WO2023171364A1 - 高周波モジュールおよび通信装置 - Google Patents
高周波モジュールおよび通信装置 Download PDFInfo
- Publication number
- WO2023171364A1 WO2023171364A1 PCT/JP2023/006213 JP2023006213W WO2023171364A1 WO 2023171364 A1 WO2023171364 A1 WO 2023171364A1 JP 2023006213 W JP2023006213 W JP 2023006213W WO 2023171364 A1 WO2023171364 A1 WO 2023171364A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- amplifier
- circuit
- terminal
- amplification element
- output
- Prior art date
Links
Images
Classifications
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F1/00—Details of amplifiers with only discharge tubes, only semiconductor devices or only unspecified devices as amplifying elements
- H03F1/02—Modifications of amplifiers to raise the efficiency, e.g. gliding Class A stages, use of an auxiliary oscillation
-
- H—ELECTRICITY
- H03—ELECTRONIC CIRCUITRY
- H03F—AMPLIFIERS
- H03F3/00—Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
- H03F3/20—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers
- H03F3/24—Power amplifiers, e.g. Class B amplifiers, Class C amplifiers of transmitter output stages
Definitions
- the present invention relates to a high frequency module and a communication device.
- Patent Document 1 describes a first amplifier (carrier amplifier) that amplifies a first signal distributed from an input signal and outputs a second signal in a region where the power level of the input signal is a first level or higher; a first transformer into which is input, and a second amplifier (which amplifies a third signal distributed from the input signal in a region above a second level where the power level of the input signal is higher than the first level and outputs a fourth signal).
- a high frequency circuit power amplifier circuit
- is disclosed which includes a peak amplifier) and a second transformer into which a fourth signal is input.
- the back-up voltage is the power difference between the high output region where the first amplifier and the second amplifier are on and the low output region where only the first amplifier is on.
- the off amount and efficiency may not be sufficient.
- the circuit will become larger.
- the present invention has been made to solve the above problems, and an object of the present invention is to provide a high frequency module and a communication device that have improved backoff amount and efficiency while suppressing the increase in size.
- a high frequency module includes a transformer having a first amplification element, a second amplification element, a third amplification element, an input side coil and an output side coil, and a phase shift circuit. and a first bias circuit and a second bias circuit that supply a bias current, the first amplification element, the second amplification element, and the third amplification element are included in the semiconductor integrated circuit component, and the first amplification element, the second amplification element, and the third amplification element are included in the semiconductor integrated circuit component.
- a first input terminal and a second input terminal for the semiconductor integrated circuit component to receive a high frequency signal, and a first output terminal and a second output terminal for outputting the high frequency signal from the semiconductor integrated circuit component are arranged on the surface.
- the input terminal of the first amplification element and the input terminal of the second amplification element are connected to the first input terminal, and the output terminal of the first amplification element and the output terminal of the second amplification element are connected to the first output terminal.
- the input terminal of the third amplifying element is connected to the second input terminal, the output terminal of the third amplifying element is connected to the second output terminal, one end of the input side coil is connected to the first output terminal, and the input terminal of the third amplifying element is connected to the second output terminal.
- phase circuit One end of the phase circuit is connected to the second output terminal, the other end of the phase shift circuit is connected to the other end of the input coil, the first bias circuit is connected to the first amplification element, and the second bias circuit is connected to the first amplifier element. is connected to the second amplification element and the third amplification element.
- a high frequency module includes a first amplification element, a second amplification element, a third amplification element, a phase shift circuit, a first bias circuit and a second bias circuit that supply bias current
- the first amplification element, the second amplification element, and the third amplification element are included in a semiconductor integrated circuit component, and a surface of the semiconductor integrated circuit component has a first input for the semiconductor integrated circuit component to receive a high frequency signal.
- a terminal and a second input terminal, and a first output terminal and a second output terminal for outputting a high frequency signal from the semiconductor integrated circuit component are arranged, and the input terminal of the first amplification element and the input terminal of the second amplification element are arranged.
- the output terminal of the three amplifying elements is connected to the second output terminal, one end of the phase shift circuit is connected to the first output terminal, the other end of the phase shift circuit is connected to the second output terminal, and the first bias circuit is connected to the second output terminal. is connected to the first amplification element, and the second bias circuit is connected to the second amplification element and the third amplification element.
- FIG. 1 is a circuit configuration diagram of a high frequency module and a communication device according to an embodiment.
- FIG. 2A is a circuit state diagram of the amplifier circuit according to the embodiment when a large signal is input.
- FIG. 2B is a circuit state diagram of the amplifier circuit according to the embodiment when a medium signal is input.
- FIG. 2C is a circuit state diagram of the amplifier circuit according to the embodiment when a small signal is input.
- FIG. 3 is a circuit configuration diagram of an amplifier circuit according to Comparative Example 1.
- FIG. 4 is a graph showing the relationship between output power and efficiency in the amplifier circuits according to the embodiment and Comparative Example 1.
- FIG. 5 is a graph showing the relationship between output power and current consumption in the amplifier circuits according to the embodiment and comparative example 1.
- FIG. 6 is a circuit configuration diagram of an amplifier circuit according to Comparative Example 2.
- FIG. 7 is a graph showing the relationship between output power and efficiency in the amplifier circuits according to the embodiment and comparative example 2.
- FIG. 8A is a circuit configuration diagram of an amplifier circuit according to an embodiment.
- FIG. 8B is a circuit configuration diagram of an amplifier circuit according to modification 1.
- FIG. 8C is a circuit configuration diagram of an amplifier circuit according to modification 2.
- FIG. 9 is a circuit configuration diagram of a high frequency module according to modification example 3.
- FIG. 10 is a plan view of the amplifier circuit according to the embodiment.
- the x-axis and y-axis are axes that are orthogonal to each other on a plane parallel to the main surface of the semiconductor integrated circuit component.
- the x-axis is parallel to the first side of the semiconductor integrated circuit component
- the y-axis is perpendicular to the first side of the semiconductor integrated circuit component.
- the z-axis is an axis perpendicular to the main surface of the semiconductor integrated circuit component, and its positive direction indicates an upward direction, and its negative direction indicates a downward direction.
- connection includes not only the case of direct connection with a connection terminal and/or wiring conductor, but also the case of electrical connection via another circuit element.
- Connected between A and B means connected to both A and B between A and B, in addition to being connected in series to the path connecting A and B. , including being connected in parallel (shunt connection) between the path and ground.
- component A is placed on a semiconductor integrated circuit component
- component A is placed on the main surface of the semiconductor integrated circuit component, and that component A is placed on the semiconductor integrated circuit component. Including being placed within a part.
- component A or the terminal is placed on the surface of the semiconductor integrated circuit component means that component A is placed in contact with the surface of the semiconductor integrated circuit component, and also component A or the terminal is placed in contact with the main surface. This includes being laminated onto other parts that are placed in contact with the main surface without having to do so.
- the component A or the terminal is placed on the surface of the semiconductor integrated circuit component may include that the component A is placed in a recess formed on the surface.
- a "signal path" is a transmission line that includes wiring through which a high-frequency signal propagates, electrodes directly connected to the wiring, and terminals directly connected to the wiring or the electrodes. It means that.
- FIG. 1 is a circuit configuration diagram of a high frequency module 1 and a communication device 4 according to an embodiment.
- a communication device 4 includes a high frequency module 1, an antenna 2, and an RF signal processing circuit (RFIC) 3.
- RFIC RF signal processing circuit
- the high frequency module 1 transmits high frequency signals between the antenna 2 and the RFIC 3.
- the detailed circuit configuration of the high frequency module 1 will be described later.
- the antenna 2 is connected to the antenna connection terminal 100 of the high frequency module 1, transmits the high frequency signal output from the high frequency module 1, and also receives a high frequency signal from the outside and outputs it to the high frequency module 1.
- the RFIC 3 is an example of a signal processing circuit that processes high frequency signals. Specifically, the RFIC 3 processes the received signal input via the reception path of the high frequency module 1 by down-converting, etc., and transmits the received signal generated by the signal processing to a baseband signal processing circuit (BBIC, (not shown). Further, the RFIC 3 processes the transmission signal input from the BBIC by up-converting or the like, and outputs the transmission signal generated by the signal processing to the transmission path of the high frequency module 1. Furthermore, the RFIC 3 has a control section that controls the switches, amplification elements, bias circuits, etc. that the high frequency module 1 has. Note that part or all of the function of the control unit of the RFIC 3 may be implemented outside the RFIC 3, for example, in the BBIC or the high frequency module 1.
- BBIC baseband signal processing circuit
- the RFIC 3 also has a function as a control unit that controls the power supply voltage and bias current (or bias voltage) supplied to each amplifier included in the high frequency module 1. Specifically, the RFIC 3 outputs a digital control signal to the high frequency module 1. Each amplifier of the high frequency module 1 is supplied with a power supply voltage and a bias current (or bias voltage) controlled by the digital control signal.
- the RFIC 3 also has a function as a control unit that controls the connection of the switches 61 and 64 included in the high frequency module 1 based on the communication band (frequency band) used.
- the antenna 2 is not an essential component.
- the high frequency module 1 includes an amplifier circuit 10, filters 62 and 63, switches 61 and 64, and an antenna connection terminal 100.
- the amplifier circuit 10 is a Doherty type amplifier circuit that amplifies the band A and band B transmission signals input from the signal input terminal 110.
- the high frequency module 1 includes a Doherty type first amplifier circuit that amplifies the band A high frequency signal and a Doherty type second amplifier circuit that amplifies the band B high frequency signal. It's okay.
- the Doherty amplifier circuit refers to an amplifier circuit that achieves high efficiency by using multiple amplification elements as a carrier amplifier and a peak amplifier.
- a carrier amplifier refers to an amplification element in a Doherty type amplification circuit that operates regardless of whether the power of a high frequency signal (input) is low or high.
- the peak amplifier means, in a Doherty type amplifier circuit, an amplification element that mainly operates when the power of a high frequency signal (input) is high. Therefore, when the input power of the high frequency signal is low, the high frequency signal is mainly amplified by the carrier amplifier, and when the input power of the high frequency signal is high, the high frequency signal is amplified and combined by the carrier amplifier and the peak amplifier. Due to this operation, in the Doherty type amplifier circuit, the load impedance seen from the carrier amplifier increases at low output power, and the efficiency at low output power improves.
- the output terminal of the circuit in which the carrier amplifier 11 and the peak amplifier 12 are connected in parallel receives the high-frequency signal.
- a phase shift circuit for shifting the phase of 1/4 wavelength is not connected.
- a phase shift circuit that shifts the phase of the high frequency signal by 1/4 wavelength is connected to the output terminal of the peak amplifier 20.
- the output terminal of the circuit in which the carrier amplifier 11 and the peak amplifier 12 are connected in parallel has the following characteristics: A phase shift circuit is connected to shift the phase of the high frequency signal by 1/4 wavelength.
- the output terminal of the peak amplifier 20 is not connected to a phase shift circuit that shifts the phase of the high frequency signal by 1/4 wavelength.
- each of band A and band B is defined by a standardization organization (for example, 3GPP (registered trademark)) for a communication system constructed using radio access technology (RAT). 3rd Generation Partnership Project), IEEE (Institute of Electrical and Electronics Engineers), etc.).
- the communication system includes, for example, a 4G (4th Generation)-LTE (Long Term Evolution) system, a 5G (5th Generation)-NR (New Radio) system, and a WLAN (Wireless Local Area Network) system. It can be used, but is not limited to these.
- the filter 62 is connected between the switches 61 and 64, and passes the transmission signal in the transmission band A of the transmission signals amplified by the amplifier circuit 10. Further, the filter 63 is connected between the switches 61 and 64, and allows the transmission signal in the transmission band of band B to pass among the transmission signals amplified by the amplifier circuit 10.
- each of the filters 62 and 63 may constitute a duplexer together with a reception filter, or may be one filter that transmits in a time division duplex (TDD) system.
- TDD time division duplex
- a switch for switching between transmission and reception is arranged at least one of the preceding stage and the succeeding stage of the one filter.
- the switch 61 has a common terminal, a first selection terminal, and a second selection terminal.
- the common terminal is connected to the amplifier circuit 10.
- the first selection terminal is connected to filter 62 and the second selection terminal is connected to filter 63.
- the switch 61 switches the connection between the amplifier circuit 10 and the filter 62 and the connection between the amplifier circuit 10 and the filter 63.
- the switch 64 is an example of an antenna switch, and is connected to the antenna connection terminal 100 to switch between connection and disconnection between the antenna connection terminal 100 and the filter 62, and between connection and disconnection between the antenna connection terminal 100 and the filter 63. Switch.
- the high frequency module 1 may include a receiving circuit for transmitting the received signal received from the antenna 2 to the RFIC 3.
- the high frequency module 1 includes a low noise amplifier and a receiving filter.
- an impedance matching circuit may be arranged between the amplifier circuit 10 and the antenna connection terminal 100.
- the high frequency module 1 can transmit or receive a high frequency signal of either band A or band B. Furthermore, the high frequency module 1 is also capable of simultaneously transmitting, simultaneously receiving, and/or transmitting/receiving band A and band B high frequency signals.
- the high frequency module 1 only needs to have at least the amplifier circuit 10 among the circuit configurations shown in FIG.
- the amplifier circuit 10 includes a signal input terminal 110, a signal output terminal 120, a carrier amplifier 11, peak amplifiers 12 and 20, a phase shift line 40, a phase shift circuit 70, and a transformer 30. , bias circuits 51 and 52.
- the signal input terminal 110 is connected to the RFIC 3.
- Signal output terminal 120 is connected to antenna connection terminal 100 via switches 61 and 64 and filters 62 and 63.
- each of the signal input terminal 110, the signal output terminal 120, and the antenna connection terminal 100 may be a metal conductor such as a metal electrode and a metal bump, or may be a single point on a metal wiring.
- the carrier amplifier 11 is an example of a first amplification element, and amplifies the band A or band B high frequency signal input to the carrier amplifier 11.
- the carrier amplifier 11 is, for example, a class A (or class AB) amplifier circuit that can amplify all power levels of signals input to the carrier amplifier 11, and has high efficiency especially in the low output region and medium output region. Amplification operation is possible.
- the peak amplifier 12 is an example of a second amplification element, and amplifies the band A or band B high frequency signal input to the peak amplifier 12.
- the peak amplifier 12 is, for example, a class C amplifier circuit that can perform amplification operation in a region where the power level of the signal input to the peak amplifier 12 is high.
- a second bias current smaller than the first bias current applied to the amplification transistor of the carrier amplifier 11 may be applied to the amplification transistor of the peak amplifier 12. According to this, the higher the power level of the signal input to the peak amplifier 12, the lower the output impedance. Thereby, the peak amplifier 12 can perform amplification operation with low distortion in a high output region.
- the peak amplifier 20 is an example of a third amplification element, and amplifies the band A or band B high frequency signal input to the peak amplifier 20.
- the peak amplifier 20 is, for example, a class C amplifier circuit that can perform amplification operation in a region where the power level of the signal input to the peak amplifier 20 is high.
- a third bias current smaller than the first bias current applied to the amplification transistor of the carrier amplifier 11 may be applied to the amplification transistor of the peak amplifier 20. According to this, the higher the power level of the signal input to the peak amplifier 20, the lower the output impedance. Thereby, the peak amplifier 20 can perform amplification operation with low distortion in a high output region.
- the carrier amplifier 11 and the peak amplifiers 12 and 20 have amplification transistors.
- the amplification transistor is, for example, a bipolar transistor such as a heterojunction bipolar transistor (HBT), or a field effect transistor such as a metal-oxide-semiconductor field effect transistor (MOSFET).
- HBT heterojunction bipolar transistor
- MOSFET metal-oxide-semiconductor field effect transistor
- the transformer 30 has an input side coil 301 and an output side coil 302.
- the phase shift line 40 is an example of a phase shift circuit, and is, for example, a 1/4 wavelength transmission line.
- the phase shift line 40 delays the phase of a high frequency signal input from one end by 1/4 wavelength and outputs the delayed signal from the other end.
- the phase shift line 40 does not need to have the form of a phase shift line, and may be a circuit configured with a chip-shaped inductor and a capacitor, for example. More specifically, the phase shift line 40 (phase shift circuit) is an LC circuit having two inductors connected in series with each other and a capacitor connected between the connection point of the two inductors and the ground. It's okay.
- phase shift line 40 (phase shift circuit) includes two capacitors connected in series, an inductor connected between one end of one of the two capacitors and the ground, and an inductor connected between one end of the two capacitors and the ground. It may be an LC circuit having an inductor connected between the other end of the capacitor and ground.
- the bias circuit 51 is an example of a first bias circuit, is connected to the carrier amplifier 11, and supplies a first bias current to the carrier amplifier 11.
- the bias circuit 52 is an example of a second bias circuit, is connected to the peak amplifiers 12 and 20, supplies the peak amplifier 12 with a second bias current different from the first bias current, and supplies the peak amplifier 20 with the first bias current. A third bias current different from the current is supplied.
- bias current is supplied from the bias circuits 51 and 52 to each amplifier, but a bias voltage is supplied from the bias circuits 51 and 52, and the bias circuits 51 and 52 and each amplifier
- the bias voltage may be supplied as a bias current by a resistance element placed in a path connecting the two.
- the first bias current that the bias circuit 51 supplies to the carrier amplifier 11 is larger than the second bias current that the bias circuit 52 supplies to the peak amplifier 12, and the third bias current that the bias circuit 52 supplies to the peak amplifier 20. larger than
- the phase shift circuit 70 distributes the high frequency signal output from the RFIC 3 and outputs each of the distributed signals to the carrier amplifier 11 and the peak amplifiers 12 and 20, respectively. At this time, the phase shift circuit 70 adjusts the phase of each distributed signal. For example, the phase shift circuit 70 shifts the signal output to the peak amplifier 20 by ⁇ 90 degrees (delays the signal output by 90 degrees) with respect to the signals output to the carrier amplifier 11 and the peak amplifier 12.
- the phase shift circuit 70 may be a one-input, two-output type transformer, or may be an LC circuit formed of at least one of an inductor and a capacitor.
- phase shift circuit 70 may be individually arranged on the input end side of each of the carrier amplifier 11 and the peak amplifiers 12 and 20. Further, a preamplifier may be connected to the input end side of the carrier amplifier 11 and the peak amplifiers 12 and 20. Further, the amplifier circuit 10 does not need to include the phase shift circuit 70. In this case, the first high frequency signal may be output from the RFIC 3 to the carrier amplifier 11 and the peak amplifier 12, and the second high frequency signal may be output from the RFIC 3 to the peak amplifier 20.
- the band A signal output from the carrier amplifier 11 and the peak amplifier 12 and the band A signal output from the peak amplifier 20 are voltage-synthesized, and the voltage-synthesized signal is An output signal is output to switch 61.
- the band B signal output from the carrier amplifier 11 and the peak amplifier 12 and the band B signal output from the peak amplifier 20 are voltage-synthesized, and the voltage-synthesized output signal is output to the switch 61.
- the carrier amplifier 11 and the peak amplifiers 12 and 20 are included in a semiconductor IC (semiconductor integrated circuit component) 80.
- the semiconductor IC 80 is configured using, for example, CMOS (Complementary Metal Oxide Semiconductor), and specifically may be manufactured by an SOI (Silicon on Insulator) process. Further, each of the semiconductor ICs 80 may be made of at least one of GaAs, SiGe, and GaN. Note that the semiconductor material of the semiconductor IC 80 is not limited to the above-mentioned materials.
- an input terminal 110A (first input terminal) and an input terminal 110B (second input terminal) for the semiconductor IC 80 to receive a high frequency signal from an external circuit
- an input terminal 110B (second input terminal) for the semiconductor IC 80 to output a high frequency signal.
- An output terminal 111 (first output terminal) and an output terminal 112 (second output terminal) are arranged.
- the phase shift circuit 70 may be included in the semiconductor IC 80.
- a signal input terminal 110 is arranged on the surface of the semiconductor IC 80 as a first input terminal and a second input terminal instead of input terminals 110A and 110B.
- the input end of the carrier amplifier 11 and the input end of the peak amplifier 12 are connected to the input terminal 110A, and the output end of the carrier amplifier 11 and the output end of the peak amplifier 12 are connected to the output terminal 111. That is, the carrier amplifier 11 and the peak amplifier 12 are connected in parallel. Further, the input end of the peak amplifier 20 is connected to the input terminal 110B, and the output end of the peak amplifier 20 is connected to the output terminal 112. Further, one end of the input side coil 301 is connected to the output terminal 111, one end of the phase shift line 40 is connected to the output terminal 112, and the other end of the phase shift line 40 is connected to the other end of the input side coil 301. . One end of the output side coil 302 is connected to the signal output terminal 120, and the other end of the output side coil 302 is connected to ground.
- the high frequency module 1 is a high frequency circuit having a Doherty type amplifier, and includes a carrier amplifier 11 and a peak amplifier 12, and a peak amplifier 20, which are connected in parallel.
- the carrier amplifier 11 and the peak amplifier 12 amplify the second high frequency signal to which the first high frequency signal has been distributed and output the first amplified signal, and the peak amplifier 20 amplifies the third high frequency signal to which the first high frequency signal has been distributed.
- the high frequency module 1 amplifies and outputs a second amplified signal, and further includes a combining circuit that combines the first amplified signal and the second amplified signal and outputs a combined signal.
- the above composite circuit includes a transformer 30 and a phase shift line 40.
- FIG. 2A is a circuit state diagram of the amplifier circuit 10 according to the embodiment when a large signal is input.
- FIG. 2B is a circuit state diagram of the amplifier circuit 10 according to the embodiment when a medium signal is input.
- FIG. 2C is a circuit state diagram of the amplifier circuit 10 according to the embodiment when a small signal is input.
- the output impedance of the carrier amplifier 11 and the output impedance of the peak amplifier 12 are , each expressed as R L /m 2 .
- the output impedance at the connection point on the output side of the carrier amplifier 11 and the peak amplifier 12 is expressed as R L /2m 2 .
- the output impedance of the peak amplifier 20 is expressed as R L /2m 2 . It is assumed that the transformers 30 each transform at a ratio of 1:m. Further, it is assumed that the impedance of the load connected to the signal output terminal 120 is RL .
- the output impedance of the carrier amplifier 11 when the carrier amplifier 11 and the peak amplifier 12 operate (ON) and the peak amplifier 20 does not operate (OFF) (during medium signal input), the output impedance of the carrier amplifier 11,
- the output impedance of the peak amplifier 12 is expressed as 2R L /m 2 .
- the output impedance at the connection point on the output side of the carrier amplifier 11 and the peak amplifier 12 is expressed as R L /m 2 . Note that at this time, the output impedance of the peak amplifier 20 is in an open state.
- the output impedance of the carrier amplifier 11 is R It is expressed as L / m2 . Note that at this time, each output impedance of the peak amplifiers 12 and 20 is in an open state.
- the output impedance at the connection point on the output side of the carrier amplifier 11 and the peak amplifier 12 is twice as large as when a large signal is input. That is, when a medium signal is input, the peak amplifier 20 is turned off, and the output impedance of the carrier amplifier 11 and the peak amplifier 12 becomes high, so that the amplifier circuit 10 can operate with high efficiency. Further, when a small signal is input, the output impedance at the connection point on the output side of the carrier amplifier 11 and the peak amplifier 12 is twice as large as when a large signal is input.
- the peak amplifiers 12 and 20 are turned off, and the output impedance at the connection point between the carrier amplifier 11 and the peak amplifier 12 on the output side becomes high, so that the amplifier circuit 10 can operate with high efficiency. It becomes possible. Furthermore, when a large signal is input, a large power signal can be output by operating the carrier amplifier 11 and peak amplifiers 12 and 20, and the output impedance at the connection point on the output side of the carrier amplifier 11 and peak amplifier 12 Since the output impedance of the peak amplifier 20 is low, signal distortion can be suppressed.
- the high frequency module 1 by having the three amplification elements of the carrier amplifier 11 and the peak amplifiers 12 and 20, from the high output region where the carrier amplifier 11 and the peak amplifiers 12 and 20 are in the on state, the amount of backoff, which is the power difference up to the low output region where only the carrier amplifier 11 is in the on state, can be secured stepwise and large. Further, in particular, the output impedance of the carrier amplifier 11 and the peak amplifier 12 in the middle power region can be increased, so that the efficiency in the middle power region can be increased. Furthermore, since no phase shift circuit is connected to the output end of the peak amplifier 12, the high frequency module 1 can be made smaller.
- the high output region is a region in which carrier amplifier 11, peak amplifiers 12, and 20 are in an on state
- the medium power region is a region in which carrier amplifier 11 and peak amplifier 12 are in an on state
- peak amplifier 20 is in an on state
- the low output region is a region in which carrier amplifier 11 is in an on state and peak amplifiers 12 and 20 are in an off state.
- FIG. 3 is a circuit configuration diagram of an amplifier circuit 510 according to Comparative Example 1.
- the amplifier circuit 510 according to this comparative example is a conventional two-way Doherty type amplifier circuit that amplifies and transmits a band A high frequency signal and a band B high frequency signal.
- the amplifier circuit 510 includes a carrier amplifier 511, a peak amplifier 20, a phase shift line 40, a transformer 30, and a phase shift circuit 70.
- the amplifier circuit 510 according to this comparative example differs from the amplifier circuit 10 according to the embodiment in that a carrier amplifier 511 is added instead of the carrier amplifier 11 and the peak amplifier 12.
- the amplifier circuit 510 according to this comparative example will be explained, focusing on the configuration different from the amplifier circuit 10 according to the embodiment.
- the carrier amplifier 511 amplifies the band A or band B high frequency signal input to the carrier amplifier 511.
- the carrier amplifier 511 is a class A (or class AB) amplifier circuit that can amplify all power levels of the signal input to the carrier amplifier 511, and is particularly efficient in the low output region and medium output region. Amplification operation is possible.
- the input end of the carrier amplifier 511 is connected to the phase shift circuit 70, and the output end of the carrier amplifier 511 is connected to one end of the input side coil 301.
- the input end of the peak amplifier 20 is connected to the phase shift circuit 70, and the output end of the peak amplifier 20 is connected to one end of the phase shift line 40.
- the other end of the phase shift line 40 is connected to the other end of the input side coil 301.
- One end of the output side coil 302 is connected to the signal output terminal 120, and the other end of the output side coil 302 is connected to ground.
- the output impedance of the carrier amplifier 511 is twice as large when a small signal is input as compared to when a large signal is input. That is, when a small signal is input, the peak amplifier 20 is turned off, and the output impedance of the carrier amplifier 511 becomes high, so that the amplifier circuit 510 can operate with high efficiency.
- a large signal when a large signal is input, a large power signal can be output by operating the carrier amplifier 511 and the peak amplifier 20, and since the output impedance of the peak amplifier 20 is low, signal distortion can be suppressed. becomes.
- FIG. 4 is a graph showing the relationship between output power and efficiency in the amplifier circuits according to the embodiment and Comparative Example 1.
- the horizontal axis represents the power level of the signal output from the amplifier circuit 10 or 510
- the vertical axis represents the efficiency (power added efficiency) of each amplifier circuit.
- the amount of backoff which is the power difference up to the low output region that is the state, is 9 dB. That is, in the amplifier circuits according to the embodiment and comparative example 1, when the total size of the amplifiers connected to one end of the input side coil 301 and the size of the amplifiers connected to the other end of the input side coil 301 are made equal, The amplifier circuit 10 according to the embodiment can secure a larger amount of backoff.
- the amplifier circuit 10 there is a two-way mode between the mode in which the carrier amplifier 11 and the peak amplifier 12 are in the on state, and the mode in which the carrier amplifier 11 and the peak amplifiers 12 and 20 are in the on state. It functions as a type Doherty amplifier circuit and can secure a backoff amount of 6 dB. In addition to this, a backoff amount of 3 dB can be secured between a mode in which carrier amplifier 11 and peak amplifier 12 are in an on state and a mode in which only carrier amplifier 11 is in an on state.
- FIG. 5 is a graph showing the relationship between output power and current consumption in the amplifier circuits according to the embodiment and comparative example 1.
- the horizontal axis represents the power level of the signal output from the amplifier circuit 10 or 510
- the vertical axis represents the idle current flowing through the carrier amplifiers 11 and 511.
- the size ratio of the carrier amplifier 511 to all amplifiers is 50%.
- the amplifier circuit 10 if the sum of the sizes of the amplification transistors that make up the carrier amplifier 11 and the size of the amplification transistors that make up the peak amplifier 12 is equal to the size of the amplification transistors that make up the peak amplifier 20, all the amplifiers The size ratio of the carrier amplifier 11 to this is 25%. According to this difference in size ratio, the amplifier circuit 10 according to the embodiment can significantly reduce the idle current of the carrier amplifier 11 compared to the amplifier circuit 510 according to Comparative Example 1, so that the efficiency can be improved. It becomes possible.
- modulation methods with a large PAPR Peak to Average Power Ratio
- CP256QAM Peak to Average Power Ratio
- the idle current of the carrier amplifier 11 can be reduced, Efficient operation is possible.
- the amount of backoff is large, it is possible to operate with low distortion.
- the amount of backoff which is the power difference between the regions, can be 9 dB.
- the amplifier circuit 10 according to the embodiment has improved efficiency in the medium output region. This is because, as shown in FIG. 2B, the output impedance of the carrier amplifier 11 and the output impedance of the peak amplifier 12 in the medium power region can be increased to 2R L /m 2 .
- FIG. 6 is a circuit configuration diagram of an amplifier circuit 520 according to Comparative Example 2.
- the amplifier circuit 520 according to this comparative example is a conventional three-way Doherty type amplifier circuit that amplifies and transmits a band A high frequency signal and a band B high frequency signal.
- the amplifier circuit 520 includes a carrier amplifier 511, peak amplifiers 512 and 513, phase shift lines 541, 542, 543, 544, and 545, and a phase shift circuit 570.
- the amplifier circuit 520 according to the present comparative example is a conventional current combining type Doherty type amplifier circuit, as compared to the amplifier circuit 10 according to the embodiment.
- the amplifier circuit 520 according to this comparative example will be explained, focusing on the configuration different from the amplifier circuit 10 according to the embodiment.
- the carrier amplifier 511 amplifies the band A or band B high frequency signal input to the carrier amplifier 511.
- the carrier amplifier 511 is a class A (or class AB) amplifier circuit that can amplify all power levels of the signal input to the carrier amplifier 511, and is particularly efficient in the low output region and medium output region. Amplification operation is possible.
- the peak amplifier 512 amplifies the band A or band B high frequency signal input to the peak amplifier 512.
- the peak amplifier 512 is, for example, a class C amplifier circuit that can perform amplification operation in a region where the power level of the signal input to the peak amplifier 512 is high.
- the peak amplifier 513 amplifies the band A or band B high frequency signal input to the peak amplifier 513.
- the peak amplifier 513 is, for example, a class C amplifier circuit that can perform amplification operation in a region where the power level of the signal input to the peak amplifier 513 is high.
- the phase shift lines 541 to 545 are 1/4 wavelength transmission lines.
- the phase shift circuit 570 distributes the high frequency signal output from the RFIC 3 and outputs each of the distributed signals to the carrier amplifier 511 and the peak amplifiers 512 and 513, respectively. At this time, the phase shift circuit 570 adjusts the phase of each distributed signal.
- the input end of the carrier amplifier 511 is connected to the phase shift circuit 70, and the output end of the carrier amplifier 511 is connected to one end of the phase shift line 541.
- One end of the phase shift line 542 is connected to the phase shift circuit 70, and the other end of the phase shift line 542 is connected to the input end of the peak amplifier 512.
- the other end of the phase shift line 541 and the output end of the peak amplifier 512 are connected to one end of the phase shift line 544.
- One end of the phase shift line 543 is connected to the phase shift circuit 70, and the other end of the phase shift line 543 is connected to the input end of the peak amplifier 513.
- the other end of phase shift line 544 and the output end of peak amplifier 513 are connected to one end of phase shift line 545.
- the other end of the phase shift line 545 is connected to the signal output terminal 120.
- the output impedance of the carrier amplifier 511 is three times as large when a small signal is input as compared to when a large signal is input. That is, when a small signal is input, peak amplifiers 512 and 513 are turned off, and the output impedance of carrier amplifier 511 becomes high, allowing amplifier circuit 520 to operate with high efficiency. Furthermore, when a medium signal is input as compared to when a large signal is input, the output impedance of the carrier amplifier 511 is doubled, and the output impedance of the peak amplifier 512 is the same as the output impedance of the carrier amplifier 511. Furthermore, when a large signal is input, carrier amplifier 511 and peak amplifiers 512 and 513 operate to output a large power signal, and the low output impedance of peak amplifiers 512 and 513 suppresses signal distortion. It becomes possible to do so.
- the amplifier circuit 520 according to Comparative Example 2 by having the three amplifying elements of the carrier amplifier 511 and the peak amplifiers 512 and 513, from the high output region where the carrier amplifier 511 and the peak amplifiers 512 and 513 are in the on state, the amount of backoff, which is the power difference up to the low output region where only the carrier amplifier 511 is in the on state, can be secured stepwise and large.
- FIG. 7 is a graph showing the relationship between output power and efficiency in the amplifier circuits according to the embodiment and comparative example 2.
- the horizontal axis represents the power level of the signal output from the amplifier circuit 10 or 520
- the vertical axis represents the efficiency (power added efficiency) of each amplifier circuit.
- the amount of backoff, which is the power difference up to the low output region that is the state, is 9 dB.
- the sum of the sizes of the amplification transistors forming the carrier amplifier 511, the size of the amplification transistors forming the peak amplifier 512, and the size of the amplification transistors forming the peak amplifier 513 in the amplifier circuit 520 according to Comparative Example 2 are equal.
- the amplifier circuit 10 according to the embodiment has the same total size of amplifiers as the amplifier circuit 520 according to the second comparative example, but the output ends of the carrier amplifier 11 and the peak amplifier 12 are phase-shifted.
- the output impedance of the carrier amplifier 11 in the low output region is less than three times the output impedance of the carrier amplifier 11 in the high output region, the point at which the peak amplifier 12 changes from the on state to the off state (backoff The efficiency at the output power point where the amount is 9 dB) is lower than that of the amplifier circuit 520 according to Comparative Example 2.
- the smaller the output power becomes from the point where the peak amplifier 12 changes from the on state to the off state (low output region) the higher the efficiency becomes compared to the amplifier circuit 520 according to the second comparative example. This is because the size ratio of the carrier amplifier 11 to the entire amplifier of the amplifier circuit 10 according to the embodiment is smaller than the size ratio of the carrier amplifier 511 to the entire amplifier of the amplifier circuit 520 according to the second comparative example. .
- the amplifier circuit 10 according to the present embodiment can amplify three amplifier elements in stages without increasing the size of the amplifier elements, compared to the two-way Doherty type amplifier circuit according to Comparative Example 1. This makes it possible to secure a large amount of backoff and increase efficiency in the medium output region. Moreover, compared to the 3-way Doherty type amplifier circuit according to Comparative Example 2, the size can be reduced while increasing the efficiency in the low output region.
- the size of the amplification transistor constituting each amplifier is defined as the area of the formation region of the amplification transistor included in the amplifier when the main surface of the semiconductor IC 80 on which the amplifier is arranged is viewed from above (see through). .
- the size of the amplification transistor constituting each amplifier depends on the number of stages, cells, or fingers of transistor elements constituting the amplification transistor. Therefore, when the size of the amplification transistor is large, it means that at least one of the following is true: the number of stages of transistor elements is large, and the number of cells or fingers is large.
- the sizes of the amplification transistors that make up the two amplifiers are equal means that the sizes of the amplification transistors that make up the two amplifiers are exactly the same, and also that the sizes of the amplification transistors that make up the two amplifiers are the same. It also includes that the sizes of the two are substantially equal.
- the size of the amplification transistor constituting the amplifier is expressed in area (a measure of the range of a two-dimensional area).
- the fact that the sizes of the amplifying transistors constituting the two amplifiers are substantially equal means that the difference in size between the amplifying transistors constituting the two amplifiers with respect to the larger size of the amplifying transistors constituting the two amplifiers. This means that the ratio is 10% or less.
- the area of the formation region of the amplification transistor is measured by recognizing the N-type and P-type semiconductor regions in an image of the amplification transistor taken by irradiating X-rays from the normal direction of the main surface of the semiconductor IC 80. can do.
- each amplification transistor constituting each amplifier may have a configuration in which a plurality of transistor elements are connected in parallel.
- the number of amplification transistors is determined by the number of collector terminals. In other words, the number of amplification transistors and the number of collector terminals correspond on a one-to-one basis.
- 2-way and 3-way are defined, for example, by the number of output terminals provided on the surface of the semiconductor integrated circuit component that includes each amplifier.
- the output terminal is a terminal to which the output terminal of each amplifier is connected.
- the number of output terminals provided on the surface of the semiconductor integrated circuit component is two, it is a 2-way Doherty amplifier circuit, and if the number of output terminals provided on the surface of the semiconductor integrated circuit component is three, it is a 2-way Doherty amplifier circuit. In this case, it is a 3-way Doherty amplifier circuit.
- FIG. 8A is a circuit configuration diagram of the amplifier circuit 10 according to the embodiment. In the figure, an example of the circuit configuration of bias circuits 51 and 52 included in the amplifier circuit 10 is shown.
- Each of the amplification transistors forming the carrier amplifier 11 and the peak amplifiers 12 and 20 is, for example, a common emitter bipolar transistor.
- the bias circuit 51 has a current input terminal 113, a resistance element 551, a capacitor 552, and transistors 553, 554, and 555.
- the current input terminal 113 is an example of a first current input terminal, and is a terminal through which the bias circuit 51 receives the first constant current.
- a first constant current is input to the current input terminal 113 from an external constant current source circuit.
- Transistors 553 and 554 are each diode-connected, and the collector of transistor 553 is connected to current input terminal 113 via resistance element 551.
- the emitter of transistor 553 is connected to the collector of transistor 554, and the emitter of transistor 554 is connected to ground.
- Transistors 553 and 555 have their bases connected to each other to form a current mirror circuit.
- Capacitor 552 is connected between the bases of transistors 553 and 555 and ground. With the above configuration, the bias current Ib1 (first bias current) is supplied from the emitter of the transistor 555 to the base terminal of the amplification transistor of the carrier amplifier 11.
- the bias circuit 52 has a current input terminal 114, a resistance element 561, a capacitor 562, and transistors 563, 564, and 565.
- the current input terminal 114 is an example of a second current input terminal, and is a terminal through which the bias circuit 52 receives the second constant current.
- a second constant current is input to the current input terminal 114 from an external constant current source circuit.
- the connection configuration of each circuit element is the same as that of the bias circuit 51, so a description thereof will be omitted.
- a bias current Ib2 (second bias current) is supplied from the emitter of the transistor 565 to the base terminal of the amplification transistor of the peak amplifier 12. Further, a bias current Ib3 (third bias current) is supplied from the emitter of the transistor 565 to the base terminal of the amplification transistor of the peak amplifier 20.
- bias current Ib1 is larger than bias current Ib2 and larger than bias current Ib3. According to this, it becomes possible to operate the carrier amplifier 11 in class C operation and to operate the peak amplifiers 12 and 20 in class A or AB class. Furthermore, the three amplifiers are classified into the carrier amplifier 11 and the peak amplifiers 12 and 20 according to the magnitude of the bias current, and the bias current is supplied to these by two bias circuits, so the amplifier circuit 10 is Can be made smaller.
- FIG. 8B is a circuit configuration diagram of the amplifier circuit 10A according to Modification 1.
- the figure shows an example of the circuit configuration of bias circuits 51 and 52A included in the amplifier circuit 10A.
- the amplifier circuit 10A includes a signal input terminal 110 (not shown), a signal output terminal 120, a carrier amplifier 11, peak amplifiers 12 and 20, a phase shift line 40, a transformer 30, bias circuits 51 and 52A, Equipped with.
- the amplifier circuit 10A according to this modification is different from the amplifier circuit 10 according to the embodiment in the configuration of the bias circuit 52A and the configuration for supplying bias current from the bias circuit 52A.
- the amplifier circuit 10A according to this modification will be described, focusing on the configuration different from the amplifier circuit 10 according to the embodiment.
- the output end of the transistor 555 of the bias circuit 51 is connected to the carrier amplifier 11 via a wiring 91.
- the bias circuit 52A has a current input terminal 114, a resistance element 561, a capacitor 562, and transistors 563, 564, 565, and 566.
- the current input terminal 114 is an example of a second current input terminal, and is a terminal through which the bias circuit 52A receives the second constant current.
- Transistors 563 and 564 are each diode-connected, and the collector of transistor 563 is connected to current input terminal 114 via resistance element 561.
- the emitter of transistor 563 is connected to the collector of transistor 564, and the emitter of transistor 564 is connected to ground.
- Transistors 563 and 565 have their bases connected to each other to form a current mirror circuit. Further, the bases of transistors 563 and 566 are connected to each other to form a current mirror circuit.
- Capacitor 562 is connected between the bases of transistors 563, 565 and 566 and ground.
- the output end of the transistor 566 (first transistor) is connected to the peak amplifier 12 via a wiring 92 (first wiring), and the output end of the transistor 565 (second transistor) is connected to the peak amplifier 12 via a wiring 93 (second wiring). and is connected to the peak amplifier 20.
- the bias current Ib3 (third bias current) is supplied from the emitter of the transistor 565 to the base terminal of the amplification transistor of the peak amplifier 20.
- a bias current Ib2 (second bias current) is supplied from the emitter of the transistor 566 to the base terminal of the amplification transistor of the peak amplifier 12.
- bias current Ib1 is larger than bias current Ib2 and larger than bias current Ib3. According to this, it becomes possible to operate the carrier amplifier 11 in class C operation and to operate the peak amplifiers 12 and 20 in class A or AB class. In addition, the three amplifiers are classified into carrier amplifier 11 and peak amplifiers 12 and 20 according to the magnitude of the bias current, and since the bias current is supplied to these by two bias circuits, the amplifier circuit 10A is Can be made smaller. Furthermore, since bias currents Ib2 and Ib3 are supplied from different transistors 566 and 565, respectively, it is possible to make bias current Ib2 and bias current Ib3 different in magnitude. In addition, since the bias currents Ib2 and Ib3 are supplied to the peak amplifiers 12 and 20 through different wiring lines 92 and 93, respectively, it is possible to suppress mutual interference between the bias currents Ib2 and Ib3 from becoming a noise source.
- FIG. 8C is a circuit configuration diagram of an amplifier circuit 10B according to Modification 2.
- the figure shows an example of the circuit configuration of bias circuits 51 and 52 included in the amplifier circuit 10B.
- the amplifier circuit 10B includes a signal input terminal 110 (not shown), a signal output terminal 120, a carrier amplifier 11, peak amplifiers 12 and 20, a phase shift line 40, a transformer 30, bias circuits 51 and 52, A switch 65 is provided.
- the amplifier circuit 10B according to this modification differs from the amplifier circuit 10 according to the embodiment in that a switch 65 for switching the source of the bias current supplied to the peak amplifier 12 is added.
- the amplifier circuit 10B according to the present modification will be described, focusing on the configuration different from the amplifier circuit 10 according to the embodiment.
- the switch 65 has a terminal 65a (first terminal), a terminal 65b (second terminal), and a terminal 65c (third terminal), and switches the connection between the terminal 65a and the terminal 65b and the connection between the terminal 65a and the terminal 65c.
- the terminal 65a is connected to the base terminal of the amplification transistor constituting the peak amplifier 12
- the terminal 65b is connected to the transistor 555 of the bias circuit 51
- the terminal 65c is connected to the transistor 565 of the bias circuit 52.
- the bias current Ib1 (first bias current) output from the transistor 555 of the bias circuit 51 is supplied to the base terminal of the amplification transistor of the carrier amplifier 11 via the resistor.
- the bias current Ib22 (second bias current) output from the transistor 565 of the bias circuit 52 is supplied to the base terminal of the amplification transistor of the peak amplifier 12 via the switch 65 and the resistor, or Bias current Ib21 output from 555 is supplied to the base terminal of the amplification transistor of peak amplifier 12 via switch 65 and resistor.
- the bias current Ib3 (third bias current) output from the transistor 565 of the bias circuit 52 is supplied to the base terminal of the amplification transistor of the peak amplifier 20 via a resistor.
- bias current Ib1 is larger than bias current Ib22 and larger than bias current Ib3.
- bias current Ib21 is larger than bias current Ib22 and larger than bias current Ib3. According to this, it becomes possible to select and match the amplification characteristic of the peak amplifier 12 to either the amplification characteristic of the carrier amplifier 11 or the amplification characteristic of the peak amplifier 20. Therefore, the amount of backoff can be adjusted.
- the switch 65 may be included in the semiconductor IC 80. According to this, the amplifier circuit 10B can be miniaturized.
- FIG. 9 is a circuit configuration diagram of a high frequency module 1C according to modification 3.
- the high frequency module 1C includes an amplifier circuit 10C, filters 62 and 63, switches 61 and 64, and an antenna connection terminal 100.
- a high frequency module 1C according to this modification differs from the high frequency module 1 according to the embodiment in the configuration of an amplifier circuit 10C.
- the configuration of the amplifier circuit 10C which has a different configuration from the high frequency module 1 according to the embodiment, will be explained.
- the amplifier circuit 10C includes a signal input terminal 110, a signal output terminal 120, a carrier amplifier 11, peak amplifiers 12 and 20, a phase shift line 41, a phase shift circuit 70, and a bias circuit 51. and 52. While the amplifier circuit 10 according to the embodiment is a voltage combining type Doherty amplifier circuit, the amplifier circuit 10C according to this modification is a current combining type Doherty amplifier circuit.
- the amplifier circuit 10C according to the present modification the explanation of the same configuration as the amplifier circuit 10 according to the embodiment will be omitted, and the explanation will be focused on the different configuration.
- the phase shift line 41 is an example of a phase shift circuit, and is, for example, a 1/4 wavelength transmission line.
- the phase shift line 41 delays the phase of a high frequency signal input from one end by 1/4 wavelength and outputs it from the other end.
- the input terminal of the carrier amplifier 11 and the input terminal of the peak amplifier 12 are connected to the input terminal 110A, and the output terminal of the carrier amplifier 11 and the output terminal of the peak amplifier 12 are connected to the output terminal 111. Further, the input end of the peak amplifier 20 is connected to the input terminal 110B, and the output end of the peak amplifier 20 is connected to the output terminal 112. Further, one end of the phase shift line 41 is connected to the output terminal 111, and the other end of the phase shift line 41 is connected to the signal output terminal 120 and the output terminal 112.
- the band A signal output from the carrier amplifier 11 and the peak amplifier 12 and the band A signal output from the peak amplifier 20 are current-synthesized, and the current-synthesized signal is An output signal is output to switch 61. Further, the band B signal output from the carrier amplifier 11 and the peak amplifier 12 and the band B signal output from the peak amplifier 20 are current-combined, and the current-combined output signal is output to the switch 61. Ru.
- the carrier amplifier 11 and the peak amplifiers 12 and 20 are included in the semiconductor IC 80.
- the semiconductor IC 80 is configured using, for example, CMOS, and specifically may be manufactured by an SOI process. Further, each of the semiconductor ICs 80 may be made of at least one of GaAs, SiGe, and GaN. Note that the semiconductor material of the semiconductor IC 80 is not limited to the above-mentioned materials.
- an input terminal 110A (first input terminal) and an input terminal 110B (second input terminal) for the semiconductor IC 80 to receive a high frequency signal from an external circuit
- an input terminal 110B (second input terminal) for the semiconductor IC 80 to output a high frequency signal.
- An output terminal 111 (first output terminal) and an output terminal 112 (second output terminal) are arranged.
- the phase shift circuit 70 may be included in the semiconductor IC 80.
- a signal input terminal 110 is arranged on the surface of the semiconductor IC 80 as a first input terminal and a second input terminal instead of input terminals 110A and 110B.
- the high frequency module 1C is a high frequency circuit having a Doherty type amplifier, and includes a carrier amplifier 11 and a peak amplifier 12 connected in parallel, and a peak amplifier 20, and a carrier amplifier 11 connected in parallel.
- the amplifier 11 and the peak amplifier 12 amplify the second high frequency signal to which the first high frequency signal has been distributed and output the first amplified signal, and the peak amplifier 20 amplifies the third high frequency signal to which the first high frequency signal has been distributed.
- the high frequency module 1C further includes a combining circuit that combines the first amplified signal and the second amplified signal and outputs a combined signal.
- the above-mentioned combining circuit is a phase shift line 41.
- the amplifier circuit 10C according to this modification can perform stepwise amplification operation on three amplifier elements without increasing the size of the amplifier elements. Therefore, a large amount of backoff can be ensured, and efficiency in the medium output region can be increased. Moreover, compared to the 3-way Doherty type amplifier circuit according to Comparative Example 2, the size can be reduced while increasing the efficiency in the low output region.
- FIG. 10 is a plan view of the amplifier circuit 10 according to the embodiment. The figure shows the arrangement of each circuit and each component when the main surface of the semiconductor IC 80 included in the amplifier circuit 10 is viewed in plan (see through).
- the signal input terminal 110 is a first input terminal and a second input terminal, and is arranged on the surface of the semiconductor IC 80.
- carrier amplifier 11, peak amplifiers 12 and 20, preamplifiers 13, 15 and 23, bias circuits 51 and 52, and matching circuits 71, 72 and 73 are included in semiconductor IC 80.
- bias circuits 51 and 52 may not be included in the semiconductor IC 80 and may be arranged outside the semiconductor IC 80.
- the preamplifiers 13, 15, and 23 and the matching circuits 71, 72, and 73 may not be provided.
- an input terminal 110A connected to the input end of the carrier amplifier 11 and the input end of the peak amplifier 12, and an input terminal 110B connected to the input end of the peak amplifier 20 are arranged on the surface of the semiconductor IC 80. .
- the input terminal of the carrier amplifier 11 and the input terminal of the peak amplifier 12 are connected to a signal input terminal 110 (first input terminal).
- the output end of the carrier amplifier 11 and the output end of the peak amplifier 12 are connected to an output terminal 111.
- the input end of the peak amplifier 20 is connected to the signal input terminal 110 (second input terminal) via a matching circuit 72, a preamplifier 23, a phase shift circuit 70, a preamplifier 15, and a matching circuit 73.
- the output terminal of the peak amplifier 20 is connected to the output terminal 112.
- the bias circuit 51 is connected to the carrier amplifier 11 via a wiring 151. Further, the bias circuit 52 is connected to the peak amplifiers 12 and 20 via wiring 152.
- a current input terminal 113 for the bias circuit 51 to receive a first constant current from an external constant current source
- a current input terminal 113 for the bias circuit 52 to receive a first constant current from an external constant current source
- a current input terminal 114 for receiving a second constant current from is arranged.
- the carrier amplifier 11, the peak amplifiers 12 and 20 are arranged in the semiconductor IC 80, the input terminals of the carrier amplifier 11 and the peak amplifier 12 can be shared, and the output terminals of the carrier amplifier 11 and the peak amplifier 12 can be shared. Therefore, the semiconductor IC 80 can be miniaturized. Furthermore, since the bias circuits 51 and 52 can be built into the semiconductor IC 80, the amplifier circuit 10 can be made smaller.
- the total size of the amplification transistors that make up the carrier amplifier 11 and the amplification transistors that make up the peak amplifier 12 is less than or equal to the size of the amplification transistor that makes up the peak amplifier 20. desirable.
- the size ratio of the carrier amplifier 11 to the entire amplifier is small, it is possible to reduce the size while increasing efficiency in the low output region (region where only the carrier amplifier 11 performs amplification operation).
- the high frequency module 1 includes a carrier amplifier 11, peak amplifiers 12 and 20, a transformer 30 having an input coil 301 and an output coil 302, a phase shift line 40, and a bias current.
- the carrier amplifier 11 and the peak amplifiers 12 and 20 are included in the semiconductor IC 80, and on the surface of the semiconductor IC 80, there are input terminals 110A and 110A for the semiconductor IC 80 to receive high frequency signals.
- the input terminal of the carrier amplifier 11 and the input terminal of the peak amplifier 12 are connected to the input terminal 110A
- the output terminal and the output terminal of the peak amplifier 12 are connected to the output terminal 111
- the input terminal of the peak amplifier 20 is connected to the input terminal 110B
- the output terminal of the peak amplifier 20 is connected to the output terminal 112
- the output terminal of the input side coil 301 is connected to the output terminal 111.
- One end is connected to the output terminal 111
- one end of the phase shift line 40 is connected to the output terminal 112
- the other end of the phase shift line 40 is connected to the other end of the input coil 301
- the bias circuit 51 is connected to the carrier amplifier 11.
- the bias circuit 52 is connected to the peak amplifiers 12 and 20.
- the size can be reduced while increasing the efficiency in the low output region. Therefore, it is possible to provide the high frequency module 1 with improved backoff amount and efficiency while suppressing the increase in size.
- the high frequency module 1C includes a carrier amplifier 11, peak amplifiers 12 and 20, a phase shift line 41, and bias circuits 51 and 52 that supply bias current, and includes a carrier amplifier 11, a peak amplifier 12 and 20 are included in the semiconductor IC 80, and on the surface of the semiconductor IC 80, input terminals 110A and 110B through which the semiconductor IC 80 receives high frequency signals, and output terminals 111 and 112 through which the semiconductor IC 80 outputs high frequency signals are provided.
- the input end of carrier amplifier 11 and the input end of peak amplifier 12 are connected to input terminal 110A, the output end of carrier amplifier 11 and the output end of peak amplifier 12 are connected to output terminal 111, and peak amplifier 20
- the input end of the peak amplifier 20 is connected to the input terminal 110B, the output end of the peak amplifier 20 is connected to the output terminal 112, one end of the phase shift line 41 is connected to the output terminal 111, and the other end of the phase shift line 41 is connected to the output terminal 112.
- the bias circuit 51 is connected to the carrier amplifier 11, and the bias circuit 52 is connected to the peak amplifiers 12 and 20.
- the first bias current that the bias circuit 51 supplies to the carrier amplifier 11 is larger than the second bias current that the bias circuit 52 supplies to the peak amplifier 12, and the bias circuit 52 It may be larger than the third bias current supplied to the peak amplifier 20.
- the total size of the amplification transistors that make up the carrier amplifier 11 and the amplification transistors that make up the peak amplifier 12 is the same as the amplification transistor that makes up the peak amplifier 20. It may be smaller than the size of a transistor.
- the size ratio of the carrier amplifier 11 to the entire amplifier is small, it is possible to reduce the size while increasing efficiency in the low output region (region where only the carrier amplifier 11 performs amplification operation).
- the bias circuit 52A includes transistors 565 and 566, the output terminal of the transistor 566 is connected to the peak amplifier 12 via the wiring 92, and the output terminal of the transistor 565 is connected to the peak amplifier 12 via the wiring 92. It may be connected to the peak amplifier 20 via the wiring 93.
- the second bias current and the third bias current are supplied from different transistors 566 and 565, respectively, so it is possible to make the second bias current and the third bias current different in magnitude. Furthermore, since the second bias current and the third bias current are supplied to the peak amplifiers 12 and 20 through different wiring lines 92 and 93, respectively, the second bias current and the third bias current may interfere with each other and become a noise source. can be suppressed.
- the high frequency module according to Modification 2 has terminals 65a, 65b, and 65c, and further includes a switch 65 for switching the connection between the terminal 65a and the terminal 65b and the connection between the terminal 65a and the terminal 65c.
- a switch 65 for switching the connection between the terminal 65a and the terminal 65b and the connection between the terminal 65a and the terminal 65c.
- the terminal 65b may be connected to the bias circuit 51
- the terminal 65c may be connected to the bias circuit 52.
- the switch 65 may be included in the semiconductor IC 80.
- the amplifier circuit 10B can be downsized.
- the bias circuits 51 and 52 are included in a semiconductor IC 80, and on the surface of the semiconductor IC 80, a current input terminal 113 for the bias circuit 51 to receive a first constant current, and a bias circuit A current input terminal 114 may be arranged for 52 to receive a second constant current.
- the carrier amplifier 11, the peak amplifiers 12 and 20 are arranged in the semiconductor IC 80, the input terminals of the carrier amplifier 11 and the peak amplifier 12 can be shared, and the output terminals of the carrier amplifier 11 and the peak amplifier 12 can be shared. Therefore, the semiconductor IC 80 can be miniaturized. Furthermore, since the bias circuits 51 and 52 can be built into the semiconductor IC 80, the amplifier circuit 10 and the high frequency module 1 can be miniaturized.
- the communication device 4 includes an RFIC 3 that processes a high frequency signal, and a high frequency module 1 that transmits the high frequency signal between the RFIC 3 and the antenna 2.
- the effects of the high frequency module 1 can be realized by the communication device 4.
- the high frequency module and communication device according to the embodiments of the present invention have been described above by citing the embodiments and modified examples, but the high frequency module and communication device according to the present invention are limited to the above embodiments and modified examples. It is not something that will be done.
- the present invention also includes modifications obtained by applying the above and various devices incorporating the above-mentioned high frequency module and communication device.
- the present invention can be widely used in communication devices such as mobile phones as a high frequency circuit placed in a multi-band front end section.
- RFIC radio frequency identification circuit
- 10A, 10B, 10C 510, 520 Amplifier circuit 11, 511 Carrier amplifier 12, 20, 512, 513 Peak amplifier 13, 15, 23 Preamplifier 30 Transformer 40, 41, 541, 542, 543, 544, 545 Phase shift line 51, 52, 52A Bias circuit 61, 64, 65 Switch 62, 63 Filter 65a, 65b, 65c Terminal 70, 570 Phase shift circuit 71, 72, 73 Matching circuit 80
- Semiconductor IC 91, 92, 93, 151, 152 Wiring 100 Antenna connection terminal 110 Signal input terminal 110A, 110B Input terminal 111, 112 Output terminal 113, 114 Current input terminal 120 Signal output terminal 301 Input side coil 302 Output side coil 551, 561 Resistance Element 552, 562 Capacitor 553, 554, 555, 563, 564, 565, 566 Transistor
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Amplifiers (AREA)
Abstract
高周波モジュール(1)は、キャリアアンプ(11)、ピークアンプ(12および20)と、トランス(30)と、移相線路(40)と、バイアス回路(51および52)と、を備え、上記各アンプは半導体IC(80)に含まれ、半導体IC(80)には入力端子(110A、110B)、出力端子(111、112)が配置され、キャリアアンプ(11)およびピークアンプ(12)の入力端は入力端子(110A)に接続され、それらの出力端は出力端子(111)に接続され、ピークアンプ(20)の入力端は入力端子(110B)に接続され、その出力端は出力端子(112)に接続され、トランス(30)の一端は出力端子(111)に接続され、その他端は移相線路(40)を介して出力端子(112)に接続され、バイアス回路(51)はキャリアアンプ(11)に接続され、バイアス回路(52)はピークアンプ(12および20)に接続されている。
Description
本発明は、高周波モジュールおよび通信装置に関する。
特許文献1には、入力信号の電力レベルが第1レベル以上の領域において入力信号から分配された第1信号を増幅して第2信号を出力する第1アンプ(キャリアアンプ)と、第2信号が入力される第1トランスと、入力信号の電力レベルが第1レベルより高い第2レベル以上の領域において入力信号から分配された第3信号を増幅して第4信号を出力する第2アンプ(ピークアンプ)と、第4信号が入力される第2トランスと、を備える高周波回路(電力増幅回路)が開示されている。
しかしながら、特許文献1に開示された高周波回路の場合、第1アンプおよび第2アンプがオン状態である高出力領域から、第1アンプのみがオン状態である低出力領域までの電力差であるバックオフ量、および効率が十分でない場合がある。また、バックオフ量および効率を確保しようとすると回路が大型化してしまう。
本発明は、上記課題を解決するためになされたものであって、大型化を抑制しつつバックオフ量および効率が向上した高周波モジュールおよび通信装置を提供することを目的とする。
上記目的を達成するために、本発明の一態様に係る高周波モジュールは、第1増幅素子、第2増幅素子および第3増幅素子と、入力側コイルおよび出力側コイルを有するトランスと、移相回路と、バイアス電流を供給する第1バイアス回路および第2バイアス回路と、を備え、第1増幅素子、第2増幅素子および第3増幅素子は、半導体集積回路部品に含まれ、半導体集積回路部品の表面には、半導体集積回路部品が高周波信号を受けるための第1入力端子および第2入力端子、ならびに、半導体集積回路部品から高周波信号を出力するための第1出力端子および第2出力端子が配置されており、第1増幅素子の入力端および第2増幅素子の入力端は第1入力端子に接続され、第1増幅素子の出力端および第2増幅素子の出力端は第1出力端子に接続され、第3増幅素子の入力端は第2入力端子に接続され、第3増幅素子の出力端は第2出力端子に接続され、入力側コイルの一端は、第1出力端子に接続され、移相回路の一端は、第2出力端子に接続され、移相回路の他端は、入力側コイルの他端に接続され、第1バイアス回路は、第1増幅素子に接続され、第2バイアス回路は、第2増幅素子および第3増幅素子に接続されている。
また、本発明の一態様に係る高周波モジュールは、第1増幅素子、第2増幅素子および第3増幅素子と、移相回路と、バイアス電流を供給する第1バイアス回路および第2バイアス回路と、を備え、第1増幅素子、第2増幅素子および第3増幅素子は、半導体集積回路部品に含まれ、半導体集積回路部品の表面には、半導体集積回路部品が高周波信号を受けるための第1入力端子および第2入力端子と、半導体集積回路部品から高周波信号を出力するための第1出力端子および第2出力端子が配置されており、第1増幅素子の入力端および第2増幅素子の入力端は第1入力端子に接続され、第1増幅素子の出力端および第2増幅素子の出力端は第1出力端子に接続され、第3増幅素子の入力端は第2入力端子に接続され、第3増幅素子の出力端は第2出力端子に接続され、移相回路の一端は、第1出力端子に接続され、移相回路の他端は、第2出力端子に接続され、第1バイアス回路は、第1増幅素子に接続され、第2バイアス回路は、第2増幅素子および第3増幅素子に接続されている。
本発明によれば、大型化を抑制しつつバックオフ量および効率が向上した高周波モジュールおよび通信装置を提供することが可能となる。
以下、本発明の実施の形態について詳細に説明する。なお、以下で説明する実施の形態は、いずれも包括的または具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置および接続形態等は、一例であり、本発明を限定する主旨ではない。以下の実施例および変形例における構成要素のうち、独立請求項に記載されていない構成要素については、任意の構成要素として説明される。また、図面に示される構成要素の大きさまたは大きさの比は、必ずしも厳密ではない。各図において、実質的に同一の構成については同一の符号を付し、重複する説明は省略または簡略化する場合がある。
また、以下において、平行および垂直等の要素間の関係性を示す用語、矩形状等の要素の形状を示す用語、ならびに、数値範囲は、厳格な意味のみを表すのではなく、実質的に同等な範囲、例えば数%程度の差異をも含むことを意味する。
以下の各図において、x軸およびy軸は、半導体集積回路部品の主面と平行な平面上で互いに直交する軸である。具体的には、平面視において半導体集積回路部品が矩形状を有する場合、x軸は、半導体集積回路部品の第1辺に平行であり、y軸は、半導体集積回路部品の第1辺と直交する第2辺に平行である。また、z軸は、半導体集積回路部品の主面に垂直な軸であり、その正方向は上方向を示し、その負方向は下方向を示す。
本発明の回路構成において、「接続される」とは、接続端子および/または配線導体で直接接続される場合だけでなく、他の回路素子を介して電気的に接続される場合も含む。「AとBとの間に接続される」とは、AおよびBの間でAおよびBの両方に接続されることを意味し、AおよびBを結ぶ経路に直列接続されることに加えて、当該経路とグランドとの間に並列接続(シャント接続)されることを含む。
本発明の部品配置において、「半導体集積回路部品の主面を平面視した場合」とは、z軸正側からxy平面に物体を正投影して見ることを意味する。「AがBおよびCの間に配置される」とは、B内の任意の点とC内の任意の点とを結ぶ複数の線分のうちの少なくとも1つがAを通ることを意味する。また、「平行」および「垂直」などの要素間の関係性を示す用語、および、「矩形」などの要素の形状を示す用語、ならびに、数値範囲は、厳格な意味のみを表すのではなく、実質的に同等な範囲、例えば数%程度の誤差をも含むことを意味する。
また、本発明の部品配置において、「部品Aが半導体集積回路部品に配置される」とは、部品Aが半導体集積回路部品の主面上に配置されること、および、部品Aが半導体集積回路部品内に配置されることを含む。「部品Aまたは端子が半導体集積回路部品の表面に配置される」とは、部品Aが半導体集積回路部品の表面に接触して配置されることに加えて、部品Aまたは端子が主面と接触せずに、主面と接触して配置された他の部品上に積層されることを含む。また、「部品Aまたは端子が半導体集積回路部品の表面に配置される」は、表面に形成された凹部に部品Aが配置されることを含んでもよい。「部品Aが半導体集積回路部品に含まれる」とは、部品Aが半導体集積回路部品内にカプセル化されることに加えて、部品Aの全部が半導体集積回路部品の両主面の間に配置されているが部品Aの一部が半導体集積回路部品に覆われていないこと、および、部品Aの一部のみが半導体集積回路部品内に配置されていることを含む。
また、本開示において、「信号経路」とは、高周波信号が伝搬する配線、当該配線に直接接続された電極、および当該配線または当該電極に直接接続された端子等で構成された伝送線路であることを意味する。
(実施の形態)
[1.高周波モジュール1および通信装置4の回路構成]
本実施の形態に係る高周波モジュール1および通信装置4の回路構成について、図1を参照しながら説明する。図1は、実施の形態に係る高周波モジュール1および通信装置4の回路構成図である。
[1.高周波モジュール1および通信装置4の回路構成]
本実施の形態に係る高周波モジュール1および通信装置4の回路構成について、図1を参照しながら説明する。図1は、実施の形態に係る高周波モジュール1および通信装置4の回路構成図である。
[1.1 通信装置4の回路構成]
まず、通信装置4の回路構成について説明する。図1に示すように、本実施の形態に係る通信装置4は、高周波モジュール1と、アンテナ2と、RF信号処理回路(RFIC)3と、を備える。
まず、通信装置4の回路構成について説明する。図1に示すように、本実施の形態に係る通信装置4は、高周波モジュール1と、アンテナ2と、RF信号処理回路(RFIC)3と、を備える。
高周波モジュール1は、アンテナ2とRFIC3との間で高周波信号を伝送する。高周波モジュール1の詳細な回路構成については後述する。
アンテナ2は、高周波モジュール1のアンテナ接続端子100に接続され、高周波モジュール1から出力された高周波信号を送信し、また、外部から高周波信号を受信して高周波モジュール1へ出力する。
RFIC3は、高周波信号を処理する信号処理回路の一例である。具体的には、RFIC3は、高周波モジュール1の受信経路を介して入力された受信信号をダウンコンバート等により信号処理し、当該信号処理して生成された受信信号をベースバンド信号処理回路(BBIC、図示せず)へ出力する。また、RFIC3は、BBICから入力された送信信号をアップコンバート等により信号処理し、当該信号処理して生成された送信信号を、高周波モジュール1の送信経路に出力する。また、RFIC3は、高周波モジュール1が有するスイッチ、増幅素子およびバイアス回路等を制御する制御部を有する。なお、RFIC3の制御部としての機能の一部または全部は、RFIC3の外部に実装されてもよく、例えば、BBICまたは高周波モジュール1に実装されてもよい。
また、RFIC3は、高周波モジュール1が有する各アンプに供給される電源電圧およびバイアス電流(またはバイアス電圧)を制御する制御部としての機能も有する。具体的には、RFIC3は、ディジタル制御信号を高周波モジュール1に出力する。高周波モジュール1の各アンプには、上記ディジタル制御信号により制御された電源電圧およびバイアス電流(またはバイアス電圧)が供給される。
また、RFIC3は、使用される通信バンド(周波数帯域)に基づいて、高周波モジュール1が有するスイッチ61および64の接続を制御する制御部としての機能も有する。
なお、本実施の形態に係る通信装置4において、アンテナ2は、必須の構成要素ではない。
[1.2 高周波モジュール1の回路構成]
次に、高周波モジュール1の回路構成について説明する。図1に示すように、高周波モジュール1は、増幅回路10と、フィルタ62および63と、スイッチ61および64と、アンテナ接続端子100と、を備える。
次に、高周波モジュール1の回路構成について説明する。図1に示すように、高周波モジュール1は、増幅回路10と、フィルタ62および63と、スイッチ61および64と、アンテナ接続端子100と、を備える。
増幅回路10は、信号入力端子110から入力されたバンドAおよびバンドBの送信信号を増幅するドハティ型の増幅回路である。なお、高周波モジュール1は、増幅回路10の代わりに、バンドAの高周波信号を増幅するドハティ型の第1増幅回路と、バンドBの高周波信号を増幅するドハティ型の第2増幅回路と、を備えてもよい。
なお、ドハティ増幅回路とは、複数の増幅素子をキャリアアンプおよびピークアンプとして用いることで高効率を実現する増幅回路を意味する。キャリアアンプとは、ドハティ型の増幅回路において、高周波信号(入力)の電力が低くても高くても動作する増幅素子を意味する。ピークアンプとは、ドハティ型の増幅回路において、高周波信号(入力)の電力が高い場合に主として動作する増幅素子を意味する。したがって、高周波信号の入力電力が低い場合は、高周波信号は主としてキャリアアンプで増幅され、高周波信号の入力電力が高い場合には、高周波信号はキャリアアンプおよびピークアンプで増幅され合成される。このような動作により、ドハティ型の増幅回路では、低出力電力においてキャリアアンプからみた負荷インピーダンスが増大し、低出力電力における効率が向上する。
本発明に係る高周波モジュールにおいて、キャリアアンプの出力信号とピークアンプの出力信号とが電圧合成されている場合、キャリアアンプ11とピークアンプ12とが並列接続された回路の出力端子には、高周波信号の位相を1/4波長シフトさせる移相回路が接続されていない。一方、ピークアンプ20の出力端子には、高周波信号の位相を1/4波長シフトさせる移相回路が接続されている。また、本発明に係る高周波モジュールにおいて、キャリアアンプの出力信号とピークアンプの出力信号とが電流合成されている場合、キャリアアンプ11とピークアンプ12とが並列接続された回路の出力端子には、高周波信号の位相を1/4波長シフトさせる移相回路が接続されている。一方、ピークアンプ20の出力端子には、高周波信号の位相を1/4波長シフトさせる移相回路が接続されていない。
なお、本実施の形態において、バンドAおよびバンドBのそれぞれは、無線アクセス技術(RAT:Radio Access Technology)を用いて構築される通信システムのために、標準化団体など(例えば3GPP(登録商標)(3rd Generation Partnership Project)、IEEE(Institute of Electrical and Electronics Engineers)等)によって予め定義された周波数バンドを意味する。本実施の形態では、通信システムとしては、例えば4G(4th Generation)-LTE(Long Term Evolution)システム、5G(5th Generation)-NR(New Radio)システム、およびWLAN(Wireless Local Area Network)システム等を用いることができるが、これらに限定されない。
フィルタ62は、スイッチ61および64の間に接続され、増幅回路10で増幅された送信信号のうち、バンドAの送信帯域の送信信号を通過させる。また、フィルタ63は、スイッチ61および64の間に接続され、増幅回路10で増幅された送信信号のうち、バンドBの送信帯域の送信信号を通過させる。
なお、フィルタ62および63のそれぞれは、受信用フィルタとともにデュプレクサを構成していてもよいし、時分割複信(TDD:Time Division Duplex)方式で伝送する1つのフィルタであってもよい。フィルタ62および63がTDD用のフィルタである場合には、上記1つのフィルタの前段および後段の少なくとも一方に、送信および受信を切り替えるスイッチが配置される。
スイッチ61は、共通端子、第1選択端子および第2選択端子を有する。共通端子は、増幅回路10に接続されている。第1選択端子はフィルタ62に接続され、第2選択端子はフィルタ63に接続されている。この接続構成において、スイッチ61は、増幅回路10とフィルタ62との接続および増幅回路10とフィルタ63との接続を切り替える。
スイッチ64は、アンテナスイッチの一例であり、アンテナ接続端子100に接続され、アンテナ接続端子100とフィルタ62との接続および非接続を切り替え、また、アンテナ接続端子100とフィルタ63との接続および非接続を切り替える。
なお、高周波モジュール1は、アンテナ2から受信された受信信号を、RFIC3へ伝送するための受信回路を備えていてもよい。この場合には、高周波モジュール1は、低雑音増幅器および受信用フィルタを備える。
また、増幅回路10からアンテナ接続端子100までの間に、インピーダンス整合回路が配置されていてもよい。
上記回路構成によれば、高周波モジュール1は、バンドAおよびバンドBのいずれかの高周波信号を、送信または受信することが可能である。さらに、高周波モジュール1は、バンドAおよびバンドBの高周波信号を、同時送信、同時受信、および同時送受信の少なくともいずれかで実行することも可能である。
なお、本発明に係る高周波モジュール1は、図1に示された回路構成のうち、増幅回路10を少なくとも有していればよい。
ここで、増幅回路10の回路構成について、詳細に説明する。
図1に示すように、増幅回路10は、信号入力端子110および信号出力端子120と、キャリアアンプ11と、ピークアンプ12および20と、移相線路40と、移相回路70と、トランス30と、バイアス回路51および52と、を備える。
信号入力端子110は、RFIC3に接続されている。信号出力端子120は、スイッチ61および64ならびにフィルタ62および63を介してアンテナ接続端子100に接続されている。なお、信号入力端子110、信号出力端子120およびアンテナ接続端子100のそれぞれは、金属電極および金属バンプなどの金属導体であってもよく、また、金属配線上の一点であってもよい。
キャリアアンプ11は、第1増幅素子の一例であり、キャリアアンプ11に入力されるバンドAまたはバンドBの高周波信号を増幅する。キャリアアンプ11は、例えばキャリアアンプ11に入力される信号の全ての電力レベルに対して増幅動作可能なA級(またはAB級)増幅回路であり、特に、低出力領域および中出力領域において高効率な増幅動作が可能である。
ピークアンプ12は、第2増幅素子の一例であり、ピークアンプ12に入力されるバンドAまたはバンドBの高周波信号を増幅する。ピークアンプ12は、例えばピークアンプ12に入力される信号の電力レベルが高い領域で増幅動作可能なC級増幅回路である。ピークアンプ12が有する増幅トランジスタには、キャリアアンプ11が有する増幅トランジスタに印加される第1バイアス電流よりも小さい第2バイアス電流が印加されていてもよい。これによれば、ピークアンプ12に入力される信号の電力レベルが高くなるほど、出力インピーダンスが低くなる。これにより、ピークアンプ12は、高出力領域において低歪の増幅動作が可能である。
ピークアンプ20は、第3増幅素子の一例であり、ピークアンプ20に入力されるバンドAまたはバンドBの高周波信号を増幅する。ピークアンプ20は、例えばピークアンプ20に入力される信号の電力レベルが高い領域で増幅動作可能なC級増幅回路である。ピークアンプ20が有する増幅トランジスタには、キャリアアンプ11が有する増幅トランジスタに印加される第1バイアス電流よりも小さい第3バイアス電流が印加されていてもよい。これによれば、ピークアンプ20に入力される信号の電力レベルが高くなるほど、出力インピーダンスが低くなる。これにより、ピークアンプ20は、高出力領域において低歪の増幅動作が可能である。
キャリアアンプ11、ピークアンプ12および20は、増幅トランジスタを有する。上記増幅トランジスタは、例えば、ヘテロ接合バイポーラトランジスタ(HBT:Heterojunction Bipolar Transistor)等のバイポーラトランジスタ、または、MOSFET(Metal-Oxide-Semiconductor Field Effect Transistor)等の電界効果トランジスタである。
トランス30は、入力側コイル301および出力側コイル302を有する。
移相線路40は、移相回路の一例であり、例えば1/4波長伝送線路である。移相線路40は、その一端から入力された高周波信号の位相を1/4波長遅らせてその他端から出力する。移相線路40(移相回路)は、移相線路という形態を有していなくてもよく、例えば、チップ状のインダクタおよびキャパシタで構成された回路であってもよい。より具体的には、移相線路40(移相回路)は、互いに直列接続された2つのインダクタ、および当該2つのインダクタの接続点とグランドとの間に接続されたキャパシタを有するLC回路であってもよい。また、移相線路40(移相回路)は、互いに直列接続された2つのキャパシタ、当該2つのキャパシタのうちの1つのキャパシタの一方端とグランドとの間に接続されたインダクタ、および当該1つのキャパシタの他方端とグランドとの間に接続されたインダクタを有するLC回路であってもよい。
バイアス回路51は、第1バイアス回路の一例であり、キャリアアンプ11に接続され、キャリアアンプ11に第1バイアス電流を供給する。
バイアス回路52は、第2バイアス回路の一例であり、ピークアンプ12および20に接続され、ピークアンプ12に、第1バイアス電流と異なる第2バイアス電流を供給し、ピークアンプ20に、第1バイアス電流と異なる第3バイアス電流を供給する。
なお、本実施の形態では、バイアス回路51および52から各アンプに対してバイアス電流を供給するものとしているが、バイアス回路51および52からはバイアス電圧が供給され、バイアス回路51および52と各アンプとを結ぶ経路に配置された抵抗素子により、上記バイアス電圧がバイアス電流として供給されてもよい。
バイアス回路51がキャリアアンプ11に供給する第1バイアス電流は、バイアス回路52がピークアンプ12に供給する第2バイアス電流よりも大きく、かつ、バイアス回路52がピークアンプ20に供給する第3バイアス電流よりも大きい。
これによれば、キャリアアンプ11をC級動作させ、ピークアンプ12および20をA級またはAB級動作させることが可能となる。
移相回路70は、RFIC3から出力された高周波信号を分配し、当該分配された各信号を、それぞれ、キャリアアンプ11ならびにピークアンプ12および20に出力する。移相回路70は、その際、分配された各信号の位相を調整する。移相回路70は、例えば、ピークアンプ20に出力する信号をキャリアアンプ11およびピークアンプ12に出力する信号に対して-90度シフトさせ(90度遅らせ)る。なお、移相回路70は、1入力2出力型のトランスであってもよく、またインダクタおよびキャパシタの少なくとも1つで形成されたLC回路であってもよい。
なお、移相回路70は、キャリアアンプ11ならびにピークアンプ12および20のそれぞれの入力端側に個別に配置されていてもよい。また、キャリアアンプ11ならびにピークアンプ12および20の入力端側に、プリアンプが接続配置されていてもよい。また、増幅回路10は、移相回路70を備えなくてもよい。この場合には、RFIC3からキャリアアンプ11およびピークアンプ12へ第1高周波信号が出力され、RFIC3からピークアンプ20へ第2高周波信号が出力されてもよい。
高周波モジュール1の上記接続構成によれば、キャリアアンプ11およびピークアンプ12から出力されるバンドAの信号と、ピークアンプ20から出力されるバンドAの信号とが電圧合成され、当該電圧合成された出力信号がスイッチ61へと出力される。また、キャリアアンプ11およびピークアンプ12から出力されるバンドBの信号と、ピークアンプ20から出力されるバンドBの信号とが電圧合成され、当該電圧合成された出力信号がスイッチ61へと出力される。
また、キャリアアンプ11、ピークアンプ12および20は、半導体IC(半導体集積回路部品)80に含まれている。半導体IC80は、例えばCMOS(Complementary Metal Oxide Semiconductor)を用いて構成され、具体的にはSOI(Silicon on Insulator)プロセスにより製造されてもよい。また、半導体IC80のそれぞれは、GaAs、SiGeおよびGaNのうちの少なくとも1つで構成されてもよい。なお、半導体IC80の半導体材料は、上述した材料に限定されない。
半導体IC80の表面には、半導体IC80が外部回路から高周波信号を受けるための入力端子110A(第1入力端子)および入力端子110B(第2入力端子)と、半導体IC80から高周波信号を出力するための出力端子111(第1出力端子)および出力端子112(第2出力端子)が配置されている。なお、移相回路70が半導体IC80に含まれていてもよい。この場合には、半導体IC80の表面には、入力端子110Aおよび110Bに代わって信号入力端子110が第1入力端子および第2入力端子として配置される。
増幅回路10において、キャリアアンプ11の入力端およびピークアンプ12の入力端は、入力端子110Aに接続され、キャリアアンプ11の出力端およびピークアンプ12の出力端は出力端子111に接続されている。つまり、キャリアアンプ11とピークアンプ12とは並列接続されている。また、ピークアンプ20の入力端は入力端子110Bに接続され、ピークアンプ20の出力端は出力端子112に接続されている。また、入力側コイル301の一端は出力端子111に接続され、移相線路40の一端は出力端子112に接続され、移相線路40の他端は入力側コイル301の他端に接続されている。出力側コイル302の一端は信号出力端子120に接続され、出力側コイル302の他端はグランドに接続されている。
なお、本実施の形態に係る高周波モジュール1は、ドハティ型の増幅器を有する高周波回路であって、並列接続されたキャリアアンプ11およびピークアンプ12と、ピークアンプ20と、を備え、並列接続されたキャリアアンプ11およびピークアンプ12は、第1高周波信号が分配された第2高周波信号を増幅して第1増幅信号を出力し、ピークアンプ20は第1高周波信号が分配された第3高周波信号を増幅して第2増幅信号を出力し、高周波モジュール1は、さらに、上記第1増幅信号および上記第2増幅信号を合成して合成信号を出力する合成回路を備える。上記合成回路は、トランス30および移相線路40である。
[1.3 増幅回路10の動作]
次に、増幅回路10の動作について説明する。
次に、増幅回路10の動作について説明する。
図2Aは、実施の形態に係る増幅回路10の大信号入力時の回路状態図である。また、図2Bは、実施の形態に係る増幅回路10の中信号入力時の回路状態図である。また、図2Cは、実施の形態に係る増幅回路10の小信号入力時の回路状態図である。
まず、図2Aに示すように、キャリアアンプ11、ピークアンプ12および20が動作(ON)している場合(大信号入力時)、キャリアアンプ11の出力インピーダンス、および、ピークアンプ12の出力インピーダンスは、それぞれRL/m2と表される。これにより、キャリアアンプ11およびピークアンプ12の出力側の接続点における出力インピーダンスは、RL/2m2と表される。また、ピークアンプ20の出力インピーダンスは、RL/2m2と表される。なお、トランス30は、それぞれ1:mの比率で変圧するものとする。また、信号出力端子120に接続される負荷のインピーダンスをRLとする。
次に、図2Bに示すように、キャリアアンプ11およびピークアンプ12が動作(ON)し、ピークアンプ20が動作していない(OFF)場合(中信号入力時)、キャリアアンプ11の出力インピーダンス、および、ピークアンプ12の出力インピーダンスは、それぞれ2RL/m2と表される。これにより、キャリアアンプ11およびピークアンプ12の出力側の接続点における出力インピーダンスは、RL/m2と表される。なおこのとき、ピークアンプ20の出力インピーダンスはオープン状態となっている。
次に、図2Cに示すように、キャリアアンプ11が動作(ON)し、ピークアンプ12および20が動作していない(OFF)場合(小信号入力時)、キャリアアンプ11の出力インピーダンスは、RL/m2と表される。なおこのとき、ピークアンプ12および20の各出力インピーダンスはオープン状態となっている。
上記のように大信号入力時に対して中信号入力時には、キャリアアンプ11およびピークアンプ12の出力側の接続点における出力インピーダンスは2倍となっている。つまり、中信号入力時には、ピークアンプ20がオフ状態となり、キャリアアンプ11およびピークアンプ12の出力インピーダンスが高くなることで、増幅回路10は高効率動作することが可能となる。また、大信号入力時に対して小信号入力時には、キャリアアンプ11およびピークアンプ12の出力側の接続点における出力インピーダンスは2倍となっている。つまり、小信号入力時には、ピークアンプ12および20がオフ状態となり、キャリアアンプ11およびピークアンプ12との出力側の接続点における出力インピーダンスが高くなることで、増幅回路10は高効率動作することが可能となる。また、大信号入力時には、キャリアアンプ11、ピークアンプ12および20が動作することで大電力信号を出力することができ、かつ、キャリアアンプ11およびピークアンプ12の出力側の接続点における出力インピーダンスおよびピークアンプ20の出力インピーダンスが低いことで、信号歪を抑制することが可能となる。
実施の形態に係る高周波モジュール1によれば、キャリアアンプ11、ピークアンプ12および20という3つの増幅素子を有することで、キャリアアンプ11ならびにピークアンプ12および20がオン状態である高出力領域から、キャリアアンプ11のみがオン状態である低出力領域までの電力差であるバックオフ量を段階的かつ大きく確保できる。また、特に、中出力領域におけるキャリアアンプ11およびピークアンプ12の出力インピーダンスを高くできるので、中出力領域における効率を高くできる。また、ピークアンプ12の出力端に移相回路が接続されていないので高周波モジュール1を小型化できる。
なお、高出力領域とは、キャリアアンプ11、ピークアンプ12および20がオン状態である領域であり、中出力領域とは、キャリアアンプ11およびピークアンプ12がオン状態であり、かつ、ピークアンプ20がオフ状態である領域であり、低出力領域とは、キャリアアンプ11がオン状態であり、かつ、ピークアンプ12および20がオフ状態である領域である。
[1.4 比較例1に係る増幅回路510の回路構成]
図3は、比較例1に係る増幅回路510の回路構成図である。本比較例に係る増幅回路510は、バンドAの高周波信号とバンドBの高周波信号とを増幅して伝送する従来の2ウェイドハティ型の増幅回路である。同図に示すように、増幅回路510は、キャリアアンプ511と、ピークアンプ20と、移相線路40と、トランス30と、移相回路70と、を備える。本比較例に係る増幅回路510は、実施の形態に係る増幅回路10と比較して、キャリアアンプ11およびピークアンプ12の代わりに、キャリアアンプ511が付加されている点が異なる。以下、本比較例に係る増幅回路510について、実施の形態に係る増幅回路10と異なる構成を中心に説明する。
図3は、比較例1に係る増幅回路510の回路構成図である。本比較例に係る増幅回路510は、バンドAの高周波信号とバンドBの高周波信号とを増幅して伝送する従来の2ウェイドハティ型の増幅回路である。同図に示すように、増幅回路510は、キャリアアンプ511と、ピークアンプ20と、移相線路40と、トランス30と、移相回路70と、を備える。本比較例に係る増幅回路510は、実施の形態に係る増幅回路10と比較して、キャリアアンプ11およびピークアンプ12の代わりに、キャリアアンプ511が付加されている点が異なる。以下、本比較例に係る増幅回路510について、実施の形態に係る増幅回路10と異なる構成を中心に説明する。
キャリアアンプ511は、キャリアアンプ511に入力されるバンドAまたはバンドBの高周波信号を増幅する。キャリアアンプ511は、キャリアアンプ511に入力される信号の全ての電力レベルに対して増幅動作可能なA級(またはAB級)増幅回路であり、特に、低出力領域および中出力領域において高効率な増幅動作が可能である。
キャリアアンプ511の入力端は移相回路70に接続され、キャリアアンプ511の出力端は入力側コイル301の一端に接続されている。ピークアンプ20の入力端は移相回路70に接続され、ピークアンプ20の出力端は移相線路40の一端に接続されている。移相線路40の他端は入力側コイル301の他端に接続されている。出力側コイル302の一端は信号出力端子120に接続され、出力側コイル302の他端はグランドに接続されている。
本比較例に係る増幅回路510において、大信号入力時に対して小信号入力時には、キャリアアンプ511の出力インピーダンスは2倍となる。つまり、小信号入力時には、ピークアンプ20がオフ状態となり、キャリアアンプ511の出力インピーダンスが高くなることで、増幅回路510は高効率動作することが可能となる。一方、大信号入力時には、キャリアアンプ511およびピークアンプ20が動作することで大電力信号を出力することができ、かつ、ピークアンプ20の出力インピーダンスが低いことで、信号歪を抑制することが可能となる。
[1.5 実施の形態および比較例1に係る増幅回路の特性比較]
図4は、実施の形態および比較例1に係る増幅回路における出力電力と効率との関係を示すグラフである。図4において、横軸は増幅回路10または510から出力される信号の電力レベルであり、縦軸は各増幅回路の効率(電力付加効率)である。
図4は、実施の形態および比較例1に係る増幅回路における出力電力と効率との関係を示すグラフである。図4において、横軸は増幅回路10または510から出力される信号の電力レベルであり、縦軸は各増幅回路の効率(電力付加効率)である。
同図に示すように、比較例1に係る増幅回路510において、キャリアアンプ511を構成する増幅トランジスタのサイズと、ピークアンプ20を構成する増幅トランジスタのサイズとが等しい場合(図4のサイズ_アンプ511:20=1:1)、キャリアアンプ511およびピークアンプ20がオン状態である高出力領域から、キャリアアンプ511のみがオン状態である低出力領域までの電力差であるバックオフ量は6dBとなる。
これに対して、実施の形態に係る増幅回路10において、キャリアアンプ11を構成する増幅トランジスタのサイズと、ピークアンプ12を構成する増幅トランジスタのサイズと、ピークアンプ20を構成する増幅トランジスタのサイズとが、1:1:2である場合、つまり、キャリアアンプ11を構成する増幅トランジスタのサイズおよびピークアンプ12を構成する増幅トランジスタのサイズの合計と、ピークアンプ20を構成する増幅トランジスタのサイズとが、等しい場合(図4のサイズ_アンプ11:12:20=1:1:2)、キャリアアンプ11、ピークアンプ12およびピークアンプ20がオン状態である高出力領域から、キャリアアンプ11のみがオン状態である低出力領域までの電力差であるバックオフ量は9dBとなる。つまり、実施の形態および比較例1に係る増幅回路において、入力側コイル301の一端に接続されたアンプの合計サイズと入力側コイル301の他端に接続されたアンプのサイズとを等しくした場合、実施の形態に係る増幅回路10の方がバックオフ量を大きく確保できる。
言い換えると、実施の形態に係る増幅回路10では、キャリアアンプ11およびピークアンプ12がオン状態であるモードと、キャリアアンプ11、ピークアンプ12および20がオン状態であるモードとの間で、2ウェイ型ドハティ増幅回路として機能し、6dBのバックオフ量を確保できる。これに加えて、キャリアアンプ11およびピークアンプ12がオン状態であるモードからキャリアアンプ11のみがオン状態であるモードまでの間で3dBのバックオフ量を確保できる。
図5は、実施の形態および比較例1に係る増幅回路における出力電力と消費電流との関係を示すグラフである。図5において、横軸は増幅回路10または510から出力される信号の電力レベルであり、縦軸はキャリアアンプ11および511に流れるアイドル電流である。増幅回路510において、キャリアアンプ511を構成する増幅トランジスタのサイズと、ピークアンプ20を構成する増幅トランジスタのサイズとが等しい場合、全てのアンプに占めるキャリアアンプ511のサイズ比率は、50%である。一方、増幅回路10において、キャリアアンプ11を構成する増幅トランジスタのサイズおよびピークアンプ12を構成する増幅トランジスタのサイズの合計と、ピークアンプ20を構成する増幅トランジスタのサイズとが等しい場合、全てのアンプに占めるキャリアアンプ11のサイズ比率は25%である。このサイズ比率の差異によれば、実施の形態に係る増幅回路10は、比較例1に係る増幅回路510と比較して、キャリアアンプ11のアイドル電流を大幅に削減できるので効率を向上することが可能となる。これにより、PAPR(Peak to Average Power Ratio)が大きな変調方式(例えば、CP256QAM)では最大出力電力よりも小さな信号領域で動作する頻度が高くなるが、キャリアアンプ11のアイドル電流を低減できるので、高効率動作が可能となる。また、バックオフ量が大きいため、低歪で動作させることが可能となる。
また、図4に示すように、比較例1に係る増幅回路510において、キャリアアンプ511を構成する増幅トランジスタのサイズと、ピークアンプ20を構成する増幅トランジスタのサイズとが、1:3である場合(図4のサイズ_アンプ511:20=1:3)、キャリアアンプ511およびピークアンプ20がオン状態である高出力領域から、キャリアアンプ511のみがオン状態である低出力領域までの電力差であるバックオフ量は9dBとできる。
これに対して、実施の形態に係る増幅回路10において、キャリアアンプ11を構成する増幅トランジスタのサイズと、ピークアンプ12を構成する増幅トランジスタのサイズと、ピークアンプ20を構成する増幅トランジスタのサイズとが、1:1:2である場合、つまり、キャリアアンプ11を構成する増幅トランジスタのサイズと、ピークアンプ12および20を構成する増幅トランジスタのサイズの合計とが、1:3である場合(図4のサイズ_アンプ11:12:20=1:1:2)、キャリアアンプ11、ピークアンプ12およびピークアンプ20がオン状態である高出力領域から、キャリアアンプ11のみがオン状態である低出力領域までの電力差であるバックオフ量は9dBとできる。しかしながら、比較例1に係る増幅回路510に対して、実施の形態に係る増幅回路10の方が、中出力領域における効率が向上する。これは、図2Bに示したように、中出力領域におけるキャリアアンプ11の出力インピーダンスおよびピークアンプ12の出力インピーダンスを2RL/m2に高くできることに起因する。
[1.6 比較例2に係る増幅回路520の回路構成]
図6は、比較例2に係る増幅回路520の回路構成図である。本比較例に係る増幅回路520は、バンドAの高周波信号とバンドBの高周波信号とを増幅して伝送する従来の3ウェイドハティ型の増幅回路である。同図に示すように、増幅回路520は、キャリアアンプ511と、ピークアンプ512および513と、移相線路541、542、543、544および545と、移相回路570と、を備える。本比較例に係る増幅回路520は、実施の形態に係る増幅回路10と比較して、従来の電流合成型のドハティ型の増幅回路である。以下、本比較例に係る増幅回路520について、実施の形態に係る増幅回路10と異なる構成を中心に説明する。
図6は、比較例2に係る増幅回路520の回路構成図である。本比較例に係る増幅回路520は、バンドAの高周波信号とバンドBの高周波信号とを増幅して伝送する従来の3ウェイドハティ型の増幅回路である。同図に示すように、増幅回路520は、キャリアアンプ511と、ピークアンプ512および513と、移相線路541、542、543、544および545と、移相回路570と、を備える。本比較例に係る増幅回路520は、実施の形態に係る増幅回路10と比較して、従来の電流合成型のドハティ型の増幅回路である。以下、本比較例に係る増幅回路520について、実施の形態に係る増幅回路10と異なる構成を中心に説明する。
キャリアアンプ511は、キャリアアンプ511に入力されるバンドAまたはバンドBの高周波信号を増幅する。キャリアアンプ511は、キャリアアンプ511に入力される信号の全ての電力レベルに対して増幅動作可能なA級(またはAB級)増幅回路であり、特に、低出力領域および中出力領域において高効率な増幅動作が可能である。
ピークアンプ512は、ピークアンプ512に入力されるバンドAまたはバンドBの高周波信号を増幅する。ピークアンプ512は、例えばピークアンプ512に入力される信号の電力レベルが高い領域で増幅動作可能なC級増幅回路である。
ピークアンプ513は、ピークアンプ513に入力されるバンドAまたはバンドBの高周波信号を増幅する。ピークアンプ513は、例えばピークアンプ513に入力される信号の電力レベルが高い領域で増幅動作可能なC級増幅回路である。
移相線路541~545は、1/4波長伝送線路である。
移相回路570は、RFIC3から出力された高周波信号を分配し、当該分配された各信号を、それぞれ、キャリアアンプ511、ピークアンプ512および513に出力する。移相回路570は、その際、分配された各信号の位相を調整する。
キャリアアンプ511の入力端は移相回路70に接続され、キャリアアンプ511の出力端は移相線路541の一端に接続されている。移相線路542の一端は移相回路70に接続され、移相線路542の他端はピークアンプ512の入力端に接続されている。移相線路541の他端およびピークアンプ512の出力端は移相線路544の一端に接続されている。移相線路543の一端は移相回路70に接続され、移相線路543の他端はピークアンプ513の入力端に接続されている。移相線路544の他端およびピークアンプ513の出力端は移相線路545の一端に接続されている。移相線路545の他端は信号出力端子120に接続されている。
本比較例に係る増幅回路520において、大信号入力時に対して小信号入力時には、キャリアアンプ511の出力インピーダンスは3倍となる。つまり、小信号入力時には、ピークアンプ512および513がオフ状態となり、キャリアアンプ511の出力インピーダンスが高くなることで、増幅回路520は高効率動作することが可能となる。また、大信号入力時に対して中信号入力時には、キャリアアンプ511の出力インピーダンスは2倍となり、ピークアンプ512の出力インピーダンスはキャリアアンプ511の出力インピーダンスと同じとなっている。また、大信号入力時には、キャリアアンプ511、ピークアンプ512および513が動作することで大電力信号を出力することができ、かつ、ピークアンプ512および513の出力インピーダンスが低いことで、信号歪を抑制することが可能となる。
比較例2に係る増幅回路520によれば、キャリアアンプ511、ピークアンプ512および513という3つの増幅素子を有することで、キャリアアンプ511ならびにピークアンプ512および513がオン状態である高出力領域から、キャリアアンプ511のみがオン状態である低出力領域までの電力差であるバックオフ量を段階的かつ大きく確保できる。
図7は、実施の形態および比較例2に係る増幅回路における出力電力と効率との関係を示すグラフである。図7において、横軸は増幅回路10または520から出力される信号の電力レベルであり、縦軸は各増幅回路の効率(電力付加効率)である。
同図に示すように、比較例2に係る増幅回路520において、キャリアアンプ511を構成する増幅トランジスタのサイズと、ピークアンプ512を構成する増幅トランジスタのサイズと、ピークアンプ513を構成する増幅トランジスタのサイズとが等しい場合(図7のサイズ_アンプ511:512:513=1:1:1)、キャリアアンプ511、ピークアンプ512および513がオン状態である高出力領域から、キャリアアンプ511のみがオン状態である低出力領域までの電力差であるバックオフ量は9dBとなる。
これに対して、実施の形態に係る増幅回路10において、キャリアアンプ11を構成する増幅トランジスタのサイズと、ピークアンプ12を構成する増幅トランジスタのサイズと、ピークアンプ20を構成する増幅トランジスタのサイズとが、1:1:2である場合、つまり、キャリアアンプ11を構成する増幅トランジスタのサイズおよびピークアンプ12を構成する増幅トランジスタのサイズの合計と、ピークアンプ20を構成する増幅トランジスタのサイズとが、等しい場合(図7のサイズ_アンプ11:12:20=1:1:2)、キャリアアンプ11、ピークアンプ12およびピークアンプ20がオン状態である高出力領域から、キャリアアンプ11のみがオン状態である低出力領域までの電力差であるバックオフ量は9dBとなる。
なお、このとき、実施の形態に係る増幅回路10におけるキャリアアンプ11を構成する増幅トランジスタのサイズ、ピークアンプ12を構成する増幅トランジスタのサイズ、およびピークアンプ20を構成する増幅トランジスタのサイズの合計と、比較例2に係る増幅回路520におけるキャリアアンプ511を構成する増幅トランジスタのサイズ、ピークアンプ512を構成する増幅トランジスタのサイズ、およびピークアンプ513を構成する増幅トランジスタのサイズの合計とは等しい。この場合には、実施の形態に係る増幅回路10は、比較例2に係る増幅回路520に対して、アンプの合計サイズは同じであるが、キャリアアンプ11およびピークアンプ12の出力端に移相線路が配置されないので、小型化が可能となる。また、低出力領域におけるキャリアアンプ11の出力インピーダンスが高出力領域におけるキャリアアンプ11の出力インピーダンスの3倍未満となっているので、ピークアンプ12がオン状態からオフ状態へと変化した点(バックオフ量が9dBとなった出力電力点)における効率は、比較例2に係る増幅回路520と比較して低くなっている。しかしながら、ピークアンプ12がオン状態からオフ状態へと変化した点から出力電力が小さくなる(低出力領域)ほど、比較例2に係る増幅回路520と比較して効率が高くなる。これは、実施の形態に係る増幅回路10のアンプ全体に対するキャリアアンプ11のサイズ比率が、比較例2に係る増幅回路520のアンプ全体に対するキャリアアンプ511のサイズ比率よりも小さいことに起因している。
つまり、本実施の形態に係る増幅回路10は、比較例1に係る2ウェイドハティ型の増幅回路と比較して、増幅素子を大型化させずに3つの増幅素子を段階的に増幅動作することが可能となるので、バックオフ量を大きく確保でき、また、中出力領域における効率を高くできる。また、比較例2に係る3ウェイドハティ型の増幅回路と比較して、低出力領域における効率を高くしつつ小型化できる。
なお、各アンプを構成する増幅トランジスタのサイズとは、当該アンプが配置された半導体IC80の主面を平面視(透視)した場合に、当該アンプが有する増幅トランジスタの形成領域の面積と定義される。各アンプを構成する増幅トランジスタのサイズは、当該増幅トランジスタを構成するトランジスタ素子の段数、セル数またはフィンガー数に依存する。したがって、増幅トランジスタのサイズが大きいとは、トランジスタ素子の段数が多い、および、セル数またはフィンガー数が多い、の少なくとも一方が成立している状態である。
また、「2つのアンプを構成する各増幅トランジスタのサイズが等しい」とは、2つのアンプを構成する各増幅トランジスタのサイズが厳密に一致することに加えて、2つのアンプを構成する各増幅トランジスタのサイズが実質的に等しいことも含まれる。ここで、アンプを構成する増幅トランジスタのサイズは、面積(2次元領域の範囲の尺度)で表される。2つのアンプを構成する各増幅トランジスタのサイズが実質的に等しいとは、2つのアンプを構成する各増幅トランジスタのサイズの大きい方に対する、2つのアンプを構成する各増幅トランジスタのサイズの差分値の比が10%以下であること意味する。
また、増幅トランジスタの形成領域の面積は、半導体IC80の主面の法線方向からX線を照射して撮影された増幅トランジスタの画像においてN型およびP型の半導体の領域を認識することで測定することができる。
また、各アンプを構成する各増幅トランジスタは、複数のトランジスタ素子が並列接続された構成を有していてもよい。この場合、複数のトランジスタ素子のそれぞれがエミッタ接地型のバイポーラトランジスタである場合、増幅トランジスタの数は、コレクタ端子の数で決定される。つまり、増幅トランジスタの数とコレクタ端子の数とは、1対1で対応している。
また、2ウェイ、3ウェイは、例えば、各アンプが含まれる半導体集積回路部品の表面に設けられた出力端子の数で規定される。上記出力端子は、各アンプの出力端が接続された端子である。つまり、半導体集積回路部品の表面に設けられた出力端子の数が2個の場合には2ウェイ型ドハティ増幅回路であり、半導体集積回路部品の表面に設けられた出力端子の数が3個の場合には3ウェイ型ドハティ増幅回路である。
[1.7 増幅回路の具体的回路構成]
図8Aは、実施の形態に係る増幅回路10の回路構成図である。同図には、増幅回路10に含まれるバイアス回路51および52の回路構成例が示されている。
図8Aは、実施の形態に係る増幅回路10の回路構成図である。同図には、増幅回路10に含まれるバイアス回路51および52の回路構成例が示されている。
キャリアアンプ11、ピークアンプ12および20を構成する増幅トランジスタのぞれぞれは、例えば、エミッタ接地型のバイポーラトランジスタである。
バイアス回路51は、電流入力端子113、抵抗素子551、キャパシタ552、トランジスタ553、554および555を有している。電流入力端子113は、第1電流入力端子の一例であり、バイアス回路51が第1定電流を受けるための端子である。電流入力端子113には、外部の定電流源回路から第1定電流が入力される。トランジスタ553および554は、それぞれダイオード接続されており、トランジスタ553のコレクタは抵抗素子551を介して電流入力端子113に接続されている。トランジスタ553のエミッタはトランジスタ554のコレクタと接続され、トランジスタ554のエミッタはグランドに接続されている。トランジスタ553および555はベース同士が接続され、カレントミラー回路を構成している。キャパシタ552はトランジスタ553および555のベースとグランドとの間に接続されている。上記構成により、トランジスタ555のエミッタからバイアス電流Ib1(第1バイアス電流)がキャリアアンプ11の増幅トランジスタのベース端子に供給される。
バイアス回路52は、電流入力端子114、抵抗素子561、キャパシタ562、トランジスタ563、564および565を有している。電流入力端子114は、第2電流入力端子の一例であり、バイアス回路52が第2定電流を受けるための端子である。電流入力端子114には、外部の定電流源回路から第2定電流が入力される。各回路素子の接続構成は、バイアス回路51と同じであるので、説明を省略する。トランジスタ565のエミッタからバイアス電流Ib2(第2バイアス電流)がピークアンプ12の増幅トランジスタのベース端子に供給される。また、トランジスタ565のエミッタからバイアス電流Ib3(第3バイアス電流)がピークアンプ20の増幅トランジスタのベース端子に供給される。
ここで、バイアス電流Ib1はバイアス電流Ib2よりも大きく、かつ、バイアス電流Ib3よりも大きい。これによれば、キャリアアンプ11をC級動作させ、ピークアンプ12および20をA級またはAB級動作させることが可能となる。また、3つのアンプをバイアス電流の大きさにより、キャリアアンプ11と、ピークアンプ12および20と、に分類し、これらに対して2つのバイアス回路でバイアス電流が供給されるので、増幅回路10を小型化できる。
図8Bは、変形例1に係る増幅回路10Aの回路構成図である。同図には、増幅回路10Aに含まれるバイアス回路51および52Aの回路構成例が示されている。増幅回路10Aは、信号入力端子110(図示せず)および信号出力端子120と、キャリアアンプ11と、ピークアンプ12および20と、移相線路40と、トランス30と、バイアス回路51および52Aと、を備える。本変形例に係る増幅回路10Aは、実施の形態に係る増幅回路10と比較して、バイアス回路52Aの構成およびバイアス回路52Aからバイアス電流を供給する構成が異なる。以下、本変形例に係る増幅回路10Aについて、実施の形態に係る増幅回路10と異なる構成を中心に説明する。
バイアス回路51のトランジスタ555の出力端は配線91を経由してキャリアアンプ11に接続されている。
バイアス回路52Aは、電流入力端子114、抵抗素子561、キャパシタ562、トランジスタ563、564、565および566を有している。電流入力端子114は、第2電流入力端子の一例であり、バイアス回路52Aが第2定電流を受けるための端子である。トランジスタ563および564は、それぞれダイオード接続されており、トランジスタ563のコレクタは抵抗素子561を介して電流入力端子114に接続されている。トランジスタ563のエミッタはトランジスタ564のコレクタと接続され、トランジスタ564のエミッタはグランドに接続されている。トランジスタ563および565はベース同士が接続され、カレントミラー回路を構成している。また、トランジスタ563および566はベース同士が接続され、カレントミラー回路を構成している。キャパシタ562はトランジスタ563、565および566のベースとグランドとの間に接続されている。
トランジスタ566(第1トランジスタ)の出力端は配線92(第1配線)を経由してピークアンプ12に接続され、トランジスタ565(第2トランジスタ)の出力端は配線93(第2配線)を経由してピークアンプ20に接続されている。上記構成により、トランジスタ565のエミッタからバイアス電流Ib3(第3バイアス電流)がピークアンプ20の増幅トランジスタのベース端子に供給される。また、トランジスタ566のエミッタからバイアス電流Ib2(第2バイアス電流)がピークアンプ12の増幅トランジスタのベース端子に供給される。
ここで、バイアス電流Ib1はバイアス電流Ib2よりも大きく、かつ、バイアス電流Ib3よりも大きい。これによれば、キャリアアンプ11をC級動作させ、ピークアンプ12および20をA級またはAB級動作させることが可能となる。また、3つのアンプをバイアス電流の大きさにより、キャリアアンプ11と、ピークアンプ12および20と、に分類し、これらに対して2つのバイアス回路でバイアス電流が供給されるので、増幅回路10Aを小型化できる。さらに、バイアス電流Ib2およびIb3が、それぞれ異なるトランジスタ566および565から供給されるので、バイアス電流Ib2とバイアス電流Ib3との大きさを異ならせることが可能となる。また、バイアス電流Ib2およびIb3が、それぞれ異なる配線92および93によりピークアンプ12および20に供給されるので、バイアス電流Ib2およびIb3が相互干渉してノイズ源となることを抑制できる。
図8Cは、変形例2に係る増幅回路10Bの回路構成図である。同図には、増幅回路10Bに含まれるバイアス回路51および52の回路構成例が示されている。増幅回路10Bは、信号入力端子110(図示せず)および信号出力端子120と、キャリアアンプ11と、ピークアンプ12および20と、移相線路40と、トランス30と、バイアス回路51および52と、スイッチ65と、を備える。本変形例に係る増幅回路10Bは、実施の形態に係る増幅回路10と比較して、ピークアンプ12へ供給されるバイアス電流の供給元を切り替えるスイッチ65が付加されている点が異なる。以下、本変形例に係る増幅回路10Bについて、実施の形態に係る増幅回路10と異なる構成を中心に説明する。
スイッチ65は、端子65a(第1端子)、端子65b(第2端子)および端子65c(第3端子)を有し、端子65aと端子65bとの接続および端子65aと端子65cとの接続を切り替える。端子65aはピークアンプ12を構成する増幅トランジスタのベース端子に接続され、端子65bはバイアス回路51のトランジスタ555に接続され、端子65cはバイアス回路52のトランジスタ565に接続されている。
上記回路構成において、バイアス回路51のトランジスタ555から出力されたバイアス電流Ib1(第1バイアス電流)が抵抗を介してキャリアアンプ11の増幅トランジスタのベース端子に供給される。また、バイアス回路52のトランジスタ565から出力されたバイアス電流Ib22(第2バイアス電流)がスイッチ65および抵抗を介してピークアンプ12の増幅トランジスタのベース端子に供給される、または、バイアス回路51のトランジスタ555から出力されたバイアス電流Ib21がスイッチ65および抵抗を介してピークアンプ12の増幅トランジスタのベース端子に供給される。また、バイアス回路52のトランジスタ565から出力されたバイアス電流Ib3(第3バイアス電流)が抵抗を介してピークアンプ20の増幅トランジスタのベース端子に供給される。
ここで、バイアス電流Ib1はバイアス電流Ib22よりも大きく、かつ、バイアス電流Ib3よりも大きい。また、バイアス電流Ib21はバイアス電流Ib22よりも大きく、かつ、バイアス電流Ib3よりも大きい。これによれば、ピークアンプ12の増幅特性を、キャリアアンプ11の増幅特性およびピークアンプ20の増幅特性のいずれかに選択して合わせることが可能となる。よって、バックオフ量の調整が可能となる。
なお、スイッチ65は、半導体IC80に含まれていてもよい。これによれば、増幅回路10Bを小型化できる。
[1.8 変形例3に係る高周波モジュール1Cの回路構成]
図9は、変形例3に係る高周波モジュール1Cの回路構成図である。同図に示すように、高周波モジュール1Cは、増幅回路10Cと、フィルタ62および63と、スイッチ61および64と、アンテナ接続端子100と、を備える。本変形例に係る高周波モジュール1Cは、実施の形態に係る高周波モジュール1と比較して、増幅回路10Cの構成が異なる。以下、本変形例に係る高周波モジュール1Cについて、実施の形態に係る高周波モジュール1と構成が異なる増幅回路10Cの構成について説明する。
図9は、変形例3に係る高周波モジュール1Cの回路構成図である。同図に示すように、高周波モジュール1Cは、増幅回路10Cと、フィルタ62および63と、スイッチ61および64と、アンテナ接続端子100と、を備える。本変形例に係る高周波モジュール1Cは、実施の形態に係る高周波モジュール1と比較して、増幅回路10Cの構成が異なる。以下、本変形例に係る高周波モジュール1Cについて、実施の形態に係る高周波モジュール1と構成が異なる増幅回路10Cの構成について説明する。
図9に示すように、増幅回路10Cは、信号入力端子110および信号出力端子120と、キャリアアンプ11と、ピークアンプ12および20と、移相線路41と、移相回路70と、バイアス回路51および52と、を備える。実施の形態に係る増幅回路10が電圧合成型のドハティ増幅回路であるのに対して、本変形例に係る増幅回路10Cは電流合成型のドハティ増幅回路である。以下、本変形例に係る増幅回路10Cについて、実施の形態に係る増幅回路10と同じ構成については説明を省略し、異なる構成を中心に説明する。
移相線路41は、移相回路の一例であり、例えば1/4波長伝送線路である。移相線路41は、その一端から入力された高周波信号の位相を1/4波長遅らせてその他端から出力する。
増幅回路10Cにおいて、キャリアアンプ11の入力端およびピークアンプ12の入力端は、入力端子110Aに接続され、キャリアアンプ11の出力端およびピークアンプ12の出力端は出力端子111に接続されている。また、ピークアンプ20の入力端は入力端子110Bに接続され、ピークアンプ20の出力端は出力端子112に接続されている。また、移相線路41の一端は出力端子111に接続され、移相線路41の他端は信号出力端子120および出力端子112に接続されている。
高周波モジュール1Cの上記接続構成によれば、キャリアアンプ11およびピークアンプ12から出力されるバンドAの信号と、ピークアンプ20から出力されるバンドAの信号とが電流合成され、当該電流合成された出力信号がスイッチ61へと出力される。また、キャリアアンプ11およびピークアンプ12から出力されるバンドBの信号と、ピークアンプ20から出力されるバンドBの信号とが電流合成され、当該電流合成された出力信号がスイッチ61へと出力される。
また、キャリアアンプ11、ピークアンプ12および20は、半導体IC80に含まれている。半導体IC80は、例えばCMOSを用いて構成され、具体的にはSOIプロセスにより製造されてもよい。また、半導体IC80のそれぞれは、GaAs、SiGeおよびGaNのうちの少なくとも1つで構成されてもよい。なお、半導体IC80の半導体材料は、上述した材料に限定されない。
半導体IC80の表面には、半導体IC80が外部回路から高周波信号を受けるための入力端子110A(第1入力端子)および入力端子110B(第2入力端子)と、半導体IC80から高周波信号を出力するための出力端子111(第1出力端子)および出力端子112(第2出力端子)が配置されている。なお、移相回路70が半導体IC80に含まれていてもよい。この場合には、半導体IC80の表面には、入力端子110Aおよび110Bに代わって信号入力端子110が第1入力端子および第2入力端子として配置される。
なお、本変形例に係る高周波モジュール1Cは、ドハティ型の増幅器を有する高周波回路であって、並列接続されたキャリアアンプ11およびピークアンプ12と、ピークアンプ20と、を備え、並列接続されたキャリアアンプ11およびピークアンプ12は、第1高周波信号が分配された第2高周波信号を増幅して第1増幅信号を出力し、ピークアンプ20は第1高周波信号が分配された第3高周波信号を増幅して第2増幅信号を出力し、高周波モジュール1Cは、さらに、上記第1増幅信号および上記第2増幅信号を合成して合成信号を出力する合成回路を備える。上記合成回路は、移相線路41である。
本変形例に係る増幅回路10Cは、比較例1に係る2ウェイドハティ型の増幅回路と比較して、増幅素子を大型化させずに3つの増幅素子を段階的に増幅動作することが可能となるので、バックオフ量を大きく確保でき、また、中出力領域における効率を高くできる。また、比較例2に係る3ウェイドハティ型の増幅回路と比較して、低出力領域における効率を高くしつつ小型化できる。
[1.9 実施の形態に係る増幅回路10の実装構成]
図10は、実施の形態に係る増幅回路10の平面図である。同図には、増幅回路10が有する半導体IC80の主面を平面視(透視)した場合における、各回路および各部品の配置が示されている。
図10は、実施の形態に係る増幅回路10の平面図である。同図には、増幅回路10が有する半導体IC80の主面を平面視(透視)した場合における、各回路および各部品の配置が示されている。
なお、図10に示された増幅回路10には、図1に示された増幅回路10と比較して、プリアンプ13、15および23、ならびに整合回路71、72および73が付加されている。また、入力端子110Aおよび110Bに代えて、信号入力端子110が第1入力端子および第2入力端子であり、半導体IC80の表面に配置されている。
図10に示すように、キャリアアンプ11、ピークアンプ12および20、プリアンプ13、15および23、バイアス回路51および52、整合回路71、72および73は、半導体IC80に含まれている。
なお、バイアス回路51および52は、半導体IC80に含まれず、半導体IC80の外部に配置されていてもよい。
また、プリアンプ13、15および23、ならびに整合回路71、72および73は、なくてもよい。この場合には、キャリアアンプ11の入力端およびピークアンプ12の入力端に接続される入力端子110A、ならびに、ピークアンプ20の入力端に接続される入力端子110Bが半導体IC80の表面に配置される。
増幅回路10において、キャリアアンプ11の入力端およびピークアンプ12の入力端は、整合回路71、プリアンプ13、移相回路70、プリアンプ15、および整合回路73を介して信号入力端子110(第1入力端子)に接続されている。キャリアアンプ11の出力端およびピークアンプ12の出力端は出力端子111に接続されている。また、ピークアンプ20の入力端は、整合回路72、プリアンプ23、移相回路70、プリアンプ15、および整合回路73を介して信号入力端子110(第2入力端子)に接続されている。また、ピークアンプ20の出力端は出力端子112に接続されている。
バイアス回路51は、配線151を介してキャリアアンプ11に接続されている。また、バイアス回路52は、配線152を介してピークアンプ12および20に接続されている。
また、半導体IC80の表面には、バイアス回路51が外部の定電流源から第1定電流を受けるための電流入力端子113(第1電流入力端子)、および、バイアス回路52が外部の定電流源から第2定電流を受けるための電流入力端子114(第2電流入力端子)が配置されている。
上記構成によれば、キャリアアンプ11、ピークアンプ12および20が半導体IC80内に配置され、キャリアアンプ11およびピークアンプ12の入力端子を共通化でき、キャリアアンプ11およびピークアンプ12の出力端子を共通化できるので半導体IC80を小型化できる。また、バイアス回路51および52を半導体IC80に内蔵できるので、増幅回路10を小型化できる。
なお、半導体IC80の主面を平面視した場合、キャリアアンプ11を構成する増幅トランジスタおよびピークアンプ12を構成する増幅トランジスタの合計サイズは、ピークアンプ20を構成する増幅トランジスタのサイズ以下であることが望ましい。
これによれば、アンプ全体に対するキャリアアンプ11のサイズ比率が小さいので、低出力領域(キャリアアンプ11のみが増幅動作する領域)における効率を高くしつつ小型化できる。
[2.効果など]
以上のように、本実施の形態に係る高周波モジュール1は、キャリアアンプ11、ピークアンプ12および20と、入力側コイル301および出力側コイル302を有するトランス30と、移相線路40と、バイアス電流を供給するバイアス回路51および52と、を備え、キャリアアンプ11、ピークアンプ12および20は、半導体IC80に含まれ、半導体IC80の表面には、半導体IC80が高周波信号を受けるための入力端子110Aおよび110B、ならびに、半導体IC80から高周波信号を出力するための出力端子111および112が配置されており、キャリアアンプ11の入力端およびピークアンプ12の入力端は入力端子110Aに接続され、キャリアアンプ11の出力端およびピークアンプ12の出力端は出力端子111に接続され、ピークアンプ20の入力端は入力端子110Bに接続され、ピークアンプ20の出力端は出力端子112に接続され、入力側コイル301の一端は出力端子111に接続され、移相線路40の一端は出力端子112に接続され、移相線路40の他端は入力側コイル301の他端に接続され、バイアス回路51はキャリアアンプ11に接続され、バイアス回路52はピークアンプ12および20に接続されている。
以上のように、本実施の形態に係る高周波モジュール1は、キャリアアンプ11、ピークアンプ12および20と、入力側コイル301および出力側コイル302を有するトランス30と、移相線路40と、バイアス電流を供給するバイアス回路51および52と、を備え、キャリアアンプ11、ピークアンプ12および20は、半導体IC80に含まれ、半導体IC80の表面には、半導体IC80が高周波信号を受けるための入力端子110Aおよび110B、ならびに、半導体IC80から高周波信号を出力するための出力端子111および112が配置されており、キャリアアンプ11の入力端およびピークアンプ12の入力端は入力端子110Aに接続され、キャリアアンプ11の出力端およびピークアンプ12の出力端は出力端子111に接続され、ピークアンプ20の入力端は入力端子110Bに接続され、ピークアンプ20の出力端は出力端子112に接続され、入力側コイル301の一端は出力端子111に接続され、移相線路40の一端は出力端子112に接続され、移相線路40の他端は入力側コイル301の他端に接続され、バイアス回路51はキャリアアンプ11に接続され、バイアス回路52はピークアンプ12および20に接続されている。
これによれば、従来の2ウェイドハティ型の増幅回路と比較して、増幅素子を大型化させずに3つの増幅素子を段階的に増幅動作することが可能となるので、バックオフ量を大きく確保でき、また、中出力領域における効率を高くできる。また、従来の3ウェイドハティ型の増幅回路と比較して、低出力領域における効率を高くしつつ小型化できる。よって、大型化を抑制しつつバックオフ量および効率が向上した高周波モジュール1を提供することが可能となる。
また、変形例3に係る高周波モジュール1Cは、キャリアアンプ11、ピークアンプ12および20と、移相線路41と、バイアス電流を供給するバイアス回路51および52と、を備え、キャリアアンプ11、ピークアンプ12および20は、半導体IC80に含まれ、半導体IC80の表面には、半導体IC80が高周波信号を受けるための入力端子110Aおよび110Bと、半導体IC80から高周波信号を出力するための出力端子111および112が配置されており、キャリアアンプ11の入力端およびピークアンプ12の入力端は入力端子110Aに接続され、キャリアアンプ11の出力端およびピークアンプ12の出力端は出力端子111に接続され、ピークアンプ20の入力端は入力端子110Bに接続され、ピークアンプ20の出力端は出力端子112に接続され、移相線路41の一端は出力端子111に接続され、移相線路41の他端は出力端子112に接続され、バイアス回路51はキャリアアンプ11に接続され、バイアス回路52はピークアンプ12および20に接続されている。
また例えば、高周波モジュール1および1Cにおいて、バイアス回路51がキャリアアンプ11に供給する第1バイアス電流は、バイアス回路52がピークアンプ12に供給する第2バイアス電流よりも大きく、かつ、バイアス回路52がピークアンプ20に供給する第3バイアス電流よりも大きくてもよい。
これによれば、キャリアアンプ11をC級動作させ、ピークアンプ12および20をA級またはAB級動作させることが可能となる。
また例えば、高周波モジュール1および1Cにおいて、半導体IC80の主面を平面視した場合、キャリアアンプ11を構成する増幅トランジスタおよびピークアンプ12を構成する増幅トランジスタの合計サイズは、ピークアンプ20を構成する増幅トランジスタのサイズ以下であってもよい。
これによれば、アンプ全体に対するキャリアアンプ11のサイズ比率が小さいので、低出力領域(キャリアアンプ11のみが増幅動作する領域)における効率を高くしつつ小型化できる。
また例えば、変形例1に係る高周波モジュールにおいて、バイアス回路52Aは、トランジスタ565および566を有し、トランジスタ566の出力端は配線92を経由してピークアンプ12に接続され、トランジスタ565の出力端は配線93を経由してピークアンプ20に接続されていてもよい。
これによれば、第2バイアス電流および第3バイアス電流が、それぞれ異なるトランジスタ566および565から供給されるので、第2バイアス電流と第3バイアス電流との大きさを異ならせることが可能となる。また、第2バイアス電流および第3バイアス電流が、それぞれ異なる配線92および93によりピークアンプ12および20に供給されるので、第2バイアス電流および第3バイアス電流が相互干渉してノイズ源となることを抑制できる。
また例えば、変形例2に係る高周波モジュールにおいて、端子65a、65bおよび65cを有し、端子65aと端子65bとの接続および端子65aと端子65cとの接続を切り替えるスイッチ65を、さらに備え、端子65aはピークアンプ12に接続され、端子65bはバイアス回路51に接続され、端子65cはバイアス回路52に接続されていてもよい。
これによれば、ピークアンプ12の増幅特性を、キャリアアンプ11の増幅特性およびピークアンプ20の増幅特性のいずれかに選択して合わせることが可能となる。よって、バックオフ量の調整が可能となる。
また例えば、変形例2に係る高周波モジュールにおいて、スイッチ65は半導体IC80に含まれていてもよい。
これによれば、増幅回路10Bを小型化できる。
また例えば、高周波モジュール1において、バイアス回路51および52は半導体IC80に含まれており、半導体IC80の表面には、バイアス回路51が第1定電流を受けるための電流入力端子113、および、バイアス回路52が第2定電流を受けるための電流入力端子114が配置されていてもよい。
これによれば、キャリアアンプ11、ピークアンプ12および20が半導体IC80内に配置され、キャリアアンプ11およびピークアンプ12の入力端子を共通化でき、キャリアアンプ11およびピークアンプ12の出力端子を共通化できるので半導体IC80を小型化できる。また、バイアス回路51および52を半導体IC80に内蔵できるので、増幅回路10および高周波モジュール1を小型化できる。
また、本実施の形態に係る通信装置4は、高周波信号を処理するRFIC3と、RFIC3とアンテナ2との間で高周波信号を伝送する高周波モジュール1と、を備える。
これによれば、高周波モジュール1の効果を通信装置4で実現することができる。
(その他の実施の形態など)
以上、本発明の実施の形態に係る高周波モジュールおよび通信装置について、実施の形態および変形例を挙げて説明したが、本発明に係る高周波モジュールおよび通信装置は、上記実施の形態および変形例に限定されるものではない。上記実施の形態および変形例における任意の構成要素を組み合わせて実現される別の実施の形態や、上記実施の形態および変形例に対して本発明の主旨を逸脱しない範囲で当業者が思いつく各種変形を施して得られる変形例や、上記高周波モジュールおよび通信装置を内蔵した各種機器も本発明に含まれる。
以上、本発明の実施の形態に係る高周波モジュールおよび通信装置について、実施の形態および変形例を挙げて説明したが、本発明に係る高周波モジュールおよび通信装置は、上記実施の形態および変形例に限定されるものではない。上記実施の形態および変形例における任意の構成要素を組み合わせて実現される別の実施の形態や、上記実施の形態および変形例に対して本発明の主旨を逸脱しない範囲で当業者が思いつく各種変形を施して得られる変形例や、上記高周波モジュールおよび通信装置を内蔵した各種機器も本発明に含まれる。
また例えば、上記実施の形態および変形例に係る高周波モジュールおよび通信装置において、図面に開示された各回路素子および信号経路を接続する経路の間に、別の回路素子および配線などが挿入されていてもよい。
本発明は、マルチバンド対応のフロントエンド部に配置される高周波回路として、携帯電話などの通信機器に広く利用できる。
1、1C 高周波モジュール
2 アンテナ
3 RF信号処理回路(RFIC)
4 通信装置
10、10A、10B、10C、510、520 増幅回路
11、511 キャリアアンプ
12、20、512、513 ピークアンプ
13、15、23 プリアンプ
30 トランス
40、41、541、542、543、544、545 移相線路
51、52、52A バイアス回路
61、64、65 スイッチ
62、63 フィルタ
65a、65b、65c 端子
70、570 移相回路
71、72、73 整合回路
80 半導体IC
91、92、93、151、152 配線
100 アンテナ接続端子
110 信号入力端子
110A、110B 入力端子
111、112 出力端子
113、114 電流入力端子
120 信号出力端子
301 入力側コイル
302 出力側コイル
551、561 抵抗素子
552、562 キャパシタ
553、554、555、563、564、565、566 トランジスタ
2 アンテナ
3 RF信号処理回路(RFIC)
4 通信装置
10、10A、10B、10C、510、520 増幅回路
11、511 キャリアアンプ
12、20、512、513 ピークアンプ
13、15、23 プリアンプ
30 トランス
40、41、541、542、543、544、545 移相線路
51、52、52A バイアス回路
61、64、65 スイッチ
62、63 フィルタ
65a、65b、65c 端子
70、570 移相回路
71、72、73 整合回路
80 半導体IC
91、92、93、151、152 配線
100 アンテナ接続端子
110 信号入力端子
110A、110B 入力端子
111、112 出力端子
113、114 電流入力端子
120 信号出力端子
301 入力側コイル
302 出力側コイル
551、561 抵抗素子
552、562 キャパシタ
553、554、555、563、564、565、566 トランジスタ
Claims (9)
- 第1増幅素子、第2増幅素子および第3増幅素子と、
入力側コイルおよび出力側コイルを有するトランスと、
移相回路と、
バイアス電流を供給する第1バイアス回路および第2バイアス回路と、を備え、
前記第1増幅素子、前記第2増幅素子および前記第3増幅素子は、半導体集積回路部品に含まれ、
前記半導体集積回路部品の表面には、前記半導体集積回路部品が高周波信号を受けるための第1入力端子および第2入力端子、ならびに、前記半導体集積回路部品から高周波信号を出力するための第1出力端子および第2出力端子が配置されており、
前記第1増幅素子の入力端および前記第2増幅素子の入力端は前記第1入力端子に接続され、
前記第1増幅素子の出力端および前記第2増幅素子の出力端は前記第1出力端子に接続され、
前記第3増幅素子の入力端は前記第2入力端子に接続され、
前記第3増幅素子の出力端は前記第2出力端子に接続され、
前記入力側コイルの一端は、前記第1出力端子に接続され、
前記移相回路の一端は、前記第2出力端子に接続され、
前記移相回路の他端は、前記入力側コイルの他端に接続され、
前記第1バイアス回路は、前記第1増幅素子に接続され、
前記第2バイアス回路は、前記第2増幅素子および前記第3増幅素子に接続されている、
高周波モジュール。 - 第1増幅素子、第2増幅素子および第3増幅素子と、
移相回路と、
バイアス電流を供給する第1バイアス回路および第2バイアス回路と、を備え、
前記第1増幅素子、前記第2増幅素子および前記第3増幅素子は、半導体集積回路部品に含まれ、
前記半導体集積回路部品の表面には、前記半導体集積回路部品が高周波信号を受けるための第1入力端子および第2入力端子と、前記半導体集積回路部品から高周波信号を出力するための第1出力端子および第2出力端子が配置されており、
前記第1増幅素子の入力端および前記第2増幅素子の入力端は前記第1入力端子に接続され、
前記第1増幅素子の出力端および前記第2増幅素子の出力端は前記第1出力端子に接続され、
前記第3増幅素子の入力端は前記第2入力端子に接続され、
前記第3増幅素子の出力端は前記第2出力端子に接続され、
前記移相回路の一端は、前記第1出力端子に接続され、
前記移相回路の他端は、前記第2出力端子に接続され、
前記第1バイアス回路は、前記第1増幅素子に接続され、
前記第2バイアス回路は、前記第2増幅素子および前記第3増幅素子に接続されている、
高周波モジュール。 - 前記第1バイアス回路が前記第1増幅素子に供給する第1バイアス電流は、前記第2バイアス回路が前記第2増幅素子に供給する第2バイアス電流よりも大きく、かつ、前記第2バイアス回路が前記第3増幅素子に供給する第3バイアス電流よりも大きい、
請求項1または2に記載の高周波モジュール。 - 前記半導体集積回路部品の主面を平面視した場合、前記第1増幅素子を構成する増幅トランジスタおよび前記第2増幅素子を構成する増幅トランジスタの合計サイズは、前記第3増幅素子を構成する増幅トランジスタのサイズ以下である、
請求項1~3のいずれか1項に記載の高周波モジュール。 - 前記第2バイアス回路は、第1トランジスタおよび第2トランジスタを有し、
前記第1トランジスタの出力端は第1配線を経由して前記第2増幅素子に接続され、
前記第2トランジスタの出力端は第2配線を経由して前記第3増幅素子に接続されている、
請求項1~4のいずれか1項に記載の高周波モジュール。 - 第1端子、第2端子および第3端子を有し、前記第1端子と前記第2端子との接続および前記第1端子と前記第3端子との接続を切り替えるスイッチを、さらに備え、
前記第1端子は、前記第2増幅素子に接続され、
前記第2端子は、前記第1バイアス回路に接続され、
前記第3端子は、前記第2バイアス回路に接続されている、
請求項1~5のいずれか1項に記載の高周波モジュール。 - 前記スイッチは、前記半導体集積回路部品に含まれている、
請求項6に記載の高周波モジュール。 - 前記第1バイアス回路および前記第2バイアス回路は、前記半導体集積回路部品に含まれており、
前記半導体集積回路部品の表面には、前記第1バイアス回路が第1定電流を受けるための第1電流入力端子、および、前記第2バイアス回路が第2定電流を受けるための第2電流入力端子が配置されている、
請求項1~7のいずれか1項に記載の高周波モジュール。 - 高周波信号を処理する信号処理回路と、
前記信号処理回路とアンテナとの間で前記高周波信号を伝送する、請求項1~7のいずれか1項に記載の高周波モジュールと、を備える、
通信装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202380026028.XA CN118830195A (zh) | 2022-03-10 | 2023-02-21 | 高频模块和通信装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022037434 | 2022-03-10 | ||
JP2022-037434 | 2022-03-10 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023171364A1 true WO2023171364A1 (ja) | 2023-09-14 |
Family
ID=87936883
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/006213 WO2023171364A1 (ja) | 2022-03-10 | 2023-02-21 | 高周波モジュールおよび通信装置 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN118830195A (ja) |
WO (1) | WO2023171364A1 (ja) |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008160505A (ja) * | 2006-12-25 | 2008-07-10 | Sharp Corp | バイアス回路、それを用いた増幅器及び当該増幅器を備える通信装置 |
US20140152389A1 (en) * | 2011-07-25 | 2014-06-05 | Andrew Llc | Actively Tuned Circuit Having Parallel Carrier and Peaking Paths |
WO2015114698A1 (ja) * | 2014-01-31 | 2015-08-06 | 日本電気株式会社 | トランジスタパッケージ、それを備えた増幅回路、及び、トランジスタの構成方法 |
CN108768308A (zh) * | 2018-05-16 | 2018-11-06 | 清华大学 | 基于晶体管堆叠结构的非对称Doherty功率放大器 |
-
2023
- 2023-02-21 CN CN202380026028.XA patent/CN118830195A/zh active Pending
- 2023-02-21 WO PCT/JP2023/006213 patent/WO2023171364A1/ja unknown
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008160505A (ja) * | 2006-12-25 | 2008-07-10 | Sharp Corp | バイアス回路、それを用いた増幅器及び当該増幅器を備える通信装置 |
US20140152389A1 (en) * | 2011-07-25 | 2014-06-05 | Andrew Llc | Actively Tuned Circuit Having Parallel Carrier and Peaking Paths |
WO2015114698A1 (ja) * | 2014-01-31 | 2015-08-06 | 日本電気株式会社 | トランジスタパッケージ、それを備えた増幅回路、及び、トランジスタの構成方法 |
CN108768308A (zh) * | 2018-05-16 | 2018-11-06 | 清华大学 | 基于晶体管堆叠结构的非对称Doherty功率放大器 |
Also Published As
Publication number | Publication date |
---|---|
CN118830195A (zh) | 2024-10-22 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US9866178B2 (en) | Radio frequency circuitr having an integrated harmonic filter and a radio frequency circuit having transistors of different threshold voltages | |
US10903806B2 (en) | Radio frequency circuitr having an integrated harmonic filter and a radio frequency circuit having transistors of different threshold voltages | |
US9667206B2 (en) | Linear row array integrated power combiner for RF power amplifiers | |
US11309844B2 (en) | Power amplifier | |
WO2023002778A1 (ja) | 電力増幅回路及び電力増幅方法 | |
WO2023286798A1 (ja) | 電力増幅回路及び電力増幅方法 | |
JP2021150908A (ja) | 高周波回路及び通信装置 | |
US20240097629A1 (en) | Radio-frequency module and communication apparatus | |
US20240128932A1 (en) | Power amplifier circuit and power amplification method | |
WO2023171364A1 (ja) | 高周波モジュールおよび通信装置 | |
WO2022138001A1 (ja) | 高周波回路、高周波モジュールおよび通信装置 | |
WO2023157702A1 (ja) | 高周波回路および通信装置 | |
WO2023286492A1 (ja) | 電力増幅回路及び電力増幅方法 | |
WO2023157725A1 (ja) | 高周波回路および通信装置 | |
US20240178868A1 (en) | Radio frequency circuit, communication device, and power amplification method for radio frequency circuit | |
WO2023007996A1 (ja) | 電力増幅回路および通信装置 | |
WO2023203858A1 (ja) | 高周波回路および通信装置 | |
US20240195366A1 (en) | Amplifier circuit and radio-frequency circuit | |
WO2022254875A1 (ja) | 高周波回路および通信装置 | |
WO2022259892A1 (ja) | 増幅回路及び高周波回路 | |
WO2023203859A1 (ja) | 高周波回路および通信装置 | |
WO2023233736A1 (ja) | 増幅回路および通信装置 | |
WO2022255388A1 (ja) | 高周波回路および通信装置 | |
WO2023238483A1 (ja) | 増幅回路及び増幅方法 | |
WO2023058414A1 (ja) | 高周波回路および通信装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23766542 Country of ref document: EP Kind code of ref document: A1 |