[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2023182500A1 - 窓材及び透光性屋根材 - Google Patents

窓材及び透光性屋根材 Download PDF

Info

Publication number
WO2023182500A1
WO2023182500A1 PCT/JP2023/011834 JP2023011834W WO2023182500A1 WO 2023182500 A1 WO2023182500 A1 WO 2023182500A1 JP 2023011834 W JP2023011834 W JP 2023011834W WO 2023182500 A1 WO2023182500 A1 WO 2023182500A1
Authority
WO
WIPO (PCT)
Prior art keywords
temperature
sensitive
adhesive
mass
fine particles
Prior art date
Application number
PCT/JP2023/011834
Other languages
English (en)
French (fr)
Inventor
聡士 山口
卓 加藤
Original Assignee
ニッタ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ニッタ株式会社 filed Critical ニッタ株式会社
Publication of WO2023182500A1 publication Critical patent/WO2023182500A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/18Layered products comprising a layer of synthetic resin characterised by the use of special additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/027Thermal properties
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C17/00Surface treatment of glass, not in the form of fibres or filaments, by coating
    • C03C17/28Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material
    • C03C17/32Surface treatment of glass, not in the form of fibres or filaments, by coating with organic material with synthetic or natural resins
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/38Pressure-sensitive adhesives [PSA]
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/62Insulation or other protection; Elements or use of specified material therefor
    • E04B1/74Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls
    • E04B1/76Heat, sound or noise insulation, absorption, or reflection; Other building methods affording favourable thermal or acoustical conditions, e.g. accumulating of heat within walls specifically with respect to heat only
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04CSTRUCTURAL ELEMENTS; BUILDING MATERIALS
    • E04C2/00Building elements of relatively thin form for the construction of parts of buildings, e.g. sheet materials, slabs, or panels
    • E04C2/54Slab-like translucent elements
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04DROOF COVERINGS; SKY-LIGHTS; GUTTERS; ROOF-WORKING TOOLS
    • E04D3/00Roof covering by making use of flat or curved slabs or stiff sheets
    • E04D3/02Roof covering by making use of flat or curved slabs or stiff sheets of plane slabs, slates, or sheets, or in which the cross-section is unimportant
    • E04D3/06Roof covering by making use of flat or curved slabs or stiff sheets of plane slabs, slates, or sheets, or in which the cross-section is unimportant of glass or other translucent material; Fixing means therefor
    • EFIXED CONSTRUCTIONS
    • E06DOORS, WINDOWS, SHUTTERS, OR ROLLER BLINDS IN GENERAL; LADDERS
    • E06BFIXED OR MOVABLE CLOSURES FOR OPENINGS IN BUILDINGS, VEHICLES, FENCES OR LIKE ENCLOSURES IN GENERAL, e.g. DOORS, WINDOWS, BLINDS, GATES
    • E06B9/00Screening or protective devices for wall or similar openings, with or without operating or securing mechanisms; Closures of similar construction
    • E06B9/24Screens or other constructions affording protection against light, especially against sunshine; Similar screens for privacy or appearance; Slat blinds
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses

Definitions

  • the present invention relates to window materials and translucent roofing materials.
  • the present invention also relates to buildings, vehicles, ships, or aircrafts equipped with the window materials and/or translucent roof materials.
  • Patent Document 1 a temperature-sensitive dimming liquid laminate whose white turbidity changes autonomously in response to temperature stimulation has been proposed as a structure to be provided in a window.
  • the present invention was made in view of the above problems, and the present invention is a window material or a translucent roofing material that can autonomously change its white turbidity depending on temperature, has a simple structure, and is easy to manufacture.
  • the object of the present invention is to provide a building, a vehicle, a ship, or an aircraft equipped with the window material and/or translucent roof material.
  • the first aspect of the present invention is comprising at least one transparent base material layer and at least one adhesive layer
  • the adhesive layer is made of an adhesive composition containing 1 to 20 parts by mass of a temperature-sensitive non-crosslinked polymer and 1 to 100 parts by mass of temperature-sensitive crosslinked fine particles, based on 100 parts by mass of the adhesive,
  • the refractive index of the temperature-sensitive crosslinked fine particles decreases as the temperature increases, and
  • the refractive index reduction rate of the temperature-sensitive crosslinked fine particles, which is the amount of decrease in the refractive index per 1°C, is in a temperature range other than the vicinity of the melting point of the temperature-sensitive crosslinked fine particles in the vicinity of the melting point of the temperature-sensitive crosslinked fine particles.
  • the adhesive strength of the adhesive composition decreases as the temperature increases, and
  • the rate of decrease in adhesive strength of the adhesive composition which is the amount of decrease in adhesive strength per 1°C, is greater in the vicinity of the melting point of the temperature-sensitive non-crosslinked polymer than in the temperature range other than the vicinity of the melting point of the temperature-sensitive non-crosslinked polymer. , It is a window material.
  • the second aspect of the invention is comprising at least one transparent base material layer and at least one adhesive layer
  • the adhesive layer is made of an adhesive composition containing 1 to 20 parts by mass of a temperature-sensitive non-crosslinked polymer and 1 to 100 parts by mass of temperature-sensitive crosslinked fine particles, based on 100 parts by mass of the adhesive,
  • the refractive index of the temperature-sensitive crosslinked fine particles decreases as the temperature increases, and
  • the refractive index reduction rate of the temperature-sensitive crosslinked fine particles, which is the amount of decrease in the refractive index per 1°C, is in a temperature range other than the vicinity of the melting point of the temperature-sensitive crosslinked fine particles in the vicinity of the melting point of the temperature-sensitive crosslinked fine particles.
  • the adhesive strength of the adhesive composition decreases as the temperature increases, and
  • the rate of decrease in adhesive strength of the adhesive composition which is the amount of decrease in adhesive strength per 1°C, is greater in the vicinity of the melting point of the temperature-sensitive non-crosslinked polymer than in the temperature range other than the vicinity of the melting point of the temperature-sensitive non-crosslinked polymer.
  • It is a translucent roofing material.
  • a third aspect of the present invention is a building comprising the window material according to the first aspect and/or the translucent roofing material according to the second aspect.
  • a fourth aspect of the present invention is a vehicle, a ship, or an aircraft that includes the window material according to the first aspect and/or the translucent roof material according to the second aspect.
  • the fifth aspect of the present invention is An adhesive composition containing 1 to 20 parts by mass of a temperature-sensitive non-crosslinked polymer and 1 to 100 parts by mass of temperature-sensitive crosslinked fine particles per 100 parts by mass of the adhesive,
  • the refractive index of the temperature-sensitive crosslinked fine particles decreases as the temperature increases, and
  • the refractive index reduction rate of the temperature-sensitive crosslinked fine particles, which is the amount of decrease in the refractive index per 1°C, is in a temperature range other than the vicinity of the melting point of the temperature-sensitive crosslinked fine particles in the vicinity of the melting point of the temperature-sensitive crosslinked fine particles.
  • the adhesive strength of the adhesive composition decreases as the temperature increases, and
  • the rate of decrease in adhesive strength of the adhesive composition which is the amount of decrease in adhesive strength per 1°C, is greater in the vicinity of the melting point of the temperature-sensitive non-crosslinked polymer than in the temperature range other than the vicinity of the melting point of the temperature-sensitive non-crosslinked polymer. , It is an adhesive composition.
  • the sixth aspect of the present invention is This is a pressure-sensitive adhesive sheet including a pressure-sensitive adhesive layer made of the pressure-sensitive adhesive composition according to the fifth aspect.
  • a window material and a translucent roofing material that can autonomously change white turbidity depending on temperature, have a simple structure and are easy to manufacture, and a window material and/or a translucent roofing material. Buildings, as well as vehicles, ships, or aircraft, can be provided with flexible roofing materials.
  • FIG. 2 is a schematic explanatory diagram showing a heat shielding property evaluation test method in Examples. It is a photograph which shows the evaluation test method of the heat shielding property in an Example. It is a photograph which shows the evaluation test method of the heat shielding property in an Example.
  • FIG. 1 shows a cross-sectional view of a first window material 10 as an example of a window material.
  • a translucent base layer 11 As shown in FIG. 1, in the first window material 10, a translucent base layer 11, an adhesive layer 12, and a base sheet 13 are laminated in this order.
  • the adhesive layer 12 is composed of an adhesive composition containing an adhesive, a temperature-sensitive non-crosslinked polymer, and temperature-sensitive crosslinked fine particles 12a.
  • FIG. 2 shows a cross-sectional view of a second window material 20 as another example of the window material.
  • an adhesive layer 22 is arranged between two transparent base material layers 21a and 21b.
  • the adhesive layer 22 is composed of an adhesive composition containing an adhesive, a temperature-sensitive non-crosslinked polymer, and temperature-sensitive crosslinked fine particles 22a.
  • the temperature-sensitive crosslinked fine particles 12a and 22a have a refractive index that decreases as the temperature rises, and that the refractive index decrease rate, which is the amount of decrease in the refractive index per 1°C, is near the melting point. is higher than the temperature range other than the vicinity of the melting point. Therefore, when the temperature of the adhesive layers 12 and 22 increases due to solar radiation or air temperature, the difference in refractive index between the temperature-sensitive crosslinked fine particles 12a and 22a and the adhesive increases, and the haze value increases.
  • the difference in refractive index between the temperature-sensitive crosslinked fine particles 12a and 22a and the adhesive becomes smaller, resulting in a lower haze value.
  • This allows the white turbidity to change autonomously depending on the temperature, softening direct sunlight during high temperatures in the summer, and allowing sunlight to enter during low temperatures in the winter.
  • it can also be designed so that the difference in refractive index between the temperature-sensitive crosslinked fine particles 12a and 22a and the adhesive becomes smaller as the temperature rises.
  • the window material when the temperature is relatively low and the amount of sunlight is low, such as in the morning or at night, the window material functions as frosted glass, but when the temperature rises during the day as the amount of sunlight increases, the window material functions as frosted glass.
  • the material is transparent, allowing efficient lighting into the room.
  • the above window materials when installed in a location where they are exposed to the outside air, they become cloudy or transparent as the outside temperature rises, making it difficult for people living in air-conditioned rooms to see. It also has a function to make you aware of the rise in outside temperature.
  • the adhesive strength of the adhesive compositions constituting the adhesive layers 12 and 22 decreases as the temperature increases, and the adhesive strength decrease rate, which is the amount of decrease in adhesive strength per 1°C, is lower than that of the adhesive composition.
  • the temperature near the melting point of the temperature-sensitive non-crosslinked polymer inside is higher than the temperature range other than the melting point. Therefore, even if air bubbles are trapped or wrinkles occur when placing the adhesive layers 12 and 22, by increasing the temperature of the adhesive layers 12 and 22, the adhesive layers 12 and 22 can be peeled off and placed again. is possible. Thereby, manufacturing of the window material can be made easier.
  • the light-transmitting base material constituting the light-transmitting base material layer is not particularly limited as long as it is a base material that can be used as a window material for buildings, vehicles, ships, and aircraft; for example, a glass plate. or a resin plate can be used.
  • the material for the glass plate include soda lime glass, borosilicate glass, and high silica glass.
  • the material for the resin plate include polyalkyl methacrylates such as polymethyl methacrylate, polyalkyl acrylates, polycarbonates, polymethylstyrene, acrylonitrile-styrene copolymers, and the like.
  • the thickness of the transparent base material layer is not particularly limited, but is, for example, 0.1 mm or more and 10 mm or less.
  • Examples of the shape of the light-transmitting base material layer include a planar shape like the first window material 10 and the second window material 20, a curved shape, and the like.
  • the translucent base material layer is composed of at least one layer, and may be composed of a single layer like the first window material 10, or two or more layers like the second window material 20. It may be composed of. When composed of two or more layers, each layer may be composed of the same type of base material or may be composed of different types of base materials. Moreover, each layer may have the same thickness or may have different thicknesses.
  • the adhesive layer is a layer made of an adhesive composition containing 1 to 20 parts by mass of a temperature-sensitive non-crosslinked polymer and 1 to 100 parts by mass of temperature-sensitive crosslinked fine particles to 100 parts by mass of the adhesive. It has the function of autonomously changing the white turbidity and adhesive strength according to the situation.
  • the thickness of the adhesive layer is not particularly limited, but is preferably 5 ⁇ m or more and 1 mm or less, more preferably 10 ⁇ m or more and 100 ⁇ m or less.
  • the thicker the adhesive layer is the more the dimming function tends to be exhibited by adding a small amount of temperature-sensitive crosslinked fine particles.
  • the thinner the thickness the more temperature-sensitive crosslinked fine particles tend to need to be added in order to exhibit the light control function.
  • the adhesive layer is composed of at least one layer.
  • the adhesive layer may be composed of a single layer like the first window material 10 and the second window material 20, or may be composed of two or more layers.
  • the arrangement of the adhesive layer with respect to the transparent base material layer is not particularly limited.
  • the adhesive layer may be placed on the side of the transparent base material layer where sunlight enters, or may be placed on the opposite side.
  • an adhesive layer may be disposed between the translucent base material layers like the second window material 20.
  • the adhesive layer may cover the entire surface of the surface where the adhesive layer and the transparent base material layer are in contact with each other, or may cover a part of the surface.
  • the adhesive layer When the adhesive layer covers a part of the surface where the adhesive layer and the transparent base layer are in contact with each other, characters, symbols, patterns, figures, pictures, etc. may be drawn on the transparent base layer by the adhesive layer. It's okay. In this case, the adhesive layer may form letters or patterns, or the area surrounded by the adhesive layer may form letters or patterns.
  • Such window materials have excellent design properties when haze appears or disappears at high temperatures.
  • the adhesive layer may have a plurality of types of regions having different haze values at high temperatures or low temperatures.
  • the haze value of the adhesive layer can be changed by changing the type of adhesive or temperature-sensitive crosslinked fine particles, or by changing the amount of temperature-sensitive crosslinked fine particles used. For example, by continuously forming a plurality of adhesive layers having different haze values at high or low temperatures on a transparent substrate, a gradation of haze can be achieved at high or low temperatures. We can provide window materials with excellent design.
  • the difference between the haze value at 23°C and the haze value at 60°C of the adhesive layer is preferably 10% or more.
  • the haze value of the adhesive layer at 60°C is 10% or more higher than the haze value at 23°C. This tends to make it easier to visually recognize changes in white turbidity depending on temperature.
  • the haze value of the adhesive layer is a value measured by the method described in Examples below.
  • the haze value of the adhesive layer at 23°C is preferably 10% or less.
  • the lower limit of the haze value at 23°C is not particularly limited.
  • the haze value of the adhesive layer at 60° C. is preferably 12% or more, more preferably 20% or more, and still more preferably 30% or more.
  • the upper limit of the haze value at 60° C. is not particularly limited, but is, for example, 70% or less and 50% or less.
  • the difference between the solar transmittance at 23°C and the solar transmittance at 60°C of the adhesive layer is preferably 10% or more.
  • the solar transmittance of the adhesive layer at 60°C is preferably 10% or more lower than the solar transmittance at 23°C.
  • the solar radiation transmittance of an adhesive layer is the value measured by the method described in the below-mentioned Example.
  • the solar transmittance of the adhesive layer at 23° C. is preferably 50% or more, more preferably 70% or more, and still more preferably 80% or more.
  • the upper limit of the solar transmittance at 23° C. is not particularly limited, but is, for example, 99% or less, 95% or less.
  • the solar transmittance of the adhesive layer at 60° C. is preferably 80% or less, more preferably 70% or less, and still more preferably 60% or less.
  • the lower limit of the solar transmittance at 60° C. is not particularly limited.
  • FIG. 4 is a graph showing changes in refractive index with respect to temperature changes in temperature-sensitive crosslinked fine particles (melting point: 33° C.) produced in Examples described below.
  • the refractive index of the thermosensitive crosslinked fine particles decreases as the temperature rises, and the refractive index decrease rate, which is the amount of decrease in the refractive index per 1°C, is near the melting point. It is larger than the temperature range other than the vicinity of the melting point.
  • the refractive index of the temperature-sensitive crosslinked fine particles at 60°C is preferably 0.02 or more lower than the refractive index of the temperature-sensitive crosslinked fine particles at 23°C. This tends to make it easier to visually recognize changes in white turbidity depending on temperature. Note that in this specification, the refractive index is a value measured by the method described in Examples below.
  • the melting point of the temperature-sensitive crosslinked fine particles is preferably 20°C or higher, more preferably 25°C or higher. Further, the melting point is preferably 100°C or lower, more preferably 60°C or lower, and still more preferably 40°C or lower. In this specification, the melting point of the temperature-sensitive crosslinked fine particles is a value measured by the method described in Examples below.
  • the melting point of the temperature-sensitive crosslinked fine particles can be adjusted by, for example, changing the composition of the monomer component constituting the side chain crystalline polymer A contained in the temperature-sensitive crosslinked fine particles. For example, by changing the length of the side chain in the side chain crystalline polymer A, the melting point can be adjusted. When the length of the side chain is long, the temperature-sensitive crosslinked fine particles tend to have a high melting point.
  • the average particle diameter of the temperature-sensitive crosslinked fine particles is preferably 1 ⁇ m or more, more preferably 3 ⁇ m or more. Further, the average particle diameter is preferably 100 ⁇ m or less, more preferably 30 ⁇ m or less. In particular, from the viewpoint of easily increasing haze, the average particle diameter is more preferably 3 ⁇ m or more and 10 ⁇ m or less, and most preferably 3 ⁇ m or more and 6 ⁇ m or less. Easy to suppress solar radiation transmission. From the standpoint of easily blocking heat, the average particle diameter is more preferably 6 ⁇ m or more and 25 ⁇ m or less, and most preferably 10 ⁇ m or more and 25 ⁇ m or less.
  • the D90 particle diameter of the temperature-sensitive crosslinked fine particles is preferably equal to or less than the thickness of the adhesive layer, and is, for example, 1 ⁇ m or more and 1000 ⁇ m or less, 3 ⁇ m or more and 100 ⁇ m or less.
  • the average particle diameter and D90 particle diameter of the temperature-sensitive crosslinked fine particles are values measured by the method described in Examples below.
  • the temperature-sensitive crosslinked fine particles contain side chain crystalline polymer A.
  • the side chain crystalline polymer A preferably contains a structural unit derived from a (meth)acrylic monomer having a linear alkyl group having 14 or more carbon atoms.
  • the structural unit derived from a (meth)acrylic monomer having a linear alkyl group having 14 or more carbon atoms is a side chain crystalline moiety in the side chain crystalline polymer A, in which the linear alkyl group having 14 or more carbon atoms is functions as That is, the side chain crystalline polymer A is, for example, a comb-shaped polymer having a linear alkyl group having 14 or more carbon atoms in the side chain.
  • the side chain crystalline polymer A is crystallized by aligning the side chains into an ordered arrangement by intermolecular forces or the like.
  • the above-mentioned (meth)acrylic monomer is an acrylic monomer or a methacrylic monomer.
  • the upper limit of the number of carbon atoms in the linear alkyl group is preferably 50 or less, more preferably 30 or less.
  • Examples of the (meth)acrylic monomer having a linear alkyl group having 14 or more carbon atoms include cetyl (meth)acrylate, stearyl (meth)acrylate, eicosyl (meth)acrylate, and behenyl (meth)acrylate. . These may be used alone or in combination of two or more.
  • the ratio of the mass of the structural unit derived from the (meth)acrylic monomer having a linear alkyl group having 14 or more carbon atoms to the mass of the side chain crystalline polymer A is preferably 70% by mass or more, and more preferably is 80% by mass or more, more preferably 90% by mass or more. The above ratio may be 100% by mass, but is preferably 95% by mass or less.
  • the side chain crystalline polymer A may include a structural unit derived from another monomer copolymerizable with a (meth)acrylic monomer having a linear alkyl group having 14 or more carbon atoms.
  • examples of other monomers include monofunctional monomers, polyfunctional monomers, and refractive index adjusting monomers. That is, the side chain crystalline polymer A may include a structural unit derived from a monofunctional monomer, a polyfunctional monomer, or a refractive index adjusting monomer.
  • Examples of monofunctional monomers include methyl (meth)acrylate, ethyl (meth)acrylate, butyl (meth)acrylate, hexyl (meth)acrylate, lauryl (meth)acrylate, and 2-ethylhexyl acrylate having 1 or more carbon atoms.
  • Examples include (meth)acrylic monomers having 12 alkyl groups. These may be used alone or in combination of two or more. If you want to add some function in addition to temperature sensitivity, you can use any monomer as long as it can be copolymerized with a (meth)acrylic monomer having a linear alkyl group with 14 or more carbon atoms and has that function. can be copolymerized.
  • the ratio of the mass of the structural unit derived from the monofunctional monomer to the mass of the side chain crystalline polymer A is preferably 0.1% by mass or more, more preferably 1% by mass or more. Moreover, the said ratio becomes like this. Preferably it is 20 mass % or less, More preferably, it is 10 mass % or less.
  • the polyfunctional monomer can crosslink multiple molecular chains contained in the side chain crystalline polymer A. From the viewpoint of maintaining the dispersion state of the temperature-sensitive crosslinked fine particles during use, suppressing deformation, and maintaining repeatability of functions, it is preferable that the side chain crystalline polymer A contains a structural unit derived from a polyfunctional monomer. That is, the temperature-sensitive crosslinked fine particles and the side chain crystalline polymer A are preferably crosslinked.
  • the polyfunctional monomer has two or more, preferably 2 to 4, radically polymerizable double bonds in the molecule. Examples of the polyfunctional monomer include bifunctional (meth)acrylate, trifunctional (meth)acrylate, and tetrafunctional (meth)acrylate.
  • Specific examples include 1,6-hexanediol di(meth)acrylate, 1,9-nonanediol di(meth)acrylate, trimethylolpropane tri(meth)acrylate, pentaerythritol tetra(meth)acrylate, and polyethylene glycol 200 di(meth)acrylate.
  • the polyfunctional monomer may be at least one selected from bifunctional (meth)acrylates, trifunctional (meth)acrylates, and tetrafunctional (meth)acrylates.
  • the ratio of the mass of the structural unit derived from the polyfunctional monomer to the mass of the side chain crystalline polymer A is preferably 0.1% by mass or more, more preferably 1% by mass or more. Moreover, the said ratio becomes like this. Preferably it is 20 mass % or less, More preferably, it is 10 mass % or less.
  • the refractive index adjusting monomer may be a monomer having a refractive index of 1.300 to 1.600.
  • the refractive index adjusting monomer include 2-(O-phenylphenoxy)ethyl acrylate (refractive index: 1.577), 2-propenoic acid (3-phenoxyphenyl) methyl ester (refractive index: 1.566), 1 - Naphthyl acrylate (refractive index: 1.595), acrylamide (refractive index: 1.515), hydroxyacrylamide (refractive index: 1.515), EO-modified bisphenol A diacrylate (refractive index: 1.537), acrylamide ( Refractive index: 1.515), 2,2,2-trifluoroethyl acrylate (refractive index: 1.348), methacryl-modified polydimethylsiloxane (refractive index: 1.408), and the like. These may be used alone or in combination of two or more.
  • the ratio of the mass of the structural unit derived from the refractive index adjusting monomer to the mass of the side chain crystalline polymer A is preferably 0.1% by mass or more, more preferably 1% by mass or more. Further, the above ratio is preferably 30% by mass or less, more preferably 20% by mass or less, and even more preferably 10% by mass or less.
  • the temperature-sensitive crosslinked fine particles do not contain a structural unit derived from a reactive emulsifier, since they tend to have good dispersibility in adhesives.
  • a reactive emulsifier is an emulsifier having a polymerizable unsaturated bond such as a vinyl group in its molecule.
  • the reactive emulsifier is a polymerizable monomer that has an emulsifying function and has a polymerizable group having an unsaturated bond such as a vinyl group in its molecule, and a hydrophilic group.
  • the content of the temperature-sensitive crosslinked fine particles is 1 part by mass or more and 100 parts by mass or less with respect to 100 parts by mass of the adhesive.
  • the content is preferably 5 parts by mass or more, more preferably 20 parts by mass or more. Further, the content is preferably 70 parts by mass or less, more preferably 40 parts by mass or less.
  • thermosensitive crosslinked fine particles are not particularly limited, and they can be obtained by conventionally known polymerization methods such as miniemulsion polymerization and suspension polymerization.
  • Temperature-sensitive non-crosslinked polymers have a melting point.
  • the temperature-sensitive non-crosslinked polymer crystallizes at temperatures below the melting point, and undergoes a phase transition and exhibits fluidity at temperatures above the melting point.
  • the adhesive strength of an adhesive composition containing an adhesive and a temperature-sensitive non-crosslinked polymer decreases as the temperature rises, and the adhesive strength reduction rate, which is the amount of decrease in adhesive strength per 1°C, It is higher in the vicinity of the melting point of the temperature-sensitive non-crosslinked polymer in the composition than in the temperature range other than the vicinity of the melting point.
  • the adhesive force of an adhesive composition means the peel strength with respect to stainless steel (SUS), and is a value measured by the method described in the below-mentioned Example.
  • the peel strength of the adhesive composition against stainless steel (SUS) at 23° C. is preferably 1.0 N/25 mm or more.
  • the upper limit of the peel strength is not particularly limited.
  • the peel strength of the adhesive composition against stainless steel (SUS) at 60° C. is preferably 0.1 N/25 mm or less.
  • the lower limit of the above peel strength is not particularly limited.
  • the melting point of the temperature-sensitive non-crosslinked polymer is preferably 20°C or higher, more preferably 30°C or higher, and still more preferably 40°C or higher. Further, the melting point is preferably 100°C or lower, more preferably 80°C or lower, and even more preferably 60°C or lower. Note that in this specification, the melting point of the temperature-sensitive non-crosslinked polymer is a value measured by the method described in the Examples below.
  • the melting point of the temperature-sensitive non-crosslinked polymer is preferably 5° C. or more higher than the melting point of the temperature-sensitive crosslinked fine particles. This allows the adhesive layer to be peeled off and repositioned by raising the temperature to a higher temperature while autonomously changing the white turbidity depending on the temperature.
  • the melting point of the temperature-sensitive non-crosslinked polymer can be adjusted, for example, by changing the composition of the monomer components constituting the side chain crystalline polymer B contained in the temperature-sensitive non-crosslinked polymer. For example, by changing the length of the side chain in the side chain crystalline polymer B, the melting point can be adjusted. When the length of the side chain is long, the temperature-sensitive crosslinked fine particles tend to have a high melting point.
  • the temperature-sensitive non-crosslinked polymer contains a side chain crystalline polymer B.
  • the side chain crystalline polymer B preferably contains a structural unit derived from a (meth)acrylic monomer having a linear alkyl group having 14 or more carbon atoms.
  • the structural unit derived from a (meth)acrylic monomer having a linear alkyl group having 14 or more carbon atoms is a side chain crystalline site in the side chain crystalline polymer B, in which the linear alkyl group having 14 or more carbon atoms is functions as That is, the side chain crystalline polymer B is, for example, a comb-shaped polymer having a linear alkyl group having 14 or more carbon atoms in the side chain.
  • the side chain crystalline polymer B is crystallized by aligning the side chains into an ordered arrangement by intermolecular forces or the like.
  • the above-mentioned (meth)acrylic monomer is an acrylic monomer or a methacrylic monomer.
  • the upper limit of the number of carbon atoms in the linear alkyl group is preferably 50 or less, more preferably 30 or less.
  • Examples of the (meth)acrylic monomer having a linear alkyl group having 14 or more carbon atoms include cetyl (meth)acrylate, stearyl (meth)acrylate, eicosyl (meth)acrylate, and behenyl (meth)acrylate. . These may be used alone or in combination of two or more.
  • the ratio of the mass of the structural unit derived from the (meth)acrylic monomer having a linear alkyl group having 14 or more carbon atoms to the mass of the side chain crystalline polymer B is preferably 70% by mass or more.
  • the above ratio may be 100% by mass, but is preferably 90% by mass or less, more preferably 80% by mass or less.
  • the side chain crystalline polymer B may include a structural unit derived from another monomer copolymerizable with a (meth)acrylic monomer having a linear alkyl group having 14 or more carbon atoms.
  • examples of other monomers include compatible monomers. That is, the side chain crystalline polymer B may include a structural unit derived from a compatible monomer.
  • compatible monomers include (meth)acrylates having an alkyl group having 1 to 12 carbon atoms, such as ethylhexyl (meth)acrylate, methyl (meth)acrylate, ethyl (meth)acrylate, butyl (meth)acrylate; (meth)acrylates having an ethylene glycol group such as 2-ethylhexyl-diglycol (meth)acrylate, methoxyethyl (meth)acrylate, methoxypolyethylene glycol mono(meth)acrylate, and ethoxy-diethylene glycol (meth)acrylate; (Meth)acrylates with hydroxyalkyl groups such as meth)acrylate, hydroxypropyl (meth)acrylate, and hydroxyhexyl (meth)acrylate; carboxyl groups such as acrylic acid, methacrylic acid, crotonic acid, itaconic acid, maleic acid, fumaric acid, etc.
  • the ratio of the mass of the structural unit derived from the compatible monomer to the mass of the side chain crystalline polymer B is preferably 0.1% by mass or more, more preferably 1% by mass or more.
  • the above ratio is preferably 90% by mass or less, more preferably 80% by mass or less.
  • the side chain crystalline polymer B may contain the same structural units as those contained in the polymer constituting the adhesive. As a result, the non-crosslinked polymer in the adhesive composition has good dispersibility, and the adhesive strength tends to decrease during heating.
  • the weight average molecular weight of the temperature-sensitive non-crosslinked polymer is preferably 1000 or more, more preferably 5000 or more.
  • the weight average molecular weight is preferably 100,000 or less, more preferably 10,000 or less. If it is 100,000 or less, the effect on the haze value when adding the temperature-sensitive non-crosslinked polymer tends to be suppressed. If it is 10,000 or less, the adhesive strength tends to decrease during heating.
  • the weight average molecular weight of a temperature-sensitive non-crosslinked polymer is a value measured by the method described in the below-mentioned Examples.
  • the weight average molecular weight of the temperature-sensitive non-crosslinked polymer can be adjusted, for example, by using a chain transfer agent during polymerization.
  • chain transfer agent include thiol compounds such as dodecylmercaptan, mercaptopropionic acid, mercaptosuccinic acid, ethylhexylmercaptoacetate, mercaptoethanol, and cyclohexanethiol. These may be used alone or in combination of two or more.
  • the content of the temperature-sensitive non-crosslinked polymer is 1 part by mass or more and 20 parts by mass or less with respect to 100 parts by mass of the adhesive.
  • the above content is preferably 3 parts by mass or more.
  • the above content is preferably 10 parts by mass or less.
  • the method for producing the temperature-sensitive non-crosslinked polymer is not particularly limited, and it can be obtained by conventionally known polymerization methods such as solution polymerization and UV polymerization.
  • the adhesive is not particularly limited, and conventionally known adhesives such as acrylic adhesives, natural rubber adhesives, synthetic rubber adhesives, silicone adhesives, and urethane adhesives can be used, but among them, Acrylic adhesives are preferred.
  • the polymer constituting the adhesive preferably contains a structural unit derived from an adhesive monomer that contributes to adhesiveness and a structural unit derived from a functional monomer for crosslinking.
  • the polymer constituting the adhesive may contain structural units derived from other monomers copolymerizable with these monomers. Examples of other monomers include refractive index adjusting monomers. That is, the polymer constituting the adhesive may include a structural unit derived from a refractive index adjusting monomer.
  • adhesive monomers include (meth)acrylates having an alkyl group having 1 to 12 carbon atoms, such as ethylhexyl (meth)acrylate, methyl (meth)acrylate, ethyl (meth)acrylate, butyl (meth)acrylate; (meth)acrylates with ethylene glycol groups such as 2-ethylhexyl-diglycol (meth)acrylate, methoxyethyl (meth)acrylate, methoxypolyethylene glycol mono(meth)acrylate, ethoxy-diethylene glycol (meth)acrylate; styrene, vinyl acetate ethylenically unsaturated monomers such as; and the like. These may be used alone or in combination of two or more. Among these, (meth)acrylates having an alkyl group having 1 to 12 carbon atoms are preferred.
  • the ratio of the mass of the structural unit derived from the adhesive monomer to the mass of the polymer constituting the adhesive is preferably 50% by mass or more, more preferably 70% by mass or more. Moreover, the said ratio becomes like this. Preferably it is 99.9 mass % or less, More preferably, it is 95 mass % or less.
  • Examples of functional group monomers include (meth)acrylates having a hydroxyalkyl group such as hydroxyethyl (meth)acrylate, hydroxypropyl (meth)acrylate, and hydroxyhexyl (meth)acrylate; acrylic acid, methacrylic acid, crotonic acid, itaconic acid, Examples include ethylenically unsaturated monomers having a carboxyl group such as maleic acid and fumaric acid. Only one type may be used, or two or more types may be used in combination.
  • the ratio of the mass of the structural unit derived from the functional monomer to the mass of the polymer constituting the adhesive is preferably 0.1% by mass or more, more preferably 1% by mass or more. Further, the above ratio is preferably 30% by mass or less, more preferably 20% by mass or less, still more preferably 10% by mass or less. When the content is 0.1% by mass or more, shape retention tends to be good. When it is 30% by mass or less, the viscosity is not excessively high and coating properties tend to be good.
  • the refractive index adjusting monomer may be a monomer having a refractive index of 1.300 to 1.600.
  • the refractive index adjusting monomer include 2-(O-phenylphenoxy)ethyl acrylate (refractive index: 1.577), 2-propenoic acid (3-phenoxyphenyl) methyl ester (refractive index: 1.566), 1 - Naphthyl acrylate (refractive index: 1.595), acrylamide (refractive index: 1.515), hydroxyacrylamide (refractive index: 1.515), EO-modified bisphenol A diacrylate (refractive index: 1.537), acrylamide ( Refractive index: 1.515), 2,2,2-trifluoroethyl acrylate (refractive index: 1.348), methacryl-modified polydimethylsiloxane (refractive index: 1.408), and the like. These may be used alone or in combination of two or more.
  • the ratio of the mass of the structural unit derived from the refractive index adjusting monomer to the mass of the polymer constituting the adhesive is preferably 0.1% by mass or more, more preferably 1% by mass or more, and even more preferably 10% by mass or more. be. Moreover, the said ratio becomes like this. Preferably it is 30 mass % or less.
  • the weight average molecular weight of the adhesive is preferably 200,000 or more, more preferably 300,000 or more.
  • the weight average molecular weight is preferably 2,000,000 or less, more preferably 1,000,000 or less, still more preferably 600,000 or less. When it is 200,000 or more, shape retention tends to be good. When it is 2,000,000 or less, the viscosity is not excessively high and coating properties tend to be good.
  • the weight average molecular weight of an adhesive is a value measured by the method described in the below-mentioned Examples.
  • the glass transition temperature (Tg) of the adhesive is preferably 25° C. or lower, since it tends to exhibit high adhesive strength.
  • the glass transition temperature is a value measured by the method described in Examples below.
  • the difference in refractive index at 23° C. between the adhesive and the thermosensitive crosslinked fine particles is preferably less than 0.015, more preferably less than 0.010. Further, the refractive index difference at 60° C. is preferably 0.015 or more.
  • the upper limit of the refractive index difference at 60° C. is not particularly limited, but is, for example, 0.1.
  • the adhesive layer exhibits high translucency in a warm atmosphere where humans and pets can spend time comfortably, and in high-temperature atmospheres such as summer, the adhesive layer exhibits haze. Translucency decreases.
  • the refractive index difference between the adhesive and the temperature-sensitive crosslinked fine particles at 23°C is 0.015 or more
  • the refractive index difference at 60°C is It can also be designed to be less than 0.015.
  • the window glass will function as frosted glass under conditions of relatively low temperature and low sunlight, such as in the morning or at night, but as the amount of sunlight increases during the day.
  • the window glass becomes transparent, allowing more light to enter the room. In this way, it is possible to easily let light into the room only during the daytime without opening or closing the curtains.
  • the ratio of the mass of the adhesive to the mass of the solid content of the adhesive composition is not particularly limited, but is, for example, 50% by mass or more and 95% by mass or less.
  • the solid content of an adhesive composition means all the components except a solvent, such as an aqueous solvent and an organic solvent, from the adhesive composition.
  • the method for producing the adhesive is not particularly limited, and it can be obtained by conventionally known polymerization methods such as solution polymerization and UV polymerization.
  • the adhesive composition may contain a crosslinking agent for crosslinking the adhesive. That is, the adhesive may be crosslinked.
  • crosslinking agents include aziridine crosslinking agents, metal chelate crosslinking agents, epoxy crosslinking agents, and isocyanate crosslinking agents.
  • the content of the crosslinking agent is not particularly limited, but is, for example, 0.1 parts by mass or more and 10 parts by mass or less with respect to 100 parts by mass of the adhesive.
  • the amount is 0.1 parts by mass or more, shape retention tends to be less likely to decrease. Further, when the amount is 10 parts by mass or less, high adhesive strength tends to be easily exhibited.
  • the adhesive composition includes a solvent such as an organic solvent, an inhibitor that suppresses the progress of crosslinking, a tackifying resin (tackifier), an ultraviolet (UV) absorber, a light stabilizer (HALS), an antioxidant, an infrared absorber, Other additives such as dyes and pigments may also be included.
  • a solvent such as an organic solvent, an inhibitor that suppresses the progress of crosslinking, a tackifying resin (tackifier), an ultraviolet (UV) absorber, a light stabilizer (HALS), an antioxidant, an infrared absorber, Other additives such as dyes and pigments may also be included.
  • the above-mentioned adhesive composition is not limited in the manner in which it is used.
  • the mode of use of the above-mentioned adhesive composition can be appropriately selected depending on the purpose.
  • the above adhesive composition can autonomously change its white turbidity depending on the temperature. If the adhesive composition is designed to produce haze at high temperatures, it can soften direct sunlight during high temperatures in summer and allow sunlight to enter during low temperatures in winter. It can be suitably used for. On the other hand, if the adhesive composition is designed to produce haze at low temperatures, for example, when the adhesive composition is applied to window glass, the temperature is relatively low and the amount of sunlight is low, such as in the morning or at night.
  • the window glass functions as frosted glass, but when the amount of sunlight increases and the temperature rises during the day, the window glass becomes transparent, allowing efficient daylight to enter the room.
  • the above-mentioned adhesive composition develops or disappears haze due to heat sources such as lighting, sunlight, or high temperatures, designs such as letters, symbols, patterns, figures, and pictures appear or disappear. It becomes possible to impart excellent display properties (designs such as letters, symbols, etc.) and decorative properties (designs such as patterns, figures, pictures, etc.) to the object provided with the adhesive layer. Therefore, it can be used, for example, to decorate light covers, to decorate transparent substrates such as window materials and transparent roofing materials, and to display transparent substrates such as window materials and transparent roofing materials. It can be used suitably.
  • the above window material may or may not be provided with a base sheet.
  • the base sheet has a function as a support when laminating the adhesive layer on the transparent base layer, and a function as a protective layer for the adhesive layer.
  • the base material constituting the base sheet is not particularly limited as long as it is a translucent base material.
  • a base material for example, PET such as corona treated PET, untreated PET, highly transparent PET, annealed PET, UV cut PET, heat shielding PET, anti-fog PET, hard coat PET, blasted PET; transparent PI etc. are used. can.
  • the method for manufacturing the above window material is not particularly limited, and examples include a method in which an adhesive composition is applied to a base sheet to produce an adhesive sheet, and then the adhesive sheet is laminated to a translucent base material. It will be done.
  • the adhesive layer may be formed by applying the adhesive composition directly to the transparent substrate. In this case, it is preferable to cover the exposed surface of the adhesive layer formed on the translucent base material with a base sheet so that the tacky surface of the adhesive layer is not exposed indoors or outdoors.
  • the light-transmitting base material layer is comprised of two or more layers like the 2nd window material 20, the method of arranging an adhesive layer between the light-transmitting base material layers, etc. are also mentioned.
  • another base material layer may be bonded to the exposed surface of the adhesive layer.
  • two laminates are prepared in which one translucent base material layer and one adhesive layer are laminated so that they are in contact with each other, and the two laminates are bonded together with the exposed surface of the adhesive layer.
  • the second window material 20 having an adhesive layer between the light-transmitting substrates can also be manufactured by this method.
  • window material described above can be appropriately selected depending on the purpose.
  • the window material described above can be suitably used, for example, in buildings such as houses, buildings, warehouses, and arcades, as well as in vehicles, ships, and aircraft.
  • FIG. 3 is a sectional view showing an example of a translucent roofing material.
  • a translucent base material layer 31 As shown in FIG. 3, in the translucent roof material 30, a translucent base material layer 31, an adhesive layer 32, and a base material sheet 33 are laminated in this order.
  • the adhesive layer 32 is composed of an adhesive composition containing an adhesive, a temperature-sensitive non-crosslinked polymer, and temperature-sensitive crosslinked fine particles 32a.
  • the temperature-sensitive crosslinked fine particles 32a have a refractive index that decreases as the temperature increases, and that the refractive index decrease rate, which is the amount of decrease in the refractive index per 1° C., decreases in the vicinity of the melting point. It is larger than other temperature ranges. Therefore, when the temperature of the adhesive layer 32 increases due to solar radiation or air temperature, the difference in refractive index between the temperature-sensitive crosslinked fine particles 32a and the adhesive increases, and the haze value increases. On the other hand, when the temperature of the adhesive layer 32 decreases, the haze value decreases due to a decrease in the refractive index difference between the temperature-sensitive crosslinked fine particles 32a and the adhesive.
  • the adhesive strength of the adhesive composition constituting the adhesive layer 32 decreases as the temperature rises, and the adhesive strength reduction rate, which is the amount of decrease in adhesive strength per 1°C, is lower than that of the adhesive composition. It is higher in the vicinity of the melting point of the temperature-sensitive non-crosslinked polymer than in the temperature range other than the vicinity of the melting point. Therefore, even if bubbles or wrinkles occur when the adhesive layer 32 is placed, the adhesive layer 32 can be peeled off and placed again by increasing the temperature of the adhesive layer 32. Thereby, manufacturing of the window material can be made easier.
  • the translucent base material layer, adhesive layer, base sheet, manufacturing method, and usage are the same as each layer, manufacturing method, and usage of the window material.
  • the adhesive composition contains 1 to 20 parts by weight of a temperature-sensitive non-crosslinked polymer and 1 to 100 parts by weight of temperature-sensitive crosslinked fine particles to 100 parts by weight of the adhesive.
  • the refractive index of the thermosensitive crosslinked fine particles decreases as the temperature rises, and the refractive index decrease rate, which is the amount of decrease in the refractive index per 1°C, is lower in the vicinity of the melting point than in the temperature range other than the vicinity of the melting point. It's also big.
  • each refractive index is adjusted so that the difference in refractive index between the temperature-sensitive crosslinked fine particles and the adhesive at low temperatures is small, when the temperature of the adhesive layer formed from the adhesive composition increases due to sunlight, air temperature, or heating, The difference in refractive index between the temperature-sensitive crosslinked fine particles and the adhesive becomes large, resulting in a high haze value.
  • the adhesive composition has adhesive strength that decreases as the temperature increases, and the adhesive strength reduction rate, which is the amount of decrease in adhesive strength per 1°C, is close to the melting point of the temperature-sensitive non-crosslinked polymer in the adhesive composition. is higher than the temperature range other than the vicinity of the melting point. Therefore, even if air bubbles or wrinkles occur when the adhesive layer is placed, the adhesive layer can be peeled off and placed again by increasing the temperature of the adhesive layer. In addition, it is possible to firmly temporarily fix the workpieces and the like in the manufacturing process and to peel them off without destroying the workpieces.
  • thermosensitive crosslinked fine particles The refractive index of the thermosensitive crosslinked fine particles decreases as the temperature rises, and the refractive index decrease rate, which is the amount of decrease in the refractive index per 1°C, is lower in the vicinity of the melting point than in the temperature range other than the vicinity of the melting point. It's also big.
  • the refractive index of the temperature-sensitive crosslinked fine particles at 60°C is preferably 0.02 or more lower than the refractive index of the temperature-sensitive crosslinked fine particles at 23°C. This tends to make it easier to visually recognize changes in white turbidity depending on temperature.
  • the melting point of the temperature-sensitive crosslinked fine particles is preferably 20°C or higher, more preferably 25°C or higher. Further, the melting point is preferably 100°C or lower, more preferably 60°C or lower, and still more preferably 40°C or lower.
  • the melting point of the temperature-sensitive crosslinked fine particles can be adjusted by, for example, changing the composition of the monomer component constituting the side chain crystalline polymer A contained in the temperature-sensitive crosslinked fine particles. For example, by changing the length of the side chain in the side chain crystalline polymer A, the melting point can be adjusted. When the length of the side chain is long, the temperature-sensitive crosslinked fine particles tend to have a high melting point.
  • the average particle diameter of the temperature-sensitive crosslinked fine particles is preferably 1 ⁇ m or more, more preferably 3 ⁇ m or more. Further, the average particle diameter is preferably 100 ⁇ m or less, more preferably 30 ⁇ m or less. In particular, from the viewpoint of easily increasing haze, the average particle diameter is more preferably 3 ⁇ m or more and 10 ⁇ m or less, and most preferably 3 ⁇ m or more and 6 ⁇ m or less. Easy to suppress solar radiation transmission. From the standpoint of easily blocking heat, the average particle diameter is more preferably 6 ⁇ m or more and 25 ⁇ m or less, and most preferably 10 ⁇ m or more and 25 ⁇ m or less.
  • the D90 particle diameter of the temperature-sensitive crosslinked fine particles is preferably equal to or less than the thickness of the adhesive layer, and is, for example, 1 ⁇ m or more and 1000 ⁇ m or less, 3 ⁇ m or more and 100 ⁇ m or less.
  • the D90 particle size is less than or equal to the thickness of the adhesive layer, the surface of the adhesive layer becomes uniform and the adhesive strength tends to be less likely to be impaired.
  • the temperature-sensitive crosslinked fine particles contain side chain crystalline polymer A.
  • the side chain crystalline polymer A preferably contains a structural unit derived from a (meth)acrylic monomer having a linear alkyl group having 14 or more carbon atoms.
  • the structural unit derived from a (meth)acrylic monomer having a linear alkyl group having 14 or more carbon atoms is a side chain crystalline moiety in the side chain crystalline polymer A, in which the linear alkyl group having 14 or more carbon atoms is functions as That is, the side chain crystalline polymer A is, for example, a comb-shaped polymer having a linear alkyl group having 14 or more carbon atoms in the side chain.
  • the side chain crystalline polymer A is crystallized by aligning the side chains into an ordered arrangement by intermolecular forces or the like.
  • the above-mentioned (meth)acrylic monomer is an acrylic monomer or a methacrylic monomer.
  • the upper limit of the number of carbon atoms in the linear alkyl group is preferably 50 or less, more preferably 30 or less.
  • Examples of the (meth)acrylic monomer having a linear alkyl group having 14 or more carbon atoms include cetyl (meth)acrylate, stearyl (meth)acrylate, eicosyl (meth)acrylate, and behenyl (meth)acrylate. . These may be used alone or in combination of two or more.
  • the ratio of the mass of the structural unit derived from the (meth)acrylic monomer having a linear alkyl group having 14 or more carbon atoms to the mass of the side chain crystalline polymer A is preferably 70% by mass or more, and more preferably is 80% by mass or more, more preferably 90% by mass or more. The above ratio may be 100% by mass, but is preferably 95% by mass or less.
  • the side chain crystalline polymer A may include a structural unit derived from another monomer copolymerizable with a (meth)acrylic monomer having a linear alkyl group having 14 or more carbon atoms.
  • examples of other monomers include monofunctional monomers, polyfunctional monomers, and refractive index adjusting monomers. That is, the side chain crystalline polymer A may include a structural unit derived from a monofunctional monomer, a polyfunctional monomer, or a refractive index adjusting monomer.
  • Examples of monofunctional monomers include methyl (meth)acrylate, ethyl (meth)acrylate, butyl (meth)acrylate, hexyl (meth)acrylate, lauryl (meth)acrylate, and 2-ethylhexyl acrylate having 1 or more carbon atoms.
  • Examples include (meth)acrylic monomers having 12 alkyl groups. These may be used alone or in combination of two or more. If you want to add some function in addition to temperature sensitivity, you can use any monomer as long as it can be copolymerized with a (meth)acrylic monomer having a linear alkyl group with 14 or more carbon atoms and has that function. can be copolymerized.
  • the ratio of the mass of the structural unit derived from the monofunctional monomer to the mass of the side chain crystalline polymer A is preferably 0.1% by mass or more, more preferably 1% by mass or more. Moreover, the said ratio becomes like this. Preferably it is 20 mass % or less, More preferably, it is 10 mass % or less.
  • the polyfunctional monomer can crosslink multiple molecular chains contained in the side chain crystalline polymer A. From the viewpoint of maintaining the dispersion state of the temperature-sensitive crosslinked fine particles during use, suppressing deformation, and maintaining repeatability of functions, it is preferable that the side chain crystalline polymer A contains a structural unit derived from a polyfunctional monomer. That is, the temperature-sensitive crosslinked fine particles and the side chain crystalline polymer A are preferably crosslinked.
  • the polyfunctional monomer has two or more, preferably 2 to 4, radically polymerizable double bonds in the molecule. Examples of the polyfunctional monomer include bifunctional (meth)acrylate, trifunctional (meth)acrylate, and tetrafunctional (meth)acrylate.
  • Specific examples include 1,6-hexanediol di(meth)acrylate, 1,9-nonanediol di(meth)acrylate, trimethylolpropane tri(meth)acrylate, pentaerythritol tetra(meth)acrylate, and polyethylene glycol 200 di(meth)acrylate.
  • the polyfunctional monomer may be at least one selected from bifunctional (meth)acrylates, trifunctional (meth)acrylates, and tetrafunctional (meth)acrylates.
  • the ratio of the mass of the structural unit derived from the polyfunctional monomer to the mass of the side chain crystalline polymer A is preferably 0.1% by mass or more, more preferably 1% by mass or more. Moreover, the said ratio becomes like this. Preferably it is 20 mass % or less, More preferably, it is 10 mass % or less.
  • the refractive index adjusting monomer may be a monomer having a refractive index of 1.300 to 1.600.
  • the refractive index adjusting monomer include 2-(O-phenylphenoxy)ethyl acrylate (refractive index: 1.577), 2-propenoic acid (3-phenoxyphenyl) methyl ester (refractive index: 1.566), 1 - Naphthyl acrylate (refractive index: 1.595), acrylamide (refractive index: 1.515), hydroxyacrylamide (refractive index: 1.515), EO-modified bisphenol A diacrylate (refractive index: 1.537), acrylamide ( Refractive index: 1.515), 2,2,2-trifluoroethyl acrylate (refractive index: 1.348), methacryl-modified polydimethylsiloxane (refractive index: 1.408), and the like. These may be used alone or in combination of two or more.
  • the ratio of the mass of the structural unit derived from the refractive index adjusting monomer to the mass of the side chain crystalline polymer A is preferably 0.1% by mass or more, more preferably 1% by mass or more. Further, the above ratio is preferably 30% by mass or less, more preferably 20% by mass or less, and even more preferably 10% by mass or less.
  • the temperature-sensitive crosslinked fine particles do not contain a structural unit derived from a reactive emulsifier, since they tend to have good dispersibility in adhesives.
  • a reactive emulsifier is an emulsifier having a polymerizable unsaturated bond such as a vinyl group in its molecule.
  • the reactive emulsifier is a polymerizable monomer that has an emulsifying function and has a polymerizable group having an unsaturated bond such as a vinyl group in its molecule, and a hydrophilic group.
  • the content of the temperature-sensitive crosslinked fine particles is 1 part by mass or more and 100 parts by mass or less with respect to 100 parts by mass of the adhesive.
  • the content is preferably 5 parts by mass or more, more preferably 20 parts by mass or more. Further, the content is preferably 70 parts by mass or less, more preferably 40 parts by mass or less.
  • thermosensitive crosslinked fine particles are not particularly limited, and they can be obtained by conventionally known polymerization methods such as miniemulsion polymerization and suspension polymerization.
  • Temperature-sensitive non-crosslinked polymers have a melting point.
  • the temperature-sensitive non-crosslinked polymer crystallizes at temperatures below the melting point, and undergoes a phase transition and exhibits fluidity at temperatures above the melting point.
  • the adhesive strength of an adhesive composition containing an adhesive and a temperature-sensitive non-crosslinked polymer decreases as the temperature rises, and the adhesive strength reduction rate, which is the amount of decrease in adhesive strength per 1°C, It is higher in the vicinity of the melting point of the temperature-sensitive non-crosslinked polymer in the composition than in the temperature range other than the vicinity of the melting point.
  • the peel strength of the adhesive composition against stainless steel (SUS) at 23° C. is preferably 1.0 N/25 mm or more.
  • the upper limit of the peel strength is not particularly limited.
  • the peel strength of the adhesive composition against stainless steel (SUS) at 60° C. is preferably 0.1 N/25 mm or less.
  • the lower limit of the above peel strength is not particularly limited.
  • the melting point of the temperature-sensitive non-crosslinked polymer is preferably 20°C or higher, more preferably 30°C or higher, and still more preferably 40°C or higher. Further, the melting point is preferably 100°C or lower, more preferably 80°C or lower, and even more preferably 60°C or lower.
  • the melting point of the temperature-sensitive non-crosslinked polymer is preferably 5° C. or more higher than the melting point of the temperature-sensitive crosslinked fine particles. This allows the white turbidity to change autonomously depending on the temperature, and even if air bubbles or wrinkles occur when the adhesive layer is placed, the adhesive layer can be peeled off by increasing the temperature of the adhesive layer. It is possible to reposition it.
  • the melting point of the temperature-sensitive non-crosslinked polymer is preferably lower than the melting point of the temperature-sensitive crosslinked fine particles by 5°C. This allows the white turbidity to change autonomously depending on the temperature, making it possible to visually check changes in adhesive strength even in situations where a tactile thermometer is not available.
  • the melting point of the temperature-sensitive non-crosslinked polymer can be adjusted, for example, by changing the composition of the monomer components constituting the side chain crystalline polymer B contained in the temperature-sensitive non-crosslinked polymer. For example, by changing the length of the side chain in the side chain crystalline polymer B, the melting point can be adjusted. When the length of the side chain is long, the temperature-sensitive crosslinked fine particles tend to have a high melting point.
  • the temperature-sensitive non-crosslinked polymer contains a side chain crystalline polymer B.
  • the side chain crystalline polymer B preferably contains a structural unit derived from a (meth)acrylic monomer having a linear alkyl group having 14 or more carbon atoms.
  • the structural unit derived from a (meth)acrylic monomer having a linear alkyl group having 14 or more carbon atoms is a side chain crystalline site in the side chain crystalline polymer B, in which the linear alkyl group having 14 or more carbon atoms is functions as That is, the side chain crystalline polymer B is, for example, a comb-shaped polymer having a linear alkyl group having 14 or more carbon atoms in the side chain.
  • the side chain crystalline polymer B is crystallized by aligning the side chains into an ordered arrangement by intermolecular forces or the like.
  • the above-mentioned (meth)acrylic monomer is an acrylic monomer or a methacrylic monomer.
  • the upper limit of the number of carbon atoms in the linear alkyl group is preferably 50 or less, more preferably 30 or less.
  • Examples of the (meth)acrylic monomer having a linear alkyl group having 14 or more carbon atoms include cetyl (meth)acrylate, stearyl (meth)acrylate, eicosyl (meth)acrylate, and behenyl (meth)acrylate. . These may be used alone or in combination of two or more.
  • the ratio of the mass of the structural unit derived from the (meth)acrylic monomer having a linear alkyl group having 14 or more carbon atoms to the mass of the side chain crystalline polymer B is preferably 70% by mass or more.
  • the above ratio may be 100% by mass, but is preferably 90% by mass or less, more preferably 80% by mass or less.
  • the side chain crystalline polymer B may include a structural unit derived from another monomer copolymerizable with a (meth)acrylic monomer having a linear alkyl group having 14 or more carbon atoms.
  • examples of other monomers include compatible monomers. That is, the side chain crystalline polymer B may include a structural unit derived from a compatible monomer.
  • compatible monomers include (meth)acrylates having an alkyl group having 1 to 12 carbon atoms, such as ethylhexyl (meth)acrylate, methyl (meth)acrylate, ethyl (meth)acrylate, butyl (meth)acrylate; (meth)acrylates having an ethylene glycol group such as 2-ethylhexyl-diglycol (meth)acrylate, methoxyethyl (meth)acrylate, methoxypolyethylene glycol mono(meth)acrylate, and ethoxy-diethylene glycol (meth)acrylate; (Meth)acrylates with hydroxyalkyl groups such as meth)acrylate, hydroxypropyl (meth)acrylate, and hydroxyhexyl (meth)acrylate; carboxyl groups such as acrylic acid, methacrylic acid, crotonic acid, itaconic acid, maleic acid, fumaric acid, etc.
  • the ratio of the mass of the structural unit derived from the compatible monomer to the mass of the side chain crystalline polymer B is preferably 0.1% by mass or more, more preferably 1% by mass or more.
  • the above ratio is preferably 90% by mass or less, more preferably 80% by mass or less.
  • the side chain crystalline polymer B may contain the same structural units as those contained in the polymer constituting the adhesive. As a result, the non-crosslinked polymer in the adhesive composition has good dispersibility, and the adhesive strength tends to decrease during heating.
  • the weight average molecular weight of the temperature-sensitive non-crosslinked polymer is preferably 1000 or more, more preferably 5000 or more.
  • the weight average molecular weight is preferably 100,000 or less, more preferably 10,000 or less. If it is 100,000 or less, the effect on the haze value when adding the temperature-sensitive non-crosslinked polymer tends to be suppressed. If it is 10,000 or less, the adhesive strength tends to decrease during heating.
  • the weight average molecular weight of the temperature-sensitive non-crosslinked polymer can be adjusted, for example, by using a chain transfer agent during polymerization.
  • chain transfer agent include thiol compounds such as dodecylmercaptan, mercaptopropionic acid, mercaptosuccinic acid, ethylhexylmercaptoacetate, mercaptoethanol, and cyclohexanethiol. These may be used alone or in combination of two or more.
  • the content of the temperature-sensitive non-crosslinked polymer is 1 part by mass or more and 20 parts by mass or less with respect to 100 parts by mass of the adhesive.
  • the above content is preferably 3 parts by mass or more.
  • the above content is preferably 10 parts by mass or less.
  • the method for producing the temperature-sensitive non-crosslinked polymer is not particularly limited, and it can be obtained by conventionally known polymerization methods such as solution polymerization and UV polymerization.
  • the adhesive is not particularly limited, and conventionally known adhesives such as acrylic adhesives, natural rubber adhesives, synthetic rubber adhesives, silicone adhesives, and urethane adhesives can be used, but among them, Acrylic adhesives are preferred.
  • the polymer constituting the adhesive preferably contains a structural unit derived from an adhesive monomer that contributes to adhesiveness and a structural unit derived from a functional monomer for crosslinking.
  • the polymer constituting the adhesive may contain structural units derived from other monomers copolymerizable with these monomers. Examples of other monomers include refractive index adjusting monomers. That is, the polymer constituting the adhesive may include a structural unit derived from a refractive index adjusting monomer.
  • adhesive monomers include (meth)acrylates having an alkyl group having 1 to 12 carbon atoms, such as ethylhexyl (meth)acrylate, methyl (meth)acrylate, ethyl (meth)acrylate, butyl (meth)acrylate; (meth)acrylates with ethylene glycol groups such as 2-ethylhexyl-diglycol (meth)acrylate, methoxyethyl (meth)acrylate, methoxypolyethylene glycol mono(meth)acrylate, ethoxy-diethylene glycol (meth)acrylate; styrene, vinyl acetate ethylenically unsaturated monomers such as; and the like. These may be used alone or in combination of two or more. Among these, (meth)acrylates having an alkyl group having 1 to 12 carbon atoms are preferred.
  • the ratio of the mass of the structural unit derived from the adhesive monomer to the mass of the polymer constituting the adhesive is preferably 50% by mass or more, more preferably 70% by mass or more. Moreover, the said ratio becomes like this. Preferably it is 99.9 mass % or less, More preferably, it is 90 mass % or less.
  • Examples of functional group monomers include (meth)acrylates having a hydroxyalkyl group such as hydroxyethyl (meth)acrylate, hydroxypropyl (meth)acrylate, and hydroxyhexyl (meth)acrylate; acrylic acid, methacrylic acid, crotonic acid, itaconic acid, Examples include ethylenically unsaturated monomers having a carboxyl group such as maleic acid and fumaric acid. Only one type may be used, or two or more types may be used in combination.
  • the ratio of the mass of the structural unit derived from the functional monomer to the mass of the polymer constituting the adhesive is preferably 0.1% by mass or more, more preferably 1% by mass or more. Further, the above ratio is preferably 30% by mass or less, more preferably 20% by mass or less, still more preferably 10% by mass or less. When the content is 0.1% by mass or more, shape retention tends to be good. When it is 30% by mass or less, the viscosity is not excessively high and coating properties tend to be good.
  • the refractive index adjusting monomer may be a monomer having a refractive index of 1.300 to 1.600.
  • the refractive index adjusting monomer include 2-(O-phenylphenoxy)ethyl acrylate (refractive index: 1.577), 2-propenoic acid (3-phenoxyphenyl) methyl ester (refractive index: 1.566), 1 - Naphthyl acrylate (refractive index: 1.595), acrylamide (refractive index: 1.515), hydroxyacrylamide (refractive index: 1.515), EO-modified bisphenol A diacrylate (refractive index: 1.537), acrylamide ( Refractive index: 1.515), 2,2,2-trifluoroethyl acrylate (refractive index: 1.348), methacryl-modified polydimethylsiloxane (refractive index: 1.408), and the like. These may be used alone or in combination of two or more.
  • the ratio of the mass of the structural unit derived from the refractive index adjusting monomer to the mass of the polymer constituting the adhesive is preferably 0.1% by mass or more, more preferably 1% by mass or more, and even more preferably 10% by mass or more. be. Moreover, the said ratio becomes like this. Preferably it is 30 mass % or less.
  • the weight average molecular weight of the adhesive is preferably 200,000 or more, more preferably 300,000 or more.
  • the weight average molecular weight is preferably 2,000,000 or less, more preferably 1,000,000 or less, still more preferably 600,000 or less. When it is 200,000 or more, shape retention tends to be good. When it is 2,000,000 or less, the viscosity is not excessively high and coating properties tend to be good.
  • the glass transition temperature (Tg) of the adhesive is preferably 25° C. or lower, since it tends to exhibit high adhesive strength.
  • the difference in refractive index at 23°C between the adhesive and the thermosensitive crosslinked fine particles is preferably less than 0.015, more preferably less than 0.010. Further, the refractive index difference at 60° C. is preferably 0.015 or more.
  • the upper limit of the refractive index difference at 60° C. is not particularly limited, but is, for example, 0.1.
  • the ratio of the mass of the adhesive to the mass of the solid content of the adhesive composition is not particularly limited, but is, for example, 50% by mass or more and 95% by mass or less.
  • the solid content of an adhesive composition means all the components except a solvent, such as an aqueous solvent and an organic solvent, from the adhesive composition.
  • the method for producing the adhesive is not particularly limited, and it can be obtained by conventionally known polymerization methods such as solution polymerization and UV polymerization.
  • the adhesive composition may contain a crosslinking agent for crosslinking the adhesive. That is, the adhesive may be crosslinked.
  • crosslinking agents include aziridine crosslinking agents, metal chelate crosslinking agents, epoxy crosslinking agents, and isocyanate crosslinking agents.
  • the content of the crosslinking agent is not particularly limited, but is, for example, 0.1 parts by mass or more and 10 parts by mass or less with respect to 100 parts by mass of the adhesive.
  • the amount is 0.1 parts by mass or more, shape retention tends to be less likely to decrease. Further, when the amount is 10 parts by mass or less, high adhesive strength tends to be easily exhibited.
  • the adhesive composition includes a solvent such as an organic solvent, an inhibitor that suppresses the progress of crosslinking, a tackifying resin (tackifier), an ultraviolet (UV) absorber, a light stabilizer (HALS), an antioxidant, an infrared absorber, Other additives such as dyes and pigments may also be included.
  • a solvent such as an organic solvent, an inhibitor that suppresses the progress of crosslinking, a tackifying resin (tackifier), an ultraviolet (UV) absorber, a light stabilizer (HALS), an antioxidant, an infrared absorber, Other additives such as dyes and pigments may also be included.
  • the adhesive sheet includes an adhesive layer made of an adhesive composition.
  • the temperature-sensitive light control liquid laminate of Patent Document 1 requires a dedicated structure for maintaining the shape of the temperature-sensitive light control liquid. Therefore, when installing it later on existing windows or roofs, large-scale construction work such as replacing the entire window is required, which poses a problem that it is difficult to introduce.
  • Adhesive sheets do not require a special structure to maintain their shape, and can be easily installed by simply pasting them onto existing windows or roofs, and can autonomously change their white turbidity depending on the temperature. It has the advantage that it can be easily provided with the function of
  • the thickness of the adhesive layer is not particularly limited, but is preferably 5 ⁇ m or more and 1 mm or less, more preferably 10 ⁇ m or more and 100 ⁇ m or less.
  • the thicker the adhesive layer is the more the dimming function tends to be exhibited by adding a small amount of temperature-sensitive crosslinked fine particles.
  • the thinner the thickness the more temperature-sensitive crosslinked fine particles tend to need to be added in order to exhibit the light control function.
  • the difference between the haze value at 23°C and the haze value at 60°C of the adhesive layer is preferably 10% or more.
  • the haze value of the adhesive layer at 60°C is 10% or more higher than the haze value at 23°C. This tends to make it easier to visually recognize changes in white turbidity depending on temperature.
  • the haze value of the adhesive layer at 23°C is preferably 10% or less.
  • the lower limit of the haze value at 23°C is not particularly limited.
  • the haze value of the adhesive layer at 60° C. is preferably 12% or more, more preferably 20% or more, and still more preferably 30% or more.
  • the upper limit of the haze value at 60° C. is not particularly limited, but is, for example, 70% or less and 50% or less.
  • the difference between the solar transmittance at 23°C and the solar transmittance at 60°C of the adhesive layer is preferably 10% or more.
  • the solar transmittance of the adhesive layer at 60°C is preferably 10% or more lower than the solar transmittance at 23°C.
  • the solar transmittance of the adhesive layer at 23° C. is preferably 50% or more, more preferably 70% or more, and still more preferably 80% or more.
  • the upper limit of the solar transmittance at 23° C. is not particularly limited, but is, for example, 99% or less, 95% or less.
  • the solar transmittance of the adhesive layer at 60° C. is preferably 80% or less, more preferably 70% or less, and still more preferably 60% or less.
  • the lower limit of the solar transmittance at 60° C. is not particularly limited.
  • the adhesive sheet may include a base sheet.
  • the base material constituting the base sheet is not particularly limited as long as it is a translucent base material.
  • PET such as corona treated PET, untreated PET, highly transparent PET, annealed PET, UV cut PET, heat shielding PET, anti-fog PET, hard coat PET, blasted PET; transparent PI etc. are used. can.
  • the adhesive layer may be formed only on one side of the base sheet, or may be formed on both sides. Alternatively, an adhesive layer may be formed on one side of the base sheet, and an adhesive layer other than the adhesive layer described above may be formed on the other side.
  • a release sheet may be laminated on the surface of the adhesive layer in the same way as the base sheet.
  • a pressure-sensitive adhesive sheet can be produced by a conventional method using the pressure-sensitive adhesive composition described above.
  • a method may be used in which a coating solution prepared by adding a solvent and a crosslinking agent to an adhesive composition as necessary is applied to a base sheet using a coater or the like, and then dried by heating or the like to form an adhesive layer.
  • coater examples include a knife coater, roll coater, calendar coater, comma coater, and the like. Further, depending on the coating thickness and the viscosity of the coating liquid, gravure coaters, rod coaters, etc. may also be used.
  • SA Blenmar SA (stearyl acrylate) manufactured by NOF Corporation
  • CA Blenmar CA (cetyl acrylate) manufactured by NOF Corporation
  • VA Blenmar VA (behenyl acrylate) manufactured by NOF Corporation
  • A-HD-N A-HD-N (1,6-hexanediol diacrylate) manufactured by Shin-Nakamura Chemical Industry Co., Ltd.
  • EHA 2-ethylhexyl acrylate C1A manufactured by Toagosei Co., Ltd.: Methyl acrylate AA manufactured by Nippon Shokubai Co., Ltd.: Acrylic acid A-LEN-10 manufactured by Nippon Shokubai Co., Ltd.: Manufactured by Shin Nakamura Chemical Industry Co., Ltd. A-LEN-10 (2-(O-phenylphenoxy)ethyl acrylate) HEA: 2-hydroxyethyl acrylate NF-13 manufactured by Nippon Shokubai Co., Ltd.: Hitenol NF-13 manufactured by Daiichi Kogyo Seiyaku Co., Ltd.
  • Perloyl L Perloil L (dilauroyl peroxide) manufactured by NOF Corporation Perbutyl ND: Perbutyl ND (t-butyl peroxyneodecanoate) manufactured by NOF Corporation Perhexyl PV: Perhexyl PV (t-hexyl peroxypivalate) manufactured by NOF Corporation L45: Coronate L-45 (isocyanate crosslinking agent) manufactured by Tosoh Corporation
  • a side chain crystalline monomer, a polyfunctional monomer, and an initiator were added to the reaction vessel in the proportions shown in Table 1.
  • the mixture in the reaction vessel was stirred with a spatula to ensure uniform mixing.
  • an aqueous medium and an emulsifier in the proportions shown in Table 1 were added to the reaction vessel to obtain a mixed solution.
  • Water was used as the aqueous medium.
  • the aqueous medium was added so that the ratio of the mass of the side chain crystalline monomer to the total mass of the side chain crystalline monomer and the mass of the aqueous medium in the mixed liquid was 40% by mass.
  • the mixed solution was stirred for 5 minutes at 7500 rpm using a homogenizer manufactured by IKA (main unit: T 25 digital ULTRA-TURRAX, shaft generator: S25N-25F) to form monomer components into particles.
  • a homogenizer manufactured by IKA main unit: T 25 digital ULTRA-TURRAX, shaft generator: S25N-25F
  • nitrogen was introduced and bubbled into the mixed liquid to remove air (oxygen) from the mixed liquid, and the monomer components were polymerized by heating and stirring at 67°C for 2 hours and at 80°C for 2 hours, respectively.
  • the aqueous medium was removed from the generated fine particles by suction filtration and vacuum drying to obtain thermosensitive crosslinked fine particles 1.
  • Temperature-sensitive crosslinked fine particles 2 were obtained in the same manner as in the manufacturing method of temperature-sensitive crosslinked fine particles 1, except that the mixed liquid was stirred for 5 minutes at 14,000 rpm using a homogenizer.
  • Temperature-sensitive crosslinked fine particles 3 were obtained in the same manner as in the manufacturing method of temperature-sensitive crosslinked fine particles 1, except that the mixed liquid was stirred for 3 minutes at 5600 rpm using a homogenizer.
  • Temperature-sensitive crosslinked fine particles 4 were obtained in the same manner as in the manufacturing method of temperature-sensitive crosslinked fine particles 1, except that the mixed liquid was stirred for 5 minutes at 4200 rpm using a homogenizer.
  • the particle size distribution of the temperature-sensitive crosslinked fine particles was measured using a laser diffraction particle size distribution meter "Mastersizer 3000" manufactured by Malvern.
  • the particle diameter corresponding to a cumulative volume frequency of 50% calculated from the smaller particle diameter of the thermosensitive crosslinked fine particles is defined as the "average particle diameter”
  • the particle diameter corresponding to a cumulative volume frequency of 90% is defined as the "average particle diameter”. It was defined as "D90 particle size”.
  • the results are shown in Table 1.
  • Temperature-sensitive crosslinked fine particles were determined from the temperature at the top of the endothermic peak when measuring in the range of -30 to 100°C at a sweep rate of 10°C/min using a DSC (differential scanning calorimeter) manufactured by Seiko Instruments Inc. The melting point was measured. The results are shown in Table 1.
  • thermosensitive non-crosslinked polymer Weight average molecular weight of thermosensitive non-crosslinked polymer It was measured by the same method as the weight average molecular weight of the adhesive. The results are shown in Table 3.
  • thermosensitive crosslinked fine particles and adhesive The refractive index at 23° C. and 60° C. of the obtained thermosensitive crosslinked fine particles and adhesive was measured using an automatic refractometer “Abbemat 350” manufactured by Anton Paar. The results are shown in Tables 4-6.
  • the 180° peel strength against stainless steel (SUS) at 23° C. and 60° C. was measured in accordance with JIS Z0237. Specifically, the adhesive sheet was bonded to SUS, left to stand for 20 minutes, and then peeled off at 180° at a speed of 300 mm/min using a load cell. As the SUS, plate-shaped SUS304 was used. The adhesive sheet was attached to the SUS by moving a 2 kg roller back and forth 5 times on the adhesive sheet. The results are shown in Tables 4-6.
  • the peel strength of the pressure-sensitive adhesive sheets was also measured at temperatures between 23°C and 60°C, and changes in the rate of decrease in adhesive strength, which is the amount of decrease in adhesive strength per 1°C of the pressure-sensitive adhesive sheets, were confirmed. As a result, it was confirmed that the rate of decrease in adhesive strength near 49° C., which is the melting point of the thermosensitive non-crosslinked polymer, was greater than in the temperature range other than the melting point of the thermosensitive non-crosslinked polymer.
  • the solar transmittance of the obtained adhesive sheet was measured at 23°C, 40°C, and 60°C using a spectrophotometer "V770DS" manufactured by JASCO Corporation in accordance with JIS A5759: 6.5 of 2016. did. However, since the measurement was performed by heating to 40° C. and 60° C., 1.1 mm thick ITO glass (“GMT-100-12” manufactured by Geomatec) was used as the object to which the adhesive sheet was attached. Specifically, a test piece was prepared by pasting an adhesive sheet on one side of ITO glass.
  • the spectral transmittance of each wavelength from 300 to 2500 nm was measured using a spectrophotometer with the glass surface of the test piece facing the light source. It was measured. The solar transmittance was calculated based on the relative spectral distribution of solar radiation as specified in JIS A5759:2016. The results are shown in Tables 5 and 6.
  • thermometer (thermocouple) 3 was installed at a position 10 mm below the glass surface.
  • the sides and bottom of the wooden frame 4 were covered with polyethylene sheets as a windbreak.
  • the wooden frame 4 on which the test piece was placed was placed on a metal rack 5 so that the height from the ground 6 was 1000 mm.
  • thermocouple 3 The temperature rise value of thermocouple 3 was recorded during solar radiation (solar radiation time: about 360 minutes, average temperature: 32°C). A glass plate to which no adhesive sheet was attached was used as a blank test piece, and the temperature rise value was recorded in the same manner. The difference from the temperature rise value of the blank was calculated. The results are shown in Tables 5 and 6.
  • the adhesive layers of Examples 1 and 2 having the above-mentioned predetermined configuration autonomously change the white turbidity depending on the temperature. I know that I can do it. It can also be seen that the adhesive strength decreases as the temperature increases. Therefore, from Examples 1 and 2, window materials and translucent roofing materials equipped with the adhesive layer can autonomously change their white turbidity depending on the temperature, and the adhesive layer can be peeled off and repositioned. It can be seen that manufacturing is easy because it is possible to
  • First window material 11 Transparent base material layer 12 Adhesive layer 12a Temperature-sensitive crosslinked fine particles 13 Base sheet 20 Second window material 21a, 21b Transparent base material layer 22 Adhesive layer 22a Temperature-sensitive crosslinked fine particles 30 Transparent roofing material 31 Transparent base material layer 32 Adhesive layer 32a Temperature-sensitive crosslinked fine particles 33 Base material sheet

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Physics & Mathematics (AREA)
  • Structural Engineering (AREA)
  • Civil Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Geochemistry & Mineralogy (AREA)
  • General Chemical & Material Sciences (AREA)
  • Acoustics & Sound (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electromagnetism (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Thermal Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

温度に応じて自律的に白濁度を変化させることができ、構造が複雑でなく製造が容易である窓材や透光性屋根材と、当該窓材及び/又は透光性屋根材を備える建築物、並びに、車両、船舶、又は航空機とを提供する。 本発明に係る窓材又は透光性屋根材は、少なくとも1層の透光性基材層と、少なくとも1層の粘着層とを備え、粘着層が、粘着剤100質量部に対して、感温性非架橋ポリマー1~20質量部と、感温性架橋微粒子1~100質量部とを含有する粘着性組成物からなり、感温性架橋微粒子の屈折率が、温度の上昇にともない低下し、且つ、屈折率低下率が、感温性架橋微粒子の融点の近傍において、融点の近傍以外の温度域よりも大きく、粘着性組成物の粘着力が、温度の上昇にともない低下し、且つ、粘着力低下率が、感温性非架橋ポリマーの融点の近傍において、融点の近傍以外の温度域よりも大きい。

Description

窓材及び透光性屋根材
 本発明は、窓材及び透光性屋根材に関する。また、当該窓材及び/又は透光性屋根材を備える建築物、並びに、車両、船舶、又は航空機に関する。
 オフィスビル、アーケード等の建築物や、車両、船舶、航空機等の乗り物において、夏の高温時には直射日光を和らげ、冬の低温時には日射を採り入れたい、というニーズがある。これに対して、窓に設ける構造として、温度刺激に応じて自律的に白濁度が変化する感温調光液体積層体が提案されている(特許文献1)。
特許第3337810号公報
 上記積層体を設けるには感温調光液体の形状を保持するための専用の構造体が必要であり、上記積層体を設けた窓は構造が複雑となって製造に手間がかかるという問題がある。
 本発明は、上記の課題に鑑みなされたものであって、温度に応じて自律的に白濁度を変化させることができ、構造が複雑でなく製造が容易である窓材や透光性屋根材と、当該窓材及び/又は透光性屋根材を備える建築物、並びに、車両、船舶、又は航空機とを提供することを目的とする。
 本発明の第1の態様は、
 少なくとも1層の透光性基材層と、少なくとも1層の粘着層とを備え、
 前記粘着層が、粘着剤100質量部に対して、感温性非架橋ポリマー1~20質量部と、感温性架橋微粒子1~100質量部とを含有する粘着性組成物からなり、
 前記感温性架橋微粒子の屈折率が、温度の上昇にともない低下し、且つ、
 1℃当たりの屈折率の低下量である前記感温性架橋微粒子の屈折率低下率が、前記感温性架橋微粒子の融点の近傍において、前記感温性架橋微粒子の融点の近傍以外の温度域よりも大きく、
 前記粘着性組成物の粘着力が、温度の上昇にともない低下し、且つ、
 1℃当たりの粘着力の低下量である前記粘着性組成物の粘着力低下率が、前記感温性非架橋ポリマーの融点の近傍において、前記感温性非架橋ポリマーの融点の近傍以外の温度域よりも大きい、
 窓材である。
 本発明の第2の態様は、
 少なくとも1層の透光性基材層と、少なくとも1層の粘着層とを備え、
 前記粘着層が、粘着剤100質量部に対して、感温性非架橋ポリマー1~20質量部と、感温性架橋微粒子1~100質量部とを含有する粘着性組成物からなり、
 前記感温性架橋微粒子の屈折率が、温度の上昇にともない低下し、且つ、
 1℃当たりの屈折率の低下量である前記感温性架橋微粒子の屈折率低下率が、前記感温性架橋微粒子の融点の近傍において、前記感温性架橋微粒子の融点の近傍以外の温度域よりも大きく、
 前記粘着性組成物の粘着力が、温度の上昇にともない低下し、且つ、
 1℃当たりの粘着力の低下量である前記粘着性組成物の粘着力低下率が、前記感温性非架橋ポリマーの融点の近傍において、前記感温性非架橋ポリマーの融点の近傍以外の温度域よりも大きい、
 透光性屋根材である。
 本発明の第3の態様は、第1の態様に係る窓材、及び/又は第2の態様に係る透光性屋根材を備える建築物である。
 本発明の第4の態様は、第1の態様に係る窓材、及び/又は第2の態様に係る透光性屋根材を備える車両、船舶、又は航空機である。
 本発明の第5の態様は、
 粘着剤100質量部に対して、感温性非架橋ポリマー1~20質量部と、感温性架橋微粒子1~100質量部とを含有する粘着性組成物であって、
 前記感温性架橋微粒子の屈折率が、温度の上昇にともない低下し、且つ、
 1℃当たりの屈折率の低下量である前記感温性架橋微粒子の屈折率低下率が、前記感温性架橋微粒子の融点の近傍において、前記感温性架橋微粒子の融点の近傍以外の温度域よりも大きく、
 前記粘着性組成物の粘着力が、温度の上昇にともない低下し、且つ、
 1℃当たりの粘着力の低下量である前記粘着性組成物の粘着力低下率が、前記感温性非架橋ポリマーの融点の近傍において、前記感温性非架橋ポリマーの融点の近傍以外の温度域よりも大きい、
 粘着性組成物である。
 本発明の第6の態様は、
 第5の態様に係る粘着性組成物からなる粘着層を備える粘着シートである。
 本発明によれば、温度に応じて自律的に白濁度を変化させることができ、構造が複雑でなく製造が容易である窓材や透光性屋根材と、当該窓材及び/又は透光性屋根材を備える建築物、並びに、車両、船舶、又は航空機とを提供することができる。
窓材の一例である第1の窓材を示す断面図である。 窓材の一例である第2の窓材を示す断面図である。 透光性屋根材の一例を示す断面図である。 実施例で製造された感温性架橋微粒子における屈折率の測定結果を示すグラフである。 実施例における遮熱性の評価試験方法を示す概略説明図である。 実施例における遮熱性の評価試験方法を示す写真である。 実施例における遮熱性の評価試験方法を示す写真である。
 以下、本発明の具体的な実施形態について、詳細に説明するが、本発明は、以下の実施形態に何ら限定されるものではなく、本発明の目的の範囲内において、適宜変更を加えて実施することができる。なお、以下に示す各図は、模式的に示した図であり、各部の大きさ、形状は、理解を容易にするために、適宜誇張したり、省略したりして示している。
<<窓材>>
 図1に、窓材の一例として第1の窓材10の断面図を示す。図1に示すように、第1の窓材10では、透光性基材層11と、粘着層12と、基材シート13とがこの順に積層されている。粘着層12は、粘着剤と、感温性非架橋ポリマーと、感温性架橋微粒子12aとを含む粘着性組成物から構成されている。
 図2に、窓材の別の一例として第2の窓材20の断面図を示す。図2に示すように、第2の窓材20では、二層の透光性基材層21a及び21bの間に粘着層22が配置されている。粘着層22は、粘着剤と、感温性非架橋ポリマーと、感温性架橋微粒子22aとを含む粘着性組成物から構成されている。
 図1及び図2において、感温性架橋微粒子12a及び22aは、屈折率が温度の上昇にともない低下し、且つ、1℃当たりの屈折率の低下量である屈折率低下率が、融点の近傍において、融点の近傍以外の温度域よりも大きい。そのため、日射や気温によって粘着層12及び22の温度が上昇すると、感温性架橋微粒子12a及び22aと粘着剤の屈折率差が大きくなってヘイズ値が高くなる。他方、粘着層12及び22の温度が低下すると、感温性架橋微粒子12a及び22aと粘着剤の屈折率差が小さくなってヘイズ値が低くなる。これにより、温度に応じて自律的に白濁度を変化させることができ、夏の高温時には直射日光を和らげ、冬の低温時には日射を採り入れることができる。
 なお、温度の上昇により、感温性架橋微粒子12a及び22aと粘着剤の屈折率差が小さくなるように設計することもできる。
 この場合、例えば、朝や夜のような比較的気温が低く日照量が少ない条件下では、窓材がすりガラスとして機能する一方で、昼間に日照量の増加とともに気温が上昇した場合には、窓材が透明になり、室内に効率よく採光できる。
 また、上記の窓材が、外気に触れるような位置に施工される場合、上記の窓材は、外気温の上昇にともない白濁、又は透明化するため、空調された室内で過ごす人に、視覚的に外気温の上昇を認識させる機能も有する。
 さらに、粘着層12及び22を構成する粘着性組成物は、粘着力が温度の上昇にともない低下し、且つ、1℃当たりの粘着力の低下量である粘着力低下率が、粘着性組成物中の感温性非架橋ポリマーの融点の近傍において、融点の近傍以外の温度域よりも大きい。そのため、粘着層12及び22を配置する際に気泡の巻き込みやシワ等が入った場合でも、粘着層12及び22の温度を上昇させることで、粘着層12及び22を剥離して再度配置することが可能である。これにより、窓材の製造をより容易にすることができる。
 以下、第1の窓材10、第2の窓材20を構成する各層について説明する。
[透光性基材層]
 透光性基材層を構成する透光性基材としては、建築物用や車両用、船舶用、航空機用の窓材として適用可能な基材であれば特に限定されず、例えば、ガラス板や樹脂板を用いることができる。ガラス板の材料としては、ソーダライムガラス、ホウケイ酸ガラス、高シリカガラス等が挙げられる。また、樹脂板の材料としては、ポリメチルメタアクリレート等のポリアルキルメタアクリレート、ポリアルキルアクリレート、ポリカーボネート、ポリメチルスチレン、アクリロニトリル-スチレン共重合体等が挙げられる。
 透光性基材層の厚みは特に限定されないが、例えば、0.1mm以上10mm以下である。透光性基材層の形状としては、第1の窓材10、第2の窓材20のように平面状や、曲面状等が挙げられる。
 透光性基材層は、少なくとも1層で構成されており、第1の窓材10のように単独の層で構成されていてもよいし、第2の窓材20のように二層以上から構成されていてもよい。二層以上から構成されている場合、各層は同じ種類の基材から構成されていてもよいし、異なる種類の基材から構成されていてもよい。また、各層は同じ厚みであってもよいし、異なる厚みであってもよい。
[粘着層]
 粘着層は、粘着剤100質量部に対して、感温性非架橋ポリマー1~20質量部と、感温性架橋微粒子1~100質量部とを含有する粘着性組成物からなる層であり、温度に応じて自律的に白濁度と粘着力を変化させる機能を有する。
 粘着層の厚みは特に限定されないが、好ましくは5μm以上1mm以下であり、より好ましくは10μm以上100μm以下である。なお、粘着層の厚みが厚いほど少量の感温性架橋微粒子の添加で調光機能が発現する傾向がある。厚みが薄いほど、調光機能を発現させるために、多量の感温性架橋微粒子の添加が必要である傾向がある。
 粘着層は、少なくとも1層で構成される。粘着層は、第1の窓材10及び第2の窓材20のように単独の層で構成されていてもよいし、二層以上から構成されていてもよい。透光性基材層に対する粘着層の配置は特に限定されない。粘着層は、透光性基材層に対して日光が入射する側に配置されてもよいし、その反対側に配置されてもよい。透光性基材層が二層以上から構成されている場合は、第2の窓材20のように透光性基材層の間に粘着層が配置されてもよい。
 なお、粘着層は、粘着層と透光性基材層とが接する面の全面を覆ってもよく、一部を覆ってもよい。
 粘着層が、粘着層と透光性基材層とが接する面の一部を覆う場合、透光性基材層上に、粘着層によって、文字、記号、柄、図形、絵柄等が描かれてもよい。この場合、粘着層が文字や柄を形成してもよく、粘着層に囲われた領域が文字や柄を形成してもよい。このような窓材は、高温でヘイズが発現、又は消失した際の意匠性に優れる。
 さらに、粘着層は、高温時、又は低温時のヘイズ値が異なる複数の種類の領域を有してもよい。粘着剤層のヘイズ値は、粘着剤や感温性架橋微粒子の種類を変えたり、感温性架橋微粒子の使用量を変えることにより変えることができる。
 例えば、透光性基材上に、高温時、又は低温時のヘイズ値が異なる複数の粘着層を、帯状に連続して形成することにより、高温時、又は低温時にグラデーションのかかったヘイズを示す意匠性に優れる窓材を提供できる。
 粘着層の23℃におけるヘイズ値と60℃におけるヘイズ値の差は、10%以上であることが好ましい。特に、粘着層の60℃におけるヘイズ値が、23℃におけるヘイズ値よりも10%以上高いことがより好ましい。これにより、温度に応じた白濁度の変化を視認しやすい傾向がある。本明細書において、粘着層のヘイズ値は、後述の実施例に記載の方法により測定される値である。
 粘着層の23℃におけるヘイズ値は、好ましくは10%以下である。23℃におけるヘイズ値の下限は特に限定されない。また、粘着層の60℃におけるヘイズ値は、好ましくは12%以上であり、より好ましくは20%以上であり、更に好ましくは30%以上である。60℃におけるヘイズ値の上限は、特に限定されないが、例えば、70%以下、50%以下である。
 粘着層の23℃における日射透過率と60℃における日射透過率の差は、10%以上であることが好ましい。粘着層の60℃における日射透過率は、23℃における日射透過率よりも10%以上低いことが好ましい。なお、本明細書において、粘着層の日射透過率は、後述の実施例に記載の方法により測定される値である。
 粘着層の23℃における日射透過率は、好ましくは50%以上、より好ましくは70%以上、更に好ましくは80%以上である。23℃における日射透過率の上限は特に限定されないが、例えば、99%以下、95%以下である。また、粘着層の60℃における日射透過率は、好ましくは80%以下、より好ましくは70%以下、更に好ましくは60%以下である。60℃における日射透過率の下限は、特に限定されない。
(感温性架橋微粒子)
 図4は、後述の実施例で製造した感温性架橋微粒子(融点33℃)における温度変化に対する屈折率の変化を示したグラフである。図4に示されるように、感温性架橋微粒子の屈折率は、温度の上昇にともない低下し、且つ、1℃当たりの屈折率の低下量である屈折率低下率が、融点の近傍において、融点の近傍以外の温度域よりも大きい。
 感温性架橋微粒子の60℃における屈折率は、感温性架橋微粒子の23℃における屈折率よりも0.02以上低いことが好ましい。これにより、温度に応じた白濁度の変化を視認しやすい傾向がある。なお、本明細書において、屈折率は、後述の実施例に記載の方法により測定される値である。
 感温性架橋微粒子の融点は、好ましくは20℃以上、より好ましくは25℃以上である。また、融点は、好ましくは100℃以下、より好ましくは60℃以下、更に好ましくは40℃以下である。なお、本明細書において、感温性架橋微粒子の融点は、後述の実施例に記載の方法により測定される値である。
 感温性架橋微粒子の融点は、例えば、感温性架橋微粒子に含まれる側鎖結晶性ポリマーAを構成するモノマー成分の組成等を変えることによって調整できる。具体例を挙げると、側鎖結晶性ポリマーAにおける側鎖の長さを変えると融点を調整できる。側鎖の長さが長いと、感温性架橋微粒子の融点が高い傾向にある。
 感温性架橋微粒子の平均粒子径は、好ましくは1μm以上、より好ましくは3μm以上である。また、上記平均粒子径は、好ましくは100μm以下、より好ましくは30μm以下である。特に、ヘイズを高めやすい点からは、上記平均粒子径が3μm以上10μm以下であることが更に好ましく、3μm以上6μm以下であることが最も好ましい。日射の透過を抑制しやすい。熱を遮断しやすい点からは、上記平均粒子径が6μm以上25μm以下であることが更に好ましく、10μm以上25μm以下であることが最も好ましい。
 また、感温性架橋微粒子のD90粒子径は、粘着層の厚み以下であることが好ましく、例えば、1μm以上1000μm以下、3μm以上100μm以下である。D90粒子径が粘着層の厚み以下であると粘着層の表面が均一となり、粘着力を阻害しにくい傾向がある。
 なお、本明細書において、感温性架橋微粒子の平均粒子径及びD90粒子径は、後述の実施例に記載の方法により測定される値である。
 感温性架橋微粒子は側鎖結晶性ポリマーAを含むことが好ましい。側鎖結晶性ポリマーAは炭素原子数14以上の直鎖状アルキル基を有する(メタ)アクリルモノマーに由来する構成単位を含むことが好ましい。炭素原子数14以上の直鎖状アルキル基を有する(メタ)アクリルモノマーに由来する構成単位は、その炭素原子数14以上の直鎖状アルキル基が側鎖結晶性ポリマーAにおける側鎖結晶性部位として機能する。すなわち、側鎖結晶性ポリマーAは、例えば、側鎖に炭素原子数14以上の直鎖状アルキル基を有する櫛形のポリマーである。この側鎖が分子間力などによって秩序ある配列に整合されることにより、側鎖結晶性ポリマーAが結晶化する。なお、上述した(メタ)アクリルモノマーとは、アクリルモノマー又はメタクリルモノマーのことである。直鎖状アルキル基の炭素原子数の上限は、好ましくは50以下、より好ましくは30以下である。
 炭素原子数14以上の直鎖状アルキル基を有する(メタ)アクリルモノマーとしては、例えば、セチル(メタ)アクリレート、ステアリル(メタ)アクリレート、エイコシル(メタ)アクリレート、ベヘニル(メタ)アクリレートなどが挙げられる。これらは、1種のみを使用してもよいし、2種以上を併用してもよい。
 側鎖結晶性ポリマーAの質量に対する、炭素原子数14以上の直鎖状アルキル基を有する(メタ)アクリルモノマーに由来する構成単位の質量の比率は、好ましくは70質量%以上であり、より好ましくは80質量%以上であり、更に好ましくは90質量%以上である。上記比率は、100質量%であってもよいが、好ましくは95質量%以下である。
 側鎖結晶性ポリマーAは、炭素原子数14以上の直鎖状アルキル基を有する(メタ)アクリルモノマーと共重合可能な他のモノマーに由来する構成単位を含んでもよい。他のモノマーとしては、例えば、単官能モノマー、多官能モノマー、屈折率調整モノマー等が挙げられる。すなわち、側鎖結晶性ポリマーAは、単官能モノマーや多官能モノマー、屈折率調整モノマーに由来する構成単位を含んでもよい。
 単官能モノマーとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート、アクリル酸2-エチルヘキシル等の炭素原子数1~12のアルキル基を有する(メタ)アクリルモノマー等が挙げられる。これらは、1種のみを使用してもよいし、2種以上を併用してもよい。なお、感温性に加えて何か機能を足したいときに、炭素原子数14以上の直鎖状アルキル基を有する(メタ)アクリルモノマーと共重合可能で、その機能を持つモノマーであれば自由に共重合させることができる。
 側鎖結晶性ポリマーAの質量に対する、単官能モノマーに由来する構成単位の質量の比率は、好ましくは0.1質量%以上であり、より好ましくは1質量%以上である。また、上記比率は、好ましくは20質量%以下であり、より好ましくは10質量%以下である。
 多官能モノマーは、側鎖結晶性ポリマーAに含まれる複数の分子鎖を架橋し得る。使用時の感温性架橋微粒子の分散状態や変形抑制、機能の繰り返し性保持の観点から、側鎖結晶性ポリマーAは、多官能モノマーに由来する構成単位を含むことが好ましい。すなわち、感温性架橋微粒子や側鎖結晶性ポリマーAは、架橋されていることが好ましい。多官能モノマーは、分子内にラジカル重合可能な二重結合を2個以上、好ましくは2~4個有する。多官能モノマーとしては、例えば、2官能(メタ)アクリレート、3官能(メタ)アクリレート、4官能(メタ)アクリレート等が挙げられる。具体例としては、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ポリエチレングリコール200ジ(メタ)アクリレート、エトキシ化ビスフェノールAジ(メタ)アクリレートなどが挙げられる。これらは、1種のみを使用してもよいし、2種以上を併用してもよい。多官能モノマーは、2官能(メタ)アクリレート、3官能(メタ)アクリレート、及び4官能(メタ)アクリレートから選ばれる少なくとも1種であってもよい。
 側鎖結晶性ポリマーAの質量に対する、多官能モノマーに由来する構成単位の質量の比率は、好ましくは0.1質量%以上であり、より好ましくは1質量%以上である。また、上記比率は、好ましくは20質量%以下であり、より好ましくは10質量%以下である。
 屈折率調整モノマーは、1.300~1.600の屈折率を有するモノマーであってもよい。屈折率調整モノマーとしては、例えば、2-(O-フェニルフェノキシ)エチルアクリレート(屈折率:1.577)、2-プロペン酸(3-フェノキシフェニル)メチルエステル(屈折率:1.566)、1-ナフチルアクリレート(屈折率:1.595)、アクリルアミド(屈折率:1.515)、ヒドロキシアクリルアミド(屈折率:1.515)、EO変性ビスフェノールAジアクリレート(屈折率:1.537)、アクリルアミド(屈折率:1.515)、2,2,2-トリフルオロエチルアクリレート(屈折率:1.348)、メタクリル変性ポリジメチルシロキサン(屈折率:1.408)等が挙げられる。これらは、1種のみを使用してもよいし、2種以上を併用してもよい。
 側鎖結晶性ポリマーAの質量に対する、屈折率調整モノマーに由来する構成単位の質量の比率は、好ましくは0.1質量%以上であり、より好ましくは1質量%以上である。また、上記比率は、好ましくは30質量%以下、より好ましくは20質量%以下であり、更に好ましくは10質量%以下である。
 粘着剤への分散性が良好である傾向がある点から、感温性架橋微粒子は反応性乳化剤に由来する構成単位を含まないことが好ましい。反応性乳化剤とは、分子中にビニル基等の重合性の不飽和結合を有する乳化剤である。反応性乳化剤は、乳化機能を有し、且つその分子中にビニル基等の不飽和結合を有する重合性基と、親水性基とを有する重合性単量体である。
 粘着性組成物において、感温性架橋微粒子の含有量は、粘着剤100質量部に対して、1質量部以上100質量部以下である。上記含有量は、好ましくは5質量部以上であり、より好ましくは20質量部以上である。また、上記含有量は、好ましくは70質量部以下、より好ましくは40質量部以下である。
 感温性架橋微粒子の製造方法は、特に限定されず、ミニエマルション重合、懸濁重合等の従来公知の重合方法により得ることができる。
(感温性非架橋ポリマー)
 感温性非架橋ポリマーは、融点を有する。感温性非架橋ポリマーは、融点未満の温度で結晶化し、かつ融点以上の温度では相転移して流動性を示す。これにより、粘着剤と感温性非架橋ポリマーを含む粘着性組成物は、粘着力が温度の上昇にともない低下し、且つ、1℃当たりの粘着力の低下量である粘着力低下率が、粘着性組成物中の感温性非架橋ポリマーの融点の近傍において、融点の近傍以外の温度域よりも大きい。なお、本明細書において、粘着性組成物の粘着力とは、ステンレス鋼(SUS)に対する剥離強度を意味し、後述の実施例に記載の方法により測定される値である。
 粘着性組成物の23℃におけるステンレス鋼(SUS)に対する剥離強度は、1.0N/25mm以上であることが好ましい。上記剥離強度の上限は特に限定されない。
 また、粘着性組成物の60℃におけるステンレス鋼(SUS)に対する剥離強度は、0.1N/25mm以下であることが好ましい。上記剥離強度の下限は特に限定されない。
 感温性非架橋ポリマーの融点は、好ましくは20℃以上、より好ましくは30℃以上、更に好ましくは40℃以上である。また、融点は、好ましくは100℃以下、より好ましくは80℃以下、更に好ましくは60℃以下である。なお、本明細書において、感温性非架橋ポリマーの融点は、後述の実施例に記載の方法により測定される値である。
 感温性非架橋ポリマーの融点は、感温性架橋微粒子の融点よりも5℃以上高いことが好ましい。これにより、温度に応じて自律的に白濁度を変化させつつ、より高温にすることで粘着層を剥離して再度配置することができる。
 感温性非架橋ポリマーの融点は、例えば、感温性非架橋ポリマーに含まれる側鎖結晶性ポリマーBを構成するモノマー成分の組成等を変えることによって調整できる。具体例を挙げると、側鎖結晶性ポリマーBにおける側鎖の長さを変えると融点を調整できる。側鎖の長さが長いと、感温性架橋微粒子の融点が高い傾向にある。
 感温性非架橋ポリマーは側鎖結晶性ポリマーBを含むことが好ましい。側鎖結晶性ポリマーBは炭素原子数14以上の直鎖状アルキル基を有する(メタ)アクリルモノマーに由来する構成単位を含むことが好ましい。炭素原子数14以上の直鎖状アルキル基を有する(メタ)アクリルモノマーに由来する構成単位は、その炭素原子数14以上の直鎖状アルキル基が側鎖結晶性ポリマーBにおける側鎖結晶性部位として機能する。すなわち、側鎖結晶性ポリマーBは、例えば、側鎖に炭素原子数14以上の直鎖状アルキル基を有する櫛形のポリマーである。この側鎖が分子間力などによって秩序ある配列に整合されることにより、側鎖結晶性ポリマーBが結晶化する。なお、上述した(メタ)アクリルモノマーとは、アクリルモノマー又はメタクリルモノマーのことである。直鎖状アルキル基の炭素原子数の上限は、好ましくは50以下、より好ましくは30以下である。
 炭素原子数14以上の直鎖状アルキル基を有する(メタ)アクリルモノマーとしては、例えば、セチル(メタ)アクリレート、ステアリル(メタ)アクリレート、エイコシル(メタ)アクリレート、ベヘニル(メタ)アクリレートなどが挙げられる。これらは、1種のみを使用してもよいし、2種以上を併用してもよい。
 側鎖結晶性ポリマーBの質量に対する、炭素原子数14以上の直鎖状アルキル基を有する(メタ)アクリルモノマーに由来する構成単位の質量の比率は、好ましくは70質量%以上である。上記比率は、100質量%であってもよいが、好ましくは90質量%以下、より好ましくは80質量%以下である。
 側鎖結晶性ポリマーBは、炭素原子数14以上の直鎖状アルキル基を有する(メタ)アクリルモノマーと共重合可能な他のモノマーに由来する構成単位を含んでもよい。他のモノマーとしては、例えば、相溶性モノマー等が挙げられる。すなわち、側鎖結晶性ポリマーBは、相溶性モノマーに由来する構成単位を含んでもよい。
 相溶性モノマーとしては、例えば、エチルへキシル(メタ)アクリレート、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート等の炭素数1~12のアルキル基を有する(メタ)アクリレート;2-エチルヘキシル-ジグリコール(メタ)アクリレート、メトキシエチル(メタ)アクリレート、メトキシポリエチレングリコールモノ(メタ)アクリレート、及びエトキシ-ジエチレングリコール(メタ)アクリレート等のエチレングリコール基を有する(メタ)アクリレート;ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、ヒドロキシヘキシル(メタ)アクリレート等のヒドロキシアルキル基を有する(メタ)アクリレート;アクリル酸、メタクリル酸、クロトン酸、イタコン酸、マレイン酸、フマル酸等のカルボキシル基を有するエチレン性不飽和モノマー;スチレン、酢酸ビニル等が挙げられる。これらは、1種のみを使用してもよいし、2種以上を併用してもよい。なかでも、炭素数1~12のアルキル基を有する(メタ)アクリレート、カルボキシル基を有するエチレン性不飽和モノマーが好ましい。
 側鎖結晶性ポリマーBの質量に対する、相溶性モノマーに由来する構成単位の質量の比率は、好ましくは0.1質量%以上であり、より好ましくは1質量%以上である。上記比率は、好ましくは90質量%以下、より好ましくは80質量%以下である。
 側鎖結晶性ポリマーBは、粘着剤を構成するポリマーが含む構成単位と同じ構成単位を含んでもよい。これにより、粘着性組成物における非架橋ポリマーの分散性が良好であり、加温時に粘着力を低下させやすい傾向にある。
 感温性非架橋ポリマーの重量平均分子量は、好ましくは1000以上、より好ましくは5000以上である。上記重量平均分子量は、好ましくは10万以下、より好ましくは1万以下である。10万以下であると、感温性非架橋ポリマーを添加した際のヘイズ値への影響を抑えられる傾向にある。1万以下であると、加温時に粘着力を低下させやすい傾向にある。なお、本明細書において、感温性非架橋ポリマーの重量平均分子量は、後述の実施例に記載の方法により測定される値である。
 感温性非架橋ポリマーの重量平均分子量は、例えば、重合の際に連鎖移動剤を使用すること等によって調整できる。連鎖移動剤としては、例えば、ドデシルメルカプタン、メルカプトプロピオン酸、メルカプトスクシン酸、エチルヘキシルメルカプトアセテート、メルカプトエタノール、シクロヘキサンチオール等のチオール化合物が挙げられる。これらは、1種のみを使用してもよいし、2種以上を併用してもよい。
 粘着性組成物において、感温性非架橋ポリマーの含有量は、粘着剤100質量部に対して、1質量部以上20質量部以下である。上記含有量は、好ましくは3質量部以上である。上記含有量は、好ましくは10質量部以下である。
 感温性非架橋ポリマーの製造方法は、特に限定されず、溶液重合、UV重合等の従来公知の重合方法により得ることができる。
(粘着剤)
 粘着剤は、特に限定されず、アクリル系粘着剤、天然ゴム系粘着剤、合成ゴム系粘着剤、シリコーン系粘着剤、ウレタン系粘着剤等の従来公知の粘着剤を使用できるが、なかでも、アクリル系粘着剤が好ましい。
 粘着剤を構成するポリマーは、粘着性に寄与する粘着モノマーに由来する構成単位や、架橋のための官能基モノマーに由来する構成単位を含むことが好ましい。粘着剤を構成するポリマーは、これらのモノマーと共重合可能な他のモノマーに由来する構成単位を含んでもよい。他のモノマーとしては、例えば、屈折率調整モノマー等が挙げられる。すなわち、粘着剤を構成するポリマーは、屈折率調整モノマーに由来する構成単位を含んでもよい。
 粘着モノマーとしては、例えば、エチルへキシル(メタ)アクリレート、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート等の炭素原子数1~12のアルキル基を有する(メタ)アクリレート;2-エチルヘキシル-ジグリコール(メタ)アクリレート、メトキシエチル(メタ)アクリレート、メトキシポリエチレングリコールモノ(メタ)アクリレート、エトキシ-ジエチレングリコール(メタ)アクリレート等のエチレングリコール基を有する(メタ)アクリレート;スチレン、酢酸ビニル等のエチレン性不飽和モノマー;等が挙げられる。これらは、1種のみを使用してもよいし、2種以上を併用してもよい。なかでも、炭素原子数1~12のアルキル基を有する(メタ)アクリレートが好ましい。
 粘着剤を構成するポリマーの質量に対する、粘着モノマーに由来する構成単位の質量の比率は、好ましくは50質量%以上であり、より好ましくは70質量%以上である。また、上記比率は、好ましくは99.9質量%以下であり、より好ましくは95質量%以下である。
 官能基モノマーとしては、ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、ヒドロキシヘキシル(メタ)アクリレート等のヒドロキシアルキル基を有する(メタ)アクリレート;アクリル酸、メタクリル酸、クロトン酸、イタコン酸、マレイン酸、フマル酸等のカルボキシル基を有するエチレン性不飽和モノマー;等が挙げられる。1種のみを使用してもよいし、2種以上を併用してもよい。
 粘着剤を構成するポリマーの質量に対する、官能基モノマーに由来する構成単位の質量の比率は、好ましくは0.1質量%以上であり、より好ましくは1質量%以上である。また、上記比率は、好ましくは30質量%以下、より好ましくは20質量%以下、更に好ましくは10質量%以下である。0.1質量%以上であると、形状保持性が良好である傾向がある。30質量%以下であると、粘度が過度に高くなく、塗工性が良好である傾向がある。
 屈折率調整モノマーは、1.300~1.600の屈折率を有するモノマーであってもよい。屈折率調整モノマーとしては、例えば、2-(O-フェニルフェノキシ)エチルアクリレート(屈折率:1.577)、2-プロペン酸(3-フェノキシフェニル)メチルエステル(屈折率:1.566)、1-ナフチルアクリレート(屈折率:1.595)、アクリルアミド(屈折率:1.515)、ヒドロキシアクリルアミド(屈折率:1.515)、EO変性ビスフェノールAジアクリレート(屈折率:1.537)、アクリルアミド(屈折率:1.515)、2,2,2-トリフルオロエチルアクリレート(屈折率:1.348)、メタクリル変性ポリジメチルシロキサン(屈折率:1.408)等が挙げられる。これらは、1種のみを使用してもよいし、2種以上を併用してもよい。
 粘着剤を構成するポリマーの質量に対する、屈折率調整モノマーに由来する構成単位の質量の比率は、好ましくは0.1質量%以上、より好ましくは1質量%以上、更に好ましくは10質量%以上である。また、上記比率は、好ましくは30質量%以下である。
 粘着剤の重量平均分子量は、好ましくは20万以上、より好ましくは30万以上である。上記重量平均分子量は、好ましくは200万以下、より好ましくは100万以下、更に好ましくは60万以下である。20万以上であると、形状保持性が良好である傾向がある。200万以下であると、粘度が過度に高くなく、塗工性が良好である傾向がある。なお、本明細書において、粘着剤の重量平均分子量は、後述の実施例に記載の方法により測定される値である。
 粘着剤のガラス転移温度(Tg)は、高い粘着力を発揮しやすい傾向がある点から、好ましくは25℃以下であることが好ましい。本明細書において、ガラス転移温度は、後述の実施例に記載の方法により測定される値である。
 粘着剤と感温性架橋微粒子の23℃における屈折率差は、0.015未満であることが好ましく、0.010未満であることがより好ましい。また、60℃における屈折率差は、0.015以上であることが好ましい。60℃における屈折率差の上限は特に限定されないが、例えば、0.1である。
 そうすると、一般的にヒトやペットが快適に過ごすことができる温暖な雰囲気下では、粘着層が高い透光性を示し、夏季のような高温雰囲気下では、粘着層におけるヘイズの発現により粘着層の透光性が低下する。
 また、粘着剤、及び感温性架橋微粒子の屈折率を調整することで、粘着剤と感温性架橋微粒子の23℃における屈折率差が0.015以上であり、60℃における屈折率差が0.015未満であるように設計することもできる。
 この場合、例えば、粘着剤を窓ガラスに適用すると、朝や夜のような比較的気温が低く日照量が少ない条件下では、窓ガラスがすりガラスとして機能する一方で、昼間に日照量の増加とともに気温が上昇した場合には、窓ガラスが透明になり、室内に効率よく採光できる。そうすると、カーテンの開閉を行わなくても、昼間のみの室内への採光を容易に行うことができる。
 粘着性組成物の固形分の質量に対する、粘着剤の質量の比率は、特に限定されないが、例えば、50質量%以上95質量%以下である。なお、本明細書において、粘着性組成物の固形分とは、粘着性組成物から水性溶媒や有機溶媒等の溶媒を除いた全ての成分を意味する。
 粘着剤の製造方法は、特に限定されず、溶液重合、UV重合等の従来公知の重合方法により得ることができる。
 粘着性組成物は、粘着剤を架橋するための架橋剤を含有していてもよい。すなわち、粘着剤は架橋されていてもよい。架橋剤は、例えばアジリジン系架橋剤、金属キレート系架橋剤、エポキシ系架橋剤、イソシアネート系架橋剤等が用いられる。
 粘着性組成物において、架橋剤の含有量は特に限定されないが、例えば、粘着剤100質量部に対して、0.1質量部以上10質量部以下である。0.1質量部以上であると、形状保持性が低くなりにくい傾向がある。また、10質量部以下であると、高い粘着力を発揮しやすい傾向がある。
 粘着性組成物は、有機溶媒等の溶媒、架橋の進行を抑える禁止剤、粘着付与樹脂(タッキファイヤ)、紫外線(UV)吸収剤、光安定剤(HALS)、酸化防止剤、赤外線吸収剤、染料、顔料等の他の添加剤を含んでもよい。
[用途]
 上記の粘着性組成物は、使用される態様に制限はない。上記の粘着性組成物の使用の態様は、目的に応じて適宜選択することができる。
 上記の粘着性組成物は、温度に応じて自律的に白濁度を変化させることができる。
 粘着性組成物を、高温でヘイズが発現するように設計した場合、夏の高温時には直射日光を和らげ、冬の低温時には日射を採り入れることができるため、例えば、窓材や透光性屋根材等に好適に使用できる。
 他方、粘着性組成物を低温でヘイズが発現するように設計した場合、例えば、当該粘着性組成物を窓ガラスに適用した場合に、朝や夜のような比較的気温が低く日照量が少ない条件下では、窓ガラスがすりガラスとして機能する一方で、昼間に日照量の増加とともに気温が上昇した場合には、窓ガラスが透明になり、室内に効率よく採光できる。
 また、上記の粘着性組成物は、照明等の熱源や日射、気温による高温でヘイズが発現したり消失したりした際に、文字、記号、柄、図形、絵柄等の意匠を出現、又は消失させることができ、粘着層を備える対象に優れた表示性(文字、記号等の意匠)や装飾性(柄、図形、絵柄等の意匠)を付与することが可能となる。そのため、例えば、照明カバーの装飾用、窓材や透光性屋根材等の透光性基材の装飾用、窓材や透光性屋根材等の透光性基材の表示用、等に好適に使用できる。
[基材シート]
 上記の窓材は基材シートを備えていてもよいし備えていなくてもよい。基材シートは、粘着層を透光性基材層に積層する際の支持体としての機能や、粘着層の保護層としての機能を有する。
 基材シートを構成する基材としては、透光性の基材であれば特に限定されない。基材として、例えば、コロナ処理PET、無処理PET、高透明PET、アニール処理PET、UVカットPET、遮熱PET、防曇PET、ハードコートPET、ブラスト処理PET等のPET;透明PI等を使用できる。
[窓材の製造方法]
 上記の窓材の製造方法は特に限定されず、例えば、基材シートに粘着性組成物を塗布して粘着シートを作製した後、透光性基材に粘着シートを貼合する方法等が挙げられる。透光性基材に、直接粘着性組成物を塗布して粘着層を形成してもよい。この場合、粘着層のタックを示す面が室内や屋外に露出しないように、透光性基材に形成された粘着層の露出している面を基材シートで被覆するのが好ましい。また、第2の窓材20のように透光性基材層が二層以上から構成されている場合は、粘着層を透光性基材層の間に配置する方法等も挙げられる。この場合、1つの基材層上に、粘着性組成物を塗布して粘着層を形成した後、粘着層の露出している面に、他の基材層を貼合わせればよい。
 また、1つの透光性基材層と、1つの粘着層とが両者が接するように積層した積層体を2つ用意し、2つの積層体を、粘着層の露出している面で貼合わせることによっても、透光性基材間に粘着層を備える第2の窓材20を製造できる。
[用途]
 上記の窓材は、使用される態様に制限はない。上記の窓材の使用の態様は、目的に応じて適宜選択することができる。上記の窓材は、例えば、住宅、ビル、倉庫、アーケード等の建築物や、車両、船舶、又は航空機等に好適に使用できる。
<<透光性屋根材>>
 図3は、透光性屋根材の一例を示す断面図である。図3に示すように、透光性屋根材30では、透光性基材層31と、粘着層32と、基材シート33とがこの順に積層されている。粘着層32は、粘着剤と、感温性非架橋ポリマーと、感温性架橋微粒子32aとを含む粘着性組成物から構成されている。
 図3において、感温性架橋微粒子32aは、屈折率が温度の上昇にともない低下し、且つ、1℃当たりの屈折率の低下量である屈折率低下率が、融点の近傍において、融点の近傍以外の温度域よりも大きい。そのため、日射や気温によって粘着層32の温度が上昇すると、感温性架橋微粒子32aと粘着剤の屈折率差が大きくなってヘイズ値が高くなる。他方、粘着層32の温度が低下すると、感温性架橋微粒子32aと粘着剤の屈折率差の減少によってヘイズ値が低くなる。これにより、温度に応じて自律的に白濁度を変化させることができ、夏の高温時には直射日光を和らげ、冬の低温時には日射を採り入れることができる。
 なお、温度の上昇により、感温性架橋微粒子32aと粘着剤の屈折率差が小さくなるように設計することもできる。
 さらに、粘着層32を構成する粘着性組成物は、粘着力が温度の上昇にともない低下し、且つ、1℃当たりの粘着力の低下量である粘着力低下率が、粘着性組成物中の感温性非架橋ポリマーの融点の近傍において、融点の近傍以外の温度域よりも大きい。そのため、粘着層32を配置する際に気泡の巻き込みやシワ等が入った場合でも、粘着層32の温度を上昇させることで、粘着層32を剥離して再度配置することが可能である。これにより、窓材の製造をより容易にすることができる。
 透光性屋根材について、透光性基材層、粘着層、基材シートの各層、製造方法、及び用途は、窓材についての各層、製造方法、用途と同様である。
<<粘着性組成物>>
 粘着性組成物は、粘着剤100質量部に対して、感温性非架橋ポリマー1~20質量部と、感温性架橋微粒子1~100質量部とを含有する。
 感温性架橋微粒子の屈折率は、温度の上昇にともない低下し、且つ、1℃当たりの屈折率の低下量である屈折率低下率が、融点の近傍において、融点の近傍以外の温度域よりも大きい。
 低温時における感温性架橋微粒子と粘着剤の屈折率差が小さくなるように各屈折率を調整した場合、粘着性組成物から形成した粘着層の温度が日射や気温、加温によって上昇すると、感温性架橋微粒子と粘着剤の屈折率差が大きくなってヘイズ値が高くなる。他方、粘着層の温度が低下すると、感温性架橋微粒子と粘着剤の屈折率差が小さくなってヘイズ値が低くなる。逆に、高温時における感温性架橋微粒子と粘着剤の屈折率差が小さくなるように各屈折率を調整した場合、粘着層の温度が上昇するとヘイズ値が低くなり、粘着層の温度が低下するとヘイズ値が高くなる。
 このため、前者の場合に、窓材や透光性屋根材等に粘着層を配置すると、温度に応じて自律的に白濁度を変化させることができ、夏の高温時には直射日光を和らげ、冬の低温時には日射を採り入れることができる。
 また、粘着性組成物を用いて、文字、記号、柄、図形、絵柄等の意匠が描かれるように粘着層を形成した場合、照明等の熱源や日射、気温による高温によるヘイズの発現又は消失にともない、当該意匠を出現させたり消失させたりすることができる。これにより、粘着層を備える対象に優れた表示性(文字、記号等の意匠)や装飾性(柄、図形、絵柄等の意匠)を付与することが可能となる。
 さらに、いずれの場合でも、粘着層を備える粘着シートとして使用すると、粘着層のヘイズ値が低くなったり高くなったりすることで、接触温度計がないような場面でも以下の粘着力の変化を視認することができる。
 粘着性組成物は、粘着力が温度の上昇にともない低下し、且つ、1℃当たりの粘着力の低下量である粘着力低下率が、粘着性組成物中の感温性非架橋ポリマーの融点の近傍において、融点の近傍以外の温度域よりも大きい。
 このため、粘着層を配置する際に気泡の巻き込みやシワ等が入った場合でも、粘着層の温度を上昇させることで、粘着層を剥離して再度配置することが可能である。また、製造工程における加工部材等を強固に仮止めしつつ、加工部材等を破壊せずに剥離することができる。
(感温性架橋微粒子)
 感温性架橋微粒子の屈折率は、温度の上昇にともない低下し、且つ、1℃当たりの屈折率の低下量である屈折率低下率が、融点の近傍において、融点の近傍以外の温度域よりも大きい。
 感温性架橋微粒子の60℃における屈折率は、感温性架橋微粒子の23℃における屈折率よりも0.02以上低いことが好ましい。これにより、温度に応じた白濁度の変化を視認しやすい傾向がある。
 感温性架橋微粒子の融点は、好ましくは20℃以上、より好ましくは25℃以上である。また、融点は、好ましくは100℃以下、より好ましくは60℃以下、更に好ましくは40℃以下である。
 感温性架橋微粒子の融点は、例えば、感温性架橋微粒子に含まれる側鎖結晶性ポリマーAを構成するモノマー成分の組成等を変えることによって調整できる。具体例を挙げると、側鎖結晶性ポリマーAにおける側鎖の長さを変えると融点を調整できる。側鎖の長さが長いと、感温性架橋微粒子の融点が高い傾向にある。
 感温性架橋微粒子の平均粒子径は、好ましくは1μm以上、より好ましくは3μm以上である。また、上記平均粒子径は、好ましくは100μm以下、より好ましくは30μm以下である。特に、ヘイズを高めやすい点からは、上記平均粒子径が3μm以上10μm以下であることが更に好ましく、3μm以上6μm以下であることが最も好ましい。日射の透過を抑制しやすい。熱を遮断しやすい点からは、上記平均粒子径が6μm以上25μm以下であることが更に好ましく、10μm以上25μm以下であることが最も好ましい。
 また、感温性架橋微粒子のD90粒子径は、粘着層の厚み以下であることが好ましく、例えば、1μm以上1000μm以下、3μm以上100μm以下である。D90粒子径が粘着層の厚み以下であると粘着層の表面が均一となり、粘着力を阻害しにくい傾向がある。
 感温性架橋微粒子は側鎖結晶性ポリマーAを含むことが好ましい。側鎖結晶性ポリマーAは炭素原子数14以上の直鎖状アルキル基を有する(メタ)アクリルモノマーに由来する構成単位を含むことが好ましい。炭素原子数14以上の直鎖状アルキル基を有する(メタ)アクリルモノマーに由来する構成単位は、その炭素原子数14以上の直鎖状アルキル基が側鎖結晶性ポリマーAにおける側鎖結晶性部位として機能する。すなわち、側鎖結晶性ポリマーAは、例えば、側鎖に炭素原子数14以上の直鎖状アルキル基を有する櫛形のポリマーである。この側鎖が分子間力などによって秩序ある配列に整合されることにより、側鎖結晶性ポリマーAが結晶化する。なお、上述した(メタ)アクリルモノマーとは、アクリルモノマー又はメタクリルモノマーのことである。直鎖状アルキル基の炭素原子数の上限は、好ましくは50以下、より好ましくは30以下である。
 炭素原子数14以上の直鎖状アルキル基を有する(メタ)アクリルモノマーとしては、例えば、セチル(メタ)アクリレート、ステアリル(メタ)アクリレート、エイコシル(メタ)アクリレート、ベヘニル(メタ)アクリレートなどが挙げられる。これらは、1種のみを使用してもよいし、2種以上を併用してもよい。
 側鎖結晶性ポリマーAの質量に対する、炭素原子数14以上の直鎖状アルキル基を有する(メタ)アクリルモノマーに由来する構成単位の質量の比率は、好ましくは70質量%以上であり、より好ましくは80質量%以上であり、更に好ましくは90質量%以上である。上記比率は、100質量%であってもよいが、好ましくは95質量%以下である。
 側鎖結晶性ポリマーAは、炭素原子数14以上の直鎖状アルキル基を有する(メタ)アクリルモノマーと共重合可能な他のモノマーに由来する構成単位を含んでもよい。他のモノマーとしては、例えば、単官能モノマー、多官能モノマー、屈折率調整モノマー等が挙げられる。すなわち、側鎖結晶性ポリマーAは、単官能モノマーや多官能モノマー、屈折率調整モノマーに由来する構成単位を含んでもよい。
 単官能モノマーとしては、例えば、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、ヘキシル(メタ)アクリレート、ラウリル(メタ)アクリレート、アクリル酸2-エチルヘキシル等の炭素原子数1~12のアルキル基を有する(メタ)アクリルモノマー等が挙げられる。これらは、1種のみを使用してもよいし、2種以上を併用してもよい。なお、感温性に加えて何か機能を足したいときに、炭素原子数14以上の直鎖状アルキル基を有する(メタ)アクリルモノマーと共重合可能で、その機能を持つモノマーであれば自由に共重合させることができる。
 側鎖結晶性ポリマーAの質量に対する、単官能モノマーに由来する構成単位の質量の比率は、好ましくは0.1質量%以上であり、より好ましくは1質量%以上である。また、上記比率は、好ましくは20質量%以下であり、より好ましくは10質量%以下である。
 多官能モノマーは、側鎖結晶性ポリマーAに含まれる複数の分子鎖を架橋し得る。使用時の感温性架橋微粒子の分散状態や変形抑制、機能の繰り返し性保持の観点から、側鎖結晶性ポリマーAは、多官能モノマーに由来する構成単位を含むことが好ましい。すなわち、感温性架橋微粒子や側鎖結晶性ポリマーAは、架橋されていることが好ましい。多官能モノマーは、分子内にラジカル重合可能な二重結合を2個以上、好ましくは2~4個有する。多官能モノマーとしては、例えば、2官能(メタ)アクリレート、3官能(メタ)アクリレート、4官能(メタ)アクリレート等が挙げられる。具体例としては、1,6-ヘキサンジオールジ(メタ)アクリレート、1,9-ノナンジオールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ポリエチレングリコール200ジ(メタ)アクリレート、エトキシ化ビスフェノールAジ(メタ)アクリレートなどが挙げられる。これらは、1種のみを使用してもよいし、2種以上を併用してもよい。多官能モノマーは、2官能(メタ)アクリレート、3官能(メタ)アクリレート、及び4官能(メタ)アクリレートから選ばれる少なくとも1種であってもよい。
 側鎖結晶性ポリマーAの質量に対する、多官能モノマーに由来する構成単位の質量の比率は、好ましくは0.1質量%以上であり、より好ましくは1質量%以上である。また、上記比率は、好ましくは20質量%以下であり、より好ましくは10質量%以下である。
 屈折率調整モノマーは、1.300~1.600の屈折率を有するモノマーであってもよい。屈折率調整モノマーとしては、例えば、2-(O-フェニルフェノキシ)エチルアクリレート(屈折率:1.577)、2-プロペン酸(3-フェノキシフェニル)メチルエステル(屈折率:1.566)、1-ナフチルアクリレート(屈折率:1.595)、アクリルアミド(屈折率:1.515)、ヒドロキシアクリルアミド(屈折率:1.515)、EO変性ビスフェノールAジアクリレート(屈折率:1.537)、アクリルアミド(屈折率:1.515)、2,2,2-トリフルオロエチルアクリレート(屈折率:1.348)、メタクリル変性ポリジメチルシロキサン(屈折率:1.408)等が挙げられる。これらは、1種のみを使用してもよいし、2種以上を併用してもよい。
 側鎖結晶性ポリマーAの質量に対する、屈折率調整モノマーに由来する構成単位の質量の比率は、好ましくは0.1質量%以上であり、より好ましくは1質量%以上である。また、上記比率は、好ましくは30質量%以下、より好ましくは20質量%以下であり、更に好ましくは10質量%以下である。
 粘着剤への分散性が良好である傾向がある点から、感温性架橋微粒子は反応性乳化剤に由来する構成単位を含まないことが好ましい。反応性乳化剤とは、分子中にビニル基等の重合性の不飽和結合を有する乳化剤である。反応性乳化剤は、乳化機能を有し、且つその分子中にビニル基等の不飽和結合を有する重合性基と、親水性基とを有する重合性単量体である。
 粘着性組成物において、感温性架橋微粒子の含有量は、粘着剤100質量部に対して、1質量部以上100質量部以下である。上記含有量は、好ましくは5質量部以上であり、より好ましくは20質量部以上である。また、上記含有量は、好ましくは70質量部以下、より好ましくは40質量部以下である。
 感温性架橋微粒子の製造方法は、特に限定されず、ミニエマルション重合、懸濁重合等の従来公知の重合方法により得ることができる。
(感温性非架橋ポリマー)
 感温性非架橋ポリマーは、融点を有する。感温性非架橋ポリマーは、融点未満の温度で結晶化し、かつ融点以上の温度では相転移して流動性を示す。これにより、粘着剤と感温性非架橋ポリマーを含む粘着性組成物は、粘着力が温度の上昇にともない低下し、且つ、1℃当たりの粘着力の低下量である粘着力低下率が、粘着性組成物中の感温性非架橋ポリマーの融点の近傍において、融点の近傍以外の温度域よりも大きい。
 粘着性組成物の23℃におけるステンレス鋼(SUS)に対する剥離強度は、1.0N/25mm以上であることが好ましい。上記剥離強度の上限は特に限定されない。
 また、粘着性組成物の60℃におけるステンレス鋼(SUS)に対する剥離強度は、0.1N/25mm以下であることが好ましい。上記剥離強度の下限は特に限定されない。
 感温性非架橋ポリマーの融点は、好ましくは20℃以上、より好ましくは30℃以上、更に好ましくは40℃以上である。また、融点は、好ましくは100℃以下、より好ましくは80℃以下、更に好ましくは60℃以下である。
 感温性非架橋ポリマーの融点は、感温性架橋微粒子の融点よりも5℃以上高いことが好ましい。これにより、温度に応じて自律的に白濁度を変化させつつ、粘着層を配置する際に気泡の巻き込みやシワ等が入った場合でも、粘着層の温度を上昇させることで、粘着層を剥離して再度配置することが可能である。
 別の態様では、感温性非架橋ポリマーの融点は、感温性架橋微粒子の融点よりも5℃未満であることが好ましい。これにより、温度に応じて自律的に白濁度を変化させ、触温度計がないような場面でも粘着力の変化を視認することができる。
 感温性非架橋ポリマーの融点は、例えば、感温性非架橋ポリマーに含まれる側鎖結晶性ポリマーBを構成するモノマー成分の組成等を変えることによって調整できる。具体例を挙げると、側鎖結晶性ポリマーBにおける側鎖の長さを変えると融点を調整できる。側鎖の長さが長いと、感温性架橋微粒子の融点が高い傾向にある。
 感温性非架橋ポリマーは側鎖結晶性ポリマーBを含むことが好ましい。側鎖結晶性ポリマーBは炭素原子数14以上の直鎖状アルキル基を有する(メタ)アクリルモノマーに由来する構成単位を含むことが好ましい。炭素原子数14以上の直鎖状アルキル基を有する(メタ)アクリルモノマーに由来する構成単位は、その炭素原子数14以上の直鎖状アルキル基が側鎖結晶性ポリマーBにおける側鎖結晶性部位として機能する。すなわち、側鎖結晶性ポリマーBは、例えば、側鎖に炭素原子数14以上の直鎖状アルキル基を有する櫛形のポリマーである。この側鎖が分子間力などによって秩序ある配列に整合されることにより、側鎖結晶性ポリマーBが結晶化する。なお、上述した(メタ)アクリルモノマーとは、アクリルモノマー又はメタクリルモノマーのことである。直鎖状アルキル基の炭素原子数の上限は、好ましくは50以下、より好ましくは30以下である。
 炭素原子数14以上の直鎖状アルキル基を有する(メタ)アクリルモノマーとしては、例えば、セチル(メタ)アクリレート、ステアリル(メタ)アクリレート、エイコシル(メタ)アクリレート、ベヘニル(メタ)アクリレートなどが挙げられる。これらは、1種のみを使用してもよいし、2種以上を併用してもよい。
 側鎖結晶性ポリマーBの質量に対する、炭素原子数14以上の直鎖状アルキル基を有する(メタ)アクリルモノマーに由来する構成単位の質量の比率は、好ましくは70質量%以上である。上記比率は、100質量%であってもよいが、好ましくは90質量%以下、より好ましくは80質量%以下である。
 側鎖結晶性ポリマーBは、炭素原子数14以上の直鎖状アルキル基を有する(メタ)アクリルモノマーと共重合可能な他のモノマーに由来する構成単位を含んでもよい。他のモノマーとしては、例えば、相溶性モノマー等が挙げられる。すなわち、側鎖結晶性ポリマーBは、相溶性モノマーに由来する構成単位を含んでもよい。
 相溶性モノマーとしては、例えば、エチルへキシル(メタ)アクリレート、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート等の炭素数1~12のアルキル基を有する(メタ)アクリレート;2-エチルヘキシル-ジグリコール(メタ)アクリレート、メトキシエチル(メタ)アクリレート、メトキシポリエチレングリコールモノ(メタ)アクリレート、及びエトキシ-ジエチレングリコール(メタ)アクリレート等のエチレングリコール基を有する(メタ)アクリレート;ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、ヒドロキシヘキシル(メタ)アクリレート等のヒドロキシアルキル基を有する(メタ)アクリレート;アクリル酸、メタクリル酸、クロトン酸、イタコン酸、マレイン酸、フマル酸等のカルボキシル基を有するエチレン性不飽和モノマー;スチレン、酢酸ビニル等が挙げられる。これらは、1種のみを使用してもよいし、2種以上を併用してもよい。なかでも、炭素数1~12のアルキル基を有する(メタ)アクリレート、カルボキシル基を有するエチレン性不飽和モノマーが好ましい。
 側鎖結晶性ポリマーBの質量に対する、相溶性モノマーに由来する構成単位の質量の比率は、好ましくは0.1質量%以上であり、より好ましくは1質量%以上である。上記比率は、好ましくは90質量%以下、より好ましくは80質量%以下である。
 側鎖結晶性ポリマーBは、粘着剤を構成するポリマーが含む構成単位と同じ構成単位を含んでもよい。これにより、粘着性組成物における非架橋ポリマーの分散性が良好であり、加温時に粘着力を低下させやすい傾向にある。
 感温性非架橋ポリマーの重量平均分子量は、好ましくは1000以上、より好ましくは5000以上である。上記重量平均分子量は、好ましくは10万以下、より好ましくは1万以下である。10万以下であると、感温性非架橋ポリマーを添加した際のヘイズ値への影響を抑えられる傾向にある。1万以下であると、加温時に粘着力を低下させやすい傾向にある。
 感温性非架橋ポリマーの重量平均分子量は、例えば、重合の際に連鎖移動剤を使用すること等によって調整できる。連鎖移動剤としては、例えば、ドデシルメルカプタン、メルカプトプロピオン酸、メルカプトスクシン酸、エチルヘキシルメルカプトアセテート、メルカプトエタノール、シクロヘキサンチオール等のチオール化合物が挙げられる。これらは、1種のみを使用してもよいし、2種以上を併用してもよい。
 粘着性組成物において、感温性非架橋ポリマーの含有量は、粘着剤100質量部に対して、1質量部以上20質量部以下である。上記含有量は、好ましくは3質量部以上である。上記含有量は、好ましくは10質量部以下である。
 感温性非架橋ポリマーの製造方法は、特に限定されず、溶液重合、UV重合等の従来公知の重合方法により得ることができる。
(粘着剤)
 粘着剤は、特に限定されず、アクリル系粘着剤、天然ゴム系粘着剤、合成ゴム系粘着剤、シリコーン系粘着剤、ウレタン系粘着剤等の従来公知の粘着剤を使用できるが、なかでも、アクリル系粘着剤が好ましい。
 粘着剤を構成するポリマーは、粘着性に寄与する粘着モノマーに由来する構成単位や、架橋のための官能基モノマーに由来する構成単位を含むことが好ましい。粘着剤を構成するポリマーは、これらのモノマーと共重合可能な他のモノマーに由来する構成単位を含んでもよい。他のモノマーとしては、例えば、屈折率調整モノマー等が挙げられる。すなわち、粘着剤を構成するポリマーは、屈折率調整モノマーに由来する構成単位を含んでもよい。
 粘着モノマーとしては、例えば、エチルへキシル(メタ)アクリレート、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート等の炭素原子数1~12のアルキル基を有する(メタ)アクリレート;2-エチルヘキシル-ジグリコール(メタ)アクリレート、メトキシエチル(メタ)アクリレート、メトキシポリエチレングリコールモノ(メタ)アクリレート、エトキシ-ジエチレングリコール(メタ)アクリレート等のエチレングリコール基を有する(メタ)アクリレート;スチレン、酢酸ビニル等のエチレン性不飽和モノマー;等が挙げられる。これらは、1種のみを使用してもよいし、2種以上を併用してもよい。なかでも、炭素原子数1~12のアルキル基を有する(メタ)アクリレートが好ましい。
 粘着剤を構成するポリマーの質量に対する、粘着モノマーに由来する構成単位の質量の比率は、好ましくは50質量%以上であり、より好ましくは70質量%以上である。また、上記比率は、好ましくは99.9質量%以下であり、より好ましくは90質量%以下である。
 官能基モノマーとしては、ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、ヒドロキシヘキシル(メタ)アクリレート等のヒドロキシアルキル基を有する(メタ)アクリレート;アクリル酸、メタクリル酸、クロトン酸、イタコン酸、マレイン酸、フマル酸等のカルボキシル基を有するエチレン性不飽和モノマー;等が挙げられる。1種のみを使用してもよいし、2種以上を併用してもよい。
 粘着剤を構成するポリマーの質量に対する、官能基モノマーに由来する構成単位の質量の比率は、好ましくは0.1質量%以上であり、より好ましくは1質量%以上である。また、上記比率は、好ましくは30質量%以下、より好ましくは20質量%以下、更に好ましくは10質量%以下である。0.1質量%以上であると、形状保持性が良好である傾向がある。30質量%以下であると、粘度が過度に高くなく、塗工性が良好である傾向がある。
 屈折率調整モノマーは、1.300~1.600の屈折率を有するモノマーであってもよい。屈折率調整モノマーとしては、例えば、2-(O-フェニルフェノキシ)エチルアクリレート(屈折率:1.577)、2-プロペン酸(3-フェノキシフェニル)メチルエステル(屈折率:1.566)、1-ナフチルアクリレート(屈折率:1.595)、アクリルアミド(屈折率:1.515)、ヒドロキシアクリルアミド(屈折率:1.515)、EO変性ビスフェノールAジアクリレート(屈折率:1.537)、アクリルアミド(屈折率:1.515)、2,2,2-トリフルオロエチルアクリレート(屈折率:1.348)、メタクリル変性ポリジメチルシロキサン(屈折率:1.408)等が挙げられる。これらは、1種のみを使用してもよいし、2種以上を併用してもよい。
 粘着剤を構成するポリマーの質量に対する、屈折率調整モノマーに由来する構成単位の質量の比率は、好ましくは0.1質量%以上、より好ましくは1質量%以上、更に好ましくは10質量%以上である。また、上記比率は、好ましくは30質量%以下である。
 粘着剤の重量平均分子量は、好ましくは20万以上、より好ましくは30万以上である。上記重量平均分子量は、好ましくは200万以下、より好ましくは100万以下、更に好ましくは60万以下である。20万以上であると、形状保持性が良好である傾向がある。200万以下であると、粘度が過度に高くなく、塗工性が良好である傾向がある。
 粘着剤のガラス転移温度(Tg)は、高い粘着力を発揮しやすい傾向がある点から、好ましくは25℃以下であることが好ましい。
 粘着剤と感温性架橋微粒子の23℃における屈折率差は、0.015未満であることが好ましく、0.010未満であることがより好ましい。また、60℃における屈折率差は、0.015以上であることが好ましい。60℃における屈折率差の上限は特に限定されないが、例えば、0.1である。
 粘着性組成物の固形分の質量に対する、粘着剤の質量の比率は、特に限定されないが、例えば、50質量%以上95質量%以下である。なお、本明細書において、粘着性組成物の固形分とは、粘着性組成物から水性溶媒や有機溶媒等の溶媒を除いた全ての成分を意味する。
 粘着剤の製造方法は、特に限定されず、溶液重合、UV重合等の従来公知の重合方法により得ることができる。
 粘着性組成物は、粘着剤を架橋するための架橋剤を含有していてもよい。すなわち、粘着剤は架橋されていてもよい。架橋剤は、例えばアジリジン系架橋剤、金属キレート系架橋剤、エポキシ系架橋剤、イソシアネート系架橋剤等が用いられる。
 粘着性組成物において、架橋剤の含有量は特に限定されないが、例えば、粘着剤100質量部に対して、0.1質量部以上10質量部以下である。0.1質量部以上であると、形状保持性が低くなりにくい傾向がある。また、10質量部以下であると、高い粘着力を発揮しやすい傾向がある。
 粘着性組成物は、有機溶媒等の溶媒、架橋の進行を抑える禁止剤、粘着付与樹脂(タッキファイヤ)、紫外線(UV)吸収剤、光安定剤(HALS)、酸化防止剤、赤外線吸収剤、染料、顔料等の他の添加剤を含んでもよい。
<<粘着シート>>
 粘着シートは、粘着性組成物からなる粘着層を備える。
 上述した通り、特許文献1の感温調光液体積層体は、感温調光液体の形状を保持するための専用の構造体が必要となる。そのため、既設の窓や屋根に後から設置する場合、窓ごと交換する等の大掛かりな工事が必要であり、導入が難しいという問題がある。
 これに対して、粘着シートは、形状を保持するための専用の構造体が必要なく、既設の窓や屋根に貼合するだけで簡単に設置でき、温度に応じて自律的に白濁度を変化させることができるという機能を簡単に付与できるという利点を有する。
 粘着層の厚みは特に限定されないが、好ましくは5μm以上1mm以下であり、より好ましくは10μm以上100μm以下である。なお、粘着層の厚みが厚いほど少量の感温性架橋微粒子の添加で調光機能が発現する傾向がある。厚みが薄いほど、調光機能を発現させるために、多量の感温性架橋微粒子の添加が必要である傾向がある。
 粘着層の23℃におけるヘイズ値と60℃におけるヘイズ値の差は、10%以上であることが好ましい。特に、粘着層の60℃におけるヘイズ値が、23℃におけるヘイズ値よりも10%以上高いことがより好ましい。これにより、温度に応じた白濁度の変化を視認しやすい傾向がある。
 粘着層の23℃におけるヘイズ値は、好ましくは10%以下である。23℃におけるヘイズ値の下限は特に限定されない。また、粘着層の60℃におけるヘイズ値は、好ましくは12%以上であり、より好ましくは20%以上であり、更に好ましくは30%以上である。60℃におけるヘイズ値の上限は、特に限定されないが、例えば、70%以下、50%以下である。
 粘着層の23℃における日射透過率と60℃における日射透過率の差は、10%以上であることが好ましい。粘着層の60℃における日射透過率は、23℃における日射透過率よりも10%以上低いことが好ましい。
 粘着層の23℃における日射透過率は、好ましくは50%以上、より好ましくは70%以上、更に好ましくは80%以上である。23℃における日射透過率の上限は特に限定されないが、例えば、99%以下、95%以下である。また、粘着層の60℃における日射透過率は、好ましくは80%以下、より好ましくは70%以下、更に好ましくは60%以下である。60℃における日射透過率の下限は、特に限定されない。
 粘着シートは基材シートを備えていてもよい。基材シートを構成する基材としては、透光性の基材であれば特に限定されない。基材として、例えば、コロナ処理PET、無処理PET、高透明PET、アニール処理PET、UVカットPET、遮熱PET、防曇PET、ハードコートPET、ブラスト処理PET等のPET;透明PI等を使用できる。
 粘着層は、基材シートのいずれか一方の片面にのみ形成してもよいし、両面に形成してもよい。また、基材シートの片面に粘着層を形成し、もう一方の面には以上説明した粘着層に該当しない粘着層を形成してもよい。
 粘着層の表面には、基材シートと同様に、離型シートを積層してもよい。
 粘着シートは、上記粘着性組成物を用いて通常の方法によって製造できる。例えば、粘着性組成物に必要に応じて溶媒や架橋剤を加えた塗布液を、コーター等によって基材シートに塗布した後、加熱等で乾燥させ、粘着層を形成する方法等が挙げられる。
 コーターとしては、例えば、ナイフコーター、ロールコーター、カレンダーコーター、コンマコーター等が挙げられる。また、塗工厚みや塗工液の粘度によっては、グラビアコーター、ロッドコーター等も挙げられる。
 以下、実施例を示して本発明をさらに具体的に説明するが、本発明の範囲は、これらの実施例に限定されない。
 以下、実施例で使用した各種薬品について、まとめて説明する。
SA:日油(株)製のブレンマーSA(ステアリルアクリレート)
CA:日油(株)製のブレンマーCA(セチルアクリレート)
VA:日油(株)製のブレンマーVA(ベヘニルアクリレート)
A-HD-N:新中村化学工業(株)製のA-HD-N(1,6-ヘキサンジオールジアクリレート)
EHA:東亞合成(株)製の2-エチルヘキシルアクリレート
C1A:(株)日本触媒製のメチルアクリレート
AA:(株)日本触媒製のアクリル酸
A-LEN-10:新中村化学工業(株)製のA-LEN-10(2-(O-フェニルフェノキシ)エチルアクリレート)
HEA:(株)日本触媒製の2-ヒドロキシエチルアクリレート
NF-13:第一工業製薬(株)製のハイテノールNF-13
パーロイルL:日油(株)製のパーロイルL(ジラウロイルパーオキサイド)
パーブチルND:日油(株)製のパーブチルND(t-ブチルパーオキシネオデカノエート)
パーヘキシルPV:日油(株)製のパーヘキシルPV(t-ヘキシルパーオキシピバレート)
L45:東ソー(株)製のコロネートL-45(イソシアネート系架橋剤)
〔感温性架橋微粒子の製造〕
 側鎖結晶性モノマー、多官能モノマー、及び開始剤を表1に示す割合で反応容器に加えた。反応容器内の混合物を、均一に混ざるようヘラで撹拌した。次に、水性媒体と、表1に示す割合の乳化剤を反応容器に加え、混合液を得た。水性媒体としては、水を使用した。水性媒体は、混合液中の側鎖結晶性モノマーの質量と水性媒体の質量との合計に対する側鎖結晶性モノマーの質量の比率が40質量%であるように添加した。更に、IKA社製のホモジナイザー(本体:T 25 digital ULTRA-TURRAX、シャフトジェネレーター:S25N-25F)によって7500rpmで5分間混合液を攪拌し、モノマー成分を粒子状にした。最後に、混合液に窒素を導入してバブリングし、混合液中の空気(酸素)を除いた後、67℃で2時間、80℃で2時間、それぞれ加熱撹拌してモノマー成分を重合させた。そして、吸引ろ過、及び真空乾燥により、生成した微粒子から水性媒体を除去し、感温性架橋微粒子1を得た。
 ホモジナイザーによって14000rpmで5分間混合液を攪拌したこと以外は、感温性架橋微粒子1の製造方法と同様にして、感温性架橋微粒子2を得た。
 ホモジナイザーによって5600rpmで3分間混合液を攪拌したこと以外は、感温性架橋微粒子1の製造方法と同様にして、感温性架橋微粒子3を得た。
 ホモジナイザーによって4200rpmで5分間混合液を攪拌したこと以外は、感温性架橋微粒子1の製造方法と同様にして、感温性架橋微粒子4を得た。
(感温性架橋微粒子の平均粒子径及びD90粒子径)
 マルバーン社製のレーザー回折式粒度分布計「マスターサイザー3000」を用いて、感温性架橋微粒子の粒度分布を測定した。当該粒度分布において、感温性架橋微粒子の粒子径の小さい方から計算した累積体積頻度が50%に相当する粒子径を「平均粒子径」とし、累積体積頻度が90%に相当する粒子径を「D90粒子径」とした。結果を表1に示した。
(感温性架橋微粒子の融点)
 セイコーインスツル(株)製のDSC(示差走査熱量計)を用いて10℃/分の掃引速度で-30~100℃の範囲を測定した際の吸熱ピークトップの温度から、感温性架橋微粒子の融点を測定した。結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
〔粘着剤の製造〕
(BR1)
 反応容器に表2に示す割合でモノマーを投入した。反応容器に、溶媒(酢酸エチル/トルエン=70/30(質量比))を加えて、モノマーの濃度が33質量%であるようにモノマーを希釈した。次に、モノマーの希釈液に窒素を導入してバブリングしながら、モノマーの希釈液を撹拌加熱した。液温が55℃になった時点で表2に示す割合で、モノマーの希釈液に開始剤を加えた。更に、55℃で4時間、反応容器内の液を加熱撹拌した後、オイルバスの温度を80℃に上げた。液温が70℃を超えた時点で表2に示す割合で、反応溶液内に促進剤を加えた。最後に、80℃で2時間加熱撹拌し、粘着剤(BR1)を得た。
(BR2)
 反応容器に表2に示す割合でモノマーを投入し、溶媒(酢酸エチル/メチルエチルケトン=90/10(質量比))を加えて、モノマーの濃度が38質量%であるようにモノマーを希釈したこと以外は、粘着剤(BR1)と同様にして、粘着剤(BR2)を得た。
(粘着剤の重量平均分子量)
 ゲルパーミエーションクロマトグラフィー(GPC)で測定し、得られた測定値をポリスチレン換算した。結果を表2に示す。
(粘着剤のガラス転移温度)
 サーモサイエンティフィック(Thermo Scientific)社製の動的粘弾性測定装置「HAAKE MARS III」を使用して、20Hz、5℃/分、-100~100℃の昇温過程でtanδ(損失正接)を測定した。得られたtanδのピーク温度からガラス転移温度(Tg)を求めた。結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
〔感温性非架橋ポリマーの製造〕
 反応容器に表3に示す割合でモノマー及び連鎖移動剤を投入した。反応容器に、溶媒(トルエン)を加えて、モノマーの濃度が50質量%であるようにモノマーを希釈した。次に、モノマーの希釈液に窒素を導入してバブリングしながら、モノマーの希釈液を撹拌加熱した。液温が80℃になった時点で表3に示す割合で、モノマーの希釈液に開始剤を加えた。更に、80℃で3時間加熱撹拌し、感温性非架橋ポリマーを得た。
(感温性非架橋ポリマーの重量平均分子量)
 粘着剤の重量平均分子量と同様の方法により測定した。結果を表3に示す。
(感温性非架橋ポリマーの融点)
 感温性架橋微粒子の融点と同様の方法により測定した。結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
〔粘着シートの製造〕
 得られた粘着剤に、表4~6に示す割合で感温性架橋微粒子を添加した。粘着剤と感温性架橋微粒子の混合物に、溶媒(酢酸エチル)を加えて混合物の固形分濃度を30質量%に調整した。調整した混合物に、表4~6に示す割合で感温性非架橋ポリマーを添加して、粘着性組成物を得た。この粘着性組成物に表4~6に示す割合で架橋剤を添加した。粘着性組成物を、PETフィルム(厚み100μm)のコロナ処理した面にバーコーターにて塗布した。その後、PETフィルムを、熱風循環オーブンにて110℃3分間加熱乾燥することで、架橋した粘着性組成物からなる粘着層(厚み40μm)を備える粘着シート(実施例1~8)を得た。
(感温性架橋微粒子及び粘着剤の屈折率)
 得られた感温性架橋微粒子及び粘着剤について、Anton Paar社製の自動屈折計「Abbemat 350」を用い、23℃及び60℃における屈折率を測定した。結果を表4~6に示す。
(粘着層のヘイズ値)
 得られた粘着シートの粘着層について、ASTM D1003に準拠し、コニカミノルタ(株)製の分光測色計「CM3600」(C光源)を用いて、23℃、40℃及び60℃におけるヘイズ値を測定した。ITOガラスをリファレンスとし、ITOガラス面に粘着シートを貼合して測定した。結果を表4~6に示す。
(剥離強度)
 得られた粘着シートについて、JIS Z0237に準拠し、23℃及び60℃におけるステンレス鋼(SUS)に対する180°剥離強度を測定した。具体的には、粘着シートをSUSに貼合して20分間静置した後、ロードセルを用いて300mm/分の速度で180°剥離した。SUSは、板状のSUS304を使用した。SUSに対する粘着シートの貼合は、粘着シートの上で2kgのローラーを5往復させることによって行った。結果を表4~6に示す。
 なお、粘着シートについて、23℃と60℃の間の温度でも剥離強度を測定し、粘着シートの1℃当たりの粘着力の低下量である粘着力低下率の変化を確認した。その結果、感温性非架橋ポリマーの融点である49℃近傍での粘着力低下率が、感温性非架橋ポリマーの融点の近傍以外の温度域よりも大きいことが確認された。
(日射透過率)
 得られた粘着シートについて、JIS A5759:2016の6.5に準拠し、日本分光(株)製の分光光度計「V770DS」を用いて、23℃、40℃及び60℃における日射透過率を測定した。ただし、40℃及び60℃に加温して測定するため、粘着シートを貼り付ける対象として、厚み1.1mmのITOガラス(ジオマテック社製の「GMT-100-12」)を用いた。具体的には、粘着シートをITOガラスの片面に貼り付けて試験片を作製した。23℃、40℃及び60℃(接触温度計によって測定されたITOガラスの表面温度)において、試験片のガラス面を光源に向けて、分光光度計により300~2500nmの各波長の分光透過率を測定した。JIS A5759:2016に規定されているように、日射の相対分光分布によって日射透過率を算出した。結果を表5及び6に示す。
(遮熱性)
 得られた粘着シートについて、図5~7に示すようにして遮熱性を評価した。具体的には、粘着シート1をガラス板2に貼り付けて試験片を作製した。粘着シート面が上向きになるように、幅120mm×奥行200mm×高さ100mmの木枠4上に天面として試験片を置いた。ガラス面から10mm下の位置に温度計(熱電対)3を設置した。風除けとして木枠4の側面と底面をポリエチレンシートで覆った。試験片が置かれた木枠4を、地面6からの高さが1000mmとなるようにメタルラック5上に設置した。日射時(日射時間:約360分、平均気温:32℃)の熱電対3の温度上昇値を記録した。粘着シートを貼り付けていないガラス板をブランクの試験片とし、同様にして温度上昇値を記録した。ブランクの温度上昇値との差を算出した。結果を表5及び6に示す。
Figure JPOXMLDOC01-appb-T000004
 表4から明らかなように、実施例1及び実施例2によれば、前述の所定の構成を備える実施例1及び実施例2の粘着層は、温度に応じて自律的に白濁度を変化させることができるとわかる。また、温度を上昇させることで粘着力が低下することがわかる。したがって、実施例1及び実施例2から、上記粘着層を備える窓材や透光性屋根材は、温度に応じて自律的に白濁度を変化させることができ、粘着層を剥離して再度配置することが可能であるため製造が容易であることがわかる。
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
 10      第1の窓材
 11      透光性基材層
 12      粘着層
 12a     感温性架橋微粒子
 13      基材シート
 20      第2の窓材
 21a、21b 透光性基材層
 22      粘着層
 22a     感温性架橋微粒子
 30      透光性屋根材
 31      透光性基材層
 32      粘着層
 32a     感温性架橋微粒子
 33      基材シート

 

Claims (17)

  1.  少なくとも1層の透光性基材層と、少なくとも1層の粘着層とを備え、
     前記粘着層が、粘着剤100質量部に対して、感温性非架橋ポリマー1~20質量部と、感温性架橋微粒子1~100質量部とを含有する粘着性組成物からなり、
     前記感温性架橋微粒子の屈折率が、温度の上昇にともない低下し、且つ、
     1℃当たりの屈折率の低下量である前記感温性架橋微粒子の屈折率低下率が、前記感温性架橋微粒子の融点の近傍において、前記感温性架橋微粒子の融点の近傍以外の温度域よりも大きく、
     前記粘着性組成物の粘着力が、温度の上昇にともない低下し、且つ、
     1℃当たりの粘着力の低下量である前記粘着性組成物の粘着力低下率が、前記感温性非架橋ポリマーの融点の近傍において、前記感温性非架橋ポリマーの融点の近傍以外の温度域よりも大きい、
     窓材。
  2.  前記粘着層の23℃におけるヘイズ値と前記粘着層の60℃におけるヘイズ値の差が、10%以上であり、
     前記粘着性組成物の粘着力が、23℃において1N/25mm以上であり、60℃において0.1N/mm以下である、請求項1に記載の窓材。
  3.  前記感温性非架橋ポリマーの融点が、前記感温性架橋微粒子の融点よりも5℃以上高い、請求項1又は2に記載の窓材。
  4.  前記感温性非架橋ポリマーが側鎖結晶性ポリマーAを含み、
     前記側鎖結晶性ポリマーAは、炭素原子数14以上の直鎖状アルキル基を有する(メタ)アクリルモノマーに由来する構成単位を70~100質量%含み、
     前記感温性架橋微粒子が側鎖結晶性ポリマーBを含み、
     前記側鎖結晶性ポリマーBは、炭素原子数14以上の直鎖状アルキル基を有する(メタ)アクリルモノマーに由来する構成単位を70~100質量%含む、請求項1~3のいずれか一項に記載の窓材。
  5.  少なくとも1層の透光性基材層と、少なくとも1層の粘着層とを備え、
     前記粘着層が、粘着剤100質量部に対して、感温性非架橋ポリマー1~20質量部と、感温性架橋微粒子1~100質量部とを含有する粘着性組成物からなり、
     前記感温性架橋微粒子の屈折率が、温度の上昇にともない低下し、且つ、
     1℃当たりの屈折率の低下量である前記感温性架橋微粒子の屈折率低下率が、前記感温性架橋微粒子の融点の近傍において、前記感温性架橋微粒子の融点の近傍以外の温度域よりも大きく、
     前記粘着性組成物の粘着力が、温度の上昇にともない低下し、且つ、
     1℃当たりの粘着力の低下量である前記粘着性組成物の粘着力低下率が、前記感温性非架橋ポリマーの融点の近傍において、前記感温性非架橋ポリマーの融点の近傍以外の温度域よりも大きい、
     透光性屋根材。
  6.  前記粘着層の23℃におけるヘイズ値と前記粘着層の60℃におけるヘイズ値の差が、10%以上であり、
     前記粘着性組成物の粘着力が、23℃において1N/25mm以上であり、60℃において0.1N/mm以下である、請求項5に記載の透光性屋根材。
  7.  前記感温性非架橋ポリマーの融点が、前記感温性架橋微粒子の融点よりも5℃以上高い、請求項5又は6に記載の透光性屋根材。
  8.  前記感温性非架橋ポリマーが側鎖結晶性ポリマーAを含み、
     前記側鎖結晶性ポリマーAは、炭素原子数14以上の直鎖状アルキル基を有する(メタ)アクリルモノマーに由来する構成単位を70~100質量%含み、
     前記感温性架橋微粒子が側鎖結晶性ポリマーBを含み、
     前記側鎖結晶性ポリマーBは、炭素原子数14以上の直鎖状アルキル基を有する(メタ)アクリルモノマーに由来する構成単位を70~100質量%含む、請求項5~7のいずれか一項に記載の透光性屋根材。
  9.  請求項1~4のいずれか一項に記載の窓材、及び/又は請求項5~8のいずれか一項に記載の透光性屋根材を備える建築物。
  10.  請求項1~4のいずれか一項に記載の窓材、及び/又は請求項5~8のいずれか一項に記載の透光性屋根材を備える車両、船舶、又は航空機。
  11.  粘着剤100質量部に対して、感温性非架橋ポリマー1~20質量部と、感温性架橋微粒子1~100質量部とを含有する粘着性組成物であって、
     前記感温性架橋微粒子の屈折率が、温度の上昇にともない低下し、且つ、
     1℃当たりの屈折率の低下量である前記感温性架橋微粒子の屈折率低下率が、前記感温性架橋微粒子の融点の近傍において、前記感温性架橋微粒子の融点の近傍以外の温度域よりも大きく、
     前記粘着性組成物の粘着力が、温度の上昇にともない低下し、且つ、
     1℃当たりの粘着力の低下量である前記粘着性組成物の粘着力低下率が、前記感温性非架橋ポリマーの融点の近傍において、前記感温性非架橋ポリマーの融点の近傍以外の温度域よりも大きい、
     粘着性組成物。
  12.  粘着力が、23℃において1N/25mm以上であり、60℃において0.1N/mm以下である、請求項11に記載の粘着性組成物。
  13.  前記感温性非架橋ポリマーの融点が、前記感温性架橋微粒子の融点よりも5℃以上高い、請求項11又は12に記載の粘着性組成物。
  14.  前記感温性非架橋ポリマーの融点と前記感温性架橋微粒子の融点の差が、5℃未満である、請求項11又は12に記載の粘着性組成物。
  15.  前記感温性非架橋ポリマーが側鎖結晶性ポリマーAを含み、
     前記側鎖結晶性ポリマーAは、炭素原子数14以上の直鎖状アルキル基を有する(メタ)アクリルモノマーに由来する構成単位を70~100質量%含み、
     前記感温性架橋微粒子が側鎖結晶性ポリマーBを含み、
     前記側鎖結晶性ポリマーBは、炭素原子数14以上の直鎖状アルキル基を有する(メタ)アクリルモノマーに由来する構成単位を70~100質量%含む、請求項11~14のいずれか一項に記載の粘着性組成物。
  16.  請求項11~15のいずれか一項に記載の粘着性組成物からなる粘着層を備える粘着シート。
  17.  前記粘着層の23℃におけるヘイズ値と前記粘着層の60℃におけるヘイズ値の差が、10%以上である、請求項16に記載の粘着シート。
PCT/JP2023/011834 2022-03-24 2023-03-24 窓材及び透光性屋根材 WO2023182500A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-048302 2022-03-24
JP2022048302 2022-03-24

Publications (1)

Publication Number Publication Date
WO2023182500A1 true WO2023182500A1 (ja) 2023-09-28

Family

ID=88101672

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/011834 WO2023182500A1 (ja) 2022-03-24 2023-03-24 窓材及び透光性屋根材

Country Status (2)

Country Link
TW (1) TW202348438A (ja)
WO (1) WO2023182500A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3337810B2 (ja) 1993-03-01 2002-10-28 アフィニティー株式会社 自律応答積層体、その製法およびそれを使用した窓
JP2007025276A (ja) * 2005-07-15 2007-02-01 Nitta Ind Corp 熱収縮易剥離ラベル
JP2019044089A (ja) * 2017-09-04 2019-03-22 ニッタ株式会社 感温性粘着剤、感温性粘着シートおよび感温性粘着テープ
JP2019143065A (ja) * 2018-02-22 2019-08-29 ニッタ株式会社 感温性粘着剤、感温性粘着シートおよび感温性粘着テープ
JP2021113310A (ja) * 2020-01-16 2021-08-05 ニッタ株式会社 感温性微粒子

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3337810B2 (ja) 1993-03-01 2002-10-28 アフィニティー株式会社 自律応答積層体、その製法およびそれを使用した窓
JP2007025276A (ja) * 2005-07-15 2007-02-01 Nitta Ind Corp 熱収縮易剥離ラベル
JP2019044089A (ja) * 2017-09-04 2019-03-22 ニッタ株式会社 感温性粘着剤、感温性粘着シートおよび感温性粘着テープ
JP2019143065A (ja) * 2018-02-22 2019-08-29 ニッタ株式会社 感温性粘着剤、感温性粘着シートおよび感温性粘着テープ
JP2021113310A (ja) * 2020-01-16 2021-08-05 ニッタ株式会社 感温性微粒子

Also Published As

Publication number Publication date
TW202348438A (zh) 2023-12-16

Similar Documents

Publication Publication Date Title
TWI582207B (zh) Sided adhesive sheet and portable electronic machine
TW201529781A (zh) 黏著劑樹脂組合物
CN103930804A (zh) 多重定序的日光重新定向层
TW201026509A (en) Cloud point-resistant adhesives and laminates
KR20160111425A (ko) 자가-습윤 접착제 에멀젼 조성물
CN103688196A (zh) 双面日光重新定向膜
JP2010070761A (ja) ソーラーパネル用感圧接着剤
US9822286B2 (en) Self-wetting adhesive composition
EP2205664A2 (en) (meth)acrylic film and marking film using same
TWI783973B (zh) 自潤濕黏著劑組成物
WO2023182500A1 (ja) 窓材及び透光性屋根材
WO2023182499A1 (ja) 窓材及び透光性屋根材
WO2024005148A1 (ja) 窓材及び透光性屋根材
JP4937463B2 (ja) 透明粘着フィルム又はシートの白化抑制剤及び白化抑制方法
AU2018220192B2 (en) Self-wetting adhesive composition
KR102532647B1 (ko) 재박리형 폴리에틸렌 보호필름
KR20110088298A (ko) 무기재 칼라 점착필름
CN118946709A (en) Window material and light-transmitting roof material
JP2020044658A (ja) インク受容層、レセプタフィルム、グラフィックフィルム、ライセンスプレート及びその製造方法
JPH11140394A (ja) 装飾用粘着シート
KR102429401B1 (ko) 수분산형 수지 조성물, 용이접착 필름 및 수분산형 수지 조성물의 제조 방법
JP2022016080A (ja) 水封止性装飾用接着フィルム
JP7063667B2 (ja) 装飾シート
JP2020084106A (ja) 乗物外装用装飾フィルム
JP2002129120A (ja) リサイクル型水性接着剤組成物

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23775093

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2024509262

Country of ref document: JP

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2023775093

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2023775093

Country of ref document: EP

Effective date: 20241024