[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2023176564A1 - Phosphor powder, method for producing phosphor powder, and light emitting device - Google Patents

Phosphor powder, method for producing phosphor powder, and light emitting device Download PDF

Info

Publication number
WO2023176564A1
WO2023176564A1 PCT/JP2023/008420 JP2023008420W WO2023176564A1 WO 2023176564 A1 WO2023176564 A1 WO 2023176564A1 JP 2023008420 W JP2023008420 W JP 2023008420W WO 2023176564 A1 WO2023176564 A1 WO 2023176564A1
Authority
WO
WIPO (PCT)
Prior art keywords
phosphor powder
phosphor
europium
wavelength
light
Prior art date
Application number
PCT/JP2023/008420
Other languages
French (fr)
Japanese (ja)
Inventor
萌子 田中
智宏 野見山
Original Assignee
デンカ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デンカ株式会社 filed Critical デンカ株式会社
Priority to KR1020247032645A priority Critical patent/KR20240154072A/en
Priority to JP2024507772A priority patent/JPWO2023176564A1/ja
Publication of WO2023176564A1 publication Critical patent/WO2023176564A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/77Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals
    • C09K11/7728Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing rare earth metals containing europium
    • C09K11/77348Silicon Aluminium Nitrides or Silicon Aluminium Oxynitrides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/64Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing aluminium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L33/48Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by the semiconductor body packages
    • H01L33/50Wavelength conversion elements
    • H01L33/501Wavelength conversion elements characterised by the materials, e.g. binder
    • H01L33/502Wavelength conversion materials

Definitions

  • the present disclosure relates to a phosphor powder, a method for manufacturing the phosphor powder, and a light emitting device.
  • Light-emitting devices having light-emitting elements are used in general lighting, backlights for liquid crystal displays, LED displays, and the like.
  • a light emitting element is used that has a light emitting element that emits blue light and a wavelength converter that absorbs primary light from the light emitting element and emits light of a different wavelength.
  • the wavelength converter for example, various phosphors such as red phosphor and green phosphor are used.
  • CASN-based phosphors such as CASN phosphor and SCASN phosphor are known (for example, Patent Document 1). These CASN-based phosphors are generally synthesized by heating raw material powder containing europium oxide or europium nitride, calcium nitride, silicon nitride, and aluminum nitride.
  • phosphors that have emission peak wavelengths in their respective wavelength ranges and exhibit sufficient emission intensity as the green phosphor and red phosphor.
  • the above method is used. It is required to increase the color gamut of the cured resin layer.
  • red phosphors As the emission spectrum of the phosphor shifts to a longer wavelength region and the reddish color deepens, the overlap with the human visibility curve decreases, so the brightness tends to be insufficient. In other words, red phosphors have characteristics that make it difficult to achieve both redness and brightness in order to improve the color rendering of a light-emitting device using the red phosphor.
  • the main crystal phase has the same crystal structure as CaAlSiN 3 and has the general formula: (Sr 1-xy , Ca x , Eu y )AlSi(N,O) 3 [in the general formula , x and y satisfy 0.0100 ⁇ x ⁇ 0.0300 and 0.0500 ⁇ y ⁇ 0.0900].
  • the phosphor powder can function as a red phosphor because the main crystal includes phosphor particles having the same crystal structure as CaAlSiN 3 .
  • the phosphor powder has an elemental ratio of strontium (Sr), calcium (Ca), and europium (Eu) within the predetermined range, so that it emits fluorescence with a sufficient reddish tinge and has excellent brightness. It is now possible to exhibit The reason why such an effect is obtained is not clear, but the present inventors estimate as follows. First, in SCASN phosphors, as the content of calcium in the composition formula decreases (that is, as the proportion of calcium sites in the crystal lattice is replaced by other elements increases), the half-width of the emission spectrum narrows and the luminance increases.
  • the emission peak wavelength shifts to the shorter wavelength side, and the reddish tinge of the fluorescence tends to decrease.
  • concentration quenching occurs as the amount of europium increases, and although the luminous efficiency decreases, the emission peak wavelength tends to shift to the longer wavelength side.
  • Strontium, calcium, and europium are elements that share the same site in the crystal lattice, so in the above phosphor powder, the proportions of strontium, calcium, and europium in the composition formula satisfy the above-mentioned x and y ranges.
  • the emission brightness is improved and the wavelength position is adjusted to increase the overlap with the human visual sensitivity curve, while keeping the emission peak position in a sufficiently reddish wavelength range. It is estimated that the luminescence intensity can be improved.
  • the phosphor powder may have an emission peak wavelength of 635 nm or more when irradiated with light having a wavelength of 455 nm. Since the emission peak wavelength is 635 nm or more, the phosphor powder can be more suitably used as a red phosphor that emits fluorescence with an excellent reddish tint.
  • One aspect of the present disclosure is a light emitting device including a light emitting element that emits primary light, and a wavelength converter that absorbs a portion of the primary light and emits secondary light having a wavelength longer than the wavelength of the primary light.
  • the present invention provides a light emitting device in which the wavelength converter includes the phosphor powder described above.
  • the light-emitting device contains the above-mentioned phosphor powder, it can exhibit excellent color rendering properties. Since the light-emitting device also contains the above-mentioned phosphor powder, it can be expected to exhibit sufficient brightness.
  • One aspect of the present disclosure is to heat-treat a mixed powder containing a raw material powder containing a strontium source, a calcium source, an aluminum source, a silicon source, a nitrogen source, and a europium source and a nucleating agent composed of a CASN-based compound.
  • a firing step for obtaining a fired product and an annealing step for obtaining an annealed product by heat-treating the fired product at a temperature lower than the heat treatment temperature in the firing step, and in the raw material powder, aluminum
  • the ratio of the total amount of strontium, calcium, and europium to the amount of substance exceeds 1.0000, and the amount of calcium is 0.0050 or more with respect to the amount of aluminum, and the amount of europium is Provided is a method for producing a phosphor powder in which the amount is 0.0880 or less.
  • the above method for producing phosphor powder is such that in the raw material powder, the ratio of the total amount of strontium, calcium, and europium to the amount of aluminum exceeds 1, and the amount of calcium and europium is within a predetermined range. Furthermore, by firing in the presence of a nucleating agent to form the desired particles, it is possible to prepare a phosphor powder represented by the above general formula. ing. Conventionally, in the production of CASN-based phosphors, it is common to mix raw materials according to the desired composition, and at that time, the ratio of the total amount of strontium, calcium, and europium to the amount of aluminum is The composition is adjusted so that it becomes 1.
  • a phosphor powder that can exhibit excellent brightness while emitting fluorescence with sufficient redness, and a method for producing the same.
  • a light emitting device that uses the above-described phosphor powder and can exhibit excellent color rendering properties.
  • FIG. 1 is a schematic diagram showing the relationship between the visibility curve and the emission spectrum of the SCASN phosphor.
  • the materials exemplified in this specification can be used alone or in combination of two or more. If there are multiple substances corresponding to each component in the composition, the content of each component in the composition means the total amount of the multiple substances present in the composition, unless otherwise specified. .
  • One embodiment of the phosphor powder has the main crystalline phase having the same crystal structure as CaAlSiN 3 and has the general formula: (Sr 1-xy , Ca x , Eu y )AlSi(N,O) 3 [General In the formula, x and y satisfy 0.0100 ⁇ x ⁇ 0.0300 and 0.0500 ⁇ y ⁇ 0.0900].
  • the value of x is, for example, 0.0105 or more, 0.0108 or more, 0.0110 or more, or 0 .117 or more, and may be 0.0280 or less, 0.0250 or less, or 0.0240 or less.
  • the value of y may be, for example, 0.0600 or more, 0.0700 or more, or 0.0750 or more, and 0.0880 or less, or 0.0850 or less.
  • the phosphor powder is an aggregation of phosphor particles.
  • the phosphor particles may be CASN phosphors or SCASN phosphors.
  • the crystal structure of the phosphor particles can be confirmed by powder X-ray diffraction.
  • the contents of strontium (Sr), calcium (Ca), europium (Eu), aluminum (Al), and silicon (Si) in the composition of the phosphor particles can be determined by preparing a sample solution by decomposing the measurement target with pressure acid. However, it can be determined by quantitative analysis using an ICP emission spectrometer.
  • the lower limit of the emission peak wavelength of the phosphor powder may be, for example, 635 nm or more, 636 nm or more, 637 nm or more, more than 637 nm, or 638 nm or more.
  • the phosphor powder can be more suitably used as a red phosphor that exhibits a tendency to have better redness.
  • the upper limit of the emission peak wavelength of the phosphor powder may be, for example, 645 nm or less, 642 nm or less, 640 nm or less, less than 640 nm, or 639 nm or less.
  • the emission peak wavelength of the phosphor powder may be adjusted within the above-mentioned range, and may be, for example, 635 to 645 nm.
  • the half-width at the emission peak wavelength of the phosphor powder is relatively small.
  • the upper limit of the half-width at the emission peak wavelength of the phosphor powder is, for example, 75.0 nm or less, 74.8 nm or less, 74.6 nm or less, 74.5 nm or less, 74.4 nm or less, less than 74.4 nm, or 74 nm or less. It may be .3 nm or less.
  • the upper limit of the half width is within the above range, the luminance of the phosphor powder can be further improved.
  • the lower limit of the half-value width at the emission peak wavelength of the phosphor powder may be, for example, 70.0 nm or more, 71.0 nm or more, 72.0 nm or more, 73.0 nm or more, or 73.5 nm or more.
  • the half-width at the emission peak wavelength of the phosphor powder may be within the above-mentioned range, for example, from 70.0 to 75.0 nm, or from 73.5 to 74.3 nm.
  • the emission peak wavelength of a phosphor means a value determined by fluorescence spectrum measurement when irradiated with light with a wavelength of 455 nm.
  • the half-width means Full Width at Half Maximum (FWHM), and can be determined from the fluorescence spectrum obtained by fluorescence spectrum measurement when irradiated with light with a wavelength of 455 nm.
  • the upper limit of the average particle size of the phosphor powder may be, for example, 40.0 ⁇ m or less, 30.0 ⁇ m or less, or 25.0 ⁇ m or less. By setting the upper limit of the average particle size within the above range, it is possible to suppress variations in the chromaticity of the emitted light color when the phosphor powder is used on the LED light emitting surface.
  • the lower limit of the average particle size of the phosphor powder may be, for example, 0.1 ⁇ m or more, 0.5 ⁇ m or more, or 1.0 ⁇ m or more. By setting the lower limit of the average particle size within the above range, reduction in brightness can be further suppressed.
  • the average particle size of the phosphor powder may be adjusted within the above-mentioned range, for example, from 0.1 to 40.0 ⁇ m, from 0.5 to 30.0 ⁇ m, or from 1.0 to 25.0 ⁇ m.
  • the average particle size in this specification refers to the particle size (D50, median diameter).
  • the distribution curve regarding the particle size of the phosphor powder is based on the particle size distribution measurement method using laser diffraction/scattering method described in JIS R 1629:1997 "Method for measuring particle size distribution of fine ceramic raw materials using laser diffraction/scattering method". I will do it.
  • a particle size distribution measuring device can be used for the measurement. Specifically, first, 0.1 g of the phosphor powder to be measured was added to 100 mL of ion-exchanged water, a small amount of sodium hexametaphosphate was added, and the mixture was dispersed for 3 minutes using an ultrasonic homogenizer.
  • the particle size is measured using a particle size distribution measuring device, and D50 is determined from the obtained particle size distribution. D50 is also called the median diameter.
  • D50 is also called the median diameter.
  • the particle size distribution measuring device for example, "Microtrac MT3300EX II” (product name) manufactured by Microtrac Bell Co., Ltd. can be used.
  • the ultrasonic homogenizer for example, “Ultrasonic Homogenizer US-150E” manufactured by Nippon Seiki Seisakusho Co., Ltd. (product name, chip size: ⁇ 20, amplitude: 100%, oscillation frequency: 19.5 KHz, amplitude: approximately 31 ⁇ m) is used. can.
  • the above-mentioned phosphor powder is capable of exhibiting excellent brightness while emitting fluorescence with a sufficient reddish tint, so it is suitable as a phosphor for use in light-emitting devices such as LEDs, display devices, etc. Can be used.
  • the light emitting device etc. obtained in this way can exhibit excellent color rendering properties and sufficient brightness.
  • the above-mentioned phosphor powder can be manufactured, for example, by the following method.
  • One embodiment of the method for producing phosphor powder is a mixed powder containing a raw material powder containing a strontium source, a calcium source, an aluminum source, a silicon source, a nitrogen source, and a europium source, and a nucleating agent composed of a CASN-based compound. and an annealing step to obtain an annealed product by heat-treating the fired product at a temperature lower than the temperature of the heat treatment in the firing step.
  • strontium source calcium source, aluminum source, silicon source, nitrogen source, and europium source are strontium (Sr), calcium (Ca), aluminum (Al), silicon (Si), nitrogen (N), and europium ( means a compound or simple substance that is a source of Eu).
  • strontium nitride is used as the strontium source, the strontium nitride is both a strontium source and a nitrogen source.
  • strontium compound examples include strontium nitride (Sr 3 N 2 ), strontium oxide (SrO), and strontium hydroxide (Sr(OH) 2 ).
  • Examples of the calcium compound include calcium nitride (Ca 3 N 2 ), calcium oxide (CaO), and calcium hydroxide (Ca(OH) 2 ).
  • Examples of the aluminum compound include aluminum nitride (AlN), aluminum oxide (Al 2 O 3 ), and aluminum hydroxide (Al(OH) 3 ).
  • silicon compounds include silicon nitride (Si 3 N 4 ) and silicon oxide (SiO 2 ).
  • silicon nitride it is preferable to use one with a high ⁇ fraction.
  • the ⁇ fraction of silicon nitride may be, for example, 80% by mass or more, 90% by mass or more, or 95% by mass or more. When the ⁇ fraction of silicon nitride is within the above range, growth of primary particles of the inorganic compound can be promoted.
  • Europium source means a compound or simple substance that serves as a source of europium.
  • the compound having europium as a constituent element may be, for example, any one of a nitride, an oxide, an oxynitride, and a hydroxide, but preferably an oxide.
  • europium compounds include europium oxides (europium oxide), europium nitrides (europium nitride), and europium halides.
  • europium halides include europium fluoride, europium chloride, europium bromide, and europium iodide.
  • the compound of europium preferably comprises europium oxide.
  • the valence of europium in the europium compound may be divalent or trivalent, and preferably divalent.
  • the ratio of the total amount of strontium, calcium, and europium to the amount of aluminum exceeds 1.0000, and the amount of calcium is 0.0050 or more based on the amount of aluminum. , and the amount of europium is 0.0880 or less.
  • the lower limit of the ratio of the total amount of strontium, calcium, and europium to the amount of aluminum is, for example, 1.0200 or more, 1.0300 or more, 1.0400 or more, 1.0450 or more. , or 1.0500 or more.
  • the upper limit of the ratio of the total amount of strontium, calcium, and europium to the amount of aluminum is, for example, 1.5000 or less, 1.4000 or less, 1.3000 or less, 1.2000 or less , or 1.1000 or less.
  • the ratio of the total amount of strontium, calcium, and europium to the amount of aluminum may be adjusted within the above range, for example, more than 1.0000 and less than or equal to 1.5000, and more than 1.0000. It may be 1.3000 or less, or 1.0200 to 1.2000.
  • the lower limit of the amount of calcium in the raw material powder is, for example, 0.0050 or more, 0.0100 or more, 0.0105 or more, 0.0108 or more, 0.0110 or more, 0. It may be 0.0130 or more, or 0.0150 or more.
  • the upper limit of the calcium content in the raw material powder may be, for example, 0.0280 or less, 0.0250 or less, 0.0240 or less, or 0.0220 or less, based on the aluminum content.
  • the amount of calcium in the raw material powder may be adjusted within the above-mentioned range, and may be, for example, 0.0050 to 0.0280 based on the amount of aluminum.
  • the lower limit of the amount of europium in the raw material powder may be, for example, 0.0550 or more, 0.0600 or more, 0.0650 or more, or 0.0700 or more, based on the amount of aluminum.
  • the upper limit of the amount of europium in the raw material powder may be, for example, 0.0880 or less, 0.0860 or less, 0.0850 or less, or 0.0830 or less, based on the amount of aluminum.
  • the amount of europium in the raw material powder may be adjusted within the above-mentioned range, and may be, for example, 0.0550 to 0.0880 based on the amount of aluminum.
  • the nucleating agent composed of a CASN-based compound blended into the mixed powder may have the same crystal structure as CaAlSiN 3 and may contain a luminescent center element.
  • the firing in the firing step may be performed, for example, by filling a heat-resistant lidded container with the mixed powder to be fired and heating the container together.
  • a heat-resistant lidded container examples include boron nitride, tungsten, molybdenum, and tantalum.
  • An electric furnace or the like can be used for heating.
  • the firing temperature in the firing process may be constant throughout the process.
  • the firing temperature in the firing step may be, for example, 1500°C or higher, or 1550°C or higher.
  • the firing temperature in the firing step may be, for example, 2000°C or lower, 1980°C or lower, or 1950°C or lower.
  • the firing temperature in the firing step can be adjusted within the above-mentioned range, and may be, for example, 1500 to 2000°C or 1550 to 1950°C.
  • the lower limit of the firing time in the firing step may be, for example, 0.5 hours or more, 1.0 hours or more, 1.5 hours or more, 3.0 hours or more, or 4.0 hours or more.
  • the upper limit of the firing time in the firing step may be, for example, 30.0 hours or less, 20.0 hours or less, 10.0 hours or less, or 8.0 hours or less.
  • the firing time in the firing step can be adjusted within the above-mentioned range, and may be, for example, 0.5 to 30.0 hours, 1.5 to 10.0 hours, or 4.0 to 8.0 hours.
  • the firing time refers to the time (holding time) during which the temperature of the surrounding environment of the object to be heated reaches a predetermined temperature and is maintained at that temperature.
  • the firing step may be performed under atmospheric pressure or under pressure.
  • the lower limit of the firing pressure in the firing process may be, for example, 0.1 MPaG or more, or 0.2 MPaG or more.
  • the upper limit of the firing pressure in the firing step may be, for example, 1.0 MPaG or less, or 0.9 MPaG or less.
  • the pressure of the firing process can be adjusted within the above-mentioned range, and may be, for example, 0.1 to 1.0 MPaG, or 0.1 to 0.9 MPaG.
  • Pressure in this specification means gauge pressure.
  • the firing step is preferably performed in an atmosphere containing at least one selected from the group consisting of a rare gas and an inert gas.
  • the rare gas may contain, for example, argon, helium, etc., may contain argon, or may consist of argon.
  • the inert gas may contain, for example, nitrogen, or may consist of nitrogen.
  • the annealed product is obtained by heat-treating the fired product at a temperature lower than the temperature of the heat treatment in the firing step.
  • the temperature of the heat treatment in the annealing step may be, for example, 1200°C or higher, 1250°C or higher, or 1300°C or higher.
  • the temperature of the heat treatment in the annealing step may be, for example, 1450°C or lower, 1400°C or lower, or 1350°C or lower.
  • the upper limit of the temperature of the heat treatment is within the above range, crystal defects can be sufficiently reduced while further suppressing decomposition of the main phase.
  • the temperature of the heat treatment in the annealing step can be adjusted within the above-mentioned range, and may be, for example, 1200 to 1450°C or 1250 to 1350°C.
  • the lower limit of the heat treatment time in the annealing step may be, for example, 0.5 hours or more, 1.0 hours or more, 1.5 hours or more, 3.0 hours or more, or 4.0 hours or more.
  • the upper limit of the heat treatment time in the annealing step may be, for example, 30.0 hours or less, 20.0 hours or less, 10.0 hours or less, 8.0 hours or less, or 5.0 hours or less.
  • the heat treatment time in the annealing step can be adjusted within the above-mentioned range, and may be, for example, 0.5 to 30.0 hours, 1.5 to 10.0 hours, or 4.0 to 8.0 hours.
  • the annealing step may be performed under atmospheric pressure or under increased pressure.
  • the lower limit of the pressure in the annealing step may be, for example, 0.1 MPaG or more, or 0.2 MPaG or more.
  • the upper limit of the pressure in the annealing step may be, for example, 1.0 MPaG or less, or 0.9 MPaG or less.
  • the pressure of the annealing process can be adjusted within the above-mentioned range, and may be, for example, 0.1 to 1.0 MPaG, or 0.1 to 0.9 MPaG.
  • the annealing step is preferably performed in an atmosphere containing at least one selected from the group consisting of a rare gas and an inert gas.
  • the rare gas may contain, for example, argon, helium, etc., may contain argon, or may consist of argon.
  • the inert gas may contain, for example, nitrogen, or may consist of nitrogen.
  • the method for manufacturing the phosphor powder described above may include other steps in addition to the firing step and the annealing step.
  • Other processes include, for example, a crushing process, a classification process, and an acid treatment process.
  • the crushing process is a process of crushing the fired product obtained in the firing process or the annealed product obtained in the annealing process to adjust the particle size, since it may be obtained in the form of a lump.
  • a mortar or the like may be used, or a general crusher or crusher may also be used.
  • the crusher and crusher include a ball mill, a jet mill, and a Henschel mixer.
  • Agglomerates of fired products may be crushed using a method with relatively high strength, but when disintegrating agglomerates of annealed products, scratches, cracks, etc. may occur on the surface of the phosphor particles. From the viewpoint of suppressing this, it is desirable to perform crushing under gentle conditions. From the viewpoint of crushing under mild conditions, for example, the crushing step is preferably performed by wet ball milling in which a medium such as ion-exchanged water coexists. Additionally, zirconia balls can be used in the ball mill.
  • the classification step may be a step of removing fine particles that reduce the luminance of the phosphor powder.
  • the method for producing the phosphor powder described above includes a classification step.
  • a decantation method may be used.
  • the object to be treated for example, phosphor powder that has undergone a crushing process
  • a dispersion liquid is prepared and stirred, and then the phosphor powder in the dispersion liquid is precipitated, and the supernatant liquid is This is done by removing.
  • the precipitate is collected by filtration and dried to obtain a phosphor powder from which fine particles have been removed.
  • the above-described preparation of the dispersion liquid and removal of the supernatant may be repeated.
  • the dispersion medium include an aqueous solution of sodium hexametaphosphate.
  • the acid treatment step may be a step of reducing the content of impurities that do not contribute to light emission by treating the phosphor powder with an acid.
  • acids include hydrofluoric acid, sulfuric acid, phosphoric acid, hydrochloric acid, and nitric acid.
  • the acid may include at least one selected from the group consisting of hydrofluoric acid, sulfuric acid, phosphoric acid, hydrochloric acid, and nitric acid, and may be a mixed acid, but is preferably hydrochloric acid.
  • the acid treatment step is performed by bringing the phosphor powder into contact with the above-mentioned acid. Specifically, the above-mentioned phosphor powder is put into an aqueous solution containing the above-mentioned acid, a dispersion liquid is prepared, and the process is performed for a predetermined period of time while stirring.
  • the lower limit of the stirring time in the acid treatment step may be, for example, 0.1 hour or more, 0.5 hour or more, or 1.0 hour or more.
  • the upper limit of the stirring time may be, for example, 6.0 hours or less, 3.0 hours or less, or 1.5 hours or less.
  • the aqueous solution may be subjected to the acid treatment while being cooled, heated, or boiled. It may be. After the acid treatment, the phosphor powder may be washed with water to remove the acid and dried. The temperature during drying may be, for example, 100 to 120°C. The drying time may be, for example, about 12 hours.
  • the above-described phosphor powder is suitable as a phosphor for use in light-emitting devices such as display devices.
  • One embodiment of the light emitting device includes a light emitting element that emits primary light, and a wavelength converter that absorbs a portion of the primary light and emits secondary light having a wavelength longer than the wavelength of the primary light. It is a device.
  • the light emitting element that emits primary light may be, for example, an InGaN blue LED.
  • the wavelength converter includes the phosphor powder described above.
  • the wavelength converter may contain other phosphors in addition to the phosphor powder described above.
  • Other phosphors may include, for example, red phosphor, yellow phosphor, yellow-green phosphor, green phosphor, etc. other than the above-mentioned phosphor powder.
  • Other phosphors can be selected depending on the use of the phosphor composition, and can be selected and combined depending on, for example, the brightness, color, color rendering properties, etc. required of the light emitting device. Examples of the red phosphor include conventional CASN-based phosphors.
  • Examples of the green to yellow phosphor include YAG phosphor, LuAG phosphor, and the like.
  • Examples of the yellow phosphor include Ca- ⁇ -SiAlON phosphor, and examples of the green phosphor include ⁇ -SiAlON phosphor.
  • the light emitting element and wavelength converter may be dispersed in a sealing resin or the like.
  • a sealing resin it is desirable that it is colorless in itself, and it is possible to use a resin that has excellent transparency to visible light wavelengths.
  • the sealing resin one that is generally recognized to be transparent can be used.
  • the above-mentioned resin may be, for example, a silicone resin or an acrylic resin.
  • the relative luminous efficiency is generally determined based on the standard relative luminous efficiency curve by the Commission Internationale de l'Eclairage (CIE). The more the light has an emission spectrum that overlaps with the standard luminous efficiency curve, the brighter the light will feel to humans.
  • CIE Commission Internationale de l'Eclairage
  • the standard luminous efficiency curve draws a curve close to a normal distribution that peaks around 550 nm and spreads from 400 to 700 nm. For example, in bright places, humans are said to feel most strongly the light around 555 nm.
  • the emission spectrum of SCASN phosphors generally has a region that overlaps with the standard luminous efficiency curve, so SCASN phosphors are considered useful as red phosphors.
  • SCASN phosphors generally have an emission spectrum ranging from 600 to 800 nm.
  • the above-mentioned phosphor powder has a specific proportion of strontium, calcium, and europium in the composition formula that satisfies the above-mentioned x and y ranges, so that the peak position of the emission spectrum is at short wavelengths. It has a larger overlap with the standard luminous efficiency curve and exhibits sufficient brightness. Furthermore, since it exhibits a sufficient reddish tint, the above-mentioned phosphor powder can be a useful red phosphor for manufacturing display elements with excellent brightness.
  • Example 1 [Preparation of nucleating agent] First, in a container, 60.61 g of ⁇ -type silicon nitride (Si 3 N 4 , manufactured by Ube Industries, Ltd., SN-E10 grade), 53.13 g of aluminum nitride (AlN, manufactured by Tokuyama Corporation, E grade), and 13.68 g of europium oxide (Eu 2 O 3 , manufactured by Shin-Etsu Chemical Co., Ltd.) was added and premixed.
  • ⁇ -type silicon nitride Si 3 N 4 , manufactured by Ube Industries, Ltd., SN-E10 grade
  • AlN aluminum nitride
  • Eu 2 O 3 manufactured by Shin-Etsu Chemical Co., Ltd.
  • a glove box 240 g of the above mixture was filled into a lidded container made of tungsten. After closing the lid of this lidded container, it was taken out from the glove box and placed in an electric furnace equipped with a carbon heater. Thereafter, the electric furnace was sufficiently evacuated until the pressure in the electric furnace became 0.1 PaG or less.
  • the temperature inside the electric furnace was raised to 600°C. After reaching 600° C., nitrogen gas was introduced into the electric furnace and the pressure inside the electric furnace was adjusted to 0.9 MPaG. Thereafter, the temperature in the electric furnace was raised to 1950° C. under a nitrogen gas atmosphere, and after reaching 1950° C., heat treatment was performed for 8 hours. Thereafter, heating was terminated and the mixture was cooled to room temperature. After cooling to room temperature, a red mass was collected from the container. The collected lumps were crushed in a mortar and passed through a sieve to prepare core particles (nucleating agent) with an average particle size of 16 ⁇ m.
  • a glove box 240 g of the above mixed powder was filled into a tungsten container with a lid. After closing the lid of this lidded container, it was taken out from the glove box and placed in an electric furnace equipped with a carbon heater. Thereafter, the electric furnace was sufficiently evacuated until the pressure in the electric furnace became 0.1 PaG or less.
  • the temperature inside the electric furnace was raised to 600°C. After reaching 600° C., nitrogen gas was introduced into the electric furnace and the pressure inside the electric furnace was adjusted to 0.9 MPaG. Thereafter, the temperature in the electric furnace was raised to 1950° C. under a nitrogen gas atmosphere, and after reaching 1950° C., heat treatment was performed for 8 hours. Thereafter, heating was terminated and the mixture was allowed to cool to room temperature. After cooling to room temperature, a red mass was collected from the container. The collected lumps were crushed, passed through a sieve, and the particle size was adjusted to obtain a fired powder.
  • the obtained fired powder was filled into a tungsten container, quickly transferred into an electric furnace equipped with a carbon heater, and sufficiently evacuated until the pressure in the furnace became 0.1 PaG or less. Heating was started while evacuation continued, and when the temperature reached 600° C., argon gas was introduced into the furnace and the pressure of the atmosphere inside the furnace was adjusted to atmospheric pressure. Even after starting the introduction of argon gas, the temperature continued to rise to 1350°C. After the temperature reached 1350°C, heat treatment was carried out for 8 hours. Thereafter, heating was terminated and the mixture was cooled to room temperature. After cooling to room temperature, the annealed powder was collected from the container. The collected powder was passed through a sieve to adjust the particle size. In this way, an annealed powder was obtained.
  • the annealed powder was added to 2.0 M hydrochloric acid at room temperature so that the slurry concentration was 25% by mass, and immersed for 1 hour. In this way, acid treatment was performed. After the acid treatment, the hydrochloric acid slurry was boiled for 1 hour while stirring. The slurry after the boiling treatment was cooled to room temperature and filtered, and the acid treatment liquid was separated from the solid component to obtain an acid treatment product. The acid-treated product was dried by placing it in a dryer set at a temperature in the range of 100 to 120° C. for 12 hours to obtain acid-treated powder.
  • the acid-treated powder was filled into an alumina crucible, heated in the air at a temperature increase rate of 10°C/min, and heat-treated at 400°C for 3 hours. After the heat treatment, the mixture was left to stand until the temperature reached room temperature to obtain a heat-treated powder.
  • the obtained heat-treated powder was subjected to powder X-ray diffraction using CuK ⁇ rays using an X-ray diffraction apparatus (manufactured by Rigaku Co., Ltd., trade name: Ultima IV).
  • the same diffraction pattern as CaAlSiN 3 crystal was observed, and it was confirmed that the main crystal phase had the same crystal structure as CaAlSiN 3 crystal.
  • the heat-treated powder was designated as the phosphor powder of Example 1.
  • Example 2 Comparative Examples 1 to 4
  • a phosphor powder was prepared in the same manner as in Example 1, except that the mixing ratio was adjusted so that the breakdown (molar ratio) of the amount of each element in the raw material powder was as shown in Table 1.
  • composition ratio The phosphor powder was subjected to pressure acid decomposition to prepare a sample solution, and the sample solution was quantitatively analyzed using an ICP emission spectrometer to determine the composition ratio of the elements constituting the phosphor powder.
  • the fluorescence spectrum of the phosphor powder was measured using a spectrofluorometer (trade name: F-7000, manufactured by Hitachi High-Technologies Corporation) that was corrected with Rhodamine B and a secondary standard light source.
  • a solid sample holder attached to the photometer was used to measure the fluorescence spectrum at an excitation wavelength of 455 nm.
  • the peak wavelength and half-value width of the emission spectrum were determined from the obtained fluorescence spectrum.
  • a kneaded product was obtained by blending phosphor powder and LuAG yellow phosphor (emission peak wavelength is 535 nm when receiving excitation light with a wavelength of 455 nm) into a silicone resin, degassing and kneading.
  • a white LED was prepared by potting the obtained kneaded product into a surface mount type package to which a blue LED element with a peak wavelength of 450 nm was bonded, and thermosetting it.
  • the compounding ratio of the phosphor powder and the YAG phosphor was adjusted so that the chromaticity coordinates (x, y) of the white LED were (0.460, 0.411) during energization and light emission.
  • the special color rendering index R9 and total luminous flux when the obtained white LED was energized and emitted were measured using a total luminous flux measuring device (manufactured by Otsuka Electronics Co., Ltd., an integrating hemisphere with a diameter of 500 mm and a spectrophotometer (MCPD-9800). (combined device).
  • a phosphor powder that can exhibit excellent brightness while emitting sufficient reddish fluorescence, and a method for producing the same.
  • a light emitting device that uses the above-described phosphor powder and can exhibit excellent color rendering properties.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Luminescent Compositions (AREA)

Abstract

One aspect of the present disclosure provides a phosphor powder that contains phosphor particles which have a main crystal phase that has the same crystal structure as CaAlSiN3, while being represented by general formula (Sr1-x-y, Cax, Euy)AlSi(N, O)3 (wherein x and y satisfy 0.0100 ≤ x ≤ 0.0300 and 0.0500 ≤ y ≤ 0.0900).

Description

蛍光体粉末、蛍光体粉末の製造方法、及び発光装置Phosphor powder, method for manufacturing phosphor powder, and light emitting device
 本開示は、蛍光体粉末、蛍光体粉末の製造方法、及び発光装置に関する。 The present disclosure relates to a phosphor powder, a method for manufacturing the phosphor powder, and a light emitting device.
 発光ダイオード等の発光素子を有する発光装置は、一般照明、液晶ディスプレイ用のバックライト、及びLEDディスプレイ等に使用されている。LEDディスプレイでは、例えば、青色に発光する発光素子と、発光素子からの一次光を吸収して、波長の異なる光を発する波長変換体と、を有する発光素子が用いられる。そして、波長変換体として、例えば、赤色蛍光体及び緑色蛍光体等の各種蛍光体が用いられる。 Light-emitting devices having light-emitting elements such as light-emitting diodes are used in general lighting, backlights for liquid crystal displays, LED displays, and the like. In an LED display, for example, a light emitting element is used that has a light emitting element that emits blue light and a wavelength converter that absorbs primary light from the light emitting element and emits light of a different wavelength. As the wavelength converter, for example, various phosphors such as red phosphor and green phosphor are used.
 赤色蛍光体としては、カズン(CASN)蛍光体及びエスカズン(SCASN)蛍光体などのCASN系蛍光体が知られている(例えば、特許文献1等)。これらのCASN系蛍光体は、一般に、ユウロピウム酸化物又はユウロピウム窒化物と、カルシウム窒化物、ケイ素窒化物、及びアルミニウム窒化物と、を含む原料粉末を加熱することによって合成される。 As red phosphors, CASN-based phosphors such as CASN phosphor and SCASN phosphor are known (for example, Patent Document 1). These CASN-based phosphors are generally synthesized by heating raw material powder containing europium oxide or europium nitride, calcium nitride, silicon nitride, and aluminum nitride.
国際公報第2005/052087号International Publication No. 2005/052087
 色再現性の高いLEDディスプレイを得る観点から、緑色蛍光体及び赤色蛍光体として、それぞれの波長域に発光ピーク波長を有し、十分な発光強度を示す蛍光体を用いることが重要である。マイクロLEDディスプレイのように、青色LED上に緑色蛍光体又は赤色蛍光体を充填した硬化樹脂層を配置し、青色の一次光を励起光とする波長変換によってマルチカラー化を求める場合には、上記硬化樹脂層の高色域化を図ることが求められる。 From the viewpoint of obtaining an LED display with high color reproducibility, it is important to use phosphors that have emission peak wavelengths in their respective wavelength ranges and exhibit sufficient emission intensity as the green phosphor and red phosphor. When multi-coloring is desired by arranging a cured resin layer filled with green phosphor or red phosphor on a blue LED and converting the wavelength using blue primary light as excitation light, as in a micro LED display, the above method is used. It is required to increase the color gamut of the cured resin layer.
 赤色蛍光体に関しては、蛍光体の発光スペクトルが長波長域にシフトし、赤味が深まるにつれ、ヒト視感度曲線との重なりが減少するため、明るさが不足する傾向にある。つまり、赤色蛍光体においては、これを用いた発光装置の演色性を高めるために赤味を求めることと、明るさを求めることとは、両立することが難しい特性となっている。 Regarding red phosphors, as the emission spectrum of the phosphor shifts to a longer wavelength region and the reddish color deepens, the overlap with the human visibility curve decreases, so the brightness tends to be insufficient. In other words, red phosphors have characteristics that make it difficult to achieve both redness and brightness in order to improve the color rendering of a light-emitting device using the red phosphor.
 本開示は、十分な赤味を有する蛍光を発しつつ、優れた明るさを呈することが可能な蛍光体粉末、及びその製造方法を提供することを目的とする。本開示はまた、上述のような蛍光体粉末を用い、優れた演色性を発揮し得る発光装置を提供することを目的とする。 An object of the present disclosure is to provide a phosphor powder that can exhibit excellent brightness while emitting fluorescence with sufficient redness, and a method for producing the same. Another object of the present disclosure is to provide a light-emitting device that uses the above-described phosphor powder and can exhibit excellent color rendering properties.
 本開示の一側面は、主結晶相がCaAlSiNと同一の結晶構造を有し、一般式:(Sr1-x-y,Ca,Eu)AlSi(N,O)[一般式において、x及びyは、0.0100≦x≦0.0300、及び0.0500≦y≦0.0900を満たす]で表される蛍光体粒子を含む、蛍光体粉末を提供する。 One aspect of the present disclosure is that the main crystal phase has the same crystal structure as CaAlSiN 3 and has the general formula: (Sr 1-xy , Ca x , Eu y )AlSi(N,O) 3 [in the general formula , x and y satisfy 0.0100≦x≦0.0300 and 0.0500≦y≦0.0900].
 上記蛍光体粉末は、主結晶がCaAlSiNと同一の結晶構造を有する蛍光体粒子を含むことから、赤色蛍光体として機能し得る。そして、上記蛍光体粉末は、ストロンチウム(Sr)、カルシウム(Ca)及びユウロピウム(Eu)の元素比が上記所定の範囲内となることで、十分な赤味を有する蛍光を発しつつ、優れた明るさを呈することが可能となっている。このような効果が得られる理由は定かではないが、本発明者らは以下のように推定する。まず、SCASN蛍光体では、組成式中のカルシウムの含有率が小さくなると(すなわち、結晶格子中のカルシウムのサイトの一部が他元素に置き換わる割合が高まると)、発光スペクトルの半値幅が狭まり輝度が向上するものの、発光ピーク波長が短波長側にシフトし、蛍光の赤味が低下する傾向にある。一方で、SCASN蛍光体において組成式中のユウロピウムの含有率が大きくなると、ユウロピウムの増加に伴う濃度消光が発生し、発光効率が低下するものの、発光ピーク波長が長波長側にシフトする傾向にある。ストロンチウム、カルシウム及びユウロピウムは結晶格子中の同一のサイトを共有する元素であるところ、上記蛍光体粉末では、組成式中のストロンチウム、カルシウム及びユウロピウムの割合が上述のx及びyの範囲を満たす特定のものとなっていることで、発光輝度の向上、及び波長位置が調整されることによってヒト視感度曲線との重なりを増加させつつ、十分な赤味を帯びる波長域に発光ピーク位置を留めるとともに、発光強度を向上させることができるものと推定する。 The phosphor powder can function as a red phosphor because the main crystal includes phosphor particles having the same crystal structure as CaAlSiN 3 . The phosphor powder has an elemental ratio of strontium (Sr), calcium (Ca), and europium (Eu) within the predetermined range, so that it emits fluorescence with a sufficient reddish tinge and has excellent brightness. It is now possible to exhibit The reason why such an effect is obtained is not clear, but the present inventors estimate as follows. First, in SCASN phosphors, as the content of calcium in the composition formula decreases (that is, as the proportion of calcium sites in the crystal lattice is replaced by other elements increases), the half-width of the emission spectrum narrows and the luminance increases. However, the emission peak wavelength shifts to the shorter wavelength side, and the reddish tinge of the fluorescence tends to decrease. On the other hand, when the content of europium in the composition formula of a SCASN phosphor increases, concentration quenching occurs as the amount of europium increases, and although the luminous efficiency decreases, the emission peak wavelength tends to shift to the longer wavelength side. . Strontium, calcium, and europium are elements that share the same site in the crystal lattice, so in the above phosphor powder, the proportions of strontium, calcium, and europium in the composition formula satisfy the above-mentioned x and y ranges. As a result, the emission brightness is improved and the wavelength position is adjusted to increase the overlap with the human visual sensitivity curve, while keeping the emission peak position in a sufficiently reddish wavelength range. It is estimated that the luminescence intensity can be improved.
 上記蛍光体粉末は、波長455nmの光を照射したときの発光ピーク波長が635nm以上であってよい。発光ピーク波長が635nm以上であることで、上記蛍光体粉末はより赤味に優れる蛍光を発する赤色蛍光体としてより好適に使用できる。 The phosphor powder may have an emission peak wavelength of 635 nm or more when irradiated with light having a wavelength of 455 nm. Since the emission peak wavelength is 635 nm or more, the phosphor powder can be more suitably used as a red phosphor that emits fluorescence with an excellent reddish tint.
 本開示の一側面は、一次光を発する発光素子と、上記一次光の一部を吸収して、一次光の波長よりも長い波長を有する二次光を発する波長変換体と、を備える発光装置であって、上記波長変換体が上述の蛍光体粉末を含む、発光装置を提供する。 One aspect of the present disclosure is a light emitting device including a light emitting element that emits primary light, and a wavelength converter that absorbs a portion of the primary light and emits secondary light having a wavelength longer than the wavelength of the primary light. The present invention provides a light emitting device in which the wavelength converter includes the phosphor powder described above.
 上記発光装置は、上述の蛍光体粉末を含むことから、優れた演色性を発揮し得る。上記発光装置はまた、上述の蛍光体粉末を含むことから、十分な明るさを呈することが期待し得る。 Since the light-emitting device contains the above-mentioned phosphor powder, it can exhibit excellent color rendering properties. Since the light-emitting device also contains the above-mentioned phosphor powder, it can be expected to exhibit sufficient brightness.
 本開示の一側面は、ストロンチウム源、カルシウム源、アルミニウム源、ケイ素源、窒素源、及びユウロピウム源を含む原料粉末と、CASN系化合物で構成される核剤とを含む混合粉末を加熱処理することによって焼成物を得る焼成工程と、上記焼成物を上記焼成工程における加熱処理の温度よりも低い温度で加熱処理することでアニール処理物を得るアニール工程と、を有し、上記原料粉末において、アルミニウムの物質量に対する、ストロンチウム、カルシウム、及びユウロピウムの合計の物質量の比が1.0000を超え、アルミニウムの物質量を基準として、カルシウムの物質量が0.0050以上であり、且つ、ユウロピウムの物質量が0.0880以下である、蛍光体粉末の製造方法を提供する。 One aspect of the present disclosure is to heat-treat a mixed powder containing a raw material powder containing a strontium source, a calcium source, an aluminum source, a silicon source, a nitrogen source, and a europium source and a nucleating agent composed of a CASN-based compound. a firing step for obtaining a fired product, and an annealing step for obtaining an annealed product by heat-treating the fired product at a temperature lower than the heat treatment temperature in the firing step, and in the raw material powder, aluminum The ratio of the total amount of strontium, calcium, and europium to the amount of substance exceeds 1.0000, and the amount of calcium is 0.0050 or more with respect to the amount of aluminum, and the amount of europium is Provided is a method for producing a phosphor powder in which the amount is 0.0880 or less.
 上記蛍光体粉末の製造方法は、原料粉末において、アルミニウムの物質量に対する、ストロンチウム、カルシウム、及びユウロピウムの合計の物質量の比が1を超え、且つカルシウム及びユウロピウムの物質量が所定の範囲内となるように調整されており、さらに、核剤の存在する状況下で焼成を行い、所望の粒子を構成させることによって、上述の一般式で表される蛍光体粉末を調製することが可能となっている。従来、CASN系蛍光体の製造においては、目的組成に合わせて原料混合を行うことが一般的であり、その際、アルミニウムの物質量に対する、ストロンチウム、カルシウム、及びユウロピウムの合計の物質量の比が1となるように配合を調整している。例えば、カルシウムの量を増加させて、上述の比が1を外れるようにした場合、異相の生成を招き、発光効率の低下を招くことが生じていた。これに対して、カルシウム及びユウロピウムの配合量を所定の範囲内となるように調整することによって、上述の異相の発生を抑制でき、本開示に係る製造方法によって上述の蛍光体が製造できることを見出した。 The above method for producing phosphor powder is such that in the raw material powder, the ratio of the total amount of strontium, calcium, and europium to the amount of aluminum exceeds 1, and the amount of calcium and europium is within a predetermined range. Furthermore, by firing in the presence of a nucleating agent to form the desired particles, it is possible to prepare a phosphor powder represented by the above general formula. ing. Conventionally, in the production of CASN-based phosphors, it is common to mix raw materials according to the desired composition, and at that time, the ratio of the total amount of strontium, calcium, and europium to the amount of aluminum is The composition is adjusted so that it becomes 1. For example, if the amount of calcium is increased so that the above-mentioned ratio deviates from 1, a different phase may be generated, leading to a decrease in luminous efficiency. On the other hand, it has been discovered that by adjusting the blending amounts of calcium and europium within a predetermined range, the occurrence of the above-mentioned foreign phase can be suppressed, and the above-mentioned phosphor can be produced by the production method according to the present disclosure. Ta.
 本開示によれば、十分な赤味を有する蛍光を発しつつ、優れた明るさを呈することが可能な蛍光体粉末、及びその製造方法を提供できる。本開示によればまた、上述のような蛍光体粉末を用い、優れた演色性を発揮し得る発光装置を提供できる。 According to the present disclosure, it is possible to provide a phosphor powder that can exhibit excellent brightness while emitting fluorescence with sufficient redness, and a method for producing the same. According to the present disclosure, it is also possible to provide a light emitting device that uses the above-described phosphor powder and can exhibit excellent color rendering properties.
図1は、視感度曲線とSCASN蛍光体の発光スペクトルとの関係を示す模式図である。FIG. 1 is a schematic diagram showing the relationship between the visibility curve and the emission spectrum of the SCASN phosphor.
 以下、本開示の実施形態を説明する。ただし、以下の実施形態は、本開示を説明するための例示であり、本開示を以下の内容に限定する趣旨ではない。 Hereinafter, embodiments of the present disclosure will be described. However, the following embodiments are examples for explaining the present disclosure, and are not intended to limit the present disclosure to the following contents.
 本明細書において例示する材料は特に断らない限り、1種を単独で又は2種以上を組み合わせて用いることができる。組成物中の各成分の含有量は、組成物中の各成分に該当する物質が複数存在する場合には、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。 Unless otherwise specified, the materials exemplified in this specification can be used alone or in combination of two or more. If there are multiple substances corresponding to each component in the composition, the content of each component in the composition means the total amount of the multiple substances present in the composition, unless otherwise specified. .
 蛍光体粉末の一実施形態は、主結晶相がCaAlSiNと同一の結晶構造を有し、一般式:(Sr1-x-y,Ca,Eu)AlSi(N,O)[一般式において、x及びyは、0.0100≦x≦0.0300、及び0.0500≦y≦0.0900を満たす]で表される蛍光体粒子を含む。一般式:(Sr1-x-y,Ca,Eu)AlSi(N,O)において、xの値は、例えば、0.0105以上、0.0108以上、0.0110以上、又は0.117以上であってよく、0.0280以下、0.0250以下、又は0.0240以下であってよい。yの値は、例えば、0.0600以上、0.0700以上、又は0.0750以上であってよく、0.0880以下、又は0.0850以下であってよい。蛍光体粉末は、蛍光体粒子の集合であることを示す。上記蛍光体粒子は、CASN蛍光体であってよく、SCASN蛍光体であってもよい。 One embodiment of the phosphor powder has the main crystalline phase having the same crystal structure as CaAlSiN 3 and has the general formula: (Sr 1-xy , Ca x , Eu y )AlSi(N,O) 3 [General In the formula, x and y satisfy 0.0100≦x≦0.0300 and 0.0500≦y≦0.0900]. In the general formula: (Sr 1-x-y , Ca x , Eu y )AlSi(N,O) 3 , the value of x is, for example, 0.0105 or more, 0.0108 or more, 0.0110 or more, or 0 .117 or more, and may be 0.0280 or less, 0.0250 or less, or 0.0240 or less. The value of y may be, for example, 0.0600 or more, 0.0700 or more, or 0.0750 or more, and 0.0880 or less, or 0.0850 or less. The phosphor powder is an aggregation of phosphor particles. The phosphor particles may be CASN phosphors or SCASN phosphors.
 蛍光体粒子の結晶構造は粉末X線回折法によって確認することができる。また蛍光体粒子の組成におけるストロンチウム(Sr)、カルシウム(Ca)、ユウロピウム(Eu)、アルミニウム(Al)、及びケイ素(Si)の含有量は、測定対象を加圧酸分解して試料溶液を調製し、これに対して、ICP発光分光分析装置を用いた定量分析によって決定することができる。 The crystal structure of the phosphor particles can be confirmed by powder X-ray diffraction. In addition, the contents of strontium (Sr), calcium (Ca), europium (Eu), aluminum (Al), and silicon (Si) in the composition of the phosphor particles can be determined by preparing a sample solution by decomposing the measurement target with pressure acid. However, it can be determined by quantitative analysis using an ICP emission spectrometer.
 上記蛍光体粉末の発光ピーク波長の下限値は、例えば、635nm以上、636nm以上、637nm以上、637nm超、又は638nm以上であってよい。発光ピーク波長の下限値が上記範囲内であることで、上記蛍光体粉末はより赤味に優れる傾向を発する赤色蛍光体としてより好適に使用できる。上記蛍光体粉末の発光ピーク波長の上限値は、例えば、645nm以下、642nm以下、640nm以下、640nm未満、又は639nm以下であってよい。発光ピーク波長の上限値が上記範囲内であることで、上記蛍光体粉末の発光スペクトルとヒト視感度曲線との重なりをより増加させることができ、明るさに優れた赤色蛍光体としてより好適に使用できる。上記蛍光体粉末の発光ピーク波長は上述の範囲内で調整してよく、例えば、635~645nmであってよい。 The lower limit of the emission peak wavelength of the phosphor powder may be, for example, 635 nm or more, 636 nm or more, 637 nm or more, more than 637 nm, or 638 nm or more. When the lower limit of the emission peak wavelength is within the above range, the phosphor powder can be more suitably used as a red phosphor that exhibits a tendency to have better redness. The upper limit of the emission peak wavelength of the phosphor powder may be, for example, 645 nm or less, 642 nm or less, 640 nm or less, less than 640 nm, or 639 nm or less. By setting the upper limit of the emission peak wavelength within the above range, it is possible to further increase the overlap between the emission spectrum of the phosphor powder and the human visibility curve, making it more suitable as a red phosphor with excellent brightness. Can be used. The emission peak wavelength of the phosphor powder may be adjusted within the above-mentioned range, and may be, for example, 635 to 645 nm.
 上記蛍光体粉末の発光ピーク波長における半値幅は、比較的小さなものとなっている。上記蛍光体粉末における発光ピーク波長における半値幅の上限値は、例えば、75.0nm以下、74.8nm以下、74.6nm以下、74.5nm以下、74.4nm以下、74.4nm未満、又は74.3nm以下であってよい。上記半値幅の上限値が上記範囲内であることで、蛍光体粉末の発光輝度をより向上させることができる。上記蛍光体粉末における発光ピーク波長における半値幅の下限値は、例えば、70.0nm以上、71.0nm以上、72.0nm以上、73.0nm以上、又は73.5nm以上であってよい。上記半値幅の下限値が上記範囲内であることで、より赤味に優れた発光を実現し得る。上記蛍光体粉末における発光ピーク波長における半値幅は上述の範囲内であってよく、例えば、70,0~75.0nm、又は73.5~74.3nmであってよい。 The half-width at the emission peak wavelength of the phosphor powder is relatively small. The upper limit of the half-width at the emission peak wavelength of the phosphor powder is, for example, 75.0 nm or less, 74.8 nm or less, 74.6 nm or less, 74.5 nm or less, 74.4 nm or less, less than 74.4 nm, or 74 nm or less. It may be .3 nm or less. When the upper limit of the half width is within the above range, the luminance of the phosphor powder can be further improved. The lower limit of the half-value width at the emission peak wavelength of the phosphor powder may be, for example, 70.0 nm or more, 71.0 nm or more, 72.0 nm or more, 73.0 nm or more, or 73.5 nm or more. When the lower limit of the half-value width is within the above range, it is possible to realize light emission with better reddish tint. The half-width at the emission peak wavelength of the phosphor powder may be within the above-mentioned range, for example, from 70.0 to 75.0 nm, or from 73.5 to 74.3 nm.
 本明細書において蛍光体の発光ピーク波長は、波長455nmの光を照射したときの蛍光スペクトル測定によって決定される値を意味する。本明細書において半値幅は、半値全幅(Full Width at Half Maximum:FWHM)を意味し、波長455nmの光を照射したときの蛍光スペクトル測定によって得られる蛍光スペクトルから決定することができる。 In this specification, the emission peak wavelength of a phosphor means a value determined by fluorescence spectrum measurement when irradiated with light with a wavelength of 455 nm. In this specification, the half-width means Full Width at Half Maximum (FWHM), and can be determined from the fluorescence spectrum obtained by fluorescence spectrum measurement when irradiated with light with a wavelength of 455 nm.
 蛍光体粉末の平均粒径の上限値は、例えば、40.0μm以下、30.0μm以下、又は25.0μm以下であってよい。上記平均粒径の上限値を上記範囲内とすることによって、LED発光面に蛍光体粉末を用いた際に、発光色の色度のばらつきを抑制することができる。蛍光体粉末の平均粒径の下限値は、例えば、0.1μm以上、0.5μm以上、又は1.0μm以上であってよい。上記平均粒径の下限値を上記範囲内とすることによって、輝度の低下をより抑制することができる。蛍光体粉末の平均粒径は上述の範囲内で調整してよく、例えば、0.1~40.0μm、0.5~30.0μm、又は1.0~25.0μmとすることができる。 The upper limit of the average particle size of the phosphor powder may be, for example, 40.0 μm or less, 30.0 μm or less, or 25.0 μm or less. By setting the upper limit of the average particle size within the above range, it is possible to suppress variations in the chromaticity of the emitted light color when the phosphor powder is used on the LED light emitting surface. The lower limit of the average particle size of the phosphor powder may be, for example, 0.1 μm or more, 0.5 μm or more, or 1.0 μm or more. By setting the lower limit of the average particle size within the above range, reduction in brightness can be further suppressed. The average particle size of the phosphor powder may be adjusted within the above-mentioned range, for example, from 0.1 to 40.0 μm, from 0.5 to 30.0 μm, or from 1.0 to 25.0 μm.
 本明細書における平均粒径は、レーザ回折・散乱法によって測定される体積基準の粒子径の分布曲線において、小粒径からの積算値が全体の50%に達した時の粒子径(D50、メジアン径)を意味する。蛍光体粉末の粒子径に関する分布曲線は、JIS R 1629:1997「ファインセラミックス原料のレーザ回折・散乱法による粒子径分布測定方法」に記載のレーザ回折・散乱法による粒子径分布測定方法に準拠して行う。測定には粒子径分布測定装置を用いることができる。具体的には、まず、測定対象となる蛍光体粉末0.1gをイオン交換水100mLに投入し、ヘキサメタリン酸ナトリウムを少量添加し、超音波ホモジナイザーを用いて3分間、分散処理を行ったものを測定サンプルとし、粒子径分布測定装置を用いて粒度を測定して、得られた粒度分布からD50を決定する。D50は、メジアン径とも呼ばれる。なお、粒子径分布測定装置としては、例えば、マイクロトラック・ベル株式会社製の「Microtrac MT3300EX II」(製品名)を使用できる。超音波ホモジナイザーとしては、例えば、株式会社日本精機製作所製の「Ultrasonic Homogenizer US-150E」(製品名、チップサイズ:φ20、Amplitude:100%、発振周波数:19.5KHz、振幅:約31μm)を使用できる。 The average particle size in this specification refers to the particle size (D50, median diameter). The distribution curve regarding the particle size of the phosphor powder is based on the particle size distribution measurement method using laser diffraction/scattering method described in JIS R 1629:1997 "Method for measuring particle size distribution of fine ceramic raw materials using laser diffraction/scattering method". I will do it. A particle size distribution measuring device can be used for the measurement. Specifically, first, 0.1 g of the phosphor powder to be measured was added to 100 mL of ion-exchanged water, a small amount of sodium hexametaphosphate was added, and the mixture was dispersed for 3 minutes using an ultrasonic homogenizer. As a measurement sample, the particle size is measured using a particle size distribution measuring device, and D50 is determined from the obtained particle size distribution. D50 is also called the median diameter. As the particle size distribution measuring device, for example, "Microtrac MT3300EX II" (product name) manufactured by Microtrac Bell Co., Ltd. can be used. As the ultrasonic homogenizer, for example, "Ultrasonic Homogenizer US-150E" manufactured by Nippon Seiki Seisakusho Co., Ltd. (product name, chip size: φ20, amplitude: 100%, oscillation frequency: 19.5 KHz, amplitude: approximately 31 μm) is used. can.
 上述の蛍光体粉末は、十分な赤味を有する蛍光を発しつつ、優れた明るさを呈することが可能であることから、LED等の発光装置及び表示装置等に使用される蛍光体として好適に使用できる。このようにして得られる発光装置等は優れた演色性及び十分な明るさを呈し得る。 The above-mentioned phosphor powder is capable of exhibiting excellent brightness while emitting fluorescence with a sufficient reddish tint, so it is suitable as a phosphor for use in light-emitting devices such as LEDs, display devices, etc. Can be used. The light emitting device etc. obtained in this way can exhibit excellent color rendering properties and sufficient brightness.
 上述の蛍光体粉末は、例えば、以下のような方法で製造することができる。蛍光体粉末の製造方法の一実施形態は、ストロンチウム源、カルシウム源、アルミニウム源、ケイ素源、窒素源、及びユウロピウム源を含む原料粉末と、CASN系化合物で構成される核剤とを含む混合粉末を加熱処理することによって焼成物を得る焼成工程と、上記焼成物を上記焼成工程における加熱処理の温度よりも低い温度で加熱処理することでアニール処理物を得るアニール工程と、を有する。 The above-mentioned phosphor powder can be manufactured, for example, by the following method. One embodiment of the method for producing phosphor powder is a mixed powder containing a raw material powder containing a strontium source, a calcium source, an aluminum source, a silicon source, a nitrogen source, and a europium source, and a nucleating agent composed of a CASN-based compound. and an annealing step to obtain an annealed product by heat-treating the fired product at a temperature lower than the temperature of the heat treatment in the firing step.
 ストロンチウム源、カルシウム源、アルミニウム源、ケイ素源、窒素源、及びユウロピウム源は、それぞれ、ストロンチウム(Sr)、カルシウム(Ca)、アルミニウム(Al)、ケイ素(Si)、窒素(N)、及びユウロピウム(Eu)の供給源となる化合物又は単体を意味する。なお、ストロンチウム源として、例えば、窒化ストロンチウムを用いた場合、窒化ストロンチウムはストロンチウム源であると同時に窒素源でもある。 The strontium source, calcium source, aluminum source, silicon source, nitrogen source, and europium source are strontium (Sr), calcium (Ca), aluminum (Al), silicon (Si), nitrogen (N), and europium ( means a compound or simple substance that is a source of Eu). Note that, for example, when strontium nitride is used as the strontium source, the strontium nitride is both a strontium source and a nitrogen source.
 ストロンチウム化合物は、例えば、窒化ストロンチウム(Sr)、酸化ストロンチウム(SrO)、及び水酸化ストロンチウム(Sr(OH))等が挙げられる。 Examples of the strontium compound include strontium nitride (Sr 3 N 2 ), strontium oxide (SrO), and strontium hydroxide (Sr(OH) 2 ).
 カルシウム化合物は、例えば、窒化カルシウム(Ca)、酸化カルシウム(CaO)、及び水酸化カルシウム(Ca(OH))等が挙げられる。 Examples of the calcium compound include calcium nitride (Ca 3 N 2 ), calcium oxide (CaO), and calcium hydroxide (Ca(OH) 2 ).
 アルミニウム化合物は、例えば、窒化アルミニウム(AlN)、酸化アルミニウム(Al)、及び水酸化アルミニウム(Al(OH))等が挙げられる。 Examples of the aluminum compound include aluminum nitride (AlN), aluminum oxide (Al 2 O 3 ), and aluminum hydroxide (Al(OH) 3 ).
 ケイ素化合物は、例えば、窒化ケイ素(Si)、及び酸化ケイ素(SiO)等が挙げられる。窒化ケイ素としては、α分率の高いものを用いることが好ましい。窒化ケイ素のα分率は、例えば、80質量%以上、90質量%以上、又は95質量%以上であってよい。窒化ケイ素のα分率が上記範囲内であると、無機化合物の一次粒子の成長を促進することができる。 Examples of silicon compounds include silicon nitride (Si 3 N 4 ) and silicon oxide (SiO 2 ). As silicon nitride, it is preferable to use one with a high α fraction. The α fraction of silicon nitride may be, for example, 80% by mass or more, 90% by mass or more, or 95% by mass or more. When the α fraction of silicon nitride is within the above range, growth of primary particles of the inorganic compound can be promoted.
 ユウロピウム源は、ユウロピウムの供給源となるような化合物又は単体を意味する。ユウロピウムを構成元素として有する化合物(ユウロピウム化合物)としては、例えば、窒化物、酸化物、酸窒化物、及び水酸化物のいずれかであってよいが、好ましくは酸化物である。 Europium source means a compound or simple substance that serves as a source of europium. The compound having europium as a constituent element (europium compound) may be, for example, any one of a nitride, an oxide, an oxynitride, and a hydroxide, but preferably an oxide.
 ユウロピウム化合物は、例えば、ユウロピウムの酸化物(酸化ユウロピウム)、ユウロピウムの窒化物(窒化ユウロピウム)、及びユウロピウムのハロゲン化物等が挙げられる。ユウロピウムのハロゲン化物は、例えば、フッ化ユウロピウム、塩化ユウロピウム、臭化ユウロピウム、及びヨウ化ユウロピウム等が挙げられる。ユウロピウムの化合物は、好ましくは酸化ユウロピウムを含む。ユウロピウムの化物におけるユウロピウムの価数は、2価又は3価であってよく、好ましくは2価である。 Examples of europium compounds include europium oxides (europium oxide), europium nitrides (europium nitride), and europium halides. Examples of europium halides include europium fluoride, europium chloride, europium bromide, and europium iodide. The compound of europium preferably comprises europium oxide. The valence of europium in the europium compound may be divalent or trivalent, and preferably divalent.
 上記原料粉末において、アルミニウムの物質量に対する、ストロンチウム、カルシウム、及びユウロピウムの合計の物質量の比が1.0000を超え、アルミニウムの物質量を基準として、カルシウムの物質量が0.0050以上であり、且つ、ユウロピウムの物質量が0.0880以下である。 In the raw material powder, the ratio of the total amount of strontium, calcium, and europium to the amount of aluminum exceeds 1.0000, and the amount of calcium is 0.0050 or more based on the amount of aluminum. , and the amount of europium is 0.0880 or less.
 上記原料粉末において、アルミニウムの物質量に対する、ストロンチウム、カルシウム、及びユウロピウムの合計の物質量の比の下限値は、例えば、1.0200以上、1.0300以上、1.0400以上、1.0450以上、又は1.0500以上であってよい。上記比の下限値を上記範囲内とすることで、得られる蛍光体粉末が発する蛍光スペクトルの赤味と明るさとをより高水準で両立し得る。上記原料粉末において、アルミニウムの物質量に対する、ストロンチウム、カルシウム、及びユウロピウムの合計の物質量の比の上限値は、例えば、1.5000以下、1.4000以下、1.3000以下、1.2000以下、又は1.1000以下であってよい。上記比の上限値が上記範囲内であることで、異相の生成をより十分に抑制させることができる。上記原料粉末において、アルミニウムの物質量に対する、ストロンチウム、カルシウム、及びユウロピウムの合計の物質量の比は上述の範囲内で調整してよく、例えば、1.0000超1.5000以下、1.0000超1.3000以下、又は1.0200~1.2000であってよい。 In the above raw material powder, the lower limit of the ratio of the total amount of strontium, calcium, and europium to the amount of aluminum is, for example, 1.0200 or more, 1.0300 or more, 1.0400 or more, 1.0450 or more. , or 1.0500 or more. By setting the lower limit of the above ratio within the above range, it is possible to achieve both a higher level of redness and brightness in the fluorescence spectrum emitted by the obtained phosphor powder. In the above raw material powder, the upper limit of the ratio of the total amount of strontium, calcium, and europium to the amount of aluminum is, for example, 1.5000 or less, 1.4000 or less, 1.3000 or less, 1.2000 or less , or 1.1000 or less. By setting the upper limit of the ratio within the above range, generation of foreign phases can be more fully suppressed. In the raw material powder, the ratio of the total amount of strontium, calcium, and europium to the amount of aluminum may be adjusted within the above range, for example, more than 1.0000 and less than or equal to 1.5000, and more than 1.0000. It may be 1.3000 or less, or 1.0200 to 1.2000.
 上記原料粉末におけるカルシウムの物質量の下限値は、アルミニウムの物質量を基準として、例えば、0.0050以上、0.0100以上、0.0105以上、0.0108以上、0.0110以上、0.0130以上、又は0.0150以上であってよい。カルシウムの物質量の下限値が上記範囲内であることで、赤味により優れた発光を実現し得る。上記原料粉末におけるカルシウムの物質量の上限値は、アルミニウムの物質量を基準として、例えば、0.0280以下、0.0250以下、0.0240以下、又は0.0220以下であってよい。カルシウムの物質量の上限値が上記範囲内であることで、発光輝度をより向上させ得る。上記原料粉末におけるカルシウムの物質量は上述の範囲内で調整してよく、アルミニウムの物質量を基準として、例えば、0.0050~0.0280であってよい。 The lower limit of the amount of calcium in the raw material powder is, for example, 0.0050 or more, 0.0100 or more, 0.0105 or more, 0.0108 or more, 0.0110 or more, 0. It may be 0.0130 or more, or 0.0150 or more. When the lower limit of the amount of calcium is within the above range, it is possible to realize luminescence that is more excellent in redness. The upper limit of the calcium content in the raw material powder may be, for example, 0.0280 or less, 0.0250 or less, 0.0240 or less, or 0.0220 or less, based on the aluminum content. When the upper limit of the amount of calcium is within the above range, the luminance can be further improved. The amount of calcium in the raw material powder may be adjusted within the above-mentioned range, and may be, for example, 0.0050 to 0.0280 based on the amount of aluminum.
 上記原料粉末におけるユウロピウムの物質量の下限値は、アルミニウムの物質量を基準として、例えば、0.0550以上、0.0600以上、0.0650以上、又は0.0700以上であってよい。ユウロピウムの物質量の下限値が上記範囲内であることで、赤味により優れた発光を実現し得る。上記原料粉末におけるユウロピウムの物質量の上限値は、アルミニウムの物質量を基準として、例えば、0.0880以下、0.0860以下、0.0850以下、又は0.0830以下であってよい。ユウロピウムの物質量の上限値が上記範囲内であることで、発光輝度をより向上させ得る。上記原料粉末におけるユウロピウムの物質量は上述の範囲内で調整してよく、アルミニウムの物質量を基準として、例えば、0.0550~0.0880であってよい。 The lower limit of the amount of europium in the raw material powder may be, for example, 0.0550 or more, 0.0600 or more, 0.0650 or more, or 0.0700 or more, based on the amount of aluminum. When the lower limit of the amount of europium is within the above range, it is possible to realize luminescence with a more excellent reddish tint. The upper limit of the amount of europium in the raw material powder may be, for example, 0.0880 or less, 0.0860 or less, 0.0850 or less, or 0.0830 or less, based on the amount of aluminum. When the upper limit of the amount of europium is within the above range, the luminance of light emission can be further improved. The amount of europium in the raw material powder may be adjusted within the above-mentioned range, and may be, for example, 0.0550 to 0.0880 based on the amount of aluminum.
 混合粉末に配合されるCASN系化合物で構成される核剤は、CaAlSiNと同一の結晶構造を有するものであればよく、発光中心元素を含有するものであってもよい。 The nucleating agent composed of a CASN-based compound blended into the mixed powder may have the same crystal structure as CaAlSiN 3 and may contain a luminescent center element.
 焼成工程における焼成は、例えば、焼成の対象となる混合粉末を耐熱性の蓋つき容器に充填し、容器ごと加熱する方法で行ってもよい。耐熱性の容器を構成する素材としては、例えば、窒化ホウ素、タングステン、モリブデン、及びタンタル等が挙げられる。加熱には、電気炉等を用いることができる。 The firing in the firing step may be performed, for example, by filling a heat-resistant lidded container with the mixed powder to be fired and heating the container together. Examples of materials constituting the heat-resistant container include boron nitride, tungsten, molybdenum, and tantalum. An electric furnace or the like can be used for heating.
 焼成工程は、CaAlSiNと同一の結晶構造を形成し、当該結晶構造を構成する際の組成のバラつきを低減するために、焼成温度、焼成時間、焼成圧力、及び焼成雰囲気等の条件を調整して行う。 In the firing process, conditions such as firing temperature, firing time, firing pressure, and firing atmosphere were adjusted in order to form the same crystal structure as CaAlSiN 3 and reduce compositional variations when forming the crystal structure. I will do it.
 焼成工程における焼成温度は、工程を通して一定であることが望ましい。焼成工程における焼成温度は、例えば、1500℃以上、又は1550℃以上であってよい。上記焼成温度の下限値を上記範囲内とすることで、得られる焼成物における組成のバラつきをより低減することができる。焼成工程における焼成温度は、例えば、2000℃以下、1980℃以下、又は1950℃以下であってよい。上記焼成温度の上限値を上記範囲内とすることで、無機化合物の原料となる各種化合物の揮発を抑制することができ、また形成される無機化合物の分解を抑制し、結晶構造が壊れることを抑制できる。焼成工程における焼成温度は上述の範囲内で調整でき、例えば、1500~2000℃、又は1550~1950℃であってよい。 It is desirable that the firing temperature in the firing process be constant throughout the process. The firing temperature in the firing step may be, for example, 1500°C or higher, or 1550°C or higher. By setting the lower limit of the firing temperature within the above range, variations in composition in the resulting fired product can be further reduced. The firing temperature in the firing step may be, for example, 2000°C or lower, 1980°C or lower, or 1950°C or lower. By setting the upper limit of the firing temperature within the above range, it is possible to suppress the volatilization of various compounds that are raw materials for inorganic compounds, and also to suppress the decomposition of the formed inorganic compounds, thereby preventing the crystal structure from breaking. It can be suppressed. The firing temperature in the firing step can be adjusted within the above-mentioned range, and may be, for example, 1500 to 2000°C or 1550 to 1950°C.
 焼成工程における焼成時間の下限値は、例えば、0.5時間以上、1.0時間以上、1.5時間以上、3.0時間以上、又は4.0時間以上であってよい。上記焼成時間の下限値を上記範囲内とすることで、原料となる各種化合物のCaAlSiN結晶相と同一の結晶構造を有する焼成物への変換をより促進でき、蛍光体粉末の製造における歩留まりを向上させることができる。焼成工程における焼成時間の上限値は、例えば、30.0時間以下、20.0時間以下、10.0時間以下、又は8.0時間以下であってよい。上記焼成時間の上限値を上記範囲内とすることで、焼成物中の一次粒子の過度の結晶成長をより抑制できる。焼成工程における焼成時間は上述の範囲内で調整でき、例えば、0.5~30.0時間、1.5~10.0時間、又は4.0~8.0時間であってよい。 The lower limit of the firing time in the firing step may be, for example, 0.5 hours or more, 1.0 hours or more, 1.5 hours or more, 3.0 hours or more, or 4.0 hours or more. By setting the lower limit of the firing time within the above range, it is possible to further promote the conversion of various compounds serving as raw materials into a fired product having the same crystal structure as the CaAlSiN 3 crystal phase, thereby increasing the yield in the production of phosphor powder. can be improved. The upper limit of the firing time in the firing step may be, for example, 30.0 hours or less, 20.0 hours or less, 10.0 hours or less, or 8.0 hours or less. By setting the upper limit of the firing time within the above range, excessive crystal growth of primary particles in the fired product can be further suppressed. The firing time in the firing step can be adjusted within the above-mentioned range, and may be, for example, 0.5 to 30.0 hours, 1.5 to 10.0 hours, or 4.0 to 8.0 hours.
 本明細書において焼成時間とは、加熱対象物の周囲環境の温度が所定の温度に到達してから当該温度で維持する時間(保持時間)を意味する。 As used herein, the firing time refers to the time (holding time) during which the temperature of the surrounding environment of the object to be heated reaches a predetermined temperature and is maintained at that temperature.
 焼成工程は、大気圧下、又は加圧下で行われてよい。焼成工程を加圧環境下で行う場合、焼成工程の焼成圧力の下限値は、例えば、0.1MPaG以上、又は0.2MPaG以上であってよい。上記焼成圧力の下限値が上記範囲内であることで、上記焼成物を構成する主結晶の分解をより抑制することができる。焼成工程の焼成圧力の上限値は、例えば、1.0MPaG以下、又は0.9MPaG以下であってよい。上記焼成圧力の上限値が上記範囲内であることで、上記無機化合物の分解をより抑制することができる。焼成工程の圧力は上述の範囲内で調整でき、例えば、0.1~1.0MPaG、又は0.1~0.9MPaGであってよい。 The firing step may be performed under atmospheric pressure or under pressure. When the firing process is performed in a pressurized environment, the lower limit of the firing pressure in the firing process may be, for example, 0.1 MPaG or more, or 0.2 MPaG or more. When the lower limit of the firing pressure is within the above range, decomposition of the main crystals constituting the fired product can be further suppressed. The upper limit of the firing pressure in the firing step may be, for example, 1.0 MPaG or less, or 0.9 MPaG or less. When the upper limit of the firing pressure is within the above range, decomposition of the inorganic compound can be further suppressed. The pressure of the firing process can be adjusted within the above-mentioned range, and may be, for example, 0.1 to 1.0 MPaG, or 0.1 to 0.9 MPaG.
 本明細書における圧力はゲージ圧を意味する。 Pressure in this specification means gauge pressure.
 焼成工程は、希ガス、及び不活性ガスからなる群より選択される少なくとも一種を含む雰囲気下で行うことが望ましい。上記希ガスは、例えば、アルゴン、及びヘリウム等を含有してよく、アルゴンを含有してよく、アルゴンからなってもよい。不活性ガスは、例えば、窒素等を含有してよく、窒素からなってもよい。 The firing step is preferably performed in an atmosphere containing at least one selected from the group consisting of a rare gas and an inert gas. The rare gas may contain, for example, argon, helium, etc., may contain argon, or may consist of argon. The inert gas may contain, for example, nitrogen, or may consist of nitrogen.
 アニール工程では、上記焼成物を上記焼成工程における加熱処理の温度よりも低い温度で加熱処理することでアニール処理物を得る。 In the annealing step, the annealed product is obtained by heat-treating the fired product at a temperature lower than the temperature of the heat treatment in the firing step.
 アニール工程における加熱処理の温度は、例えば、1200℃以上、1250℃以上、又は1300℃以上であってよい。上記加熱処理の温度の下限値が上記範囲内であることで、焼成工程や粉砕工程で生じた結晶欠陥を低減することができ、より発光効率の高い蛍光体粉末を得ることができる。アニール工程における加熱処理の温度は、例えば、1450℃以下、1400℃以下、又は1350℃以下であってよい。上記加熱処理の温度の上限値が上記範囲内であることで、主相の分解をより抑制しつつ、結晶欠陥を十分に低減することができる。アニール工程における加熱処理の温度は上述の範囲内で調整でき、例えば、1200~1450℃、又は1250~1350℃であってよい。 The temperature of the heat treatment in the annealing step may be, for example, 1200°C or higher, 1250°C or higher, or 1300°C or higher. When the lower limit of the temperature of the heat treatment is within the above range, it is possible to reduce crystal defects generated in the firing process and the pulverization process, and it is possible to obtain a phosphor powder with higher luminous efficiency. The temperature of the heat treatment in the annealing step may be, for example, 1450°C or lower, 1400°C or lower, or 1350°C or lower. When the upper limit of the temperature of the heat treatment is within the above range, crystal defects can be sufficiently reduced while further suppressing decomposition of the main phase. The temperature of the heat treatment in the annealing step can be adjusted within the above-mentioned range, and may be, for example, 1200 to 1450°C or 1250 to 1350°C.
 アニール工程における加熱処理の時間の下限値は、例えば、0.5時間以上、1.0時間以上、1.5時間以上、3.0時間以上、又は4.0時間以上であってよい。アニール工程における加熱処理の時間の上限値は、例えば、30.0時間以下、20.0時間以下、10.0時間以下、8.0時間以下、又は5.0時間以下であってよい。アニール工程における加熱処理の時間は上述の範囲内で調整でき、例えば、0.5~30.0時間、1.5~10.0時間、又は4.0~8.0時間であってよい。 The lower limit of the heat treatment time in the annealing step may be, for example, 0.5 hours or more, 1.0 hours or more, 1.5 hours or more, 3.0 hours or more, or 4.0 hours or more. The upper limit of the heat treatment time in the annealing step may be, for example, 30.0 hours or less, 20.0 hours or less, 10.0 hours or less, 8.0 hours or less, or 5.0 hours or less. The heat treatment time in the annealing step can be adjusted within the above-mentioned range, and may be, for example, 0.5 to 30.0 hours, 1.5 to 10.0 hours, or 4.0 to 8.0 hours.
 アニール工程は、大気圧下、又は加圧下で行われてよい。アニール工程を加圧環境下で行う場合、アニール工程の圧力の下限値は、例えば、0.1MPaG以上、又は0.2MPaG以上であってよい。上記圧力の下限値が上記範囲内であることで、蛍光体粒子の分解をより抑制することができる。アニール工程の圧力の上限値は、例えば、1.0MPaG以下、又は0.9MPaG以下であってよい。上記圧力の上限値が上記範囲内であることで、形成される蛍光体粒子の分解をより抑制することができる。アニール工程の圧力は上述の範囲内で調整でき、例えば、0.1~1.0MPaG、又は0.1~0.9MPaGであってよい。 The annealing step may be performed under atmospheric pressure or under increased pressure. When the annealing step is performed in a pressurized environment, the lower limit of the pressure in the annealing step may be, for example, 0.1 MPaG or more, or 0.2 MPaG or more. When the lower limit of the pressure is within the above range, decomposition of the phosphor particles can be further suppressed. The upper limit of the pressure in the annealing step may be, for example, 1.0 MPaG or less, or 0.9 MPaG or less. When the upper limit of the pressure is within the above range, decomposition of the formed phosphor particles can be further suppressed. The pressure of the annealing process can be adjusted within the above-mentioned range, and may be, for example, 0.1 to 1.0 MPaG, or 0.1 to 0.9 MPaG.
 アニール工程は、希ガス、及び不活性ガスからなる群より選択される少なくとも一種を含む雰囲気下で行うことが望ましい。上記希ガスは、例えば、アルゴン、及びヘリウム等を含有してよく、アルゴンを含有してよく、アルゴンからなってもよい。不活性ガスは、例えば、窒素等を含有してよく、窒素からなってもよい。 The annealing step is preferably performed in an atmosphere containing at least one selected from the group consisting of a rare gas and an inert gas. The rare gas may contain, for example, argon, helium, etc., may contain argon, or may consist of argon. The inert gas may contain, for example, nitrogen, or may consist of nitrogen.
 上述の蛍光体粉末の製造方法は、焼成工程及びアニール工程に加えて、その他の工程を有していてもよい。その他の工程は、例えば、解砕工程、分級工程、及び酸処理工程等が挙げられる。 The method for manufacturing the phosphor powder described above may include other steps in addition to the firing step and the annealing step. Other processes include, for example, a crushing process, a classification process, and an acid treatment process.
 解砕工程は、例えば、焼成工程で得られる焼成物、又はアニール工程で得られるアニール処理物が塊状で得られる場合があるため、これを解砕し、粒度を調整する工程である。粉砕工程においては、乳鉢等を用いてもよく、また一般的な粉砕機又は解砕機を用いることもできる。粉砕機及び解砕機としては、例えば、ボールミル、ジェットミル、及びヘンシェルミキサー等が挙げられる。焼成物の塊状物については比較的強度の高い方法等で解砕してもよいが、アニール処理物の塊状物の解砕の際には、蛍光体粒子の表面への傷、割れ等の発生を抑制する観点から、緩やかな条件で解砕を行うことが望ましい。緩やかな条件での解砕とする観点から、例えば、粉砕工程は、イオン交換水等の媒体を共存させた湿式におけるボールミル粉砕で行われることが望ましい。また、ボールミルにはジルコニアボールを使用できる。 The crushing process is a process of crushing the fired product obtained in the firing process or the annealed product obtained in the annealing process to adjust the particle size, since it may be obtained in the form of a lump. In the crushing step, a mortar or the like may be used, or a general crusher or crusher may also be used. Examples of the crusher and crusher include a ball mill, a jet mill, and a Henschel mixer. Agglomerates of fired products may be crushed using a method with relatively high strength, but when disintegrating agglomerates of annealed products, scratches, cracks, etc. may occur on the surface of the phosphor particles. From the viewpoint of suppressing this, it is desirable to perform crushing under gentle conditions. From the viewpoint of crushing under mild conditions, for example, the crushing step is preferably performed by wet ball milling in which a medium such as ion-exchanged water coexists. Additionally, zirconia balls can be used in the ball mill.
 分級工程は、蛍光体粉末の発光輝度等を低下させるような微粒子分を除去する工程であってよい。蛍光体粉末に求められる光学特性の要求レベルが高い場合には、上述の蛍光体粉末の製造方法は、分級工程を有することが望ましい。分級工程は、例えば、デカンテーション法を用いてよい。分級工程は、処理対象物(例えば、解砕工程を経た蛍光体粉末)を分散媒中に投入し、分散液を調製して撹拌した後、当該分散液中の蛍光体粉末を沈殿させ、上澄みを除去することによって行う。上澄み除去後、沈殿物をろ集し、乾燥させることで、微粒子分の除去された蛍光体粉末を得ることができる。分級工程では、上述の分散液の調製、上澄みの除去を繰り返し行ってよい。分散媒としては、例えば、ヘキサメタリン酸ナトリウムの水溶液等が挙げられる。 The classification step may be a step of removing fine particles that reduce the luminance of the phosphor powder. When the level of optical properties required for the phosphor powder is high, it is desirable that the method for producing the phosphor powder described above includes a classification step. For the classification step, for example, a decantation method may be used. In the classification process, the object to be treated (for example, phosphor powder that has undergone a crushing process) is put into a dispersion medium, a dispersion liquid is prepared and stirred, and then the phosphor powder in the dispersion liquid is precipitated, and the supernatant liquid is This is done by removing. After removing the supernatant, the precipitate is collected by filtration and dried to obtain a phosphor powder from which fine particles have been removed. In the classification step, the above-described preparation of the dispersion liquid and removal of the supernatant may be repeated. Examples of the dispersion medium include an aqueous solution of sodium hexametaphosphate.
 酸処理工程は、蛍光体粉末を酸処理することによって、発光に寄与しない不純物の含有量を低減する工程であってよい。酸としては、例えば、フッ化水素酸、硫酸、リン酸、塩酸、及び硝酸等を挙げることができる。酸は、フッ化水素酸、硫酸、リン酸、塩酸、及び硝酸からなる群より選択される少なくとも1種を含んでよく、混酸であってよいが、好ましくは塩酸である。酸処理工程は、蛍光体粉末を上述の酸に接触させることによって行う。具体的には、上記酸を含む水溶液中に上述の蛍光体粉末を投入し、分散液を調製して、撹拌しながら所定時間処理を行う。 The acid treatment step may be a step of reducing the content of impurities that do not contribute to light emission by treating the phosphor powder with an acid. Examples of acids include hydrofluoric acid, sulfuric acid, phosphoric acid, hydrochloric acid, and nitric acid. The acid may include at least one selected from the group consisting of hydrofluoric acid, sulfuric acid, phosphoric acid, hydrochloric acid, and nitric acid, and may be a mixed acid, but is preferably hydrochloric acid. The acid treatment step is performed by bringing the phosphor powder into contact with the above-mentioned acid. Specifically, the above-mentioned phosphor powder is put into an aqueous solution containing the above-mentioned acid, a dispersion liquid is prepared, and the process is performed for a predetermined period of time while stirring.
 酸処理工程における上記撹拌時間の下限値は、例えば、0.1時間以上、0.5時間以上、又は1.0時間以上であってよい。上記撹拌時間の上限値は、例えば、6.0時間以下、3.0時間以下、又は1.5時間以下であってよい。また、酸処理工程において、上記水溶液を、冷却、加温、又は煮沸させた状態で酸処理を行ってもよく、この際の水溶液の温度は、例えば、20~90℃、又は30~80℃であってよい。酸処理の後に、蛍光体粉末を水で洗浄し酸を除去して、乾燥させてもよい。乾燥の際の温度は、例えば、100~120℃であってよい。乾燥の際の時間は、例えば、12時間程度であってよい。 The lower limit of the stirring time in the acid treatment step may be, for example, 0.1 hour or more, 0.5 hour or more, or 1.0 hour or more. The upper limit of the stirring time may be, for example, 6.0 hours or less, 3.0 hours or less, or 1.5 hours or less. In addition, in the acid treatment step, the aqueous solution may be subjected to the acid treatment while being cooled, heated, or boiled. It may be. After the acid treatment, the phosphor powder may be washed with water to remove the acid and dried. The temperature during drying may be, for example, 100 to 120°C. The drying time may be, for example, about 12 hours.
 上述の蛍光体粉末は、表示装置等の発光装置に使用する蛍光体として好適である。発光装置の一実施形態は、一次光を発する発光素子と、上記一次光の一部を吸収して、一次光の波長よりも長い波長を有する二次光を発する波長変換体と、を備える発光装置である。 The above-described phosphor powder is suitable as a phosphor for use in light-emitting devices such as display devices. One embodiment of the light emitting device includes a light emitting element that emits primary light, and a wavelength converter that absorbs a portion of the primary light and emits secondary light having a wavelength longer than the wavelength of the primary light. It is a device.
 一次光を発する発光素子は、例えば、InGaN青色LED等であってよい。 The light emitting element that emits primary light may be, for example, an InGaN blue LED.
 上記波長変換体は、上述の蛍光体粉末を含む。上記波長変換体は、上述の蛍光体粉末の他に、他の蛍光体を含んでもよい。他の蛍光体としては、例えば、上述の蛍光体粉末以外の赤色蛍光体、黄色蛍光体、黄緑色蛍光体、及び緑色蛍光体等を含んでもよい。その他の蛍光体は、蛍光体組成物を用いる用途に応じて選択することができ、例えば、発光装置に要求される輝度、色味、及び演色性等に応じて選択して組み合わせることができる。赤色蛍光体としては、例えば、従来のCASN系蛍光体等が挙げられる。緑色~黄色蛍光体(緑色から黄色の波長帯域に蛍光波長を有する蛍光体)としては、例えば、YAG蛍光体、LuAG蛍光体等が挙げられる。黄色蛍光体としては、Ca-α-SiAlON蛍光体等、緑色蛍光体としてはβ-SiAlON蛍光体等が挙げられる。 The wavelength converter includes the phosphor powder described above. The wavelength converter may contain other phosphors in addition to the phosphor powder described above. Other phosphors may include, for example, red phosphor, yellow phosphor, yellow-green phosphor, green phosphor, etc. other than the above-mentioned phosphor powder. Other phosphors can be selected depending on the use of the phosphor composition, and can be selected and combined depending on, for example, the brightness, color, color rendering properties, etc. required of the light emitting device. Examples of the red phosphor include conventional CASN-based phosphors. Examples of the green to yellow phosphor (phosphor having a fluorescence wavelength in the green to yellow wavelength band) include YAG phosphor, LuAG phosphor, and the like. Examples of the yellow phosphor include Ca-α-SiAlON phosphor, and examples of the green phosphor include β-SiAlON phosphor.
 上記発光素子及び波長変換体は、封止樹脂等に分散されていてもよい。封止樹脂としては、それ自体が無色であるものが望ましく、可視光波長に対する透過性に優れるものを用いることができる。封止樹脂は一般には、透明であると認識されるものを用いることができる。上述のような樹脂としては、例えば、シリコーン樹脂又はアクリル樹脂等であってよい。 The light emitting element and wavelength converter may be dispersed in a sealing resin or the like. As the sealing resin, it is desirable that it is colorless in itself, and it is possible to use a resin that has excellent transparency to visible light wavelengths. As the sealing resin, one that is generally recognized to be transparent can be used. The above-mentioned resin may be, for example, a silicone resin or an acrylic resin.
 なお、ディスプレイ等の表示装置には、情報伝達のため、十分な明るさを呈することが求められる。そのためには、ディスプレイから発せられる発光成分がヒトの比視感度の高い領域に属することが望ましい。比視感度は、一般に、国際照明委員会(CIE)による標準比視感度曲線に基づいて決定される。この標準比視感度曲線との重なりが多い発光スペクトルを有する光である程、ヒトが明るく感じることになる。標準比視感度曲線は550nm付近をピークに400~700nmに亘って広がる正規分布に近い曲線を描き、例えば、明所では555nm付近の光をヒトは最も強く感じるとされている。 Note that display devices such as displays are required to exhibit sufficient brightness in order to transmit information. To this end, it is desirable that the luminescent components emitted from the display belong to a region with high relative luminous efficiency for humans. The relative luminous efficiency is generally determined based on the standard relative luminous efficiency curve by the Commission Internationale de l'Eclairage (CIE). The more the light has an emission spectrum that overlaps with the standard luminous efficiency curve, the brighter the light will feel to humans. The standard luminous efficiency curve draws a curve close to a normal distribution that peaks around 550 nm and spreads from 400 to 700 nm. For example, in bright places, humans are said to feel most strongly the light around 555 nm.
 図1に示すように、一般に、SCASN蛍光体の発光スペクトルは、標準比視感度曲線と重なる領域を有することから、SCASN蛍光体は赤色蛍光体として有用とされている。SCASN蛍光体の発光スペクトルは一般に600~800nmに亘る発光スペクトルを有する。ここで、上述の蛍光体粉末は、組成式中のストロンチウム、カルシウム、及びユウロピウムの割合が上述のx及びyの範囲を満たす特定のものとなっていることで、発光スペクトルのピーク位置が短波長側にシフトし、標準比視感度曲線との重なりがより大きく十分な明るさも呈するものとなっている。また十分な赤味も呈することから、上述の蛍光体粉末は、明るさに優れる表示素子を製造するために有用な赤色蛍光体となり得る。 As shown in FIG. 1, the emission spectrum of SCASN phosphors generally has a region that overlaps with the standard luminous efficiency curve, so SCASN phosphors are considered useful as red phosphors. SCASN phosphors generally have an emission spectrum ranging from 600 to 800 nm. Here, the above-mentioned phosphor powder has a specific proportion of strontium, calcium, and europium in the composition formula that satisfies the above-mentioned x and y ranges, so that the peak position of the emission spectrum is at short wavelengths. It has a larger overlap with the standard luminous efficiency curve and exhibits sufficient brightness. Furthermore, since it exhibits a sufficient reddish tint, the above-mentioned phosphor powder can be a useful red phosphor for manufacturing display elements with excellent brightness.
 以上、幾つかの実施形態について説明したが、本開示は上記実施形態に何ら限定されるものではない。また、上述した実施形態についての説明内容は、互いに適用することができる。 Although several embodiments have been described above, the present disclosure is not limited to the above embodiments. Further, the descriptions of the embodiments described above can be applied to each other.
 以下、実施例及び比較例を参照して本開示の内容をより詳細に説明する。ただし、本開示は、下記の実施例に限定されるものではない。 Hereinafter, the content of the present disclosure will be explained in more detail with reference to Examples and Comparative Examples. However, the present disclosure is not limited to the following examples.
(実施例1)
[核剤の調製]
 まず、容器に、60.61gのα型窒化ケイ素(Si、宇部興産株式会社製、SN-E10グレード)、53.13gの窒化アルミニウム(AlN、株式会社トクヤマ製、Eグレード)、及び13.68gの酸化ユウロピウム(Eu、信越化学工業株式会社製)を入れ、予備混合した。
(Example 1)
[Preparation of nucleating agent]
First, in a container, 60.61 g of α-type silicon nitride (Si 3 N 4 , manufactured by Ube Industries, Ltd., SN-E10 grade), 53.13 g of aluminum nitride (AlN, manufactured by Tokuyama Corporation, E grade), and 13.68 g of europium oxide (Eu 2 O 3 , manufactured by Shin-Etsu Chemical Co., Ltd.) was added and premixed.
 次に、水分が1質量ppm以下、酸素濃度が50ppm以下に調整された窒素雰囲気に保持したグローブボックス中で、上記容器に、5.76gの窒化カルシウム(Ca、Materion社製)、及び106.82gの窒化ストロンチウム(Sr、株式会社高純度化学研究所製、純度2N)を更に入れ、乾式混合し、混合物を得た。 Next, in a glove box kept in a nitrogen atmosphere where the water content was adjusted to 1 mass ppm or less and the oxygen concentration was 50 ppm or less, 5.76 g of calcium nitride (Ca 3 N 2 , manufactured by Materion), Further, 106.82 g of strontium nitride (Sr 3 N 2 , manufactured by Kojundo Kagaku Kenkyujo Co., Ltd., purity 2N) was added and dry mixed to obtain a mixture.
 グローブボックス内で、240gの上記混合物を、タングステン製の蓋つき容器に充填した。この蓋つき容器の蓋を閉じた後、グローブボックスから取り出し、カーボンヒーターを備える電気炉内に配置した。その後、電気炉内の圧力が0.1PaG以下となるまで十分に真空排気した。 In a glove box, 240 g of the above mixture was filled into a lidded container made of tungsten. After closing the lid of this lidded container, it was taken out from the glove box and placed in an electric furnace equipped with a carbon heater. Thereafter, the electric furnace was sufficiently evacuated until the pressure in the electric furnace became 0.1 PaG or less.
 真空排気を継続したまま、電気炉内の温度が600℃になるまで昇温した。600℃に到達した後、電気炉内に窒素ガスを導入し、電気炉内の圧力が0.9MPaGとなるように調整した。その後、窒素ガスの雰囲気下で、電気炉内の温度が1950℃になるまで昇温し、1950℃に到達してから8時間かけて加熱処理した。その後、加熱を終了し、室温まで冷却した。室温まで冷却した後、容器から赤色の塊状物を回収した。回収した塊状物を乳鉢で解砕及び通篩し、平均粒径16μmの核粒子(核剤)を調製した。 While continuing vacuum evacuation, the temperature inside the electric furnace was raised to 600°C. After reaching 600° C., nitrogen gas was introduced into the electric furnace and the pressure inside the electric furnace was adjusted to 0.9 MPaG. Thereafter, the temperature in the electric furnace was raised to 1950° C. under a nitrogen gas atmosphere, and after reaching 1950° C., heat treatment was performed for 8 hours. Thereafter, heating was terminated and the mixture was cooled to room temperature. After cooling to room temperature, a red mass was collected from the container. The collected lumps were crushed in a mortar and passed through a sieve to prepare core particles (nucleating agent) with an average particle size of 16 μm.
[蛍光体粉末の製造]
 容器に、51.50gのα型窒化ケイ素(Si、宇部興産株式会社製、SN-E10グレード)、45.14gの窒化アルミニウム(AlN、株式会社トクヤマ製、Eグレード)、15.50gの酸化ユウロピウム(Eu、信越化学工業株式会社製)、及び24.00gの上述のように調製した核剤を、それぞれ測り取り、予備混合した。
[Manufacture of phosphor powder]
In a container, 51.50 g of α-type silicon nitride (Si 3 N 4 , manufactured by Ube Industries, Ltd., SN-E10 grade), 45.14 g of aluminum nitride (AlN, manufactured by Tokuyama Corporation, E grade), 15.50 g of europium oxide (Eu 2 O 3 , manufactured by Shin-Etsu Chemical Co., Ltd.) and 24.00 g of the nucleating agent prepared as described above were each weighed out and premixed.
 次に、水分が1質量ppm以下、酸素濃度が50ppm以下に調整された窒素雰囲気に保持したグローブボックス中で、上記容器に、0.27gの窒化カルシウム(Ca、Materion社製)、及び103.58gの窒化ストロンチウム(Sr、株式会社高純度化学研究所製、純度2N)を更に測り取り、乾式混合した。これによって混合粉末を得た。核剤と原料粉末との仕込み量の関係(質量%)、及び原料粉末中における各元素の仕込み量の内訳(mol比)を表1に示した。 Next, in a glove box kept in a nitrogen atmosphere where the water content was adjusted to 1 mass ppm or less and the oxygen concentration was 50 ppm or less, 0.27 g of calcium nitride (Ca 3 N 2 , manufactured by Materion), Further, 103.58 g of strontium nitride (Sr 3 N 2 , manufactured by Kojundo Kagaku Kenkyujo Co., Ltd., purity 2N) was weighed out and dry mixed. A mixed powder was thus obtained. Table 1 shows the relationship between the charged amounts of the nucleating agent and the raw material powder (% by mass) and the breakdown of the charged amounts of each element in the raw material powder (mol ratio).
 グローブボックス内で、240gの上記混合粉末を、タングステン製の蓋つき容器に充填した。この蓋つき容器の蓋を閉じた後、グローブボックスから取り出し、カーボンヒーターを備える電気炉内に配置した。その後、電気炉内の圧力が0.1PaG以下となるまで十分に真空排気した。 In a glove box, 240 g of the above mixed powder was filled into a tungsten container with a lid. After closing the lid of this lidded container, it was taken out from the glove box and placed in an electric furnace equipped with a carbon heater. Thereafter, the electric furnace was sufficiently evacuated until the pressure in the electric furnace became 0.1 PaG or less.
 真空排気を継続したまま、電気炉内の温度が600℃になるまで昇温した。600℃に到達した後、電気炉内に窒素ガスを導入し、電気炉内の圧力が0.9MPaGとなるように調整した。その後、窒素ガスの雰囲気下で、電気炉内の温度が1950℃になるまで昇温し、1950℃に到達してから8時間かけて加熱処理した。その後、加熱を終了し、室温まで冷却させた。室温まで冷却した後、容器から赤色の塊状物を回収した。回収した塊状物を解砕、通篩し、粒度を調整して焼成粉を得た。 While continuing vacuum evacuation, the temperature inside the electric furnace was raised to 600°C. After reaching 600° C., nitrogen gas was introduced into the electric furnace and the pressure inside the electric furnace was adjusted to 0.9 MPaG. Thereafter, the temperature in the electric furnace was raised to 1950° C. under a nitrogen gas atmosphere, and after reaching 1950° C., heat treatment was performed for 8 hours. Thereafter, heating was terminated and the mixture was allowed to cool to room temperature. After cooling to room temperature, a red mass was collected from the container. The collected lumps were crushed, passed through a sieve, and the particle size was adjusted to obtain a fired powder.
 得られた焼成粉をタングステン容器に充填し、カーボンヒーターを備えた電気炉内に速やかに移し、炉内の圧力が0.1PaG以下となるまで十分に真空排気した。真空排気を継続したまま加熱を開始し、温度が600℃に到達したところで、炉内にアルゴンガスを導入し、炉内雰囲気の圧力が大気圧となるように調整した。アルゴンガスの導入を開始した後も1350℃まで昇温を続けた。温度が1350℃に到達してから8時間かけて加熱処理した。その後、加熱を終了して室温まで冷却した。室温まで冷却した後、容器から、アニール処理後の粉体を回収した。回収した粉体は、篩を通過させ粒度を調整した。このようにして、アニール粉を得た。 The obtained fired powder was filled into a tungsten container, quickly transferred into an electric furnace equipped with a carbon heater, and sufficiently evacuated until the pressure in the furnace became 0.1 PaG or less. Heating was started while evacuation continued, and when the temperature reached 600° C., argon gas was introduced into the furnace and the pressure of the atmosphere inside the furnace was adjusted to atmospheric pressure. Even after starting the introduction of argon gas, the temperature continued to rise to 1350°C. After the temperature reached 1350°C, heat treatment was carried out for 8 hours. Thereafter, heating was terminated and the mixture was cooled to room temperature. After cooling to room temperature, the annealed powder was collected from the container. The collected powder was passed through a sieve to adjust the particle size. In this way, an annealed powder was obtained.
 アニール粉を、室温下、2.0Mの塩酸に、スラリー濃度が25質量%となるように投入して1時間浸した。これにより酸処理を行った。酸処理後、塩酸スラリーを攪拌しながら1時間煮沸処理した。煮沸処理後のスラリーを室温まで冷却し濾過し、固形分から酸処理液を分離し、酸処理物を得た。酸処理物を、100~120℃の範囲の温度設定をした乾燥機内に12時間置いて乾燥させることで酸処理粉を得た。 The annealed powder was added to 2.0 M hydrochloric acid at room temperature so that the slurry concentration was 25% by mass, and immersed for 1 hour. In this way, acid treatment was performed. After the acid treatment, the hydrochloric acid slurry was boiled for 1 hour while stirring. The slurry after the boiling treatment was cooled to room temperature and filtered, and the acid treatment liquid was separated from the solid component to obtain an acid treatment product. The acid-treated product was dried by placing it in a dryer set at a temperature in the range of 100 to 120° C. for 12 hours to obtain acid-treated powder.
 酸処理粉をアルミナ製坩堝に充填し、大気中、昇温速度10℃/分で昇温し、400℃で3時間加熱処理した。加熱処理後、室温になるまで放置し、加熱処理粉末を得た。 The acid-treated powder was filled into an alumina crucible, heated in the air at a temperature increase rate of 10°C/min, and heat-treated at 400°C for 3 hours. After the heat treatment, the mixture was left to stand until the temperature reached room temperature to obtain a heat-treated powder.
 得られた加熱処理粉末に対して、X線回折装置(株式会社リガク製、商品名:UltimaIV)を用いて、CuKα線を用いた粉末X線回折を行った。得られたX線回折パターンには、CaAlSiN結晶と同一の回折パターンが認められ、主結晶相がCaAlSiN結晶と同一の結晶構造を有することが確認された。当該加熱処理粉末を実施例1の蛍光体粉末とした。 The obtained heat-treated powder was subjected to powder X-ray diffraction using CuKα rays using an X-ray diffraction apparatus (manufactured by Rigaku Co., Ltd., trade name: Ultima IV). In the obtained X-ray diffraction pattern, the same diffraction pattern as CaAlSiN 3 crystal was observed, and it was confirmed that the main crystal phase had the same crystal structure as CaAlSiN 3 crystal. The heat-treated powder was designated as the phosphor powder of Example 1.
(実施例2、比較例1~4)
 原料粉末中における各元素の仕込み量の内訳(mol比)が表1に記載したものとなるように混合比を調整したこと以外は、実施例1と同様にして、蛍光体粉末を調製した。
(Example 2, Comparative Examples 1 to 4)
A phosphor powder was prepared in the same manner as in Example 1, except that the mixing ratio was adjusted so that the breakdown (molar ratio) of the amount of each element in the raw material powder was as shown in Table 1.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
<蛍光体粉末の評価>
 上述のようにして実施例1~2、及び比較例1~4で得られた蛍光体粉末のそれぞれについて、後述する方法に沿って、組成比、蛍光の発光ピーク波長及び半値幅、並びに、演色指数及び全光束の測定を行った。結果を表2に示す。
<Evaluation of phosphor powder>
For each of the phosphor powders obtained in Examples 1 to 2 and Comparative Examples 1 to 4 as described above, the composition ratio, fluorescence emission peak wavelength and half-value width, and color rendering were determined according to the method described later. The index and total luminous flux were measured. The results are shown in Table 2.
[組成比]
 蛍光体粉末を加圧酸分解させ、試料溶液を調製し、これを対象としてICP発光分光分析装置を用いた定量分析を行うことで、蛍光体粉末を構成する元素の組成比を決定した。
[Composition ratio]
The phosphor powder was subjected to pressure acid decomposition to prepare a sample solution, and the sample solution was quantitatively analyzed using an ICP emission spectrometer to determine the composition ratio of the elements constituting the phosphor powder.
[蛍光の発光ピーク波長及び半値幅]
 蛍光体粉末の蛍光スペクトルは、ローダミンBと副標準光源によって補正を行った分光蛍光光度計(株式会社日立ハイテクノロジーズ製、商品名:F-7000)を用いて測定した。測定には、光度計に付属の固体試料ホルダーを使用し、励起波長:455nmに対する蛍光スペクトルを測定した。得られた蛍光スペクトルから、発光スペクトルのピーク波長及び半値幅を決定した。
[Fluorescence emission peak wavelength and half-width]
The fluorescence spectrum of the phosphor powder was measured using a spectrofluorometer (trade name: F-7000, manufactured by Hitachi High-Technologies Corporation) that was corrected with Rhodamine B and a secondary standard light source. For the measurement, a solid sample holder attached to the photometer was used to measure the fluorescence spectrum at an excitation wavelength of 455 nm. The peak wavelength and half-value width of the emission spectrum were determined from the obtained fluorescence spectrum.
[演色指数及び全光束]
 蛍光体粉末の演色性及び全光束は、LuAG蛍光体と共にシリコーン樹脂に配合し、白色LEDを調製し、これを評価サンプルとして評価した。
[Color rendering index and total luminous flux]
The color rendering properties and total luminous flux of the phosphor powder were evaluated by blending it into a silicone resin together with the LuAG phosphor, preparing a white LED, and using this as an evaluation sample.
 まず、蛍光体粉末とLuAG黄色蛍光体(波長455nmの励起光を受けた際の発光ピーク波長が535nm)とをシリコーン樹脂に配合し脱泡及び混練することで混錬物を得た。得られた混練物を、ピーク波長450nmの青色LED素子を接合した表面実装タイプのパッケージに、ポッティングし、熱硬化させることによって、白色LEDを調製した。ここで、蛍光体粉末とYAG蛍光体との配合量比は、通電発光時に白色LEDの色度座標(x、y)が(0.460、0.411)となるように調整した。 First, a kneaded product was obtained by blending phosphor powder and LuAG yellow phosphor (emission peak wavelength is 535 nm when receiving excitation light with a wavelength of 455 nm) into a silicone resin, degassing and kneading. A white LED was prepared by potting the obtained kneaded product into a surface mount type package to which a blue LED element with a peak wavelength of 450 nm was bonded, and thermosetting it. Here, the compounding ratio of the phosphor powder and the YAG phosphor was adjusted so that the chromaticity coordinates (x, y) of the white LED were (0.460, 0.411) during energization and light emission.
 得られた白色LEDを、通電発光させた際の特殊演色指数R9と全光束とを、全光束測定装置(大塚電子株式会社製、直径500mmの積分半球と分光光度計(MCPD-9800)とを組合せた装置)を用いて測定した。 The special color rendering index R9 and total luminous flux when the obtained white LED was energized and emitted were measured using a total luminous flux measuring device (manufactured by Otsuka Electronics Co., Ltd., an integrating hemisphere with a diameter of 500 mm and a spectrophotometer (MCPD-9800). (combined device).
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000002
 本開示によれば、十分な赤味を有する蛍光を発しつつ、優れた明るさを呈することが可能な蛍光体粉末、及びその製造方法を提供できる。本開示によればまた、上述のような蛍光体粉末を用い、優れた演色性を発揮し得る発光装置を提供できる。

 
According to the present disclosure, it is possible to provide a phosphor powder that can exhibit excellent brightness while emitting sufficient reddish fluorescence, and a method for producing the same. According to the present disclosure, it is also possible to provide a light emitting device that uses the above-described phosphor powder and can exhibit excellent color rendering properties.

Claims (4)

  1.  主結晶相がCaAlSiNと同一の結晶構造を有し、
     一般式:(Sr1-x-y,Ca,Eu)AlSi(N,O)[一般式において、x及びyは、0.0100≦x≦0.0300、及び0.0500≦y≦0.0900を満たす]で表される蛍光体粒子を含む、蛍光体粉末。
    The main crystal phase has the same crystal structure as CaAlSiN3 ,
    General formula: (Sr 1-x-y , Ca x , Eu y )AlSi(N,O) 3 [In the general formula, x and y are 0.0100≦x≦0.0300 and 0.0500≦y ≦0.0900].
  2.  波長455nmの光を照射したときの発光ピーク波長が635nm以上である、請求項1に記載の蛍光体粉末。 The phosphor powder according to claim 1, which has a peak emission wavelength of 635 nm or more when irradiated with light with a wavelength of 455 nm.
  3.  一次光を発する発光素子と、前記一次光の一部を吸収して、一次光の波長よりも長い波長を有する二次光を発する波長変換体と、を備える発光装置であって、
     前記波長変換体が、請求項1又は2に記載の蛍光体粉末を含む、発光装置。
    A light emitting device comprising: a light emitting element that emits primary light; and a wavelength converter that absorbs a portion of the primary light and emits secondary light having a wavelength longer than the wavelength of the primary light,
    A light emitting device, wherein the wavelength converter contains the phosphor powder according to claim 1 or 2.
  4.  ストロンチウム源、カルシウム源、アルミニウム源、ケイ素源、窒素源、及びユウロピウム源を含む原料粉末と、CASN系化合物で構成される核剤とを含む混合粉末を加熱処理することによって焼成物を得る焼成工程と、
     前記焼成物を前記焼成工程における加熱処理の温度よりも低い温度で加熱処理することでアニール処理物を得るアニール工程と、を有し、
     前記原料粉末において、
      アルミニウムの物質量に対する、ストロンチウム、カルシウム、及びユウロピウムの合計の物質量の比が1.0000を超え、
      アルミニウムの物質量を基準として、カルシウムの物質量が0.0050以上であり、且つ、ユウロピウムの物質量が0.0880以下である、
    蛍光体粉末の製造方法。

     
    Firing step for obtaining a fired product by heat treating a mixed powder containing raw material powder containing a strontium source, calcium source, aluminum source, silicon source, nitrogen source, and europium source and a nucleating agent composed of a CASN-based compound and,
    an annealing step of heating the fired product at a temperature lower than the temperature of the heat treatment in the firing step to obtain an annealed product;
    In the raw material powder,
    The ratio of the total amount of strontium, calcium, and europium to the amount of aluminum exceeds 1.0000,
    Based on the amount of aluminum, the amount of calcium is 0.0050 or more, and the amount of europium is 0.0880 or less,
    Method for manufacturing phosphor powder.

PCT/JP2023/008420 2022-03-15 2023-03-06 Phosphor powder, method for producing phosphor powder, and light emitting device WO2023176564A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
KR1020247032645A KR20240154072A (en) 2022-03-15 2023-03-06 Phosphor powder, method for producing phosphor powder and light-emitting device
JP2024507772A JPWO2023176564A1 (en) 2022-03-15 2023-03-06

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-040209 2022-03-15
JP2022040209 2022-03-15

Publications (1)

Publication Number Publication Date
WO2023176564A1 true WO2023176564A1 (en) 2023-09-21

Family

ID=88023065

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/008420 WO2023176564A1 (en) 2022-03-15 2023-03-06 Phosphor powder, method for producing phosphor powder, and light emitting device

Country Status (4)

Country Link
JP (1) JPWO2023176564A1 (en)
KR (1) KR20240154072A (en)
TW (1) TW202346539A (en)
WO (1) WO2023176564A1 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120080704A1 (en) * 2010-09-30 2012-04-05 Chi Mei Corporation Method of providing a phosphor with a precisely controlled element composition, a phosphor provided by the same, a phosphor, and a light emitting device comprising the said phosphor
US20150308657A1 (en) * 2012-12-21 2015-10-29 Grirem Advanced Materials Co., Ltd. Oxynitride orange-red fluorescent substance and light-emitting film or sheet and light-emitting device comprising the same
CN110157417A (en) * 2018-02-12 2019-08-23 有研稀土新材料股份有限公司 A kind of near infrared light luminescent material and the light emitting device comprising it

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120080704A1 (en) * 2010-09-30 2012-04-05 Chi Mei Corporation Method of providing a phosphor with a precisely controlled element composition, a phosphor provided by the same, a phosphor, and a light emitting device comprising the said phosphor
US20150308657A1 (en) * 2012-12-21 2015-10-29 Grirem Advanced Materials Co., Ltd. Oxynitride orange-red fluorescent substance and light-emitting film or sheet and light-emitting device comprising the same
CN110157417A (en) * 2018-02-12 2019-08-23 有研稀土新材料股份有限公司 A kind of near infrared light luminescent material and the light emitting device comprising it

Also Published As

Publication number Publication date
JPWO2023176564A1 (en) 2023-09-21
KR20240154072A (en) 2024-10-24
TW202346539A (en) 2023-12-01

Similar Documents

Publication Publication Date Title
JP6572373B1 (en) Method for producing β-sialon phosphor
TWI827667B (en) Phosphors and light-emitting devices
WO2015002139A1 (en) Phosphor and light emitting device
KR102441616B1 (en) β-sialon fluorescent material, Method of producing thereof, Light-emitting member and Light-emitting device
JP2010241995A (en) beta-TYPE SIALON PHOSPHOR, METHOD FOR PRODUCING THE SAME AND APPLICATION OF THE SAME
JP6985704B2 (en) Fluorescent material, light emitting device, lighting device and image display device
KR20130106394A (en) Blue-light-emitting phosphor and light-emitting device equipped with the blue-light-emitting phosphor
WO2014061748A1 (en) Wavelength conversion member and light-emitting device employing same
TWI673343B (en) Phosphor, light emitting device, illumination device and image display device
JP7515353B2 (en) Manufacturing method of europium-activated β-type sialon phosphor
WO2017155111A1 (en) Phosphor, light-emitting element, and light-emitting device
JP2023107773A (en) Phosphor, light emitting device, image display device and illumination device
WO2016076380A1 (en) Phosphor, light-emitting device, illumination device, and image display device
TWI812859B (en) Phosphor powder and light emitting device
WO2023176564A1 (en) Phosphor powder, method for producing phosphor powder, and light emitting device
CN111201304A (en) Red phosphor and light-emitting device
JP2023135147A (en) Production method of powder containing phosphor particle
JP2017186459A (en) Nitride phosphor powder and production method thereof
CN118974205A (en) Phosphor powder, method for producing phosphor powder, and light-emitting device
KR20160013876A (en) Oxynitride phosphor powder
JP2023082287A (en) Method of producing phosphor powder
WO2023171504A1 (en) EU ACTIVATED β-TYPE SIALON FLUORESCENT PARTICLES, β-TYPE SIALON FLUORESCENT POWDER, AND LIGHT-EMITTING DEVICE
WO2024203353A1 (en) Fluorescent powder and light-emitting device
JP7539811B2 (en) Method for producing β-type Sialon phosphor
JP7282757B2 (en) Red phosphor and light-emitting device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23770520

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2024507772

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20247032645

Country of ref document: KR

Kind code of ref document: A