WO2023182227A1 - マルチコア光ファイバ - Google Patents
マルチコア光ファイバ Download PDFInfo
- Publication number
- WO2023182227A1 WO2023182227A1 PCT/JP2023/010691 JP2023010691W WO2023182227A1 WO 2023182227 A1 WO2023182227 A1 WO 2023182227A1 JP 2023010691 W JP2023010691 W JP 2023010691W WO 2023182227 A1 WO2023182227 A1 WO 2023182227A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- cladding
- cores
- optical fiber
- mcf
- refractive index
- Prior art date
Links
- 239000013307 optical fiber Substances 0.000 title claims abstract description 54
- 238000005253 cladding Methods 0.000 claims abstract description 114
- 239000011521 glass Substances 0.000 claims abstract description 44
- 239000003550 marker Substances 0.000 claims abstract description 39
- 239000011248 coating agent Substances 0.000 claims abstract description 15
- 238000000576 coating method Methods 0.000 claims abstract description 15
- 239000011347 resin Substances 0.000 claims abstract description 15
- 229920005989 resin Polymers 0.000 claims abstract description 15
- 230000002093 peripheral effect Effects 0.000 claims abstract description 12
- 239000000835 fiber Substances 0.000 description 21
- 230000000052 comparative effect Effects 0.000 description 10
- 238000005286 illumination Methods 0.000 description 9
- 238000010586 diagram Methods 0.000 description 7
- 230000001902 propagating effect Effects 0.000 description 6
- 230000008878 coupling Effects 0.000 description 3
- 238000010168 coupling process Methods 0.000 description 3
- 238000005859 coupling reaction Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 238000003384 imaging method Methods 0.000 description 2
- 230000000644 propagated effect Effects 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/02—Optical fibres with cladding with or without a coating
-
- G—PHYSICS
- G02—OPTICS
- G02B—OPTICAL ELEMENTS, SYSTEMS OR APPARATUS
- G02B6/00—Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
- G02B6/02—Optical fibres with cladding with or without a coating
- G02B6/036—Optical fibres with cladding with or without a coating core or cladding comprising multiple layers
Definitions
- MCF multi-core optical fiber
- a marker having a refractive index different from that of the cladding is introduced into the cladding. It is known that this allows each of a plurality of cores to be identified in a cross section of an MCF cut at an arbitrary position along the longitudinal direction.
- the markers in the cladding are placed at positions with varying distances to the plurality of cores.
- the marker has a diameter smaller than the diameter of the core or a refractive index lower than the refractive index of the core. This suppresses the coupling between the mode propagating within the core and the mode propagating within the marker, and suppresses the mixing of noise into the signal light propagating within the core.
- end face observation is performed using side illumination.
- illumination light is irradiated from the side of the MCF near the cutting position.
- the illumination light is confined in the high refractive index region and propagates with low propagation loss, while it leaks and propagates with high propagation loss in the low refractive index region.
- the higher the refractive index area, the brighter the area, and the lower the refractive index area the darker the area.
- the MCF according to the present disclosure includes a glass optical fiber and a resin coating.
- a glass optical fiber includes a plurality of cores each extending along a central axis (hereinafter referred to as "fiber axis"), a marker extending along the plurality of cores, and a cladding surrounding the plurality of cores and markers.
- the resin coating is provided on the outer peripheral surface of the glass optical fiber.
- the cladding is composed of an inner cladding and an outer cladding.
- the inner cladding is in contact with and surrounds the plurality of cores and markers.
- the outer cladding is provided on the outer peripheral surface of the inner cladding and has a refractive index higher than that of the inner cladding.
- FIG. 1 is a diagram illustrating an example of the structure of an MCF and an example of an apparatus for observing an end face of the MCF according to the present disclosure.
- FIG. 2 is a diagram showing a cross-sectional structure of an MCF according to the present disclosure.
- FIG. 3 is a diagram for explaining examples of cross-sectional structures of the MCF according to the present disclosure and the MCF according to the comparative example.
- the present disclosure has been made to solve the above-mentioned problems, and aims to provide an MCF with a structure that allows stable core identification.
- the MCF of the present disclosure is (1) Includes a glass optical fiber and a resin coating.
- the glass optical fiber includes a plurality of cores each extending along a fiber axis, a marker extending along the plurality of cores, and a cladding surrounding the plurality of cores and the marker.
- the resin coating is provided on the outer peripheral surface of the glass optical fiber.
- the centers of the plurality of cores and the centers of the markers form a planar figure that is rotationally symmetrical once with respect to the center of the cross section, so there is no rotational symmetry.
- the cladding is composed of an inner cladding and an outer cladding.
- the inner cladding is in contact with and surrounds the plurality of cores and markers.
- the outer cladding is provided on the outer peripheral surface of the inner cladding and has a refractive index higher than that of the inner cladding.
- the fiber axis corresponds to the central axis of the MCF.
- the outer peripheral surface of the glass optical fiber corresponds to the outer peripheral surface of the cladding.
- the center of the cross section corresponds to the intersection of the cross section and the fiber axis.
- the MCF of the present disclosure is configured to surround an inner cladding in which a plurality of cores and markers are arranged with an outer cladding having a refractive index higher than the refractive index of the inner cladding.
- observation light illumination light for observing the fiber end face
- a portion of the observation light propagates within the outer cladding. become.
- the brightness of the inner cladding is made uniform overall.
- An end face image is obtained. In other words, variations in the brightness of markers and cores due to the direction of incidence of observation light are effectively suppressed, making it possible to stably identify cores.
- the ratio B/A of the radius B of the inner cladding to the radius A of the outer cladding is 1. /3 or more and 2/3 or less. If the ratio B/A is less than 1/3, the outer cladding becomes too thick, which limits the flexibility in arranging the plurality of cores and markers within the inner cladding. On the other hand, if the ratio B/A is larger than 2/3, the outer cladding becomes too thin, and therefore a sufficient amount of observation light cannot be propagated to the back side of the MCF, which is not irradiated with observation light.
- the absolute value of the relative refractive index difference of the inner cladding based on the refractive index of the outer cladding is 0.02% or more and 0.3% or less. preferable.
- a portion of the observation light is appropriately confined within the outer cladding, so that it can propagate within the outer cladding while being partially coupled to a mode within the inner cladding.
- the arrangement of the centers of the plurality of cores may have rotational symmetry with respect to the center of the cross section.
- FIG. 1 is a diagram illustrating an example of the structure of an MCF and an example of an MCF end face observation device according to the present disclosure (denoted as “end face observation” in FIG. 1).
- observation target (fiber structure) in FIG. 1
- observation device in the lower part of FIG. 1 (denoted as “observation device” in FIG. 1), a schematic structure of an observation device for observing the end face of an MCF according to the present disclosure is shown.
- the MCF 100 which is the observation target shown in the upper part of FIG. 1, includes a glass optical fiber 110 and a resin coating 140 provided on the outer peripheral surface of the glass optical fiber 110.
- Glass optical fiber 110 includes two cores 111 and 112, a cladding 120, and a marker 130. Three or more cores may be applied to the MCF 100.
- the two cores 111 and 112 extend along the fiber axis AX, which is the central axis of the MCF 100.
- Marker 130 extends along the two cores 111, 112.
- the cladding 120 surrounds the two cores 111, 112 and the marker 130. Note that the marker 130 has a refractive index different from that of the cladding 120.
- the cladding 120 includes an inner cladding 121 that surrounds the two cores 111, 112 and the marker 130, and an outer cladding 122 that is provided on the outer peripheral surface of the inner cladding 121 and has a refractive index higher than that of the inner cladding 121.
- an outer cladding 122 that is provided on the outer peripheral surface of the inner cladding 121 and has a refractive index higher than that of the inner cladding 121.
- this observation device includes a light source 501, a mirror element 502, and a camera 503 as an end-view imaging camera.
- the observation light LL is irradiated from the light source 501 to the side of the tip portion of the glass optical fiber 110, including the end face.
- the observation light LL entering the glass optical fiber 110 is emitted from the end face of the glass optical fiber 110 toward the mirror element 502 and is reflected by the mirror element 502 .
- the observation light LL reflected by the mirror element 502 reaches the imaging surface of the camera 503.
- the observation light LL When the observation light LL propagates inside the glass optical fiber 110, the observation light LL is confined in the high refractive index regions such as the two cores 111 and 112 and propagates with low propagation loss, while it propagates with low propagation loss such as the cladding 120. Within the refractive index region, it propagates with high propagation loss while leaking to the outside. Thereby, by providing a sufficient propagation distance, in the end face image of the glass optical fiber 110, higher refractive index regions are displayed brighter, and lower refractive index regions are displayed darker.
- the end face image of the glass optical fiber 110 will not be as visible as the high refractive index region.
- FIG. 2 is a diagram showing the cross-sectional structure of the MCF according to the present disclosure (denoted as "double clad structure" in FIG. 2).
- the upper part of FIG. 2 (referred to as “cross-sectional structure” in FIG. 2) shows the cross-sectional structure of the MCF 100 according to the present disclosure along the line II shown in the upper part of FIG.
- the middle part of FIG. 2 (referred to as "refractive index profile” in FIG. 2), there is shown a refractive index profile 150 showing the refractive index of each part along the line L shown in the upper part of FIG.
- the lower part of FIG. 2 (indicated as "observation light propagation" in FIG.
- the fiber cross section shown in the lower part of FIG. 2 is the cross section of the glass optical fiber 110 from which the resin coating 140 has been removed from the MCF 100, and is the fiber cross section along the I-I line shown in the upper part of FIG. corresponds to a part.
- the glass optical fiber 110 of the MCF 100 includes a cladding 120, and the cladding 120 is a double layer composed of an inner cladding 121 having a diameter of 2B and an outer cladding 122 having a diameter of 2A. It has a clad structure.
- the inner cladding 121 having a diameter of 2B two cores 111 and 112 and a marker 130 are arranged along the longitudinal direction of the MCF 100.
- the arrangement of the centers of the two cores 111 and 112 and the center of the marker 130 has no rotational symmetry because they constitute a planar figure that is rotationally symmetrical once with respect to the center of the cross section. That is, an element arrangement consisting only of the two cores 111 and 112 has rotational symmetry because it constitutes a planar figure with two-fold rotational symmetry, but an element arrangement further including the marker 130 lacks rotational symmetry.
- the MCF 100 includes a refractive index profile 150 as shown in the middle part of FIG. That is, the two cores 111 and 112 arranged to sandwich the fiber axis AX each have a refractive index n1 .
- the inner cladding 121 has a refractive index n 2 lower than the refractive index n 1 of the two cores 111, 112.
- the outer cladding 122 has a refractive index n C that is lower than the refractive index n 1 of the two cores 111, 112 and higher than the refractive index n 2 of the inner cladding 121.
- the refractive index of the cladding 120 means the refractive index nC of the outer cladding 122.
- the refractive index of the marker 130 may be different from the refractive index n2 of the inner cladding 121.
- the refractive index of the marker 130 may have a relative refractive index difference of 0.25% or more with the refractive index n2 of the inner cladding 121. This enables reliable identification.
- the marker 130 may have a refractive index higher than the refractive index n2 , and the product of the relative refractive index difference and the marker radius may be 1.0 [% ⁇ m] or less. This suppresses loss due to coupling of the mode propagating through the core to the mode at the marker.
- each of the cores 111 and 112 of the MCF 100 has at least one mode that guides light with a wavelength of 1550 nm, which is a typical communication wavelength.
- the guided modes of one core have sufficiently low inter-core crosstalk with the guided modes of other cores.
- any core-to-core crosstalk may be ⁇ 60 dB/km or less.
- the noise due to crosstalk becomes negligible.
- the crosstalk between signal lights propagating in opposite directions between any cores may be -60 dB/km, or the crosstalk between signal lights propagating in the same direction may be -60 dB/km. . In this case, by appropriately selecting the propagation direction, the noise due to crosstalk becomes negligible.
- the center-to-center distance between adjacent cores may be 30 ⁇ m or more. Further, the center-to-center distance between adjacent cores may be 50 ⁇ m or less. As a result, even when the outer cladding 122 is made sufficiently thick, leakage loss due to mode coupling from the cores 111 and 112 to the outer cladding 122 can be suppressed. Further, the effective refractive index of the waveguide mode may differ by 0.01% or more between adjacent cores. This suppresses crosstalk even when the center-to-center distance between adjacent cores is short.
- the core diameter may be 8 ⁇ m or more and 15 ⁇ m or less, and the relative refractive index difference between the cores 111 and 112 and the inner cladding 121 may be 0.3% or more and 0.5% or less. This makes it possible to suppress crosstalk and noise due to higher-order modes.
- the observation light LL couples to the cores 111, 112 and the marker 130 while being uniformly dispersed and/or uniformly diffused within the outer cladding 122, the amount of light of the observation light LL coupled to the cores 111, 112 and the marker 130 is stable regardless of the direction of incidence of the observation light LL.
- the ratio B/A of the radius B of the inner cladding 121 to the radius A of the outer cladding 122 is , preferably 1/3 or more and 2/3 or less.
- the ratio B/A is smaller than 1 ⁇ 3
- the outer cladding 122 becomes too thick, and the degree of freedom in arranging the cores 111, 112 and the marker 130 within the inner cladding 121 is restricted.
- the ratio B/A is larger than 2/3, the outer cladding 122 becomes too thin, and a sufficient amount of observation light LL cannot be propagated to the back side of the glass optical fiber 110 where the observation light LL is not irradiated.
- the absolute value of the relative refractive index difference of the inner cladding 121 based on the refractive index nC of the outer cladding 122 is preferably 0.02% or more and 0.3% or less. In this case, since a portion of the observation light LL is appropriately confined within the outer cladding 122, it becomes possible to propagate within the outer cladding 122 while being partially coupled to the mode within the inner cladding 121.
- FIG. 3 is a diagram for explaining an example of the cross-sectional structure of an MCF according to the present disclosure and an MCF according to a comparative example (denoted as "cross-sectional structure" in FIG. 3).
- the cross-sectional structures of the MCF 600A according to the comparative example and the MCF 100A (100) according to the present embodiment are shown.
- the lower part of FIG. 3 denotes “4 cores” in FIG. 3
- cross-sectional structures of an MCF 600B according to a comparative example and an MCF 100B according to the present embodiment are shown. Note that each of the fiber cross sections shown in FIG. 3 corresponds to a part of the fiber cross section along the line II shown in the upper part of FIG.
- the MCF 600A according to the comparative example shown in the upper part of FIG. 3 is a two-core MCF.
- This MCF 600A includes a glass optical fiber 610A and a resin coating 640.
- the glass optical fiber 610A includes two cores 611 and 612 extending along the fiber axis AX, a cladding 620, and a marker 630.
- the cladding 620 in the glass optical fiber 610A has a single structure.
- the MCF 600B according to the comparative example shown in the lower part of FIG. 3 is a four-core MCF.
- This MCF 600B includes a glass optical fiber 610B and a resin coating 640.
- Glass optical fiber 610B includes four cores 611, 612, 613, 614 extending along fiber axis AX, a cladding 620, and a marker 630.
- the cladding 620 in the glass optical fiber 610B has a single structure, similarly to the MCF600A.
- the MCF 100A according to the present embodiment shown in the upper part of FIG. 3 corresponds to the MCF 100 shown in the upper part of FIG. 1 and the upper part of FIG. 2, and is a two-core MCF.
- This MCF 100A includes a glass optical fiber 110A corresponding to the glass optical fiber 110 shown in the upper part of FIG. 1 and the upper part of FIG. 2, and a resin coating 140.
- the glass optical fiber 110A includes two cores 111 and 112 extending along the fiber axis AX, a cladding 120, and a marker 130.
- the cladding 120 in the glass optical fiber 110A includes an inner cladding 121 surrounding the two cores 111, 112 and the marker 130, and is provided on the outer peripheral surface of the inner cladding 121 and has a higher refractive index than the inner cladding 121. It has a double clad structure composed of an outer clad 122.
- the MCF 100B according to the present embodiment shown in the lower part of FIG. 3 is a four-core MCF.
- This MCF 100B includes a glass optical fiber 110B and a resin coating 140.
- Glass optical fiber 110B includes four cores 111, 112, 113, 114 extending along fiber axis AX, a cladding 120, and a marker 130. Similar to MCF 100A, this MCF 100B also has a cladding 120 in the glass optical fiber 110B having a double cladding structure.
- Both MCFs 600A and 600B according to comparative examples have a cladding 620 of a single structure. Therefore, when observing the end face of the MCF using side illumination, the brightness of the two cores 611, 612 and the marker 630 in the cross section may change depending on the incident direction of the observation light LL, which may make core identification difficult. Note that such a problem may similarly occur in the comparative example having four cores 611, 612, 613, and 614.
- the observation light LL enters the glass optical fibers 110A and 110B, and then propagates through the outer cladding 122 while leaking into the inner cladding 121.
- the observation light LL couples to the two cores 111, 112 and the marker 130 after being uniformly dispersed and/or uniformly diffused within the outer cladding 122.
- the light amount of the observation light LL is stabilized regardless of the direction of incidence of the observation light LL.
- Such an effect can be similarly obtained in this embodiment having four cores 111, 112, 113, and 114.
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Optics & Photonics (AREA)
- Mechanical Coupling Of Light Guides (AREA)
Abstract
Description
本願は、2022年3月24日に出願された日本特許出願第2022-048368号による優先権を主張するものであり、その内容に依拠すると共に、その全体を参照して本明細書に組み込む。
発明者らは、上述の従来技術について検討した結果、以下のような課題を発見した。すなわち、上述の従来技術では、側方照明によりMCFの端面観察を行なう際、照明光がファイバのどちらの側方から入射するかによって端面内のマーカーやコアの明るさが変わってしまい、コア識別が難しくなる場合がある。
本開示のMCFによれば、コア識別を安定的に行うことが可能になる。
最初に本開示の実施形態の内容をそれぞれ個別に列挙して説明する。
(1)ガラス光ファイバと、樹脂被覆と、を備える。ガラス光ファイバは、ファイバ軸に沿ってそれぞれ伸びた複数のコアと、複数のコアに沿って伸びたマーカーと、複数のコアおよびマーカーを取り囲むクラッドと、を含む。樹脂被覆は、ガラス光ファイバの外周面上に設けられている。特に、ファイバ軸に直交したMCFの断面上において、複数のコアの中心とマーカーの中心の配置は、断面の中心に対して1回回転対称の平面図形を構成するため回転対称性がない。さらに、クラッドは、内側クラッドと外側クラッドにより構成される。内側クラッドは、複数のコアおよびマーカーに接触した状態で、これら複数のコアとマーカーを取り囲んでいる。外側クラッドは、内側クラッドの外周面上に設けられ、内側クラッドの屈折率よりも高い屈折率を有する。なお、ファイバ軸は、当該MCFの中心軸に相当する。ガラス光ファイバの外周面は、クラッドの外周面に相当する。断面の中心は、断面とファイバ軸が交差する位置に相当する。
以下、本開示のMCFの具体的な構造を、添付図面を参照しながら詳細に説明する。なお、本開示は、これらの例示に限定されるものではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内での全ての変更が含まれることが意図される。また、図面の説明において同一の要素には同一符号を付して重複する説明を省略する。
110、110A、110B…ガラス光ファイバ
111、112、113、114…コア
120…クラッド
121…内側クラッド
122…外側クラッド
130…マーカー
140…樹脂被覆
150…屈折率プロファイル
501…光源
502…ミラー要素
503…カメラ
AX…ファイバ軸
L…線
LL…観察光
Claims (4)
- 中心軸に沿ってそれぞれ伸びた複数のコアと、前記複数のコアに沿って伸びたマーカーと、前記複数のコアおよび前記マーカーを取り囲むクラッドと、を含むガラス光ファイバと、
前記ガラス光ファイバの外周面上に設けられた樹脂被覆と、
を備えたマルチコア光ファイバであって、
前記中心軸に直交した前記マルチコア光ファイバの断面上において、前記複数のコアの中心と前記マーカーの中心の配置は、前記断面の中心に対して回転対称性がなく、
前記クラッドは、前記複数のコアと前記マーカーを取り囲む内側クラッドと、前記内側クラッドの外周面上に設けられるとともに前記内側クラッドの屈折率よりも高い屈折率を有する外側クラッドと、を含む、
マルチコア光ファイバ。 - 前記マルチコア光ファイバの前記断面上において、前記外側クラッドの半径Aに対する前記内側クラッドの半径Bの比B/Aは、1/3以上2/3以下である、
請求項1に記載のマルチコア光ファイバ。 - 前記外側クラッドの屈折率を基準とした、前記内側クラッドの比屈折率差の絶対値は、0.02%以上0.3%以下である、
請求項1または請求項2に記載のマルチコア光ファイバ。 - 前記複数のコアの中心の配置は、前記断面の中心に対して回転対称性がある、
請求項1から請求項3のいずれか一項に記載のマルチコア光ファイバ。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022048368 | 2022-03-24 | ||
JP2022-048368 | 2022-03-24 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023182227A1 true WO2023182227A1 (ja) | 2023-09-28 |
Family
ID=88101019
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/010691 WO2023182227A1 (ja) | 2022-03-24 | 2023-03-17 | マルチコア光ファイバ |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2023182227A1 (ja) |
Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011170099A (ja) | 2010-02-18 | 2011-09-01 | Sumitomo Electric Ind Ltd | マルチコア光ファイバ |
JP2013033865A (ja) * | 2011-08-02 | 2013-02-14 | Mitsubishi Cable Ind Ltd | 光ファイバおよび光ファイバの製造方法 |
CN104035166A (zh) * | 2014-05-23 | 2014-09-10 | 武汉锐科光纤激光器技术有限责任公司 | 基于多芯光纤的高功率激光合束器 |
JP2014197094A (ja) * | 2013-03-29 | 2014-10-16 | 住友電気工業株式会社 | マルチコア光ファイバ |
WO2020217939A1 (ja) * | 2019-04-25 | 2020-10-29 | 日本電信電話株式会社 | マルチコア光ファイバ及び設計方法 |
JP2022048368A (ja) | 2018-08-31 | 2022-03-25 | 株式会社ユニバーサルエンターテインメント | 遊技機 |
WO2022085534A1 (ja) * | 2020-10-23 | 2022-04-28 | 住友電気工業株式会社 | マルチコア光ファイバ |
WO2022210786A1 (ja) * | 2021-04-01 | 2022-10-06 | 住友電気工業株式会社 | マルチコア光ファイバ及びコア識別方法 |
-
2023
- 2023-03-17 WO PCT/JP2023/010691 patent/WO2023182227A1/ja active Application Filing
Patent Citations (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011170099A (ja) | 2010-02-18 | 2011-09-01 | Sumitomo Electric Ind Ltd | マルチコア光ファイバ |
JP2013033865A (ja) * | 2011-08-02 | 2013-02-14 | Mitsubishi Cable Ind Ltd | 光ファイバおよび光ファイバの製造方法 |
JP2014197094A (ja) * | 2013-03-29 | 2014-10-16 | 住友電気工業株式会社 | マルチコア光ファイバ |
CN104035166A (zh) * | 2014-05-23 | 2014-09-10 | 武汉锐科光纤激光器技术有限责任公司 | 基于多芯光纤的高功率激光合束器 |
JP2022048368A (ja) | 2018-08-31 | 2022-03-25 | 株式会社ユニバーサルエンターテインメント | 遊技機 |
WO2020217939A1 (ja) * | 2019-04-25 | 2020-10-29 | 日本電信電話株式会社 | マルチコア光ファイバ及び設計方法 |
WO2022085534A1 (ja) * | 2020-10-23 | 2022-04-28 | 住友電気工業株式会社 | マルチコア光ファイバ |
WO2022210786A1 (ja) * | 2021-04-01 | 2022-10-06 | 住友電気工業株式会社 | マルチコア光ファイバ及びコア識別方法 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US4252403A (en) | Coupler for a graded index fiber | |
JP7326933B2 (ja) | マルチコア光ファイバ | |
JP5782502B2 (ja) | マルチコアファイバ、及び、それを用いたマルチコアファイバの接続方法 | |
US11828978B2 (en) | Multi-core optical fiber and multi-core optical fiber cable | |
WO2017217539A1 (ja) | 結合型マルチコア光ファイバの軸合わせ方法 | |
JP3888942B2 (ja) | 光ファイバ部品 | |
US20190033512A1 (en) | Optical device | |
US11604312B2 (en) | Multi-core optical fiber and multi-core optical fiber cable | |
WO2023182227A1 (ja) | マルチコア光ファイバ | |
US11333828B2 (en) | Optical connection component | |
JP2004157530A (ja) | 光モジュール | |
JP7227255B2 (ja) | ブリッジファイバ、マルチコアファイバユニット、多芯ブリッジファイバ、及び、多芯マルチコアファイバユニット | |
US20230185017A1 (en) | Multi-core optical fiber and multi-core optical fiber cable | |
JP2000147334A (ja) | モードコンディショナ付き光送信器 | |
JP3680565B2 (ja) | モードコンディショナ | |
JPS62141506A (ja) | 光分波合波器 | |
TW202232156A (zh) | 用於多芯光纖的小型雙偏光耦合器 | |
JP2016212414A (ja) | 導波路用結合回路 | |
KR20010109797A (ko) | 탭 커플러 | |
WO2024171835A1 (ja) | マルチコアファイバ | |
JPH0815535A (ja) | イメージファイバー | |
WO2023176798A1 (ja) | マルチコア光ファイバ、光コンバイナ、およびファイバ特性測定方法 | |
WO2024018737A1 (ja) | 光ファイバの端面観察装置及び光ファイバの端面観察方法 | |
WO2024166598A1 (ja) | マルチコア光ファイバおよびマルチコア光ファイバケーブル | |
JPS6055801B2 (ja) | 光回路素子 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23774822 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2024510135 Country of ref document: JP Kind code of ref document: A |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2023774822 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2023774822 Country of ref document: EP Effective date: 20241024 |