WO2023171728A1 - Sensor device - Google Patents
Sensor device Download PDFInfo
- Publication number
- WO2023171728A1 WO2023171728A1 PCT/JP2023/008925 JP2023008925W WO2023171728A1 WO 2023171728 A1 WO2023171728 A1 WO 2023171728A1 JP 2023008925 W JP2023008925 W JP 2023008925W WO 2023171728 A1 WO2023171728 A1 WO 2023171728A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- electrode
- sensor device
- piezoelectric
- piezoelectric layer
- functional layer
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/01—Manufacture or treatment
- H10N30/06—Forming electrodes or interconnections, e.g. leads or terminals
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/30—Piezoelectric or electrostrictive devices with mechanical input and electrical output, e.g. functioning as generators or sensors
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/80—Constructional details
- H10N30/85—Piezoelectric or electrostrictive active materials
- H10N30/853—Ceramic compositions
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N—ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10N30/00—Piezoelectric or electrostrictive devices
- H10N30/80—Constructional details
- H10N30/87—Electrodes or interconnections, e.g. leads or terminals
Definitions
- the present invention relates to a sensor device.
- a sensor device comprising a pair of electrodes on a substrate with a functional layer interposed therebetween is used, for example, in electronic equipment such as sensors such as pressure sensors and acceleration sensors, high frequency filter devices, and piezoelectric actuators.
- a first electrode layer, a piezoelectric thin film mainly composed of a piezoelectric material, and a first electrode layer are formed on a thin polymer film mainly composed of a polymer compound obtained by polymerizing monomers.
- a piezoelectric element in which two electrode layers are formed is disclosed (for example, see Patent Document 1).
- the first electrode layer and the second electrode layer are made of, for example, tin, aluminum, nickel, platinum, gold, silver, copper, chromium, iron, magnesium, molybdenum, niobium, tantalum, titanium. , zinc, zirconium, tungsten, palladium, rhodium, iridium, rubidium, titanium nitride, chromium nitride, and molybdenum disilicide.
- An object of one aspect of the present invention is to provide a sensor device that can suppress fluctuations in the voltage drop of an electrode caused by temperature changes in the environment in which it is used.
- One embodiment of the sensor device includes, on a support, a functional layer and a pair of electrodes connected in series via the functional layer, and the pair of electrodes has a positive value and a negative value.
- the first electrode has a temperature coefficient of resistance of one of the positive and negative values
- the second electrode has a temperature coefficient of resistance of the other of a positive value and a negative value.
- One embodiment of the sensor device according to the present invention can suppress fluctuations in the voltage drop of the electrodes caused by temperature changes in the environment in which the sensor device is used.
- FIG. 1 is a perspective view showing the configuration of a sensor device according to an embodiment of the present invention.
- FIG. 1 is a schematic cross-sectional view showing the configuration of a sensor device. It is a perspective view showing an example of other composition of a sensor device.
- FIG. 7 is a plan view showing an example of another configuration of the sensor device.
- the sensor device includes, on a support, a functional layer and a pair of electrodes connected in series via the functional layer, and the pair of electrodes has one of a positive value and a negative value.
- a first electrode having a temperature coefficient of resistance (TCR) of a value of
- a second electrode having a TCR of the other of a positive value and a negative value.
- the sensor device is a laminate including a support, a functional layer, and a pair of electrodes connected in series via the functional layer
- the support is a flexible base material
- the functional layer A case where is a piezoelectric layer will be explained.
- the functional layer is not limited to a piezoelectric layer, but may also be a temperature measurement layer, a strain detection layer, or the like.
- FIG. 1 is a schematic cross-sectional view showing the configuration of a sensor device according to this embodiment.
- the sensor device 1A includes a flexible base material 10 as a support, a first electrode 20, a piezoelectric layer 30 as a functional layer, and a second electrode 40 on a flexible base material. They are stacked in this order from the 10th side.
- the sensor device 1A can be formed into any shape such as a sheet (film).
- the thickness direction (vertical direction) of the sensor device 1A is defined as the Z-axis direction
- the lateral direction (horizontal direction) orthogonal to the thickness direction is defined as the X-axis direction.
- the second electrode 40 side in the Z-axis direction is the +Z-axis direction
- the flexible base material 10 side is the -Z-axis direction.
- the +Z-axis direction will be referred to as upper or upper
- the -Z-axis direction will be referred to as lower or lower, but this does not represent a universal vertical relationship.
- the flexible base material 10 is a substrate on which the first electrode 20 is installed, and has flexibility so as to provide flexibility to the sensor device 1A. Any material can be used as the flexible base material 10, such as a plastic base material, a silicon (Si) substrate, a metal plate, a glass base material, etc.
- plastic base material for example, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polycarbonate (PC), acrylic resin, cycloolefin polymer, polyimide (PI), etc. can be used.
- PET polyethylene terephthalate
- PEN polyethylene naphthalate
- PC polycarbonate
- acrylic resin acrylic resin
- PI polyimide
- the flexible base material 10 may be transparent, translucent, or opaque. Note that transparent refers to having transparency to visible light (light with a wavelength of 380 to 780 nm) to the extent that the inside of the flexible base material 10 can be visually recognized from the outside, and the light transmittance of visible light is It is 40% or more, preferably 80% or more, and more preferably 90% or more.
- the light transmittance is measured using "Plastics - How to determine total light transmittance and total light reflectance" specified in JIS K 7375:2008.
- PET When light transmittance is required for the sensor device 1A, it is preferable to use PET, PEN, PC, acrylic resin, cycloolefin polymer, etc. These materials are suitably used when the electrode used in the sensor device 1A is a transparent electrode. Further, in cases where the sensor device 1A does not require optical transparency, such as healthcare products such as pulse rate monitors and heart rate monitors, and in-vehicle pressure sensing sheets, the above-mentioned materials, translucent or opaque plastic materials may be used.
- metal plate aluminum, copper, stainless steel, tantalum, etc. can be used as the material for forming the metal plate.
- the thickness of the flexible base material 10 is not particularly limited, and can be any thickness depending on the use of the sensor device 1A, the material of the flexible base material 10, etc., and may be, for example, 1 ⁇ m to 250 ⁇ m. . Note that the method for measuring the thickness of the flexible base material 10 is not particularly limited, and any measuring method can be used.
- the thickness of the flexible base material 10 refers to the length in the direction perpendicular to the main surface of the flexible base material 10.
- the thickness of the flexible base material 10 may be, for example, the thickness measured at an arbitrary location in the cross section of the flexible base material 10, or may be measured at several arbitrary locations and the measured values It is also possible to take the average value.
- the definition of thickness will be similarly defined for other members.
- the first electrode 20 is provided on the upper main surface (upper surface) of the flexible base material 10.
- the first electrodes 20 may be formed in a thin film shape on a part or the entire surface of the flexible base material 10, or may be provided in plural in parallel in a stripe shape. Note that when the flexible base material 10 has conductivity such as a metal plate, the first electrode 20 may not be provided because the flexible base material 10 can also function as an electrode.
- the first electrode 20 can be made of any conductive material.
- the materials include Pt, Au, Ag, Cu, Mg, Al, Si, Ti, Cr, Fe, Ni, Zn, Rb, Zr, Nb, Mo, Rh, Pd, Ru, Sn, Ir, Ta, and W.
- Metal oxides such as zinc oxide, tin oxide, copper oxide, ITO (Indium Tin Oxide), IZO (Indium Zinc Oxide), IZTO (Indium Zinc Tin Oxide), IGZO (Indium Gallium Zinc Oxide), titanium nitride Nitrides such as (TiN) chromium nitride (CrN) and tantalum nitride (TaN), and carbides such as silicon carbide (SiC) can be used.
- an oxide conductive film made of a metal oxide such as ITO, IZO, IZTO, IGZO, etc. can be used as the material. If light transparency is not essential, metal or the like may be used.
- the first electrode 20 may be an amorphous film.
- an amorphous film it is possible to suppress unevenness on the surface of the first electrode 20 and generation of crystal grain boundaries that cause leakage paths.
- the upper piezoelectric layer 30 can be grown with good crystal orientation without being affected by the crystal orientation of the first electrode 20.
- the thickness of the first electrode 20 can be designed as appropriate, and is preferably 3 nm to 100 nm, for example. If the thickness of the first electrode 20 is within the above preferable range, it can function as an electrode and the sensor device 1A can be made thinner.
- the first electrode 20 has a TCR of one of a positive value and a negative value.
- the TCR of the first electrode 20 may have a value with a different sign from the TCR of the second electrode 40, and the TCR of one of the first electrode 20 and the second electrode 40 is a positive value.
- the TCR of the other electrode is negative.
- TCR is one of the temperature characteristics of the first electrode 20 and the second electrode 40, and depends exclusively on the materials that constitute the first electrode 20 and the second electrode 40.
- the TCR of the first electrode 20 and the second electrode 40 depends on the type of material that constitutes the first electrode 20 and the second electrode 40, the thickness of the first electrode 20 and the second electrode 40, the first
- the electrode 20 and the second electrode 40 are made of a composite material containing a plurality of materials, they can be set to exhibit metallic behavior or semiconductor-like behavior depending on the content of each material.
- TCR is a positive value
- the first electrode 20 and the second electrode 40 exhibit metallic behavior
- TCR is a negative value
- the first electrode 20 and the second electrode 40 exhibit metallic behavior. exhibits semiconductor-like behavior.
- the piezoelectric layer 30 is provided on the main surface (upper surface) above the first electrode 20.
- the piezoelectric layer 30 preferably contains an inorganic material as a main component.
- the main component means that the content of the inorganic material is 95 atm% or more, preferably 98 atm% or more, and more preferably 99 atm% or more.
- a piezoelectric material having a perovskite crystal structure As the inorganic material, a piezoelectric material having a perovskite crystal structure, a piezoelectric material having a wurtzite crystal structure (wurtzite crystal material), etc. can be used. Note that in this embodiment, since the piezoelectric layer 30 is used as the functional layer, a piezoelectric material having a perovskite crystal structure, a wurtzite crystal material, etc. are used, but when the functional layer is other than the piezoelectric layer 30, Depending on the type of functional layer, metals such as Pt, Au, Ag, Cu, Mg, Al, Si, Ti, Cr, Fe, Ni, Nb, Mo, Ru, Sn, and Ta may be used.
- metals such as Pt, Au, Ag, Cu, Mg, Al, Si, Ti, Cr, Fe, Ni, Nb, Mo, Ru, Sn, and Ta may be used.
- the wurtzite crystal structure is represented by the general formula AB (A is a positive element and B is a negative element).
- a wurtzite crystal material has a hexagonal unit cell and has a polarization vector in a direction parallel to the c-axis.
- the wurtzite crystal material it is preferable to use a material that exhibits piezoelectric properties of a certain value or more and that can be crystallized in a low-temperature process of 200° C. or less.
- the wurtzite crystal material contains at least Zn among Zn, Al, Ga, Cd, and Si as the positive element A represented by the general formula AB.
- As the wurtzite crystal material for example, zinc oxide (ZnO), zinc sulfide (ZnS), zinc selenide (ZnSe), zinc telluride (ZnTe), etc. can be used.
- ZnO is preferred as the wurtzite crystal material since it can be relatively well oriented in the c-axis even in a low temperature process.
- These may be used alone or in combination of two or more.
- two or more types of wurtzite crystal materials are used in combination, one or more of these components may be included as a main component, and other components may be included as optional components.
- the positive element A may contain at least one of Al, Ga, Cd, and Si.
- these wurtzite crystal materials for example, aluminum nitride (AlN), gallium nitride (GaN), cadmium selenide (CdSe), cadmium telluride (CdTe), silicon carbide (SiC), etc. can be used.
- the wurtzite crystal material preferably contains ZnO and consists essentially of ZnO, and more preferably consists only of ZnO. "Substantially" means that in addition to ZnO, unavoidable impurities that may be unavoidably included during the manufacturing process may be included.
- the wurtzite type crystal materials include alkaline earth metals such as Mg, Ca, and Sr, or vanadium (V), titanium (Ti), zirconium (Zr), and silica. (Si), lithium (Li), and other metals may be included in a proportion within a predetermined range. These components may be contained in an elemental state or in an oxide state.
- the piezoelectric layer 30 may include at least one of Ar, Kr, Xe, and Rn as an additive element.
- the content of the additive element in the piezoelectric layer 30 is not particularly limited, and may be within a range that allows the piezoelectric layer 30 to have a wurtzite crystal structure.
- the method for measuring the content of the additive element contained in the piezoelectric layer 30 is not particularly limited as long as it is a measurable method.
- the content of the additive elements contained in the piezoelectric layer 30 may be measured, for example, by Rutherford backscattering spectroscopy (RBS) using Pelletron 3SDH (manufactured by NEC Corporation) as a measurement device, or by measuring secondary ion It may be measured by mass spectrometry using dynamic SIMS (D-SIMS) or the like.
- the thickness of the piezoelectric layer 30 is not particularly limited, and it has sufficient piezoelectric properties, that is, polarization properties proportional to pressure, and reduces the occurrence of cracks in the piezoelectric layer 30 to prevent leakage paths between electrodes. Any thickness is sufficient as long as it can suppress this and exhibit piezoelectric properties stably.
- the thickness of the piezoelectric layer 30 may be, for example, 5 ⁇ m or less.
- the film density of the piezoelectric layer 30 is not particularly limited and can be designed as appropriate, as long as it is within a range that can improve the crystal orientation of the piezoelectric layer 30 and suppress an increase in film stress.
- the method for measuring the film density is not particularly limited, and for example, X-ray reflectance measurement (XRR) or the like can be used.
- the crystal orientation of the piezoelectric layer 30 is indicated by the full width at half maximum (FWHM) obtained when the surface of the piezoelectric layer 30 is measured using an X-ray rocking curve (XRC) method. It will be done. That is, the crystal orientation of the piezoelectric layer 30 is determined by the peak of the rocking curve obtained when diffraction from the (0002) plane of the crystal of the piezoelectric material contained as a main component in the piezoelectric layer 30 is measured by the XRC method. It is represented by the FWHM of the waveform.
- FWHM full width at half maximum
- FWHM indicates the degree of parallelism of the c-axis direction alignment of the crystals forming the piezoelectric material. Therefore, the FWHM of the peak waveform of the rocking curve obtained by the XRC method can be used as an index of the c-axis orientation of the piezoelectric layer 30. Therefore, it can be evaluated that the smaller the FWHM of the rocking curve, the better the crystal orientation of the piezoelectric layer 30 in the c-axis direction.
- the crystal orientation of the piezoelectric layer 30 can be determined by the FWHM of a rocking curve obtained by measuring the diffraction from the (0002) plane of the ZnO crystal included as a piezoelectric material in the piezoelectric layer 30 by the XRC method.
- the peak intensity can also be evaluated. That is, the crystal orientation of the piezoelectric layer 30 can also be evaluated using a value obtained by dividing the integral value of the peak intensity by FWHM as an evaluation value. In this case, it can be evaluated that the stronger the peak intensity of the rocking curve and the smaller the FWHM, the better the c-axis orientation of ZnO. Therefore, the larger the evaluation value obtained by dividing the integral value of the peak intensity by the FWHM, the better the crystal orientation of the piezoelectric layer 30 can be evaluated.
- the piezoelectric layer 30 may be constructed by laminating piezoelectric layers made of the respective wurtzite crystal materials.
- the second electrode 40 is provided on the upper principal surface (upper surface) of the piezoelectric layer 30 and is arranged to face the first electrode 20.
- the second electrode 40 can be formed of any conductive material, and the same material as the first electrode 20 can be used.
- the second electrode 40 may be a transparent oxide conductive film such as ITO, IZO, IZTO, IGZO, or the like.
- the second electrode 40 may be a metal electrode of a good conductor such as Au, Pt, Ag, Ti, Al, Mo, Ru, Cu, or the like.
- the second electrode 40 may be formed in the form of a thin film on a part or the entire surface of the piezoelectric layer 30, or may be formed in any shape as appropriate.
- the second electrodes 40 are arranged in a direction perpendicular to the direction in which the stripes of the first electrodes 20 extend in plan view. , a plurality of stripes may be provided in parallel.
- the thickness of the second electrode 40 can be designed as appropriate, and is preferably 20 nm to 100 nm, for example. If the thickness of the second electrode 40 is within the above-mentioned preferable range, it can function as an electrode and the sensor device 1A can be made thinner.
- the second electrode 40 has a TCR with a different sign than the first electrode 20.
- the TCR of the second electrode 40 may have a different sign from the TCR of the first electrode 20, and when the TCR of the first electrode 20 has a positive value, the TCR of the second electrode 40 has a negative value. When the TCR of the first electrode 20 is a negative value, the TCR of the second electrode 40 is a positive value.
- the sign, size, etc. of the TCR of the second electrode 40 can be set in the same way as for the first electrode 20, so details will be omitted.
- the first electrode 20 and the second electrode 40 have TCR values of different signs, so that the TCR between the electrodes is canceled out, but the temperature change in the resistance of the first electrode 20 and the second electrode 40 It is preferable that the ratio of
- ⁇ 1 is the electrical resistivity (unit: ⁇ m) of the first electrode 20
- t 1 is the thickness (unit: m) of the first electrode 20
- ⁇ 1 is ⁇ 2 is the resistance temperature coefficient (unit: %/K) of the first electrode 20
- ⁇ 2 is the electrical resistivity (unit: ⁇ m) of the second electrode 40
- t 2 is the resistance temperature coefficient (unit: %/K) of the second electrode 40.
- ⁇ 2 represents the resistance temperature coefficient (unit: %/K) of
- the ratio of the resistance of the first electrode 20 to temperature change expressed as ( ⁇ 1 /t 1 ⁇ 1 ) and the ratio of the resistance of the second electrode 40 expressed as ( ⁇ 2 /t 2 ⁇ 2 )
- the sign of the ratio to the temperature change exists only in the sign of the TCR of the first electrode 20 and the second electrode 40, and does not change otherwise.
- the resistance of the first electrode 20 expressed as ( ⁇ 1 /t 1 ⁇ 1 )
- the relationship between the electrodes is The ratio of resistance to temperature change cancels out.
- the absolute value of the average sum is the ratio of the resistance of the first electrode 20 to the temperature change ( ⁇ 2 /t 2 ⁇ 2 ) and the ratio of the resistance of the second electrode 40 to the temperature change ( ⁇ 2 /t 2 ⁇ 2 ), fluctuations in the output due to temperature changes of the first electrode 20 and the second electrode 40 can be sufficiently suppressed.
- the method for manufacturing the sensor device 1A is not particularly limited, and any manufacturing method can be used as appropriate. An example of a method for manufacturing the sensor device 1A will be described.
- the first electrode 20 is deposited (formed) on the upper surface of the flexible base material 10 formed to a predetermined size.
- the method for forming the first electrode 20 is not particularly limited, and may be either a dry process or a wet process. If a dry process is used as a method for forming the first electrode 20, the thin first electrode 20 can be easily formed. Examples of the dry process include sputtering and vapor deposition, and examples of the wet process include plating.
- a DC (direct current) or RF (high frequency) magnetron sputtering method can be used.
- the first electrode 20 with high density and thinness can be easily formed. Therefore, sputtering is preferable as a method for forming the first electrode 20.
- the first electrode 20 for example, an ITO film, an IZO film, a Ti film, or the like formed by DC (direct current) or RF (radio frequency) magnetron sputtering method can be used.
- the first electrode 20 may be formed on the entire upper surface of the flexible base material 10. Further, the first electrode 20 may be formed into a suitably arbitrary shape by processing it into a pattern having a predetermined shape by etching or the like. For example, the first electrodes 20 may be patterned into stripes, and a plurality of them may be arranged in stripes.
- a piezoelectric layer 30 is formed on the upper surface of the first electrode 20.
- a film is formed by DC magnetron sputtering in a mixed gas atmosphere containing an inert gas such as Ar and a trace amount of oxygen using a target containing elements constituting the piezoelectric material.
- a piezoelectric layer 30 is formed by sputtering a piezoelectric material onto the first electrode 20 .
- a ZnO sintered target can be used as the target.
- a ZnO sintered target is installed in a sputtering device, and a mixed gas containing oxygen and an inert gas such as Ar atoms is supplied into the sputtering device.
- a mixed gas containing oxygen and an inert gas such as Ar atoms
- the piezoelectric material is a wurtzite crystal material made of Mg-added ZnO containing ZnO and MgO in a predetermined mass ratio
- a multidimensional sputtering method using a target made of a ZnO sintered body and a target made of an MgO sintered body Alternatively, a one-shot sputtering method using an alloy target containing ZnO and MgO, such as a ZnO sintered target to which MgO is added in advance at a predetermined ratio, can be used.
- a multi-source sputtering device When using the multi-source sputtering method, a multi-source sputtering device is used to supply a mixed gas containing an inert gas such as Ar atoms and oxygen into the multi-source sputtering device.
- the first electrode 20 is sputtered simultaneously and independently using a ZnO sintered target and an MgO sintered target in a mixed gas atmosphere containing an inert gas and oxygen.
- a piezoelectric layer 30 made of Mg-doped ZnO can be formed thereon. Further, at this time, Mg-doped ZnO can be formed while suppressing the amount of inert gas that enters during the formation of Mg-doped ZnO.
- sputtering is performed in a mixed gas atmosphere containing oxygen and an inert gas such as Ar atoms using, for example, a ZnO sintered target to which MgO has been added at a predetermined ratio.
- a piezoelectric layer 30 made of a Mg-doped ZnO thin film can be formed on the electrode 20 of the first embodiment. Further, at this time, the film may be formed so that the inert gas is included in the Mg-added ZnO in a desired proportion. As a result, a piezoelectric layer 30 containing a desired amount of inert gas in Mg-doped ZnO is obtained.
- the ratio of the flow rate of oxygen to the total flow rate of the inert gas and oxygen is preferably 5% to 15%. If the ratio of the flow rate of oxygen to the total flow rate of inert gas and oxygen is within the above preferable range, when forming the piezoelectric layer 30 by sputtering using a target containing an inert gas, Ar atoms, etc. Even if an inert gas enters into the crystal lattice of a wurtzite crystal material such as ZnO, the amount of inert gas that enters can be suppressed. Therefore, the piezoelectric properties of the piezoelectric material can be improved.
- the pressure in the mixed gas atmosphere during sputtering is preferably 0.1 Pa to 2.0 Pa. If the pressure is within the above preferred range, when forming the piezoelectric layer 30 by sputtering using a target containing a positive element constituting a wurtzite crystal material such as Zn, an inert gas such as Ar atoms may be used. It is possible to suppress the amount of ZnO that enters the crystal lattice of a wurtzite crystal material such as ZnO. Therefore, the piezoelectric properties of the piezoelectric layer 30 can be improved.
- the film-forming temperature of the piezoelectric layer 30 is not particularly limited, and can be appropriately selected depending on the layer structure of the sensor device 1A.
- the piezoelectric layer 30 may be formed at 150° C. or lower.
- the first electrode 20 and the piezoelectric layer 30 By using a sputtering method to form the first electrode 20 and the piezoelectric layer 30, a uniform film with strong adhesion can be formed while maintaining the composition ratio of the compound target.
- the first electrode 20 and piezoelectric layer 30 having a desired thickness can be formed with high precision only by controlling the time.
- the piezoelectric layer 30 may be configured by laminating a plurality of layers.
- a second electrode 40 having a predetermined shape is formed on the top surface of the piezoelectric layer 30.
- the second electrode 40 can be formed using the same formation method as the first electrode 20.
- the thickness of the second electrode 40 can be designed as appropriate, and may be, for example, 20 nm to 100 nm.
- the second electrode 40 may be formed on the entire surface of the piezoelectric layer 30, or may be formed in any suitable shape.
- the second electrode 40 is formed in a direction perpendicular to the direction in which the stripes of the first electrode 20 extend in a plan view of the sensor device 1A. A plurality of stripes may be formed.
- the sensor device 1A is formed.
- the entire sensor device 1A may be heat-treated at a temperature lower than the melting point or glass transition point of the flexible base material 10 (for example, 130° C.). By this heat treatment, the first electrode 20 and the second electrode 40 can be crystallized and their resistance can be lowered.
- the heat treatment is not essential, and may not be performed after the sensor device 1A is formed, such as when the flexible base material 10 is made of a material that does not have heat resistance.
- the sensor device 1A includes the flexible base material 10, the first electrode 20, the piezoelectric layer 30, and the second electrode 40, and the first electrode 20 has a positive value and The second electrode 40 has a TCR of one of the negative values, and the second electrode 40 has the TCR of the other of the positive and negative values.
- the sensor device 1A can cancel out the resistance change due to the temperature change of the first electrode 20 and the resistance change due to the temperature change of the second electrode 40.
- the sensor device 1A calculates the absolute value of the average of the ratio of the resistance of the first electrode 20 to the temperature change and the ratio of the resistance of the second electrode 40 to the temperature change.
- the ratio of the resistance of the second electrode 40 to the temperature change and the ratio of the resistance of the second electrode 40 to the temperature change, whichever is smaller, can be suppressed.
- the sensor device 1A cancels the resistance change of the first electrode 20 and the second electrode 40 caused by the temperature change of the environment in which it is used. Fluctuations in voltage drop can be suppressed.
- the sensor device 1A allows the piezoelectric layer 30 to stably exhibit high piezoelectric efficiency in the thickness direction by suppressing fluctuations in the voltage drop of the first electrode 20 and the second electrode 40 due to temperature changes. Excellent piezoelectric properties can be maintained. Therefore, the sensor device 1A can maintain excellent piezoelectric properties.
- the first electrode 20 and the second electrode 40 can be arranged to face each other with the piezoelectric layer 30 in between.
- the sensor device 1A is configured by arranging a first electrode 20 and a second electrode 40 on a flexible base material 10 so as to face each other in a plane direction or a height direction with a piezoelectric layer 30 in between.
- the resistance change caused by the temperature change of the first electrode 20 and the second electrode 40 can be canceled out. Therefore, even when the sensor device 1A is used for various purposes, it is possible to suppress fluctuations in the voltage drop of the first electrode 20 and the second electrode 40 caused by changes in the temperature of the environment in which the sensor device 1A is used.
- the sensor device 1A has a first electrode 20 and a second electrode 40 arranged to face each other, and a flexible base material 10, a first electrode 20, a piezoelectric layer 30, and a second electrode 40. It can be provided by laminating in this order from the flexible base material 10 side. Even if the sensor device 1A is configured by laminating the flexible base material 10, the first electrode 20, the piezoelectric layer 30, and the second electrode 40, the temperature of the first electrode 20 and the second electrode 40 remains constant. Since the resistance changes accompanying the changes can be canceled out, it is possible to suppress fluctuations in the voltage drops of the first electrode 20 and the second electrode 40 caused by changes in the temperature of the environment in which they are used.
- the sensor device 1A can use the flexible base material 10 as a support.
- the sensor device 1A cancels out resistance changes due to temperature changes in the first electrode 20 and the second electrode 40 even when the first electrode 20 and the second electrode 40 are installed on a highly flexible substrate. Therefore, it is possible to suppress fluctuations in the voltage drop of the first electrode 20 and the second electrode 40 caused by temperature changes in the environment in which the electrode is used.
- the sensor device 1A can use the piezoelectric layer 30 as a functional layer. Even if the sensor device 1A uses the piezoelectric layer 30 as a functional layer, the resistance change caused by the temperature change of the first electrode 20 and the second electrode 40 can be canceled out. Fluctuations in voltage drop between the first electrode 20 and the second electrode 40 caused by this can be suppressed. Therefore, the sensor device 1A can exhibit excellent piezoelectric properties as a piezoelectric device.
- the piezoelectric layer 30 can contain an inorganic material, the sensor device 1A can be used as a piezoelectric device even if the piezoelectric layer 30 is made of various inorganic materials depending on the intended use. Functions can be demonstrated stably.
- the sensor device 1A can suppress fluctuations in the voltage drop of the first electrode 20 and the second electrode 40 due to temperature changes in the environment in which it is used, and can maintain excellent piezoelectric properties, so it can be suitably used as a piezoelectric device.
- piezoelectric devices include devices that utilize piezoelectric effects such as force sensors for touch panels, pressure sensors, acceleration sensors, angular velocity sensors, and acoustic emission (AE) sensors; speakers that utilize inverse piezoelectric effects; transducers; and high-frequency filter devices. , piezoelectric actuators, optical scanners, heads for inkjet printers, MEMS mirrors for scanners, and the like.
- the sensor device 1A is not limited to the above configuration, and is used by connecting the first electrode 20 and the second electrode 40 on the flexible base material 10 via a functional layer.
- Other configurations may be used as long as fluctuations in the voltage drop of the first electrode 20 and the second electrode 40 caused by changes in the temperature of the environment can be suppressed.
- the sensor device 1B includes a functional layer 50A arranged on the upper surface of the flexible base material 10, and a first electrode 20 and a second electrode 40 arranged on the upper surface of the functional layer 50A.
- the first electrode 20 and the second electrode 40 may be horizontally opposed to each other on the upper surface of the functional layer 50A.
- first electrode 20 and the second electrode 40 may be formed in a comb-teeth shape so that parts of these electrodes are interlocked with each other alternately on the upper surface of the functional layer 50A.
- the sensor device 1B shown in FIG. 3 can be made to function as a temperature sensor by, for example, making the functional layer 50A function as a temperature measurement layer.
- the sensor device 1C has a meandering structure such that the first electrode 20 and the second electrode 40 are horizontally opposed to each other on the upper surface of the flexible base material 10. They may be arranged so as to be connected via the formed functional layer 50B. The first electrode 20 and the second electrode 40 may be formed in a line shape.
- the sensor device 1C shown in FIG. 4 can also be made to function as a temperature sensor by, for example, making the functional layer 50B function as a temperature measurement layer.
- the sensor device 1A may include a single layer or two or more insulating layers between the piezoelectric layer 30 and the second electrode 40.
- the insulating layer may be formed on the entire top surface of the piezoelectric layer 30.
- Insulating materials forming the insulating layer include metal oxides such as silicon oxide (SiOx), aluminum oxide (AlOx), tantalum oxide (TaOx), yttrium oxide (YOx), zirconium oxide (ZrOx), and hafnium oxide (HfOx).
- metal oxides such as silicon oxide (SiOx), aluminum oxide (AlOx), tantalum oxide (TaOx), yttrium oxide (YOx), zirconium oxide (ZrOx), and hafnium oxide (HfOx).
- nitrides such as silicon nitride (SiNx) and silicon oxynitride (SiON), polypropylene (PP), polycarbonate (PC), ABS resin, polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyamide (PA), poly Examples include organic insulating materials such as methyl methacrylate (PMMA), polyvinyl alcohol (PVA), and polyvinylphenol (PVP). These may be used alone or in combination of two or more.
- a ZnO thin film having a hexagonal wurtzite structure was formed on the IZO film by DC sputtering in a mixed gas atmosphere of Ar and O 2 using a ZnO sputtering target. was fabricated as a piezoelectric layer which is a functional layer.
- the thickness of the ZnO thin film was 500 nm.
- Ni film was formed as a second electrode on the ZnO thin film by DC magnetron sputtering in an Ar gas atmosphere using a Ni sputtering target.
- the thickness of the Ni film was 50 nm.
- Table 1 shows the configurations of the first electrode, functional layer, and second electrode.
- Example 2 [Preparation of sensor device] 1. Fabrication of the first electrode After forming a Cu film by DC magnetron sputtering in an Ar atmosphere on a rectangular base material (PET, thickness: 50 ⁇ m), etching is performed to form a line near one end of the base material. A first electrode formed in a shape was manufactured.
- the first electrode and the second electrode are arranged to face each other in the horizontal direction on the base material, and the electrodes are connected to each other via the meandering functional layer.
- a sensor device was manufactured using the following methods. Table 1 shows the configurations of the first electrode, functional layer, and second electrode, and the calculation results of the left and right sides of equation (1) above.
- Example 1 In Example 1, the same method as in Example 1 was conducted except that the configurations of the first electrode, functional layer, and second electrode were changed to those shown in Table 1. Table 1 shows the configurations of the first electrode, functional layer, and second electrode, and the calculation results of the left and right sides of equation (1) above.
- Example 2 In Example 2, the same method as in Example 2 was carried out except that the configurations of the first electrode, functional layer, and second electrode were changed to the configurations shown in Table 1.
- Table 1 shows the configurations of the first electrode, functional layer, and second electrode, and the calculation results of the left and right sides of equation (1) above.
- the TCR of one electrode is set to a positive value
- the TCR of the other electrode is set to a negative value. It was confirmed that the right side of the above equation (1) was larger than the left side of the above equation (1).
- both the TCR of the first electrode and the TCR of the second electrode are set to positive values or negative values, so that the left side and right side of the above equation (1) become the same. It was confirmed that That is, in Comparative Examples 1 and 2, the ratio of the resistance of the first electrode to the temperature change ( ⁇ 2 /t 2 ⁇ ⁇ 2 ) and the ratio of the resistance of the second electrode to the temperature change ( ⁇ 2 /t 2 ⁇ ⁇ 2 ) ⁇ 2 ), the ratio of the resistance of the first electrode to the temperature change ( ⁇ 2 /t 2 ⁇ 2 ) and the ratio of the resistance of the second electrode to the temperature change ( ⁇ 2 /t 2 ⁇ ⁇ 2 ).
- a functional layer and a pair of electrodes connected in series via the functional layer are provided on a support,
- the pair of electrodes includes a first electrode having a temperature coefficient of resistance of one of a positive value and a negative value, and a second electrode having a temperature coefficient of resistance of the other value of a positive value and a negative value.
- a sensor device consisting of an electrode.
- the first electrode is provided on the support side surface of the functional layer
- the second electrode is provided on a side of the functional layer that is different from the support side
- the functional layer is a piezoelectric layer.
- ⁇ 6> The sensor device according to ⁇ 5>, wherein the piezoelectric layer contains an inorganic material.
- sensor device 10 flexible base material 20 first electrode 30 piezoelectric layer 40 second electrode 50A, 50B functional layer
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Measuring Fluid Pressure (AREA)
Abstract
Description
本発明は、センサデバイスに関する。 The present invention relates to a sensor device.
基板上に機能層を介して一対の電極を備えたセンサデバイスは、例えば、圧力センサ、加速度センサ等のセンサ、高周波フィルタデバイス、圧電アクチュエータ等の電子機器において使用されている。 A sensor device comprising a pair of electrodes on a substrate with a functional layer interposed therebetween is used, for example, in electronic equipment such as sensors such as pressure sensors and acceleration sensors, high frequency filter devices, and piezoelectric actuators.
このようなセンサデバイスとして、例えば、単量体を重合してなる高分子化合物を主成分とする高分子薄膜の上に、第1の電極層、圧電体を主成分とする圧電体薄膜及び第2の電極層を形成した圧電素子が開示されている(例えば、特許文献1参照)。 As such a sensor device, for example, a first electrode layer, a piezoelectric thin film mainly composed of a piezoelectric material, and a first electrode layer are formed on a thin polymer film mainly composed of a polymer compound obtained by polymerizing monomers. A piezoelectric element in which two electrode layers are formed is disclosed (for example, see Patent Document 1).
特許文献1の圧電素子では、第1の電極層及び第2の電極層を、例えば、スズ、アルミニウム、ニッケル、白金、金、銀、銅、クロム、鉄、マグネシウム、モリブデン、ニオブ、タンタル、チタン、亜鉛、ジルコニウム、タングステン、パラジウム、ロジウム、イリジウム、ルビジウム、窒化チタン、窒化クロム及び二珪化モリブデンを用いて形成している。 In the piezoelectric element of Patent Document 1, the first electrode layer and the second electrode layer are made of, for example, tin, aluminum, nickel, platinum, gold, silver, copper, chromium, iron, magnesium, molybdenum, niobium, tantalum, titanium. , zinc, zirconium, tungsten, palladium, rhodium, iridium, rubidium, titanium nitride, chromium nitride, and molybdenum disilicide.
しかしながら、特許文献1の圧電素子では、使用される環境の温度変化によって第1の電極層及び第2の電極層の電気抵抗が変動することで第1の電極層及び第2の電極層の電圧降下が変動するため、環境の温度によって出力が変動するという問題があった。 However, in the piezoelectric element of Patent Document 1, the electrical resistance of the first electrode layer and the second electrode layer varies depending on the temperature change of the environment in which it is used, so that the voltage of the first electrode layer and the second electrode layer changes. Since the drop varied, there was a problem in that the output varied depending on the temperature of the environment.
本発明の一態様は、使用される環境の温度変化によって生じる電極の電圧降下の変動を抑制できるセンサデバイスを提供することを目的とする。 An object of one aspect of the present invention is to provide a sensor device that can suppress fluctuations in the voltage drop of an electrode caused by temperature changes in the environment in which it is used.
本発明に係るセンサデバイスの一態様は支持体上に、機能層と、前記機能層を介して直列に接続された一対の電極とを備え、前記一対の電極は、正の値及び負の値のうち一方の値の抵抗温度係数を有する第1の電極と、正の値及び負の値のうち他方の値の抵抗温度係数を有する第2の電極とからなる。 One embodiment of the sensor device according to the present invention includes, on a support, a functional layer and a pair of electrodes connected in series via the functional layer, and the pair of electrodes has a positive value and a negative value. The first electrode has a temperature coefficient of resistance of one of the positive and negative values, and the second electrode has a temperature coefficient of resistance of the other of a positive value and a negative value.
本発明に係るセンサデバイスの一態様は、使用される環境の温度変化によって生じる電極の電圧降下の変動を抑制できる。 One embodiment of the sensor device according to the present invention can suppress fluctuations in the voltage drop of the electrodes caused by temperature changes in the environment in which the sensor device is used.
以下、本発明の実施の形態について、詳細に説明する。なお、説明の理解を容易にするため、各図面において同一の構成要素に対しては同一の符号を付して、重複する説明は省略する。また、図面における各部材の縮尺は実際とは異なる場合がある。本明細書において数値範囲を示す「~」は、別段の断わりがない限り、その前後に記載された数値を下限値及び上限値として含むことを意味する。 Hereinafter, embodiments of the present invention will be described in detail. In order to facilitate understanding of the explanation, the same components in each drawing are denoted by the same reference numerals, and redundant explanation will be omitted. Further, the scale of each member in the drawings may differ from the actual scale. In this specification, "~" indicating a numerical range means that the lower limit and upper limit include the numerical values written before and after it, unless otherwise specified.
[センサデバイス]
本実施形態に係るセンサデバイスは、支持体上に、機能層と、機能層を介して直列に接続された一対の電極とを備え、一対の電極は、正の値及び負の値のうち一方の値の抵抗温度係数(TCR)を有する第1の電極と、正の値及び負の値のうち他方の値のTCRを有する第2の電極とからなる。本実施形態では、センサデバイスが、支持体、機能層と、機能層を介して直列に接続された一対の電極とを備える積層体であり、支持体が可撓性基材であり、機能層が圧電体層である場合について説明する。なお、機能層は、圧電体層に限定されず、温度測定層、ひずみ検知層等でもよい。
[Sensor device]
The sensor device according to the present embodiment includes, on a support, a functional layer and a pair of electrodes connected in series via the functional layer, and the pair of electrodes has one of a positive value and a negative value. a first electrode having a temperature coefficient of resistance (TCR) of a value of , and a second electrode having a TCR of the other of a positive value and a negative value. In this embodiment, the sensor device is a laminate including a support, a functional layer, and a pair of electrodes connected in series via the functional layer, the support is a flexible base material, and the functional layer A case where is a piezoelectric layer will be explained. Note that the functional layer is not limited to a piezoelectric layer, but may also be a temperature measurement layer, a strain detection layer, or the like.
図1は、本実施形態に係るセンサデバイスの構成を示す概略断面図である。図1に示すように、センサデバイス1Aは、支持体である可撓性基材10、第1の電極20、機能層である圧電体層30及び第2の電極40を、可撓性基材10側からこの順に積層して備える。センサデバイス1Aは、シート状(フィルム状)等、任意の形状に形成することができる。
FIG. 1 is a schematic cross-sectional view showing the configuration of a sensor device according to this embodiment. As shown in FIG. 1, the
なお、本明細書では、センサデバイス1Aの厚さ方向(垂直方向)をZ軸方向とし、厚さ方向と直交する横方向(水平方向)をX軸方向とする。Z軸方向の第2の電極40側を+Z軸方向とし、可撓性基材10側を-Z軸方向とする。以下の説明において、説明の便宜上、+Z軸方向を上又は上方といい、-Z軸方向を下又は下方と称すが、普遍的な上下関係を表すものではない。
In this specification, the thickness direction (vertical direction) of the
(可撓性基材)
可撓性基材10は、第1の電極20が設置される基板であり、センサデバイス1Aに屈曲性を与えられるように可撓性を有する。可撓性基材10としては、任意の材料を用いることができ、プラスチック基材、シリコン(Si)基板、金属板、ガラス基材等を用いることができる。
(Flexible base material)
The
プラスチック基材を用いる場合、センサデバイス1Aに屈曲性を与えることができる可撓性を有する材料を用いることが好ましい。
When using a plastic base material, it is preferable to use a flexible material that can provide flexibility to the
プラスチック基材を形成する材料として、例えば、ポリエチレンテレフタレート(PET)、ポチエチレンナフタレート(PEN)、ポリカーボネート(PC)、アクリル系樹脂、シクロオレフィン系ポリマー、ポリイミド(PI)等を用いることができる。 As the material forming the plastic base material, for example, polyethylene terephthalate (PET), polyethylene naphthalate (PEN), polycarbonate (PC), acrylic resin, cycloolefin polymer, polyimide (PI), etc. can be used.
可撓性基材10は、透明でもよいし、半透明又は不透明でもよい。なお、透明とは、可撓性基材10の内部を外側から視認できる程度に可視光(波長380~780nmの光)に対する透過性を有していることをいい、可視光の光透過率が40%以上のことであり、好ましくは80%以上、より好ましくは90%以上のことである。光透過率は、JIS K 7375:2008に規定される「プラスチック-全光線透過率および全光線反射率の求め方」を用いて測定される。
The
センサデバイス1Aに光透過性が要求される場合、PET、PEN、PC、アクリル系樹脂及びシクロオレフィン系ポリマー等を用いることが好ましい。これらの材料は、センサデバイス1Aに用いる電極が透明電極である場合等に好適に用いられる。また、脈拍計、心拍計等のヘルスケア用品、車載圧力検知シート等のように、センサデバイス1Aに光透過性が要求されない場合、上記材料、半透明又は不透明のプラスチック材料を用いてもよい。
When light transmittance is required for the
金属板を形成する材料として、例えば、アルミニウム、銅、ステンレス、タンタル等を用いることができる。 For example, aluminum, copper, stainless steel, tantalum, etc. can be used as the material for forming the metal plate.
可撓性基材10の厚さは、特に限定されず、センサデバイス1Aの用途、可撓性基材10の材料等に応じて適宜任意の厚さにでき、例えば、1μm~250μmとしてもよい。なお、可撓性基材10の厚さの測定方法は、特に限定されず、任意の測定方法を用いることができる。
The thickness of the
なお、本明細書において、可撓性基材10の厚さとは、可撓性基材10の主面に垂直な方向の長さをいう。可撓性基材10の厚さは、例えば、可撓性基材10の断面において、任意の場所を測定した時の厚さとしてもよいし、任意の場所で数カ所測定し、これらの測定値の平均値としてもよい。以下、厚さの定義は、他の部材でも同様に定義する。
Note that in this specification, the thickness of the
(第1の電極)
第1の電極20は、可撓性基材10の上方の主面(上面)に設けられる。第1の電極20は、可撓性基材10の一部又は全面に薄膜状に形成されてもよいし、ストライプ状に平行に複数設けられてもよい。なお、可撓性基材10が金属板等の導電性を有する場合には、可撓性基材10が電極としての機能も発揮できるため、第1の電極20は設けなくてもよい。
(first electrode)
The
第1の電極20は、導電性を有する任意の材料を用いることができる。前記材料としては、Pt、Au、Ag、Cu、Mg、Al、Si、Ti、Cr、Fe、Ni、Zn、Rb、Zr、Nb、Mo、Rh、Pd、Ru、Sn、Ir、Ta及びW等の金属、酸化亜鉛、酸化錫、酸化銅、ITO(Indium Tin Oxide)、IZO(Indium Zinc Oxide)、IZTO(Indium Zinc Tin Oxide)、IGZO(Indium Gallium Zinc Oxide)等の金属酸化物、窒化チタン(TiN)窒化クロム(CrN)及び窒化タンタル(TaN)等の窒化物、炭化珪素(SiC)等の炭化物を用いることができる。光透過性が求められる場合には、前記材料としては、ITO、IZO、IZTO、IGZO等の金属酸化物からなる酸化物導電膜等を用いることができる。光透過性が必須でない場合は、金属等を用いてもよい。
The
第1の電極20と圧電体層30の間の界面の凹凸や結晶粒界を抑制する観点からは、第1の電極20は非晶質の膜としてもよい。非晶質の膜とすることで、第1の電極20の表面の凹凸や、リークパスの要因となる結晶粒界の生成を抑制できる。また、上層の圧電体層30が第1の電極20の結晶配向の影響を受けずに、良好な結晶配向性で成長することができる。
From the viewpoint of suppressing the unevenness of the interface between the
第1の電極20の厚さは、適宜設計可能であり、例えば、3nm~100nmが好ましい。第1の電極20の厚さが上記の好ましい範囲内であれば、電極としての機能が発現できると共に、センサデバイス1Aの薄膜化を図ることができる。
The thickness of the
第1の電極20は、正の値及び負の値のうちの一方の値のTCRを有する。第1の電極20のTCRは、第2の電極40のTCRと異なる符号の値であればよく、第1の電極20及び第2の電極40のうち、一方の電極のTCRが正の値であり、他方の電極のTCRが負の値である。
The
なお、TCRとは、第1の電極20及び第2の電極40の温度特性の1つであり、第1の電極20及び第2の電極40を構成する物質に専ら依存する。第1の電極20及び第2の電極40のTCRは、第1の電極20及び第2の電極40を構成する材料の種類、第1の電極20及び第2の電極40の厚さ、第1の電極20及び第2の電極40が複数の材料を含む複合材料の場合には、それぞれの材料の含有量等により、金属的な挙動又は半導体的な挙動を示すように設定できる。TCRが正の値の場合には、第1の電極20及び第2の電極40は金属的な挙動を示し、TCRが負の値の場合には、第1の電極20及び第2の電極40は半導体的な挙動を示す。
Note that TCR is one of the temperature characteristics of the
第1の電極20のTCRと第2の電極40のTCRとの関係の詳細は、後述する。
The details of the relationship between the TCR of the
(圧電体層)
圧電体層30は、第1の電極20の上方の主面(上面)に設けられる。圧電体層30は、無機材料を主成分として含むことが好ましい。
(Piezoelectric layer)
The
なお、主成分とは、無機材料の含有量が、95atm%以上であり、好ましくは98atm%以上であり、より好ましくは99atm%以上であることをいう。 Note that the main component means that the content of the inorganic material is 95 atm% or more, preferably 98 atm% or more, and more preferably 99 atm% or more.
無機材料としては、ペロブスカイト型の結晶構造を有する圧電材料やウルツ鉱型の結晶構造を有する圧電材料(ウルツ鉱型結晶材料)等を用いることができる。なお、本実施形態では、機能層として圧電体層30を用いているため、ペロブスカイト型の結晶構造を有する圧電材料及びウルツ鉱型結晶材料等を用いるが、機能層が圧電体層30以外の場合には、機能層の種類に応じて、Pt、Au、Ag、Cu、Mg、Al、Si、Ti、Cr、Fe、Ni、Nb、Mo、Ru、Sn及びTa等の金属を用いてよい。
As the inorganic material, a piezoelectric material having a perovskite crystal structure, a piezoelectric material having a wurtzite crystal structure (wurtzite crystal material), etc. can be used. Note that in this embodiment, since the
ウルツ鉱型の結晶構造は、一般式AB(Aは、陽性元素であり、Bは陰性元素である。)で表される。ウルツ鉱型結晶材料は、六方晶の単位格子を持ち、c軸と平行な方向に分極ベクトルを有する。 The wurtzite crystal structure is represented by the general formula AB (A is a positive element and B is a negative element). A wurtzite crystal material has a hexagonal unit cell and has a polarization vector in a direction parallel to the c-axis.
ウルツ鉱型結晶材料としては、一定値以上の圧電特性を示し、200℃以下の低温プロセスで結晶化させることができる材料を用いることが好ましい。ウルツ鉱型結晶材料は、一般式ABで表わされる陽性元素Aとして、Zn、Al、Ga、Cd及びSiのうち少なくともZnを含む。ウルツ鉱型結晶材料としては、例えば、酸化亜鉛(ZnO)、硫化亜鉛(ZnS)、セレン化亜鉛(ZnSe)、テルル化亜鉛(ZnTe)等を用いることができる。これらの中でも、ウルツ鉱型結晶材料としては、低温プロセスでも比較的良好にc軸配向し易い点から、ZnOが好ましい。これらは、1種単独で用いてもよいし、2種以上併用してもよい。ウルツ鉱型結晶材料を2種以上併用する場合、これらのうちの1種以上の成分を主成分として含み、その他の成分を任意成分として含んでもよい。 As the wurtzite crystal material, it is preferable to use a material that exhibits piezoelectric properties of a certain value or more and that can be crystallized in a low-temperature process of 200° C. or less. The wurtzite crystal material contains at least Zn among Zn, Al, Ga, Cd, and Si as the positive element A represented by the general formula AB. As the wurtzite crystal material, for example, zinc oxide (ZnO), zinc sulfide (ZnS), zinc selenide (ZnSe), zinc telluride (ZnTe), etc. can be used. Among these, ZnO is preferred as the wurtzite crystal material since it can be relatively well oriented in the c-axis even in a low temperature process. These may be used alone or in combination of two or more. When two or more types of wurtzite crystal materials are used in combination, one or more of these components may be included as a main component, and other components may be included as optional components.
陽性元素Aは、Znの他に、Al、Ga、Cd及びSiのうち少なくとも1種を含んでもよい。これらのウルツ鉱型結晶材料としては、例えば、窒化アルミニウム(AlN)、窒化ガリウム(GaN)、セレン化カドミウム(CdSe)、テルル化カドミウム(CdTe)、炭化ケイ素(SiC)等を用いることができる。 In addition to Zn, the positive element A may contain at least one of Al, Ga, Cd, and Si. As these wurtzite crystal materials, for example, aluminum nitride (AlN), gallium nitride (GaN), cadmium selenide (CdSe), cadmium telluride (CdTe), silicon carbide (SiC), etc. can be used.
ウルツ鉱型結晶材料は、ZnOを含み、ZnOから実質的になることが好ましく、ZnOのみからなることがより好ましい。「実質的に」とは、ZnO以外に、製造過程で不可避的に含まれ得る不可避不純物を含んでもよいことを意味する。 The wurtzite crystal material preferably contains ZnO and consists essentially of ZnO, and more preferably consists only of ZnO. "Substantially" means that in addition to ZnO, unavoidable impurities that may be unavoidably included during the manufacturing process may be included.
ウルツ鉱型結晶材料として、上記の、ZnO、ZnS、ZnSe及びZnTeの他に、Mg、Ca、Sr等のアルカリ土類金属、又はバナジウム(V)、チタン(Ti)、ジルコニウム(Zr)、シリカ(Si)、リチウム(Li)等の金属を所定の範囲の割合で含んでもよい。これらの成分は、元素の状態で含まれてもよいし、酸化物の状態で含まれてもよい。 In addition to the above-mentioned ZnO, ZnS, ZnSe, and ZnTe, the wurtzite type crystal materials include alkaline earth metals such as Mg, Ca, and Sr, or vanadium (V), titanium (Ti), zirconium (Zr), and silica. (Si), lithium (Li), and other metals may be included in a proportion within a predetermined range. These components may be contained in an elemental state or in an oxide state.
圧電体層30は、主成分の他に、添加元素としては、Ar、Kr、Xe及びRnの少なくとも一種を含んでもよい。
In addition to the main component, the
圧電体層30中の添加元素の含有量は、特に限定されるものではなく、圧電体層30がウルツ鉱型の結晶構造を有することができる範囲内であればよい。
The content of the additive element in the
圧電体層30に含まれる添加元素の含有量の測定方法は、測定可能な方法であれば特に限定されない。圧電体層30に含まれる添加元素の含有量は、例えば、ラザフォード後方散乱分析法(RBS)により、測定装置としてPelletron 3SDH(NEC社製)を使用して測定してもよいし、二次イオン質量分析法により、ダイナミックSIMS(D-SIMS)等を使用して測定してもよい。
The method for measuring the content of the additive element contained in the
圧電体層30の厚さは、特に限定されず、十分な圧電特性、即ち圧力に比例した分極特性を有すると共に、圧電体層30にクラック等が発生することを低減して、電極間のリークパスを抑制し、安定して圧電特性を発揮できる厚さであればよい。圧電体層30の厚さとしては、例えば、5μm以下であればよい。
The thickness of the
圧電体層30の膜密度は、特に限定されず、適宜設計可能であり、圧電体層30の結晶配向性を高めると共に、膜応力の増大を抑えることができる範囲内であればよい。なお、膜密度の測定方法は、特に限定されず、例えば、X線反射率測定法(XRR)等を用いることができる。
The film density of the
圧電体層30の結晶配向性は、圧電体層30の表面をX線ロッキングカーブ(XRC:X-ray Rocking Curve)法で測定した時に得られる半値全幅(FWHM:Full Width at Half Maximum)で示される。即ち、圧電体層30の結晶配向性は、XRC法により、圧電体層30に主成分として含まれる圧電材料の結晶の(0002)面からの回折を測定したときに得られるロッキングカーブの、ピーク波形のFWHMで表わされる。圧電体層30に含まれる圧電材料がZnO等のウルツ鉱型結晶構造を有するため、FWHMは、圧電材料を構成する結晶同士のc軸方向の配列の平行の度合いを示す。そのため、XRC法により得られるロッキングカーブのピーク波形のFWHMは、圧電体層30のc軸配向性の指標にできる。よって、ロッキングカーブのFWHMが小さいほど、圧電体層30のc軸方向の結晶配向性が良いと評価できる。
The crystal orientation of the
また、圧電体層30の結晶配向性は、XRC法により、圧電体層30に圧電材料として含まれるZnOの結晶の(0002)面からの回折を測定して得られるロッキングカーブのFWHMの他に、ピーク強度も含めて評価できる。即ち、圧電体層30の結晶配向性は、ピーク強度の積分値をFWHMで割った値を評価値として用いて評価することもできる。この場合、ロッキングカーブのピーク強度が強く、FWHMが小さいほど、ZnOのc軸配向性が良いと評価できる。よって、ピーク強度の積分値をFWHMで割った評価値が大きいほど、圧電体層30の結晶配向性が良いと評価できる。
In addition, the crystal orientation of the
圧電体層30は、ウルツ鉱型結晶材料を2種以上併用する場合、それぞれのウルツ鉱型結晶材料からなる圧電体層を積層して構成されてもよい。
When two or more types of wurtzite crystal materials are used together, the
(第2の電極)
図1に示すように、第2の電極40は、圧電体層30の上方の主面(上面)に設けられ、第1の電極20と対向するように配置されている。第2の電極40は、導電性を有する任意の材料で形成することができ、第1の電極20と同様の材料を用いることができる。センサデバイス1Aが光透過性を要する場合は、第2の電極40は、ITO、IZO、IZTO、IGZO等の透明な酸化物導電膜としてもよい。光透過性が必須でない場合は、第2の電極40は、Au、Pt、Ag、Ti、Al、Mo、Ru、Cu等の良導体の金属電極としてもよい。
(Second electrode)
As shown in FIG. 1, the
第2の電極40は、第1の電極20と同様、圧電体層30の一部又は全面に薄膜状に形成されてもよいし、適宜任意の形状に形成してもよい。例えば、第1の電極20がストライプ状に平行に複数設けられている場合、第2の電極40は、平面視において、第1の電極20のストライプが延設している方向と直交する方向に、ストライプ状に平行に複数設けられてもよい。
Similarly to the
第2の電極40の厚さは、適宜設計可能であり、例えば、20nm~100nmが好ましい。第2の電極40の厚さが上記の好ましい範囲内であれば、電極としての機能が発現できると共に、センサデバイス1Aの薄膜化を図ることができる。
The thickness of the
第2の電極40は、第1の電極20とは異なる符号の値のTCRを有する。第2の電極40のTCRは、第1の電極20のTCRと異なる符号であればよく、第1の電極20のTCRが正の値である時は、第2の電極40のTCRは負の値となり、第1の電極20のTCRが負の値である時は、第2の電極40のTCRは正の値となる。第2の電極40のTCRの符号、大きさ等は、第1の電極20の場合と同様に設定できるため詳細は省略する。
The
第1の電極20と第2の電極40とは、それぞれ異なる符号の値のTCRを有することで電極間のTCRを相殺させるが、第1の電極20及び第2の電極40の抵抗の温度変化に対する割合が、下記式(1)の関係を満たすことが好ましい。
|(ρ1/t1×α1)+(ρ2/t2×α2)|<2×min(|ρ1/t1×α1|,|ρ2/t2×α2|) ・・・(1)
(式中、ρ1は、第1の電極20の電気抵抗率(単位:Ω・m)であり、t1は、第1の電極20の厚み(単位:m)であり、α1は、第1の電極20の抵抗温度係数(単位:%/K)であり、ρ2は、第2の電極40の電気抵抗率(単位:Ω・m)でありt2は、第2の電極40の厚み(単位:m)であり、α2は、第2の電極40の抵抗温度係数(単位:%/K)を表す。)
The
|(ρ 1 /t 1 ×α 1 )+(ρ 2 /t 2 ×α 2 )|<2×min(|ρ 1 /t 1 ×α 1 |,|ρ 2 /t 2 ×α 2 |) ...(1)
(In the formula, ρ 1 is the electrical resistivity (unit: Ω・m) of the
(ρ1/t1×α1)で表される第1の電極20の抵抗の温度変化に対する割合と、(ρ2/t2×α2)で表される第2の電極40の抵抗の温度変化に対する割合との符号は、第1の電極20及び第2の電極40のTCRの符号にのみ既存し、それ以外では変化しない。このため、第1の電極20及び第2の電極40のTCRの符号が正又は負で逆であれば、(ρ1/t1×α1)で表される第1の電極20の抵抗の温度変化に対する割合の符号と、(ρ2/t2×α2)で表される第2の電極40の抵抗の温度変化に対する割合の符号とは、逆の状態のまま維持でき、電極同士の抵抗の温度変化に対する割合が相殺される。上記式(1)で、|ρ1/t1×α1+ρ2/t2×α2|が(2×min(|ρ1/t1×α1|,|ρ2/t2×α2|))が小さくなるようにすることで、第1の電極20及び第2の電極40の温度変化に対する出力の変動が抑えられる。
The ratio of the resistance of the
即ち、第1の電極20の抵抗の温度変化に対する割合(ρ2/t2×α2)と、第2の電極40の抵抗の温度変化に対する割合(ρ2/t2×α2)との和の平均の絶対値が、第1の電極20の抵抗の温度変化に対する割合(ρ2/t2×α2)と、第2の電極40の抵抗の温度変化に対する割合(ρ2/t2×α2)のどちらかの最小値未満であれば、第1の電極20及び第2の電極40の温度変化に対する出力の変動が十分に抑えられる。
That is, the ratio of the resistance of the
センサデバイス1Aの製造方法は、特に限定されず適宜任意の製造方法を用いることができる。センサデバイス1Aの製造方法の一例について説明する。
The method for manufacturing the
まず、所定の大きさに形成された可撓性基材10の上面に、第1の電極20を成膜(形成)する。
First, the
第1の電極20の形成方法は、特に限定されず、ドライプロセス及びウエットプロセスのいずれでもよい。第1の電極20の形成方法としてドライプロセスを用いれば、薄い第1の電極20を容易に形成できる。ドライプロセスとしては、例えば、スパッタリング、蒸着が挙げられ、ウエットプロセスとしては、例えば、めっきが挙げられる。スパッタリングとしては、例えば、DC(直流)又はRF(高周波)のマグネトロンスパッタリング法等を用いることができる。第1の電極20の形成方法としてスパッタリングを用いることで、密度が高く、薄い第1の電極20を容易に形成できる。そのため、第1の電極20の形成方法としては、スパッタリングが好ましい。第1の電極20としては、例えば、DC(直流)又はRF(高周波)のマグネトロンスパッタリング法により成膜されたITO膜、IZO膜、Ti膜等を用いることができる。
The method for forming the
第1の電極20は、可撓性基材10の上面の全面に形成されていてもよい。また、第1の電極20は、エッチング等により所定の形状を有するパターンに加工して、適宜任意の形状に形成してもよい。例えば、第1の電極20は、ストライプ状にパターニングして、ストライプ状に複数配置してもよい。
The
次に、第1の電極20の上面に圧電体層30を形成する。例えば、圧電材料を構成する元素を含むターゲットを用いて、Ar等の不活性ガスと微量の酸素を含む混合ガス雰囲気中で、DCマグネトロンスパッタリング法により成膜する。第1の電極20の上に圧電材料をスパッタリングすることで、圧電体層30が成膜される。
Next, a
圧電材料がZnOからなるウルツ鉱型結晶材料である場合、ターゲットにはZnO焼結体のターゲットを用いることができる。スパッタリング装置内にZnO焼結体のターゲットを設置して、Ar原子等の不活性ガスと酸素を含む混合ガスをスパッタリング装置内に供給する。不活性ガスと酸素を含む混合ガス雰囲気下において、ZnO焼結体のターゲットを用いてスパッタリングすることで、第1の電極20上に、ZnOの成膜時に入り込む不活性ガスの量を抑えながら、圧電体層30を得ることができる。
When the piezoelectric material is a wurtzite crystal material made of ZnO, a ZnO sintered target can be used as the target. A ZnO sintered target is installed in a sputtering device, and a mixed gas containing oxygen and an inert gas such as Ar atoms is supplied into the sputtering device. By sputtering using a ZnO sintered target in a mixed gas atmosphere containing an inert gas and oxygen, the amount of inert gas that enters the ZnO film on the
圧電材料がZnOとMgOとを所定の質量比で含むMg添加ZnOからなるウルツ鉱型結晶材料である場合、ZnO焼結体からなるターゲットとMgO焼結体からなるターゲットを用いた多元スパッタリング法、又は予め所定の割合でMgOを添加したZnO焼結体のターゲット等のZnO及びMgOを含む合金ターゲットを用いた一元スパッタリング法を用いることができる。 When the piezoelectric material is a wurtzite crystal material made of Mg-added ZnO containing ZnO and MgO in a predetermined mass ratio, a multidimensional sputtering method using a target made of a ZnO sintered body and a target made of an MgO sintered body, Alternatively, a one-shot sputtering method using an alloy target containing ZnO and MgO, such as a ZnO sintered target to which MgO is added in advance at a predetermined ratio, can be used.
多元スパッタリング法を用いる場合、多元スパッタ装置を用いて、Ar原子等の不活性ガスと酸素を含む混合ガスを多元スパッタ装置内に供給する。不活性ガスと酸素を含む混合ガス雰囲気下において、ZnO焼結体のターゲットとMgO焼結体のターゲットを用いて同時かつ独立に第1の電極20上にスパッタリングすることで、第1の電極20上にMg添加ZnOで構成された圧電体層30を成膜できる。また、このとき、Mg添加ZnOの成膜時に入り込む不活性ガスの量を抑えながら、Mg添加ZnOを成膜できる。
When using the multi-source sputtering method, a multi-source sputtering device is used to supply a mixed gas containing an inert gas such as Ar atoms and oxygen into the multi-source sputtering device. The
一元スパッタリング法を用いる場合、Ar原子等の不活性ガスと酸素を含む混合ガス雰囲気下において、例えば、予め所定の割合でMgOを添加したZnO焼結体のターゲットを用いてスパッタリングすることで、第1の電極20上に、Mg添加ZnO薄膜で構成された圧電体層30を成膜できる。また、このとき、不活性ガスが所望の割合でMg添加ZnOに含まれるように成膜してもよい。これにより、Mg添加ZnOに不活性ガスが所望量含まれた圧電体層30が得られる。
When using the one-source sputtering method, sputtering is performed in a mixed gas atmosphere containing oxygen and an inert gas such as Ar atoms using, for example, a ZnO sintered target to which MgO has been added at a predetermined ratio. A
不活性ガスと酸素を含む混合ガス雰囲気は、不活性ガスと酸素の総流量に対する酸素の流量の比が5%~15%であることが好ましい。不活性ガスと酸素の総流量に対する酸素の流量の比が、上記の好ましい範囲内であれば、不活性ガスを含むターゲットを用いてスパッタリング法により圧電体層30を成膜する際、Ar原子等の不活性ガスがZnO等のウルツ鉱型結晶材料の結晶格子中に入り込んでも、入り込む不活性ガスの量を抑えることができる。そのため、圧電材料の圧電特性を向上させることができる。
In the mixed gas atmosphere containing an inert gas and oxygen, the ratio of the flow rate of oxygen to the total flow rate of the inert gas and oxygen is preferably 5% to 15%. If the ratio of the flow rate of oxygen to the total flow rate of inert gas and oxygen is within the above preferable range, when forming the
スパッタリングする際の混合ガス雰囲気内の圧力は、0.1Pa~2.0Paであることが好ましい。圧力が上記の好ましい範囲内であれば、Zn等のウルツ鉱型結晶材料を構成する陽性元素を含むターゲットを用いてスパッタリング法により圧電体層30を成膜する際、Ar原子等の不活性ガスがZnO等のウルツ鉱型結晶材料の結晶格子中に入り込む量を抑えることができる。そのため、圧電体層30の圧電特性を向上させることができる。
The pressure in the mixed gas atmosphere during sputtering is preferably 0.1 Pa to 2.0 Pa. If the pressure is within the above preferred range, when forming the
圧電体層30の成膜温度は、特に限定されず、センサデバイス1Aの層構成等に応じて適宜選択できる。例えば、150℃以下で圧電体層30を成膜してもよい。
The film-forming temperature of the
第1の電極20及び圧電体層30の成膜にスパッタリング法を用いることで、化合物のターゲットの組成比をほぼ保った状態で付着力の強い均一な膜を形成できる。また、時間の制御だけで、所望の厚さの第1の電極20及び圧電体層30を精度良く形成することができる。
By using a sputtering method to form the
なお、圧電体層30は、複数積層して構成してもよい。
Note that the
次に、圧電体層30の上面に、所定の形状を有する第2の電極40を形成する。
Next, a
第2の電極40は、第1の電極20と同様の形成方法を用いて形成できる。
The
第2の電極40の厚さは、適宜設計可能であり、例えば、20nm~100nmとしてよい。
The thickness of the
第2の電極40は、圧電体層30の全面に形成されていてもいいし、適宜任意の形状に形成してもよい。例えば、第1の電極20がストライプ状に形成されている場合、第2の電極40は、センサデバイス1Aの平面視において、第1の電極20のストライプが延設している方向と直交する方向にストライプ状に複数形成されていてもよい。
The
圧電体層30の上に第2の電極40を形成することで、センサデバイス1Aが形成される。
By forming the
なお、第2の電極40の形成後に、可撓性基材10の融点又はガラス転移点よりも低い温度(例えば、130℃)で、センサデバイス1Aの全体を加熱処理してもよい。この加熱処理により、第1の電極20及び第2の電極40を結晶化させ、低抵抗化させることができる。加熱処理は、必須ではなく、可撓性基材10が耐熱性のない材料で形成されている場合等では、センサデバイス1Aの形成後に行わなくてもよい。
Note that after forming the
このように、本実施形態に係るセンサデバイス1Aは、可撓性基材10、第1の電極20、圧電体層30及び第2の電極40を備え、第1の電極20は正の値及び負の値のうち一方の値のTCRを有し、第2の電極40は正の値及び負の値のうち他方の値のTCRを有する。これにより、センサデバイス1Aは、第1の電極20の温度変化に伴う抵抗変化と第2の電極40の温度変化に伴う抵抗変化とを相殺させ打ち消し合わせることができる。具体的には、センサデバイス1Aは、第1の電極20の抵抗の温度変化に対する割合と第2の電極40の抵抗の温度変化に対する割合との和の平均の絶対値を、第1の電極20の抵抗の温度変化に対する割合と第2の電極40の抵抗の温度変化に対する割合との何れか小さい方の値よりも小さく抑えることができる。センサデバイス1Aは、第1の電極20と第2の電極40の温度変化に伴う抵抗変化を打ち消し合わせることで、使用される環境の温度変化によって生じる第1の電極20及び第2の電極40の電圧降下の変動を抑制できる。
In this way, the
センサデバイス1Aは、温度変化による第1の電極20及び第2の電極40の電圧降下の変動を抑制することで、圧電体層30がその厚さ方向に高い圧電効率を安定して発揮でき、優れた圧電特性を維持できる。このため、センサデバイス1Aは、優れた圧電特性を維持することができる。
The
センサデバイス1Aは、第1の電極20と第2の電極40とを圧電体層30を介して対向するように配置することができる。センサデバイス1Aは、第1の電極20と第2の電極40とを可撓性基材10の上に圧電体層30を介して平面方向又は高さ方向に対向するように配置して構成しても、第1の電極20と第2の電極40の温度変化に伴う抵抗変化を打ち消し合わせることができる。よって、センサデバイス1Aは、種々の用途に使用されても、使用される環境の温度変化によって生じる第1の電極20及び第2の電極40の電圧降下の変動を抑制できる。
In the
センサデバイス1Aは、第1の電極20と第2の電極40とを対向するように配置し、可撓性基材10、第1の電極20、圧電体層30及び第2の電極40を可撓性基材10側からこの順に積層して備えることができる。センサデバイス1Aは、可撓性基材10、第1の電極20、圧電体層30及び第2の電極40を積層して構成しても、第1の電極20と第2の電極40の温度変化に伴う抵抗変化を打ち消し合わせることができるため、使用される環境の温度変化によって生じる第1の電極20及び第2の電極40の電圧降下の変動を抑制できる。
The
センサデバイス1Aは、支持体として可撓性基材10を用いることができる。センサデバイス1Aは、第1の電極20及び第2の電極40が柔軟性の高い基板に設置される場合でも、第1の電極20と第2の電極40の温度変化に伴う抵抗変化を打ち消し合わせることができるため、使用される環境の温度変化によって生じる第1の電極20及び第2の電極40の電圧降下の変動を抑制できる。
The
センサデバイス1Aは、機能層として圧電体層30を用いることができる。センサデバイス1Aは、機能層として圧電体層30を用いても、第1の電極20と第2の電極40の温度変化に伴う抵抗変化を打ち消し合わせることができるため、使用される環境の温度変化によって生じる第1の電極20及び第2の電極40の電圧降下の変動を抑制できる。よって、センサデバイス1Aは、圧電デバイスとして優れた圧電特性を発揮することができる。
The
センサデバイス1Aでは、圧電体層30が無機材料を含むことができるため、センサデバイス1Aは、使用される用途に応じて圧電体層30を種々の無機材料で構成しても、圧電デバイスとしての機能を安定して発揮することができる。
In the
センサデバイス1Aは、使用される環境の温度変化による第1の電極20及び第2の電極40の電圧降下の変動を抑制し、優れた圧電特性を維持できることから、圧電デバイスとして好適に用いることができる。圧電デバイスとしては、例えば、タッチパネル用フォースセンサ、圧力センサ、加速度センサ、角速度センサ、アコースティック・エミッション(AE)センサ等の圧電効果を利用したデバイス、逆圧電効果を利用したスピーカ、トランスデューサ、高周波フィルタデバイス、圧電アクチュエータ、光スキャナ、インクジェットプリンタ用のヘッド、スキャナ用のMEMSミラー等が挙げられる。
The
なお、本実施形態においては、センサデバイス1Aは、上記構成に限定されず、可撓性基材10の上に第1の電極20及び第2の電極40を機能層を介して接続し、使用される環境の温度変化によって生じる第1の電極20及び第2の電極40の電圧降下の変動を抑制できれば、他の構成でもよい。例えば、図3に示すように、センサデバイス1Bは、可撓性基材10の上面に機能層50Aを配置して、その機能層50Aの上面に第1の電極20及び第2の電極40の少なくとも一部が配置されるように設け、機能層50Aの上面で第1の電極20及び第2の電極40を水平方向で対向させてよい。また、第1の電極20及び第2の電極40は、機能層50Aの上面でこれらの一部が交互に噛み合うように櫛歯状に形成されてもよい。図3に示すセンサデバイス1Bは、例えば、機能層50Aを温度測定層として機能させることで、温度センサとして機能させることができる。
In addition, in this embodiment, the
本実施形態において、図4に示すように、センサデバイス1Cは、可撓性基材10の上面に第1の電極20及び第2の電極40が水平方向で対向するように、蛇行するように形成された機能層50Bを介して接続されるように配置してもよい。第1の電極20及び第2の電極40はライン状に形成されてもよい。図4に示すセンサデバイス1Cにおいても、例えば、機能層50Bを温度測定層として機能させることで、温度センサとして機能させることができる。
In this embodiment, as shown in FIG. 4, the sensor device 1C has a meandering structure such that the
本実施形態において、センサデバイス1Aは、圧電体層30と第2の電極40との間に単層又は2層以上の絶縁層を備えてもよい。絶縁層は、圧電体層30の上面の全面に形成されてよい。
In this embodiment, the
絶縁層を形成する絶縁材料としては、酸化ケイ素(SiOx)、酸化アルミニウム(AlOx)、酸化タンタル(TaOx)、酸化イットリウム(YOx)、酸化ジルコニウム(ZrOx)及び酸化ハフニウム(HfOx)等の金属酸化物、窒化ケイ素(SiNx)及び酸化窒化ケイ素(SiON)等の窒化物、ポリプロピレン(PP)、ポリカーボネート(PC)、ABS樹脂、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリアミド(PA)、ポリメチルメタクリレート(PMMA)、ポリビニルアルコール(PVA)、ポリビニルフェノール(PVP)等の有機系絶縁材料等が挙げられる。これらは、1種単独で用いてもよいし、2種以上を併用してもよい。 Insulating materials forming the insulating layer include metal oxides such as silicon oxide (SiOx), aluminum oxide (AlOx), tantalum oxide (TaOx), yttrium oxide (YOx), zirconium oxide (ZrOx), and hafnium oxide (HfOx). , nitrides such as silicon nitride (SiNx) and silicon oxynitride (SiON), polypropylene (PP), polycarbonate (PC), ABS resin, polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyamide (PA), poly Examples include organic insulating materials such as methyl methacrylate (PMMA), polyvinyl alcohol (PVA), and polyvinylphenol (PVP). These may be used alone or in combination of two or more.
以下、実施例及び比較例を示して実施形態を更に具体的に説明するが、実施形態はこれらの実施例及び比較例により限定されるものではない。 Hereinafter, the embodiments will be described in more detail with reference to Examples and Comparative Examples, but the embodiments are not limited to these Examples and Comparative Examples.
<実施例1>
[センサデバイスの作製]
1.第1の電極の作製
基材(PET、厚さ:50μm)の上に、ArとO2の混合ガス雰囲気中で、DCマグネトロンスパッタ法により、ZnとInとが組成比で9:1に調整されたスパッタリングターゲットを用いて、ZnOとIn2O3とが組成比で9:1に調整された、非晶質であるIZO(ZnO:In2O3=9:1)膜を第1の電極として成膜した。IZO膜の厚さは100nmとした。
<Example 1>
[Preparation of sensor device]
1. Fabrication of the first electrode Zn and In were adjusted to a composition ratio of 9:1 on the base material (PET, thickness: 50 μm) by DC magnetron sputtering in a mixed gas atmosphere of Ar and O 2 Using the prepared sputtering target, a first amorphous IZO (ZnO:In 2 O 3 = 9:1) film in which the composition ratio of ZnO and In 2 O 3 was adjusted to 9:1 was formed. A film was formed as an electrode. The thickness of the IZO film was 100 nm.
2.機能層(圧電体層)の作製
IZO膜上に、ArとO2の混合ガス雰囲気中で、DCスパッタリング法により、ZnOのスパッタリングターゲットを用いて、六方晶系のウルツ鉱型構造を有するZnO薄膜を機能層である圧電体層として作製した。ZnO薄膜の厚さは、500nmとした。
2. Preparation of functional layer (piezoelectric layer) A ZnO thin film having a hexagonal wurtzite structure was formed on the IZO film by DC sputtering in a mixed gas atmosphere of Ar and O 2 using a ZnO sputtering target. was fabricated as a piezoelectric layer which is a functional layer. The thickness of the ZnO thin film was 500 nm.
3.第2の電極の作製
ZnO薄膜の上に、Arガス雰囲気中で、DCマグネトロンスパッタ法により、Niのスパッタリングターゲットを用いて、Ni膜を第2の電極として成膜した。Ni膜の厚さは、50nmとした。
3. Preparation of Second Electrode A Ni film was formed as a second electrode on the ZnO thin film by DC magnetron sputtering in an Ar gas atmosphere using a Ni sputtering target. The thickness of the Ni film was 50 nm.
これにより、基材の上に、第1の電極、機能層及び第2の電極をこの順に積層した積層体をセンサデバイスとして製造した。第1の電極、機能層及び第2の電極の構成を表1に示す。 Thereby, a laminate in which the first electrode, the functional layer, and the second electrode were laminated in this order on the base material was manufactured as a sensor device. Table 1 shows the configurations of the first electrode, functional layer, and second electrode.
[第1の電極と第2の電極の温度変化に伴う抵抗変化の打ち消しの評価]
下記式(1)の左辺より、「第1の電極の抵抗の温度変化に対する割合と第2の電極の抵抗の温度変化に対する割合との和の平均の絶対値」を求め、下記式(1)の右辺より、「第1の電極の抵抗の温度変化に対する割合と第2の電極の抵抗の温度変化に対する割合との何れか小さい方の値の2倍」を求めた。下記式(1)の右辺が、下記式(1)の左辺よりも大きい場合には、第1の電極の温度変化に伴う抵抗変化と第2の電極の温度変化に伴う抵抗変化とを打ち消し合うことができ、使用される環境の温度変化によって生じる第1の電極及び第2の電極の電圧降下の変動を抑制でき、良好であると評価した。
|ρ1/t1×α1+ρ2/t2×α2|<2×min(|ρ1/t1×α1|,|ρ2/t2×α2|) ・・・(1)
[Evaluation of cancellation of resistance change due to temperature change of first electrode and second electrode]
From the left side of the following formula (1), find the "absolute value of the average of the sum of the ratio of the resistance of the first electrode to the temperature change and the ratio of the resistance of the second electrode to the temperature change", and use the following formula (1). From the right side of , "twice the smaller value of the ratio of the resistance of the first electrode to the temperature change and the ratio of the resistance of the second electrode to the temperature change" was calculated. If the right side of equation (1) below is larger than the left side of equation (1) below, the resistance change due to temperature change of the first electrode and the resistance change due to temperature change of the second electrode cancel each other out. It was possible to suppress fluctuations in the voltage drop of the first electrode and the second electrode caused by temperature changes in the environment in which it is used, and was evaluated as good.
|ρ 1 /t 1 ×α 1 +ρ 2 /t 2 ×α 2 |<2×min(|ρ 1 /t 1 ×α 1 |,|ρ 2 /t 2 ×α 2 |) ... (1 )
[実施例2]
[センサデバイスの作製]
1.第1の電極の作製
矩形状の基材(PET、厚さ:50μm)の上に、Ar雰囲気でDCマグネトロンスパッタによりCuを成膜した後、エッチングして、基材の一方の端付近にライン状に形成された第1の電極を作製した。
[Example 2]
[Preparation of sensor device]
1. Fabrication of the first electrode After forming a Cu film by DC magnetron sputtering in an Ar atmosphere on a rectangular base material (PET, thickness: 50 μm), etching is performed to form a line near one end of the base material. A first electrode formed in a shape was manufactured.
2.機能層(温度検知層)の作製
基材の上に、Ar雰囲気でDCマグネトロンスパッタによりNiを成膜した後、エッチングして、蛇行したラインとなるように形成し、その一端が第1の電極と連結されるように形成された機能層を作製した。
2. Preparation of functional layer (temperature sensing layer) After forming a Ni film on the base material by DC magnetron sputtering in an Ar atmosphere, etching is performed to form a meandering line, one end of which is the first electrode. A functional layer formed to be connected to was produced.
3.第2の電極の作製
基材の上に、Ar及びN2混合ガス雰囲気にてDCマグネトロンスパッタによりCrNiを成膜した後、エッチングして、基材の第1の電極側とは反対側の端付近に、第1の電極と対向するようにライン状に形成された第2の電極を作製した。
3. Fabrication of the second electrode After forming a CrNi film on the base material by DC magnetron sputtering in an Ar and N 2 mixed gas atmosphere, etching is performed to form the end of the base material opposite to the first electrode side. A second electrode formed in a line shape so as to face the first electrode was prepared nearby.
これにより、基材の上に、第1の電極及び第2の電極が水平方向で対向するように配置され、電極同士が蛇行するように形成された機能層を介して接続されるように構成されたセンサデバイスを製造した。第1の電極、機能層及び第2の電極の構成と、上記式(1)の左辺及び右辺の算出結果を表1に示す。 As a result, the first electrode and the second electrode are arranged to face each other in the horizontal direction on the base material, and the electrodes are connected to each other via the meandering functional layer. A sensor device was manufactured using the following methods. Table 1 shows the configurations of the first electrode, functional layer, and second electrode, and the calculation results of the left and right sides of equation (1) above.
[比較例1]
実施例1において、第1の電極、機能層及び第2の電極の構成を表1に示す構成にそれぞれ変更したこと以外は、実施例1と同様の方法で行った。第1の電極、機能層及び第2の電極の構成と、上記式(1)の左辺及び右辺の算出結果を表1に示す。
[Comparative example 1]
In Example 1, the same method as in Example 1 was conducted except that the configurations of the first electrode, functional layer, and second electrode were changed to those shown in Table 1. Table 1 shows the configurations of the first electrode, functional layer, and second electrode, and the calculation results of the left and right sides of equation (1) above.
[比較例2]
実施例2において、第1の電極、機能層及び第2の電極の構成を表1に示す構成にそれぞれ変更したこと以外は、実施例2と同様の方法で行った。第1の電極、機能層及び第2の電極の構成と、上記式(1)の左辺及び右辺の算出結果を表1に示す。
[Comparative example 2]
In Example 2, the same method as in Example 2 was carried out except that the configurations of the first electrode, functional layer, and second electrode were changed to the configurations shown in Table 1. Table 1 shows the configurations of the first electrode, functional layer, and second electrode, and the calculation results of the left and right sides of equation (1) above.
表1より、実施例1及び2は、第1の電極のTCRと第2の電極のTCRのうち、一方の電極のTCRを正の値とし、他方の電極のTCRを負の値とすることで、上記式(1)の右辺が上記式(1)の左辺よりも大きくなったことが確認された。即ち、実施例1及び2は、第1の電極の抵抗の温度変化に対する割合(ρ2/t2×α2)と、第2の電極の抵抗の温度変化に対する割合(ρ2/t2×α2)との和の平均の絶対値を、第1の電極の抵抗の温度変化に対する割合(ρ2/t2×α2)と、第2の電極の抵抗の温度変化に対する割合(ρ2/t2×α2)のどちらかの最小値未満となった。 From Table 1, in Examples 1 and 2, of the TCR of the first electrode and the TCR of the second electrode, the TCR of one electrode is set to a positive value, and the TCR of the other electrode is set to a negative value. It was confirmed that the right side of the above equation (1) was larger than the left side of the above equation (1). That is, in Examples 1 and 2, the ratio of the resistance of the first electrode to the temperature change (ρ 2 /t 2 × α 2 ) and the ratio of the resistance of the second electrode to the temperature change (ρ 2 /t 2 × α 2 ) α 2 ), the ratio of the resistance of the first electrode to the temperature change (ρ 2 /t 2 × α 2 ) and the ratio of the resistance of the second electrode to the temperature change (ρ 2 /t 2 ×α 2 ).
一方、比較例1及び2は第1の電極のTCRと第2の電極のTCRの両方を正の値又は負の値とすることで、上記式(1)の左辺と右辺とが同じになったことが確認された。即ち、比較例1及び2は、第1の電極の抵抗の温度変化に対する割合(ρ2/t2×α2)と、第2の電極の抵抗の温度変化に対する割合(ρ2/t2×α2)との和の平均の絶対値が、第1の電極の抵抗の温度変化に対する割合(ρ2/t2×α2)と、第2の電極の抵抗の温度変化に対する割合(ρ2/t2×α2)のどちらかの最小値と同じになった。 On the other hand, in Comparative Examples 1 and 2, both the TCR of the first electrode and the TCR of the second electrode are set to positive values or negative values, so that the left side and right side of the above equation (1) become the same. It was confirmed that That is, in Comparative Examples 1 and 2, the ratio of the resistance of the first electrode to the temperature change (ρ 2 /t 2 × α 2 ) and the ratio of the resistance of the second electrode to the temperature change (ρ 2 /t 2 × α 2 ) α 2 ), the ratio of the resistance of the first electrode to the temperature change (ρ 2 /t 2 ×α 2 ) and the ratio of the resistance of the second electrode to the temperature change (ρ 2 /t 2 × α 2 ).
よって、実施例1及び2は、比較例1及び2と異なり、第1の電極のTCRと第2の電極のTCRとを異なる符号となるようにすることで、第1の電極の温度変化に伴う抵抗変化と第2の電極の温度変化に伴う抵抗変化とを相殺させることができるため、使用される環境の温度変化によって生じるセンサデバイスの電極の電圧降下の変動を抑制できるといえる。 Therefore, in Examples 1 and 2, unlike Comparative Examples 1 and 2, by setting the TCR of the first electrode and the TCR of the second electrode to different signs, changes in the temperature of the first electrode can be suppressed. Since the accompanying resistance change and the resistance change due to the temperature change of the second electrode can be offset, it can be said that fluctuations in the voltage drop of the electrode of the sensor device caused by the temperature change of the environment in which the sensor device is used can be suppressed.
以上の通り、実施形態を説明したが、上記実施形態は、例として提示したものであり、上記実施形態により本発明が限定されるものではない。上記実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の組み合わせ、省略、置き換え、変更等を行うことが可能である。これら実施形態やその変形は、発明の範囲や要旨に含まれると共に、特許請求の範囲に記載された発明とその均等の範囲に含まれる。 Although the embodiments have been described as above, the embodiments are presented as examples, and the present invention is not limited to the embodiments described above. The embodiments described above can be implemented in various other forms, and various combinations, omissions, substitutions, changes, etc. can be made without departing from the gist of the invention. These embodiments and their modifications are included within the scope and gist of the invention, as well as within the scope of the invention described in the claims and its equivalents.
なお、本発明の実施形態の態様は、例えば、以下の通りである。
<1> 支持体上に、機能層と、前記機能層を介して直列に接続された一対の電極とを備え、
前記一対の電極は、正の値及び負の値のうち一方の値の抵抗温度係数を有する第1の電極と、正の値及び負の値のうち他方の値の抵抗温度係数を有する第2の電極とからなるセンサデバイス。
<2> 前記第1の電極と前記第2の電極とが対向するように配置されている<1>に記載のセンサデバイス。
<3> 前記第1の電極は、前記機能層の前記支持体側の面に設けられ、
前記第2の電極は、前記機能層の前記支持体側とは異なる面側に設けられ、
前記支持体、前記第1の電極、前記機能層及び前記第2の電極が、この順に積層されている<1>又は<2>に記載のセンサデバイス。
<4> 前記支持体が、可撓性基材である<1>~<3>の何れか一つに記載のセンサデバイス。
<5> 前記機能層が、圧電体層である<1>~<4>の何れか一つに記載のセンサデバイス。
<6> 前記圧電体層が、無機材料を含む<5>に記載のセンサデバイス。
Note that aspects of the embodiment of the present invention are, for example, as follows.
<1> A functional layer and a pair of electrodes connected in series via the functional layer are provided on a support,
The pair of electrodes includes a first electrode having a temperature coefficient of resistance of one of a positive value and a negative value, and a second electrode having a temperature coefficient of resistance of the other value of a positive value and a negative value. A sensor device consisting of an electrode.
<2> The sensor device according to <1>, wherein the first electrode and the second electrode are arranged to face each other.
<3> The first electrode is provided on the support side surface of the functional layer,
The second electrode is provided on a side of the functional layer that is different from the support side,
The sensor device according to <1> or <2>, wherein the support, the first electrode, the functional layer, and the second electrode are stacked in this order.
<4> The sensor device according to any one of <1> to <3>, wherein the support is a flexible base material.
<5> The sensor device according to any one of <1> to <4>, wherein the functional layer is a piezoelectric layer.
<6> The sensor device according to <5>, wherein the piezoelectric layer contains an inorganic material.
本出願は、2022年3月10日に日本国特許庁に出願した特願2022-037075号に基づく優先権を主張し、前記出願に記載された全ての内容を援用する。 This application claims priority based on Japanese Patent Application No. 2022-037075 filed with the Japan Patent Office on March 10, 2022, and all contents described in said application are incorporated.
1A、1B、1C センサデバイス
10 可撓性基材
20 第1の電極
30 圧電体層
40 第2の電極
50A、50B 機能層
1A, 1B,
Claims (6)
前記一対の電極は、正の値及び負の値のうち一方の値の抵抗温度係数を有する第1の電極と、正の値及び負の値のうち他方の値の抵抗温度係数を有する第2の電極とからなるセンサデバイス。 A functional layer and a pair of electrodes connected in series via the functional layer are provided on the support,
The pair of electrodes includes a first electrode having a temperature coefficient of resistance of one of a positive value and a negative value, and a second electrode having a temperature coefficient of resistance of the other value of a positive value and a negative value. A sensor device consisting of an electrode.
前記第2の電極は、前記機能層の前記支持体側とは異なる面側に設けられ、
前記支持体、前記第1の電極、前記機能層及び前記第2の電極が、この順に積層されている請求項2に記載のセンサデバイス。 the first electrode is provided on the surface of the functional layer on the support side,
The second electrode is provided on a side of the functional layer that is different from the support side,
The sensor device according to claim 2, wherein the support, the first electrode, the functional layer, and the second electrode are stacked in this order.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022-037075 | 2022-03-10 | ||
JP2022037075A JP2025063341A (en) | 2022-03-10 | 2022-03-10 | Sensor Device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023171728A1 true WO2023171728A1 (en) | 2023-09-14 |
Family
ID=87935269
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/008925 WO2023171728A1 (en) | 2022-03-10 | 2023-03-08 | Sensor device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2025063341A (en) |
WO (1) | WO2023171728A1 (en) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002022560A (en) * | 2000-07-06 | 2002-01-23 | Matsushita Electric Ind Co Ltd | Flexible piezoelectric element |
JP2008211095A (en) * | 2007-02-27 | 2008-09-11 | National Institute Of Advanced Industrial & Technology | Piezoelectric element, method for manufacturing the same, and power generation apparatus including the same |
JP2013257174A (en) * | 2012-06-11 | 2013-12-26 | Vacuum Products Kk | Manufacturing method of device having electrode film, and film formation apparatus |
JP2019525526A (en) * | 2016-07-12 | 2019-09-05 | 株式会社村田製作所 | Piezoelectric MEMS resonator with high Q factor |
JP2021139758A (en) * | 2020-03-05 | 2021-09-16 | Tdk株式会社 | Pressure sensor |
-
2022
- 2022-03-10 JP JP2022037075A patent/JP2025063341A/en active Pending
-
2023
- 2023-03-08 WO PCT/JP2023/008925 patent/WO2023171728A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2002022560A (en) * | 2000-07-06 | 2002-01-23 | Matsushita Electric Ind Co Ltd | Flexible piezoelectric element |
JP2008211095A (en) * | 2007-02-27 | 2008-09-11 | National Institute Of Advanced Industrial & Technology | Piezoelectric element, method for manufacturing the same, and power generation apparatus including the same |
JP2013257174A (en) * | 2012-06-11 | 2013-12-26 | Vacuum Products Kk | Manufacturing method of device having electrode film, and film formation apparatus |
JP2019525526A (en) * | 2016-07-12 | 2019-09-05 | 株式会社村田製作所 | Piezoelectric MEMS resonator with high Q factor |
JP2021139758A (en) * | 2020-03-05 | 2021-09-16 | Tdk株式会社 | Pressure sensor |
Also Published As
Publication number | Publication date |
---|---|
JP2025063341A (en) | 2025-04-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR101057571B1 (en) | Conductive film and manufacturing method of the conductive film | |
KR102612647B1 (en) | Piezoelectric device and piezoelectric device manufacturing method | |
KR101511231B1 (en) | Transparent conductive film, manufacturing method thereof, and transparent conductive substrate, light emitting device | |
CN112740429B (en) | Piezoelectric device and method for manufacturing piezoelectric device | |
KR102745511B1 (en) | Piezoelectric device and method for manufacturing piezoelectric device | |
CN111244263A (en) | Piezoelectric thin film element | |
KR20150039373A (en) | Transparent electode and electronic device comprising the same | |
WO2023171728A1 (en) | Sensor device | |
KR101900695B1 (en) | hybrid transparent films heater and manufacturing method of the hybrid transparent films heater | |
WO2022210182A1 (en) | Method for manufacturing piezoelectric film, method for manufacturing piezoelectric element, and method for manufacturing piezoelectric device | |
KR101816972B1 (en) | Transparent electrode with TiO2/Ag/TiO2 multilayered structure and method for preparing the same | |
WO2022163722A1 (en) | Piezoelectric element, and sensor and actuator employing same | |
WO2024070712A1 (en) | Piezoelectric element and electronic device | |
KR20160134373A (en) | Conductive laminate and transparent electrode comprising thereof | |
WO2024070851A1 (en) | Piezoelectric element and electronic device | |
WO2022210438A1 (en) | Method for manufacturing piezoelectric element and method for manufacturing piezoelectric device | |
WO2024070711A1 (en) | Piezoelectric element and electronic device | |
WO2022210563A1 (en) | Piezoelectric film, piezoelectric film manufacturing method, piezoelectric element and piezoelectric device | |
WO2025094878A1 (en) | Piezoelectric laminate, piezoelectric element, and method for manufacturing piezoelectric laminate | |
CN117280428A (en) | Laminate having function as transparent conductive film, method for producing same, and oxide sputtering target for producing same | |
CN117016059A (en) | Piezoelectric film, method for manufacturing piezoelectric film, piezoelectric module, and piezoelectric device | |
KR20170003239A (en) | Conductive laminate, method for manufacturing thereof, transparent electrode comprising thereof and electronic device comprising thereof |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23766904 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 23766904 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |