WO2023170985A1 - Ball end mill - Google Patents
Ball end mill Download PDFInfo
- Publication number
- WO2023170985A1 WO2023170985A1 PCT/JP2022/015055 JP2022015055W WO2023170985A1 WO 2023170985 A1 WO2023170985 A1 WO 2023170985A1 JP 2022015055 W JP2022015055 W JP 2022015055W WO 2023170985 A1 WO2023170985 A1 WO 2023170985A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- grooves
- ball
- groove
- tip
- ball blade
- Prior art date
Links
- 230000002093 peripheral effect Effects 0.000 claims abstract description 14
- 230000003746 surface roughness Effects 0.000 claims description 5
- 238000010586 diagram Methods 0.000 description 65
- 238000003754 machining Methods 0.000 description 64
- 238000005520 cutting process Methods 0.000 description 28
- 230000000694 effects Effects 0.000 description 22
- 238000012986 modification Methods 0.000 description 21
- 230000004048 modification Effects 0.000 description 21
- 238000012545 processing Methods 0.000 description 16
- 238000000034 method Methods 0.000 description 15
- 239000000463 material Substances 0.000 description 12
- 230000000052 comparative effect Effects 0.000 description 9
- 238000012360 testing method Methods 0.000 description 8
- 230000015572 biosynthetic process Effects 0.000 description 5
- 238000013016 damping Methods 0.000 description 2
- 229910052582 BN Inorganic materials 0.000 description 1
- PZNSFCLAULLKQX-UHFFFAOYSA-N Boron nitride Chemical compound N#B PZNSFCLAULLKQX-UHFFFAOYSA-N 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 229910003460 diamond Inorganic materials 0.000 description 1
- 239000010432 diamond Substances 0.000 description 1
- 230000012447 hatching Effects 0.000 description 1
- 238000005482 strain hardening Methods 0.000 description 1
- 238000012795 verification Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23C—MILLING
- B23C5/00—Milling-cutters
- B23C5/02—Milling-cutters characterised by the shape of the cutter
- B23C5/10—Shank-type cutters, i.e. with an integral shaft
- B23C5/1009—Ball nose end mills
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23C—MILLING
- B23C5/00—Milling-cutters
- B23C5/02—Milling-cutters characterised by the shape of the cutter
- B23C5/10—Shank-type cutters, i.e. with an integral shaft
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23C—MILLING
- B23C5/00—Milling-cutters
- B23C5/16—Milling-cutters characterised by physical features other than shape
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23C—MILLING
- B23C2210/00—Details of milling cutters
- B23C2210/40—Flutes, i.e. chip conveying grooves
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B23—MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
- B23C—MILLING
- B23C2220/00—Details of milling processes
- B23C2220/64—Using an endmill, i.e. a shaft milling cutter, to generate profile of a crankshaft or camshaft
Definitions
- the present invention relates to a ball end mill.
- Patent Documents 1 and 2 disclose ball end mills in which the surface roughness of the ball blade portion is reduced in order to give the machined surface of the workpiece a mirror finish.
- an intersection where grooves intersect may be formed in the ball blade portion.
- machining may be insufficient in a region of the machined surface of the workpiece through which a large number of intersections pass.
- Some embodiments of the present invention aim to improve the quality of the machined surface of a workpiece.
- Some embodiments of the present invention include a ball blade portion formed in a partially spherical shape, and the ball blade portion extends from the tip side of the ball blade portion toward the outer circumferential side when viewed from the tip in the direction of the rotation axis.
- An intersection located at a predetermined point from the tip side is defined as a first intersection, and among intersections that intersect with the at least one first groove in another of the second grooves, the intersection is located at the predetermined point from the tip side.
- the intersection is a second intersection
- the ball end mill has a length from the tip to the first intersection that is different from a length from the tip to the second intersection.
- the quality of the machined surface of the workpiece can be improved.
- FIG. 1A is a side view of the ball end mill 10, and FIG. 1B is a view seen from the tip 13 of the ball blade portion 12 in the rotation axis direction.
- FIG. 3 is a cross-sectional view of groove 20.
- FIG. 3B is an explanatory diagram of the aspect of the groove 20 formed in the ball blade part 12
- FIG. 3A is a diagram of the ball blade part 12 in which only the groove 20A is formed
- FIG. 3B is a diagram in which the ball blade part 12 is shown in which only the groove 20B is formed.
- FIG. 3C is a diagram of the ball blade part 12 in which grooves 20A and 20B are formed.
- FIG. 4A is an explanatory diagram of the intersections 21 of the grooves 20, FIG.
- FIG. 4A is an explanatory diagram of a plurality of intersections 21 in the ball blade part 12X of a comparative example
- FIG. 4B is an explanatory diagram of the intersections 21 in an enlarged manner
- FIG. 4C is an explanatory diagram of the plurality of intersections 21 in the ball blade part 12 of this embodiment.
- 5A is an explanatory diagram of an example in which the number of grooves 20 formed in the ball blade part 12 is changed
- FIG. 5A is an explanatory diagram of an example in which the number of grooves 20A is 16 and the number of grooves 20B is 13,
- FIG. 5B is It is an explanatory view of an example in which 16 grooves 20A and 11 grooves 20B are provided.
- FIG. 6A is an explanatory diagram of an example in which the number of grooves 20 formed in the ball blade part 12 is changed
- FIG. 6A is an explanatory diagram of an example in which the number of grooves 20A is 17 and the number of grooves 20B is 15, and FIG. 6B is
- FIG. 6C is an explanatory diagram of an example in which the number of grooves 20A is nine and the number of grooves 20B is seven
- FIG. 6C is an explanatory diagram of an example in which the number of grooves 20A is seven and the number of grooves 20B is five.
- 7A is an explanatory diagram of an example in which the number of grooves 20 formed in the ball blade part 12 is changed
- FIG. 7A is an explanatory diagram of an example in which the number of grooves 20A is 16 and the number of grooves 20B is 14, and FIG. 7B is It is an explanatory view of an example in which 15 grooves 20A and 10 grooves 20B are provided.
- FIG. 8A is an explanatory diagram of the aspect of the groove 20 formed in the ball blade part 32 of the first modification
- FIG. 8A is a diagram of the ball blade part 32 in which only the groove 20C is formed
- FIG. 8B is a diagram showing only the groove 20B.
- FIG. 8C is a diagram of the ball blade portion 32 in which a groove 20C and a groove 20B are formed.
- FIG. 9A is an explanatory diagram of the aspect of the groove 20 formed in the ball blade part 42 of the second modification
- FIG. 9A is a diagram of the ball blade part 42 in which only the groove 20A is formed
- FIG. 9B is a diagram showing only the groove 20D
- FIG. 9C is a diagram of the ball blade part 42 in which a groove 20A and a groove 20D are formed.
- 10A is an illustration of a ball end mill 50 having a ball blade portion 52
- FIG. 10B is an illustration of a ball end mill 60 having a ball blade portion 62.
- FIG. 10C is a diagram of a ball end mill 10 having a ball blade part 12. It is an explanatory view explaining processing conditions in a processing test.
- FIG. 12A is a graph showing an example of a comparison result of machining torque under machining condition 1
- FIG. 12A is a graph showing an average torque value
- FIG. 12B is a graph showing a maximum torque value
- 13A is a graph showing an example of a comparison result of machining torque under machining condition 2
- FIG. 13A is a graph showing an average torque value
- FIG. 13B is a graph showing a maximum torque value.
- 14A is a diagram illustrating machining errors under machining conditions 1 and 2
- FIG. 14B is a table showing an example of comparison results of machining errors
- FIG. 15A is a diagram of the ball blade portions 72 and 82 of the second embodiment, FIG.
- FIG. 15A is a view of the ball blade portion 72 of the first example as seen from the tip 13 in the rotation axis direction
- FIG. 15B is a diagram of the second embodiment
- FIG. 3 is a view seen from the tip 13 of the ball blade portion 82 in the direction of the rotation axis
- FIG. 7 is a view seen from the tip 13 of the ball blade part 92 of the third embodiment in the direction of the rotation axis.
- 17A is a first example of the shape of the ball blade part 12, and
- FIG. 17B is a second example of the shape of the ball blade part 12.
- FIG. This is another example regarding the groove 20 of the ball blade part 12.
- FIG. 1 is a diagram of a ball end mill 10 according to a first embodiment. Note that FIG. 1A is a side view of the ball end mill 10, and FIG. 1B is a view seen from the tip 13 of the ball blade portion 12 in the direction of the rotation axis. Further, FIG. 2 is a cross-sectional view of the groove 20.
- the direction along the rotation axis A of the ball end mill 10 is referred to as the "rotation axis direction” or simply the “axial direction.”
- the “rotation axis direction” is also the longitudinal direction of the ball end mill 10.
- the direction of the rotation axis of the ball end mill 10 includes both the “distal direction” and the “proximal direction.”
- the "distal direction” is the direction toward the distal end of the ball end mill 10
- the "proximal direction” is the direction toward the proximal end of the ball end mill 10.
- Each of the "distal direction” and the "proximal direction” is a direction with a fixed orientation.
- the direction along the rotation direction of the ball end mill 10 is sometimes referred to as the "circumferential direction.”
- the “circumferential direction” is also a direction along the outer periphery 14 of the ball blade part 12, which will be described later.
- the circumferential direction of the ball end mill 10 includes both the “clockwise direction” and the “counterclockwise direction.”
- Each of the "clockwise direction” and “counterclockwise direction” is a direction with a fixed orientation. Note that the "clockwise direction” may be referred to as a “clockwise direction,” and the "counterclockwise direction” may be referred to as a "counterclockwise direction.”
- the “rotating shaft” of the ball end mill 10 refers to the shaft around which the ball end mill 10 rotates.
- the “rotation axis” is sometimes called the “axis center.”
- the rotation axis A of the ball end mill 10 is the central axis of the ball end mill 10, as shown in FIG. 1A.
- the "tip” of the ball end mill 10 refers to the most tip part of the part of the ball end mill 10 that processes the workpiece (namely, the ball blade part 12).
- the tip 13 of the ball end mill 10 is located on the surface of the ball blade portion 12 of the ball end mill 10. Note that, as shown in FIG. 1B, the tip 13 is located at the center of the ball blade portion 12 when viewed from the tip 13 in the direction of the rotation axis. Therefore, the tip 13 will be located on the rotation axis A.
- the ball end mill 10 is a tool that processes a workpiece using a partially spherical blade.
- partially spherical is the shape of a portion of a sphere.
- the blade portion is formed in a hemispherical shape, as shown in FIG. 1A.
- the blade portion of the ball end mill 10 may be formed in a partially spherical shape other than a hemispherical shape, for example, it may be formed in the shape shown in FIG. 17A, which will be described later.
- the term "sphere” is not limited to a strict sphere, but also includes an elliptical sphere and the like. Therefore, the "partial spherical shape" includes, for example, not only a hemispherical shape but also a semielliptic spherical shape shown in FIG. 17B, which will be described later.
- a part of the sphere may be deformed, that is, a part of the sphere may be provided with a notch (concave part) or a protrusion (convex part).
- a groove 20 that is a recess with respect to the surface is formed in a partially spherical portion of the ball end mill 10 (that is, the ball blade portion 12).
- a curved surface is formed on the workpiece by machining it with a partially spherical blade.
- the ball end mill 10 of this embodiment is used to perform at least burnishing on the surface of a workpiece.
- burnishing is a process that forms a smooth finished surface while causing plastic deformation and work hardening on the surface of a workpiece.
- the ball end mill 10 of this embodiment is sometimes referred to as a "vanishing end mill.”
- the effect of forming a smooth finished surface on the surface of a workpiece by burnishing is sometimes referred to as a "burnishing effect.”
- “vanishing processing” and “vanishing effect” may also be referred to as “vanishing processing” and “vanishing effect”, respectively.
- the ball end mill 10 of this embodiment is attached to a machine tool or the like via a holder (not shown), and burnishing is performed on the curved surface of a workpiece by rotating the blade. By performing burnishing on the workpiece, the processed surface of the workpiece can be finished with a mirror finish.
- the ball end mill 10 has a shank 11 and a ball blade part 12, as shown in FIG. 1A.
- the shank 11 is a member that is supported by a holder (not shown) when the ball end mill 10 is attached to a machine tool or the like.
- the shank 11 is formed long in the direction of the rotation axis.
- the ball blade part 12 is a blade member that performs at least burnishing of a workpiece.
- the ball blade portion 12 is formed into a partially spherical shape on the tip side of the ball end mill 10.
- the ball blade part 12 is made of a sintered body formed with high hardness in order to burnish the work material.
- the material of the ball blade part 12 for example, PCD (Poly Crystalline Diamond), CBN (Cubic Boron Nitride), ceramics, cemented carbide, etc. can be used. However, as long as the work material can be burnished, a material other than the sintered body formed with high hardness may be used as the material for the ball blade portion 12.
- the surface of the ball blade portion 12 is formed smoothly by grinding, laser processing, or the like. Specifically, the surface of the ball blade portion 12 is formed to have a surface roughness Rz of 1.6 ⁇ m or less. This can enhance the burnishing effect on the machined surface of the workpiece. However, the ball blade portion 12 may be formed to have a surface roughness greater than Rz 1.6 ⁇ m as long as a burnishing effect can be obtained on the machined surface of the workpiece. Further, the surface of the ball blade portion 12 may be formed smoothly by coating with a smooth film.
- the "surface of the ball blade part 12" that is smoothly formed means a region of the ball blade part 12 in which the groove 20 is not formed.
- the groove 20 is formed in the ball blade portion 12.
- the groove 20 is a recess formed in the ball blade portion 12, as shown in FIG.
- the contact area between the ball blade part 12 and the surface of the workpiece 100 is reduced compared to the ball blade part in which the grooves 20 are not formed. It turns out. That is, in the ball end mill 10 of this embodiment, the grooves 20 are formed in the ball blade portion 12, so that resistance during burnishing can be reduced. Note that the burnishing process is mainly performed on a portion of the ball blade portion 12 where the groove 20 is not formed, that is, a portion that contacts the surface of the workpiece 100.
- the groove 20 is composed of a groove 20A and a groove 20B.
- the groove 20A and the groove 20B have different twisting modes, as will be described later.
- the term “twisting mode” refers to a mode of deformation in the shape of the groove 20 when viewed from the tip 13 of the ball blade part 12 in the direction of the rotation axis, as shown in FIG. 1B.
- the groove 20A has a "right-handed” twist mode, which will be described later
- the groove 20B has a "left-handed twist", which will be described later.
- the "twisting mode” is not limited to "right-handed twisting" or "left-handed twisting” and includes spirals and meandering.
- groove 20A and the groove 20B are explained in common, or when one of the grooves 20A and 20B is explained as a representative, a subscript may not be added.
- all of the grooves 20A and 20B may be simply referred to as "grooves 20.”
- Either the groove 20A or the groove 20B may be simply referred to as a "groove 20".
- the peripheral edge 22 of the groove 20 shown in FIG. 2 becomes a cutting edge, and it is possible to perform minute cutting of the work material.
- the ball blade portion 12 of this embodiment can perform not only burnishing but also minute cutting on a workpiece.
- the minute cutting process may be simply referred to as "cutting process”.
- the groove 20 is formed in the ball blade part 12, the curved surface of the workpiece 100 can be mirror-finished by both burnishing and cutting.
- the peripheral edge part 22 may bite into the workpiece 100 (biting phenomenon) when the workpiece 100 is processed. Due to this biting phenomenon, the workpiece 100 may be overcut (excessively cut), resulting in problems such as deterioration of the machined dimensions of the workpiece 100 and reduction of the burnishing effect. Furthermore, the movement of the peripheral edge portion 22 biting into the workpiece 100 and the movement of trying to return from the biting occur periodically in a short period of time, which may result in chatter vibration.
- the groove 20 in order to suppress the problem caused by such a biting phenomenon, has a negative rake angle R, as shown in FIG.
- the groove 20 may be formed to have a positive rake angle.
- the groove 20 has an intersection 21, as shown in FIG. 1B.
- the intersection portion 21 is a portion where the groove 20A and the groove 20B intersect. The characteristics of the intersection 21 in this embodiment will be described later.
- twisting mode of the groove 20 will be explained with reference to FIG. 3 as well as FIG. 1 described above.
- FIG. 3 is an explanatory diagram of the form of the groove 20 formed in the ball blade part 12.
- FIG. 3A is a diagram of the ball blade part 12 in which only the groove 20A is formed
- FIG. 3B is a diagram of the ball blade part 12 in which only the groove 20B is formed
- FIG. 3C is a diagram of the ball blade part 12 in which only the groove 20A and the groove are formed. It is a figure of the ball blade part 12 in which 20B was formed.
- FIGS. 3A and 3B are diagrams of the ball blade portion 12 with the grooves 20A and 20B taken out, respectively, in order to explain the grooves 20A and 20B individually.
- one groove 20A that is the subject of explanation among the plurality of grooves 20A is indicated by a thick line.
- one groove 20B to be explained among the plurality of grooves 20B is indicated by a thick line.
- the grooves 20A and 20B have different twisting modes.
- the groove 20A is a right-handed groove.
- the right-handed groove is a groove that twists clockwise from the tip 13 of the ball blade portion 12 to the outer periphery 14.
- the right-handed groove is a groove that curves convexly in the counterclockwise direction along the outer periphery 14 of the ball blade portion 12.
- a plurality of grooves 20A are formed in the ball blade portion 12 of this embodiment.
- the ball blade portion 12 has 16 grooves 20A formed therein.
- the plurality of grooves 20A are provided radially from the tip 13 to the outer periphery 14.
- a plurality of grooves 20A are formed in the ball blade portion 12 so that circumferentially adjacent grooves 20A are equally spaced.
- a plurality of grooves 20A are formed in the ball blade portion 12 so as to be equally divided.
- the plurality of grooves 20A are positioned rotationally symmetrically about the tip 13.
- rotationally symmetrical means that when n grooves are located radially around a certain center, when the certain grooves are rotated by (360/n) degrees around the center, they overlap.
- 16 grooves 20A are formed in the ball blade part 12. Therefore, the plurality of grooves 20A are provided so as to overlap when rotated by 22.5 (360/16) degrees in the circumferential direction.
- the groove 20B is a left-handed twisted groove.
- the left-handed twisted groove is a groove twisted in a counterclockwise direction from the tip 13 of the ball blade part 12 to the outer periphery 14.
- the left-handed groove is a groove that curves convexly in the clockwise direction along the outer periphery 14 of the ball blade portion 12.
- a plurality of grooves 20B are formed in the ball blade portion 12 of this embodiment. Specifically, as shown in FIG. 3B, fifteen grooves 20B are formed in the ball blade portion 12. The plurality of grooves 20B are provided radially from the tip 13 to the outer periphery 14. As shown in FIG. 3B, a plurality of grooves 20B are formed in the ball blade portion 12 so that circumferentially adjacent grooves 20B are equally spaced. In other words, a plurality of grooves 20B are formed in the ball blade portion 12 so as to be equally divided. In other words, the plurality of grooves 20B are positioned rotationally symmetrically about the tip 13.
- right-handed helical grooves 20A and left-handed helical grooves 20B are alternately arranged in the rotation direction of the ball end mill 10.
- the machining direction of the workpiece changes for each groove 20.
- an unequal twisting effect is also produced. Therefore, it is possible to suppress the formation of burrs on the workpiece material after processing. Furthermore, the vibration damping effect during machining of the work material can be enhanced.
- the plurality of grooves 20 composed of the grooves 20A and 20B are not connected at the tip 13.
- the burnishing process is performed on the portion where the groove 20 is not formed. Therefore, by disabling the plurality of grooves 20 at the tip 13, the grooves 20 (recesses) are not formed in the tip 13, and a burnishing effect at the tip 13 can be obtained.
- FIG. 4 is an explanatory diagram of the intersection portion 21 of the groove 20.
- FIG. 4A is an explanatory diagram of a plurality of intersections 21 in the ball blade portion 12X of the comparative example
- FIG. 4B is an explanatory diagram of the intersections 21 in an enlarged manner
- FIG. FIG. 3 is an explanatory diagram of a plurality of intersections 21 in the blade portion 12.
- FIGS. 4A to 4C show views (side view) of the ball blade portion 12X or the ball blade portion 12 as viewed in a direction perpendicular to the rotation axis direction.
- a plurality of right-handed helical grooves 20A and a plurality of left-handed helical grooves 20B, the same number as the grooves 20A, are formed in the ball blade portion 12X of the comparative example shown in FIG. 4A.
- 15 grooves 20A and 15 grooves 20B are formed in the ball blade portion 12X of the comparative example.
- the plurality of grooves 20A and the plurality of grooves 20B are each positioned rotationally symmetrically about the tip 13.
- the plurality of intersections 21 formed by the grooves 20A and 20B are aligned on a line along the rotation direction, as shown by the area surrounded by lines in FIG. 4A. It will be located in a concentrated manner.
- FIG. 4B shows an enlarged portion of the ball blade portion 12X including an intersection 21 where a certain groove 20A and a certain groove 20B intersect. Further, in FIG. 4B, the area of the intersection 21 is shown by hatching using dots.
- the trajectory through which a certain point of the workpiece passes in the ball blade portion 12X is indicated by a broken line L1. Further, in the ball blade portion 12X, a locus along which another point of the workpiece passes is indicated by L2. As shown in FIG. 4B, the trajectory L1 does not pass through the intersection 21, and the trajectory L2 does pass through the intersection 21.
- burnishing is mainly performed in the portion of the ball blade portion 12 where the groove 20 is not formed. Therefore, burnishing is not performed on the grooves 20 or the intersections 21 that the grooves 20 have.
- the part of the ball blade part 12 where the burnishing process is performed will be explained with reference to the diagram shown in FIG. 4B.
- the burnishing process is performed in the part shown by the arrow between the locus L1 and the locus L2.
- the trajectory L1 the arrow portions where the burnishing process is performed appear regularly across the grooves 20B or 20A.
- the arrow portion where the burnishing process is performed does not appear from the time it starts passing through the groove 20B until it finishes passing through the groove 20A. That is, in the trajectory L2, there are more portions where burnishing is not performed than in the trajectory L1. Therefore, the trajectory L2 that passes through the intersection 21 is more disadvantageous in terms of burnishing than the trajectory L1 that does not pass through the intersection 21.
- the cutting process is performed at a portion C of the peripheral edge portion 22 of the groove 20 on the side that becomes the cutting edge, as shown in FIG. 4B.
- the peripheral edge portion 22 has two locations on the trajectory L1 and the trajectory L2, one on the side where the passage begins and the side on which the passage ends, and the portion C is the portion of the peripheral edge portion 22 on the side where the passage ends.
- the portion C where cutting is performed appears twice.
- the portion C where cutting is performed appears only once. That is, in the trajectory L2, the portion C where cutting is performed is smaller than in the trajectory L1. Therefore, the trajectory L2 that passes through the intersection 21 is more disadvantageous in terms of cutting than the trajectory L1 that does not pass through the intersection 21.
- the trajectory L2 that passes through the intersection 21 is more disadvantageous in both burnishing and cutting than the trajectory L1 that does not pass through the intersection 21.
- the intersection portions 21, which are disadvantageous for such burnishing and cutting are concentrated and located on a line along the rotation direction. In a region of the machined surface of the workpiece through which such a large number of intersections 21 pass, machining may be insufficient and the quality of the machined surface of the workpiece may deteriorate.
- the intersection parts 21 are suppressed from being concentrated on a line along the rotation direction. Thereby, it is possible to improve the quality of the machined surface of the work material and also to increase the precision.
- the arrangement of the intersection portion 21 of the ball blade portion 12 of this embodiment will be explained using FIG. 3C described above.
- the intersection 21 located at a predetermined position (for example, the third) from the tip 13 side is called the first intersection 21A. do.
- an intersection located at the same predetermined position (third) from the tip 13 side as described above is referred to as a second intersection 21B.
- the length from the tip 13 to the first intersection 21A is different from the length from the tip 13 to the second intersection 21B.
- the intersection portions 21 it is possible to prevent the intersection portions 21 from being located in a concentrated manner on a line along the rotation direction. That is, in the side view of the ball blade part 12 shown in FIG. 4C, the line where the plurality of intersections 21 are located (that is, the area surrounded by the line in FIG. 4C) is inclined with respect to the line along the rotation direction. There is. In the ball blade portion 12 of this embodiment, only one intersection portion 21 is located on each line along the rotation direction. When viewed from the tip 13 of the ball blade part 12 shown in FIG. 3C in the direction of the rotation axis, the plurality of intersections 21 are located on a spiral curve centered on the tip 13 (i.e., the broken line in FIG. 3C). There is.
- the number of grooves 20A and the number of grooves 20B that are different from the number of grooves 20A are formed. Specifically, as described above, 16 grooves 20A and 15 grooves 20B are formed. Further, in the ball blade portion 12 of this embodiment, the plurality of grooves 20A and the plurality of grooves 20B are each positioned rotationally symmetrically about the tip 13. Thereby, the length from the tip 13 of the ball blade part 12 to the first intersection part 21A can be made different from the length from the tip 13 of the ball blade part 12 to the second intersection part 21B.
- FIG. 5 is an explanatory diagram of an example in which the number of grooves 20 formed in the ball blade portion 12 is changed.
- FIG. 5A is an explanatory diagram of an example in which the number of grooves 20A is 16 and the number of grooves 20B is 13.
- FIG. 5B is an explanatory diagram of an example in which the number of grooves 20A is 16 and the number of grooves 20B is 11.
- FIG. 6 is an explanatory diagram of an example in which the number of grooves 20 formed in the ball blade portion 12 is changed.
- FIG. 6A is an explanatory diagram of an example in which 17 grooves 20A and 15 grooves 20B are provided
- FIG. 6B is an explanatory diagram of an example in which 9 grooves 20A and 7 grooves 20B are provided
- FIG. 6C is an explanatory diagram of an example in which there are seven grooves 20A and five grooves 20B.
- the number of grooves 20A and the number of grooves 20B are in a mutually prime relationship.
- the length from the tip 13 to the intersection 21 is equal to The difference will be in section 21.
- the plurality of intersections 21 are located on a spiral curve centered on the tip 13 (ie, the broken lines in FIGS. 5A, 5B, and 6A to 6C).
- FIG. 7 is an explanatory diagram of an example in which the number of grooves 20 formed in the ball blade portion 12 is changed. Note that FIG. 7A is an explanatory diagram of an example in which 16 grooves 20A and 14 grooves 20B are provided, and FIG. 7B is an explanatory diagram in an example in which 15 grooves 20A and 10 grooves 20B are provided.
- the number of grooves 20A and the number of grooves 20B are not in a mutually prime relationship.
- two intersection portions 21 appear at symmetrical positions in a plane including the rotation axis.
- the two intersections 21 are located on the line along the rotation direction (that is, the broken line in FIG. 7A).
- the five intersections 21 are located on the line along the rotation direction (that is, the broken line in FIG. 7B). Therefore, in the case of the ball blade part 12 shown in FIGS. 7A and 7B, when viewed from the tip 13 in the rotation axis direction, two or more intersections 21 having the same length from the tip 13 to the intersection 21 appear. Become.
- the number of grooves 20A and the number of grooves 20B are different and have a mutually prime relationship.
- the number of grooves 20A and the number of grooves 20B are different, so that the length from the tip 13 of the ball blade part 12 to the first intersection part 21A and the length from the tip 13 of the ball blade part 12 to the second intersection part 21B are different. I explained that the lengths are different.
- the aspect in which the length from the tip 13 of the ball blade part 12 to the first intersection part 21A is different from the length from the tip 13 of the ball blade part 12 to the second intersection part 21B is not limited to the above case. .
- the length from the tip 13 of the ball blade part 12 to the first intersection 21A and the length from the tip 13 of the ball blade part 12 to the second intersection is different.
- FIG. 8 is an explanatory diagram of an aspect of the groove 20 formed in the ball blade part 32 of the first modification.
- FIG. 8A is a diagram of the ball blade part 32 in which only the groove 20C is formed
- FIG. 8B is a diagram of the ball blade part 32 in which only the groove 20B is formed
- FIG. 8C is a diagram of the ball blade part 32 in which only the groove 20C and the groove are formed. It is a figure of the ball blade part 32 in which 20B was formed.
- the plurality of grooves 20A and the plurality of grooves 20B are both positioned rotationally symmetrically about the tip 13.
- at least one of the plurality of grooves 20A and the plurality of grooves 20B does not have to be positioned rotationally symmetrically about the tip 13.
- the dividing angle between the grooves 20C adjacent to each other in the circumferential direction is provided so as to gradually increase.
- the dividing angle between circumferentially adjacent grooves 20C when comparing the dividing angle ⁇ between a certain groove 20C and the dividing angle ⁇ between another groove 20C, the dividing angle ⁇ is larger than the dividing angle ⁇ . ( ⁇ > ⁇ ).
- the groove 20B having a twisting pattern different from the groove 20C is rotationally symmetrical about the tip 13, as in the ball blade part 12 described above, as shown in FIG. 8B. It is located so that
- intersection portions 21 are distributed on the line along the rotation direction. That is, even in the ball blade part 32 of the first modification, only one intersection part 21 is located on each line along the rotation direction. When viewed in the direction of the rotation axis from the tip 13 of the ball blade 32 shown in FIG. (dashed line). Therefore, also in the ball blade part 32 of the first modification, the quality of the machined surface of the workpiece can be improved.
- the right-handed helical groove 20C is provided so that the angle of the grooves 20 adjacent to each other in the circumferential direction gradually increases.
- the left-handed helical groove 20B may be provided such that the angle between circumferentially adjacent grooves 20B gradually increases.
- both the right-handed helical groove 20C and the left-handed helical groove 20B may be provided so that the angles between the circumferentially adjacent grooves 20C and the circumferentially adjacent grooves 20B gradually increase.
- the grooves 20 adjacent to each other in the circumferential direction may be provided so that the angle thereof gradually becomes smaller. Not limited to these, if it is possible to prevent the intersections 21 from being concentrated on a line along the rotational direction, the angle between the grooves 20 adjacent to each other in a certain circumferential direction will be the angle between the grooves 20 adjacent to each other in another circumferential direction. It's good just to be different.
- the number of grooves 20C and the number of grooves 20B may be the same.
- FIG. 9 is an explanatory diagram of an aspect of the groove 20 formed in the ball blade part 42 of the second modification.
- FIG. 9A is a diagram of the ball blade part 42 in which only the groove 20A is formed
- FIG. 9B is a diagram of the ball blade part 42 in which only the groove 20D is formed
- FIG. 9C is a diagram of the ball blade part 42 in which only the groove 20A and the groove are formed. It is a figure of the ball blade part 42 in which 20D was formed.
- a plurality of grooves 20A and a plurality of grooves 20B were formed.
- only one of the grooves 20A and 20B may be formed.
- the twist mode of only one groove formed may be other than the right-handed twist and left-handed twist shown in FIG. 3C.
- a plurality of grooves 20A are formed in the ball blade part 42 of the second modification. As shown in FIG. 9A, the plurality of grooves 20A are positioned so as to be rotationally symmetrical about the tip 13, similar to the above-described ball blade portion 12.
- one groove 20D is formed, as shown in FIG. 9B.
- the groove 20D is a groove formed in a spiral curve centered on the tip 13.
- the ball blade portion 42 of the second modification it is possible to prevent the intersection portions 21 from being concentrated on the line along the rotation direction. That is, even in the ball blade part 42 of the second modification, only one intersection part 21 is located on each line along the rotation direction. When viewed in the rotational axis direction from the tip 13 of the ball blade 42 shown in FIG. groove 20D). Therefore, also in the ball blade part 42 of the second modification, the quality of the machined surface of the workpiece can be improved.
- FIG. 10 is an explanatory diagram of a ball cutting edge used in a machining test using a ball end mill.
- 10A is a diagram of the ball end mill 50 having the ball blade part 52
- FIG. 10B is a diagram of the ball end mill 60 having the ball blade part 62
- FIG. 10C is a diagram of the ball end mill 50 having the ball blade part 12.
- the ball blade portion 52 of the ball end mill 50 does not have the groove 20 formed therein. That is, the entire surface of the ball blade portion 52 comes into contact with the surface of the workpiece, and burnishing of the workpiece is performed. Note that since no groove is formed in the ball blade portion 52, the above-mentioned cutting process is not performed.
- a groove 20 is formed in the ball blade portion 62 of the ball end mill 60, as shown in FIG. 10B.
- the groove 20 is composed of only 16 right-handed grooves 20A. Note that a cross-sectional view of the groove 20 is shown on the right side of FIG. 10B. Groove 20 has a negative rake angle, similar to the groove 20 shown in FIG. 2 described above.
- the ball blade portion 12 of the ball end mill 10 has a groove 20 formed therein, as shown in FIG. 10C.
- the grooves 20 are composed of 16 grooves 20A with a right-handed twist and 15 grooves 20B with a left-handed twist. That is, the ball blade part 12 is similar to the ball blade part 12 of the ball end mill 10 of this embodiment shown in FIG. 3C etc. mentioned above. Note that a cross-sectional view of the groove 20 is shown on the right side of FIG. 10C. Groove 20 has a negative rake angle, similar to the groove 20 shown in FIG. 2 described above.
- processing condition 1 processing condition 1
- processing condition 2 processing condition 2
- FIG. 11 is an explanatory diagram illustrating the processing conditions in the processing test.
- the machining conditions are representatively shown for the ball blade part 12 (ball end mill 10), but the machining conditions for the ball blade part 52 (ball end mill 50) and the ball blade part 62 (ball end mill 60) are shown as a representative example. The same applies to the case.
- the ball end mill 10 processes the workpiece 100 by up-cutting by moving in the direction of the arrow shown in FIG. 11 while rotating the ball blade part 12.
- a concave portion having a curved surface has already been cut.
- the ball blade portion 12 of the ball end mill 10 is planned to cut in a direction perpendicular to the axial direction by machining.
- the rotation speed of the ball blade part 12 is 800 min -1 (cutting speed: 20 m/min)
- the table feed speed is 320 mm/min
- the axial depth of cut is 4 mm
- the planned depth of cut is 0.005 mm.
- the rotation speed of the ball blade part 12 is 800 min -1 (cutting speed: 20 m/min)
- the table feed rate is 32 mm/min
- the axial depth of cut is 4 mm
- the planned depth of cut is 0.010 mm.
- FIG. 12 is a graph showing an example of a comparison result of machining torque under machining condition 1.
- FIG. 12A is a graph showing the average torque value
- FIG. 12B is a graph showing the maximum torque value
- FIG. 13 is a graph showing an example of a comparison result of machining torque under machining condition 2. Note that FIG. 13A is a graph showing the average torque value, and FIG. 13B is a graph showing the maximum torque value.
- both the average torque value shown in FIG. 12A and the maximum torque value shown in FIG. 12B, the machining torque in the ball blade portion 52 where the groove 20 is not formed is the highest.
- the machining torque at the ball blade portion 62 which is formed only by the right-handed helical groove 20A, is the second highest after the machining torque at the ball blade portion 52.
- the machining torque in the ball blade portion 12 composed of the right-handed helical groove 20A and the left-handed helical groove 20B is the lowest.
- both the average torque value shown in FIG. 13A and the maximum torque value shown in FIG. 13B the machining torque in the ball blade portion 52 where the groove 20 is not formed is the highest.
- the machining torque at the ball blade portion 62 which is formed only by the right-handed helical groove 20A, is the second highest after the machining torque at the ball blade portion 52.
- the machining torque in the ball blade portion 12 composed of the right-handed helical groove 20A and the left-handed helical groove 20B is the lowest.
- FIG. 14 is a chart regarding machining errors under machining conditions 1 and 2. Note that FIG. 14A is an explanatory diagram of machining errors, and FIG. 14B is a table showing an example of comparison results of machining errors. Moreover, FIG. 14A shows a cross-sectional view of the workpiece seen in the moving direction of the ball end mill.
- the machining error is defined as the actual machining position (i.e., the solid line shown in FIG. 14A) with respect to the planned cutting position of the workpiece (i.e., the position of the broken line shown in FIG. It is expressed as the difference between Then, the side opposite to the ball blade side is set as a positive value, and the side of the ball blade side is set as a negative value.
- the machining error is a positive value, it means that the cut is actually made too far with respect to the planned cut position.
- the processing error is a negative value, it means that the depth of cut is actually insufficient with respect to the planned cut position.
- the machining error in the ball blade portion 52 where the groove 20 is not formed is the largest.
- the machining error in the ball blade portion 62, which is composed of only the right-handed groove 20A, is the second highest after the machining error in the ball blade portion 52.
- the machining error in the ball blade portion 12, which is composed of the right-handed helical groove 20A and the left-handed helical groove 20B, is the smallest.
- the machining error is the largest in the ball blade portion 52 where the groove 20 is not formed.
- the machining error in the ball blade portion 62 which is composed of only the right-handed groove 20A, is the second highest after the machining error in the ball blade portion 52.
- the ball blade part 12 composed of the right-handed helical groove 20A and the left-handed helical groove 20B is more advantageous in terms of machining errors than the ball blade part 62 composed only of the right-handed helical groove 20A. I found out something.
- the plurality of grooves 20 formed in the ball blade part 12 are not connected at the tip 13. Thereby, the groove 20 (recess) is not formed in the tip 13, and a burnishing effect at the tip 13 can be obtained.
- the plurality of grooves 20 are provided radially from the tip 13 to the outer periphery 14. Therefore, in the ball blade portion 12 of the first embodiment, the plurality of grooves 20 become more concentrated as they get closer to the tip 13. As described above, since the burnishing process is not performed on the portion of the ball blade portion 12 where the groove 20 is formed, the burnishing effect may be weakened around the tip 13.
- FIG. 15 is a diagram of the ball blade parts 72, 82 of the second embodiment. Note that FIG. 15A is a view seen from the tip 13 of the ball blade part 72 of the first embodiment in the direction of the rotation axis, and FIG. 15B is a view seen from the tip 13 of the ball blade part 82 of the second example in the direction of the rotation axis. It is a diagram. FIG. 16 is a view of the ball blade portion 92 of the third embodiment as viewed from the tip 13 in the direction of the rotation axis.
- the ball blade portion 72 of the first example of this embodiment includes a tip 13 and has a region 15 wider than the tip 13.
- the end of each of the plurality of grooves 20 on the tip 13 side is located outside the region 15.
- the groove 20 is not formed inside the region 15 in the ball blade portion 72 .
- all the ends of the grooves 20 on the tip 13 side do not have to be located outside the region 15. As shown in FIG. 15B, among the plurality of grooves 20 formed in the ball blade part, the end of each of the grooves on the tip 13 side may be located inside the region 15.
- the ball blade part 82 of the second example of this embodiment has a groove 20A whose end on the tip 13 side extends to the tip 13, and a groove 20A whose end on the tip 13 side is outside the area 15. It has a groove 20E and a groove 20F located at .
- the plurality of grooves 20 of the ball blade part 82 include grooves 20 whose ends on the tip 13 side are located outside the region 15 (i.e., grooves 20E and grooves 20F), and grooves 20 whose ends on the tip 13 side are located outside the region 15. It has a groove 20 (namely, groove 20A) located inside.
- the ball blade portion 92 of the third example of the present embodiment includes a tip 13 and has a region 16 narrower than the region 15.
- the groove 20 has an end on the distal end 13 side located inside the region 15, a groove 20G located on the outside of the region 16, and an end on the distal end 13 side in the region 16. It may also be configured with a groove 20A located on the inside. Thereby, around the tip 13 of the ball blade portion where the grooves 20 are concentrated, it is possible to enhance the burnishing effect and also enhance the cutting effect.
- FIG. 17A is a first example of the shape of the ball blade part 12
- FIG. 17B is a second example of the shape of the ball blade part 12.
- the shape of the ball blade portion 12 is not limited to the hemispherical shape shown in FIG. 1A described above.
- the shape may be closer to a sphere than a hemisphere.
- it may have an elliptical spherical shape like the ball blade part 12 shown in FIG. 17B.
- FIG. 18 is another example regarding the groove 20 of the ball blade part 12.
- the grooves 20 formed in the ball blade portion 12 described above were formed with the same width. However, as in the ball blade portion 12 shown in FIG. 18, in each of the plurality of grooves 20, the width of the groove 20 on the outer circumference 14 side may be larger than the width of the groove 20 on the tip 13 side. This makes it possible to suppress resistance during burnishing on the outer periphery 14 side.
- the ball end mill 10 of the first embodiment includes, for example, a ball blade portion 12 formed into a partially spherical shape, as shown in FIGS. 1 to 3. Moreover, when the ball blade part 12 is viewed from the tip 13 in the direction of the rotation axis, the ball blade part 12 has at least one right-handed groove 20A extending from the tip 13 side to the outer periphery 14 side, and a plurality of left-handed grooves 20B. and has.
- the intersection 21 located at a predetermined point from the tip 13 side is defined as the first intersection 21A
- another groove 20B at least one Among the intersections 21 that intersect with the grooves 20A, when the intersection 21 located at a predetermined distance from the tip 13 side is defined as the second intersection 21B, the length from the tip 13 to the first intersection 21A and the length from the tip 13 to the second The length to the intersection 21B is different. Thereby, the quality of the machined surface of the workpiece can be improved.
- the groove 20A corresponds to a "first groove”
- the groove 20B corresponds to a "second groove”.
- the right-handed twist corresponds to a "first twist mode”
- the left-handed twist corresponds to a "second twist mode.”
- the ball end mill 30 of the first modification of the first embodiment includes, for example, a ball blade portion 32 formed in a partially spherical shape, as shown in FIG. Moreover, when the ball blade part 32 is viewed from the tip 13 in the direction of the rotation axis, the ball blade part 32 has at least one right-handed groove 20C extending from the tip 13 side to the outer periphery 14 side, and a plurality of left-handed grooves 20B. and has.
- the intersection 21 located at a predetermined distance from the tip 13 side is defined as the first intersection 21A
- another groove 20B at least one Among the intersections 21 that intersect with the grooves 20C, when the intersection 21 located at a predetermined point from the tip 13 side is defined as the second intersection 21B, the length from the tip 13 to the first intersection 21A, and the length from the tip 13 to the second intersection 21B.
- the length to the intersection 21B is different. Thereby, the quality of the machined surface of the workpiece can be improved.
- the groove 20C corresponds to a "first groove”
- the groove 20B corresponds to a "second groove”.
- the right-handed twist corresponds to a "first twist mode”
- the left-handed twist corresponds to a "second twist mode.”
- a ball end mill 40 according to a second modification of the first embodiment includes, for example, a ball blade portion 42 formed into a partially spherical shape, as shown in FIG. Moreover, when the ball blade part 42 is viewed from the tip 13 in the direction of the rotation axis, the ball blade part 42 has one spirally twisted groove 20D extending from the tip 13 side to the outer periphery 14 side of the ball blade part 42, and a plurality of right-handed screw grooves. 20A.
- one groove 20A among the intersection parts 21 that intersect with one groove 20D, the intersection part 21 located at a predetermined point from the tip 13 side is defined as the first intersection part 21A, and in another groove 20A, one groove 20D When the intersection 21 located at a predetermined point from the tip 13 side is defined as the second intersection 21B, the length from the tip 13 to the first intersection 21A and the length from the tip 13 to the second intersection The length is different up to 21B. Thereby, the quality of the machined surface of the workpiece can be improved.
- the groove 20D corresponds to a "first groove”
- the groove 20A corresponds to a "second groove”.
- the spiral twist corresponds to the "first twist mode”
- the right twist corresponds to the "second twist mode”.
- the ball blade part 12 has a plurality of grooves 20A, and when viewed from the tip 13 of the ball blade part 12 in the direction of the rotation axis, the first twisting mode of the ball blade part 12 is It is a right-handed twist curved so as to be convex in the counterclockwise direction along the outer periphery 14, and the second twist mode is a right-handed twist that is curved in a clockwise direction opposite to the counterclockwise direction along the outer periphery 14 of the ball blade part 12. It is curved and twisted to the left. Thereby, it is possible to suppress the formation of burrs on the workpiece material after processing. Furthermore, the vibration damping effect during machining of the work material can be enhanced.
- the counterclockwise direction corresponds to a "first direction” and the clockwise direction corresponds to a "second direction.”
- the intersection 21 where the plurality of grooves 20A and the plurality of grooves 20B intersect is a spiral spiral centered on the tip 13. It is located on the curve of . Thereby, the quality of the machined surface of the workpiece can be improved.
- the plurality of grooves 20A when viewed from the tip 13 of the ball blade part 12 in the direction of the rotation axis, are positioned rotationally symmetrically around the tip 13, and the plurality of grooves 20B are , are positioned rotationally symmetrically about the tip 13, and the number of the plurality of grooves 20A is different from the number of the plurality of grooves 20B.
- the length from the tip 13 to the first intersection 21A and the length from the tip 13 to the second intersection 21B can be provided to be different.
- the number of the plurality of grooves 20A and the number of the plurality of grooves 20B have a relatively prime relationship. Thereby, the length from the tip 13 to the first intersection 21A and the length from the tip 13 to the second intersection 21B can be provided to be different.
- the difference between the number of multiple grooves 20A and the number of multiple grooves 20B is 1.
- the length from the tip 13 to the first intersection 21A and the length from the tip 13 to the second intersection 21B can be provided to be different.
- the number of the plurality of grooves 20C is the same as the number of the plurality of grooves 20B, and when viewed from the tip 13 of the ball blade part 32 in the rotation axis direction, the plurality of grooves 20C are adjacent to each other.
- the intervals between the matching grooves 20C are positioned so as to gradually increase in the circumferential direction along the outer periphery 14 of the ball blade portion 32, and the plurality of grooves 20B are positioned so as to be rotationally symmetrical about the tip 13. Thereby, the quality of the machined surface of the workpiece can be improved.
- the groove 20C corresponds to a "first groove”
- the groove 20B corresponds to a "second groove”.
- the circumferential direction corresponds to a "predetermined direction”.
- the ball blade part 42 has one groove 20D, and when viewed from the tip 13 of the ball blade part 42 in the rotation axis direction, the first twisting mode is centered around the tip 13.
- the plurality of grooves 20A are positioned rotationally symmetrically around the tip 13, and the second twisting mode is a spiral curve in a counterclockwise direction along the outer periphery 14 of the ball blade part 42. It is a right-handed twist with a convex curve. Thereby, the quality of the machined surface of the workpiece can be improved.
- the groove 20D corresponds to a "first groove”
- the groove 20A corresponds to a "second groove”.
- the counterclockwise direction corresponds to a "predetermined direction.”
- the rake angle at the peripheral edge portion 22 of each of the grooves 20A and 20B is a negative rake angle. Therefore, it is possible to suppress the peripheral edge portion 22 from digging into the workpiece during machining of the workpiece.
- the width of each of the grooves 20A and 20B increases as the distance from the tip 13 of the ball blade portion 12 increases. Thereby, on the outer periphery 14 side of the ball blade part 12, resistance due to burnishing can be suppressed.
- At least one groove 20A and a plurality of grooves 20B are formed on the surface of the ball blade portion 12 with a surface roughness of Rz 1.6 ⁇ m or less. can enhance the vanishing effect of
- At least one groove 20A and a plurality of grooves 20B are not connected at the tip 13 of the ball blade part 12. Thereby, a burnishing effect can be obtained at the tip 13.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Milling Processes (AREA)
Abstract
This ball end mill comprises a ball blade part formed in a partially spherical shape, and when viewed from a rotational axis direction from the distal end, the ball blade part has at least one first groove in a first torsion form and a plurality of second grooves in a second torsion form, the first and second grooves extending from the distal end side of the ball blade part to the outer peripheral side. When, in one of the second grooves, an intersecting portion, located at a prescribed position from the distal end side, among intersecting portions intersecting the at least one first groove is defined as a first intersecting portion and, in another of the second grooves, an intersecting portion, located at the prescribed position from the distal end side, among the intersecting portions intersecting the at least one first groove is defined as a second intersecting portion, the length from the distal end to the first intersecting portion is different than the length from the distal end to the second intersecting portion.
Description
本発明は、ボールエンドミルに関する。
The present invention relates to a ball end mill.
特許文献1及び特許文献2には、被削材の加工面を鏡面仕上げとするために、ボール刃部の表面粗さを小さくしたボールエンドミルが開示されている。
Patent Documents 1 and 2 disclose ball end mills in which the surface roughness of the ball blade portion is reduced in order to give the machined surface of the workpiece a mirror finish.
特許文献1及び特許文献2に記載されたようなボールエンドミルでは、ボール刃部と被削材の表面との接触面積が大きいため、加工時の抵抗が大きくなってしまうことがある。そこで、ボール刃部に複数の溝を形成し、ボール刃部と被削材の表面との接触面積を低減することで、加工時の抵抗を軽減することができる。
In ball end mills such as those described in Patent Document 1 and Patent Document 2, the contact area between the ball blade and the surface of the workpiece is large, so the resistance during machining may become large. Therefore, by forming a plurality of grooves in the ball blade and reducing the contact area between the ball blade and the surface of the workpiece, the resistance during machining can be reduced.
ところで、ボール刃部に溝同士が交差する交差部が形成されることがある。ボール刃部が回転し被削材に加工を行う際、多数の交差部が通過する被削材の加工面の領域では、加工が不十分となってしまうことがある。
Incidentally, an intersection where grooves intersect may be formed in the ball blade portion. When the ball blade rotates and processes a workpiece, machining may be insufficient in a region of the machined surface of the workpiece through which a large number of intersections pass.
本発明の幾つかの実施形態は、被削材の加工面の品位を高めることを目的とする。
Some embodiments of the present invention aim to improve the quality of the machined surface of a workpiece.
本発明の幾つかの実施形態は、部分球状に形成されたボール刃部を備え、前記ボール刃部は、先端から回転軸方向にみたとき、前記ボール刃部の先端側から外周側に延びる、第1ねじれ態様の少なくとも1つの第1溝と、第2ねじれ態様の複数の第2溝とを有し、一の前記第2溝において、前記少なくとも1つの第1溝と交わる交差部のうち、前記先端側から所定番目に位置する交差部を第1交差部とし、別の前記第2溝において、前記少なくとも1つの第1溝と交わる交差部のうち、前記先端側から前記所定番目に位置する交差部を第2交差部としたとき、前記先端から前記第1交差部までの長さと、前記先端から前記第2交差部までの長さとが異なる、ボールエンドミルである。
Some embodiments of the present invention include a ball blade portion formed in a partially spherical shape, and the ball blade portion extends from the tip side of the ball blade portion toward the outer circumferential side when viewed from the tip in the direction of the rotation axis. At least one first groove having a first twist pattern and a plurality of second grooves having a second twist pattern, and among the intersections that intersect with the at least one first groove in one of the second grooves, An intersection located at a predetermined point from the tip side is defined as a first intersection, and among intersections that intersect with the at least one first groove in another of the second grooves, the intersection is located at the predetermined point from the tip side. When the intersection is a second intersection, the ball end mill has a length from the tip to the first intersection that is different from a length from the tip to the second intersection.
本発明の他の特徴については、後述する明細書及び図面の記載により明らかにする。
Other features of the present invention will become clear from the description and drawings described below.
本発明の幾つかの実施形態によれば、被削材の加工面の品位を高めることができる。
According to some embodiments of the present invention, the quality of the machined surface of the workpiece can be improved.
本明細書及び添付図面の記載により、少なくとも以下の事項が明らかとなる。
At least the following matters will become clear from the description of this specification and the attached drawings.
以下、図面を参照しながら本発明の好適な実施の形態を説明する。各図面に示される同一又は同等の構成要素、部材等には同一の符号を付し、適宜重複した説明は省略する。
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings. Identical or equivalent components, members, etc. shown in each drawing are designated by the same reference numerals, and redundant explanations will be omitted as appropriate.
===第1実施形態===
図1は、第1実施形態のボールエンドミル10の図である。なお、図1Aは、ボールエンドミル10の側面図であり、図1Bは、ボール刃部12の先端13から回転軸方向にみた図である。また、図2は、溝20の断面図である。 ===First embodiment===
FIG. 1 is a diagram of aball end mill 10 according to a first embodiment. Note that FIG. 1A is a side view of the ball end mill 10, and FIG. 1B is a view seen from the tip 13 of the ball blade portion 12 in the direction of the rotation axis. Further, FIG. 2 is a cross-sectional view of the groove 20.
図1は、第1実施形態のボールエンドミル10の図である。なお、図1Aは、ボールエンドミル10の側面図であり、図1Bは、ボール刃部12の先端13から回転軸方向にみた図である。また、図2は、溝20の断面図である。 ===First embodiment===
FIG. 1 is a diagram of a
<方向及び用語等の定義>
まず、図1を参照しつつ、ボールエンドミル10における方向及び用語等を定義する。 <Definition of directions and terms>
First, with reference to FIG. 1, directions, terms, etc. in theball end mill 10 will be defined.
まず、図1を参照しつつ、ボールエンドミル10における方向及び用語等を定義する。 <Definition of directions and terms>
First, with reference to FIG. 1, directions, terms, etc. in the
図1Aに示されるように、ボールエンドミル10の回転軸Aに沿う方向を「回転軸方向」、又は、単に「軸方向」とする。「回転軸方向」は、ボールエンドミル10の長手方向でもある。なお、ボールエンドミル10の回転軸方向には、「先端方向」と、「基端方向」との両方向が含まれる。図1Aに示されるように、「先端方向」は、ボールエンドミル10の先端側に向かう方向であり、「基端方向」は、ボールエンドミル10の基端側に向かう方向である。「先端方向」と、「基端方向」との各々は、向きが決まった方向である。
As shown in FIG. 1A, the direction along the rotation axis A of the ball end mill 10 is referred to as the "rotation axis direction" or simply the "axial direction." The “rotation axis direction” is also the longitudinal direction of the ball end mill 10. Note that the direction of the rotation axis of the ball end mill 10 includes both the "distal direction" and the "proximal direction." As shown in FIG. 1A, the "distal direction" is the direction toward the distal end of the ball end mill 10, and the "proximal direction" is the direction toward the proximal end of the ball end mill 10. Each of the "distal direction" and the "proximal direction" is a direction with a fixed orientation.
また、図1Bに示されるように、ボールエンドミル10の回転方向に沿う方向を「周方向」と呼ぶことがある。「周方向」は、後述するボール刃部12の外周14に沿う方向でもある。なお、ボールエンドミル10の周方向には、「時計回り方向」と、「反時計回り方向」との両方向が含まれる。「時計回り方向」と、「反時計回り方向」との各々は、向きが決まった方向である。なお、「時計回り方向」は、「右回り方向」と、「反時計回り方向」は、「左回り方向」と呼ぶことがある。
Furthermore, as shown in FIG. 1B, the direction along the rotation direction of the ball end mill 10 is sometimes referred to as the "circumferential direction." The "circumferential direction" is also a direction along the outer periphery 14 of the ball blade part 12, which will be described later. Note that the circumferential direction of the ball end mill 10 includes both the "clockwise direction" and the "counterclockwise direction." Each of the "clockwise direction" and "counterclockwise direction" is a direction with a fixed orientation. Note that the "clockwise direction" may be referred to as a "clockwise direction," and the "counterclockwise direction" may be referred to as a "counterclockwise direction."
ここで、ボールエンドミル10の「回転軸」とは、ボールエンドミル10が回転する際の軸を言う。「回転軸」は、「軸心」と呼ばれることがある。本実施形態では、ボールエンドミル10の回転軸Aは、図1Aに示されるように、ボールエンドミル10の中心軸である。
Here, the "rotating shaft" of the ball end mill 10 refers to the shaft around which the ball end mill 10 rotates. The "rotation axis" is sometimes called the "axis center." In this embodiment, the rotation axis A of the ball end mill 10 is the central axis of the ball end mill 10, as shown in FIG. 1A.
また、ボールエンドミル10の「先端」とは、被削材を加工するボールエンドミル10の部位(すなわち、ボール刃部12)のうち、もっとも先端の部分をいう。本実施形態では、ボールエンドミル10の先端13は、ボールエンドミル10のボール刃部12の表面に位置する。なお、図1Bに示されるように、先端13から回転軸方向にみたとき、先端13は、ボール刃部12の中心に位置する。したがって、先端13は、回転軸A上に位置することになる。
Further, the "tip" of the ball end mill 10 refers to the most tip part of the part of the ball end mill 10 that processes the workpiece (namely, the ball blade part 12). In this embodiment, the tip 13 of the ball end mill 10 is located on the surface of the ball blade portion 12 of the ball end mill 10. Note that, as shown in FIG. 1B, the tip 13 is located at the center of the ball blade portion 12 when viewed from the tip 13 in the direction of the rotation axis. Therefore, the tip 13 will be located on the rotation axis A.
なお、上述した方向及び用語等の定義については、特記した場合を除き、本明細書の他の実施形態においても共通である。
Note that the above-mentioned directions and definitions of terms, etc. are also common to other embodiments of this specification, unless otherwise specified.
<ボールエンドミル10の概要>
次に、図1及び図2を参照しつつ、本実施形態におけるボールエンドミル10の概要を説明する。 <Overview ofball end mill 10>
Next, an overview of theball end mill 10 in this embodiment will be described with reference to FIGS. 1 and 2.
次に、図1及び図2を参照しつつ、本実施形態におけるボールエンドミル10の概要を説明する。 <Overview of
Next, an overview of the
ボールエンドミル10は、部分球状に形成された刃部を用いて被削材を加工する工具である。
The ball end mill 10 is a tool that processes a workpiece using a partially spherical blade.
ここで、「部分球状」とは、球の一部分の形状である。本実施形態のボールエンドミル10では、図1Aに示されるように、刃部が半球状に形成されている。但し、ボールエンドミル10の刃部が、半球状以外の部分球状で形成されていても良く、例えば、後述する図17Aに示される形状で形成されても良い。また、「球」は、厳密な球のみに限られず、楕円球等を含む。したがって、「部分球状」には、例えば、半球状のみではなく、後述する図17Bに示される半楕円球状等も含まれる。
Here, "partially spherical" is the shape of a portion of a sphere. In the ball end mill 10 of this embodiment, the blade portion is formed in a hemispherical shape, as shown in FIG. 1A. However, the blade portion of the ball end mill 10 may be formed in a partially spherical shape other than a hemispherical shape, for example, it may be formed in the shape shown in FIG. 17A, which will be described later. Furthermore, the term "sphere" is not limited to a strict sphere, but also includes an elliptical sphere and the like. Therefore, the "partial spherical shape" includes, for example, not only a hemispherical shape but also a semielliptic spherical shape shown in FIG. 17B, which will be described later.
さらに「部分球状」には、球の一部が変形、すなわち、球の一部に切り欠き(凹部)や出っ張り(凸部)が設けられていても良い。具体的には、後述するように、ボールエンドミル10の部分球状に形成されている部分(すなわち、ボール刃部12)には、表面に対して凹部となる溝20が形成されている。
Further, in the "partially spherical shape", a part of the sphere may be deformed, that is, a part of the sphere may be provided with a notch (concave part) or a protrusion (convex part). Specifically, as will be described later, a groove 20 that is a recess with respect to the surface is formed in a partially spherical portion of the ball end mill 10 (that is, the ball blade portion 12).
一般的なボールエンドミルでは、部分球状に形成された刃部で加工することによって、被削材に曲面が形成される。本実施形態のボールエンドミル10は、被削材の表面に少なくともバニシング加工を施すために用いられる。ここで、「バニシング加工」とは、被削材の表面に塑性変形と加工硬化とを生じさせながら、滑らかな仕上げ面を形成する加工である。したがって、本実施形態のボールエンドミル10を、「バニシングエンドミル」と呼ぶことがある。また、バニシング加工により被削材の表面に滑らかな仕上げ面を形成する効果を「バニシング効果」と呼ぶことがある。また、「バニシング加工」及び「バニシング効果」を、それぞれ「バニッシュ加工」及び「バニッシュ効果」とも呼ぶことがある。
In a typical ball end mill, a curved surface is formed on the workpiece by machining it with a partially spherical blade. The ball end mill 10 of this embodiment is used to perform at least burnishing on the surface of a workpiece. Here, "burnishing" is a process that forms a smooth finished surface while causing plastic deformation and work hardening on the surface of a workpiece. Therefore, the ball end mill 10 of this embodiment is sometimes referred to as a "vanishing end mill." Furthermore, the effect of forming a smooth finished surface on the surface of a workpiece by burnishing is sometimes referred to as a "burnishing effect." Further, "vanishing processing" and "vanishing effect" may also be referred to as "vanishing processing" and "vanishing effect", respectively.
本実施形態のボールエンドミル10は、不図示のホルダを介して工作機械等に取り付けられ、刃部の回転によって被削材の曲面にバニシング加工が施される。そして、被削材にバニシング加工が施されることにより、被削材の加工面を鏡面仕上げとすることができる。
The ball end mill 10 of this embodiment is attached to a machine tool or the like via a holder (not shown), and burnishing is performed on the curved surface of a workpiece by rotating the blade. By performing burnishing on the workpiece, the processed surface of the workpiece can be finished with a mirror finish.
ボールエンドミル10は、図1Aに示されるように、シャンク11と、ボール刃部12とを有する。
The ball end mill 10 has a shank 11 and a ball blade part 12, as shown in FIG. 1A.
シャンク11は、ボールエンドミル10が工作機械等に取り付けられる際に、不図示のホルダに支持される部材である。シャンク11は、回転軸方向に長く形成されている。
The shank 11 is a member that is supported by a holder (not shown) when the ball end mill 10 is attached to a machine tool or the like. The shank 11 is formed long in the direction of the rotation axis.
ボール刃部12は、少なくとも被削材のバニシング加工を行う刃部材である。ボール刃部12は、ボールエンドミル10の先端側において、部分球状に形成されている。
The ball blade part 12 is a blade member that performs at least burnishing of a workpiece. The ball blade portion 12 is formed into a partially spherical shape on the tip side of the ball end mill 10.
ボール刃部12は、被削材のバニシング加工を行うために、高硬度に形成された焼結体が材料として使用される。ボール刃部12の材料として、例えば、PCD(Poly Crystalline Diamond)、CBN(Cubic Boron Nitride)、セラミックス、超硬合金等を使用することができる。但し、被削材のバニシング加工を行うことができれば、ボール刃部12の材料として、高硬度に形成された焼結体以外の材料を使用しても良い。
The ball blade part 12 is made of a sintered body formed with high hardness in order to burnish the work material. As the material of the ball blade part 12, for example, PCD (Poly Crystalline Diamond), CBN (Cubic Boron Nitride), ceramics, cemented carbide, etc. can be used. However, as long as the work material can be burnished, a material other than the sintered body formed with high hardness may be used as the material for the ball blade portion 12.
また、ボール刃部12の表面は、研削加工又はレーザー加工等により滑らかに形成されている。具体的には、ボール刃部12の表面は、表面粗さがRz1.6μm以下となるように形成されている。これにより、被削材の加工面のバニシング効果を高めることができる。但し、ボール刃部12は、被削材の加工面にバニシング効果を得ることができれば、表面粗さがRz1.6μmより大きくなるように形成されても良い。また、ボール刃部12の表面は、平滑な被膜をコーティングすることにより滑らかに形成されても良い。
Furthermore, the surface of the ball blade portion 12 is formed smoothly by grinding, laser processing, or the like. Specifically, the surface of the ball blade portion 12 is formed to have a surface roughness Rz of 1.6 μm or less. This can enhance the burnishing effect on the machined surface of the workpiece. However, the ball blade portion 12 may be formed to have a surface roughness greater than Rz 1.6 μm as long as a burnishing effect can be obtained on the machined surface of the workpiece. Further, the surface of the ball blade portion 12 may be formed smoothly by coating with a smooth film.
なお、後述するように、ボール刃部12には溝20(凹部)が形成されている。そこで、本実施形態では、滑らかに形成されている「ボール刃部12の表面」とは、ボール刃部12のうち、溝20が形成されていないボール刃部12の領域を意味する。
Note that, as described later, a groove 20 (recess) is formed in the ball blade portion 12. Therefore, in the present embodiment, the "surface of the ball blade part 12" that is smoothly formed means a region of the ball blade part 12 in which the groove 20 is not formed.
ところで、ボール刃部の表面が滑らかに形成されているボールエンドミルでは、ボール刃部の表面と、被削材の表面との接触面積が大きいため、バニシング加工の際の抵抗が大きくなってしまうことがある。このため、本実施形態のボールエンドミル10では、ボール刃部12に溝20が形成されている。溝20は、図2に示されるように、ボール刃部12に形成された凹部である。
By the way, in ball end mills where the surface of the ball blade is formed smoothly, the contact area between the surface of the ball blade and the surface of the workpiece is large, resulting in increased resistance during burnishing. There is. For this reason, in the ball end mill 10 of this embodiment, the groove 20 is formed in the ball blade portion 12. The groove 20 is a recess formed in the ball blade portion 12, as shown in FIG.
これにより、ボール刃部12のうち、溝20が形成されている領域では、図2に示されるように、被削材100の表面がボール刃部12に接触しない。したがって、溝20が形成されていないボール刃部と比べて、溝20が形成されている本実施形態のボールエンドミル10では、ボール刃部12と被削材100の表面との接触面積が低減することになる。つまり、本実施形態のボールエンドミル10では、ボール刃部12に溝20が形成されることにより、バニシング加工の際の抵抗を軽減することができる。なお、バニシング加工は、ボール刃部12のうち、溝20が形成されていない部分、すなわち、被削材100の表面と接触する部分で主に行われることになる。
As a result, in the region of the ball blade part 12 where the groove 20 is formed, the surface of the workpiece 100 does not come into contact with the ball blade part 12, as shown in FIG. Therefore, in the ball end mill 10 of this embodiment in which the grooves 20 are formed, the contact area between the ball blade part 12 and the surface of the workpiece 100 is reduced compared to the ball blade part in which the grooves 20 are not formed. It turns out. That is, in the ball end mill 10 of this embodiment, the grooves 20 are formed in the ball blade portion 12, so that resistance during burnishing can be reduced. Note that the burnishing process is mainly performed on a portion of the ball blade portion 12 where the groove 20 is not formed, that is, a portion that contacts the surface of the workpiece 100.
本実施形態では、図1Bに示されるように、溝20は、溝20Aと、溝20Bとで構成される。溝20Aと、溝20Bとは、後述するように、互いに異なるねじれ態様を有する。ここで、「ねじれ態様」とは、図1Bに示されるような、ボール刃部12の先端13から回転軸方向にみたときの、溝20の形状における変形の態様を言う。例えば、本実施形態では、溝20Aは、後述する「右ねじれ」のねじれ態様を有し、溝20Bは、後述する「左ねじれ」のねじれ態様を有する。なお、「ねじれ態様」には、「右ねじれ」又は「左ねじれ」に限られず、渦巻状や蛇行を含む。
In this embodiment, as shown in FIG. 1B, the groove 20 is composed of a groove 20A and a groove 20B. The groove 20A and the groove 20B have different twisting modes, as will be described later. Here, the term "twisting mode" refers to a mode of deformation in the shape of the groove 20 when viewed from the tip 13 of the ball blade part 12 in the direction of the rotation axis, as shown in FIG. 1B. For example, in the present embodiment, the groove 20A has a "right-handed" twist mode, which will be described later, and the groove 20B has a "left-handed twist", which will be described later. Note that the "twisting mode" is not limited to "right-handed twisting" or "left-handed twisting" and includes spirals and meandering.
以下では、溝20A及び溝20Bに共通して説明する場合や、溝20A及び溝20Bのいずれかの溝を代表して説明する場合は、添え字を付けないことがある。例えば、溝20A及び溝20Bの全てのことを指して単に「溝20」と呼ぶことがある。溝20A及び溝20Bのいずれかの溝を代表して単に「溝20」と呼ぶことがある。
In the following, when the groove 20A and the groove 20B are explained in common, or when one of the grooves 20A and 20B is explained as a representative, a subscript may not be added. For example, all of the grooves 20A and 20B may be simply referred to as "grooves 20." Either the groove 20A or the groove 20B may be simply referred to as a "groove 20".
本実施形態では、ボール刃部12に溝20が形成されることにより、図2に示される溝20の周縁部22が切れ刃となり、被削材の微小な切削加工を行うことができる。つまり、本実施形態のボール刃部12は、被削材に対してバニシング加工に加え、微小な切削加工も行うことができる。以下では、微小な切削加工を、単に「切削加工」と呼ぶことがある。本実施形態のボールエンドミル10では、ボール刃部12に溝20が形成されていることにより、被削材100の曲面の鏡面仕上げをバニシング加工と切削加工との両方で行うことができる。
In this embodiment, by forming the groove 20 in the ball blade part 12, the peripheral edge 22 of the groove 20 shown in FIG. 2 becomes a cutting edge, and it is possible to perform minute cutting of the work material. In other words, the ball blade portion 12 of this embodiment can perform not only burnishing but also minute cutting on a workpiece. Hereinafter, the minute cutting process may be simply referred to as "cutting process". In the ball end mill 10 of this embodiment, since the groove 20 is formed in the ball blade part 12, the curved surface of the workpiece 100 can be mirror-finished by both burnishing and cutting.
ところで、周縁部22におけるすくい角の程度によっては、被削材100の加工時に、周縁部22が被削材100に食い込んでしまうこと(食い込み現象)が発生する場合がある。この食い込み現象により、被削材100をオーバーカット(過切削)してしまい、被削材100の加工寸法が悪化することや、バニシング効果が減少することなどの問題が生じることがある。さらに、周縁部22が被削材100に食い込む動きと、食い込みから元に戻ろうとする動きとが、短時間に周期的に生ずることにより、びびり振動が発生してしまうことがある。
By the way, depending on the degree of the rake angle in the peripheral edge part 22, the peripheral edge part 22 may bite into the workpiece 100 (biting phenomenon) when the workpiece 100 is processed. Due to this biting phenomenon, the workpiece 100 may be overcut (excessively cut), resulting in problems such as deterioration of the machined dimensions of the workpiece 100 and reduction of the burnishing effect. Furthermore, the movement of the peripheral edge portion 22 biting into the workpiece 100 and the movement of trying to return from the biting occur periodically in a short period of time, which may result in chatter vibration.
そこで、本実施形態のボール刃部12では、このような食い込み現象を起因とする問題を抑制するため、溝20は、図2に示されるように、負のすくい角Rを有する。但し、被削材100の加工時に、周縁部22が被削材100に食い込んでしまうことをある程度許容できる場合、溝20は、正のすくい角を有するよう形成されても良い。
Therefore, in the ball blade portion 12 of this embodiment, in order to suppress the problem caused by such a biting phenomenon, the groove 20 has a negative rake angle R, as shown in FIG. However, if it is possible to allow the peripheral portion 22 to dig into the workpiece 100 to some extent during machining of the workpiece 100, the groove 20 may be formed to have a positive rake angle.
また、溝20は、図1Bに示されるように、交差部21を有する。交差部21は、溝20Aと溝20Bとが交差する部位である。本実施形態における交差部21の特徴については、後述する。
Additionally, the groove 20 has an intersection 21, as shown in FIG. 1B. The intersection portion 21 is a portion where the groove 20A and the groove 20B intersect. The characteristics of the intersection 21 in this embodiment will be described later.
<溝20のねじれ態様>
以下では、上述の図1と共に、図3を参照しつつ、溝20のねじれ態様を説明する。 <Twisted mode ofgroove 20>
Hereinafter, the twisting mode of thegroove 20 will be explained with reference to FIG. 3 as well as FIG. 1 described above.
以下では、上述の図1と共に、図3を参照しつつ、溝20のねじれ態様を説明する。 <Twisted mode of
Hereinafter, the twisting mode of the
図3は、ボール刃部12に形成された溝20の態様の説明図である。なお、図3Aは、溝20Aのみが形成されたボール刃部12の図であり、図3Bは、溝20Bのみが形成されたボール刃部12の図であり、図3Cは、溝20A及び溝20Bが形成されたボール刃部12の図である。なお、図3A及び図3Bは、溝20A及び溝20Bを個別に説明するために、溝20A及び溝20Bをそれぞれ取り出したボール刃部12の図である。また、図3A~図3Cにおいて、複数の溝20Aのうち、説明の対象となる1本の溝20Aについて、太線で示している。同様に、複数の溝20Bのうち、説明の対象となる1本の溝20Bについて、太線で示している。
FIG. 3 is an explanatory diagram of the form of the groove 20 formed in the ball blade part 12. Note that FIG. 3A is a diagram of the ball blade part 12 in which only the groove 20A is formed, FIG. 3B is a diagram of the ball blade part 12 in which only the groove 20B is formed, and FIG. 3C is a diagram of the ball blade part 12 in which only the groove 20A and the groove are formed. It is a figure of the ball blade part 12 in which 20B was formed. Note that FIGS. 3A and 3B are diagrams of the ball blade portion 12 with the grooves 20A and 20B taken out, respectively, in order to explain the grooves 20A and 20B individually. Furthermore, in FIGS. 3A to 3C, one groove 20A that is the subject of explanation among the plurality of grooves 20A is indicated by a thick line. Similarly, one groove 20B to be explained among the plurality of grooves 20B is indicated by a thick line.
上述したように、溝20Aと、溝20Bとは、互いに異なるねじれ態様を有する。
As described above, the grooves 20A and 20B have different twisting modes.
溝20Aは、右ねじれの溝である。右ねじれの溝とは、ボール刃部12の先端13から外周14にかけて、右回り方向にねじれる溝である。言い換えると、右ねじれの溝とは、ボール刃部12の外周14に沿う左回り方向に凸となるように湾曲する溝である。
The groove 20A is a right-handed groove. The right-handed groove is a groove that twists clockwise from the tip 13 of the ball blade portion 12 to the outer periphery 14. In other words, the right-handed groove is a groove that curves convexly in the counterclockwise direction along the outer periphery 14 of the ball blade portion 12.
本実施形態のボール刃部12には、複数の溝20Aが形成されている。具体的には、図3Aに示されるように、ボール刃部12には、16本の溝20Aが形成されている。複数の溝20Aは、先端13から外周14にかけて放射状に設けられている。そして、図3Aに示されるように、周方向に隣り合う溝20Aが等間隔となるよう、ボール刃部12には、複数の溝20Aが形成されている。言い換えると、ボール刃部12には、等分割となるように複数の溝20Aが形成されている。さらに言い換えると、複数の溝20Aは、先端13を中心に回転対称となるように位置している。
A plurality of grooves 20A are formed in the ball blade portion 12 of this embodiment. Specifically, as shown in FIG. 3A, the ball blade portion 12 has 16 grooves 20A formed therein. The plurality of grooves 20A are provided radially from the tip 13 to the outer periphery 14. As shown in FIG. 3A, a plurality of grooves 20A are formed in the ball blade portion 12 so that circumferentially adjacent grooves 20A are equally spaced. In other words, a plurality of grooves 20A are formed in the ball blade portion 12 so as to be equally divided. In other words, the plurality of grooves 20A are positioned rotationally symmetrically about the tip 13.
ここで、「回転対称」とは、n個の溝がある中心の周りに放射状に位置している場合、ある溝を中心回りに(360/n)°回転させると重なることをいう。ここでは、ボール刃部12には、16本の溝20Aが形成されている。したがって、複数の溝20Aは、周方向に22.5(360/16)°回転すると重なるように設けられている。
Here, "rotationally symmetrical" means that when n grooves are located radially around a certain center, when the certain grooves are rotated by (360/n) degrees around the center, they overlap. Here, 16 grooves 20A are formed in the ball blade part 12. Therefore, the plurality of grooves 20A are provided so as to overlap when rotated by 22.5 (360/16) degrees in the circumferential direction.
溝20Bは、左ねじれの溝である。左ねじれの溝とは、ボール刃部12の先端13から外周14にかけて、左回り方向にねじれる溝である。言い換えると、左ねじれの溝とは、ボール刃部12の外周14に沿う右回り方向に凸となるように湾曲する溝である。
The groove 20B is a left-handed twisted groove. The left-handed twisted groove is a groove twisted in a counterclockwise direction from the tip 13 of the ball blade part 12 to the outer periphery 14. In other words, the left-handed groove is a groove that curves convexly in the clockwise direction along the outer periphery 14 of the ball blade portion 12.
本実施形態のボール刃部12には、複数の溝20Bが形成されている。具体的には、図3Bに示されるように、ボール刃部12には、15本の溝20Bが形成されている。複数の溝20Bは、先端13から外周14にかけて放射状に設けられている。そして、図3Bに示されるように、周方向に隣り合う溝20Bが等間隔となるよう、ボール刃部12には、複数の溝20Bが形成されている。言い換えると、ボール刃部12には、等分割となるように複数の溝20Bが形成されている。さらに言い換えると、複数の溝20Bは、先端13を中心に回転対称となるように位置している。
A plurality of grooves 20B are formed in the ball blade portion 12 of this embodiment. Specifically, as shown in FIG. 3B, fifteen grooves 20B are formed in the ball blade portion 12. The plurality of grooves 20B are provided radially from the tip 13 to the outer periphery 14. As shown in FIG. 3B, a plurality of grooves 20B are formed in the ball blade portion 12 so that circumferentially adjacent grooves 20B are equally spaced. In other words, a plurality of grooves 20B are formed in the ball blade portion 12 so as to be equally divided. In other words, the plurality of grooves 20B are positioned rotationally symmetrically about the tip 13.
本実施形態のボール刃部12では、図3Cに示されるように、ボールエンドミル10の回転方向に、右ねじれの溝20Aと、左ねじれの溝20Bとが、交互に配置されている。これにより、ボールエンドミル10の回転による被削材の加工時に、被削材の加工方向が溝20毎に変化することになる。また、ボールエンドミル10の回転による被削材の加工時に、不等ねじれ効果も奏する。したがって、加工後の被削材にバリができてしまうことを抑制することができる。また、被削材の加工時における防振効果を高めることができる。
In the ball blade portion 12 of this embodiment, as shown in FIG. 3C, right-handed helical grooves 20A and left-handed helical grooves 20B are alternately arranged in the rotation direction of the ball end mill 10. As a result, when machining a workpiece by rotation of the ball end mill 10, the machining direction of the workpiece changes for each groove 20. In addition, when machining a workpiece by rotating the ball end mill 10, an unequal twisting effect is also produced. Therefore, it is possible to suppress the formation of burrs on the workpiece material after processing. Furthermore, the vibration damping effect during machining of the work material can be enhanced.
また、本実施形態のボール刃部12では、図3Cに示されるように、溝20Aと溝20Bとで構成される複数の溝20は、先端13において非連結である。上述したように、バニシング加工は、溝20が形成されていない部分で行われる。したがって、複数の溝20が先端13において非連結とすることで、先端13に溝20(凹部)が形成されないようにして、先端13におけるバニシング効果を得ることができる。
Furthermore, in the ball blade portion 12 of this embodiment, as shown in FIG. 3C, the plurality of grooves 20 composed of the grooves 20A and 20B are not connected at the tip 13. As described above, the burnishing process is performed on the portion where the groove 20 is not formed. Therefore, by disabling the plurality of grooves 20 at the tip 13, the grooves 20 (recesses) are not formed in the tip 13, and a burnishing effect at the tip 13 can be obtained.
<交差部21>
以下では、本実施形態のボール刃部12の交差部21の特徴について、比較例を使って説明する。 <Intersection 21>
Below, the characteristics of theintersection part 21 of the ball blade part 12 of this embodiment will be explained using a comparative example.
以下では、本実施形態のボール刃部12の交差部21の特徴について、比較例を使って説明する。 <
Below, the characteristics of the
図4は、溝20の交差部21の説明図である。なお、図4Aは、比較例のボール刃部12Xにおける複数の交差部21の説明図であり、図4Bは、交差部21部分を拡大した説明図であり、図4Cは、本実施形態のボール刃部12における複数の交差部21の説明図である。また、図4A~図4Cは、ボール刃部12X又はボール刃部12を回転軸方向に垂直な方向にみた図(側面視)を示している。
FIG. 4 is an explanatory diagram of the intersection portion 21 of the groove 20. Note that FIG. 4A is an explanatory diagram of a plurality of intersections 21 in the ball blade portion 12X of the comparative example, FIG. 4B is an explanatory diagram of the intersections 21 in an enlarged manner, and FIG. FIG. 3 is an explanatory diagram of a plurality of intersections 21 in the blade portion 12. FIG. Further, FIGS. 4A to 4C show views (side view) of the ball blade portion 12X or the ball blade portion 12 as viewed in a direction perpendicular to the rotation axis direction.
図4Aに示される比較例のボール刃部12Xには、複数の右ねじれの溝20Aと、溝20Aと同数の、複数の左ねじれの溝20Bとが形成されている。具体的には、比較例のボール刃部12Xには、15本の溝20Aと、15本の溝20Bとが形成されている。また、比較例のボール刃部12Xでは、複数の溝20Aと、複数の溝20Bとは、それぞれ、先端13を中心に回転対称となるように位置している。これにより、ボール刃部12Xの側面視において、溝20Aと溝20Bとで形成される複数の交差部21は、図4Aにおける線で囲まれた領域で示されるように、回転方向に沿う線上に集中して位置することになる。
A plurality of right-handed helical grooves 20A and a plurality of left-handed helical grooves 20B, the same number as the grooves 20A, are formed in the ball blade portion 12X of the comparative example shown in FIG. 4A. Specifically, 15 grooves 20A and 15 grooves 20B are formed in the ball blade portion 12X of the comparative example. Further, in the ball blade portion 12X of the comparative example, the plurality of grooves 20A and the plurality of grooves 20B are each positioned rotationally symmetrically about the tip 13. As a result, in a side view of the ball blade part 12X, the plurality of intersections 21 formed by the grooves 20A and 20B are aligned on a line along the rotation direction, as shown by the area surrounded by lines in FIG. 4A. It will be located in a concentrated manner.
ここで、比較例のボールエンドミル10Xが、図4Aに示される回転方向に回転しながら被削材を加工する場合、被削材のある点が、溝20及び交差部21をどのように通過するかを、図4Bを使って説明する。図4Bでは、ボール刃部12Xにおいて、ある溝20Aと、ある溝20Bとが交差する交差部21を含む部分を拡大して示している。また、図4Bでは、交差部21の領域を、点を使用した網掛けにより示している。
Here, when the ball end mill 10X of the comparative example processes a workpiece while rotating in the rotation direction shown in FIG. 4A, how does a certain point of the workpiece pass through the groove 20 and the intersection 21? This will be explained using FIG. 4B. FIG. 4B shows an enlarged portion of the ball blade portion 12X including an intersection 21 where a certain groove 20A and a certain groove 20B intersect. Further, in FIG. 4B, the area of the intersection 21 is shown by hatching using dots.
図4Bにおいて、ボール刃部12Xにおいて、被削材のある点が通過する軌跡を破線L1で示している。また、ボール刃部12Xにおいて、被削材の別の点が通過する軌跡をL2で示している。図4Bに示されるように、軌跡L1は、交差部21を通過せず、軌跡L2は、交差部21を通過する。
In FIG. 4B, the trajectory through which a certain point of the workpiece passes in the ball blade portion 12X is indicated by a broken line L1. Further, in the ball blade portion 12X, a locus along which another point of the workpiece passes is indicated by L2. As shown in FIG. 4B, the trajectory L1 does not pass through the intersection 21, and the trajectory L2 does pass through the intersection 21.
上述したように、ボールエンドミル10が行う加工のうち、バニシング加工は、ボール刃部12のうち、溝20が形成されていない部分で主に行われる。このため、バニシング加工は、溝20や、溝20が有する交差部21では行われないことになる。
As described above, among the processes performed by the ball end mill 10, burnishing is mainly performed in the portion of the ball blade portion 12 where the groove 20 is not formed. Therefore, burnishing is not performed on the grooves 20 or the intersections 21 that the grooves 20 have.
バニシング加工が行われるボール刃部12の部分について、図4Bに示される図で説明すると、バニシング加工は、軌跡L1及び軌跡L2のうち、矢印で示される部分で行われる。ここで、軌跡L1において、バニシング加工が行われる矢印部分は、溝20B又は溝20Aを挟んで規則的に現れる。一方、軌跡L2では、バニシング加工が行われる矢印部分は、溝20Bを通過し始めてから、溝20Aを通過し終えるまで、現れない。つまり、軌跡L2では、バニシング加工が行われない部分が、軌跡L1と比べて多く現れることになる。したがって、交差部21を通過しない軌跡L1よりも、交差部21を通過する軌跡L2の方が、バニシング加工の観点において不利となる。
The part of the ball blade part 12 where the burnishing process is performed will be explained with reference to the diagram shown in FIG. 4B. The burnishing process is performed in the part shown by the arrow between the locus L1 and the locus L2. Here, in the trajectory L1, the arrow portions where the burnishing process is performed appear regularly across the grooves 20B or 20A. On the other hand, in the trajectory L2, the arrow portion where the burnishing process is performed does not appear from the time it starts passing through the groove 20B until it finishes passing through the groove 20A. That is, in the trajectory L2, there are more portions where burnishing is not performed than in the trajectory L1. Therefore, the trajectory L2 that passes through the intersection 21 is more disadvantageous in terms of burnishing than the trajectory L1 that does not pass through the intersection 21.
また、上述したように、ボールエンドミル10が行う加工のうち、切削加工は、図4Bに示されるように、溝20の周縁部22のうち、切れ刃となる側の周縁部22の部分Cで主に行われる。なお、周縁部22は、軌跡L1及び軌跡L2において、通過し始める側と、通過し終える側との2箇所あるが、部分Cは、通過し終える側の周縁部22の部分である。
Furthermore, as described above, among the machining operations performed by the ball end mill 10, the cutting process is performed at a portion C of the peripheral edge portion 22 of the groove 20 on the side that becomes the cutting edge, as shown in FIG. 4B. Mainly done. Note that the peripheral edge portion 22 has two locations on the trajectory L1 and the trajectory L2, one on the side where the passage begins and the side on which the passage ends, and the portion C is the portion of the peripheral edge portion 22 on the side where the passage ends.
ここで、軌跡L1では、切削加工が行われる部分Cは、2回現れる。一方、軌跡L2では、切削加工が行われる部分Cは、1回しか現れない。つまり、軌跡L2では、切削加工が行われる部分Cが、軌跡L1と比べて少ない。したがって、交差部21を通過しない軌跡L1よりも、交差部21を通過する軌跡L2の方が、切削加工の観点において不利となる。
Here, in the trajectory L1, the portion C where cutting is performed appears twice. On the other hand, in the trajectory L2, the portion C where cutting is performed appears only once. That is, in the trajectory L2, the portion C where cutting is performed is smaller than in the trajectory L1. Therefore, the trajectory L2 that passes through the intersection 21 is more disadvantageous in terms of cutting than the trajectory L1 that does not pass through the intersection 21.
以上のように、交差部21を通過する軌跡L2は、交差部21を通過しない軌跡L1よりも、バニシング加工と切削加工との両方において不利である。ここで、比較例のボール刃部12Xでは、このようなバニシング加工及び切削加工にとって不利となる交差部21が、回転方向に沿う線上に集中して位置している。このような多数の交差部21が通過する被削材の加工面の領域では、加工が不十分となってしまい、被削材の加工面の品位が低下してしまうことがある。
As described above, the trajectory L2 that passes through the intersection 21 is more disadvantageous in both burnishing and cutting than the trajectory L1 that does not pass through the intersection 21. Here, in the ball blade portion 12X of the comparative example, the intersection portions 21, which are disadvantageous for such burnishing and cutting, are concentrated and located on a line along the rotation direction. In a region of the machined surface of the workpiece through which such a large number of intersections 21 pass, machining may be insufficient and the quality of the machined surface of the workpiece may deteriorate.
本実施形態のボール刃部12では、被削材の加工面の品位を高めるために、交差部21が回転方向に沿う線上に集中して位置することを抑制している。これにより、被削材の加工面の品位を向上させ、かつ精度も高めることができる。以下では、上述した図3Cを使って、本実施形態のボール刃部12の交差部21の配置について説明する。
In the ball blade part 12 of this embodiment, in order to improve the quality of the machined surface of the workpiece, the intersection parts 21 are suppressed from being concentrated on a line along the rotation direction. Thereby, it is possible to improve the quality of the machined surface of the work material and also to increase the precision. Below, the arrangement of the intersection portion 21 of the ball blade portion 12 of this embodiment will be explained using FIG. 3C described above.
図3Cに示されるボール刃部12の先端13から回転軸方向にみたとき、ある溝20Bにおいて、先端13側から所定番目(例えば、3番目)に位置する交差部21を第1交差部21Aとする。また、周方向に隣接する別の溝20Bにおいて、先端13側から上述と同じ所定番目(3番目)に位置する交差部を第2交差部21Bとする。このとき、本実施形態のボール刃部12では、先端13から第1交差部21Aまでの長さと、先端13から第2交差部21Bまでの長さとが異なる。
When viewed from the tip 13 of the ball blade part 12 in the rotational axis direction shown in FIG. 3C, in a certain groove 20B, the intersection 21 located at a predetermined position (for example, the third) from the tip 13 side is called the first intersection 21A. do. In addition, in another circumferentially adjacent groove 20B, an intersection located at the same predetermined position (third) from the tip 13 side as described above is referred to as a second intersection 21B. At this time, in the ball blade portion 12 of this embodiment, the length from the tip 13 to the first intersection 21A is different from the length from the tip 13 to the second intersection 21B.
したがって、本実施形態のボール刃部12では、交差部21が、回転方向に沿う線上に集中して位置してしまうことを抑制することができる。つまり、図4Cに示されるボール刃部12の側面視において、複数の交差部21が位置する線(すなわち、図4Cにおける線で囲まれた領域)は、回転方向に沿う線に対して傾いている。本実施形態のボール刃部12では、回転方向に沿う線上には、交差部21が1つずつのみ位置している。図3Cに示されるボール刃部12の先端13から回転軸方向にみると、複数の交差部21は、先端13を中心とした渦巻状の曲線(すなわち、図3Cにおける破線)上に位置している。
Therefore, in the ball blade portion 12 of the present embodiment, it is possible to prevent the intersection portions 21 from being located in a concentrated manner on a line along the rotation direction. That is, in the side view of the ball blade part 12 shown in FIG. 4C, the line where the plurality of intersections 21 are located (that is, the area surrounded by the line in FIG. 4C) is inclined with respect to the line along the rotation direction. There is. In the ball blade portion 12 of this embodiment, only one intersection portion 21 is located on each line along the rotation direction. When viewed from the tip 13 of the ball blade part 12 shown in FIG. 3C in the direction of the rotation axis, the plurality of intersections 21 are located on a spiral curve centered on the tip 13 (i.e., the broken line in FIG. 3C). There is.
本実施形態のボール刃部12では、溝20Aの数と、溝20Aとは異なる数の溝20Bとが形成されている。具体的には、上述したように、16本の溝20Aと、15本の溝20Bとが形成されている。また、本実施形態のボール刃部12では、複数の溝20Aと、複数の溝20Bとは、それぞれ、先端13を中心に回転対称となるように位置している。これにより、ボール刃部12の先端13から第1交差部21Aまでの長さと、ボール刃部12の先端13から第2交差部21Bまでの長さとを異ならせることができる。
In the ball blade part 12 of this embodiment, the number of grooves 20A and the number of grooves 20B that are different from the number of grooves 20A are formed. Specifically, as described above, 16 grooves 20A and 15 grooves 20B are formed. Further, in the ball blade portion 12 of this embodiment, the plurality of grooves 20A and the plurality of grooves 20B are each positioned rotationally symmetrically about the tip 13. Thereby, the length from the tip 13 of the ball blade part 12 to the first intersection part 21A can be made different from the length from the tip 13 of the ball blade part 12 to the second intersection part 21B.
<溝20の数を変更した例>
以下では、溝20Aの数と、溝20Bの数とを、それぞれ変更した場合の例について、図5~図7を使って説明する。 <Example of changing the number ofgrooves 20>
Below, examples in which the number ofgrooves 20A and the number of grooves 20B are changed will be described using FIGS. 5 to 7.
以下では、溝20Aの数と、溝20Bの数とを、それぞれ変更した場合の例について、図5~図7を使って説明する。 <Example of changing the number of
Below, examples in which the number of
・溝20Aの数と、溝20Bの数とが互いに素の関係にある例
図5は、ボール刃部12に形成される溝20の数を変更した例の説明図である。なお、図5Aは、溝20Aを16本、溝20Bを13本とした例の説明図であり、図5Bは、溝20Aを16本、溝20Bを11本とした例の説明図である。 - Example in which the number ofgrooves 20A and the number of grooves 20B are in a mutually prime relationship FIG. 5 is an explanatory diagram of an example in which the number of grooves 20 formed in the ball blade portion 12 is changed. Note that FIG. 5A is an explanatory diagram of an example in which the number of grooves 20A is 16 and the number of grooves 20B is 13. FIG. 5B is an explanatory diagram of an example in which the number of grooves 20A is 16 and the number of grooves 20B is 11.
図5は、ボール刃部12に形成される溝20の数を変更した例の説明図である。なお、図5Aは、溝20Aを16本、溝20Bを13本とした例の説明図であり、図5Bは、溝20Aを16本、溝20Bを11本とした例の説明図である。 - Example in which the number of
また、図6は、ボール刃部12に形成される溝20の数を変更した例の説明図である。なお、図6Aは、溝20Aを17本、溝20Bを15本とした例の説明図であり、図6Bは、溝20Aを9本、溝20Bを7本とした例の説明図であり、図6Cは、溝20Aを7本、溝20Bを5本とした例の説明図である。
Further, FIG. 6 is an explanatory diagram of an example in which the number of grooves 20 formed in the ball blade portion 12 is changed. Note that FIG. 6A is an explanatory diagram of an example in which 17 grooves 20A and 15 grooves 20B are provided, and FIG. 6B is an explanatory diagram of an example in which 9 grooves 20A and 7 grooves 20B are provided, FIG. 6C is an explanatory diagram of an example in which there are seven grooves 20A and five grooves 20B.
図5A,図5B及び図6A~図6Cに示されるボール刃部12では、溝20Aの数と、溝20Bの数とが互いに素の関係にある。このとき、図5A,図5B及び図6A~図6Cに示されるように、ボール刃部12の先端13から回転軸方向にみたとき、先端13から交差部21までの長さが、全ての交差部21において異なることになる。このとき、複数の交差部21は、先端13を中心とした渦巻状の曲線(すなわち、図5A,図5B及び図6A~図6Cにおける破線)上に位置する。
In the ball blade portion 12 shown in FIGS. 5A, 5B, and 6A to 6C, the number of grooves 20A and the number of grooves 20B are in a mutually prime relationship. At this time, as shown in FIGS. 5A, 5B, and 6A to 6C, when viewed from the tip 13 of the ball blade part 12 in the direction of the rotation axis, the length from the tip 13 to the intersection 21 is equal to The difference will be in section 21. At this time, the plurality of intersections 21 are located on a spiral curve centered on the tip 13 (ie, the broken lines in FIGS. 5A, 5B, and 6A to 6C).
・溝20Aの数と、溝20Bの数とが互いに素の関係にない例
図7は、ボール刃部12に形成される溝20の数を変更した例の説明図である。なお、図7Aは、溝20Aを16本、溝20Bを14本とした例の説明図であり、図7Bは、溝20Aを15本、溝20Bを10本とした例の説明図である。 - Example where the number ofgrooves 20A and the number of grooves 20B are not in a mutually prime relationship FIG. 7 is an explanatory diagram of an example in which the number of grooves 20 formed in the ball blade portion 12 is changed. Note that FIG. 7A is an explanatory diagram of an example in which 16 grooves 20A and 14 grooves 20B are provided, and FIG. 7B is an explanatory diagram in an example in which 15 grooves 20A and 10 grooves 20B are provided.
図7は、ボール刃部12に形成される溝20の数を変更した例の説明図である。なお、図7Aは、溝20Aを16本、溝20Bを14本とした例の説明図であり、図7Bは、溝20Aを15本、溝20Bを10本とした例の説明図である。 - Example where the number of
図7A及び図7Bに示されるボール刃部12では、溝20Aの数と、溝20Bの数とが互いに素の関係にない。このとき、例えば、図7Aに示されるボール刃部12では、回転軸を含む面において、対称位置に交差部21が2つ現れることになる。言い換えると、図7Aに示されるボール刃部12の場合、2つの交差部21が、回転方向に沿う線(すなわち、図7Aにおける破線)上に位置することになる。同様に、図7Bに示されるボール刃部12の場合、5つの交差部21が、回転方向に沿う線(すなわち、図7Bにおける破線)上に位置することになる。したがって、図7A及び図7Bに示されるボール刃部12の場合、先端13から回転軸方向にみたとき、先端13から交差部21までの長さが同じ交差部21が、2つ以上現れることになる。
In the ball blade portion 12 shown in FIGS. 7A and 7B, the number of grooves 20A and the number of grooves 20B are not in a mutually prime relationship. At this time, for example, in the ball blade portion 12 shown in FIG. 7A, two intersection portions 21 appear at symmetrical positions in a plane including the rotation axis. In other words, in the case of the ball blade part 12 shown in FIG. 7A, the two intersections 21 are located on the line along the rotation direction (that is, the broken line in FIG. 7A). Similarly, in the case of the ball blade part 12 shown in FIG. 7B, the five intersections 21 are located on the line along the rotation direction (that is, the broken line in FIG. 7B). Therefore, in the case of the ball blade part 12 shown in FIGS. 7A and 7B, when viewed from the tip 13 in the rotation axis direction, two or more intersections 21 having the same length from the tip 13 to the intersection 21 appear. Become.
したがって、本実施形態のボール刃部12では、溝20Aの数と、溝20Bの数とが異なり、かつ、互いに素の関係にあることがより好ましい。
Therefore, in the ball blade part 12 of this embodiment, it is more preferable that the number of grooves 20A and the number of grooves 20B are different and have a mutually prime relationship.
上述では、溝20Aの数と、溝20Bの数とが異なることにより、ボール刃部12の先端13から第1交差部21Aまでの長さと、ボール刃部12の先端13から第2交差部21Bまでの長さとが異なることについて説明した。しかし、ボール刃部12の先端13から第1交差部21Aまでの長さと、ボール刃部12の先端13から第2交差部21Bまでの長さとが異なる態様については、上述した場合に限られない。以下に示す変形例(第1変形例及び第2変形例)の場合においても、ボール刃部12の先端13から第1交差部21Aまでの長さと、ボール刃部12の先端13から第2交差部21Bまでの長さとが異なる。
In the above description, the number of grooves 20A and the number of grooves 20B are different, so that the length from the tip 13 of the ball blade part 12 to the first intersection part 21A and the length from the tip 13 of the ball blade part 12 to the second intersection part 21B are different. I explained that the lengths are different. However, the aspect in which the length from the tip 13 of the ball blade part 12 to the first intersection part 21A is different from the length from the tip 13 of the ball blade part 12 to the second intersection part 21B is not limited to the above case. . Also in the case of the modified examples (first modified example and second modified example) shown below, the length from the tip 13 of the ball blade part 12 to the first intersection 21A and the length from the tip 13 of the ball blade part 12 to the second intersection The length up to part 21B is different.
<第1変形例>
図8は、第1変形例のボール刃部32に形成された溝20の態様の説明図である。なお、図8Aは、溝20Cのみが形成されたボール刃部32の図であり、図8Bは、溝20Bのみが形成されたボール刃部32の図であり、図8Cは、溝20C及び溝20Bが形成されたボール刃部32の図である。 <First modification example>
FIG. 8 is an explanatory diagram of an aspect of thegroove 20 formed in the ball blade part 32 of the first modification. Note that FIG. 8A is a diagram of the ball blade part 32 in which only the groove 20C is formed, FIG. 8B is a diagram of the ball blade part 32 in which only the groove 20B is formed, and FIG. 8C is a diagram of the ball blade part 32 in which only the groove 20C and the groove are formed. It is a figure of the ball blade part 32 in which 20B was formed.
図8は、第1変形例のボール刃部32に形成された溝20の態様の説明図である。なお、図8Aは、溝20Cのみが形成されたボール刃部32の図であり、図8Bは、溝20Bのみが形成されたボール刃部32の図であり、図8Cは、溝20C及び溝20Bが形成されたボール刃部32の図である。 <First modification example>
FIG. 8 is an explanatory diagram of an aspect of the
上述した図3Cに示されるボール刃部12では、複数の溝20A及び複数の溝20Bは、いずれも、先端13を中心に回転対称となるように位置していた。しかし、第1変形例のボール刃部32では、複数の溝20A及び複数の溝20Bの少なくともいずれか一方が、先端13を中心に回転対称となるように位置していなくても良い。
In the ball blade portion 12 shown in FIG. 3C described above, the plurality of grooves 20A and the plurality of grooves 20B are both positioned rotationally symmetrically about the tip 13. However, in the ball blade part 32 of the first modification, at least one of the plurality of grooves 20A and the plurality of grooves 20B does not have to be positioned rotationally symmetrically about the tip 13.
第1変形例のボール刃部32では、図8Aに示されるように、周方向に隣り合う溝20C間の分割角度が、徐々に大きくなるように設けられている。つまり、周方向に隣り合う溝20C間の分割角度について、ある溝20C同士の分割角度αと、別の溝20C間の分割角度βとを比較したとき、分割角度αよりも分割角度βが大きくなるように設けられている(β>α)。
In the ball blade portion 32 of the first modification, as shown in FIG. 8A, the dividing angle between the grooves 20C adjacent to each other in the circumferential direction is provided so as to gradually increase. In other words, regarding the dividing angle between circumferentially adjacent grooves 20C, when comparing the dividing angle α between a certain groove 20C and the dividing angle β between another groove 20C, the dividing angle β is larger than the dividing angle α. (β>α).
一方、第1変形例のボール刃部32では、溝20Cと異なるねじれ態様を有する溝20Bは、図8Bに示されるように、上述のボール刃部12と同様に、先端13を中心に回転対称となるように位置している。
On the other hand, in the ball blade part 32 of the first modification, the groove 20B having a twisting pattern different from the groove 20C is rotationally symmetrical about the tip 13, as in the ball blade part 12 described above, as shown in FIG. 8B. It is located so that
第1変形例のボール刃部32においても、交差部21が回転方向に沿う線上に集中して位置することを抑制することができる。つまり、第1変形例のボール刃部32でも、回転方向に沿う線上には、交差部21が1つずつのみ位置している。そして、図8Cに示されるボール刃部32の先端13から回転軸方向にみると、複数の交差部21は、ボール刃部32の先端13を中心とした渦巻状の曲線(すなわち、図8Cにおける破線)上に位置している。したがって、第1変形例のボール刃部32においても、被削材の加工面の品位を高めることができる。
Also in the ball blade portion 32 of the first modification, it is possible to prevent the intersection portions 21 from being concentrated on the line along the rotation direction. That is, even in the ball blade part 32 of the first modification, only one intersection part 21 is located on each line along the rotation direction. When viewed in the direction of the rotation axis from the tip 13 of the ball blade 32 shown in FIG. (dashed line). Therefore, also in the ball blade part 32 of the first modification, the quality of the machined surface of the workpiece can be improved.
上述した第1変形例のボール刃部32では、周方向に隣り合う溝20の角度が徐々に大きくなるように設けられるのは、右ねじれの溝20Cであった。しかし、右ねじれの溝20Cではなく、左ねじれの溝20Bについて、周方向に隣り合う溝20Bの角度が徐々に大きくなるように設けられても良い。また、右ねじれの溝20Cと、左ねじれの溝20Bとの両方について、周方向に隣り合う溝20C及び周方向に隣り合う溝20Bの角度が
徐々に大きくなるように設けられても良い。 In theball blade portion 32 of the first modified example described above, the right-handed helical groove 20C is provided so that the angle of the grooves 20 adjacent to each other in the circumferential direction gradually increases. However, instead of the right-handed helical groove 20C, the left-handed helical groove 20B may be provided such that the angle between circumferentially adjacent grooves 20B gradually increases. Further, both the right-handed helical groove 20C and the left-handed helical groove 20B may be provided so that the angles between the circumferentially adjacent grooves 20C and the circumferentially adjacent grooves 20B gradually increase.
徐々に大きくなるように設けられても良い。 In the
さらに、周方向に隣り合う溝20の角度が徐々に小さくなるように設けられても良い。これらに限られず、交差部21が回転方向に沿う線上に集中して位置することを抑制できれば、ある周方向に隣り合う溝20同士の角度が、他の周方向に隣り合う溝20同士の角度と異なるだけで良い。また、第1変形例のボール刃部32では、溝20Cの数と、溝20Bの数とが同じであっても良い。
Furthermore, the grooves 20 adjacent to each other in the circumferential direction may be provided so that the angle thereof gradually becomes smaller. Not limited to these, if it is possible to prevent the intersections 21 from being concentrated on a line along the rotational direction, the angle between the grooves 20 adjacent to each other in a certain circumferential direction will be the angle between the grooves 20 adjacent to each other in another circumferential direction. It's good just to be different. Moreover, in the ball blade part 32 of the first modification, the number of grooves 20C and the number of grooves 20B may be the same.
<第2変形例>
図9は、第2変形例のボール刃部42に形成された溝20の態様の説明図である。なお、図9Aは、溝20Aのみが形成されたボール刃部42の図であり、図9Bは、溝20Dのみが形成されたボール刃部42の図であり、図9Cは、溝20A及び溝20Dが形成されたボール刃部42の図である。 <Second modification example>
FIG. 9 is an explanatory diagram of an aspect of thegroove 20 formed in the ball blade part 42 of the second modification. Note that FIG. 9A is a diagram of the ball blade part 42 in which only the groove 20A is formed, FIG. 9B is a diagram of the ball blade part 42 in which only the groove 20D is formed, and FIG. 9C is a diagram of the ball blade part 42 in which only the groove 20A and the groove are formed. It is a figure of the ball blade part 42 in which 20D was formed.
図9は、第2変形例のボール刃部42に形成された溝20の態様の説明図である。なお、図9Aは、溝20Aのみが形成されたボール刃部42の図であり、図9Bは、溝20Dのみが形成されたボール刃部42の図であり、図9Cは、溝20A及び溝20Dが形成されたボール刃部42の図である。 <Second modification example>
FIG. 9 is an explanatory diagram of an aspect of the
上述した図3Cに示されるボール刃部12では、複数の溝20Aと、複数の溝20Bとが形成されていた。しかし、第2変形例のボール刃部42では、溝20A及び溝20Bのいずれか一方が、1つのみ形成されていても良い。そして、この1つのみ形成された溝のねじれ態様が、図3Cに示される右ねじれ及び左ねじれ以外の態様であっても良い。
In the ball blade portion 12 shown in FIG. 3C described above, a plurality of grooves 20A and a plurality of grooves 20B were formed. However, in the ball blade part 42 of the second modification, only one of the grooves 20A and 20B may be formed. The twist mode of only one groove formed may be other than the right-handed twist and left-handed twist shown in FIG. 3C.
第2変形例のボール刃部42では、複数の溝20Aが形成されている。そして、複数の溝20Aは、図9Aに示されるように、上述のボール刃部12と同様に、先端13を中心に回転対称となるように位置している。
In the ball blade part 42 of the second modification, a plurality of grooves 20A are formed. As shown in FIG. 9A, the plurality of grooves 20A are positioned so as to be rotationally symmetrical about the tip 13, similar to the above-described ball blade portion 12.
一方、第2変形例のボール刃部42では、図9Bに示されるように、1つの溝20Dが形成されている。そして、溝20Dは、先端13を中心とした渦巻状の曲線で形成される溝である。
On the other hand, in the ball blade part 42 of the second modification, one groove 20D is formed, as shown in FIG. 9B. The groove 20D is a groove formed in a spiral curve centered on the tip 13.
第2変形例のボール刃部42においても、交差部21が回転方向に沿う線上に集中して位置することを抑制することができる。つまり、第2変形例のボール刃部42でも、回転方向に沿う線上には、交差部21が1つずつのみ位置している。そして、図9Cに示されるボール刃部42の先端13から回転軸方向にみると、複数の交差部21は、ボール刃部42の先端13を中心とした渦巻状の曲線(すなわち、図9Cにおける溝20D)上に位置している。したがって、第2変形例のボール刃部42においても、被削材の加工面の品位を高めることができる。
Also in the ball blade portion 42 of the second modification, it is possible to prevent the intersection portions 21 from being concentrated on the line along the rotation direction. That is, even in the ball blade part 42 of the second modification, only one intersection part 21 is located on each line along the rotation direction. When viewed in the rotational axis direction from the tip 13 of the ball blade 42 shown in FIG. groove 20D). Therefore, also in the ball blade part 42 of the second modification, the quality of the machined surface of the workpiece can be improved.
<加工試験>
ボール刃部の溝の有無及び溝の態様に関して、3種類のボールエンドミルを用意し、被削材に対して加工試験を行った。まず、以下では、3種類のボールエンドミルの概要を説明する。 <Processing test>
Three types of ball end mills were prepared and machining tests were conducted on workpieces with regard to the presence or absence of grooves on the ball cutting edge and the shape of the grooves. First, an overview of three types of ball end mills will be explained below.
ボール刃部の溝の有無及び溝の態様に関して、3種類のボールエンドミルを用意し、被削材に対して加工試験を行った。まず、以下では、3種類のボールエンドミルの概要を説明する。 <Processing test>
Three types of ball end mills were prepared and machining tests were conducted on workpieces with regard to the presence or absence of grooves on the ball cutting edge and the shape of the grooves. First, an overview of three types of ball end mills will be explained below.
図10は、ボールエンドミルによる加工試験で使用されるボール刃部の説明図である。なお、図10Aは、ボール刃部52を有するボールエンドミル50の図であり、図10Bは、ボール刃部62を有するボールエンドミル60の図であり、図10Cは、ボール刃部12を有するボールエンドミル10の図である。
FIG. 10 is an explanatory diagram of a ball cutting edge used in a machining test using a ball end mill. 10A is a diagram of the ball end mill 50 having the ball blade part 52, FIG. 10B is a diagram of the ball end mill 60 having the ball blade part 62, and FIG. 10C is a diagram of the ball end mill 50 having the ball blade part 12. FIG.
ボールエンドミル50のボール刃部52には、図10Aに示されるように、溝20が形成されていない。すなわち、ボール刃部52の全面において被削材の表面と接触し、被削材のバニシング加工が行われる。なお、ボール刃部52には、溝が形成されていないので、上述した切削加工は行われない。
As shown in FIG. 10A, the ball blade portion 52 of the ball end mill 50 does not have the groove 20 formed therein. That is, the entire surface of the ball blade portion 52 comes into contact with the surface of the workpiece, and burnishing of the workpiece is performed. Note that since no groove is formed in the ball blade portion 52, the above-mentioned cutting process is not performed.
また、ボールエンドミル60のボール刃部62には、図10Bに示されるように、溝20が形成されている。そして、溝20は、16本の右ねじれの溝20Aのみで構成される。なお、図10Bの右側には、溝20の断面図が示されている。溝20は、上述した図2に示される溝20と同様に、負のすくい角を有する。
Furthermore, a groove 20 is formed in the ball blade portion 62 of the ball end mill 60, as shown in FIG. 10B. The groove 20 is composed of only 16 right-handed grooves 20A. Note that a cross-sectional view of the groove 20 is shown on the right side of FIG. 10B. Groove 20 has a negative rake angle, similar to the groove 20 shown in FIG. 2 described above.
また、ボールエンドミル10のボール刃部12は、図10Cに示されるように、溝20が形成されている。そして、溝20は、右ねじれの16本の溝20Aと、左ねじれの15本の溝20Bとで構成される。すなわち、ボール刃部12は、上述した図3C等に示される本実施形態のボールエンドミル10のボール刃部12と同様である。なお、図10Cの右側には、溝20の断面図が示されている。溝20は、上述した図2に示される溝20と同様に、負のすくい角を有する。
Further, the ball blade portion 12 of the ball end mill 10 has a groove 20 formed therein, as shown in FIG. 10C. The grooves 20 are composed of 16 grooves 20A with a right-handed twist and 15 grooves 20B with a left-handed twist. That is, the ball blade part 12 is similar to the ball blade part 12 of the ball end mill 10 of this embodiment shown in FIG. 3C etc. mentioned above. Note that a cross-sectional view of the groove 20 is shown on the right side of FIG. 10C. Groove 20 has a negative rake angle, similar to the groove 20 shown in FIG. 2 described above.
次に、本加工試験における2種類の加工条件(加工条件1及び加工条件2)を説明する。
Next, two types of processing conditions (processing condition 1 and processing condition 2) in this processing test will be explained.
図11は、加工試験における加工条件を説明する説明図である。なお、図11では、加工条件について、ボール刃部12(ボールエンドミル10)の場合を代表して示しているが、ボール刃部52(ボールエンドミル50)及びボール刃部62(ボールエンドミル60)の場合も同様である。
FIG. 11 is an explanatory diagram illustrating the processing conditions in the processing test. In addition, in FIG. 11, the machining conditions are representatively shown for the ball blade part 12 (ball end mill 10), but the machining conditions for the ball blade part 52 (ball end mill 50) and the ball blade part 62 (ball end mill 60) are shown as a representative example. The same applies to the case.
ボールエンドミル10は、図11に示されるように、ボール刃部12を回転させながら、図11に示される矢印の方向に移動することで、アップカットにより被削材100に加工を行う。ここで、被削材100の加工される領域は、図11に示されるように、曲面で構成される凹部が既に切り込まれている。そして、ボールエンドミル10のボール刃部12は、加工により、軸方向に対して垂直な方向に切り込むことを予定する。
As shown in FIG. 11, the ball end mill 10 processes the workpiece 100 by up-cutting by moving in the direction of the arrow shown in FIG. 11 while rotating the ball blade part 12. Here, in the region of the workpiece 100 to be machined, as shown in FIG. 11, a concave portion having a curved surface has already been cut. The ball blade portion 12 of the ball end mill 10 is planned to cut in a direction perpendicular to the axial direction by machining.
ここで、加工条件1では、ボール刃部12の回転速度が800min-1(切削速度:20m/min)、テーブル送り速度が320mm/min、軸方向切込み量が4mm、切込み予定量が0.005mmに設定される。また、加工条件2では、ボール刃部12の回転速度が800min-1(切削速度:20m/min)、テーブル送り速度が32mm/min、軸方向切込み量が4mm、切込み予定量が0.010mmに設定される。
Here, in machining conditions 1, the rotation speed of the ball blade part 12 is 800 min -1 (cutting speed: 20 m/min), the table feed speed is 320 mm/min, the axial depth of cut is 4 mm, and the planned depth of cut is 0.005 mm. is set to In addition, under machining conditions 2, the rotation speed of the ball blade part 12 is 800 min -1 (cutting speed: 20 m/min), the table feed rate is 32 mm/min, the axial depth of cut is 4 mm, and the planned depth of cut is 0.010 mm. Set.
<加工トルクの比較結果>
図12は、加工条件1における加工トルクの比較結果の一例を示すグラフである。なお、図12Aは、トルク平均値を示すグラフであり、図12Bは、トルク最大値を示すグラフである。図13は、加工条件2における加工トルクの比較結果の一例を示すグラフである。なお、図13Aは、トルク平均値を示すグラフであり、図13Bは、トルク最大値を示すグラフである。 <Comparison results of machining torque>
FIG. 12 is a graph showing an example of a comparison result of machining torque under machining condition 1. Note that FIG. 12A is a graph showing the average torque value, and FIG. 12B is a graph showing the maximum torque value. FIG. 13 is a graph showing an example of a comparison result of machining torque under machining condition 2. Note that FIG. 13A is a graph showing the average torque value, and FIG. 13B is a graph showing the maximum torque value.
図12は、加工条件1における加工トルクの比較結果の一例を示すグラフである。なお、図12Aは、トルク平均値を示すグラフであり、図12Bは、トルク最大値を示すグラフである。図13は、加工条件2における加工トルクの比較結果の一例を示すグラフである。なお、図13Aは、トルク平均値を示すグラフであり、図13Bは、トルク最大値を示すグラフである。 <Comparison results of machining torque>
FIG. 12 is a graph showing an example of a comparison result of machining torque under machining condition 1. Note that FIG. 12A is a graph showing the average torque value, and FIG. 12B is a graph showing the maximum torque value. FIG. 13 is a graph showing an example of a comparison result of machining torque under machining condition 2. Note that FIG. 13A is a graph showing the average torque value, and FIG. 13B is a graph showing the maximum torque value.
加工条件1において、図12Aに示されるトルク平均値、及び、図12Bに示されるトルク最大値共に、溝20が形成されていないボール刃部52における加工トルクが最も高い。そして、右ねじれの溝20Aのみで構成されるボール刃部62における加工トルクが、ボール刃部52における加工トルクに次いで高い。また、右ねじれの溝20Aと左ねじれの溝20Bとで構成されるボール刃部12における加工トルクが最も低い。
Under machining condition 1, both the average torque value shown in FIG. 12A and the maximum torque value shown in FIG. 12B, the machining torque in the ball blade portion 52 where the groove 20 is not formed is the highest. The machining torque at the ball blade portion 62, which is formed only by the right-handed helical groove 20A, is the second highest after the machining torque at the ball blade portion 52. Furthermore, the machining torque in the ball blade portion 12 composed of the right-handed helical groove 20A and the left-handed helical groove 20B is the lowest.
また、加工条件2においても、図13Aに示されるトルク平均値、及び、図13Bに示されるトルク最大値共に、溝20が形成されていないボール刃部52における加工トルクが最も高い。そして、右ねじれの溝20Aのみで構成されるボール刃部62における加工トルクが、ボール刃部52における加工トルクに次いで高い。また、右ねじれの溝20Aと左ねじれの溝20Bとで構成されるボール刃部12における加工トルクが最も低い。
Also, under machining condition 2, both the average torque value shown in FIG. 13A and the maximum torque value shown in FIG. 13B, the machining torque in the ball blade portion 52 where the groove 20 is not formed is the highest. The machining torque at the ball blade portion 62, which is formed only by the right-handed helical groove 20A, is the second highest after the machining torque at the ball blade portion 52. Furthermore, the machining torque in the ball blade portion 12 composed of the right-handed helical groove 20A and the left-handed helical groove 20B is the lowest.
本加工試験の比較結果から、ボール刃部に溝20が形成されることによる有意差が明らかである。上述したように、本実施形態のボールエンドミル10では、ボール刃部に溝20が形成されることにより、バニシング加工の際の抵抗を軽減することができる。しかし、ボール刃部に溝20が形成されることにより、被削材に対する切削加工による抵抗が発生することがある。つまり、切削加工による抵抗が発生しても、バニシング加工による抵抗の軽減の効果が上回っていることが本加工試験により示された。
From the comparative results of this machining test, it is clear that there is a significant difference due to the formation of the groove 20 on the ball cutting edge. As described above, in the ball end mill 10 of this embodiment, the grooves 20 are formed in the ball blade portion, so that resistance during burnishing can be reduced. However, the formation of the groove 20 in the ball cutting edge may generate resistance to the workpiece due to cutting. In other words, this machining test showed that even if resistance was generated due to the cutting process, the effect of reducing the resistance due to the burnishing process was greater than that.
<加工誤差の比較結果>
次に、3種類のボールエンドミルについて、加工誤差の検証を行う。 <Comparison results of processing errors>
Next, we will verify machining errors for three types of ball end mills.
次に、3種類のボールエンドミルについて、加工誤差の検証を行う。 <Comparison results of processing errors>
Next, we will verify machining errors for three types of ball end mills.
図14は、加工条件1及び加工条件2における加工誤差に関する図表である。なお、図14Aは、加工誤差の説明図であり、図14Bは、加工誤差の比較結果の一例を示す表である。また、図14Aは、ボールエンドミルの移動方向にみた被削材の断面図を示している。
FIG. 14 is a chart regarding machining errors under machining conditions 1 and 2. Note that FIG. 14A is an explanatory diagram of machining errors, and FIG. 14B is a table showing an example of comparison results of machining errors. Moreover, FIG. 14A shows a cross-sectional view of the workpiece seen in the moving direction of the ball end mill.
ここで、加工誤差は、図14Aに示されるように、被削材の切込予定位置(すなわち、図14Aに示される破線の位置)に対する、実際の加工位置(すなわち、図14Aに示される実線の位置)の差で表す。そして、ボール刃部側とは反対側を正の値とし、ボール刃部側を負の値とする。つまり、加工誤差が正の値の場合は、切込予定位置に対して、実際は切込み過ぎてしまった場合を意味する。また、加工誤差が負の値の場合は、切込予定位置に対して、実際は切込みが足りなかった場合を意味する。
Here, as shown in FIG. 14A, the machining error is defined as the actual machining position (i.e., the solid line shown in FIG. 14A) with respect to the planned cutting position of the workpiece (i.e., the position of the broken line shown in FIG. It is expressed as the difference between Then, the side opposite to the ball blade side is set as a positive value, and the side of the ball blade side is set as a negative value. In other words, when the machining error is a positive value, it means that the cut is actually made too far with respect to the planned cut position. Moreover, when the processing error is a negative value, it means that the depth of cut is actually insufficient with respect to the planned cut position.
加工条件1において、図14Bに示されるように、溝20が形成されていないボール刃部52における加工誤差が最も大きい。そして、右ねじれの溝20Aのみで構成されるボール刃部62における加工誤差が、ボール刃部52における加工誤差に次いで高い。また、右ねじれの溝20Aと左ねじれの溝20Bとで構成されるボール刃部12における加工誤差が最も小さい。
Under machining condition 1, as shown in FIG. 14B, the machining error in the ball blade portion 52 where the groove 20 is not formed is the largest. The machining error in the ball blade portion 62, which is composed of only the right-handed groove 20A, is the second highest after the machining error in the ball blade portion 52. Further, the machining error in the ball blade portion 12, which is composed of the right-handed helical groove 20A and the left-handed helical groove 20B, is the smallest.
また、加工条件2においても、図14Bに示されるように、溝20が形成されていないボール刃部52における加工誤差が最も大きい。そして、右ねじれの溝20Aのみで構成されるボール刃部62における加工誤差が、ボール刃部52における加工誤差に次いで高い。また、右ねじれの溝20Aと左ねじれの溝20Bとで構成されるボール刃部12における加工誤差が最も小さい。
Also, under machining condition 2, as shown in FIG. 14B, the machining error is the largest in the ball blade portion 52 where the groove 20 is not formed. The machining error in the ball blade portion 62, which is composed of only the right-handed groove 20A, is the second highest after the machining error in the ball blade portion 52. Further, the machining error in the ball blade portion 12, which is composed of the right-handed helical groove 20A and the left-handed helical groove 20B, is the smallest.
以上より、加工誤差の検証結果からも、ボール刃部に溝20が形成されることによる有意差が明らかである。さらに、右ねじれの溝20Aのみで構成されるボール刃部62よりも、右ねじれの溝20Aと左ねじれの溝20Bとで構成されるボール刃部12の方が、加工誤差の観点において有利であることがわかった。
From the above, it is clear from the verification results of machining errors that there is a significant difference due to the formation of the groove 20 on the ball cutting edge. Furthermore, the ball blade part 12 composed of the right-handed helical groove 20A and the left-handed helical groove 20B is more advantageous in terms of machining errors than the ball blade part 62 composed only of the right-handed helical groove 20A. I found out something.
===第2実施形態===
上述した第1実施形態のボールエンドミル10では、ボール刃部12に形成された複数の溝20は、先端13において非連結である。これにより、先端13に溝20(凹部)が形成されないようにして、先端13におけるバニシング効果を得ることができる。 ===Second embodiment===
In theball end mill 10 of the first embodiment described above, the plurality of grooves 20 formed in the ball blade part 12 are not connected at the tip 13. Thereby, the groove 20 (recess) is not formed in the tip 13, and a burnishing effect at the tip 13 can be obtained.
上述した第1実施形態のボールエンドミル10では、ボール刃部12に形成された複数の溝20は、先端13において非連結である。これにより、先端13に溝20(凹部)が形成されないようにして、先端13におけるバニシング効果を得ることができる。 ===Second embodiment===
In the
また、複数の溝20は、先端13から外周14にかけて放射状に設けられている。このため、第1実施形態のボール刃部12では、先端13に近づくほど複数の溝20が集中することになる。上述したように、ボール刃部12の溝20が形成されている部分ではバニシング加工が行われないため、先端13の周囲ではバニシング効果が弱まってしまうことがある。
Further, the plurality of grooves 20 are provided radially from the tip 13 to the outer periphery 14. Therefore, in the ball blade portion 12 of the first embodiment, the plurality of grooves 20 become more concentrated as they get closer to the tip 13. As described above, since the burnishing process is not performed on the portion of the ball blade portion 12 where the groove 20 is formed, the burnishing effect may be weakened around the tip 13.
そこで、以下では、ボール刃部の先端の周囲においてバニシング効果を向上させるボールエンドミルについて説明する。
Therefore, a ball end mill that improves the burnishing effect around the tip of the ball blade will be described below.
図15は、第2実施形態のボール刃部72,82の図である。なお、図15Aは、第1実施例のボール刃部72の先端13から回転軸方向にみた図であり、図15Bは、第2実施例のボール刃部82の先端13から回転軸方向にみた図である。図16は、第3実施例のボール刃部92の先端13から回転軸方向にみた図である。
FIG. 15 is a diagram of the ball blade parts 72, 82 of the second embodiment. Note that FIG. 15A is a view seen from the tip 13 of the ball blade part 72 of the first embodiment in the direction of the rotation axis, and FIG. 15B is a view seen from the tip 13 of the ball blade part 82 of the second example in the direction of the rotation axis. It is a diagram. FIG. 16 is a view of the ball blade portion 92 of the third embodiment as viewed from the tip 13 in the direction of the rotation axis.
本実施形態の第1実施例のボール刃部72には、図15Aに示されるように、先端13を含み、かつ先端13よりも広い領域15を有している。そして、複数の溝20の各々における先端13側の端部は、領域15の外側に位置する。言い換えると、ボール刃部72には、領域15の内側に溝20が形成されない。これにより、溝20が集中するボール刃部の先端13の周囲において、バニシング効果を高めることができる。
As shown in FIG. 15A, the ball blade portion 72 of the first example of this embodiment includes a tip 13 and has a region 15 wider than the tip 13. The end of each of the plurality of grooves 20 on the tip 13 side is located outside the region 15. In other words, the groove 20 is not formed inside the region 15 in the ball blade portion 72 . Thereby, the burnishing effect can be enhanced around the tip 13 of the ball blade portion where the grooves 20 are concentrated.
但し、溝20の全ての先端13側の端部が領域15の外側に位置しなくても良い。図15Bに示されるように、ボール刃部に形成される複数の溝20のうち、一部の溝の各々における先端13側の端部が、領域15の内側に位置しても良い。
However, all the ends of the grooves 20 on the tip 13 side do not have to be located outside the region 15. As shown in FIG. 15B, among the plurality of grooves 20 formed in the ball blade part, the end of each of the grooves on the tip 13 side may be located inside the region 15.
本実施形態の第2実施例のボール刃部82には、図15Bに示されるように、先端13側の端部が先端13まで延びる溝20Aと、先端13側の端部が領域15の外側に位置する溝20E及び溝20Fとを有する。すなわち、ボール刃部82の複数の溝20は、先端13側の端部が領域15の外側に位置する溝20(すなわち、溝20E及び溝20F)と、先端13側の端部が領域15の内側に位置する溝20(すなわち、溝20A)とを有する。これにより、溝20が集中するボール刃部の先端13の周囲において、バニシング効果を高めつつ、切削効果も高めることができる。
As shown in FIG. 15B, the ball blade part 82 of the second example of this embodiment has a groove 20A whose end on the tip 13 side extends to the tip 13, and a groove 20A whose end on the tip 13 side is outside the area 15. It has a groove 20E and a groove 20F located at . In other words, the plurality of grooves 20 of the ball blade part 82 include grooves 20 whose ends on the tip 13 side are located outside the region 15 (i.e., grooves 20E and grooves 20F), and grooves 20 whose ends on the tip 13 side are located outside the region 15. It has a groove 20 (namely, groove 20A) located inside. Thereby, around the tip 13 of the ball blade portion where the grooves 20 are concentrated, it is possible to enhance the burnishing effect and also enhance the cutting effect.
なお、溝20の先端13側の端部の位置が、段階的であっても良い。本実施形態の第3実施例のボール刃部92には、図16に示されるように、先端13を含み、かつ領域15よりも狭い領域16を有している。そして、溝20が、図16に示されるように、先端13側の端部が領域15の内側に位置し、領域16の外側に位置する溝20Gと、先端13側の端部が領域16の内側に位置する溝20Aとにより構成されても良い。これにより、溝20が集中するボール刃部の先端13の周囲において、バニシング効果を高めつつ、切削効果も高めることができる。
Note that the position of the end of the groove 20 on the tip 13 side may be stepped. As shown in FIG. 16, the ball blade portion 92 of the third example of the present embodiment includes a tip 13 and has a region 16 narrower than the region 15. As shown in FIG. 16, the groove 20 has an end on the distal end 13 side located inside the region 15, a groove 20G located on the outside of the region 16, and an end on the distal end 13 side in the region 16. It may also be configured with a groove 20A located on the inside. Thereby, around the tip 13 of the ball blade portion where the grooves 20 are concentrated, it is possible to enhance the burnishing effect and also enhance the cutting effect.
===その他の実施形態===
<ボール刃部12の形状に関する別の例>
図17は、ボール刃部12の形状に関する別の例であり、図17Aは、ボール刃部12の形状に関する第1例であり、図17Bは、ボール刃部12の形状に関する第2例である。 ===Other embodiments===
<Another example regarding the shape of theball blade part 12>
17 is another example of the shape of theball blade part 12, FIG. 17A is a first example of the shape of the ball blade part 12, and FIG. 17B is a second example of the shape of the ball blade part 12. .
<ボール刃部12の形状に関する別の例>
図17は、ボール刃部12の形状に関する別の例であり、図17Aは、ボール刃部12の形状に関する第1例であり、図17Bは、ボール刃部12の形状に関する第2例である。 ===Other embodiments===
<Another example regarding the shape of the
17 is another example of the shape of the
ボール刃部12の形状は、上述した図1Aに示される半球状のみに限られない。例えば、図17Aに示されるボール刃部12のように、半球状よりもより球に近い形状であっても良い。また、図17Bに示されるボール刃部12のように、楕円球状を有していても良い。
The shape of the ball blade portion 12 is not limited to the hemispherical shape shown in FIG. 1A described above. For example, like the ball blade part 12 shown in FIG. 17A, the shape may be closer to a sphere than a hemisphere. Moreover, it may have an elliptical spherical shape like the ball blade part 12 shown in FIG. 17B.
<ボール刃部12の溝20に関する別の例>
図18は、ボール刃部12の溝20に関する別の例である。 <Another example regarding thegroove 20 of the ball blade part 12>
FIG. 18 is another example regarding thegroove 20 of the ball blade part 12.
図18は、ボール刃部12の溝20に関する別の例である。 <Another example regarding the
FIG. 18 is another example regarding the
上述したボール刃部12に形成される溝20は、同じ幅で形成されていた。しかし、図18に示されるボール刃部12のように、複数の溝20の各々において、先端13側の溝20の幅よりも、外周14側の溝20の幅の方が大きくても良い。これにより、外周14側において、バニシング加工の際の抵抗を抑制することができる。
The grooves 20 formed in the ball blade portion 12 described above were formed with the same width. However, as in the ball blade portion 12 shown in FIG. 18, in each of the plurality of grooves 20, the width of the groove 20 on the outer circumference 14 side may be larger than the width of the groove 20 on the tip 13 side. This makes it possible to suppress resistance during burnishing on the outer periphery 14 side.
===まとめ===
以上、本発明の実施の形態であるボールエンドミルについて説明した。 ===Summary===
The ball end mill that is an embodiment of the present invention has been described above.
以上、本発明の実施の形態であるボールエンドミルについて説明した。 ===Summary===
The ball end mill that is an embodiment of the present invention has been described above.
第1実施形態のボールエンドミル10は、例えば、図1~図3に示されるように、部分球状に形成されたボール刃部12を備える。また、ボール刃部12は、先端13から回転軸方向にみたとき、ボール刃部12の先端13側から外周14側に延びる、右ねじれの少なくとも1つの溝20Aと、左ねじれの複数の溝20Bとを有する。また、一の溝20Bにおいて、少なくとも1つの溝20Aと交わる交差部21のうち、先端13側から所定番目に位置する交差部21を第1交差部21Aとし、別の溝20Bにおいて、少なくとも1つの溝20Aと交わる交差部21のうち、先端13側から所定番目に位置する交差部21を第2交差部21Bとしたとき、先端13から第1交差部21Aまでの長さと、先端13から第2交差部21Bまでの長さとが異なる。これにより、被削材の加工面の品位を高めることができる。
The ball end mill 10 of the first embodiment includes, for example, a ball blade portion 12 formed into a partially spherical shape, as shown in FIGS. 1 to 3. Moreover, when the ball blade part 12 is viewed from the tip 13 in the direction of the rotation axis, the ball blade part 12 has at least one right-handed groove 20A extending from the tip 13 side to the outer periphery 14 side, and a plurality of left-handed grooves 20B. and has. In addition, in one groove 20B, among the intersections 21 that intersect with at least one groove 20A, the intersection 21 located at a predetermined point from the tip 13 side is defined as the first intersection 21A, and in another groove 20B, at least one Among the intersections 21 that intersect with the grooves 20A, when the intersection 21 located at a predetermined distance from the tip 13 side is defined as the second intersection 21B, the length from the tip 13 to the first intersection 21A and the length from the tip 13 to the second The length to the intersection 21B is different. Thereby, the quality of the machined surface of the workpiece can be improved.
ここで、溝20Aは、「第1溝」に相当し、溝20Bは、「第2溝」に相当する。また、右ねじれは、「第1ねじれ態様」に相当し、左ねじれは、「第2ねじれ態様」に相当する。
Here, the groove 20A corresponds to a "first groove", and the groove 20B corresponds to a "second groove". Further, the right-handed twist corresponds to a "first twist mode" and the left-handed twist corresponds to a "second twist mode."
第1実施形態の第1変形例のボールエンドミル30は、例えば、図8に示されるように、部分球状に形成されたボール刃部32を備える。また、ボール刃部32は、先端13から回転軸方向にみたとき、ボール刃部32の先端13側から外周14側に延びる、右ねじれの少なくとも1つの溝20Cと、左ねじれの複数の溝20Bとを有する。また、一の溝20Bにおいて、少なくとも1つの溝20Cと交わる交差部21のうち、先端13側から所定番目に位置する交差部21を第1交差部21Aとし、別の溝20Bにおいて、少なくとも1つの溝20Cと交わる交差部21のうち、先端13側から所定番目に位置する交差部21を第2交差部21Bとしたとき、先端13から第1交差部21Aまでの長さと、先端13から第2交差部21Bまでの長さとが異なる。これにより、被削材の加工面の品位を高めることができる。
The ball end mill 30 of the first modification of the first embodiment includes, for example, a ball blade portion 32 formed in a partially spherical shape, as shown in FIG. Moreover, when the ball blade part 32 is viewed from the tip 13 in the direction of the rotation axis, the ball blade part 32 has at least one right-handed groove 20C extending from the tip 13 side to the outer periphery 14 side, and a plurality of left-handed grooves 20B. and has. In addition, in one groove 20B, among the intersections 21 that intersect with at least one groove 20C, the intersection 21 located at a predetermined distance from the tip 13 side is defined as the first intersection 21A, and in another groove 20B, at least one Among the intersections 21 that intersect with the grooves 20C, when the intersection 21 located at a predetermined point from the tip 13 side is defined as the second intersection 21B, the length from the tip 13 to the first intersection 21A, and the length from the tip 13 to the second intersection 21B. The length to the intersection 21B is different. Thereby, the quality of the machined surface of the workpiece can be improved.
ここで、溝20Cは、「第1溝」に相当し、溝20Bは、「第2溝」に相当する。また、右ねじれは、「第1ねじれ態様」に相当し、左ねじれは、「第2ねじれ態様」に相当する。
Here, the groove 20C corresponds to a "first groove", and the groove 20B corresponds to a "second groove". Further, the right-handed twist corresponds to a "first twist mode" and the left-handed twist corresponds to a "second twist mode."
第1実施形態の第2変形例のボールエンドミル40は、例えば、図9に示されるように、部分球状に形成されたボール刃部42を備える。また、ボール刃部42は、先端13から回転軸方向にみたとき、ボール刃部42の先端13側から外周14側に延びる、渦巻状のねじれの1つの溝20Dと、右ねじれの複数の溝20Aとを有する。また、一の溝20Aにおいて、1つの溝20Dと交わる交差部21のうち、先端13側から所定番目に位置する交差部21を第1交差部21Aとし、別の溝20Aにおいて、1つの溝20Dと交わる交差部21のうち、先端13側から所定番目に位置する交差部21を第2交差部21Bとしたとき、先端13から第1交差部21Aまでの長さと、先端13から第2交差部21Bまでの長さとが異なる。これにより、被削材の加工面の品位を高めることができる。
A ball end mill 40 according to a second modification of the first embodiment includes, for example, a ball blade portion 42 formed into a partially spherical shape, as shown in FIG. Moreover, when the ball blade part 42 is viewed from the tip 13 in the direction of the rotation axis, the ball blade part 42 has one spirally twisted groove 20D extending from the tip 13 side to the outer periphery 14 side of the ball blade part 42, and a plurality of right-handed screw grooves. 20A. Also, in one groove 20A, among the intersection parts 21 that intersect with one groove 20D, the intersection part 21 located at a predetermined point from the tip 13 side is defined as the first intersection part 21A, and in another groove 20A, one groove 20D When the intersection 21 located at a predetermined point from the tip 13 side is defined as the second intersection 21B, the length from the tip 13 to the first intersection 21A and the length from the tip 13 to the second intersection The length is different up to 21B. Thereby, the quality of the machined surface of the workpiece can be improved.
ここで、溝20Dは、「第1溝」に相当し、溝20Aは、「第2溝」に相当する。また、渦巻状のねじれは、「第1ねじれ態様」に相当し、右ねじれは、「第2ねじれ態様」に相当する。
Here, the groove 20D corresponds to a "first groove", and the groove 20A corresponds to a "second groove". Further, the spiral twist corresponds to the "first twist mode", and the right twist corresponds to the "second twist mode".
また、図3に示されるように、ボール刃部12は、複数の溝20Aを有し、ボール刃部12の先端13から回転軸方向にみたとき、第1ねじれ態様は、ボール刃部12の外周14に沿う左回り方向に凸となるように湾曲した右ねじれであり、第2ねじれ態様は、ボール刃部12の外周14に沿う、左回り方向とは反対の右回り方向に凸となるように湾曲した左ねじれである。これにより、加工後の被削材にバリができてしまうことを抑制することができる。また、被削材の加工時における防振効果を高めることができる。
Further, as shown in FIG. 3, the ball blade part 12 has a plurality of grooves 20A, and when viewed from the tip 13 of the ball blade part 12 in the direction of the rotation axis, the first twisting mode of the ball blade part 12 is It is a right-handed twist curved so as to be convex in the counterclockwise direction along the outer periphery 14, and the second twist mode is a right-handed twist that is curved in a clockwise direction opposite to the counterclockwise direction along the outer periphery 14 of the ball blade part 12. It is curved and twisted to the left. Thereby, it is possible to suppress the formation of burrs on the workpiece material after processing. Furthermore, the vibration damping effect during machining of the work material can be enhanced.
ここで、左回り方向は、「第1方向」に相当し、右回り方向は、「第2方向」に相当する。
Here, the counterclockwise direction corresponds to a "first direction" and the clockwise direction corresponds to a "second direction."
また、図3に示されるように、ボール刃部12の先端13から回転軸方向にみたとき、複数の溝20Aと、複数の溝20Bとが交わる交差部21は、先端13を中心とした渦巻状の曲線上に位置する。これにより、被削材の加工面の品位を高めることができる。
Further, as shown in FIG. 3, when viewed from the tip 13 of the ball blade portion 12 in the direction of the rotation axis, the intersection 21 where the plurality of grooves 20A and the plurality of grooves 20B intersect is a spiral spiral centered on the tip 13. It is located on the curve of . Thereby, the quality of the machined surface of the workpiece can be improved.
また、図3に示されるように、ボール刃部12の先端13から回転軸方向にみたとき、複数の溝20Aは、先端13を中心に回転対称となるように位置し、複数の溝20Bは、先端13を中心に回転対称となるように位置し、複数の溝20Aの数と、複数の溝20Bの数とが異なる。これにより、先端13から第1交差部21Aまでの長さと、先端13から第2交差部21Bまでの長さとを異なるように設けることができる。
Further, as shown in FIG. 3, when viewed from the tip 13 of the ball blade part 12 in the direction of the rotation axis, the plurality of grooves 20A are positioned rotationally symmetrically around the tip 13, and the plurality of grooves 20B are , are positioned rotationally symmetrically about the tip 13, and the number of the plurality of grooves 20A is different from the number of the plurality of grooves 20B. Thereby, the length from the tip 13 to the first intersection 21A and the length from the tip 13 to the second intersection 21B can be provided to be different.
また、図3に示されるように、複数の溝20Aの数と、複数の溝20Bの数とが互いに素の関係にある。これにより、先端13から第1交差部21Aまでの長さと、先端13から第2交差部21Bまでの長さとを異なるように設けることができる。
Further, as shown in FIG. 3, the number of the plurality of grooves 20A and the number of the plurality of grooves 20B have a relatively prime relationship. Thereby, the length from the tip 13 to the first intersection 21A and the length from the tip 13 to the second intersection 21B can be provided to be different.
また、図3に示されるように、複数の溝20Aの数と、複数の溝20Bの数との差が、1である。これにより、先端13から第1交差部21Aまでの長さと、先端13から第2交差部21Bまでの長さとを異なるように設けることができる。
Further, as shown in FIG. 3, the difference between the number of multiple grooves 20A and the number of multiple grooves 20B is 1. Thereby, the length from the tip 13 to the first intersection 21A and the length from the tip 13 to the second intersection 21B can be provided to be different.
また、不図示であるが、複数の溝20Cの数と、複数の溝20Bの数とが同じであり、ボール刃部32の先端13から回転軸方向にみたとき、複数の溝20Cは、隣り合う溝20Cの間隔が、ボール刃部32の外周14に沿う周方向に徐々に大きくなるように位置し、複数の溝20Bは、先端13を中心に回転対称となるように位置する。これにより、被削材の加工面の品位を高めることができる。
Although not shown, the number of the plurality of grooves 20C is the same as the number of the plurality of grooves 20B, and when viewed from the tip 13 of the ball blade part 32 in the rotation axis direction, the plurality of grooves 20C are adjacent to each other. The intervals between the matching grooves 20C are positioned so as to gradually increase in the circumferential direction along the outer periphery 14 of the ball blade portion 32, and the plurality of grooves 20B are positioned so as to be rotationally symmetrical about the tip 13. Thereby, the quality of the machined surface of the workpiece can be improved.
ここで、溝20Cは、「第1溝」に相当し、溝20Bは、「第2溝」に相当する。また、周方向は、「所定方向」に相当する。
Here, the groove 20C corresponds to a "first groove", and the groove 20B corresponds to a "second groove". Further, the circumferential direction corresponds to a "predetermined direction".
また、図9に示されるように、ボール刃部42は、1つの溝20Dを有し、ボール刃部42の先端13から回転軸方向にみたとき、第1ねじれ態様は、先端13を中心とした渦巻状の曲線を成す態様であり、複数の溝20Aは、先端13を中心に回転対称となるように位置し、第2ねじれ態様は、ボール刃部42の外周14に沿う左回り方向に凸となるように湾曲した右ねじれである。これにより、被削材の加工面の品位を高めることができる。
Further, as shown in FIG. 9, the ball blade part 42 has one groove 20D, and when viewed from the tip 13 of the ball blade part 42 in the rotation axis direction, the first twisting mode is centered around the tip 13. The plurality of grooves 20A are positioned rotationally symmetrically around the tip 13, and the second twisting mode is a spiral curve in a counterclockwise direction along the outer periphery 14 of the ball blade part 42. It is a right-handed twist with a convex curve. Thereby, the quality of the machined surface of the workpiece can be improved.
ここで、溝20Dは、「第1溝」に相当し、溝20Aは、「第2溝」に相当する。また、左回り方向は、「所定方向」に相当する。
Here, the groove 20D corresponds to a "first groove", and the groove 20A corresponds to a "second groove". Further, the counterclockwise direction corresponds to a "predetermined direction."
また、図2に示されるように、溝20A及び溝20Bの各々の周縁部22におけるすくい角は、負のすくい角である。これにより、被削材の加工時に、周縁部22が被削材に食い込んでしまうことを抑制することができる。
Further, as shown in FIG. 2, the rake angle at the peripheral edge portion 22 of each of the grooves 20A and 20B is a negative rake angle. Thereby, it is possible to suppress the peripheral edge portion 22 from digging into the workpiece during machining of the workpiece.
また、図18に示されるように、溝20A及び溝20Bの各々の溝の幅は、ボール刃部12の先端13から離れるほど大きくなる。これにより、ボール刃部12の外周14側において、バニシング加工による抵抗を抑制することができる。
Further, as shown in FIG. 18, the width of each of the grooves 20A and 20B increases as the distance from the tip 13 of the ball blade portion 12 increases. Thereby, on the outer periphery 14 side of the ball blade part 12, resistance due to burnishing can be suppressed.
また、不図示であるが、表面粗さがRz1.6μm以下のボール刃部12の表面に、少なくとも1つの溝20A及び複数の溝20Bが形成されている、これにより、被削材の加工面のバニシング効果を高めることができる。
Although not shown, at least one groove 20A and a plurality of grooves 20B are formed on the surface of the ball blade portion 12 with a surface roughness of Rz 1.6 μm or less. can enhance the vanishing effect of
また、図3に示されるように、少なくとも1つの溝20A及び複数の溝20Bは、ボール刃部12の先端13において非連結である。これにより、先端13においてバニシング効果を得ることができる。
Further, as shown in FIG. 3, at least one groove 20A and a plurality of grooves 20B are not connected at the tip 13 of the ball blade part 12. Thereby, a burnishing effect can be obtained at the tip 13.
===その他===
前述の実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明は、その趣旨を逸脱することなく、変更・改良され得ると共に、本発明には、その等価物が含まれることは言うまでもない。 ===Others===
The above-described embodiments are provided to facilitate understanding of the present invention, and are not intended to be interpreted as limiting the present invention. It goes without saying that the present invention may be modified and improved without departing from its spirit, and that equivalents thereof are included in the present invention.
前述の実施形態は、本発明の理解を容易にするためのものであり、本発明を限定して解釈するためのものではない。本発明は、その趣旨を逸脱することなく、変更・改良され得ると共に、本発明には、その等価物が含まれることは言うまでもない。 ===Others===
The above-described embodiments are provided to facilitate understanding of the present invention, and are not intended to be interpreted as limiting the present invention. It goes without saying that the present invention may be modified and improved without departing from its spirit, and that equivalents thereof are included in the present invention.
10,10X,30,40,50,60,70,80,90 ボールエンドミル
11 シャンク
12,12X,32,42,52,62,72,82,92 ボール刃部
13 先端
14 外周
15,16 領域
20,20A~20G 溝
21,21A,21B 交差部
22 周縁部
100 被削材
10, 10X, 30, 40, 50, 60, 70, 80, 90Ball end mill 11 Shank 12, 12X, 32, 42, 52, 62, 72, 82, 92 Ball blade part 13 Tip 14 Outer periphery 15, 16 Area 20 , 20A to 20G Grooves 21, 21A, 21B Intersection 22 Peripheral 100 Work material
11 シャンク
12,12X,32,42,52,62,72,82,92 ボール刃部
13 先端
14 外周
15,16 領域
20,20A~20G 溝
21,21A,21B 交差部
22 周縁部
100 被削材
10, 10X, 30, 40, 50, 60, 70, 80, 90
Claims (12)
- 部分球状に形成されたボール刃部を備え、
前記ボール刃部は、先端から回転軸方向にみたとき、
前記ボール刃部の先端側から外周側に延びる、第1ねじれ態様の少なくとも1つの第1溝と、第2ねじれ態様の複数の第2溝とを有し、
一の前記第2溝において、前記少なくとも1つの第1溝と交わる交差部のうち、前記先端側から所定番目に位置する交差部を第1交差部とし、
別の前記第2溝において、前記少なくとも1つの第1溝と交わる交差部のうち、前記先端側から前記所定番目に位置する交差部を第2交差部としたとき、
前記先端から前記第1交差部までの長さと、前記先端から前記第2交差部までの長さとが異なる、
ボールエンドミル。 Equipped with a ball blade part formed in a partially spherical shape,
When the ball blade portion is viewed from the tip in the direction of the rotation axis,
The ball blade portion has at least one first groove having a first twisting pattern and a plurality of second grooves having a second twisting pattern extending from the tip side to the outer peripheral side,
In one of the second grooves, among the intersections that intersect with the at least one first groove, an intersection located at a predetermined distance from the tip side is defined as a first intersection,
In another of the second grooves, among the intersections that intersect with the at least one first groove, when the intersection located at the predetermined point from the tip side is defined as the second intersection,
The length from the tip to the first intersection is different from the length from the tip to the second intersection,
ball end mill. - 前記ボール刃部は、複数の前記第1溝を有し、
前記ボール刃部の先端から回転軸方向にみたとき、
前記第1ねじれ態様は、前記ボール刃部の外周に沿う第1方向に凸となるように湾曲した態様であり、
前記第2ねじれ態様は、前記ボール刃部の外周に沿う、前記第1方向とは反対の第2方向に凸となるように湾曲した態様である、
請求項1に記載のボールエンドミル。 The ball blade portion has a plurality of the first grooves,
When viewed from the tip of the ball blade in the direction of the rotation axis,
The first twisting mode is a mode in which the ball blade portion is curved so as to be convex in a first direction along the outer periphery,
The second twisted mode is a curved mode along the outer periphery of the ball blade part so as to be convex in a second direction opposite to the first direction.
The ball end mill according to claim 1. - 前記ボール刃部の先端から回転軸方向にみたとき、
前記複数の第1溝と、前記複数の第2溝とが交わる交差部は、前記先端を中心とした渦巻状の曲線上に位置する、
請求項2に記載のボールエンドミル。 When viewed from the tip of the ball blade in the direction of the rotation axis,
The intersection where the plurality of first grooves and the plurality of second grooves intersect is located on a spiral curve centered on the tip,
The ball end mill according to claim 2. - 前記ボール刃部の先端から回転軸方向にみたとき、
前記複数の第1溝は、前記先端を中心に回転対称となるように位置し、
前記複数の第2溝は、前記先端を中心に回転対称となるように位置し、
前記複数の第1溝の数と、前記複数の第2溝の数とが異なる、
請求項2又は3に記載のボールエンドミル。 When viewed from the tip of the ball blade in the direction of the rotation axis,
The plurality of first grooves are positioned rotationally symmetrically about the tip,
The plurality of second grooves are positioned rotationally symmetrically about the tip,
The number of the plurality of first grooves is different from the number of the plurality of second grooves,
The ball end mill according to claim 2 or 3. - 前記複数の第1溝の数と、前記複数の第2溝の数とが互いに素の関係にある、
請求項4に記載のボールエンドミル。 The number of the plurality of first grooves and the number of the plurality of second grooves are in a mutually prime relationship;
The ball end mill according to claim 4. - 前記複数の第1溝の数と、前記複数の第2溝の数との差が、1である、
請求項5に記載のボールエンドミル。 The difference between the number of the plurality of first grooves and the number of the plurality of second grooves is 1,
The ball end mill according to claim 5. - 前記複数の第1溝の数と、前記複数の第2溝の数とが同じであり、
前記ボール刃部の先端から回転軸方向にみたとき、
前記複数の第1溝は、隣り合う第1溝の間隔が、前記ボール刃部の外周に沿う所定方向に徐々に大きくなるように位置し、
前記複数の第2溝は、前記先端を中心に回転対称となるように位置する、
請求項2又は3に記載のボールエンドミル。 The number of the plurality of first grooves and the number of the plurality of second grooves are the same,
When viewed from the tip of the ball blade in the direction of the rotation axis,
The plurality of first grooves are located such that the distance between adjacent first grooves gradually increases in a predetermined direction along the outer periphery of the ball blade portion,
The plurality of second grooves are positioned rotationally symmetrically about the tip,
The ball end mill according to claim 2 or 3. - 前記ボール刃部は、1つの前記第1溝を有し、
前記ボール刃部の先端から回転軸方向にみたとき、
前記第1ねじれ態様は、前記先端を中心とした渦巻状の曲線を成す態様であり、
前記複数の第2溝は、前記先端を中心に回転対称となるように位置し、前記第2ねじれ態様は、前記ボール刃部の外周に沿う所定方向に凸となるように湾曲した態様である、
請求項1に記載のボールエンドミル。 The ball blade portion has one first groove,
When viewed from the tip of the ball blade in the direction of the rotation axis,
The first twisting mode is a mode forming a spiral curve centered on the tip,
The plurality of second grooves are positioned so as to be rotationally symmetrical about the tip, and the second twisting mode is a mode in which the plurality of second grooves are curved so as to be convex in a predetermined direction along the outer periphery of the ball blade part. ,
The ball end mill according to claim 1. - 前記第1溝及び前記第2溝の各々の周縁部におけるすくい角は、負のすくい角である、
請求項1~8のいずれか一項に記載のボールエンドミル。 The rake angle at the peripheral edge of each of the first groove and the second groove is a negative rake angle,
The ball end mill according to any one of claims 1 to 8. - 前記第1溝及び前記第2溝の各々の溝の幅は、前記ボール刃部の先端から離れるほど大きくなる、
請求項1~9のいずれか一項に記載のボールエンドミル。 The width of each of the first groove and the second groove increases as the distance from the tip of the ball blade portion increases;
The ball end mill according to any one of claims 1 to 9. - 表面粗さがRz1.6μm以下の前記ボール刃部の表面に、前記少なくとも1つの第1溝及び前記複数の第2溝が形成されている、
請求項1~10のいずれか一項に記載のボールエンドミル。 The at least one first groove and the plurality of second grooves are formed on the surface of the ball blade portion having a surface roughness of Rz 1.6 μm or less,
The ball end mill according to any one of claims 1 to 10. - 前記少なくとも1つの第1溝及び前記複数の第2溝は、前記ボール刃部の先端において非連結である、
請求項1~11のいずれか一項に記載のボールエンドミル。
the at least one first groove and the plurality of second grooves are unconnected at the tip of the ball blade portion;
The ball end mill according to any one of claims 1 to 11.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
KR1020247023264A KR20240119309A (en) | 2022-03-07 | 2022-03-28 | ball end mill |
JP2024505864A JPWO2023170985A1 (en) | 2022-03-07 | 2022-03-28 | |
CN202280093330.2A CN118829503A (en) | 2022-03-07 | 2022-03-28 | Ball end mill |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022034407 | 2022-03-07 | ||
JP2022-034407 | 2022-03-07 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023170985A1 true WO2023170985A1 (en) | 2023-09-14 |
Family
ID=87936531
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/015055 WO2023170985A1 (en) | 2022-03-07 | 2022-03-28 | Ball end mill |
Country Status (4)
Country | Link |
---|---|
JP (1) | JPWO2023170985A1 (en) |
KR (1) | KR20240119309A (en) |
CN (1) | CN118829503A (en) |
WO (1) | WO2023170985A1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE20105015U1 (en) * | 2001-03-22 | 2001-07-19 | Busch & CO. KG, 51766 Engelskirchen | Rotating cutting milling tool |
JP2008056542A (en) * | 2006-09-01 | 2008-03-13 | Hitachi Tool Engineering Ltd | Rotary cutting tool for processing glass |
US20150336185A1 (en) * | 2013-01-09 | 2015-11-26 | August Rüggeberg Gmbh & Co. Kg | Milling burr |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6191839B2 (en) | 2014-12-10 | 2017-09-06 | 日進工具株式会社 | Diamond sintered ball end mill and manufacturing method thereof |
JP2018122365A (en) | 2017-01-30 | 2018-08-09 | 三菱日立ツール株式会社 | Ball end mill |
-
2022
- 2022-03-28 JP JP2024505864A patent/JPWO2023170985A1/ja active Pending
- 2022-03-28 WO PCT/JP2022/015055 patent/WO2023170985A1/en unknown
- 2022-03-28 KR KR1020247023264A patent/KR20240119309A/en unknown
- 2022-03-28 CN CN202280093330.2A patent/CN118829503A/en active Pending
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE20105015U1 (en) * | 2001-03-22 | 2001-07-19 | Busch & CO. KG, 51766 Engelskirchen | Rotating cutting milling tool |
JP2008056542A (en) * | 2006-09-01 | 2008-03-13 | Hitachi Tool Engineering Ltd | Rotary cutting tool for processing glass |
US20150336185A1 (en) * | 2013-01-09 | 2015-11-26 | August Rüggeberg Gmbh & Co. Kg | Milling burr |
Also Published As
Publication number | Publication date |
---|---|
KR20240119309A (en) | 2024-08-06 |
CN118829503A (en) | 2024-10-22 |
JPWO2023170985A1 (en) | 2023-09-14 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2478983B1 (en) | Ball end mill | |
KR20080087145A (en) | Rotary cutting tool | |
JP5615053B2 (en) | Manufacturing method of total cutter and grinding tool for total cutter | |
CN105636729B (en) | Roughing end mills | |
JP5814611B2 (en) | End mill | |
WO2016136820A1 (en) | Radius end mill, ball end mill, and end mill | |
WO2019044791A1 (en) | Tapered reamer | |
JP2007276010A (en) | Rotary cutting tool and manufacturing method thereof | |
JP2016159380A (en) | Ball end mill | |
JP7481617B2 (en) | Processing method and mold manufacturing method | |
JP6999031B2 (en) | Taper end mill | |
WO2019131177A1 (en) | Drill | |
WO2023170985A1 (en) | Ball end mill | |
JP2002052412A (en) | Ball end mill | |
WO2023170986A1 (en) | Ball end mill | |
CN113646127B (en) | Method for manufacturing drill bit | |
JP2007136627A (en) | End mill | |
JP7417112B2 (en) | end mill | |
EP3865237A1 (en) | End mill | |
JP4206778B2 (en) | Center drill | |
JP3307681B2 (en) | End mill | |
WO2022113360A1 (en) | End mill | |
JP7386022B2 (en) | Reamer | |
JP6780420B2 (en) | Taper ball end mill | |
JP3492641B2 (en) | End mill |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22930165 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2024505864 Country of ref document: JP Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 20247023264 Country of ref document: KR Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |