に記憶されていてもよい。
(computing device)
FIG. 3 is a schematic block diagram of the arithmetic device. As shown in FIG. 3, the arithmetic device 14 is, for example, a computer, and includes a communication section 20, a storage section 22, and a control section 24. The communication unit 20 is a communication module that communicates with an external device, and is, for example, an antenna. The storage unit 22 is a memory that stores calculation contents and programs of the control unit 24, and includes at least one of a RAM, a main storage device such as a ROM, and a non-volatile storage device such as a flash memory or an HDD. Including one. Note that the program for the control unit 24 stored in the storage unit 22 may be stored in a recording medium that can be read by the arithmetic unit 14.
 制御部24は、演算装置であり、例えばCPUなどの演算回路を含む。制御部24は、路面情報取得部30と、IRI算出部32と、路面状態算出部34と、位置情報取得部36と、挙動情報取得部38と、学習部40と、演算部42とを含む。制御部24は、記憶部22からプログラム(ソフトウェア)を読み出して実行することで、路面情報取得部30とIRI算出部32と路面状態算出部34と位置情報取得部36と挙動情報取得部38と学習部40と演算部42とを実現して、それらの処理を実行する。なお、制御部24は、1つのCPUによってこれらの処理を実行してもよいし、複数のCPUを備えて、それらの複数のCPUで、処理を実行してもよい。また、路面情報取得部30とIRI算出部32と路面状態算出部34と位置情報取得部36と挙動情報取得部38と学習部40と演算部42との少なくとも一部を、ハードウェアで実現してもよい。 The control unit 24 is an arithmetic device, and includes, for example, an arithmetic circuit such as a CPU. The control unit 24 includes a road surface information acquisition unit 30, an IRI calculation unit 32, a road condition calculation unit 34, a position information acquisition unit 36, a behavior information acquisition unit 38, a learning unit 40, and a calculation unit 42. . The control unit 24 reads the program (software) from the storage unit 22 and executes it, thereby controlling the road surface information acquisition unit 30, the IRI calculation unit 32, the road surface condition calculation unit 34, the position information acquisition unit 36, and the behavior information acquisition unit 38. A learning section 40 and a calculation section 42 are implemented to execute their processing. Note that the control unit 24 may execute these processes using one CPU, or may include a plurality of CPUs and execute the processes using the plurality of CPUs. Further, at least a portion of the road surface information acquisition section 30, the IRI calculation section 32, the road surface condition calculation section 34, the position information acquisition section 36, the behavior information acquisition section 38, the learning section 40, and the calculation section 42 are realized by hardware. It's okay.
 (教師データ用の路面状態の算出)
 本実施形態においては、演算装置14は、路面上の各位置におけるZ方向での位置(高さ)が既知の道路を走行した車両10の挙動情報と、その道路の路面状態とを教師データとして、挙動情報と路面状態との対応関係を学習モデルに機械学習させる。そして、演算装置14は、機械学習済みの学習モデルに、Z方向での位置や路面状態が未知の道路を走行した車両10の挙動情報を入力することで、その道路の路面状態を算出する。ここで、教師データに用いる路面状態としては、IRIを用いることが考えられる。しかしながら、IRIは、20m以上の単位距離における路面状態の平均値として算出されるものである。このように、IRIにおいては単位距離が長いため、サンプリングレートが長くなってしまい、IRIを教師データとすると、学習モデルの精度が低下するおそれがある。それに対して、本実施形態においては、後述するように非重複区間S3における路面状態を算出して、教師データ用の路面状態とすることで、学習モデルの精度の低下を抑制する。
(Calculation of road surface conditions for teacher data)
In the present embodiment, the calculation device 14 uses behavior information of the vehicle 10 traveling on a road whose position (height) in the Z direction at each position on the road surface is known and the road surface condition of the road as training data. , Machine learning is performed on a learning model to determine the correspondence between behavior information and road surface conditions. Then, the arithmetic device 14 calculates the road surface condition of the road by inputting the behavior information of the vehicle 10 that has traveled on a road whose position in the Z direction and road surface condition are unknown to the machine-learned learning model. Here, it is conceivable to use IRI as the road surface condition used for the teacher data. However, IRI is calculated as an average value of road surface conditions over a unit distance of 20 m or more. In this way, since the unit distance in IRI is long, the sampling rate becomes long, and if IRI is used as teacher data, there is a risk that the accuracy of the learning model will decrease. In contrast, in the present embodiment, as will be described later, the road surface condition in the non-overlapping section S3 is calculated and used as the road surface condition for teacher data, thereby suppressing a decrease in the accuracy of the learning model.
 以降においては、非重複区間S3における路面状態の算出方法について説明し、その後、学習モデルを用いた、路面状態が未知の道路における路面状態の算出方法について説明する。 Hereinafter, a method for calculating the road surface condition in the non-overlapping section S3 will be explained, and then a method for calculating the road surface condition on a road with an unknown road surface condition using a learning model will be explained.
 (路面情報取得部)
 図4は、道路上の各位置の例を示す模式図である。路面情報取得部30は、道路の路面のZ方向における位置(高さ)を示す路面高さ情報を取得する。路面情報取得部30は、路面高さ情報を、その道路上の位置毎に取得する。路面情報取得部30は、道路の延在方向における位置毎に路面高さ情報を取得し、また、道路の延在方向に交差する方向における位置毎に路面高さ情報を取得することが好ましい。図4は、道路R上の各位置Pを示しており、路面情報取得部30は、それぞれの位置Pにおける、路面のZ方向における位置を、路面高さ情報として取得する。図4においては、位置Pとして、道路の延在方向に並ぶ位置PA1~位置PA8と、道路の延在方向に並ぶ位置PB1~位置PB8と、道路の延在方向に並ぶ位置PC1~位置PC8とが示されている。位置PA1~位置PA8と、位置PB1~位置PB8と、位置PC1~位置PC8とは、道路の延在方向に交差する方向に並んでいる。なお、隣り合う位置P同士の距離は、すなわち路面高さ情報が取得される位置同士の距離は、任意の長さであってよいが、IRIの単位距離である20mより短く、例えば0.1mであってよい。
(Road surface information acquisition department)
FIG. 4 is a schematic diagram showing an example of each position on the road. The road surface information acquisition unit 30 acquires road surface height information indicating the position (height) of the road surface in the Z direction. The road surface information acquisition unit 30 acquires road surface height information for each position on the road. It is preferable that the road surface information acquisition unit 30 acquires road surface height information for each position in the extending direction of the road, and also acquires road surface height information for each position in a direction intersecting the extending direction of the road. FIG. 4 shows each position P on the road R, and the road surface information acquisition unit 30 acquires the position of the road surface in the Z direction at each position P as road surface height information. In FIG. 4, as positions P, positions PA1 to PA8 are aligned in the extending direction of the road, positions PB1 to PB8 are aligned in the extending direction of the road, and positions PC1 to PC8 are aligned in the extending direction of the road. It is shown. Positions PA1 to PA8, positions PB1 to PB8, and positions PC1 to PC8 are lined up in a direction intersecting the extending direction of the road. Note that the distance between adjacent positions P, that is, the distance between the positions where road surface height information is acquired, may be any length, but may be shorter than 20 m, which is the unit distance of IRI, for example, 0.1 m. It may be.
 路面情報取得部30は、位置P毎の路面高さ情報を、任意の方法で取得してよい。例えば、路面高さ情報は予め設定(測定)されていてよく、路面情報取得部30は、予め測定された路面のZ方向における位置の情報と、その路面高さ情報の測定位置の情報(例えば測定位置の地球座標)とを、路面高さ情報として取得してもよい。また例えば、測定車により、LIDAR(Light Detection and Ranging)などで路面高さ情報が測定されて、路面情報取得部30は、その測定結果を取得してもよい。 The road surface information acquisition unit 30 may acquire road surface height information for each position P using any method. For example, the road surface height information may be set (measured) in advance, and the road surface information acquisition unit 30 acquires information on the position of the road surface measured in advance in the Z direction and information on the measurement position of the road surface height information (for example, (Earth coordinates of the measurement position) may be acquired as the road surface height information. Alternatively, for example, the road surface height information may be measured by a measurement vehicle using LIDAR (Light Detection and Ranging), and the road surface information acquisition unit 30 may obtain the measurement results.
 (IRI算出部)
 図5は、IRIの算出を説明するための模式図である。IRI算出部32は、位置P毎の路面高さ情報に基づいて、道路R上の第1区間におけるIRIと、第2区間におけるIRIとを算出する。
(IRI calculation department)
FIG. 5 is a schematic diagram for explaining the calculation of IRI. The IRI calculation unit 32 calculates the IRI in the first section and the IRI in the second section on the road R based on the road surface height information for each position P.
 IRI算出部32は、公知の方法を用いて、IRIを算出する。すなわち、IRI算出部32は、一輪の車両モデルが、IRIを算出する区間を時速80kmで走行するシミュレーションを実行することで、IRIを算出する。具体的には、IRI算出部32は、位置P毎の路面高さ情報から、IRIの算出対象となる区間の各位置のZ方向の位置(高さ)を設定する。そして、IRI算出部32は、一輪の車両モデルが、設定した高さとなる区間を時速80kmで走行する解析を実行して、単位時刻毎の、車輪のサスペンションのばね下のZ方向の位置と、ばね上のZ方向の位置とを算出する。IRI算出部32は、車輪のサスペンションのばね下のZ方向の位置と、ばね上のZ方向の位置との差分から、その区間におけるIRIを算出する。具体的には、IRI算出部32は、次の式(1)により、IRIを算出する。 The IRI calculation unit 32 calculates the IRI using a known method. That is, the IRI calculation unit 32 calculates the IRI by executing a simulation in which a one-wheeled vehicle model travels at 80 km/h in the section for which the IRI is to be calculated. Specifically, the IRI calculation unit 32 sets the position (height) in the Z direction of each position in the section for which IRI is to be calculated from the road surface height information for each position P. Then, the IRI calculation unit 32 executes an analysis in which a one-wheeled vehicle model travels at a speed of 80 km/h in a section with a set height, and calculates the unsprung Z-direction position of the wheel suspension for each unit time, The position on the spring in the Z direction is calculated. The IRI calculation unit 32 calculates the IRI in that section from the difference between the unsprung Z-direction position of the wheel suspension and the sprung Z-direction position. Specifically, the IRI calculation unit 32 calculates the IRI using the following equation (1).
Figure JPOXMLDOC01-appb-M000001
Figure JPOXMLDOC01-appb-M000001
 式(1)において、Lは、区間の長さ(距離)であり、vは車両モデルの速度であり、Zは、ばね上のZ方向の位置であり、Zは、ばね下のZ方向の位置である。すなわち、IRI算出部32は、ばね上のZ方向の位置とばね下のZ方向の位置との差分を、区間における位置毎に合計して、その合計値を区間の距離で除した値を、IRIとして算出する。 In equation (1), L is the length (distance) of the section, v is the speed of the vehicle model, Z S is the position on the spring in the Z direction, and Z u is the Z It is the position of the direction. That is, the IRI calculation unit 32 sums up the difference between the Z-direction position on the spring and the Z-direction position on the unsprung part for each position in the section, and divides the total value by the distance of the section. Calculated as IRI.
 本実施形態では、IRI算出部32は、位置P毎の路面高さ情報に基づいて、道路R上の第1区間におけるIRIを算出する。この場合、図5に示すように、IRI算出部32は、道路R上の始点位置(スタート地点)PS1aと終点位置(ゴール地点)PS1bとを設定する。IRI算出部32は、始点位置PS1aを道路R上の任意の位置(地球座標)に設定し、始点位置PS1aから第1単位距離だけ離れた位置を、終点位置PS1bに設定する。第1単位距離は、IRIにおける単位距離以上の長さであり、言い換えれば、20m以上である。IRI算出部32は、このように設定した始点位置PS1aから終点位置PS1bまでの区間を、第1区間S1として設定する。そして、IRI算出部32は、位置P毎の路面高さ情報に基づいて、第1区間S1上の各位置におけるZ方向の位置(高さ)を設定して、上記の方法により、第1区間S1のIRIを算出する。なお、IRI算出部32は、路面高さ情報が示す位置Pのいずれかと重なるように、始点位置PS1aと終点位置PS1bとを設定し、第1区間S1と重なるそれぞれの位置PのZ方向の位置を、第1区間S1上の各位置におけるZ方向の位置とする。ただしそれに限られず、IRI算出部32は、始点位置PS1aと終点位置PS1bとの少なくとも一方を、路面高さ情報が示す位置Pからずれるように設定してよい。 In the present embodiment, the IRI calculation unit 32 calculates the IRI in the first section on the road R based on the road surface height information for each position P. In this case, as shown in FIG. 5, the IRI calculation unit 32 sets a starting point position (starting point) PS1a and an ending point position (goal point) PS1b on the road R. The IRI calculation unit 32 sets the starting point position PS1a to an arbitrary position (earth coordinates) on the road R, and sets a position separated by the first unit distance from the starting point position PS1a to the ending point position PS1b. The first unit distance is longer than the unit distance in IRI, in other words, it is 20 m or more. The IRI calculation unit 32 sets the section from the start point position PS1a set in this way to the end point position PS1b as the first section S1. Then, the IRI calculation unit 32 sets the position (height) in the Z direction at each position on the first section S1 based on the road surface height information for each position P, and uses the method described above to set the position (height) in the Z direction at each position on the first section S1. Calculate the IRI of S1. Note that the IRI calculation unit 32 sets the starting point position PS1a and the ending point position PS1b so that they overlap with any of the positions P indicated by the road surface height information, and determines the Z-direction position of each position P that overlaps with the first section S1. is the position in the Z direction at each position on the first section S1. However, the present invention is not limited thereto, and the IRI calculation unit 32 may set at least one of the starting point position PS1a and the ending point position PS1b so as to be shifted from the position P indicated by the road surface height information.
 また、IRI算出部32は、位置P毎の路面高さ情報に基づいて、道路R上の第2区間S2におけるIRIを算出する。IRI算出部32は、第1区間S1と重複し、かつ第1区間S1よりも所定距離Wだけ長くなるように、第2区間を設定する。ここでの所定距離Wは、任意の長さに設定されてよいが、IRIにおける単位距離(20m)未満であることが好ましく、隣合う位置P同士の距離(路面高さ情報が取得される位置同士の距離)と同じであることがより好ましい。本実施形態では、第2区間S2は、第1区間S1(第1単位距離)を超えて、かつ、第1区間S1(第1単位距離)の2倍未満の長さである。具体的には、IRI算出部32は、第1区間S1の始点PA1aから第1区間S1の終点PS1bを通り、終点PS1bから所定距離Wだけ離れた終点PS2bまでの区間を、第2区間S2として設定する。すなわち、第2区間S2は、始点PA1aから終点PS1bまでは、第1区間S1と重なり、終点PS1bから終点PS2bまでは、第1区間S1と重ならない。以下、第2区間S2のうちで、第1区間S1と重ならない区間(終点PS1bから終点PS2bまでの区間)を、非重複区間S3と記載する。IRI算出部32は、位置P毎の路面高さ情報に基づいて、第2区間S2上の各位置におけるZ方向の位置(高さ)を設定して、上記の方法により、第2区間S2のIRIを算出する。 Furthermore, the IRI calculation unit 32 calculates the IRI in the second section S2 on the road R based on the road surface height information for each position P. The IRI calculation unit 32 sets the second section so that it overlaps with the first section S1 and is longer than the first section S1 by a predetermined distance W. The predetermined distance W here may be set to any length, but is preferably less than the unit distance (20 m) in IRI, and the distance between adjacent positions P (the position where road surface height information is acquired) is preferably less than the unit distance (20 m) in IRI. It is more preferable that the distance between the two is the same. In the present embodiment, the second section S2 is longer than the first section S1 (first unit distance) and less than twice as long as the first section S1 (first unit distance). Specifically, the IRI calculation unit 32 defines the section from the start point PA1a of the first section S1 to the end point PS2b, which is a predetermined distance W from the end point PS1b, passing through the end point PS1b of the first section S1, as the second section S2. Set. That is, the second section S2 overlaps with the first section S1 from the start point PA1a to the end point PS1b, and does not overlap with the first section S1 from the end point PS1b to the end point PS2b. Hereinafter, the section of the second section S2 that does not overlap with the first section S1 (the section from the end point PS1b to the end point PS2b) will be referred to as a non-overlapping section S3. The IRI calculation unit 32 sets the position (height) in the Z direction at each position on the second section S2 based on the road surface height information for each position P, and calculates the height of the second section S2 by the above method. Calculate IRI.
 IRI算出部32は、第1区間S1及び第2区間S2の位置を異ならせて、第1区間S1におけるIRIと第2区間S2におけるIRIとを、第1区間S1及び第2区間S2の位置毎に算出する。例えば、IRIを算出済みの第1区間S1を第1区間S1Aとし、これからIRIを算出する第1区間S1及び第2区間S2を、第1区間S1B及び第2区間S2Bとする。この場合、IRI算出部32は、第1区間S1Aの始点位置PS1aとは異なる位置に、これからIRIを算出する第1区間S1Bの始点位置PS1aを設定する。そして、IRI算出部32は、第1区間S1Bの始点位置PS1aから第1単位距離だけ離れた位置を、第1区間S1Bの終点位置PS1bに設定することで、第1区間S1Bを設定する。IRI算出部32は、この第1区間S1BのIRIを、上記と同様の方法で算出する。この場合、位置が異なる第1区間S1のそれぞれは、長さが同じであることが好ましく、言い換えれば、それぞれの第1区間S1の始点PS1aから終点PS1bまでの距離(第1単位距離)は、同じであることが好ましい。 The IRI calculation unit 32 changes the positions of the first section S1 and the second section S2, and calculates the IRI in the first section S1 and the IRI in the second section S2 for each position of the first section S1 and the second section S2. Calculated as follows. For example, the first section S1 for which the IRI has been calculated is defined as the first section S1A, and the first section S1 and the second section S2 for which the IRI is calculated are defined as the first section S1B and the second section S2B. In this case, the IRI calculation unit 32 sets the starting point PS1a of the first section S1B from which the IRI is to be calculated at a different position from the starting point PS1a of the first section S1A. Then, the IRI calculation unit 32 sets the first section S1B by setting a position separated by the first unit distance from the starting point PS1a of the first section S1B as the end point PS1b of the first section S1B. The IRI calculation unit 32 calculates the IRI of this first section S1B using the same method as described above. In this case, it is preferable that the first sections S1 having different positions have the same length. In other words, the distance (first unit distance) from the starting point PS1a to the ending point PS1b of each first section S1 is as follows: Preferably they are the same.
 また、IRI算出部32は、第1区間S1Bと重複し、かつ第1区間S1Bよりも所定距離Wだけ長くなるように、第2区間S2Bを設定する。すなわち、IRI算出部32は、第1区間S1Bの始点位置PS1aから、第1区間S1Bの終点位置PS1bを通り、終点位置PS1bから所定距離Wだけ離れた終点位置PS2bまでの区間を、第2区間S2Bとして設定する。IRI算出部32は、この第2区間S2BのIRIを、上記と同様の方法で算出する。この場合、位置が異なる第2区間S2のそれぞれは、長さが同じであることが好ましく、言い換えれば、それぞれの第2区間S2の始点PS1aから終点PS2bまでの距離は、同じであることが好ましい。すなわち、それぞれの第2区間S2についての、所定距離W(非重複区間S3の長さ)は、同じであることが好ましい。 Furthermore, the IRI calculation unit 32 sets the second section S2B so that it overlaps with the first section S1B and is longer than the first section S1B by a predetermined distance W. That is, the IRI calculation unit 32 converts the section from the starting point PS1a of the first section S1B, passing through the ending point PS1b of the first section S1B, to the ending point PS2b, which is a predetermined distance W away from the ending point PS1b, as the second section. Set as S2B. The IRI calculation unit 32 calculates the IRI of this second section S2B using the same method as described above. In this case, it is preferable that the second sections S2 having different positions have the same length. In other words, it is preferable that the distances from the starting point PS1a to the ending point PS2b of the respective second sections S2 are the same. . That is, it is preferable that the predetermined distance W (length of the non-overlapping section S3) of each second section S2 is the same.
 以上説明した、第1区間S1及び第2区間S2の位置毎のIRIの算出について、図4を例に説明する。例えば、図4において、位置PA1を始点位置として位置PA4を終点位置とする第1区間S1Aと、位置PA1を始点位置として位置PA4を通り位置PA5を終点位置とする第2区間S2Aとが設定されたとする。この場合、IRI算出部32は、位置PA1から位置PA4までの第1区間S1AのIRIと、位置PA1から位置PA5までの第2区間S2AのIRIとを算出する。また、IRI算出部32は、更に、位置PA2を始点位置として位置PA5を終点位置とする第1区間S1Bと、位置PA2を始点位置として位置PA6を終点位置とする第2区間S2Bとを設定し、位置PA2から位置PA5までの第1区間S1BのIRIと、位置PA2から位置PA6までの第2区間S2BのIRIとを算出する。このように、IRI算出部32は、第1区間S1や第2区間S2の長さを一定にしつつ、始点位置や終点位置をずらすことで、第1区間S1及び第2区間S2の位置を異ならせて、各位置における第1区間S1及び第2区間S2のIRIを算出する。なお、以上の説明では、位置が異なる第1区間S1及び第2区間S2のIRIを2セット算出することを例にしたが、セット数は2つに限られず3つ以上の任意の複数であってよい。 The above-described calculation of IRI for each position in the first section S1 and the second section S2 will be explained using FIG. 4 as an example. For example, in FIG. 4, a first section S1A starting from position PA1 and ending at position PA4, and a second section S2A starting from position PA1, passing through position PA4, and ending at position PA5 are set. Suppose that In this case, the IRI calculation unit 32 calculates the IRI of the first section S1A from the position PA1 to the position PA4, and the IRI of the second section S2A from the position PA1 to the position PA5. In addition, the IRI calculation unit 32 further sets a first section S1B in which the starting point is at the position PA2 and an ending point in the position PA5, and a second section S2B in which the starting point is at the position PA2 and the ending point is at the position PA6. , the IRI of the first section S1B from position PA2 to position PA5 and the IRI of the second section S2B from position PA2 to position PA6 are calculated. In this way, the IRI calculation unit 32 makes the positions of the first section S1 and the second section S2 different by shifting the starting point position and the ending point position while keeping the lengths of the first section S1 and the second section S2 constant. In addition, the IRI of the first section S1 and the second section S2 at each position is calculated. In addition, in the above explanation, an example is given in which two sets of IRIs are calculated for the first section S1 and the second section S2 at different positions, but the number of sets is not limited to two, but may be any plurality of three or more. It's fine.
 (路面状態算出部)
 路面状態算出部34は、第1区間S1のIRIと第2区間のIRIとに基づいて、前記第2区間S2において第1区間S1と重ならない非重複区間S3における路面状態を算出する。本実施形態では、路面状態算出部34は、第2区間のIRIと第1区間S1のIRIとの差分に基づいて、非重複区間S3の路面状態を算出する。さらに言えば、路面状態算出部34は、次の式(2)により、非重複区間S3の路面状態IRIS3を算出することが好ましい。
(Road surface condition calculation unit)
The road surface condition calculation unit 34 calculates the road surface condition in a non-overlapping section S3 that does not overlap with the first section S1 in the second section S2, based on the IRI of the first section S1 and the IRI of the second section. In this embodiment, the road surface condition calculation unit 34 calculates the road surface condition of the non-overlapping section S3 based on the difference between the IRI of the second section and the IRI of the first section S1. Furthermore, it is preferable that the road surface condition calculation unit 34 calculates the road surface condition IRI S3 of the non-overlapping section S3 using the following equation (2).
 IRIS3=(IRIS×LS2-IRIS1×LS1)/LS2 ・・・(2) IRI S3 = (IRIS 2 × L S2 - IRI S1 × L S1 )/L S2 (2)
 ここで、IRIS1は、第1区間S1のIRIであり、LS1は、第1区間の長さであり、IRIS2は、第2区間S2のIRIであり、LS2は、第2区間の長さである。 Here, IRI S1 is the IRI of the first section S1, L S1 is the length of the first section, IRI S2 is the IRI of the second section S2, and L S2 is the IRI of the second section S1. It is the length.
 このように、本実施形態では、第2区間のIRIと第1区間S1のIRIとの差分を取ることで、第1区間S1の終点PS1bと第2区間S2の終点PS2bとの間の非重複区間S3の路面状態を算出する。非重複区間S3の路面状態は、非重複区間S3の長さ(所定距離W)におけるIRIに相当する値といえる。 In this way, in this embodiment, by taking the difference between the IRI of the second section and the IRI of the first section S1, it is possible to determine the non-overlapping between the end point PS1b of the first section S1 and the end point PS2b of the second section S2. The road surface condition of section S3 is calculated. The road surface condition of the non-overlapping section S3 can be said to be a value corresponding to the IRI at the length (predetermined distance W) of the non-overlapping section S3.
 路面状態算出部34は、位置が異なる第1区間S1及び第2区間S2毎に、非重複区間S3の路面状態を算出する。すなわち、位置が異なる第1区間S1及び第2区間S2のセット毎に、非重複区間S3の位置も異なることになるため、路面状態算出部34は、第1区間S1及び第2区間S2のセット毎に、上記と同様の演算を実行することで、位置が異なるそれぞれの非重複区間S3についての、路面状態を算出する。すなわち図4の例では、路面状態算出部34は、位置PA1から位置PA4までの第1区間S1のIRIと、位置PA1から位置PA5までの第2区間S2のIRIとに基づいて、位置PA4から位置PA5までの非重複区間S3の路面状態を算出する。また、路面状態算出部34は、位置PA2から位置PA5までの第1区間S1のIRIと、位置PA2から位置PA6までの第2区間S2のIRIとに基づいて、位置PA5から位置PA6までの非重複区間S3の路面状態を算出する。すなわち、路面状態算出部34は、道路R上の各位置について、隣り合う位置P同士の距離毎に(所定距離W毎に)、路面状態を算出するといえる。 The road surface condition calculation unit 34 calculates the road surface condition of the non-overlapping section S3 for each of the first section S1 and the second section S2, which are located at different positions. That is, for each set of the first section S1 and the second section S2 having different positions, the position of the non-overlapping section S3 will also be different, so the road surface condition calculation unit 34 By executing calculations similar to those described above, the road surface condition for each non-overlapping section S3 at a different position is calculated. That is, in the example of FIG. 4, the road surface condition calculation unit 34 calculates the IRI from position PA4 to position PA4 based on the IRI of first section S1 from position PA1 to position PA4 and the IRI of second section S2 from position PA1 to position PA5. The road surface condition of the non-overlapping section S3 up to the position PA5 is calculated. Furthermore, the road surface condition calculation unit 34 calculates the non-standard area from the position PA5 to the position PA6 based on the IRI of the first section S1 from the position PA2 to the position PA5 and the IRI of the second section S2 from the position PA2 to the position PA6. The road surface condition of the overlapping section S3 is calculated. That is, it can be said that the road surface condition calculation unit 34 calculates the road surface condition for each position on the road R for each distance between adjacent positions P (every predetermined distance W).
 以上説明した非重複区間の路面状態の算出の処理フローを説明する。図6は、非重複区間の路面状態の算出フローを説明するフローチャートである。図6に示すように、演算装置14は、路面情報取得部30により、道路Rの路面位置毎の高さを示す路面高さ情報を取得し(ステップS10)、IRI算出部32により、路面高さ情報に基づいて、第1区間のIRIと第2区間のIRIとを算出し(ステップS12)、路面状態算出部34により、第1区間のIRIと第2区間のIRIとに基づき、非重複区間S3の路面状態(IRI)を算出する(ステップS14)。その後、他の路面位置における路面高さ情報が残っている場合には(ステップS16;No)、すなわち全ての路面位置での路面高さ情報を用いた非重複区間S3の路面状態の算出処理が終了してない場合には、始点位置をずらして(ステップS18)ステップS12に戻り、別の位置における第1区間S1と第2区間S2のIRIを算出して、路面位置毎の非重複区間S3の路面状態を算出する。一方、他の路面位置における路面高さ情報が残っていない場合には(ステップS16;Yes)、すなわち全ての路面位置での路面高さ情報を用いた非重複区間S3の路面状態の算出処理が終了した場合に本処理を終了する。なお、本フローでは、第1区間S1及び第2区間S2のIRIを算出する処理と非重複区間S3を算出する処理とを繰り返すが、この順番で処理を繰り返すことに限られない。例えば、各位置における第1区間のIRIと第2区間のIRIを算出した後に、各位置における非重複区間S3の路面状態を算出してもよい。 The processing flow for calculating the road surface condition of the non-overlapping section described above will be explained. FIG. 6 is a flowchart illustrating a calculation flow of road surface conditions in non-overlapping sections. As shown in FIG. 6, the calculation device 14 uses the road surface information acquisition unit 30 to acquire road surface height information indicating the height of each road surface position of the road R (step S10), and the IRI calculation unit 32 acquires road surface height information indicating the height of each road surface position of the road R. The IRI of the first section and the IRI of the second section are calculated based on the IRI of the first section and the IRI of the second section (step S12). The road surface condition (IRI) of section S3 is calculated (step S14). After that, if road surface height information at other road surface positions remains (step S16; No), that is, the calculation process of the road surface condition of the non-overlapping section S3 using the road surface height information at all road surface positions is performed. If it has not been completed, shift the starting point position (step S18), return to step S12, calculate the IRI of the first section S1 and the second section S2 at a different position, and calculate the non-overlapping section S3 for each road surface position. Calculate the road surface condition. On the other hand, if there is no road surface height information remaining at other road surface positions (step S16; Yes), that is, the calculation process of the road surface condition of the non-overlapping section S3 using the road surface height information at all road surface positions is performed. When the process is finished, this process is finished. Note that in this flow, the process of calculating the IRI of the first section S1 and the second section S2 and the process of calculating the non-overlapping section S3 are repeated, but the process is not limited to repeating the processes in this order. For example, after calculating the IRI of the first section and the IRI of the second section at each position, the road surface condition of the non-overlapping section S3 at each position may be calculated.
 以上説明したように、路面状態算出部34は、長さが所定距離Wとなる非重複区間S3の路面状態を、道路R上の位置毎に算出する。従って、単位距離が20mと定められているIRIよりも、短い区間毎の路面状態を算出することが可能となるため、位置毎の路面状態を細かく把握できる。 As explained above, the road surface condition calculation unit 34 calculates the road surface condition of the non-overlapping section S3 whose length is the predetermined distance W for each position on the road R. Therefore, it is possible to calculate the road surface condition for each section which is shorter than the IRI, which has a unit distance of 20 m, so that the road surface condition for each position can be grasped in detail.
 (学習モデルの学習処理)
 次に、非重複区間S3の路面状態を教師データとして学習モデルを学習させる処理について説明する。
(Learning process of learning model)
Next, a process of learning a learning model using the road surface condition of the non-overlapping section S3 as teacher data will be described.
 (位置情報取得部と挙動情報取得部)
 学習モデルを学習させる場合においては、車両10に、非重複区間S3の路面状態が算出された道路R(高さが既知の道路R)を走行させつつ、挙動情報と車両10の位置情報とを検出させる。演算装置14の位置情報取得部36は、道路Rを走行中に位置センサ10Aが検出した車両10の位置情報を取得する。また、演算装置14の挙動情報取得部38は、道路Rを走行中に挙動センサ10Bが検出した車両10の挙動情報を取得する。
(Position information acquisition unit and behavior information acquisition unit)
In the case of learning the learning model, the behavior information and the position information of the vehicle 10 are acquired while the vehicle 10 is traveling on the road R on which the road surface condition of the non-overlapping section S3 has been calculated (the road R with a known height). Let it be detected. The position information acquisition unit 36 of the calculation device 14 acquires the position information of the vehicle 10 detected by the position sensor 10A while traveling on the road R. Further, the behavior information acquisition unit 38 of the arithmetic device 14 acquires behavior information of the vehicle 10 detected by the behavior sensor 10B while traveling on the road R.
 (学習部)
 学習部40は、道路Rを移動した車両10の挙動情報と、非重複区間S3における路面状態とを教師データとして、学習モデルに機械学習させる。具体的には、学習部40は、道路Rを移動した車両10の挙動情報に対応付けられた車両10の位置情報に基づいて、車両10の挙動情報と非重複区間S3における路面状態とを対応付ける。すなわち例えば、学習部40は、車両10の位置情報から所定距離内(好ましくは車両10の位置と重なる位置)にある非重複区間S3を抽出する。そして、学習部40は、その車両10の位置情報に対応付けられた挙動情報と、抽出した非重複区間S3の路面状態とを、対応付ける。学習部40は、挙動情報を入力値とし、その挙動情報に対応付けられた非重複区間S3の路面状態を出力値としたデータセットを、教師データとして設定して、その教師データを学習モデルに入力する。この場合、学習部40は、車両10の挙動情報毎に、すなわち位置毎に、挙動情報と非重複区間S3の路面状態とからなるデータセットを複数準備して、複数のデータセットのそれぞれを学習モデルに入力することが好ましい。これにより、学習モデルは、挙動情報とその挙動情報が検出された位置における路面状態との対応関係を機械学習して、挙動情報が入力されたら、その挙動情報が検出された位置における路面状態を算出可能なモデル(プログラム)となる。
(Study Department)
The learning unit 40 causes the learning model to perform machine learning using the behavior information of the vehicle 10 that has moved on the road R and the road surface condition in the non-overlapping section S3 as training data. Specifically, the learning unit 40 associates the behavior information of the vehicle 10 with the road surface condition in the non-overlapping section S3 based on the position information of the vehicle 10 that is associated with the behavior information of the vehicle 10 that has moved on the road R. . That is, for example, the learning unit 40 extracts a non-overlapping section S3 that is within a predetermined distance (preferably a position that overlaps with the position of the vehicle 10) from the position information of the vehicle 10. The learning unit 40 then associates the behavior information associated with the position information of the vehicle 10 with the road surface condition of the extracted non-overlapping section S3. The learning unit 40 sets, as teacher data, a data set in which the behavior information is an input value and the road surface condition of the non-overlapping section S3 associated with the behavior information is an output value, and the teacher data is used as a learning model. input. In this case, the learning unit 40 prepares a plurality of data sets consisting of the behavior information and the road surface condition of the non-overlapping section S3 for each behavior information of the vehicle 10, that is, for each position, and learns each of the plurality of data sets. Preferably input into the model. As a result, the learning model performs machine learning on the correspondence between behavior information and the road surface condition at the position where the behavior information is detected. It becomes a model (program) that can be calculated.
 なお、学習モデルは、ディープラーニングによって学習された学習モデルであり、ディープラーニングによって学習された分類器を構成するニューラルネットワークを定義するモデル(ニューラルネットワークの構成情報)と、変数とで構成される。学習モデルは、入力されたデータに基づき、そのデータのラベルを判定できるものである。本実施形態の例では、学習モデルは、CNN(Conventional Neural Network:畳み込みニューラルネットワーク)モデルであるが、CNNモデルに限られず、任意の方式の学習モデルであってもよい。 Note that the learning model is a learning model learned by deep learning, and is composed of a model (neural network configuration information) that defines a neural network that constitutes a classifier learned by deep learning, and variables. A learning model can determine the label of input data based on that data. In the example of this embodiment, the learning model is a CNN (Conventional Neural Network) model, but is not limited to the CNN model, and may be any type of learning model.
 (未知の道路の路面状態の算出)
 (演算部)
 演算装置14の演算部42は、学習済みの学習モデルを用いて、路面状態や高さが未知の道路の路面状態を算出する。具体的には、位置情報取得部36及び挙動情報取得部38は、路面状態が未知の道路を移動中の車両10により検出された、車両10の位置情報及び挙動情報を取得する。演算部42は、取得した挙動情報を、学習済みの学習モデルに入力する。学習モデルにおいては、挙動情報が入力データとして入力されて、演算が実行される。その結果、学習モデルからは、その挙動情報が検出された位置における路面状態が、出力データとして出力される。演算部42は、出力データとして出力された路面状態を、その道路の路面状態として算出するといえる。演算部42は、車両10の位置情報が示す位置毎の挙動情報を学習モデルに入力して、道路の位置毎の路面状態を算出する。
(Calculation of road surface condition of unknown road)
(calculation section)
The calculation unit 42 of the calculation device 14 uses the learned learning model to calculate the road surface condition of a road whose road surface condition and height are unknown. Specifically, the position information acquisition unit 36 and the behavior information acquisition unit 38 acquire position information and behavior information of the vehicle 10 detected by the vehicle 10 moving on a road with an unknown road surface condition. The calculation unit 42 inputs the acquired behavior information into the trained learning model. In the learning model, behavior information is input as input data and calculations are executed. As a result, the learning model outputs the road surface condition at the position where the behavior information was detected as output data. It can be said that the calculation unit 42 calculates the road surface condition output as output data as the road surface condition of the road. The calculation unit 42 inputs the behavior information for each position indicated by the position information of the vehicle 10 into the learning model, and calculates the road surface condition for each position of the road.
 以上説明したように、本実施形態においては、非重複区間S3の路面状態を教師データとした学習モデルを用いて、道路の路面状態を算出する。本実施形態によると、単位距離が20mと定められているIRIではなく、より短い区間毎に設定可能な非重複区間S3の路面状態を教師データとすることで、位置毎の路面状態を細かく把握でき、学習モデルによる路面状態の算出精度を向上させることができる。 As explained above, in this embodiment, the road surface condition of the road is calculated using a learning model that uses the road surface condition of the non-overlapping section S3 as teacher data. According to this embodiment, by using the road surface condition of the non-overlapping section S3, which can be set for each shorter section, as training data, rather than the IRI whose unit distance is defined as 20 m, the road surface condition at each position can be grasped in detail. This allows the learning model to improve the accuracy of calculating road surface conditions.
 ただし、非重複区間S3の路面状態の用途は、学習モデル用の教師データに限られず、任意の用途に用いてよい。例えば、演算装置14は、算出した非重複区間S3の路面状態の情報を出力するものであってよく、非重複区間S3の路面状態に基づいて任意の処理を行ってもよいし、非重複区間S3の路面状態を、他の装置に送信してもよいし、図示しない演算装置14の表示装置に表示させてもよい。 However, the use of the road surface condition in the non-overlapping section S3 is not limited to teacher data for a learning model, and may be used for any purpose. For example, the calculation device 14 may output information on the calculated road surface condition of the non-overlapping section S3, may perform arbitrary processing based on the road surface condition of the non-overlapping section S3, or may output information on the calculated road surface condition of the non-overlapping section S3. The road surface condition at S3 may be transmitted to another device, or may be displayed on a display device of the arithmetic device 14 (not shown).
 (効果)
 以上説明したように、本実施形態に係る演算装置14は、道路Rの路面の鉛直方向における高さ位置を示す路面高さ情報を、道路R上の路面位置毎に取得する路面情報取得部30と、路面位置毎の路面高さ情報に基づいて、前記道路上の単位距離(第1単位距離)の第1区間S1におけるIRIと、第1区間と重複し、かつ単位距離(第1単位距離)を超えて単位距離(第1単位距離)の2倍未満の長さの第2区間S2におけるIRIとを算出するIRI算出部32と、第1区間S1におけるIRIと第2区間S2におけるIRIとに基づいて、第2区間S2において第1区間S1と重ならない非重複区間S3における路面状態(IRI)を算出する路面状態算出部34と、を含む。本実施形態によると、第1区間S1のIRIと第2区間S2のIRIとから、所定距離Wとなる非重複区間S3の路面状態を算出する。また、第2区間S2が第1区間S1より長いことで、非重複区間S3を第1区間S1より短くでき、第2区間S2が第1区間の2倍未満であることで、非重複区間S3を第1区間S1より短くして、位置毎の路面状態を細かく把握できるといえる。例えば、第1区間S1(第1単位距離)が20mである場合には、第2区間S2は20mより長く40m未満となるため、非重複区間S3は0mより長く(例えば0.1mなど)20m未満(例えば19mなど)となり、位置毎の路面状態を第1区間S1より細かく把握できる。従って、本実施形態によると、位置毎の路面状態を細かく把握できる。
(effect)
As described above, the calculation device 14 according to the present embodiment uses the road surface information acquisition unit 30 that acquires road surface height information indicating the height position of the road surface of the road R in the vertical direction for each road surface position on the road R. , based on the road surface height information for each road surface position, the IRI in the first section S1 of the unit distance (first unit distance) on the road, and the IRI of the unit distance (first unit distance) that overlaps with the first section and ) and an IRI in a second section S2 whose length is less than twice the unit distance (first unit distance), and an IRI in the first section S1 and IRI in the second section S2. a road surface condition calculation unit 34 that calculates a road surface condition (IRI) in a non-overlapping section S3 that does not overlap with the first section S1 in the second section S2 based on the following. According to this embodiment, the road surface condition of the non-overlapping section S3, which is a predetermined distance W, is calculated from the IRI of the first section S1 and the IRI of the second section S2. Furthermore, since the second section S2 is longer than the first section S1, the non-overlapping section S3 can be made shorter than the first section S1, and since the second section S2 is less than twice the first section, the non-overlapping section S3 can be made shorter than the first section S1. It can be said that by making the road surface condition shorter than the first section S1, it is possible to grasp the road surface condition at each position in detail. For example, when the first section S1 (first unit distance) is 20 m, the second section S2 is longer than 20 m and less than 40 m, so the non-overlapping section S3 is longer than 0 m (for example, 0.1 m) and 20 m. (for example, 19 m, etc.), and the road surface condition at each position can be grasped in more detail than in the first section S1. Therefore, according to this embodiment, it is possible to grasp the road surface condition in detail for each position.
 IRI算出部32は、第1区間S1及び第2区間S2の始点位置を異ならせて、第1区間S1におけるIRIと第2区間S2におけるIRIとを、位置毎に算出し、路面状態算出部34は、非重複区間S3における路面状態(IRI)を、非重複区間の位置毎に算出する。本実施形態によると、道路Rの位置毎に非重複区間S3の路面状態を算出するため、位置毎の路面状態を細かく把握できる。 The IRI calculation section 32 calculates the IRI in the first section S1 and the IRI in the second section S2 for each position by differentiating the starting point positions of the first section S1 and the second section S2, and calculates the IRI in the first section S1 and the IRI in the second section S2 for each position. calculates the road surface condition (IRI) in the non-overlapping section S3 for each position of the non-overlapping section. According to this embodiment, since the road surface condition of the non-overlapping section S3 is calculated for each position of the road R, the road surface condition for each position can be grasped in detail.
 IRI算出部32は、位置毎の第1区間S1の距離を同じとし、位置毎の第2区間S2の距離を同じとする。本実施形態によると、それぞれの第1区間S1や第2区間S2の長さを同じにするため、位置毎の路面状態を高精度に算出できる。 The IRI calculation unit 32 makes the distance of the first section S1 the same for each position, and the distance of the second section S2 for each position the same. According to this embodiment, since the lengths of the first section S1 and the second section S2 are the same, the road surface condition for each position can be calculated with high accuracy.
 IRI算出部32は、第1区間S1の始点PS1aから、第1区間S1の終点PS1bを通り、非重複区間S3の終点PS2bまでの区間を第2区間S2として、第2区間S2におけるIRIを算出する。本実施形態によると、第2区間S2をこのように設定することで、位置毎の路面状態を高精度に算出できる。 The IRI calculation unit 32 calculates the IRI in the second section S2, with the section from the start point PS1a of the first section S1 passing through the end point PS1b of the first section S1 to the end point PS2b of the non-overlapping section S3 as the second section S2. do. According to this embodiment, by setting the second section S2 in this way, the road surface condition for each position can be calculated with high accuracy.
 演算装置14は、学習部40を更に含む。学習部40は、非重複区間S3を移動した車両10の挙動を示す挙動情報と、非重複区間S3における路面状態とを教師データとして、学習モデルに、挙動情報と路面状態との対応関係を機械学習させる。本実施形態によると、非重複区間S3の路面状態を教師データとすることで、学習モデルによる路面状態の算出精度を向上させることができる。 The arithmetic device 14 further includes a learning section 40. The learning unit 40 uses the behavior information indicating the behavior of the vehicle 10 that has traveled in the non-overlapping section S3 and the road surface condition in the non-overlapping section S3 as training data, and automatically creates a correspondence relationship between the behavior information and the road surface condition in the learning model. Let them learn. According to the present embodiment, by using the road surface state of the non-overlapping section S3 as the teacher data, it is possible to improve the calculation accuracy of the road surface state by the learning model.
 (第2実施形態)
 次に、第2実施形態について説明する。第1実施形態においては、位置センサ10Aが検出した位置センサ10Aの位置情報を、車両10の位置情報として扱った。それに対して、第2実施形態においては、位置センサ10Aの位置情報と、位置センサ10Aと車輪TRとの相対位置を示す関係情報とに基づいて、車輪TRの位置情報を算出し、車輪TRの位置情報を車両10の位置情報として扱う。第2実施形態において、第1実施形態と構成が共通する箇所は、説明を省略する。
(Second embodiment)
Next, a second embodiment will be described. In the first embodiment, the position information of the position sensor 10A detected by the position sensor 10A is treated as the position information of the vehicle 10. On the other hand, in the second embodiment, the position information of the wheel TR is calculated based on the position information of the position sensor 10A and the relationship information indicating the relative position between the position sensor 10A and the wheel TR, and The position information is treated as position information of the vehicle 10. In the second embodiment, descriptions of parts that have the same configuration as the first embodiment will be omitted.
 図7は、第2実施形態に係る演算装置の模式的なブロック図である。図8は、位置センサと車輪の位置関係の例を示す模式図である。図7に示すように、第2実施形態に係る演算装置14aの制御部24は、関係情報取得部44と車輪位置算出部46と進行方向取得部48とを更に含む。 FIG. 7 is a schematic block diagram of the arithmetic device according to the second embodiment. FIG. 8 is a schematic diagram showing an example of the positional relationship between the position sensor and the wheels. As shown in FIG. 7, the control unit 24 of the arithmetic device 14a according to the second embodiment further includes a relational information acquisition unit 44, a wheel position calculation unit 46, and a traveling direction acquisition unit 48.
 第2実施形態においては、関係情報取得部44は、位置センサ10Aと車輪TRとの相対位置を示す関係情報を取得する。関係情報は、車両10における位置センサ10Aの位置(車両10を基準とした座標系における位置センサ10Aの位置)と、車両における車輪TRの位置(車両10を基準とした座標系における車輪TRの位置)との位置関係を示す情報といえる。本実施形態では、関係情報取得部44は、車両10における位置センサ10Aの位置と、車両10の幅(車幅)と、車両10のホイールベース(車を真横から見た時、前輪の中心から後輪の中心までの距離)とのジオメトリ情報を、関係情報として取得する。関係情報取得部44は、任意の方法で関係情報を取得してよい。例えば、関係情報が予め設定(測定)されており、関係情報取得部44は、設定された関係情報を取得してよい。 In the second embodiment, the relationship information acquisition unit 44 acquires relationship information indicating the relative position between the position sensor 10A and the wheel TR. The related information includes the position of the position sensor 10A in the vehicle 10 (the position of the position sensor 10A in a coordinate system with the vehicle 10 as a reference) and the position of the wheel TR in the vehicle (the position of the wheel TR in the coordinate system with the vehicle 10 as a reference). ) can be said to be information indicating the positional relationship with In this embodiment, the related information acquisition unit 44 acquires the position of the position sensor 10A in the vehicle 10, the width of the vehicle 10 (vehicle width), and the wheelbase of the vehicle 10 (from the center of the front wheels when the vehicle is viewed from the side). (distance to the center of the rear wheel) is acquired as relationship information. The relational information acquisition unit 44 may obtain the relational information using any method. For example, the relationship information may be set (measured) in advance, and the relationship information acquisition unit 44 may acquire the set relationship information.
 第2実施形態においては、位置情報取得部36は、道路Rを走行中に位置センサ10Aが検出した位置センサ10Aの位置情報を取得する。車輪位置算出部46は、位置センサ10Aの位置情報と、関係情報とに基づき、車輪TRの位置情報を算出する。車輪TRの位置情報とは、例えば地球座標系における車輪TRの位置を示す情報である。例えば、車輪位置算出部46は、位置センサ10Aの位置から、関係情報が示す位置センサ10Aに対する車輪TRの相対位置だけずれた位置を、車輪TRの位置として算出する。図8の例では、車輪位置算出部46は、車両10における位置センサ10Aの位置、車両10の幅、及びホイールベースから、車両10の座標系における、位置センサ10Aの位置P10Aに対する車輪TR1の位置PTR1(車輪TR1の相対位置)と、位置センサ10Aの位置P10Aに対する車輪TR2の位置PTR2(車輪TR2の相対位置)と、位置センサ10Aの位置P10Aに対する車輪TR3の位置PTR3(車輪TR3の相対位置)と、位置センサ10Aの位置P10Aに対する車輪TR4の位置PTR4の位置(車輪TR4の相対位置)を算出する。そして、車輪位置算出部46は、位置センサ10Aの位置から車輪TR1の相対位置だけずれた位置を、車輪TR1の位置として算出し、位置センサ10Aの位置から車輪TR2の相対位置だけずれた位置を、車輪TR2の位置として算出し、位置センサ10Aの位置から車輪TR3の相対位置だけずれた位置を、車輪TR3の位置として算出し、位置センサ10Aの位置から車輪TR4の相対位置だけずれた位置を、車輪TR4の位置として算出する。 In the second embodiment, the position information acquisition unit 36 acquires the position information of the position sensor 10A detected by the position sensor 10A while the vehicle is traveling on the road R. The wheel position calculation unit 46 calculates the position information of the wheel TR based on the position information of the position sensor 10A and related information. The position information of the wheel TR is, for example, information indicating the position of the wheel TR in the earth coordinate system. For example, the wheel position calculating unit 46 calculates, as the position of the wheel TR, a position shifted from the position of the position sensor 10A by the relative position of the wheel TR with respect to the position sensor 10A indicated by the related information. In the example of FIG. 8, the wheel position calculation unit 46 determines the position P of the position sensor 10A in the coordinate system of the vehicle 10 based on the position of the position sensor 10A in the vehicle 10, the width of the vehicle 10, and the wheel base. Position PTR1 (relative position of wheel TR1), position PTR2 (relative position of wheel TR2) of wheel TR2 with respect to position P10A of position sensor 10A , position PTR3 of wheel TR3 with respect to position P10A of position sensor 10A ( The relative position of the wheel TR3) and the position P of the wheel TR4 with respect to the position P10A of the position sensor 10A (the relative position of the wheel TR4) are calculated. Then, the wheel position calculation unit 46 calculates a position that is shifted by the relative position of the wheel TR1 from the position of the position sensor 10A as the position of the wheel TR1, and a position that is shifted by the relative position of the wheel TR2 from the position of the position sensor 10A. , the position of the wheel TR2 is calculated as the position of the wheel TR2, and the position that is shifted by the relative position of the wheel TR3 from the position of the position sensor 10A is calculated as the position of the wheel TR3, and the position that is shifted by the relative position of the wheel TR4 from the position of the position sensor 10A is calculated as the position of the wheel TR3. , is calculated as the position of wheel TR4.
 本実施形態では、車輪位置算出部46は、位置センサ10Aの位置情報と、関係情報とに加えて、進行方向取得部48が取得した車両10の進行方向(地球座標系における車両10の向き)の情報にも基づいて、車輪TRの位置情報を算出する。すなわち、車両10の座標系における位置センサ10Aと車輪TRとの相対位置は、車両10の進行方向に限られず一定であるが、地球座標系における位置センサ10Aに対する車輪TRの位置は、車両10の進行方向によって異なる。従って、車輪位置算出部46は、車両10の進行方向も用いて車輪TRの位置情報を算出することで、車輪TRの位置情報を高精度に算出できる。進行方向取得部48は、車両10の進行方向を任意の方法で取得してよいが、例えば、位置センサ10Aの位置情報が検出されたタイミングにおける車両10の操舵角や、位置センサ10Aの位置情報が検出されたタイミングにおいてジャイロセンサにより検出された、進行方向の情報などを用いてよい。 In the present embodiment, the wheel position calculation unit 46 uses, in addition to the position information of the position sensor 10A and the related information, the traveling direction of the vehicle 10 (orientation of the vehicle 10 in the earth coordinate system) acquired by the traveling direction acquisition unit 48. The position information of the wheel TR is calculated based also on the information. That is, the relative position of the position sensor 10A and the wheel TR in the coordinate system of the vehicle 10 is constant regardless of the traveling direction of the vehicle 10, but the position of the wheel TR with respect to the position sensor 10A in the earth coordinate system is Depends on the direction of travel. Therefore, the wheel position calculation unit 46 can calculate the position information of the wheels TR with high accuracy by calculating the position information of the wheels TR also using the traveling direction of the vehicle 10. The traveling direction acquisition unit 48 may acquire the traveling direction of the vehicle 10 using any method, but for example, the steering angle of the vehicle 10 at the timing when the position information of the position sensor 10A is detected, or the position information of the position sensor 10A. Information on the traveling direction detected by the gyro sensor at the timing when the gyro sensor is detected may be used.
 ただし、車両10の進行方向を用いて車輪TRの位置情報を算出することは必須ではない。例えば、車輪TR毎に位置センサ10Aを設けた場合には、地球座標系における位置センサ10Aに対する車輪TRの位置が一定となるため、車両10の進行方向は不要となる。 However, it is not essential to calculate the position information of the wheels TR using the traveling direction of the vehicle 10. For example, if the position sensor 10A is provided for each wheel TR, the position of the wheel TR with respect to the position sensor 10A in the earth coordinate system is constant, so the traveling direction of the vehicle 10 is not required.
 第2実施形態においては、このように算出した車輪TRの位置情報を、車両10の位置情報として扱う。具体的には、第2実施形態においては、挙動情報と、非重複区間S3における路面状態とを教師データとして学習モデルに学習させる際に、車輪TRの位置情報を、車両10の位置情報として用いる。すなわち、第2実施形態においては、学習部40は、車両10の挙動情報に対応付けられた車輪TRの位置情報(車両10の位置情報)に基づいて、車両10の挙動情報と非重複区間S3における路面状態とを対応付ける。すなわち例えば、学習部40は、車輪TRの位置から所定距離内(好ましくは車輪TRの位置と重なる位置)にある非重複区間S3を抽出する。そして、学習部40は、その車輪TRの位置に対応付けられた挙動情報と、抽出した非重複区間S3の路面状態とを、対応付けて、教師データのデータセットとする。 In the second embodiment, the position information of the wheels TR calculated in this way is treated as the position information of the vehicle 10. Specifically, in the second embodiment, when the learning model is made to learn the behavior information and the road surface condition in the non-overlapping section S3 as teacher data, the position information of the wheels TR is used as the position information of the vehicle 10. . That is, in the second embodiment, the learning unit 40 determines the behavior information of the vehicle 10 and the non-overlapping section S3 based on the position information of the wheels TR (position information of the vehicle 10) that is associated with the behavior information of the vehicle 10. and the road surface condition. That is, for example, the learning unit 40 extracts a non-overlapping section S3 that is within a predetermined distance from the position of the wheel TR (preferably at a position that overlaps with the position of the wheel TR). Then, the learning unit 40 associates the behavior information associated with the position of the wheel TR with the extracted road surface condition of the non-overlapping section S3, and creates a data set of teacher data.
 以降の学習処理や、機械学習済みの学習モデルを用いた路面状態の算出処理は、第1実施形態と同様なので、詳細な説明を省略するが、例えば、第2実施形態においては、路面状態を算出する場合においては、車輪位置算出部46は、路面状態が未知の道路を移動中の車両10により検出された位置センサ10Aの位置情報と、関係情報とに基づき、車輪TRの位置情報を算出する。演算部42は、車輪TRの位置情報を、車両10の位置情報として用い、車輪TRの位置情報(位置センサ10Aの位置情報)が検出された際の挙動情報を学習モデルに入力することで、その挙動情報が検出された際の車輪TRの位置(車両10の位置)における路面状態を算出する。ただし、演算部42は、挙動情報を学習モデルに入力することにより路面状態を算出することに限られず、学習モデルを用いなくてもよい。すなわち、演算部42は、車輪TRの位置情報(位置センサ10Aの位置情報)が検出された際の挙動情報に基づき、任意の方法で、その挙動情報が検出された際の車輪TRの位置(車両10の位置)における路面状態を算出してもよい。 The subsequent learning process and the process of calculating the road surface condition using the machine-learned learning model are the same as in the first embodiment, so a detailed explanation will be omitted. In the case of calculation, the wheel position calculation unit 46 calculates the position information of the wheel TR based on the position information of the position sensor 10A detected by the vehicle 10 moving on a road with an unknown road surface condition and related information. do. The calculation unit 42 uses the position information of the wheels TR as the position information of the vehicle 10, and inputs the behavior information when the position information of the wheels TR (position information of the position sensor 10A) is detected into the learning model. The road surface condition at the position of the wheel TR (position of the vehicle 10) when the behavior information is detected is calculated. However, the calculation unit 42 is not limited to calculating the road surface condition by inputting behavior information into a learning model, and may not use a learning model. That is, based on the behavior information when the position information of the wheel TR (position information of the position sensor 10A) is detected, the calculation unit 42 uses any method to determine the position (of the wheel TR) when the behavior information is detected. The road surface condition at the location of the vehicle 10 may also be calculated.
 このように、第2実施形態においては、車輪TRの位置情報を用いて、挙動情報と、非重複区間S3における路面状態とを対応付ける。そのため、挙動情報が検出された位置をより高精度に設定することが可能となり、挙動情報と路面状態との対応付けをより高精度にして、学習モデルの算出精度を向上させることができる。なお、第2実施形態においては、第1実施形態と同様に、挙動情報と、非重複区間S3における路面状態を教師データとしたが、それに限られず、道路R上の任意の位置(区間)における路面状態を教師データとしてよい。例えば、第2実施形態においては、20mの区間におけるIRIを教師データとしてもよい。 In this way, in the second embodiment, the behavior information and the road surface condition in the non-overlapping section S3 are associated using the position information of the wheels TR. Therefore, it becomes possible to set the position where the behavior information is detected with higher precision, and the correspondence between the behavior information and the road surface condition can be made more precise, and the calculation accuracy of the learning model can be improved. In addition, in the second embodiment, like the first embodiment, the behavior information and the road surface condition in the non-overlapping section S3 are used as the teacher data, but the present invention is not limited to this. Road surface conditions may be used as training data. For example, in the second embodiment, IRI in a 20 m section may be used as training data.
 ただし、第2実施形態における車輪TRの位置情報は、教師データ用の挙動情報と路面状態とを対応付ける用途や、挙動情報が検出された位置における路面状態の算出する用途に限られず、任意の用途に用いてよい。例えば、演算装置14は、車輪TRの位置情報を出力するものであってよく、車輪TRの位置情報に基づいて任意の処理を行ってもよいし、車輪TRの位置情報を、他の装置に送信してもよいし、図示しない演算装置14の表示装置に表示させてもよい。 However, the position information of the wheels TR in the second embodiment is not limited to the use of associating the behavior information for teacher data with the road surface condition or the use of calculating the road surface condition at the position where the behavior information is detected, but can be used for any purpose. May be used for. For example, the calculation device 14 may output position information of the wheels TR, may perform arbitrary processing based on the position information of the wheels TR, or may output position information of the wheels TR to another device. It may be transmitted or may be displayed on a display device of the arithmetic device 14 (not shown).
 以上説明したように、第2実施形態に係る演算装置14aは、道路を移動する車両10に搭載された位置センサ10Aによって検出された、位置センサ10Aの位置情報を取得する位置情報取得部36と、車両10における位置センサ10Aの位置と、車両10における車輪TRの位置との位置関係を示す関係情報を取得する関係情報取得部44と、位置センサ10Aの位置情報と関係情報とに基づいて、車輪TRの位置情報を算出する車輪位置算出部46と、を含む。本実施形態によると、車輪TRの位置情報を算出することで、車両10の位置をより細かく把握することが可能となるため、車輪TRの位置情報を用いることで、位置毎の路面状態を細かく把握することができる。例えば、本実施形態においては、第1実施形態と同様に、非重複区間S3の路面状態を算出するため、位置毎の路面状態を細かく(例えば数十cm単位で)算出する。また、本実施形態によると、車輪TRの位置情報により、挙動情報が検出された位置を細かく(例えば数十cm単位で)把握できる。すなわち、本実施形態によると、位置が細かく把握できる車輪TRの位置情報を用いて、挙動情報を路面状態に対応付けることが可能となるため、位置毎の路面状態を、細かく、かつ高精度に算出することが可能となる。 As explained above, the calculation device 14a according to the second embodiment includes the position information acquisition unit 36 that acquires the position information of the position sensor 10A detected by the position sensor 10A mounted on the vehicle 10 moving on the road. , a relationship information acquisition unit 44 that acquires relationship information indicating the positional relationship between the position of the position sensor 10A in the vehicle 10 and the position of the wheel TR in the vehicle 10, and based on the position information and the relationship information of the position sensor 10A, A wheel position calculation unit 46 that calculates position information of the wheel TR is included. According to the present embodiment, by calculating the position information of the wheels TR, it is possible to grasp the position of the vehicle 10 in more detail. Therefore, by using the position information of the wheels TR, the road surface condition for each position can be determined in detail. can be grasped. For example, in this embodiment, similarly to the first embodiment, in order to calculate the road surface condition of the non-overlapping section S3, the road surface condition for each position is calculated in detail (for example, in units of tens of centimeters). Further, according to the present embodiment, the position where the behavior information is detected can be determined in detail (for example, in units of tens of centimeters) based on the position information of the wheel TR. In other words, according to the present embodiment, it is possible to associate behavior information with road surface conditions using the position information of the wheels TR whose positions can be grasped in detail, so that the road surface conditions for each position can be calculated in detail and with high precision. It becomes possible to do so.
 また、車輪位置算出部46は、車両10の進行方向にも基づいて、車輪TRの位置情報を算出する。これにより、車輪TRの位置をより高精度に算出できる。 Furthermore, the wheel position calculation unit 46 calculates position information of the wheels TR based also on the traveling direction of the vehicle 10. Thereby, the position of the wheel TR can be calculated with higher accuracy.
 また、演算装置14aは、学習部40を含む。学習部40は、車輪TRの位置情報により、挙動情報と道路Rの路面状態とを対応付けて、対応付けた挙動情報と路面状態とを教師データとして、学習モデルに、挙動情報と路面状態との対応関係を機械学習させる。これにより、挙動情報と路面状態との対応付けをより高精度にして、学習モデルの算出精度を向上させることができる。 Additionally, the arithmetic device 14a includes a learning section 40. The learning unit 40 associates the behavior information with the road surface condition of the road R based on the position information of the wheels TR, and uses the correlated behavior information and road surface condition as training data to add the behavior information and the road surface condition to the learning model. machine learning the correspondence relationship. Thereby, it is possible to make the correspondence between the behavior information and the road surface condition more accurate, and improve the calculation accuracy of the learning model.
 また、演算装置14aは、挙動情報取得部38と演算部42とを含む。挙動情報取得部38は、道路を移動する車両10の挙動を示す挙動情報を取得する。演算部42は、挙動情報に基づいて、車輪TRの位置情報が示す位置における道路の路面状態を算出する。より好ましくは、演算部42は、挙動情報と路面状態との対応関係を機械学習した学習モデルに、取得された挙動情報を入力することで、車輪TRの位置情報が示す位置における道路の路面状態を算出する。このように、第2実施形態においては、路面状態の算出の際に、車輪位置算出部46によって算出した車輪TRの位置を用いる。すなわち、第2実施形態においては、挙動情報が検出された位置を車輪TRの位置として扱い、車輪TRの位置における路面状態を算出することで、位置毎の路面状態を高精度に算出することが可能となる。 Furthermore, the calculation device 14a includes a behavior information acquisition section 38 and a calculation section 42. The behavior information acquisition unit 38 acquires behavior information indicating the behavior of the vehicle 10 moving on the road. The calculation unit 42 calculates the road surface condition of the road at the position indicated by the position information of the wheel TR based on the behavior information. More preferably, the calculation unit 42 calculates the road surface condition of the road at the position indicated by the position information of the wheel TR by inputting the acquired behavior information into a learning model that performs machine learning on the correspondence between the behavior information and the road surface condition. Calculate. In this manner, in the second embodiment, the positions of the wheels TR calculated by the wheel position calculation unit 46 are used when calculating the road surface condition. That is, in the second embodiment, by treating the position where behavior information is detected as the position of the wheel TR and calculating the road surface condition at the position of the wheel TR, it is possible to calculate the road surface condition for each position with high accuracy. It becomes possible.
 以上、本発明の実施形態及び実施例を説明したが、これら実施形態等の内容により実施形態が限定されるものではない。また、前述した構成要素には、当業者が容易に想定できるもの、実質的に同一のもの、いわゆる均等の範囲のものが含まれる。さらに、前述した構成要素は適宜組み合わせることが可能である。さらに、前述した実施形態等の要旨を逸脱しない範囲で構成要素の種々の省略、置換又は変更を行うことができる。 Although the embodiments and examples of the present invention have been described above, the embodiments are not limited by the contents of these embodiments. Furthermore, the above-mentioned components include those that can be easily assumed by those skilled in the art, those that are substantially the same, and those that are in a so-called equivalent range. Furthermore, the aforementioned components can be combined as appropriate. Furthermore, various omissions, substitutions, or changes of the constituent elements can be made without departing from the gist of the embodiments described above.
 1 検出システム
 10 車両
 10A 位置センサ
 10B 挙動センサ
 14 演算装置
 30 路面情報取得部
 32 IRI算出部
 34 路面状態算出部
 36 位置情報取得部
 38 挙動情報取得部
 40 学習部
 42 演算部
 44 関係情報取得部
 46 車輪位置算出部
 S1 第1区間
 S2 第2区間
 S3 非重複区間
 TR 車輪
1 Detection System 10 Vehicle 10A Position Sensor 10B Behavior Sensor 14 Arithmetic Unit 30 Road Surface Information Acquisition Unit 32 IRI Calculation Unit 34 Road Condition Calculation Unit 36 Position Information Acquisition Unit 38 Behavior Information Acquisition Unit 40 Learning Unit 42 Calculation Unit 44 Related Information Acquisition Unit 46 Wheel position calculation unit S1 First section S2 Second section S3 Non-overlapping section TR Wheel

Claims (7)

  1.  道路を移動する車両に搭載された位置センサによって検出された、前記位置センサの位置情報を取得する位置情報取得部と、
     前記車両における前記位置センサの位置と、前記車両における車輪の位置との位置関係を示す関係情報を取得する関係情報取得部と、
     前記位置センサの位置情報と前記関係情報とに基づいて、前記車輪の位置情報を算出する車輪位置算出部と、
     を含む、
     演算装置。
    a position information acquisition unit that acquires position information of the position sensor detected by a position sensor mounted on a vehicle moving on a road;
    a relationship information acquisition unit that acquires relationship information indicating a positional relationship between the position of the position sensor in the vehicle and the position of a wheel in the vehicle;
    a wheel position calculation unit that calculates position information of the wheel based on the position information of the position sensor and the relationship information;
    including,
    Computing device.
  2.  前記車輪位置算出部は、前記車両の進行方向に基づいて、前記車輪の位置情報を算出する、請求項1に記載の演算装置。 The arithmetic device according to claim 1, wherein the wheel position calculation unit calculates position information of the wheels based on a traveling direction of the vehicle.
  3.  前記道路を移動する車両の挙動を示す挙動情報を取得する挙動情報取得部と、
     前記車輪の位置情報により、前記挙動情報と前記道路の路面状態とを対応付けて、対応付けた前記挙動情報と前記路面状態とを教師データとして、学習モデルに、前記挙動情報と前記路面状態との対応関係を機械学習させる学習部と、を更に含む、請求項1又は請求項2に記載の演算装置。
    a behavior information acquisition unit that acquires behavior information indicating the behavior of a vehicle moving on the road;
    The behavior information and the road surface condition of the road are associated with each other based on the wheel position information, and the behavior information and the road surface condition are added to a learning model using the correlated behavior information and the road surface condition as training data. 3. The arithmetic device according to claim 1, further comprising a learning unit that performs machine learning on the correspondence relationship between the two.
  4.  前記道路を移動する車両の挙動を示す挙動情報を取得する挙動情報取得部と、
     前記挙動情報と前記道路の路面状態との対応関係を機械学習した学習モデルに、前記挙動情報を入力することで、前記車輪の位置情報が示す位置における前記道路の路面状態を算出する演算部と、を更に含む、請求項1に記載の演算装置。
    a behavior information acquisition unit that acquires behavior information indicating the behavior of a vehicle moving on the road;
    a calculation unit that calculates a road surface condition of the road at a position indicated by the wheel position information by inputting the behavior information into a learning model that machine-learns a correspondence relationship between the behavior information and the road surface condition of the road; The arithmetic device according to claim 1, further comprising: .
  5.  前記道路を移動する車両の挙動を示す挙動情報を取得する挙動情報取得部と、
     前記挙動情報に基づいて、前記車輪の位置情報が示す位置における前記道路の路面状態を算出する演算部と、を更に含む、請求項1に記載の演算装置。
    a behavior information acquisition unit that acquires behavior information indicating the behavior of a vehicle moving on the road;
    The computing device according to claim 1, further comprising: a computing unit that computes a road surface condition of the road at a position indicated by the wheel position information based on the behavior information.
  6.  道路を移動する車両に搭載された位置センサによって検出された、前記車両の位置情報を取得するステップと、
     前記車両における前記位置センサの位置と、前記車両における車輪の位置との位置関係を示す関係情報を取得するステップと、
     前記位置情報と前記関係情報とに基づいて、前記車輪の位置情報を算出するステップと、
     を含む、
     演算方法。
    obtaining position information of the vehicle detected by a position sensor mounted on the vehicle moving on the road;
    acquiring relationship information indicating a positional relationship between the position of the position sensor in the vehicle and the position of a wheel in the vehicle;
    calculating position information of the wheel based on the position information and the relationship information;
    including,
    Calculation method.
  7.  道路を移動する車両に搭載された位置センサによって検出された、前記車両の位置情報を取得するステップと、
     前記車両における前記位置センサの位置と、前記車両における車輪の位置との位置関係を示す関係情報を取得するステップと、
     前記位置情報と前記関係情報とに基づいて、前記車輪の位置情報を算出するステップと、
     をコンピュータに実行させる、
     プログラム。
    obtaining position information of the vehicle detected by a position sensor mounted on the vehicle moving on the road;
    acquiring relationship information indicating a positional relationship between the position of the position sensor in the vehicle and the position of a wheel in the vehicle;
    calculating position information of the wheel based on the position information and the relationship information;
    make the computer execute
    program.
PCT/JP2023/011323 2022-03-31 2023-03-22 Computation device, computation method, and program WO2023189972A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-061001 2022-03-31
JP2022061001A JP2023151410A (en) 2022-03-31 2022-03-31 Computing device, computing method and program

Publications (1)

Publication Number Publication Date
WO2023189972A1 true WO2023189972A1 (en) 2023-10-05

Family

ID=88201970

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/011323 WO2023189972A1 (en) 2022-03-31 2023-03-22 Computation device, computation method, and program

Country Status (2)

Country Link
JP (1) JP2023151410A (en)
WO (1) WO2023189972A1 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018027770A (en) * 2016-08-11 2018-02-22 株式会社デンソー Road surface state estimation device
JP2019049952A (en) * 2017-09-12 2019-03-28 日本電気通信システム株式会社 Information processing system, information processor, road status detection method and program
JP2021169705A (en) * 2020-04-14 2021-10-28 Kyb株式会社 Learned model generation method and road surface property determination device
JP2021172286A (en) * 2020-04-28 2021-11-01 トヨタ自動車株式会社 Vibration suppression control device for vehicle, vibration suppression control system, vibration suppression control method and data providing device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2018027770A (en) * 2016-08-11 2018-02-22 株式会社デンソー Road surface state estimation device
JP2019049952A (en) * 2017-09-12 2019-03-28 日本電気通信システム株式会社 Information processing system, information processor, road status detection method and program
JP2021169705A (en) * 2020-04-14 2021-10-28 Kyb株式会社 Learned model generation method and road surface property determination device
JP2021172286A (en) * 2020-04-28 2021-11-01 トヨタ自動車株式会社 Vibration suppression control device for vehicle, vibration suppression control system, vibration suppression control method and data providing device

Also Published As

Publication number Publication date
JP2023151410A (en) 2023-10-16

Similar Documents

Publication Publication Date Title
EP3640599B1 (en) Vehicle localization method and apparatus
CN101568798B (en) Method for determining the rotational axis and the rotating center of a vehicle wheel
JP5411284B2 (en) Method, system, and computer for determining lateral deviation of vehicle traveling on actual track based on estimated virtual road and determining driver's lateral control ability based on lateral deviation Program products
JP5692044B2 (en) Vehicle state quantity estimation device, vehicle steering control device
US9183463B2 (en) Orientation model for a sensor system
CN102915532A (en) Method of determining extrinsic parameters of a vehicle vision system and vehicle vision system
TWI625260B (en) Method and system for detecting lane curvature by using body signal
CN110415298B (en) Calculation method for lane departure
CN109916486B (en) Anti-cheating dynamic vehicle weighing method and device
JPH0621791B2 (en) Land vehicle position measuring method and device
US20050278112A1 (en) Process for predicting the course of a lane of a vehicle
WO2023189972A1 (en) Computation device, computation method, and program
WO2023189971A1 (en) Computation device, computation method, and program
JP6939759B2 (en) Vehicle condition estimation device
JPH0566713A (en) Navigation device
JP7206875B2 (en) Vehicle lateral speed estimator
JP7503479B2 (en) Arithmetic device and program
JP2020098116A (en) Yaw rate correction device
Cario et al. Predictive time-to-lane-crossing estimation for lane departure warning systems
WO2023176955A1 (en) Computing device, computing method, and program
WO2022113909A1 (en) Calculating device and program
JP7503478B2 (en) Arithmetic device and program
JP2023150597A (en) Processing unit, processing method, and program
JP7232967B1 (en) Arithmetic device, arithmetic method and program
JP2020097316A (en) Vehicle body posture angle estimation device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23779984

Country of ref document: EP

Kind code of ref document: A1