[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2023188530A1 - 回転電機のステータ - Google Patents

回転電機のステータ Download PDF

Info

Publication number
WO2023188530A1
WO2023188530A1 PCT/JP2022/043101 JP2022043101W WO2023188530A1 WO 2023188530 A1 WO2023188530 A1 WO 2023188530A1 JP 2022043101 W JP2022043101 W JP 2022043101W WO 2023188530 A1 WO2023188530 A1 WO 2023188530A1
Authority
WO
WIPO (PCT)
Prior art keywords
stator
coolant flow
rectangular
coolant
electric machine
Prior art date
Application number
PCT/JP2022/043101
Other languages
English (en)
French (fr)
Inventor
哲行 寺内
Original Assignee
株式会社Ihi
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社Ihi filed Critical 株式会社Ihi
Publication of WO2023188530A1 publication Critical patent/WO2023188530A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K3/00Details of windings
    • H02K3/04Windings characterised by the conductor shape, form or construction, e.g. with bar conductors
    • H02K3/24Windings characterised by the conductor shape, form or construction, e.g. with bar conductors with channels or ducts for cooling medium between the conductors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Definitions

  • the present disclosure relates to a stator for a rotating electrical machine.
  • a rotating electric machine such as a motor is equipped with a stator and a rotor.
  • a rotating electric machine can function both as an electric motor drive and as an electric power generator.
  • Some rotating electric machines have a rotor rotating inside a cylindrical stator, while others have a stator arranged inside a rotating cylindrical rotor.
  • the stator In a rotating electric machine in which a rotor rotates inside a cylindrical stator, the stator has a cylindrical yoke and a plurality of teeth protruding from the yoke inward in the radial direction of the cylinder. .
  • Stator coils are routed within the plurality of slots formed between adjacent teeth.
  • Patent Document 1 listed below also discloses such a rotating electric machine.
  • the stator is cooled by contacting a part of the stator core and the coil end of the stator coil with the circulating coolant.
  • the rotor is also cooled by circulating a cooling fluid therein. Cooling allows the rotating electrical machine to be used in higher temperature environments and also prevents the efficiency of the rotating electrical machine from decreasing.
  • the cooling liquid does not circulate inside the stator, and the stator is not sufficiently cooled. There is a desire to further cool the stator, and it is desirable to circulate cooling liquid such as oil inside the stator.
  • An object of the present disclosure is to provide a stator for a rotating electrical machine that has a structure that can cool the stator more effectively.
  • a stator for a rotating electric machine includes a stator core including a cylindrical yoke and a plurality of teeth protruding from the yoke inward in a radial direction of the cylindrical shape, and adjacent teeth in the plurality of teeth. and a stator coil wired in a slot formed between the teeth, the stator coil being constituted by a rectangular conductor, and the rectangular conductor having the diameter inside each of the slots.
  • the rectangular conductors are arranged in the direction or the circumferential direction of the cylindrical shape, and the rectangular conductors are provided with coolant flow grooves press-formed on the surface thereof.
  • An insulating layer with a uniform thickness may be formed on the surface of the rectangular conductor.
  • the coolant flow groove may be formed as a flat groove.
  • the coolant flow grooves may be formed as a plurality of grooves arranged on any circumferential surface of the rectangular conductor in the width direction of the circumferential surface.
  • each of the slots has an elongated trapezoidal cross section that narrows inwardly in the radial direction, and the rectangular conductors are arranged in the radial direction within the interior of each of the slots; It has a trapezoidal cross section whose width becomes narrower toward the radially inward side, and the coolant flow groove is located on the radially outer side of the radially oriented surface of the rectangular conductor. It may be formed on the radial orientation surface.
  • the coolant flow path formed on the radially oriented surface on the outside in the radial direction may have a uniform flow path cross-sectional area for each radially oriented surface.
  • the stator of the rotating electrical machine of the present disclosure can be cooled even more effectively.
  • FIG. 1 is a partial sectional view of a rotating electric machine having a stator according to a first embodiment.
  • FIG. 2 is an enlarged sectional view of the stator.
  • FIG. 3 is an enlarged sectional view of the stator according to the second embodiment.
  • FIG. 4 is an enlarged sectional view of the stator according to the third embodiment.
  • a rotating electrical machine 1 including a stator 2 according to the first embodiment will be described with reference to FIGS. 1 and 2.
  • the rotating electric machine 1 functions as an SPM (Surface Permanent Magnet) type generator.
  • the rotating electric machine 1 includes a stator 2 and a rotor 3.
  • the rotor 3 is rotatably provided inside the stator 2.
  • the rotor 3 includes a rotating shaft 30, a rotor yoke 31, a permanent magnet 32, and a sleeve 33.
  • the rotating shaft 30 is held in a case via a bearing, and the entire rotor 3 is rotatable.
  • a rotor yoke 31 is fixed to the rotating shaft 30.
  • a plurality of permanent magnets 32 are fixed on the outer peripheral surface of the rotor yoke 31.
  • the permanent magnets 32 are arranged in eight rows in the circumferential direction, and a plurality (for example, four) of permanent magnets are arranged in each row in the axial direction.
  • a sleeve 33 is fixed to the outside of the permanent magnet 32 by shrink fitting.
  • the sleeve 33 is made of iron-based metal.
  • a plurality of coolant flow grooves 34 are formed in the axial direction on the outer peripheral surface of each permanent magnet 32.
  • the coolant channel groove 34 forms a coolant channel between the permanent magnet 32 and the sleeve 33.
  • the stator 2 is fixed to the case of the rotating electrical machine 1 and includes a stator core 20 and a stator coil 21.
  • the stator core 20 is composed of electromagnetic steel plates laminated in the axial direction, and includes a cylindrical yoke 20a and a plurality of (for example, 24 2) teeth 20b.
  • a slot 20c is formed between adjacent teeth 20b.
  • a stator coil 21 is wired within the slot 20c.
  • the stator coil 21 is constituted by a quadrangular wire 21a.
  • a "flat wire” has a rectangular cross section and is sometimes called a flat wire or a rectangular wire.
  • the rectangular wire 21a of this embodiment has a trapezoidal cross section that becomes narrower inward in the radial direction within the slot 20c. Note that the rectangular wire 21a does not need to have a trapezoidal cross section outside the slot 20c.
  • the rectangular wire 21a may have a rectangular cross section at the coil end of the stator coil 21.
  • the tips of the teeth 20b extend in the circumferential direction to form a flange.
  • the slot 20c has a trapezoidal cross section that is elongated in the radial direction.
  • the inner width of the slot 20c narrows toward this flange, that is, toward the radial inward direction.
  • four rectangular wires 21a having a trapezoidal cross section are arranged in the radial direction.
  • the rectangular wire 21a is oriented such that the width of its cross section in the circumferential direction becomes narrower toward the inside in the radial direction.
  • the circumferential width of the four rectangular wires 21a in each slot 20c gradually becomes narrower inward in the radial direction.
  • the radial height of the rectangular wire 21a within the slot 20c gradually increases inward in the radial direction.
  • the cross-sectional area of each quadrangular electric conductor 210 of the rectangular wire 21a, more specifically, the rectangular wire 21a to be described later, has the above-mentioned width and height, and is therefore approximately the same, and Electrical resistance is almost the same.
  • the rectangular wires 21a are arranged in the radial direction within the slot 20c with their side surfaces in contact with the inner surface of the slot 20c and with their radially oriented surfaces in contact with the adjacent rectangular wires 21a. ing.
  • the radially oriented surface is a surface oriented in the radial direction of the rectangular wire 21a, and is a surface corresponding to the upper base or lower base of the trapezoidal cross section.
  • the most radially inner rectangular wire 21a is received by the flange at the tip of the teeth 20b described above. Note that a gap is formed between the tips of the flanges, and this gap is closed with a ceramic seal member 20d (see FIG. 2) that extends in the axial direction.
  • the sealing member 20d prevents a cooling liquid, which will be described later, circulated inside the stator 2 from leaking into the storage space of the rotor 3.
  • the stator core 20 is constructed of a plurality of circumferential members 20X that form part of the yoke 20a, and a diameter member 20Y that forms the remaining portion of the yoke 20a and teeth 20b.
  • the stator core 20 is made of electromagnetic steel plates laminated in the axial direction, so the circumferential member 20X and the diameter member 20Y are also made of electromagnetic steel plates laminated in the axial direction.
  • the circumferential member 20X and the diameter member 20Y are arranged alternately in the circumferential direction to construct the stator core 20.
  • the yoke 20a is formed of circumferential members 20X and outer circumferential portions of a diameter member 20Y, which are alternately arranged.
  • the circumferential member 20X is located on the radially outer side of the slot 20c, and functions as a cap that presses the rectangular wire 21a housed in the slot 20c from the outside.
  • the circumferential members 20X and the diameter members 20Y which are arranged alternately in the circumferential direction, are fixed on the outside by a case 22. Further, on the outer circumferential surface of the stator core 20, cooling fluid passage grooves 23 through which a cooling fluid, which will be described later, is circulated are provided extending in the axial direction. Coolant channel groove 23 forms a coolant channel between stator core 20 and case 22 .
  • the rectangular wire 21a includes a rectangular conductor 210 and an insulating layer 211 formed on the outer surface of the rectangular conductor 210.
  • the rectangular conductor 210 is made of copper, and is formed to have a trapezoidal cross section by press-molding a rectangular wire with a rectangular cross section using a mold. Therefore, the rectangular conductor 210 is press-molded so that the cross-sectional shape, that is, the circumferential width and the radial height, of the rectangular conductor 210 differs depending on the position at which it is arranged.
  • the rectangular conductor 210 also has a trapezoidal cross section like the rectangular wire 21a, and has four peripheral surfaces.
  • the radial orientation surface of the four circumferential surfaces of the rectangular conductor 210 is recessed to form the coolant flow channel groove 212 at the same time. That is, the coolant channel groove 212 is formed by recessing the rectangular conductor 210 in the radial direction on one radially oriented surface of the adjacent rectangular wires 21a within the slot 20c.
  • the coolant flow groove 212 is formed on the radially outer radially oriented surface of the rectangular wire 21a. That is, the coolant flow path groove 212 forms a coolant flow path together with the radially inner radially oriented surface of the flat wire 21a adjacent to the radially outer side. Therefore, the coolant flow groove 212 is not formed in the radially outermost rectangular wire 21a.
  • the coolant flow channel groove 212 is formed as a single groove that is flat with respect to the radial orientation surface. "Shallow groove with respect to the radially-oriented face" means that the circumferential width of the coolant flow groove 212 is larger than the radial depth.
  • the coolant flow groove 212 extends linearly in the axial direction, and has a uniform circumferential width and a uniform radial depth along the axial direction.
  • the filling rate of the rectangular conductor 210 of the stator coil 21 into the slot 20c will decrease.
  • a decrease in the filling factor of the rectangular conductors 210 means a decrease in the space factor, which is the proportion of the rectangular conductors 210 in the cross section of the stator coil 21.
  • a decrease in the filling rate of the rectangular conductors 210 into the slots 20c causes a decrease in the efficiency of the rotating electric machine 1.
  • the rectangular conductor 210 when the rectangular conductor 210 is depressed by press molding to form the coolant flow channel groove 212, the rectangular conductor 210 is pushed into an acute corner. As a result, a decrease in the filling rate of the rectangular conductors 210 into the slots 20c can be avoided.
  • the rectangular wire 21a having a structure in which the coolant flow groove 212 is formed on the radially outer radially oriented surface of the rectangular wire 21a can realize an efficient rotating electric machine 1.
  • a thin insulating layer 211 having a uniform thickness is formed on the surface of the rectangular conductor 210 after press molding. Therefore, the above-mentioned decrease in the space factor due to the formation of the insulating layer 211 is suppressed to a minimum.
  • the term "thin film” used here refers to a film that is thick enough to ensure insulation and mechanical strength. If the insulating layer 211 is too thin, dielectric breakdown is likely to occur no matter how insulating the layer is. Further, if the mechanical strength is such that the insulating layer 211 is peeled off due to vibrations or the like caused by the use of the rotating electrical machine 1, insulation properties cannot be ensured.
  • the insulating layer 211 of this embodiment is an insulating resin layer.
  • insulating layer 211 may be an enamel layer.
  • the insulating layer 211 has a uniform thickness, and the coolant channel grooves 212 are not filled with the insulating layer 211.
  • an insulating sheet member such as insulating paper may be interposed. That is, the flat wire 21a may be in contact with the adjacent flat wire 21a or the inner surface of the slot 20c via such an insulating sheet.
  • the coolant is introduced into the coolant flow path formed by the coolant flow groove 212 at one coil end of the stator coil 21, and is discharged from the coolant flow path at the other coil end.
  • the coolant can be circulated inside the coolant flow path.
  • the coolant can be circulated through the coolant flow path formed by the coolant flow groove 23 described above.
  • the coolant is also circulated through the inside of the rotating shaft of the rotor 3 in the coolant flow path formed by the coolant flow path groove 34 of the rotor 3.
  • the coolant channel groove 212 has a uniform channel cross-sectional area for each rectangular wire 21a.
  • each of the three stages of coolant flow paths in FIG. 2 has the same cross-sectional area. Therefore, the flow path resistance of the coolant flowing through each coolant flow path becomes the same, and the coolant can uniformly circulate within all the coolant flow paths to cool the stator 2.
  • the amount of coolant flowing through the portion of low flow path resistance increases, and the amount of coolant flowing through other portions decreases. If the circulation amount distribution becomes uneven in this way, it becomes impossible to uniformly cool the stator 2.
  • the coolant channel groove 212 is formed as a single flat groove on the circumferential surface of the rectangular wire 21a. Therefore, the cross-sectional area of the flow path is large, the flow resistance of the coolant can be reduced, and the circulation amount of the coolant can be increased to improve the cooling efficiency.
  • the heat of the stator 2 is transferred to the cooling fluid through the rectangular wire 21a. Since the side surface of the flat wire 21a is in contact with the inner surface of the slot 20c, the flat wire 21a easily receives heat from the stator core 20. Further, since the rectangular conductor 210 of the rectangular wire 21a is made of copper having high thermal conductivity, the rectangular wire 21a can efficiently receive heat and efficiently transfer the heat to the cooling liquid.
  • the coolant channel groove 212 is formed as a single groove that is flat with respect to the radial orientation surface.
  • the coolant flow grooves 212 are formed as a plurality of grooves arranged on the radial orientation surface in parallel to the width direction of the radial orientation surface, that is, the circumferential direction mentioned above.
  • the other configurations of the stator of this embodiment are the same as those of the first embodiment described above, so the same or equivalent configurations are given the same reference numerals and their redundant explanations will be omitted.
  • the coolant flow grooves 212 are formed as a plurality (six) of grooves arranged on the radial orientation surface in the width direction of the radial orientation surface. Also in this embodiment, each coolant channel groove 212 is formed linearly in the axial direction, and has a uniform circumferential width and a uniform radial depth along the axial direction. Therefore, also in this embodiment, the coolant channel groove 212 has a uniform channel cross-sectional area for each rectangular wire 21a. In other words, the cross-sectional areas of the three stages of cooling channels in FIG. 3 (the total cross-sectional area of the six grooves in each stage) are the same.
  • the contact area of the coolant can be increased.
  • the amount of coolant circulated decreases.
  • the cooling efficiency can be controlled by considering the flow rate of the cooling liquid and the heat exchange efficiency. Cooling efficiency also varies depending on the characteristics of the coolant. For example, if the viscosity of the coolant is high, it may be possible to improve the cooling efficiency by prioritizing the flow velocity and adopting the configuration of the first embodiment, which has a large flow path cross-sectional area even if the contact area is small. be.
  • the coolant flow grooves 212 may be formed as a plurality of grooves arranged on any circumferential surface of the rectangular conductor 210 in the width direction of the circumferential surface.
  • the coolant channel grooves 212 are formed as a plurality of grooves arranged on the radially oriented surface of the rectangular conductor 210 in the width direction of the radially oriented surface.
  • the coolant channel grooves 212 may be formed as a plurality of grooves arranged on the circumferentially oriented surface of the rectangular conductor 210 in the width direction of the circumferentially oriented surface, that is, in the radial direction described above.
  • the rectangular wires 21a are arranged only in the radial direction within the slots 20c.
  • the rectangular wires 21a are arranged not only in the radial direction of the cylindrical yoke 20a but also in the circumferential direction.
  • the rectangular wires 21a may be arranged only in the circumferential direction.
  • the coolant flow groove 212 is formed by recessing the surface of the rectangular conductor 210 of the rectangular wire 21a, but in the first and second embodiments described above, the radially outer diameter Coolant flow grooves 212 were formed by recessing the orientation surface.
  • the surface of the rectangular conductor 210 that is recessed to form the coolant flow groove 212 is not limited to a radially oriented surface, but may be a circumferentially oriented surface as in this embodiment.
  • each rectangular conductor 210 is approximately the same, and the electrical resistance per length is approximately the same.
  • Coolant flow grooves 212 are formed only on one circumferential orientation surface of the circumferentially adjacent rectangular wires 21a, more specifically, only on the circumferential orientation surface facing the other of the adjacent rectangular wires 21a. As a result, one coolant flow groove 212 is formed in each row arranged in the radial direction. Also in this embodiment, the cross-sectional area of each of the coolant flow grooves 212 is uniform, and the flow resistance of the coolant flowing through each row of coolant flow channels arranged in the radial direction is the same. Therefore, the coolant can circulate uniformly in all the coolant flow paths to cool the stator.
  • the coolant flow groove 212 is formed on one of the opposing circumferential orientation surfaces of the adjacent rectangular wires 21a. By doing so, the stator coil 21 can be cooled more effectively from the inside. However, the coolant flow groove 212 may be formed on the circumferential orientation surface of the rectangular wire 21a facing the teeth 20b. In this way, stator core 20 as well as stator coil 21 can be effectively cooled. Further, even when the coolant flow grooves 212 are formed on the radially oriented surface, the coolant flow grooves 212 may be formed on the radially inner surface instead of the radially outer side. Within one slot 20c, the coolant flow grooves 212 may be provided on each of the radial orientation surface and the circumferential orientation surface.
  • the stator coil 21 is composed of the rectangular conductor 210.
  • the rectangular conductors 210 are arranged radially or circumferentially within the slot 20c.
  • Coolant flow grooves 212 are press-molded on the surface of the rectangular conductor 210, that is, on the radial orientation surface or the circumferential orientation surface. Therefore, the stator can be cooled from the inside more effectively by the coolant circulating in the coolant flow path formed by the coolant flow path groove 212.
  • coolant flow paths are formed by the coolant flow path grooves 212, 23, and 34 at various locations, but the coolant flow path by the coolant flow path grooves 212 is formed in the rectangular conductor of the stator coil 21. 210.
  • the rectangular conductors 210 extend in the axial direction over the entire length of the stator 2, and are housed in slots 20c arranged at regular intervals in the circumferential direction. Therefore, according to the coolant flow path formed by the coolant flow path groove 212, the entire stator 2 can be efficiently cooled.
  • the stator coil 21 is a part that easily becomes high temperature, and since the cooling liquid removes heat from the rectangular conductor 210 of the stator coil 21, the stator coil 21 can be efficiently cooled.
  • the rectangular conductor 210 has the insulating layer 211 with a uniform thickness on its surface.
  • the rectangular conductor 210 and the insulating layer 211 constitute the rectangular wire 21a
  • the rectangular wire 21a constitutes the stator coil 21.
  • the insulating layer 211 has a uniform thickness, does not fill the coolant flow channel groove 212 formed in the rectangular conductor 210, and does not impede cooling by the coolant flow channel. Further, the insulating layer 211 having a uniform thickness does not reduce the above-mentioned space factor, nor does it reduce the filling rate of the rectangular conductors 210 into the slots 20c. Therefore, the efficiency of the rotating electric machine 1 does not decrease.
  • the insulating layer 211 is formed to have a uniform thickness, it is possible to prevent a decrease in rigidity and strength of the surface of the rectangular wire 21a.
  • the rectangular wire 21a is densely stored in the slot 20c, but if the surface of the rectangular wire 21a has low rigidity or strength, the rectangular wire 21a, more specifically, the rectangular conductor 210, cannot be firmly held within the slot 20c. There is a risk. However, such a problem does not occur in the above embodiment.
  • the coolant flow channel groove 212 is formed as a flat groove.
  • the flat shape of the coolant channel groove 212 is a shape suitable for reducing channel resistance and increasing the contact area. Further, the flat shape also makes it easy to form the coolant flow grooves 212 on the circumferential surface of the rectangular conductor 210. Even if the grooves have the same aspect ratio, it is difficult to form the coolant channel grooves 212 as narrow and deep grooves.
  • the coolant flow grooves 212 are formed as a plurality of grooves arranged on any circumferential surface in the width direction of the circumferential surface.
  • the slot 20c has a long trapezoidal cross section whose width becomes narrower toward the radial inward side.
  • the rectangular conductors 210 are arranged in the radial direction within the slot 20c and have a trapezoidal cross section whose width becomes narrower toward the inside in the radial direction.
  • the coolant flow groove 212 is formed on the radially outer radially oriented surface of the radially oriented surface of the rectangular wire 21a. That is, the coolant flow groove 212 is formed on a radially oriented surface having a wide circumferential width.
  • the coolant flow groove 212 has a uniform flow cross-sectional area for each radial orientation surface on which the coolant flow groove 212 is formed. There is. Therefore, for example, in the three-stage coolant flow path shown in FIG.
  • the stator 2 can be uniformly cooled by uniformly circulating the inside of the stator 2.
  • the coolant flow groove 212 is formed linearly in the axial direction. Although the flow resistance of the flow path formed by the coolant flow groove 212 increases, the coolant flow groove 212 may meander in order to increase the contact area of the coolant. In the embodiment described above, the coolant flow groove 212 is formed only on one of the four circumferential surfaces of the rectangular conductor 210. However, the coolant flow grooves 212 may be provided on two or more circumferential surfaces of all the circumferential surfaces of the rectangular conductor 210.
  • the coolant flow grooves 212 are formed as a plurality of grooves arranged in parallel on the radially oriented surface, but the coolant flow grooves 212 as a plurality of grooves arranged in parallel are circumferentially oriented. It may also be formed on a surface.
  • the rotating electric machine 1 in the above embodiment is an SPM type generator, it may be an IPM (Interior Permanent Magnet) type generator.
  • the rotating electric machine may be an electric motor instead of a generator.
  • the rotating electric machine may be an induction type rotating electric machine that does not have a permanent magnet.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)

Abstract

回転電機のステータは、ステータコア20とステータコイル21とを備えている。ステータコア20は、円筒形のヨークとヨークから径方向の内方に向けて突設されたティース20bとを有している。ステータコイル21は、隣接するティース20bの間に形成されたスロット20c内に配索されている。ステータコイル21は、平角導電体210によって構成されている。平角導電体210は、スロット20c内で上述した円筒形の径方向又は周方向に並べられている。平角導電体210の表面上に冷却液流路溝212がプレス成形によって形成されている。

Description

回転電機のステータ
 本開示は、回転電機のステータ[a stator for a rotating electrical machine]に関する。
 モータなどの回転電機は、ステータ及びロータを備えている。回転電機は電動機[electric motor drive]としても発電機[electric power generator]としても機能し得る。円筒形のステータの内部でロータが回転する回転電機もあれば、回転する円筒形のロータの内部にステータが配される回転電機もある。円筒形のステータの内部でロータが回転する回転電機では、ステータは、円筒形のヨークとこのヨークから円筒形の径方向の内方に向けて突設された複数のティースとを有している。隣接するティースの間に形成された複数のスロット内にはステータコイルが配索される。下記特許文献1も、このような回転電機を開示している。
国際公開第2011/132784号
 特許文献1に開示された回転電機では、ステータコアの一部及びステータコイルのコイルエンドが循環される冷却液[coolant]に触れることでステータが冷却される。なお、特許文献1に開示された回転電機では、ロータにも冷却液を循環させてロータも冷却されている。冷却により、回転電機をより高温環境下でも使用できるようになるし、回転電機の効率低下も防止できる。しかし、特許文献1に開示された回転電機では冷却液はステータの内部を循環しないの、ステータは十分に冷却されない。ステータをより一層冷却したいという要望があり、ステータの内部にもオイルなどの冷却液を循環させたい。
 本開示の目的は、ステータをより一層効果的に冷却することのできる構造を有する、回転電機のステータを提供することにある。
 本開示に係る回転電機のステータは、円筒形のヨークと前記ヨークから前記円筒形の径方向の内方に向けて突設された複数のティースとを有するステータコアと、前記複数のティースにおける隣接するティースの間に形成されたスロット内に配索されたステータコイルとを備えており、前記ステータコイルが、平角導電体によって構成され、前記平角導電体が、前記スロットのそれぞれの内部に、前記径方向又は前記円筒形の周方向に並べられており、前記平角導電体が、その表面上にプレス成形された冷却液流路溝を備えている。
 前記平角導電体の前記表面上に均一な厚さの絶縁層が形成されていてもよい。
 前記冷却液流路溝は、扁平な溝として形成されていてもよい。
 前記冷却液流路溝は、前記平角導電体の何れかの周面上において当該周面の幅方向に並べられた複数の溝として形成されていてもよい。
 前記スロットのそれぞれが、前記径方向内方に向けて幅が狭くなる長い台形断面を有しており、前記平角導電体が、前記スロットのそれぞれの前記内部において、前記径方向に並べられると共に、前記径方向内方に向けて幅が狭くなる台形断面を有しており、前記冷却液流路溝が、前記平角導電体の前記径方向に配向された径配向面のうち前記径方向外側の前記径配向面上に形成されていてもよい。
 前記径方向外側の前記径配向面上に形成された前記冷却液流路は、当該径配向面ごとに均一な流路断面積を有していてもよい。
 本開示の回転電機のステータによれば、ステータをより一層効果的に冷却することができる。
図1は、第一実施形態に係るステータを有する回転電機の部分断面図である。 図2は、上記ステータの拡大断面図である。 図3は、第二実施形態に係るステータの拡大断面図である。 図4は、第三実施形態に係るステータの拡大断面図である。
 以下、回転電機1のステータ2の実施形態について、図面を参照しつつ説明する。
 図1及び図2を参照しつつ、第一実施形態に係るステータ2を備えた回転電機1について説明する。図1に示されるように、回転電機1は、SPM(Surface Permanent Magnet)型発電機として機能する。回転電機1は、ステータ2及びロータ3を備えている。
 ロータ3は、ステータ2の内部に回転可能に設けられている。ロータ3は、回転軸30と、ロータヨーク31と、永久磁石32と、スリーブ33とを備えている。回転軸30は、ベアリングを介してケースに保持されており、ロータ3全体が回転可能となっている。回転軸30には、ロータヨーク31が固定されている。ロータヨーク31の外周面上には、複数の永久磁石32が固定されている。永久磁石32は、周方向に八列配置されており、かつ、各列において軸方向にも複数(例えば、四個)並べられている。
 そして、ロータ3の回転に起因する遠心力によって永久磁石32がロータヨーク31から外れるのを防止するために、永久磁石32の外側にはスリーブ33が焼き嵌めによって固定されている。スリーブ33は鉄系金属で形成されている。各永久磁石32の外周面上には、軸方向に複数の冷却液流路溝34が形成されている。冷却液流路溝34は永久磁石32とスリーブ33との間に冷却液流路を形成する。
 一方、ステータ2は、回転電機1のケースに固定されており、ステータコア20及びステータコイル21を備えている。ステータコア20は、軸方向に電磁鋼板が積層されて構成されており、円筒形のヨーク20aとこのヨーク20aから円筒形の径方向の内方に向けて突設された複数(例えば、二十四個)のティース20bとを有している。隣接するティース20bの間には、スロット20cが形成される。スロット20c内には、ステータコイル21が配索されている。ステータコイル21は、平角線[quadrangular wire]21aによって構成されている。「平角線」は、四角形断面を有し、flat wire又はrectangular wireと呼ばれることもある。本実施形態の平角線21aは、スロット20c内において、径方向内方に向けて幅が狭くなる台形断面を有している。なお、平角線21aは、スロット20cの外では台形断面を有していなくてもよい。例えば、平角線21aは、ステータコイル21のコイルエンドでは長方形断面を有していてもよい。
 ティース20bの先端は周方向に延出されてフランジを形成している。スロット20cは、径方向に長い台形断面を有している。スロット20cの内幅は、このフランジに向けて、即ち、径方向の内方に向けて狭くなっている。各スロット20c内には、台形断面を有する四つの平角線21aが径方向に並べられている。平角線21aは、径方向の内方に向けてその断面の周方向幅が狭くなるように配向されている。各スロット20c内の四つの平角線21aの周方向幅は、径方向の内方に向けて徐々に狭くなっている。スロット20c内の平角線21aの径方向高さに関しては、径方向の内方に向けて徐々に高くなっている。平角線21a、より詳しくは後述する平角線21aの平角導電体[quadrangular electric conductor]210の各断面積は、上述した幅及び高さを有するのでほぼ同じであり、平角線21aの長さあたりの電気抵抗はほぼ同じである。
 平角線21aは、スロット20c内でその側面をスロット20cの内面に接触させると共に径方向に向けられたその径配向面を隣り合う平角線21aに接触させて、スロット20c内において径方向に並べられている。なお、径配向面とは、平角線21aの径方向に向けられた面であり、断面台形の上底又は下底に対応する面である。最も径内方の平角線21aは、上述したティース20b先端のフランジによって受け止められている。なお、フランジの先端の間には隙間が形成されるが、この隙間は、軸方向に延びるセラミック製のシール部材20d(図2参照)で塞がれている。シール部材20dは、ステータ2の内部に循環される後述する冷却液がロータ3の収納空間に漏れるのを防止している。
 ステータコア20は、ヨーク20aの一部を形成する複数の周部材20Xと、ヨーク20aの残りの部分とティース20bを形成する径部材20Yとで構築されている。上述したようにステータコア20は軸方向に積層された電磁鋼板で構成されているので、周部材20X及び径部材20Yもそれぞれ軸方向に積層された電磁鋼板で構成されている。周部材20X及び径部材20Yは、周方向に交互に配置されてステータコア20を構築している。ヨーク20aは、交互に配置された周部材20Xと径部材20Yの外周側部分とで形成される。周部材20Xは、スロット20cの径方向外側に位置しており、スロット20c内に収納された平角線21aを外側から押さえるキャップとして機能している。
 周方向に交互に並べられた周部材20X及び径部材20Yは、その外側をケース22によって固定されている。また、ステータコア20の外周面上には、後述する冷却液が循環される冷却液流路溝23が軸方向に延設されている。冷却液流路溝23はステータコア20とケース22との間に冷却液流路を形成する。
 平角線21aは、図2に示されるように、平角導電体210と、この平角導電体210の外表面上に形成された絶縁層211とを備えている。平角導電体210は銅製であり、長方形断面の平角線を金型でプレス成形することで台形断面となるように形成される。従って、配置される位置によって平角導電体210の断面形状、即ち、周方向幅及び径方向高さが異なるように、平角導電体210はプレス成形される。平角導電体210も平角線21aと同様に台形断面を有しており、四つの周面を有している。プレス成形時には、平角導電体210の四つの周面のうちの径配向面を凹ませて冷却液流路溝212も同時に形成される。即ち、冷却液流路溝212は、スロット20c内において隣り合う平角線21aの一方の径配向面上に、平角導電体210を径方向に凹ませて形成されている。
 本実施形態では、平角線21aの径方向外側の径配向面上に冷却液流路溝212が形成される。即ち、冷却液流路溝212は、径方向外側に隣り合う平角線21aの径方向内側の径配向面と共に冷却液流路を形成する。このため、最も径方向外側の平角線21aには、冷却液流路溝212は形成されない。本実施形態では、冷却液流路溝212は、径配向面に対して扁平な単一の溝として形成されている。「径配向面に対して扁平な溝[shallow groove with respect to the radially-oriented face]」とは、冷却液流路溝212の周方向幅が径方向深さよりも大きいということを意味する。冷却液流路溝212は、軸方向に直線的に延びており、軸方向に沿って均一な周方向幅と均一な径方向深さを有している。
 台形断面の平角線21aを形成する場合、台形の鋭角隅部の曲率が大きいとスロット20c内へのステータコイル21の平角導電体210の充填率が低下する。平角導電体210の充填率低下は、ステータコイル21の断面に占める平角導電体210の割合である占積率低下を意味する。スロット20c内への平角導電体210の充填率低下は回転電機1の効率低下を招く。
 しかし、本実施形態では、プレス成形で平角導電体210を凹ませて冷却液流路溝212を形成する際に、平角導電体210が鋭角隅部に押し込まれる。この結果、スロット20c内への平角導電体210の充填率低下を回避できる。言い換えれば、平角線21aの径方向外側の径配向面上に冷却液流路溝212が形成される構造を有する平角線21aによれば、効率のよい回転電機1を実現し得る。プレス成形によって平角導電体210を鋭角隅部に押し込むには、冷却液流路溝212を単一の扁平な溝として形成するのがよい。冷却液流路溝212を単一の扁平な溝とすることで、冷却液流路溝212の流路断面積を大きくでき、プレス成形によって鋭角隅部に押し込まれる平角導電体210の体積を大きくできる。
 プレス成形後の平角導電体210には、その表面に均一な厚さを有する薄膜の絶縁層211が形成される。従って、絶縁層211の形成による上述した占積率の低下は最小限に抑えられている。ここに言う「薄膜」とは、絶縁性を確保でき、かつ、機械的強度も確保できる厚さの膜である。絶縁層211が薄過ぎれば、いくら絶縁性を有する層であっても絶縁破壊が生じやすい。また、回転電機1の使用に伴う振動などによって絶縁層211が剥離してしまうような機械的強度であれば、絶縁性を確保できない。
 本実施形態の絶縁層211は絶縁樹脂層である。例えば、絶縁層211は、エナメル層であってもよい。ただし、絶縁層211は均一な厚さを有しており、絶縁層211によって冷却液流路溝212が埋められることはない。また、平角線21a同士、及び、平角線21aとステータコア20との間の絶縁性を向上させるために、絶縁紙などの絶縁シート部材が介在されてもよい。即ち、平角線21aは、このような絶縁シートを介して、隣接する平角線21a又はスロット20cの内面と接触していてもよい。
 冷却液は、ステータコイル21の一方のコイルエンドにおいて冷却液流路溝212によって形成される冷却液流路内に導入され、他方のコイルエンドにおいて冷却液流路から排出される。一方のコイルエンドにおける冷却液圧力と他方のコイルエンドにおける冷却液圧力に差を設けることで、冷却液流路内部に冷却液を循環させることができる。上述した冷却液流路溝23によって形成される冷却液流路にも、同様に冷却液を循環することができる。なお、詳しくは説明しないが、ロータ3の冷却液流路溝34によって形成される冷却液流路にもロータ3の回転軸の内部を通して冷却液が循環される。
 ここで、冷却液流路溝212は、平角線21aごとに均一な流路断面積を有している。言い換えれば、図2中の三段の冷却液流路の各断面積が同じである。このため、各冷却液流路を流れる冷却液の流路抵抗は同じになり、冷却液は全ての冷却液流路内を均一に循環して、ステータ2を冷却することができる。局所的に流路抵抗が低い部分が生じると、流路抵抗の低い部分を流れる冷却液の量が多くなり、その他の部分を流れる冷却液の量が少なくなる。このように循環量分布が不均一になると、ステータ2を均一に冷却することができなくなってしまう。特に、本実施形態では、冷却液流路溝212は、平角線21aの周面上に単一の扁平な溝として形成されている。このため、流路断面積が大きく、冷却液の流れ抵抗を小さくでき、冷却液の循環量を増やして冷却効率を向上させることができる。
 また、ステータ2の熱は、平角線21aを通して冷却液に伝達される。平角線21aの側面は、スロット20cの内面に接触されているので、平角線21aはステータコア20から熱を受け取りやすい。さらに、平角線21aの平角導電体210は熱伝導率の高い銅製であるため、平角線21aは、効率よく熱を受け取って、その熱を効率よくさらに冷却液に伝えることができる。
 次に、図3を参照しつつ、第二実施形態のステータについて説明する。上述した第一実施形態では、冷却液流路溝212は径配向面に対して扁平な単一の溝として形成された。これに対して、本実施形態では、冷却液流路溝212は径配向面上に当該径配向面の幅方向、即ち、上述した周方向に平行に並べられた複数の溝として形成されている。本実施形態のステータにおけるそれ以外の構成は、上述した第一実施形態の構成と同じであるため、同一又は同等の構成には同一の符号を付してそれらの重複する説明は省略する。
 本実施形態では、図3に示されるように、冷却液流路溝212は径配向面上に当該径配向面の幅方向に並べられた複数(六個)の溝として形成されている。本実施形態でも、各冷却液流路溝212は、軸方向に直線的に形成されており、軸方向に沿って均一な周方向幅と均一な径方向深さを有している。従って、本実施形態においても、冷却液流路溝212は、平角線21aごとに均一な流路断面積を有している。言い換えれば、図3中の三段の冷却流路の各断面積(各段の六個の溝の合計断面積)が同じである。
 本実施形態によれば、第一実施形態よりも冷却液流路溝212の流路抵抗は増加するが、冷却液の接触面積を増やすことができる。流路抵抗が増加すると、冷却液の循環量は減る。しかし、その一方で冷却液の接触面積を増やすことで、熱交換量を増加させることができる。即ち、冷却液の流速と熱交換効率を考慮して、冷却効率を制御することができる。冷却効率は、冷却液の特性によっても変わる。例えば、冷却液の粘度が高い場合は、流速を優先して、接触面積が小さくても流路断面積の大きな第一実施形態の構成を採用した方が冷却効率を向上させることができる場合もある。反対に、冷却液の粘度が低い場合は、流速低下は少ない、あるいは、むしろ流速を高くできるので、各流路断面積は小さくても合計接触面積の大きな本実施形態の構成を採用した方が冷却効率を向上させることができる場合もある。
 本実施形態のように、冷却液流路溝212は、平角導電体210の何れかの周面上において当該周面の幅方向に並べられた複数の溝として形成されてもよい。本実施形態では、冷却液流路溝212は、平角導電体210の径配向面上に当該径配向面の幅方向に並べられた複数の溝として形成された。しかし、冷却液流路溝212は、平角導電体210の周配向面上に当該周配向面の幅方向、即ち、上述した径方向に並べられた複数の溝として形成されてもよい。
 次に、図4を参照しつつ、第三実施形態のステータについて説明する。上述した第一実施形態及び第二実施形態では、平角線21aは、スロット20c内で径方向のみに並べられた。本実施形態では、平角線21aは、円筒形のヨーク20aの径方向のみだけでなく周方向にも並べられている。なお、平角線21aは、周方向のみに並べられてもよい。また、冷却液流路溝212は、平角線21aの平角導電体210の表面を凹ませて形成させるが、上述した第一実施形態及び第二実施形態では、上述したように径方向外側の径配向面を凹ませて冷却液流路溝212が形成された。しかし、冷却液流路溝212を形成させるために凹ませる平角導電体210の表面は、径配向面に限定されず、本実施形態のように周配向面であってもよい。
 本実施形態でも、各平角導電体210の断面積はほぼ同じにされており、長さあたりの電気抵抗がほぼ同じにされている。そして、周方向に隣り合う平角線21aの一方の周配向面、より詳しくは、隣り合う平角線21aの他方に面する周配向面にのみ、冷却液流路溝212が形成されている。この結果、径方向に並ぶ各列に一つの冷却液流路溝212が形成されている。本実施形態でも、冷却液流路溝212の各断面積は均一であり、径方向に並ぶ各列の冷却液流路を流れる冷却液の流路抵抗は同じである。このため、冷却液は全ての冷却液流路内を均一に循環して、ステータを冷却することができる。
 なお、本実施形態では、隣り合う平角線21aの対向する周配向面の一方に冷却液流路溝212が形成された。このようにすることで、ステータコイル21を内部からより効果的に冷却することができる。しかし、平角線21aのティース20bと対向する周配向面に冷却液流路溝212が形成されてもよい。このようにすれば、ステータコイル21に加えてステータコア20も効果的に冷却することができる。さらに、冷却液流路溝212を径配向面に形成する場合でも、径方向外側でなく径方向内側の径配向面に冷却液流路溝212が形成されてもよい。一つのスロット20c内において、冷却液流路溝212が、径配向面及び周配向面にそれぞれ設けられても構わない。
 上記実施形態によれば、ステータコイル21は、平角導電体210によって構成されている。平角導電体210は、スロット20c内で径方向又は周方向に並べられている。平角導電体210の表面、即ち、径配向面又は周配向面上に冷却液流路溝212がプレス成形されている。従って、冷却液流路溝212によって形成される冷却液流路内を循環する冷却液によって、ステータを内部からより一層効果的に冷却することができる。
 また、上記実施形態では、各所に冷却液流路溝212、23及び34による冷却液流路が形成されるが、冷却液流路溝212による冷却液流路は、ステータコイル21の平角導電体210を利用して形成される。平角導電体210は、ステータ2の全長にわたって軸方向に延設されると共に、周方向に一定間隔で配置されたスロット20c内に収納される。したがって、冷却液流路溝212による冷却液流路によれば、ステータ2全体を効率よく冷却することができる。さらに、ステータ2では、ステータコイル21は高温になりやすい部位であり、冷却液がステータコイル21の平角導電体210から熱を奪うので、ステータコイル21を効率よく冷却することができる。
 また、上記実施形態によれば、平角導電体210が、その表面に均一な厚さの絶縁層211を有している。言い換えれば、平角導電体210及び絶縁層211によって平角線21aが構成され、平角線21aによってステータコイル21が構成されている。絶縁層211は、均一な厚さを有しており、平角導電体210に形成された冷却液流路溝212を埋めてしまうことはなく、冷却液流路による冷却を阻害することはない。また、均一な厚さの絶縁層211は、上述した占積率を低下させることはなく、スロット20c内への平角導電体210の充填率を低下させることもない。従って、回転電機1の効率が低下することもない。
 さらに、絶縁層211は均一な厚さに形成されるため、平角線21a表面の剛性や強度低下を抑止できる。平角線21aはスロット20c内に密に収納されるが、平角線21a表面の剛性や強度が低いと、スロット20c内での平角線21a、より具体的には平角導電体210をしっかり保持できなくなるおそれがある。しかし、上記実施形態ではこのような問題は生じない。
 上記第一及び第三実施形態によれば、冷却液流路溝212が、扁平な溝として形成される。冷却液流路溝212の扁平形状は、流路抵抗を小さくすると共に接触面積を増やすのに適した形状である。また、扁平形状は、平角導電体210の周面上に冷却液流路溝212を形成させやすい形状でもある。同じ縦横比の溝であっても幅の狭い深い溝として冷却液流路溝212を形成するのは困難である。
 上記第二実施形態によれば、冷却液流路溝212が、何れかの周面上において当該周面の幅方向に並べられた複数の溝として形成される。このように冷却液流路溝212を形成することで、冷却液との接触面積を増やして熱交換効率を向上、即ち、冷却効率を向上することができる。
 また、上記実施形態によれば、スロット20cが、径方向内方に向けて幅が狭くなる長い台形断面を有している。ここで、平角導電体210は、スロット20c内において、径方向に並べられると共に、径方向内方に向けて幅が狭くなる台形断面を有している。さらに、冷却液流路溝212は、平角線21aの径配向面のうち径方向外側の径配向面上に形成される。即ち、冷却液流路溝212は、周方向幅が広い径配向面上に形成される。このような構造とすることで、台形断面を有する平角導電体210の鋭角隅部への充填率を向上させることができる。この結果、スロット20c内への平角導電体210の充填率を向上させて、効率のよい回転電機1を実現することができる。
 また、上記第一及び第二実施機形態によれば、冷却液流路溝212は、当該冷却液流路溝212が形成されている径配向面ごとに均一な流路断面積を有している。このため、例えば、図2又は図3に示される三段の冷却液流路において各段の冷却液流路を流れる冷却液の流路抵抗は同じになり、冷却液は全ての冷却液流路内を均一に循環して、ステータ2を均一に冷却することができる。
 なお、上記実施形態では、冷却液流路溝212は軸方向に直線的に形成された。冷却液流路溝212によって形成される流路の流れ抵抗は増加するが、冷却液の接触面積を増やすために、冷却液流路溝212を蛇行させてもよい。上記実施形態では、冷却液流路溝212は、平角導電体210の四つの周面のうちの一つの周面上のみに形成された。しかし、冷却液流路溝212は、平角導電体210の全ての周面のうちの二つ以上の周面上に設けられてもよい。上記実施形態では、径配向面上に平行に並べられた複数の溝として冷却液流路溝212が形成されたが、平行に並べられた複数の溝としての冷却液流路溝212が周配向面上に形成されてもよい。
 また、上記実施形態の回転電機1は、SPM型の発電機であったが、IPM(Interior Permanent Magnet)型の発電機であってもよい。回転電機は、発電機ではなく電動機であってもよい。さらに、回転電機は、永久磁石を有しない誘導型の回転電機であってもよい。
 本出願は、2022年3月31日に出願された日本国特許願第2022-58767号に基づく優先権を主張しており、この出願の全内容が参照により本明細書に組み込まれる。
1 回転電機
2 ステータ
20 ステータコア
20a ヨーク
20b ティース
20c スロット
21 ステータコイル
210 平角導電体
211 絶縁層
212 冷却液流路溝
3 ロータ

Claims (6)

  1.  円筒形のヨークと前記ヨークから前記円筒形の径方向の内方に向けて突設された複数のティースとを有するステータコアと、
     前記複数のティースにおける隣接するティースの間に形成されたスロット内に配索されたステータコイルとを備えた回転電機のステータにおいて、
     前記ステータコイルが、平角導電体によって構成され、
     前記平角導電体が、前記スロットのそれぞれの内部に、前記径方向又は前記円筒形の周方向に並べられており、
     前記平角導電体が、その表面上にプレス成形された冷却液流路溝を備えている、回転電機のステータ。
  2.  前記平角導電体の前記表面上に均一な厚さの絶縁層が形成されている、請求項1に記載の回転電機のステータ。
  3.  前記冷却液流路溝が、扁平な溝として形成されている、請求項1又は2に記載の回転電機のステータ。
  4.  前記冷却液流路溝が、前記平角導電体の何れかの周面上において当該周面の幅方向に並べられた複数の溝として形成されている、請求項1~3の何れか一項に記載の回転電機のステータ。
  5.  前記スロットのそれぞれが、前記径方向内方に向けて幅が狭くなる長い台形断面を有しており、
     前記平角導電体が、前記スロットのそれぞれの前記内部において、前記径方向に並べられると共に、前記径方向内方に向けて幅が狭くなる台形断面を有しており、
     前記冷却液流路溝が、前記平角導電体の前記径方向に配向された径配向面のうち前記径方向外側の前記径配向面上に形成されている、請求項1~4の何れか一項に記載の回転電機のステータ。
  6.  前記径方向外側の前記径配向面上に形成された前記冷却液流路溝が、当該径配向面ごとに均一な流路断面積を有している、請求項5に記載の回転電機のステータ。
PCT/JP2022/043101 2022-03-31 2022-11-22 回転電機のステータ WO2023188530A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022058767 2022-03-31
JP2022-058767 2022-03-31

Publications (1)

Publication Number Publication Date
WO2023188530A1 true WO2023188530A1 (ja) 2023-10-05

Family

ID=88200005

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/043101 WO2023188530A1 (ja) 2022-03-31 2022-11-22 回転電機のステータ

Country Status (1)

Country Link
WO (1) WO2023188530A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018154944A1 (ja) * 2017-02-21 2018-08-30 パナソニックIpマネジメント株式会社 モータ
JP2020120470A (ja) * 2019-01-22 2020-08-06 トヨタ自動車株式会社 回転電機
US20210143693A1 (en) * 2019-11-08 2021-05-13 GM Global Technology Operations LLC Electric machine with in-slot stator cooling
JP2021097523A (ja) * 2019-12-18 2021-06-24 三菱電機株式会社 回転電機

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018154944A1 (ja) * 2017-02-21 2018-08-30 パナソニックIpマネジメント株式会社 モータ
JP2020120470A (ja) * 2019-01-22 2020-08-06 トヨタ自動車株式会社 回転電機
US20210143693A1 (en) * 2019-11-08 2021-05-13 GM Global Technology Operations LLC Electric machine with in-slot stator cooling
JP2021097523A (ja) * 2019-12-18 2021-06-24 三菱電機株式会社 回転電機

Similar Documents

Publication Publication Date Title
US9300179B2 (en) Electric rotating machine
CN108352751B (zh) 电机
US10044237B2 (en) Pole shoe cooling gap for axial motor
US9559556B2 (en) Stator of rotating electric machine
WO2015198961A1 (ja) 電動機の固定子及び回転電機の冷却構造
EP1557929B1 (en) Method and apparatus for reducing hot spot temperatures on stacked field windings
CN110676955B (zh) 带有与定子凹槽间隔开的电导体的电动马达
JP7139969B2 (ja) 回転電機
US10693352B2 (en) Stators for electrical machines
US20220200367A1 (en) Stator for electrical machines
CN111416456B (zh) 用于电机的液冷式转子
US20240146134A1 (en) Stator of an electric flux machine, and axial flux machine
WO2023188530A1 (ja) 回転電機のステータ
US20240048020A1 (en) Motor assembly
JP7525002B2 (ja) 回転電機及び回転電機の冷却構造
JP2024056531A (ja) 回転電機
US20240195251A1 (en) Direct slot cooling in electric machines
JP2011019311A (ja) 回転電機のロータ
US20240356401A1 (en) Rotor and Electric Machine With Integrated Winding Head Cooling, Manufacturing Method and Motor Vehicle
WO2023153043A1 (ja) 回転電機
EP4425760A1 (en) Stator
CN218387063U (zh) 电机及其轴承套
JP5363221B2 (ja) ステータ
JP3239311U (ja) 電気機械
JP2004343961A (ja) 回転電機の冷却構造

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22935659

Country of ref document: EP

Kind code of ref document: A1