[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2023177100A1 - Cooling module - Google Patents

Cooling module Download PDF

Info

Publication number
WO2023177100A1
WO2023177100A1 PCT/KR2023/002304 KR2023002304W WO2023177100A1 WO 2023177100 A1 WO2023177100 A1 WO 2023177100A1 KR 2023002304 W KR2023002304 W KR 2023002304W WO 2023177100 A1 WO2023177100 A1 WO 2023177100A1
Authority
WO
WIPO (PCT)
Prior art keywords
radiator
auxiliary
discharge port
inlet port
main
Prior art date
Application number
PCT/KR2023/002304
Other languages
French (fr)
Korean (ko)
Inventor
김영삼
Original Assignee
한온시스템 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한온시스템 주식회사 filed Critical 한온시스템 주식회사
Priority to CN202380025211.8A priority Critical patent/CN118805020A/en
Publication of WO2023177100A1 publication Critical patent/WO2023177100A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60KARRANGEMENT OR MOUNTING OF PROPULSION UNITS OR OF TRANSMISSIONS IN VEHICLES; ARRANGEMENT OR MOUNTING OF PLURAL DIVERSE PRIME-MOVERS IN VEHICLES; AUXILIARY DRIVES FOR VEHICLES; INSTRUMENTATION OR DASHBOARDS FOR VEHICLES; ARRANGEMENTS IN CONNECTION WITH COOLING, AIR INTAKE, GAS EXHAUST OR FUEL SUPPLY OF PROPULSION UNITS IN VEHICLES
    • B60K11/00Arrangement in connection with cooling of propulsion units
    • B60K11/06Arrangement in connection with cooling of propulsion units with air cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P11/00Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
    • F01P11/02Liquid-coolant filling, overflow, venting, or draining devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P11/00Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
    • F01P11/02Liquid-coolant filling, overflow, venting, or draining devices
    • F01P11/029Expansion reservoirs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P11/00Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
    • F01P11/04Arrangements of liquid pipes or hoses
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P11/00Component parts, details, or accessories not provided for in, or of interest apart from, groups F01P1/00 - F01P9/00
    • F01P11/08Arrangements of lubricant coolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/18Arrangements or mounting of liquid-to-air heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/18Arrangements or mounting of liquid-to-air heat-exchangers
    • F01P2003/182Arrangements or mounting of liquid-to-air heat-exchangers with multiple heat-exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P3/00Liquid cooling
    • F01P3/18Arrangements or mounting of liquid-to-air heat-exchangers
    • F01P2003/185Arrangements or mounting of liquid-to-air heat-exchangers arranged in parallel

Definitions

  • the present invention relates to a cooling module in which a plurality of heat exchangers are stacked and combined for cooling an automobile engine and cooling an air conditioner refrigerant.
  • the cooling module is mounted on the front end module carrier at the front of the vehicle to cool the car's engine and air conditioner refrigerant.
  • the condenser and radiator are stacked side by side with a certain distance apart, and a fan shroud assembly is formed on one side of the radiator to cool the vehicle. During the process, it is formed into a structure that causes heat exchange in the condenser and radiator by the flow of air or the driving of the cooling fan.
  • Figure 1 is a schematic diagram showing a conventional cooling module.
  • a condenser 30, a second radiator 21, a first radiator 11, and a fan shroud 40 are arranged side by side from upstream to downstream in the direction of air flow. It may be configured in a stacked arrangement.
  • the first radiator 11 may be an engine radiator for cooling the engine
  • the second radiator 21 may be an electrical radiator for cooling electrical components.
  • an oil cooler for cooling the transmission oil may be disposed on the upstream side of the condenser 30.
  • cooling performance may be insufficient with just one engine radiator, so cooling performance can be increased by connecting an additional auxiliary radiator.
  • the conventional engine radiator has only one inlet port and one outlet port connected to the engine, an additional structure is required to connect the engine radiator to a separate auxiliary radiator.
  • the present invention was created to solve the problems described above.
  • the purpose of the present invention is to configure an additional coolant inlet and outlet port on the engine radiator so that an additional auxiliary radiator can be connected to the engine radiator, so that in the case of engines requiring high heat dissipation performance, It provides a cooling module that facilitates coolant connection between the engine radiator and auxiliary radiator and improves engine cooling performance.
  • the cooling module of the present invention for achieving the above-described object includes a first radiator; and a second radiator stacked on an upstream side of the first radiator in the direction of cooling air flow. It includes, wherein the first radiator is connected to the engine, forming a main inlet port through which coolant flows in and a main discharge port through which coolant is discharged, and overlapping with the first radiator and the second radiator in the direction of flow of cooling air.
  • An auxiliary discharge port through which coolant is discharged and an auxiliary inlet port through which coolant flows in are formed by being connected to a third radiator installed in a position where the coolant is not used.
  • the auxiliary discharge port and the auxiliary inlet port may be formed to extend toward the third radiator. .
  • auxiliary inlet port and the auxiliary discharge port may extend toward the upstream side in the flow direction of cooling air, and the main inlet port and main discharge port may extend toward the downstream side in the flow direction of cooling air.
  • the first radiator includes a pair of header tanks spaced apart in the longitudinal direction and a plurality of tubes connected at both ends to the pair of header tanks, and the main inlet port and the auxiliary discharge port are connected to the pair of header tanks. It is formed in one of the header tanks, and the main discharge port and auxiliary inlet port may be formed in the other header tank.
  • auxiliary inlet port and the auxiliary discharge port may be formed to expand outward in the longitudinal direction toward the upstream side in the flow direction of cooling air from the first radiator.
  • auxiliary discharge port may be disposed lower in the height direction than the main inlet port.
  • main inlet port and the auxiliary discharge port may be disposed adjacent to each other at the upper side in the direction of gravity.
  • auxiliary inlet port may be disposed higher in the height direction than the main discharge port.
  • auxiliary discharge port or auxiliary inlet port is located at a position corresponding to the refrigerant inlet pipe and the refrigerant outlet pipe of the condenser. It may be disposed longitudinally outside the refrigerant inlet pipe and the refrigerant outlet pipe of the condenser.
  • the auxiliary discharge port or auxiliary inlet port is located at a position corresponding to the oil inlet pipe and the oil outlet pipe of the oil cooler. It may be disposed longitudinally outside the oil inlet pipe and oil outlet pipe of the oil cooler.
  • auxiliary outlet port may be placed adjacent to the main inlet port.
  • the second radiator has an inlet pipe and an outlet pipe extending downstream in the direction of cooling air flow, and at least one of a pair of header tanks of the first radiator includes an inlet pipe of the second radiator and A concave insertion groove may be formed into which the outlet pipe is inserted and disposed.
  • it may further include at least one third radiator connected to the auxiliary discharge port and auxiliary inlet port of the first radiator.
  • it may further include fan shrouds stacked on the downstream side of the first radiator in the direction of cooling air flow.
  • the engine radiator of the present invention includes a pair of header tanks arranged to be spaced apart from each other in the longitudinal direction; a plurality of tubes connected at both ends to the pair of header tanks; a main inlet port and an auxiliary inlet port formed in one of the pair of header tanks through which coolant flows; and a main discharge port and an auxiliary discharge port formed in one of the pair of header tanks through which coolant is discharged. It can be done including.
  • main inlet port and the auxiliary discharge port may be formed in one of the pair of header tanks, and the main discharge port and the auxiliary inlet port may be formed in the other header tank.
  • auxiliary inlet port and the auxiliary discharge port may extend toward the upstream side in the flow direction of cooling air, and the main inlet port and main discharge port may extend toward the downstream side in the flow direction of cooling air.
  • auxiliary inlet port and the auxiliary discharge port may be formed to expand outward in the longitudinal direction toward the upstream side in the flow direction of the cooling air.
  • auxiliary discharge port may be disposed lower in the height direction than the main inlet port.
  • main inlet port and the auxiliary discharge port may be disposed adjacent to each other at the upper side in the direction of gravity.
  • auxiliary inlet port may be disposed higher in the height direction than the main discharge port.
  • the cooling module of the present invention has the advantage of facilitating coolant connection between the engine radiator and a separate auxiliary radiator and improving engine cooling performance.
  • Figure 1 is a schematic diagram showing a conventional cooling module.
  • 2 to 5 are a perspective view, front view, and plan view showing an engine radiator in a cooling module according to an embodiment of the present invention.
  • 6 to 11 are an assembled perspective view, front view, top view, and side view showing a cooling module according to an embodiment of the present invention.
  • FIGS. 6 to 11 are assembled perspective views showing a cooling module according to an embodiment of the present invention. Front view, top view and side view.
  • the cooling module of the present invention may be largely composed of a first radiator 100, a second radiator 200, a condenser 300, and an oil cooler 400, and the cooling air is supplied to the oil cooler 400. ) may flow in the direction toward the first radiator 100.
  • the first radiator 100 may be an engine radiator 100.
  • the engine radiator 100 is connected to the engine of the vehicle to circulate coolant, and the engine radiator 100 may serve to cool the coolant.
  • the second radiator 200 may be a full-length radiator 200.
  • the full-length radiator 200 may be stacked and arranged on the upstream side of the engine radiator 100 in the width direction, which is the flow direction of cooling air.
  • the full-length radiator 200 may be coupled to and fixed to the engine radiator 100.
  • the automotive radiator 200 is connected to electrical components that generate heat, such as a vehicle's motor or inverter, and circulates coolant.
  • the electrical radiator 200 may serve to cool the coolant.
  • the condenser 300 may be stacked and arranged on the upstream side of the full-length radiator 200 in the width direction, which is the flow direction of cooling air.
  • the condenser 300 may be coupled to and fixed to the full-length radiator 200.
  • the condenser 300 is connected to the vehicle's air conditioning system to circulate the refrigerant, and the condenser 300 can cool and condense the gaseous refrigerant and change it into liquid refrigerant.
  • the oil cooler 400 may be stacked and arranged on the upstream side of the condenser 300 in the width direction, which is the flow direction of cooling air.
  • the oil cooler 400 may be coupled to and fixed to the condenser 300.
  • the oil cooler 400 is connected to the vehicle's transmission to circulate transmission oil, and the oil cooler 400 may serve to cool the transmission oil.
  • fan shrouds may be stacked and arranged on the downstream side of the engine radiator 100 in the width direction, which is the flow direction of cooling air, and the fan shrouds may be coupled and fixed to the engine radiator 100.
  • the fan shroud can drive a fan to force the cooling air to pass through the heat exchangers.
  • a third radiator which is an auxiliary radiator, may be installed at a location that does not overlap the engine radiator 100, full-length radiator 200, condenser 300, and oil cooler 400 in the direction of cooling air flow. That is, the third radiator is not disposed on the flow path of the cooling air passing through the engine radiator 100, the full-length radiator 200, the condenser 300, and the oil cooler 400, and the third radiator is spaced apart from them. It can be placed in a location. Additionally, a third radiator may be separately installed outside the assembly in which the engine radiator 100, the full-length radiator 200, the condenser 300, and the oil cooler 400 are combined.
  • the engine radiator 100 may include a pair of header tanks 110 and a plurality of tubes 120, and may further include a plurality of fins 130.
  • the pair of header tanks 110 may be arranged side by side and spaced apart in the longitudinal direction, and the plurality of tubes 120 may be connected to the pair of header tanks 110 at both ends to communicate.
  • one of the pair of header tanks 110 may have a main inlet port 111 through which coolant flows, and a main discharge port 112 through which coolant flows out may be formed in the other header tank.
  • an auxiliary discharge port 113 may be formed in the header tank in which the main inlet port 111 is formed, and an auxiliary inlet port 114 may be formed in the header tank in which the main discharge port 112 is formed.
  • the coolant flows from the engine into one header tank 110 through the main inlet port 111, the coolant flows into the other header tank 110 through a plurality of tubes 120, and at this time, a portion of the coolant is It may flow into the third radiator through the auxiliary discharge port 113, then flow into another header tank 110 through the auxiliary inlet port 114, and then be sent back to the engine through the main discharge port 112.
  • the auxiliary inlet port 114 and the auxiliary discharge port 113 extend toward the upstream side in the flow direction of the cooling air, and the main inlet port 111 and the main discharge port 112 extend in the flow direction of the cooling air. It may be formed to extend toward the downstream side.
  • the cooling module of the present invention can improve cooling performance by cooling the coolant by connecting the engine radiator and a separate auxiliary radiator in parallel, so it can be applied to engines that require high heat dissipation performance.
  • the coolant flowing into one header tank of the engine radiator 100 from the engine side through the main inlet port 111 flows to the auxiliary radiator through the auxiliary discharge port 113 of the header tank on the same side, so the coolant of the auxiliary radiator It is advantageous for heat exchange performance.
  • the main inlet port 111 and the auxiliary discharge port 113 are formed adjacent to each other, so that the heat exchange performance of the auxiliary radiator can be further improved. If they are spaced apart from each other in the longitudinal direction of the header tank or are formed on different header tanks, they may flow to the auxiliary radiator after some heat exchange in the engine radiator 100, which may be detrimental to the heat exchange performance of the auxiliary radiator.
  • the main inlet port 111 and the auxiliary discharge port 113 are adjacent to each other and are located on the upper side in the direction of gravity, so that they can easily flow by gravity.
  • auxiliary inlet port 114 and the auxiliary discharge port 113 may be formed in a shape that expands outward in the longitudinal direction toward the upstream side in the flow direction of cooling air in the engine radiator 100. Therefore, the auxiliary inlet port 114 and auxiliary discharge port 113 interfere with the full-length radiator 200, condenser 300, and oil cooler 400 disposed upstream of the engine radiator 100 in the direction of cooling air flow. You can prevent it from happening. In addition, not only can interference be avoided, but the piping connected to the auxiliary discharge port 113 and auxiliary inlet port 114 of the third radiator and the engine radiator is less bent, so that the length of the connecting pipe is reduced compared to when it is bent a lot. There is also an effect of reducing .
  • the auxiliary discharge port 113 is disposed lower in the height direction (gravity direction) than the main inlet port 111, and the auxiliary inlet port 114 is disposed higher in the height direction (gravity direction) than the main discharge port 112. can be placed in At this time, the auxiliary discharge port 113 and the auxiliary inlet port 114 may be arranged at the same height in the height direction.
  • the coolant passes through the engine radiator 100 through the main inlet port 111 and then diverges from the flow path discharged to the main discharge port 112 and then rejoins the auxiliary inlet port 114 and the auxiliary discharge port 113. ) is placed, so the coolant can flow more smoothly.
  • auxiliary discharge port 113 and the auxiliary inlet port 114 may be formed to protrude in the longitudinal direction from the header tank 110, respectively.
  • a protrusion 116 is formed in the longitudinal direction of the header tank 110 based on the outer surface of the header tank 110 in the longitudinal direction of the engine radiator 100, and an auxiliary discharge port is formed at the protrusion 116. (113) and the auxiliary inlet port 114 may be formed in an extended form. Therefore, it is possible to prevent the auxiliary inlet port 114 and auxiliary discharge port 113 from interfering with the full-length radiator 200, condenser 300, and oil cooler 400 disposed upstream of the engine radiator 100. .
  • auxiliary discharge port 113 or auxiliary inlet port 114 is connected to the refrigerant inlet pipe 310 of the condenser 300 at a position corresponding to the refrigerant inlet pipe 310 and the refrigerant outlet pipe 320 of the condenser 300. and may be disposed longitudinally outside the refrigerant outlet pipe 320.
  • the auxiliary inlet port 114 and the auxiliary discharge port 113 from interfering with the refrigerant inlet pipe 310 and the refrigerant outlet pipe 320 of the condenser 300.
  • auxiliary discharge port 113 or auxiliary inlet port 114 is located at a position corresponding to the oil inlet pipe 410 and the oil outlet pipe 420 of the oil cooler 400. ) and may be arranged longitudinally outside the oil outlet pipe 420. Thus, it is possible to prevent the auxiliary inlet port 114 and the auxiliary discharge port 113 from interfering with the oil inlet pipe 410 and the oil outlet pipe 420 of the oil cooler 400.
  • auxiliary discharge port 113 may be placed adjacent to the main inlet port 111. Therefore, the coolant flowing into the header tank 110 through the main inlet port 111 can easily flow not only through the plurality of tubes 120 but also into a separate auxiliary radiator through the auxiliary discharge port 113.
  • the full-length radiator 200 has an inlet pipe 210 and an outlet pipe 220 extending toward the downstream side in the flow direction of the cooling air, and is connected to any of the pair of header tanks 110 of the engine radiator 100. At least one concave insertion groove 115 is formed, and the inlet pipe 210 and the outlet pipe 220 of the full-length radiator 200 can be inserted and disposed in the insertion groove 115. As a result, the cooling module can be configured more compactly.
  • the cooling module of the present invention may be configured to further include at least one separate auxiliary radiator connected to the auxiliary discharge port 113 and the auxiliary inlet port 114 of the engine radiator 100, as described above, It may further include a fan shroud arranged in a stack on the downstream side of the engine radiator 100 in the direction of air flow.
  • first radiator engine radiator
  • 110 header tank
  • 113 auxiliary discharge port
  • 114 auxiliary inlet port

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Transportation (AREA)
  • Heat-Exchange Devices With Radiators And Conduit Assemblies (AREA)

Abstract

The present invention relates to a cooling module comprising a first radiator and a second radiator which is stacked and arranged at the upstream side of the first radiator, in the flow direction of cooling air, wherein the first radiator has a main inlet port which is connected to an engine and through which cooling water is introduced, a main discharge port through which the cooling water is discharged, an auxiliary inlet port through which the cooling water is introduced, and an auxiliary discharge port which discharges the cooling water by being connected to a third radiator provided at a location not overlapping, in the flow direction of the cooling air, with the first radiator and the second radiator, so that the first radiator can be easily connected to the third radiator and cooling performance can be improved.

Description

쿨링 모듈cooling module
본 발명은 자동차의 엔진 냉각과 에어컨 냉매의 냉각 등을 위한 복수의 열교환기가 적층되어 결합되는 쿨링 모듈에 관한 것이다.The present invention relates to a cooling module in which a plurality of heat exchangers are stacked and combined for cooling an automobile engine and cooling an air conditioner refrigerant.
일반적으로 쿨링 모듈은 자동차의 엔진 냉각과 에어컨 냉매의 냉각을 위해 차량 전방의 프론트 엔드 모듈 캐리어에 장착되고, 응축기와 라디에이터가 일정거리 이격되어 나란히 적층 구성되며 라디에이터의 일면에 팬 슈라우드 조립체가 구성되어 차량의 진행시 공기의 유동 또는 냉각팬의 구동에 의해 응축기 및 라디에이터에서 열교환을 일으키는 구조로 형성된다.Generally, the cooling module is mounted on the front end module carrier at the front of the vehicle to cool the car's engine and air conditioner refrigerant. The condenser and radiator are stacked side by side with a certain distance apart, and a fan shroud assembly is formed on one side of the radiator to cool the vehicle. During the process, it is formed into a structure that causes heat exchange in the condenser and radiator by the flow of air or the driving of the cooling fan.
도 1은 종래의 쿨링 모듈을 나타낸 개략도이다.Figure 1 is a schematic diagram showing a conventional cooling module.
일례로 종래의 쿨링 모듈은 도 1과 같이 공기의 유동방향으로 상류측에서 하류측 방향으로 응축기(30), 제2라디에이터(21), 제1라디에이터(11) 및 팬 슈라우드(40)가 나란하게 적층 배열된 형태로 구성될 수 있다. 여기에서 제1라디에이터(11)는 엔진을 냉각시키기 위한 엔진 라디에이터가 될 수 있고, 제2라디에이터(21)는 전장부품을 냉각시키기 위한 전장 라디에이터가 될 수 있다. 또한, 도시되지는 않았으나 응축기(30)의 상류측에는 변속기 오일의 냉각을 위한 오일 쿨러가 배치될 수도 있다.For example, in a conventional cooling module, as shown in FIG. 1, a condenser 30, a second radiator 21, a first radiator 11, and a fan shroud 40 are arranged side by side from upstream to downstream in the direction of air flow. It may be configured in a stacked arrangement. Here, the first radiator 11 may be an engine radiator for cooling the engine, and the second radiator 21 may be an electrical radiator for cooling electrical components. In addition, although not shown, an oil cooler for cooling the transmission oil may be disposed on the upstream side of the condenser 30.
최근에는 높은 방열 성능이 필요한 엔진의 경우 하나의 엔진 라디에이터만으로는 냉각 성능이 부족할 수 있으므로, 추가적인 보조 라디에이터를 연결하여 냉각 성능을 증대시킬 수 있다.Recently, for engines that require high heat dissipation performance, cooling performance may be insufficient with just one engine radiator, so cooling performance can be increased by connecting an additional auxiliary radiator.
그런데 종래의 엔진 라디에이터는 엔진측과 연결되는 하나의 입구 포트 및 하나의 출구 포트만 형성되어 있으므로, 엔진 라디에이터를 별도의 보조라디에이터와 연결하기 위해서는 추가적인 구조가 필요하다.However, since the conventional engine radiator has only one inlet port and one outlet port connected to the engine, an additional structure is required to connect the engine radiator to a separate auxiliary radiator.
[선행기술문헌] [Prior art literature]
[특허문헌][Patent Document]
KR 10-2205847 B1 (2021.01.15.)KR 10-2205847 B1 (2021.01.15.)
본 발명은 상술한 바와 같은 문제점을 해결하기 위하여 안출된 것으로서, 본 발명의 목적은 엔진 라디에이터에 추가적인 보조 라디에이터를 연결할 수 있도록 엔진 라디에이터에 추가적인 냉각수 입출구 포트를 구성하여, 높은 방열 성능이 필요한 엔진의 경우에 적용하여 엔진 라디에이터와 보조 라디에이터 간의 냉각수 연결이 용이하며 엔진의 냉각 성능을 향상시킬 수 있는 쿨링 모듈을 제공하는 것이다.The present invention was created to solve the problems described above. The purpose of the present invention is to configure an additional coolant inlet and outlet port on the engine radiator so that an additional auxiliary radiator can be connected to the engine radiator, so that in the case of engines requiring high heat dissipation performance, It provides a cooling module that facilitates coolant connection between the engine radiator and auxiliary radiator and improves engine cooling performance.
상기한 바와 같은 목적을 달성하기 위한 본 발명의 쿨링 모듈은, 제1라디에이터; 및 냉각 공기의 유동방향으로 상기 제1라디에이터의 상류측에 적층 배치된 제2라디에이터; 를 포함하여 이루어지고, 상기 제1라디에이터는, 엔진과 연결되어 냉각수가 유입되는 메인 유입 포트 및 냉각수가 배출되는 메인 배출 포트가 형성되고 상기 제1라디에이터 및 제2라디에이터와 냉각 공기의 유동방향으로 중첩되지 않는 위치에 설치된 제3 라디에이터에 연결되어 냉각수가 배출되는 보조 배출 포트 및 냉각수가 유입되는 보조 유입 포트가 형성되며, 상기 보조 배출 포트 및 보조 유입 포트는 상기 제3라디에이터를 향해 연장 형성될 수 있다.The cooling module of the present invention for achieving the above-described object includes a first radiator; and a second radiator stacked on an upstream side of the first radiator in the direction of cooling air flow. It includes, wherein the first radiator is connected to the engine, forming a main inlet port through which coolant flows in and a main discharge port through which coolant is discharged, and overlapping with the first radiator and the second radiator in the direction of flow of cooling air. An auxiliary discharge port through which coolant is discharged and an auxiliary inlet port through which coolant flows in are formed by being connected to a third radiator installed in a position where the coolant is not used. The auxiliary discharge port and the auxiliary inlet port may be formed to extend toward the third radiator. .
또한, 상기 보조 유입 포트 및 보조 배출 포트는 냉각 공기의 유동방향으로 상류측을 향해 연장 형성되며, 상기 메인 유입 포트 및 메인 배출 포트는 냉각 공기의 유동방향으로 하류측을 향해 연장 형성될 수 있다.Additionally, the auxiliary inlet port and the auxiliary discharge port may extend toward the upstream side in the flow direction of cooling air, and the main inlet port and main discharge port may extend toward the downstream side in the flow direction of cooling air.
또한, 상기 제1라디에이터는 길이방향으로 이격되어 배치된 한 쌍의 헤더탱크 및 상기 한 쌍의 헤더탱크에 양단이 연결된 복수의 튜브를 포함하고, 상기 메인 유입 포트 및 보조 배출 포트는 상기 한 쌍의 헤더탱크 중 어느 하나의 헤더탱크에 형성되며, 상기 메인 배출 포트 및 보조 유입 포트는 다른 하나의 헤더탱크에 형성될 수 있다.In addition, the first radiator includes a pair of header tanks spaced apart in the longitudinal direction and a plurality of tubes connected at both ends to the pair of header tanks, and the main inlet port and the auxiliary discharge port are connected to the pair of header tanks. It is formed in one of the header tanks, and the main discharge port and auxiliary inlet port may be formed in the other header tank.
또한, 상기 보조 유입 포트 및 보조 배출 포트는 상기 제1라디에이터에서 냉각 공기의 유동방향으로 상류측으로 갈수록 길이방향 바깥쪽으로 벌어진 형태로 형성될 수 있다.In addition, the auxiliary inlet port and the auxiliary discharge port may be formed to expand outward in the longitudinal direction toward the upstream side in the flow direction of cooling air from the first radiator.
또한, 상기 보조 배출 포트는 메인 유입 포트보다 높이방향으로 아래쪽에 배치될 수 있다.Additionally, the auxiliary discharge port may be disposed lower in the height direction than the main inlet port.
또한, 상기 메인 유입 포트 및 보조 배출 포트는 중력방향으로 상측에 서로 인접하게 배치될 수 있다.Additionally, the main inlet port and the auxiliary discharge port may be disposed adjacent to each other at the upper side in the direction of gravity.
또한, 상기 보조 유입 포트는 메인 배출 포트보다 높이방향으로 위쪽에 배치될 수 있다.Additionally, the auxiliary inlet port may be disposed higher in the height direction than the main discharge port.
또한, 냉각 공기의 유동방향으로 상기 제2라디에이터의 상류측에 적층 배치된 응축기를 더 포함하여 이루어지고, 상기 보조 배출 포트 또는 보조 유입 포트는 상기 응축기의 냉매 입구 파이프 및 냉매 출구 파이프에 대응되는 위치에서 상기 응축기의 냉매 입구 파이프 및 냉매 출구 파이프보다 길이방향 바깥쪽에 배치될 수 있다.In addition, it further includes a condenser stacked on an upstream side of the second radiator in the direction of cooling air flow, and the auxiliary discharge port or auxiliary inlet port is located at a position corresponding to the refrigerant inlet pipe and the refrigerant outlet pipe of the condenser. It may be disposed longitudinally outside the refrigerant inlet pipe and the refrigerant outlet pipe of the condenser.
또한, 냉각 공기의 유동방향으로 상기 응축기의 상류측에 적층 배치된 오일 쿨러를 더 포함하여 이루어지고, 상기 보조 배출 포트 또는 보조 유입 포트는 상기 오일 쿨러의 오일 입구 파이프 및 오일 출구 파이프에 대응되는 위치에서 상기 오일 쿨러의 오일 입구 파이프 및 오일 출구 파이프보다 길이방향 바깥쪽에 배치될 수 있다.In addition, it further includes an oil cooler arranged in a stack on the upstream side of the condenser in the flow direction of the cooling air, and the auxiliary discharge port or auxiliary inlet port is located at a position corresponding to the oil inlet pipe and the oil outlet pipe of the oil cooler. It may be disposed longitudinally outside the oil inlet pipe and oil outlet pipe of the oil cooler.
또한, 상기 보조 배출 포트는 메인 유입 포트에 인접하여 배치될 수 있다.Additionally, the auxiliary outlet port may be placed adjacent to the main inlet port.
또한, 상기 제2라디에이터는 냉각 공기의 유동방향으로 하류측을 향해 입구 파이프 및 출구 파이프가 연장 형성되고, 상기 제1라디에이터의 한 쌍의 헤더탱크 중 어느 하나 이상에는 상기 제2라디에이터의 입구 파이프 및 출구 파이프가 삽입되어 배치되는 오목한 삽입홈이 형성될 수 있다.In addition, the second radiator has an inlet pipe and an outlet pipe extending downstream in the direction of cooling air flow, and at least one of a pair of header tanks of the first radiator includes an inlet pipe of the second radiator and A concave insertion groove may be formed into which the outlet pipe is inserted and disposed.
또한, 상기 제1라디에이터의 보조 배출 포트 및 보조 유입 포트에 연결된 적어도 하나 이상의 제3라디에이터를 더 포함하여 이루어질 수 있다.In addition, it may further include at least one third radiator connected to the auxiliary discharge port and auxiliary inlet port of the first radiator.
또한, 냉각 공기의 유동방향으로 상기 제1라디에이터의 하류측에 적층 배치된 팬 슈라우드를 더 포함하여 이루어질 수 있다.In addition, it may further include fan shrouds stacked on the downstream side of the first radiator in the direction of cooling air flow.
그리고 본 발명의 엔진 라디에에터는 길이방향으로 서로 이격되어 배치된 한 쌍의 헤더탱크; 상기 한 쌍의 헤더탱크에 양단이 연결된 복수의 튜브; 상기 한 쌍의 헤더탱크 중 어느 하나의 헤더탱크에 형성되어 냉각수가 유입되는 메인 유입 포트 및 보조 유입 포트; 및 상기 한 쌍의 헤더탱크 중 어느 하나의 헤더탱크에 형성되어 냉각수가 배출되는 메인 배출 포트 및 보조 배출 포트; 를 포함하여 이루어질 수 있다.And the engine radiator of the present invention includes a pair of header tanks arranged to be spaced apart from each other in the longitudinal direction; a plurality of tubes connected at both ends to the pair of header tanks; a main inlet port and an auxiliary inlet port formed in one of the pair of header tanks through which coolant flows; and a main discharge port and an auxiliary discharge port formed in one of the pair of header tanks through which coolant is discharged. It can be done including.
또한, 상기 메인 유입 포트 및 보조 배출 포트는 상기 한 쌍의 헤더탱크 중 어느 하나의 헤더탱크에 형성되며, 상기 메인 배출 포트 및 보조 유입 포트는 다른 하나의 헤더탱크에 형성될 수 있다.Additionally, the main inlet port and the auxiliary discharge port may be formed in one of the pair of header tanks, and the main discharge port and the auxiliary inlet port may be formed in the other header tank.
또한, 상기 보조 유입 포트 및 보조 배출 포트는 냉각 공기의 유동방향으로 상류측을 향해 연장 형성되며, 상기 메인 유입 포트 및 메인 배출 포트는 냉각 공기의 유동방향으로 하류측을 향해 연장 형성될 수 있다.Additionally, the auxiliary inlet port and the auxiliary discharge port may extend toward the upstream side in the flow direction of cooling air, and the main inlet port and main discharge port may extend toward the downstream side in the flow direction of cooling air.
또한, 상기 보조 유입 포트 및 보조 배출 포트는 냉각 공기의 유동방향으로 상류측으로 갈수록 길이방향 바깥쪽으로 벌어진 형태로 형성될 수 있다.In addition, the auxiliary inlet port and the auxiliary discharge port may be formed to expand outward in the longitudinal direction toward the upstream side in the flow direction of the cooling air.
또한, 상기 보조 배출 포트는 메인 유입 포트보다 높이방향으로 아래쪽에 배치될 수 있다.Additionally, the auxiliary discharge port may be disposed lower in the height direction than the main inlet port.
또한, 상기 메인 유입 포트 및 보조 배출 포트는 중력방향으로 상측에 서로 인접하게 배치될 수 있다.Additionally, the main inlet port and the auxiliary discharge port may be disposed adjacent to each other at the upper side in the direction of gravity.
또한, 상기 보조 유입 포트는 메인 배출 포트보다 높이방향으로 위쪽에 배치될 수 있다.Additionally, the auxiliary inlet port may be disposed higher in the height direction than the main discharge port.
본 발명의 쿨링 모듈은 엔진 라디에이터와 별도의 보조 라디에이터 간의 냉각수 연결이 용이하며 엔진의 냉각 성능을 향상시킬 수 있는 장점이 있다.The cooling module of the present invention has the advantage of facilitating coolant connection between the engine radiator and a separate auxiliary radiator and improving engine cooling performance.
또한, 열교환기들을 적층하여 쿨링 모듈을 구성할 때 엔진 라디에이터의 냉각수 입출구 포트와 다른 열교환기들 간의 간섭이 방지되어 용이하게 쿨링 모듈을 구성할 수 있는 장점이 있다.In addition, when constructing a cooling module by stacking heat exchangers, interference between the coolant inlet and outlet ports of the engine radiator and other heat exchangers is prevented, which has the advantage of allowing easy configuration of the cooling module.
도 1은 종래의 쿨링 모듈을 나타낸 개략도이다.Figure 1 is a schematic diagram showing a conventional cooling module.
도 2 내지 도 5는 본 발명의 일실시예에 따른 쿨링 모듈에서 엔진 라디에이터를 나타낸 사시도, 정면도 및 평면도이다.2 to 5 are a perspective view, front view, and plan view showing an engine radiator in a cooling module according to an embodiment of the present invention.
도 6 내지 도 11은 본 발명의 일실시예에 따른 쿨링 모듈을 나타낸 조립사시도, 정면도, 평면도 및 측면도이다.6 to 11 are an assembled perspective view, front view, top view, and side view showing a cooling module according to an embodiment of the present invention.
이하, 상기한 바와 같은 구성을 갖는 본 발명의 쿨링 모듈을 첨부된 도면을 참고하여 상세하게 설명한다.Hereinafter, the cooling module of the present invention having the above-described configuration will be described in detail with reference to the attached drawings.
도 2 내지 도 5는 본 발명의 일실시예에 따른 쿨링 모듈에서 엔진 라디에이터를 나타낸 사시도, 정면도 및 평면도이고, 도 6 내지 도 11은 본 발명의 일실시예에 따른 쿨링 모듈을 나타낸 조립사시도, 정면도, 평면도 및 측면도이다.2 to 5 are perspective views, front views, and plan views showing an engine radiator in a cooling module according to an embodiment of the present invention, and FIGS. 6 to 11 are assembled perspective views showing a cooling module according to an embodiment of the present invention. Front view, top view and side view.
도시된 바와 같이 본 발명의 쿨링 모듈은 크게 제1라디에이터(100), 제2라디에이터(200), 응축기(300) 및 오일 쿨러(400)를 포함하여 구성될 수 있으며, 냉각 공기는 오일 쿨러(400) 쪽에서 제1라디에이터(100) 쪽 방향으로 유동될 수 있다.As shown, the cooling module of the present invention may be largely composed of a first radiator 100, a second radiator 200, a condenser 300, and an oil cooler 400, and the cooling air is supplied to the oil cooler 400. ) may flow in the direction toward the first radiator 100.
제1라디에이터(100)는 엔진 라디에이터(100)일 수 있다. 엔진 라디에이터(100)는 차량의 엔진에 연결되어 냉각수가 순환되고, 엔진 라디에이터(100)는 냉각수를 냉각시키는 역할을 할 수 있다.The first radiator 100 may be an engine radiator 100. The engine radiator 100 is connected to the engine of the vehicle to circulate coolant, and the engine radiator 100 may serve to cool the coolant.
제2라디에이터(200)는 전장 라디에이터(200)일 수 있다. 전장 라디에이터(200)는 냉각 공기의 유동방향인 폭방향으로 엔진 라디에이터(100)의 상류측에 적층 배치될 수 있다. 전장 라디에이터(200)는 엔진 라디에이터(100)에 결합되어 고정될 수 있다. 전장 라디에이터(200)는 차량의 모터나 인버터 등 열이 발생하는 전장 부품에 연결되어 냉각수가 순환되고, 전장 라디에이터(200)는 냉각수를 냉각시키는 역할을 할 수 있다.The second radiator 200 may be a full-length radiator 200. The full-length radiator 200 may be stacked and arranged on the upstream side of the engine radiator 100 in the width direction, which is the flow direction of cooling air. The full-length radiator 200 may be coupled to and fixed to the engine radiator 100. The automotive radiator 200 is connected to electrical components that generate heat, such as a vehicle's motor or inverter, and circulates coolant. The electrical radiator 200 may serve to cool the coolant.
응축기(300)는 냉각 공기의 유동방향인 폭방향으로 전장 라디에이터(200)의 상류측에 적층 배치될 수 있다. 응축기(300)는 전장 라디에이터(200)에 결합되어 고정될 수 있다. 응축기(300)는 차량의 에어컨 시스템에 연결되어 냉매가 순환되고, 응축기(300)는 기상 냉매를 냉각 및 응축시켜 액상 냉매로 바꿔주는 역할을 할 수 있다.The condenser 300 may be stacked and arranged on the upstream side of the full-length radiator 200 in the width direction, which is the flow direction of cooling air. The condenser 300 may be coupled to and fixed to the full-length radiator 200. The condenser 300 is connected to the vehicle's air conditioning system to circulate the refrigerant, and the condenser 300 can cool and condense the gaseous refrigerant and change it into liquid refrigerant.
오일 쿨러(400)는 냉각 공기의 유동방향인 폭방향으로 응축기(300)의 상류측에 적층 배치될 수 있다. 오일 쿨러(400)는 응축기(300)에 결합되어 고정될 수 있다. 오일 쿨러(400)는 차량의 변속기에 연결되어 변속기 오일이 순환되고, 오일 쿨러(400)는 변속기 오일을 냉각시키는 역할을 할 수 있다.The oil cooler 400 may be stacked and arranged on the upstream side of the condenser 300 in the width direction, which is the flow direction of cooling air. The oil cooler 400 may be coupled to and fixed to the condenser 300. The oil cooler 400 is connected to the vehicle's transmission to circulate transmission oil, and the oil cooler 400 may serve to cool the transmission oil.
그리고 도시되지는 않았으나, 냉각 공기의 유동방향인 폭방향으로 엔진 라디에이터(100)의 하류측에 팬 슈라우드가 적층 배치될 수 있고, 엔진 라디에이터(100)에 팬 슈라우드가 결합되어 고정될 수 있다. 팬 슈라우드는 팬을 구동시켜 냉각 공기가 열교환기들을 통과하도록 냉각 공기를 강제로 압송하는 역할을 할 수 있다. 또한, 냉각 공기의 유동방향으로 엔진 라디에이터(100), 전장 라디에이터(200), 응축기(300) 및 오일 쿨러(400)와 중첩되지 않는 위치에 보조 라디에이터인 제3라디에이터가 설치될 수 있다. 즉, 엔진 라디에이터(100), 전장 라디에이터(200), 응축기(300) 및 오일 쿨러(400)를 통과하는 냉각 공기의 유동 경로 상에 제3라디에이터가 배치되지 않고, 제3라디에이터는 이들과 이격된 위치에 배치될 수 있다. 또한, 엔진 라디에이터(100), 전장 라디에이터(200), 응축기(300) 및 오일 쿨러(400)가 결합된 조립체의 외부에 제3라디에이터가 별도로 설치될 수 있다.Although not shown, fan shrouds may be stacked and arranged on the downstream side of the engine radiator 100 in the width direction, which is the flow direction of cooling air, and the fan shrouds may be coupled and fixed to the engine radiator 100. The fan shroud can drive a fan to force the cooling air to pass through the heat exchangers. Additionally, a third radiator, which is an auxiliary radiator, may be installed at a location that does not overlap the engine radiator 100, full-length radiator 200, condenser 300, and oil cooler 400 in the direction of cooling air flow. That is, the third radiator is not disposed on the flow path of the cooling air passing through the engine radiator 100, the full-length radiator 200, the condenser 300, and the oil cooler 400, and the third radiator is spaced apart from them. It can be placed in a location. Additionally, a third radiator may be separately installed outside the assembly in which the engine radiator 100, the full-length radiator 200, the condenser 300, and the oil cooler 400 are combined.
여기에서 엔진 라디에이터(100)는 한 쌍의 헤더탱크(110) 및 복수의 튜브(120)를 포함하여 구성될 수 있으며, 복수의 핀(130)을 더 포함할 수 있다. 한 쌍의 헤더탱크(110)는 길이방향으로 이격되어 나란하게 배치될 수 있고, 복수의 튜브(120)는 한 쌍의 헤더탱크(110)에 양단이 연결되어 연통될 수 있다. 그리고 일례로 한 쌍의 헤더탱크(110) 중 하나의 헤더탱크에는 냉각수가 유입되는 메인 유입 포트(111)가 형성되고 다른 하나의 헤더탱크에는 냉각수가 배출되는 메인 배출 포트(112)가 형성될 수 있다. 또한, 메인 유입 포트(111)가 형성된 헤더탱크에는 보조 배출 포트(113)가 형성될 수 있으며, 메인 배출 포트(112)가 형성된 헤더탱크에는 보조 유입 포트(114)가 형성될 수 있다.Here, the engine radiator 100 may include a pair of header tanks 110 and a plurality of tubes 120, and may further include a plurality of fins 130. The pair of header tanks 110 may be arranged side by side and spaced apart in the longitudinal direction, and the plurality of tubes 120 may be connected to the pair of header tanks 110 at both ends to communicate. And as an example, one of the pair of header tanks 110 may have a main inlet port 111 through which coolant flows, and a main discharge port 112 through which coolant flows out may be formed in the other header tank. there is. Additionally, an auxiliary discharge port 113 may be formed in the header tank in which the main inlet port 111 is formed, and an auxiliary inlet port 114 may be formed in the header tank in which the main discharge port 112 is formed.
그리하여 엔진으로부터 메인 유입 포트(111)를 통해 하나의 헤더탱크(110)로 냉각수가 유입되면 복수의 튜브(120)를 통해 다른 하나의 헤더탱크(110)로 냉각수가 유동되고, 이때 냉각수의 일부는 보조 배출 포트(113)를 통해 제3라디에이터로 유동된 후 보조 유입 포트(114)를 통해 다른 하나의 헤더탱크(110)로 유입된 다음 메인 배출 포트(112)를 통해 다시 엔진 측으로 보내질 수 있다. 또한, 보조 유입 포트(114) 및 보조 배출 포트(113)는 냉각 공기의 유동방향으로 상류측을 향해 연장 형성되고, 메인 유입 포트(111) 및 메인 배출 포트(112)는 냉각 공기의 유동방향으로 하류측을 향해 연장 형성될 수 있다. 그리하여 차량의 전방쪽에 배치될 수 있는 제3라디에이터에 보조 유입 포트(114) 및 보조 배출 포트(113)를 연결하기 용이할 수 있고, 냉각 공기의 유동 방향으로 쿨링 모듈의 하류측에 배치될 수 있는 엔진에 메인 유입 포트(111) 및 메인 배출 포트(112)를 연결하기 용이할 수 있다. 또한, 본 발명의 쿨링 모듈은 엔진 라디에이터와 별도의 보조 라디에이터를 병렬로 연결하여 냉각수를 냉각시켜 냉각 성능을 향상시킬 수 있으므로, 높은 방열 성능이 필요한 엔진에 적용할 수 있다. 즉, 메인 유입 포트(111)를 통해 엔진 측에서 엔진 라디에이터(100)의 하나의 헤더탱크로 유입된 냉각수는 같은 측 헤더탱크의 보조 배출 포트(113)를 통해 보조 라디에이터로 유동하기 때문에 보조 라디에이터의 열교환 성능에 유리하다. 그리고 메인 유입 포트(111)와 보조 배출 포트(113)는 서로 인접하게 형성되어 보조 라디에이터 열교환 성능을 더욱 높일 수 있다. 만약 이들이 서로 헤더탱크의 길이방향으로 떨어져 있거나 서로 다른 헤더탱크 측에 형성된다면, 엔진 라디에이터(100)에서 열교환을 일부 진행한 후에 보조 라디에이터로 유동하므로, 보조 라디에이터의 열교환 성능에 불리할 수 있다. 그리고 메인 유입 포트(111)와 보조 배출 포트(113)는 서로 인접하면서 중력방향으로 상측에 위치하여 중력에 의해 쉽게 유동할 수 있다.Therefore, when coolant flows from the engine into one header tank 110 through the main inlet port 111, the coolant flows into the other header tank 110 through a plurality of tubes 120, and at this time, a portion of the coolant is It may flow into the third radiator through the auxiliary discharge port 113, then flow into another header tank 110 through the auxiliary inlet port 114, and then be sent back to the engine through the main discharge port 112. In addition, the auxiliary inlet port 114 and the auxiliary discharge port 113 extend toward the upstream side in the flow direction of the cooling air, and the main inlet port 111 and the main discharge port 112 extend in the flow direction of the cooling air. It may be formed to extend toward the downstream side. Therefore, it can be easy to connect the auxiliary inlet port 114 and the auxiliary discharge port 113 to the third radiator, which can be placed at the front of the vehicle, and can be placed on the downstream side of the cooling module in the direction of flow of the cooling air. It may be easy to connect the main inlet port 111 and the main discharge port 112 to the engine. In addition, the cooling module of the present invention can improve cooling performance by cooling the coolant by connecting the engine radiator and a separate auxiliary radiator in parallel, so it can be applied to engines that require high heat dissipation performance. That is, the coolant flowing into one header tank of the engine radiator 100 from the engine side through the main inlet port 111 flows to the auxiliary radiator through the auxiliary discharge port 113 of the header tank on the same side, so the coolant of the auxiliary radiator It is advantageous for heat exchange performance. In addition, the main inlet port 111 and the auxiliary discharge port 113 are formed adjacent to each other, so that the heat exchange performance of the auxiliary radiator can be further improved. If they are spaced apart from each other in the longitudinal direction of the header tank or are formed on different header tanks, they may flow to the auxiliary radiator after some heat exchange in the engine radiator 100, which may be detrimental to the heat exchange performance of the auxiliary radiator. And the main inlet port 111 and the auxiliary discharge port 113 are adjacent to each other and are located on the upper side in the direction of gravity, so that they can easily flow by gravity.
또한, 보조 유입 포트(114) 및 보조 배출 포트(113)는 엔진 라디에이터(100)에서 냉각 공기의 유동방향으로 상류측으로 갈수록 길이방향 바깥쪽으로 벌어진 형태로 형성될 수 있다. 그리하여 냉각 공기의 유동방향으로 엔진 라디에이터(100)보다 상류측에 배치된 전장 라디에이터(200), 응축기(300) 및 오일 쿨러(400)에 보조 유입 포트(114) 및 보조 배출 포트(113)가 간섭되는 것을 방지할 수 있다. 또한, 간섭을 회피할 수 있을 뿐만 아니라 제3라디에이터와 엔진 라디에이터의 보조 배출 포트(113) 및 보조 유입 포트(114)로 연결되는 배관의 꺾임이 덜하도록 하여, 많이 꺾였을 때에 비하여 연결 배관의 길이를 줄일 수 있는 효과도 있다.Additionally, the auxiliary inlet port 114 and the auxiliary discharge port 113 may be formed in a shape that expands outward in the longitudinal direction toward the upstream side in the flow direction of cooling air in the engine radiator 100. Therefore, the auxiliary inlet port 114 and auxiliary discharge port 113 interfere with the full-length radiator 200, condenser 300, and oil cooler 400 disposed upstream of the engine radiator 100 in the direction of cooling air flow. You can prevent it from happening. In addition, not only can interference be avoided, but the piping connected to the auxiliary discharge port 113 and auxiliary inlet port 114 of the third radiator and the engine radiator is less bent, so that the length of the connecting pipe is reduced compared to when it is bent a lot. There is also an effect of reducing .
또한, 보조 배출 포트(113)는 메인 유입 포트(111)보다 높이방향(중력 방향)으로 아래쪽에 배치되고, 보조 유입 포트(114)는 메인 배출 포트(112)보다 높이방향(중력 방향)으로 위쪽에 배치될 수 있다. 이때, 보조 배출 포트(113)와 보조 유입 포트(114)는 높이방향으로 동일한 높이에 배치될 수 있다. 그리하여 냉각수가 메인 유입 포트(111)를 통해 엔진 라디에이터(100)를 통과한 후 메인 배출 포트(112)로 배출되는 유동 경로에서 분기된 후 다시 합류되도록 보조 유입 포트(114) 및 보조 배출 포트(113)가 배치되므로 냉각수의 흐름이 보다 원활할 수 있다.In addition, the auxiliary discharge port 113 is disposed lower in the height direction (gravity direction) than the main inlet port 111, and the auxiliary inlet port 114 is disposed higher in the height direction (gravity direction) than the main discharge port 112. can be placed in At this time, the auxiliary discharge port 113 and the auxiliary inlet port 114 may be arranged at the same height in the height direction. Thus, the coolant passes through the engine radiator 100 through the main inlet port 111 and then diverges from the flow path discharged to the main discharge port 112 and then rejoins the auxiliary inlet port 114 and the auxiliary discharge port 113. ) is placed, so the coolant can flow more smoothly.
또한, 보조 배출 포트(113) 및 보조 유입 포트(114)는 각각 형성된 헤더탱크(110)에서 길이방향으로 돌출 형성될 수 있다. 도시된 바와 같이 엔진 라디에이터(100)의 길이방향으로 헤더탱크(110)의 바깥쪽 면을 기준으로 헤더탱크(110)에서 길이방향으로 돌출부(116)가 형성되고, 돌출부(116)에서 보조 배출 포트(113)와 보조 유입 포트(114)가 연장된 형태로 형성될 수 있다. 그리하여 엔진 라디에이터(100)보다 상류측에 배치된 전장 라디에이터(200), 응축기(300) 및 오일 쿨러(400)에 보조 유입 포트(114) 및 보조 배출 포트(113)가 간섭되는 것을 방지할 수 있다. In addition, the auxiliary discharge port 113 and the auxiliary inlet port 114 may be formed to protrude in the longitudinal direction from the header tank 110, respectively. As shown, a protrusion 116 is formed in the longitudinal direction of the header tank 110 based on the outer surface of the header tank 110 in the longitudinal direction of the engine radiator 100, and an auxiliary discharge port is formed at the protrusion 116. (113) and the auxiliary inlet port 114 may be formed in an extended form. Therefore, it is possible to prevent the auxiliary inlet port 114 and auxiliary discharge port 113 from interfering with the full-length radiator 200, condenser 300, and oil cooler 400 disposed upstream of the engine radiator 100. .
또한, 보조 배출 포트(113) 또는 보조 유입 포트(114)는 응축기(300)의 냉매 입구 파이프(310) 및 냉매 출구 파이프(320)에 대응되는 위치에서 응축기(300)의 냉매 입구 파이프(310) 및 냉매 출구 파이프(320)보다 길이방향 바깥쪽에 배치될 수 있다. 그리하여 응축기(300)의 냉매 입구 파이프(310) 및 냉매 출구 파이프(320)에 보조 유입 포트(114) 및 보조 배출 포트(113)가 간섭되는 것을 방지할 수 있다.In addition, the auxiliary discharge port 113 or auxiliary inlet port 114 is connected to the refrigerant inlet pipe 310 of the condenser 300 at a position corresponding to the refrigerant inlet pipe 310 and the refrigerant outlet pipe 320 of the condenser 300. and may be disposed longitudinally outside the refrigerant outlet pipe 320. Thus, it is possible to prevent the auxiliary inlet port 114 and the auxiliary discharge port 113 from interfering with the refrigerant inlet pipe 310 and the refrigerant outlet pipe 320 of the condenser 300.
마찬가지로 보조 배출 포트(113) 또는 보조 유입 포트(114)는 오일 쿨러(400)의 오일 입구 파이프(410) 및 오일 출구 파이프(420)에 대응되는 위치에서 오일 쿨러(400)의 오일 입구 파이프(410) 및 오일 출구 파이프(420)보다 길이방향 바깥쪽에 배치될 수 있다. 그리하여 오일 쿨러(400)의 오일 입구 파이프(410) 및 오일 출구 파이프(420)에 보조 유입 포트(114) 및 보조 배출 포트(113)가 간섭되는 것을 방지할 수 있다.Likewise, the auxiliary discharge port 113 or auxiliary inlet port 114 is located at a position corresponding to the oil inlet pipe 410 and the oil outlet pipe 420 of the oil cooler 400. ) and may be arranged longitudinally outside the oil outlet pipe 420. Thus, it is possible to prevent the auxiliary inlet port 114 and the auxiliary discharge port 113 from interfering with the oil inlet pipe 410 and the oil outlet pipe 420 of the oil cooler 400.
또한, 보조 배출 포트(113)는 메인 유입 포트(111)에 인접하여 배치될 수 있다. 그리하여 메인 유입 포트(111)를 통해 헤더탱크(110)로 유입된 냉각수가 복수의 튜브(120) 뿐만 아니라 보조 배출 포트(113)를 통해 별도의 보조 라디에이터로도 유동되기 용이할 수 있다.Additionally, the auxiliary discharge port 113 may be placed adjacent to the main inlet port 111. Therefore, the coolant flowing into the header tank 110 through the main inlet port 111 can easily flow not only through the plurality of tubes 120 but also into a separate auxiliary radiator through the auxiliary discharge port 113.
또한, 전장 라디에이터(200)는 냉각 공기의 유동방향으로 하류측을 향해 입구 파이프(210) 및 출구 파이프(220)가 연장 형성되고, 엔진 라디에이터(100)의 한 쌍의 헤더탱크(110) 중 어느 하나 이상에는 오목한 삽입홈(115)이 형성되어, 삽입홈(115)에 전장 라디에이터(200)의 입구 파이프(210) 및 출구 파이프(220)가 삽입되어 배치될 수 있다. 그리하여 쿨링 모듈을 보다 컴팩트하게 구성할 수 있다.In addition, the full-length radiator 200 has an inlet pipe 210 and an outlet pipe 220 extending toward the downstream side in the flow direction of the cooling air, and is connected to any of the pair of header tanks 110 of the engine radiator 100. At least one concave insertion groove 115 is formed, and the inlet pipe 210 and the outlet pipe 220 of the full-length radiator 200 can be inserted and disposed in the insertion groove 115. As a result, the cooling module can be configured more compactly.
또한, 본 발명의 쿨링 모듈은 상기한 바와 같이 엔진 라디에이터(100)의 보조 배출 포트(113) 및 보조 유입 포트(114)에 연결된 적어도 하나 이상의 별도의 보조 라디에이터를 더 포함하여 구성될 수 있으며, 냉각 공기의 유동방향으로 상기 엔진 라디에이터(100)의 하류측에 적층 배치된 팬 슈라우드를 더 포함하여 구성될 수 있다.In addition, the cooling module of the present invention may be configured to further include at least one separate auxiliary radiator connected to the auxiliary discharge port 113 and the auxiliary inlet port 114 of the engine radiator 100, as described above, It may further include a fan shroud arranged in a stack on the downstream side of the engine radiator 100 in the direction of air flow.
본 발명은 상기한 실시 예에 한정되지 아니하며, 적용범위가 다양함은 물론이고, 청구범위에서 청구하는 본 발명의 요지를 벗어남이 없이 당해 본 발명이 속하는 분야에서 통상의 지식을 가진 자라면 누구든지 다양한 변형 실시가 가능한 것은 물론이다.The present invention is not limited to the above-described embodiments, and its scope of application is diverse, and anyone skilled in the art can understand it without departing from the gist of the invention as claimed in the claims. Of course, various modifications are possible.
[부호의 설명][Explanation of symbols]
100 : 제1라디에이터(엔진 라디에이터), 110 : 헤더탱크, 100: first radiator (engine radiator), 110: header tank,
111 : 메인 유입 포트, 112 : 메인 배출 포트, 111: main inlet port, 112: main discharge port,
113 : 보조 배출 포트, 114 : 보조 유입 포트, 113: auxiliary discharge port, 114: auxiliary inlet port,
115 : 삽입홈, 116 : 돌출부, 120 : 튜브, 130 : 핀, 115: insertion groove, 116: protrusion, 120: tube, 130: pin,
200 : 제2라디에이터(전장 라디에이터), 210 : 입구 파이프, 200: 2nd radiator (full-length radiator), 210: inlet pipe,
220 : 출구 파이프, 300 : 응축기, 220: outlet pipe, 300: condenser,
310 : 냉매 입구 파이프, 320 : 냉매 출구 파이프, 310: refrigerant inlet pipe, 320: refrigerant outlet pipe,
400 : 오일 쿨러, 410 : 오일 입구 파이프, 400: oil cooler, 410: oil inlet pipe,
420 : 오일 출구 파이프420: Oil outlet pipe

Claims (20)

  1. 제1라디에이터; 및 냉각 공기의 유동방향으로 상기 제1라디에이터의 상류측에 적층 배치된 제2라디에이터; 를 포함하여 이루어지고, First radiator; and a second radiator stacked on an upstream side of the first radiator in the direction of cooling air flow. It is made including,
    상기 제1라디에이터는, The first radiator,
    엔진과 연결되어 냉각수가 유입되는 메인 유입 포트 및 냉각수가 배출되는 메인 배출 포트가 형성되고, 상기 제1라디에이터 및 제2라디에이터와 냉각 공기의 유동방향으로 중첩되지 않는 위치에 설치된 제3라디에이터에 연결되어 냉각수가 배출되는 보조 배출 포트 및 냉각수가 유입되는 보조 유입 포트가 형성되며, 상기 보조 배출 포트 및 보조 유입 포트는 상기 제3라디에이터를 향해 연장 형성된 것을 특징으로 하는 쿨링 모듈.Connected to the engine, a main inlet port through which coolant flows in and a main discharge port through which coolant is discharged are formed, and is connected to a third radiator installed at a position that does not overlap with the first and second radiators in the direction of flow of cooling air. A cooling module characterized in that an auxiliary discharge port through which coolant is discharged and an auxiliary inlet port through which coolant flows are formed, and the auxiliary discharge port and the auxiliary inlet port extend toward the third radiator.
  2. 제1항에 있어서,According to paragraph 1,
    상기 보조 유입 포트 및 보조 배출 포트는 냉각 공기의 유동방향으로 상류측을 향해 연장 형성되며, 상기 메인 유입 포트 및 메인 배출 포트는 냉각 공기의 유동방향으로 하류측을 향해 연장 형성된 것을 특징으로 하는 쿨링 모듈.The auxiliary inlet port and the auxiliary discharge port are formed to extend toward the upstream side in the flow direction of cooling air, and the main inlet port and main discharge port are formed to extend toward the downstream side in the flow direction of cooling air. .
  3. 제1항에 있어서,According to paragraph 1,
    상기 제1라디에이터는 길이방향으로 이격되어 배치된 한 쌍의 헤더탱크 및 상기 한 쌍의 헤더탱크에 양단이 연결된 복수의 튜브를 포함하고, The first radiator includes a pair of header tanks arranged to be spaced apart in the longitudinal direction and a plurality of tubes connected at both ends to the pair of header tanks,
    상기 메인 유입 포트 및 보조 배출 포트는 상기 한 쌍의 헤더탱크 중 어느 하나의 헤더탱크에 형성되며, 상기 메인 배출 포트 및 보조 유입 포트는 다른 하나의 헤더탱크에 형성된 것을 특징으로 하는 쿨링 모듈.The main inlet port and the auxiliary discharge port are formed in one of the pair of header tanks, and the main discharge port and the auxiliary inlet port are formed in the other header tank.
  4. 제3항에 있어서,According to paragraph 3,
    상기 보조 유입 포트 및 보조 배출 포트는 상기 제1라디에이터에서 냉각 공기의 유동방향으로 상류측으로 갈수록 길이방향 바깥쪽으로 벌어진 형태로 형성된 것을 특징으로 하는 쿨링 모듈.The cooling module is characterized in that the auxiliary inlet port and the auxiliary discharge port are formed in a shape that opens outward in the longitudinal direction toward the upstream side in the flow direction of cooling air from the first radiator.
  5. 제3항에 있어서,According to paragraph 3,
    상기 보조 배출 포트는 메인 유입 포트보다 높이방향으로 아래쪽에 배치된 것을 특징으로 하는 쿨링 모듈.The cooling module is characterized in that the auxiliary discharge port is located lower in the height direction than the main inlet port.
  6. 제5항에 있어서,According to clause 5,
    상기 메인 유입 포트 및 보조 배출 포트는 중력방향으로 상측에 서로 인접하게 배치된 것을 특징으로 하는 쿨링 모듈.A cooling module, wherein the main inlet port and the auxiliary discharge port are arranged adjacent to each other at the upper side in the direction of gravity.
  7. 제3항에 있어서,According to paragraph 3,
    상기 보조 유입 포트는 메인 배출 포트보다 높이방향으로 위쪽에 배치된 것을 특징으로 하는 쿨링 모듈.The cooling module is characterized in that the auxiliary inlet port is arranged higher in the height direction than the main discharge port.
  8. 제3항에 있어서,According to paragraph 3,
    냉각 공기의 유동방향으로 상기 제2라디에이터의 상류측에 적층 배치된 응축기를 더 포함하여 이루어지고, It further includes a condenser arranged in a stack on the upstream side of the second radiator in the direction of cooling air flow,
    상기 보조 배출 포트 또는 보조 유입 포트는 상기 응축기의 냉매 입구 파이프 및 냉매 출구 파이프에 대응되는 위치에서 상기 응축기의 냉매 입구 파이프 및 냉매 출구 파이프보다 길이방향 바깥쪽에 배치된 것을 특징으로 하는 쿨링 모듈.The auxiliary discharge port or auxiliary inlet port is disposed longitudinally outside the refrigerant inlet pipe and the refrigerant outlet pipe of the condenser at a position corresponding to the refrigerant inlet pipe and the refrigerant outlet pipe of the condenser.
  9. 제3항에 있어서,According to paragraph 3,
    냉각 공기의 유동방향으로 상기 응축기의 상류측에 적층 배치된 오일 쿨러를 더 포함하여 이루어지고, It further includes an oil cooler arranged in a stack on the upstream side of the condenser in the direction of cooling air flow,
    상기 보조 배출 포트 또는 보조 유입 포트는 상기 오일 쿨러의 오일 입구 파이프 및 오일 출구 파이프에 대응되는 위치에서 상기 오일 쿨러의 오일 입구 파이프 및 오일 출구 파이프보다 길이방향 바깥쪽에 배치된 것을 특징으로 하는 쿨링 모듈.The cooling module, wherein the auxiliary discharge port or the auxiliary inlet port is disposed longitudinally outside the oil inlet pipe and the oil outlet pipe of the oil cooler at a position corresponding to the oil inlet pipe and the oil outlet pipe of the oil cooler.
  10. 제3항에 있어서,According to paragraph 3,
    상기 보조 배출 포트는 메인 유입 포트에 인접하여 배치된 것을 특징으로 하는 쿨링 모듈.A cooling module, wherein the auxiliary discharge port is disposed adjacent to the main inlet port.
  11. 제3항에 있어서,According to paragraph 3,
    상기 제2라디에이터는 냉각 공기의 유동방향으로 하류측을 향해 입구 파이프 및 출구 파이프가 연장 형성되고, The second radiator has an inlet pipe and an outlet pipe extending downstream in the direction of cooling air flow,
    상기 제1라디에이터의 한 쌍의 헤더탱크 중 어느 하나 이상에는 상기 제2라디에이터의 입구 파이프 및 출구 파이프가 삽입되어 배치되는 오목한 삽입홈이 형성된 것을 특징으로 하는 쿨링 모듈.A cooling module, wherein at least one of the pair of header tanks of the first radiator is formed with a concave insertion groove into which the inlet pipe and outlet pipe of the second radiator are inserted.
  12. 제1항에 있어서,According to paragraph 1,
    상기 제1라디에이터의 보조 배출 포트 및 보조 유입 포트에 연결된 적어도 하나 이상의 제3라디에이터를 더 포함하는 쿨링 모듈.A cooling module further comprising at least one third radiator connected to an auxiliary discharge port and an auxiliary inlet port of the first radiator.
  13. 제1항에 있어서,According to paragraph 1,
    냉각 공기의 유동방향으로 상기 제1라디에이터의 하류측에 적층 배치된 팬 슈라우드를 더 포함하는 쿨링 모듈.A cooling module further comprising a fan shroud arranged in a stack on a downstream side of the first radiator in the direction of cooling air flow.
  14. 길이방향으로 서로 이격되어 배치된 한 쌍의 헤더탱크; A pair of header tanks arranged to be spaced apart from each other in the longitudinal direction;
    상기 한 쌍의 헤더탱크에 양단이 연결된 복수의 튜브; a plurality of tubes connected at both ends to the pair of header tanks;
    상기 한 쌍의 헤더탱크 중 어느 하나의 헤더탱크에 형성되어 냉각수가 유입되는 메인 유입 포트 및 보조 유입 포트; 및 a main inlet port and an auxiliary inlet port formed in one of the pair of header tanks through which coolant flows; and
    상기 한 쌍의 헤더탱크 중 어느 하나의 헤더탱크에 형성되어 냉각수가 배출되는 메인 배출 포트 및 보조 배출 포트; a main discharge port and an auxiliary discharge port formed in one of the pair of header tanks through which coolant is discharged;
    를 포함하여 이루어지는 엔진 라디에이터.Engine radiator including.
  15. 제14항에 있어서,According to clause 14,
    상기 메인 유입 포트 및 보조 배출 포트는 상기 한 쌍의 헤더탱크 중 어느 하나의 헤더탱크에 형성되며, 상기 메인 배출 포트 및 보조 유입 포트는 다른 하나의 헤더탱크에 형성된 것을 특징으로 하는 엔진 라디에이터.The main inlet port and the auxiliary discharge port are formed in one of the pair of header tanks, and the main discharge port and the auxiliary inlet port are formed in the other header tank.
  16. 제14항에 있어서,According to clause 14,
    상기 보조 유입 포트 및 보조 배출 포트는 냉각 공기의 유동방향으로 상류측을 향해 연장 형성되며, 상기 메인 유입 포트 및 메인 배출 포트는 냉각 공기의 유동방향으로 하류측을 향해 연장 형성된 것을 특징으로 하는 엔진 라디에이터.The auxiliary inlet port and the auxiliary discharge port are formed to extend toward the upstream side in the flow direction of cooling air, and the main inlet port and main discharge port are formed to extend toward the downstream side in the flow direction of cooling air. .
  17. 제16항에 있어서,According to clause 16,
    상기 보조 유입 포트 및 보조 배출 포트는 냉각 공기의 유동방향으로 상류측으로 갈수록 길이방향 바깥쪽으로 벌어진 형태로 형성된 것을 특징으로 하는 엔진 라디에이터.The engine radiator is characterized in that the auxiliary inlet port and the auxiliary discharge port are formed in a shape that opens outward in the longitudinal direction toward the upstream side in the flow direction of the cooling air.
  18. 제15항에 있어서,According to clause 15,
    상기 보조 배출 포트는 메인 유입 포트보다 높이방향으로 아래쪽에 배치된 것을 특징으로 하는 엔진 라디에이터.The engine radiator is characterized in that the auxiliary discharge port is located lower in the height direction than the main inlet port.
  19. 제18항에 있어서,According to clause 18,
    상기 메인 유입 포트 및 보조 배출 포트는 중력방향으로 상측에 서로 인접하게 배치된 것을 특징으로 하는 엔진 라디에이터.An engine radiator, wherein the main inlet port and the auxiliary discharge port are disposed adjacent to each other at the upper side in the direction of gravity.
  20. 제15항에 있어서,According to clause 15,
    상기 보조 유입 포트는 메인 배출 포트보다 높이방향으로 위쪽에 배치된 것을 특징으로 하는 엔진 라디에이터.The engine radiator is characterized in that the auxiliary inlet port is disposed higher in the height direction than the main discharge port.
PCT/KR2023/002304 2022-03-18 2023-02-16 Cooling module WO2023177100A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202380025211.8A CN118805020A (en) 2022-03-18 2023-02-16 Cooling module

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020220033710A KR20230136254A (en) 2022-03-18 2022-03-18 Cooling module
KR10-2022-0033710 2022-03-18

Publications (1)

Publication Number Publication Date
WO2023177100A1 true WO2023177100A1 (en) 2023-09-21

Family

ID=88023934

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/002304 WO2023177100A1 (en) 2022-03-18 2023-02-16 Cooling module

Country Status (3)

Country Link
KR (1) KR20230136254A (en)
CN (1) CN118805020A (en)
WO (1) WO2023177100A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5046554A (en) * 1990-02-22 1991-09-10 Calsonic International, Inc. Cooling module
KR20130054048A (en) * 2011-11-16 2013-05-24 현대자동차주식회사 Radiator for vehicle
JP2016147559A (en) * 2015-02-10 2016-08-18 トヨタ自動車株式会社 Vehicle
JP2017160816A (en) * 2016-03-08 2017-09-14 マツダ株式会社 Cooling device of engine with supercharger
KR20180023244A (en) * 2016-08-25 2018-03-07 한온시스템 주식회사 Cooling module

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102205847B1 (en) 2013-12-31 2021-01-21 한온시스템 주식회사 Cooling module and Cooling System for Vehicles

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5046554A (en) * 1990-02-22 1991-09-10 Calsonic International, Inc. Cooling module
KR20130054048A (en) * 2011-11-16 2013-05-24 현대자동차주식회사 Radiator for vehicle
JP2016147559A (en) * 2015-02-10 2016-08-18 トヨタ自動車株式会社 Vehicle
JP2017160816A (en) * 2016-03-08 2017-09-14 マツダ株式会社 Cooling device of engine with supercharger
KR20180023244A (en) * 2016-08-25 2018-03-07 한온시스템 주식회사 Cooling module

Also Published As

Publication number Publication date
KR20230136254A (en) 2023-09-26
CN118805020A (en) 2024-10-18

Similar Documents

Publication Publication Date Title
WO2010140833A2 (en) Heat exchanger and a water-cooling intercooler for vehicle, using same
WO2020022738A1 (en) Integrated liquid air cooled condenser and low temperature radiator
WO2022255769A1 (en) Integrated cooling module
US20080087410A1 (en) Heat exchanger
WO2021080217A1 (en) High performance uniform temperature cold plate
WO2016010238A1 (en) Integrated heat exchanger
WO2013089357A1 (en) Integrated heat exchanger for a vehicle
WO2012002698A2 (en) Heat exchanger
WO2022085879A1 (en) Heat exchanger for exhaust heat recovery in integrated ghp
WO2023177100A1 (en) Cooling module
KR20070048179A (en) Heat exchanger with tube core, in particular for supercharged internal combustion engine
WO2023132561A1 (en) Fluid heater
WO2022255812A1 (en) Complex heat exchanger
WO2019245292A1 (en) Heat exchanger for cooling exhaust gas in vehicle
WO2021261880A1 (en) Heat exchanger
WO2023204487A1 (en) Heat exchanger
WO2022060160A1 (en) Heat exchanger having means for reducing thermal stress
WO2022240077A1 (en) Heat exchanger
WO2022092715A1 (en) Vehicle heat exchanger
WO2024122870A1 (en) Heat exchanger
WO2021177603A1 (en) Heat dissipating device using turbulent flow
WO2022030895A1 (en) Flange, pipe, and flange structure
WO2021167320A1 (en) Heat exchanger having flow distribution tank structure for thermal stress dispersion
WO2023146135A1 (en) Heat exchanger
WO2024117498A1 (en) Heat exchanger

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23770980

Country of ref document: EP

Kind code of ref document: A1