[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2023170862A1 - Core position specifying method, optical fiber connecton method, and optical fiber connection device - Google Patents

Core position specifying method, optical fiber connecton method, and optical fiber connection device Download PDF

Info

Publication number
WO2023170862A1
WO2023170862A1 PCT/JP2022/010585 JP2022010585W WO2023170862A1 WO 2023170862 A1 WO2023170862 A1 WO 2023170862A1 JP 2022010585 W JP2022010585 W JP 2022010585W WO 2023170862 A1 WO2023170862 A1 WO 2023170862A1
Authority
WO
WIPO (PCT)
Prior art keywords
core
optical fiber
core optical
optical fibers
interferometer
Prior art date
Application number
PCT/JP2022/010585
Other languages
French (fr)
Japanese (ja)
Inventor
一貴 納戸
卓威 植松
裕之 飯田
栄伸 廣田
研司 井上
Original Assignee
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電信電話株式会社 filed Critical 日本電信電話株式会社
Priority to PCT/JP2022/010585 priority Critical patent/WO2023170862A1/en
Publication of WO2023170862A1 publication Critical patent/WO2023170862A1/en

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/02Optical fibres with cladding with or without a coating
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • G02B6/24Coupling light guides
    • G02B6/255Splicing of light guides, e.g. by fusion or bonding

Definitions

  • the present disclosure relates to a core position specifying method for specifying the position of each core at the end of a multi-core optical fiber, an optical fiber connecting method for connecting the ends of two multi-core optical fibers in which the position of each core has been specified, and an optical fiber.
  • connection devices Regarding connection devices.
  • Figure 1 shows the structure of an optical fiber.
  • the optical fiber is composed of a core glass 11 through which light propagates, a clad glass 12 that covers the core glass, and a coating 13 that protects the glass portion.
  • the diameter of the core glass 11 is 10 ⁇ m
  • the diameter of the cladding glass 12 is 125 ⁇ m
  • the diameter of the optical fiber including the coating is 250 ⁇ m.
  • the characteristics of an optical fiber can be changed by changing the refractive index difference and refractive index distribution between the core glass and cladding glass, but the structure consisting of the core and cladding glass is common to all optical fibers. .
  • FIG. 2 shows a cross-sectional view of the optical fiber glass.
  • FIG. 2(A) shows an optical fiber in which the center O of the clad glass 12 and the center Oc of the core glass 11 are offset, and there is eccentricity. Such optical fibers are not currently manufactured.
  • FIG. 1(B) shows that the centers of the clad glass 12 and the core glass 11 are aligned, and there is no eccentricity.
  • a single-core optical fiber has a core placed in the center of a clad glass.
  • FIG. 3 A method for connecting optical fibers without eccentricity is shown in FIG. 3 (see, for example, Non-Patent Document 1).
  • the fusion splicing technique uses image recognition technology and a micrometer in conjunction to align the ends of the two optical fibers 31 placed in the V-groove 30 with high precision. Thereafter, an arc discharge 33 is formed between the two electrode rods 32, and the end portions of the optical fibers 31 are melted and connected by the heat, thereby integrating the two.
  • optical fibers can be fusion spliced.
  • the reason why fusion splicing can be performed by aligning the optical fibers is that the core is located at the center of the optical fiber.
  • FIG. 4(A) shows the structure of a single-core optical fiber having one core
  • FIG. 4(B) shows the structure of a multi-core optical fiber having four cores, as examples.
  • FIG. 5 shows a cross-sectional view of the multi-core optical fiber shown in FIG. 4(B). Four pieces of core glass 11 are arranged in clad glass 12.
  • Non-Patent Document 1 In the optical fiber splicing method of Non-Patent Document 1, simply butting two multi-core optical fibers together causes the cores to be misaligned, and fusion splicing cannot be performed as is. This is because many core glasses 11 are arranged in the clad glass 12. Furthermore, current image recognition technology does not have the accuracy to identify the position of the core from outside the optical fiber. That is, there is a problem in that it is difficult to connect multi-core optical fibers using the method of connecting single-core optical fibers.
  • the present invention provides a method for specifying the core position of a multi-core optical fiber from the outside and enabling fusion splicing of the multi-core optical fibers, and an optical fiber connection method.
  • An object of the present invention is to provide a method and an optical fiber connection device.
  • the core position specifying method involves injecting test light from the side surface of an optical fiber and specifying the position of the core from the state of the reflected light reflected inside.
  • the core position identification method includes: Injecting the test light from the optical interferometer perpendicularly into the side of the multi-core optical fiber;
  • the present invention is characterized in that the reflected light of the test light reflected within the multi-core optical fiber is captured by the interferometer, and the position of the core in the cross section of the multi-core optical fiber is specified from the change in the intensity of the reflected light.
  • the interferometer is a swept wavelength optical coherence tomography (SS-OCT).
  • the present invention can provide a core position specifying method that can specify the position of the core of a multi-core optical fiber from the outside and enable fusion splicing of the multi-core optical fibers.
  • the optical fiber connection method includes: identifying the positions of the cores at the ends of the two multi-core optical fibers using the core position identifying method; The end portions of the two multi-core optical fibers are faced to each other so that the cores are aligned, and the end portions of the two multi-core optical fibers are connected.
  • the optical fiber connection method is as follows: specifying the position of the core at an end of one of the multi-core optical fibers using the core position specifying method; facing an end of the other multi-core optical fiber to an end of the multi-core optical fiber;
  • the core position specifying method according to claim 1 or 2, specifying the position of the core at the other end of the multi-core optical fiber;
  • the method may include rotating one of the multi-core optical fibers around an axis to align the cores at the opposing ends, and connecting the ends of the two multi-core optical fibers. .
  • the optical fiber connection method includes: By injecting the test light perpendicularly into the side surface of the multi-core optical fiber, by capturing the reflected light reflected by the test light within the multi-core optical fiber, and from the change in the intensity of the reflected light, the core in the cross section of the multi-core optical fiber is detected.
  • an interferometer for determining the position of the a holder that holds the two multi-core optical fibers with their respective ends facing each other; a rotation mechanism that rotates one of the multi-core optical fibers around an axis and aligns the cores at the opposing ends; an electrode rod that fusion-connects the ends of the two multi-core optical fibers; This can be realized with an optical fiber connection device equipped with
  • the present invention provides a core position identification method, an optical fiber connection method, and an optical fiber connection device that can identify the core position of a multicore optical fiber from the outside and enable fusion splicing of the multicore optical fibers. I can do it.
  • FIG. 2 is a diagram illustrating the structure of an optical fiber.
  • FIG. 2 is a diagram illustrating a cross-sectional structure of an optical fiber. It is a figure explaining the connection method of an optical fiber.
  • FIG. 2 is a diagram illustrating a single-core optical fiber and a multi-core optical fiber.
  • FIG. 2 is a diagram illustrating a cross-sectional structure of a multi-core optical fiber.
  • FIG. 3 is a diagram illustrating a core position specifying method according to the present invention.
  • FIG. 3 is a diagram illustrating an interferometer used in the core position specifying method according to the present invention.
  • FIG. 3 is a diagram illustrating an optical fiber connection method according to the present invention.
  • FIG. 1 is a diagram illustrating an optical fiber connection device according to the present invention.
  • FIG. 3 is a diagram illustrating an optical fiber connection method according to the present invention.
  • FIG. 1 is a diagram illustrating an optical fiber connection device according to the present invention.
  • FIGS. 6 and 7 are diagrams illustrating the core position specifying method of this embodiment.
  • This core location method is Injecting test light L T from the optical interferometer 70 perpendicularly into the side surface of the multi-core optical fiber 50 (step S01);
  • the position of the core in the cross section of the multi-core optical fiber 50 is determined by capturing the reflected light L R reflected by the test light L T in the multi-core optical fiber 50 with the interferometer 70 (step S02), and from the change in the intensity of the reflected light L R. Identifying (step S03) It is characterized by
  • the interferometer 70 is a swept wavelength optical coherence tomography (SS-OCT).
  • the interferometer 70 includes a wavelength swept light source 71, a beam splitter 72, a reference mirror 73, and a detector 74.
  • the interferometer 70 identifies the core position as follows.
  • the light from the light source 71 is split by a beam splitter 72, and one part is made into the optical fiber 50 to be measured as the test light LT , and the other part is made into the reference mirror 73 as the reference light LX .
  • the test light LT incident on the optical fiber 50 is reflected at the interface between the core and the cladding, which have different refractive indexes, and is emitted from the optical fiber 50 as reflected light LR .
  • the location where the reflected light LR is generated can be regarded as a location where there is a difference in refractive index, that is, the boundary between the core and the cladding.
  • the interferometer 70 identifies the location where the reflected light LR is generated in the following manner.
  • the reflected light L R reflected from the optical fiber 50 and the reference light L X reflected from the reference mirror 73 overlap again on the beam splitter 72 .
  • the reflected light L R and the reference light L X interfere with each other, and if the distance traveled through the optical fiber 50 and the distance traveled back and forth through the reference mirror 73 are equal, the interference frequency becomes 0. Therefore, by moving the reference mirror 73 and using the detector 74 to find the position where the frequency of the interference light between the reflected light L R and the reference light L It is possible to determine whether a core exists.
  • the interferometer 70 can thus identify the positions of a plurality of cores from the side of the optical fiber 50 by utilizing the difference in refraction between the core and the cladding.
  • the positions of the plurality of cores can be specified by changing the wavelength of the light source 71 without moving the reference mirror 73.
  • FIGS. 8 and 9 are diagrams for explaining the optical fiber connection method of this embodiment.
  • This optical fiber connection method is Identifying the positions of the plurality of cores at the ends 50a of the two multi-core optical fibers 50 using the core position identifying method described in Embodiment 1 (step S11); The ends 50a of the two multi-core optical fibers 50 are faced to each other so that the positions of their respective cores are aligned (step S12), and the ends 50a of the two multi-core optical fibers are connected (step S13). It is characterized by
  • step S11 a plurality of core positions at the end portions 50a of the two multi-core optical fibers 50 to be connected are specified using the method described in the first embodiment.
  • step S12 two multi-core optical fibers 50 are placed in the V-groove 30 with their ends 50a facing each other as shown in FIG.
  • the positions of a plurality of cores at the end portion 50a are known in both cases, the positions of the two cores are aligned so that they face each other.
  • step S13 the ends 50a of the two multi-core optical fibers 50 are fusion-spliced as described in FIG. 3.
  • FIGS. 10 and 11 are diagrams illustrating the optical fiber connection method of this embodiment.
  • This optical fiber connection method is Identifying the positions of the plurality of cores at the end 50a of one multi-core optical fiber 50-1 using the core position identifying method described in Embodiment 1 (step S21); facing the end 50a of the other multi-core optical fiber 50-2 to the end 50a of the multi-core optical fiber 50-1 (step S22); Identifying the positions of the plurality of cores at the end 50a of the multi-core optical fiber 50-2 using the core position identifying method described in Embodiment 1 (step S23); Rotating one of the multi-core optical fibers (50-1 or 50-2) around the axis and aligning the positions of the respective cores at the opposing ends 50a (step S24), and rotating the two multi-core optical fibers ( 50-1, 50-2) (step S25) It is characterized by
  • FIG. 11 is a diagram illustrating the optical fiber connection device of this embodiment.
  • This optical fiber connection device is By making the test light L T perpendicularly incident on the side surface of the multi-core optical fiber 50, by capturing the reflected light L R reflected by the test light L T within the multi-core optical fiber 50, and by changing the intensity of the reflected light L R , the multi-core an interferometer 70 that specifies the positions of the plurality of cores in the cross section of the optical fiber 50; a holder (V groove 30) that holds two multi-core optical fibers (50-1, 50-2) with their respective ends 50a facing each other; a rotation mechanism 80 that rotates one of the multi-core optical fibers (in this embodiment, the multi-core optical fiber 50-2) around an axis and aligns the positions of the respective cores at the opposing ends 50a; an electrode rod 32 that fusion-connects the ends 50a of two multi-core optical fibers (50-1, 50-2); Equipped with
  • the position of each core of two multi-core optical fibers can be specified. However, in many cases, simply butting the ends of two multicore optical fibers together will result in the cores being misaligned, so it is necessary to align the core positions.
  • the test light LT is incident on the surface of the multi-core optical fiber 50-2 using the interferometer 70, thereby positioning the multiple cores in real time.
  • Fusion splicing is performed when the core position of multi-core optical fiber 50-2 matches the core position of multi-core optical fiber 50-1, which has been arranged with the core position known in advance.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Coupling Of Light Guides (AREA)

Abstract

The purpose of the present invention is to provide a core position specifying method, optical fiber connection method, and optical fiber connection device, capable of externally specifying the position of a core of a multicore optical fiber and enabling fusion splicing between multicore optical fibers. The core position specifying method according to the present invention is characterized by causing test light LT from an optical interferometer 70 to enter a side surface of a multicore optical fiber 50 at a right angle (step S01); capturing reflected light LR, which is the test light LT reflected inside the multicore optical fiber 50, with the optical interferometer 70 (step S02); and specifying the position of a core on a cross-section of the multicore optical fiber 50 on the basis of a change in strength of the reflected light LR (step S03).

Description

コア位置特定方法、光ファイバ接続方法および光ファイバ接続装置Core position identification method, optical fiber connection method, and optical fiber connection device
 本開示は、マルチコア光ファイバの端部における各コアの位置を特定するコア位置特定方法、各コアの位置が特定できた2つのマルチコア光ファイバの端部同士を接続する光ファイバ接続方法および光ファイバ接続装置に関する。 The present disclosure relates to a core position specifying method for specifying the position of each core at the end of a multi-core optical fiber, an optical fiber connecting method for connecting the ends of two multi-core optical fibers in which the position of each core has been specified, and an optical fiber. Regarding connection devices.
 現在の光ファイバの接続方法について説明する。商用に用いられている光ファイバの種類は多くあるが、構造は一つに集約される。光ファイバの構造を図1に示す。光ファイバは光が伝搬するコアガラス11、コアガラスを覆うようなクラッドガラス12、ガラス部を保護する被覆13から構成される。例えば、コアガラス11の直径は10μm、クラッドガラス12の直径は125μm、被覆を含む光ファイバの直径は250μmである。コアガラスとクラッドガラスの屈折率差及び屈折率分布を変えることで、光ファイバの特性を変えることができるが、コアとクラッドのガラスから構成される構造は、どの光ファイバにも共通している。 The current optical fiber connection method will be explained. There are many types of optical fibers used commercially, but they all have one structure. Figure 1 shows the structure of an optical fiber. The optical fiber is composed of a core glass 11 through which light propagates, a clad glass 12 that covers the core glass, and a coating 13 that protects the glass portion. For example, the diameter of the core glass 11 is 10 μm, the diameter of the cladding glass 12 is 125 μm, and the diameter of the optical fiber including the coating is 250 μm. The characteristics of an optical fiber can be changed by changing the refractive index difference and refractive index distribution between the core glass and cladding glass, but the structure consisting of the core and cladding glass is common to all optical fibers. .
 コアガラスとクラッドガラスの位置について述べる。図2に光ファイバガラスの断面図を示す。図2(A)はクラッドガラス12の中心Oとコアガラス11の中心Ocがずれており、偏心がある光ファイバを示す。このような光ファイバは現在製造されていない。図1(B)はクラッドガラス12とコアガラス11の中心が一致しており、偏心がないことを示す。現在の光ファイバはこのように偏心が非常に少ない光ファイバが流通している。シングルコア光ファイバは、クラッドガラスの中心にコアが配置されている。 Let's talk about the positions of core glass and clad glass. FIG. 2 shows a cross-sectional view of the optical fiber glass. FIG. 2(A) shows an optical fiber in which the center O of the clad glass 12 and the center Oc of the core glass 11 are offset, and there is eccentricity. Such optical fibers are not currently manufactured. FIG. 1(B) shows that the centers of the clad glass 12 and the core glass 11 are aligned, and there is no eccentricity. Currently, optical fibers with very little eccentricity as described above are in circulation. A single-core optical fiber has a core placed in the center of a clad glass.
 偏心がない光ファイバの接続方法を図3に示す(例えば、非特許文献1を参照)。融着接続技術は、画像認識技術とマイクロメータを連動させて、V溝30に配置した2つの光ファイバ31の端部を高精度に位置を合わせる。その後、2つの電極棒32の間でアーク放電33を形成し、その熱により光ファイバ31の端部を溶融して接続し、両者を一体化させる技術である。放電の条件(パワー、時間)を最適化することで、光ファイバを融着接続することができる。光ファイバの位置合わせで融着接続ができる理由は、光ファイバの中心にコアが配置されているためである。 A method for connecting optical fibers without eccentricity is shown in FIG. 3 (see, for example, Non-Patent Document 1). The fusion splicing technique uses image recognition technology and a micrometer in conjunction to align the ends of the two optical fibers 31 placed in the V-groove 30 with high precision. Thereafter, an arc discharge 33 is formed between the two electrode rods 32, and the end portions of the optical fibers 31 are melted and connected by the heat, thereby integrating the two. By optimizing the discharge conditions (power, time), optical fibers can be fusion spliced. The reason why fusion splicing can be performed by aligning the optical fibers is that the core is located at the center of the optical fiber.
 現在、光ファイバ通信の伝送容量を向上させる研究がされており、その解決手段の一つとして、クラッドガラスの中に、複数のコアガラスを配置させたマルチ光ファイバが挙げられる。マルチとは、複数のコアが配置していることを指している。コアの本数が多くなれば、通信速度がその分増加する。図4(A)にコアが1つであるシングルコア光ファイバの構造と、図4(B)にコアが4つであるマルチコア光ファイバの構造を例として示す。図4(B)のマルチコア光ファイバの断面図を図5に示す。クラッドガラス12の中にコアガラス11が4本配置される。 Currently, research is being conducted to improve the transmission capacity of optical fiber communications, and one solution to this problem is a multi-optical fiber in which multiple core glasses are arranged within a clad glass. Multi refers to the arrangement of multiple cores. As the number of cores increases, the communication speed increases accordingly. FIG. 4(A) shows the structure of a single-core optical fiber having one core, and FIG. 4(B) shows the structure of a multi-core optical fiber having four cores, as examples. FIG. 5 shows a cross-sectional view of the multi-core optical fiber shown in FIG. 4(B). Four pieces of core glass 11 are arranged in clad glass 12.
 非特許文献1の光ファイバ接続方法であると、2本のマルチコア光ファイバを突き合わせただけでは、コア同士の位置がずれており、そのままでは融着接続はできない。これは、クラッドガラス12の中に、多くのコアガラス11を配列させたためである。また、現在の画像認識技術では、光ファイバの外部からコアの位置を特定する精度が備わっていない。すなわち、シングルコア光ファイバの接続方法でマルチコア光ファイバを接続することは困難という課題があった。 In the optical fiber splicing method of Non-Patent Document 1, simply butting two multi-core optical fibers together causes the cores to be misaligned, and fusion splicing cannot be performed as is. This is because many core glasses 11 are arranged in the clad glass 12. Furthermore, current image recognition technology does not have the accuracy to identify the position of the core from outside the optical fiber. That is, there is a problem in that it is difficult to connect multi-core optical fibers using the method of connecting single-core optical fibers.
 そこで、本発明は、上記課題を解決するために、マルチコア光ファイバのコアの位置を外部から特定し、マルチコア光ファイバ同士の融着接続を可能とすることができるコア位置特定方法、光ファイバ接続方法および光ファイバ接続装置を提供することを目的にする。 SUMMARY OF THE INVENTION In order to solve the above problems, the present invention provides a method for specifying the core position of a multi-core optical fiber from the outside and enabling fusion splicing of the multi-core optical fibers, and an optical fiber connection method. An object of the present invention is to provide a method and an optical fiber connection device.
 上記目的を達成するために、本発明に係るコア位置特定方法は、光ファイバの側面から試験光を入射し、内部で反射した反射光の状態からコアの位置を特定することとした。 In order to achieve the above object, the core position specifying method according to the present invention involves injecting test light from the side surface of an optical fiber and specifying the position of the core from the state of the reflected light reflected inside.
 具体的には、本発明に係るコア位置特定方法は、
 光干渉計からの試験光をマルチコア光ファイバの側面に垂直に入射すること、
 前記マルチコア光ファイバ内で前記試験光が反射した反射光を前記干渉計で捉えること、及び
 前記反射光の強度変化から、前記マルチコア光ファイバの断面におけるコアの位置を特定すること
を特徴とする。
 例えば、前記干渉計は、波長掃引型光干渉断層計(SS-OCT:Swept Source  Optical Coherence Tomography)である。
Specifically, the core position identification method according to the present invention includes:
Injecting the test light from the optical interferometer perpendicularly into the side of the multi-core optical fiber;
The present invention is characterized in that the reflected light of the test light reflected within the multi-core optical fiber is captured by the interferometer, and the position of the core in the cross section of the multi-core optical fiber is specified from the change in the intensity of the reflected light.
For example, the interferometer is a swept wavelength optical coherence tomography (SS-OCT).
  光ファイバの側面から入射した試験光は屈折率が異なるクラッドとコアとの界面で反射する。この反射光を干渉計で捉え、反射光を解析することで光ファイバの表面からの深さを計測し、光ファイバ内のコアの位置を特定できる。従って、本発明は、マルチコア光ファイバのコアの位置を外部から特定し、マルチコア光ファイバ同士の融着接続を可能とすることができるコア位置特定方法を提供することができる。 The test light incident from the side of the optical fiber is reflected at the interface between the cladding and core, which have different refractive indexes. By capturing this reflected light with an interferometer and analyzing the reflected light, the depth from the surface of the optical fiber can be measured and the position of the core within the optical fiber can be determined. Therefore, the present invention can provide a core position specifying method that can specify the position of the core of a multi-core optical fiber from the outside and enable fusion splicing of the multi-core optical fibers.
 また、本発明に係る光ファイバ接続方法は、
 前記コア位置特定方法で、2つの前記マルチコア光ファイバの端部における前記コアの位置を特定すること、
 前記コアの位置が揃うように2つの前記マルチコア光ファイバの前記端部を向かい合わせること、及び
 2つの前記マルチコア光ファイバの端部を接続すること
を特徴とする。
Moreover, the optical fiber connection method according to the present invention includes:
identifying the positions of the cores at the ends of the two multi-core optical fibers using the core position identifying method;
The end portions of the two multi-core optical fibers are faced to each other so that the cores are aligned, and the end portions of the two multi-core optical fibers are connected.
 ここで、本発明に係る光ファイバ接続方法は、
 前記コア位置特定方法で、一方の前記マルチコア光ファイバの端部における前記コアの位置を特定すること、
 他方の前記マルチコア光ファイバの端部を、前記マルチコア光ファイバの端部に向かい合わせること、
 請求項1又は2に記載のコア位置特定方法で、他方の前記マルチコア光ファイバの端部における前記コアの位置を特定すること、
 前記マルチコア光ファイバのいずれかを軸を中心に回転し、向かい合わせた前記端部において前記コアの位置を揃えること、及び
 2つの前記マルチコア光ファイバの前記端部を接続すること
であってもよい。
Here, the optical fiber connection method according to the present invention is as follows:
specifying the position of the core at an end of one of the multi-core optical fibers using the core position specifying method;
facing an end of the other multi-core optical fiber to an end of the multi-core optical fiber;
The core position specifying method according to claim 1 or 2, specifying the position of the core at the other end of the multi-core optical fiber;
The method may include rotating one of the multi-core optical fibers around an axis to align the cores at the opposing ends, and connecting the ends of the two multi-core optical fibers. .
 前記光ファイバ接続方法は、
 試験光をマルチコア光ファイバの側面に垂直に入射すること、前記マルチコア光ファイバ内で前記試験光が反射した反射光を捉えること、及び前記反射光の強度変化から、前記マルチコア光ファイバの断面におけるコアの位置を特定することを行う干渉計と、
 2つの前記マルチコア光ファイバをそれぞれの端部が向かい合わせとなるように保持するホルダと、
 前記マルチコア光ファイバのいずれかを軸を中心に回転し、向かい合わせた前記端部において前記コアの位置を揃える回転機構と、
 2つの前記マルチコア光ファイバの前記端部同士を融着接続する電極棒と、
を備える光ファイバ接続装置で実現できる。
The optical fiber connection method includes:
By injecting the test light perpendicularly into the side surface of the multi-core optical fiber, by capturing the reflected light reflected by the test light within the multi-core optical fiber, and from the change in the intensity of the reflected light, the core in the cross section of the multi-core optical fiber is detected. an interferometer for determining the position of the
a holder that holds the two multi-core optical fibers with their respective ends facing each other;
a rotation mechanism that rotates one of the multi-core optical fibers around an axis and aligns the cores at the opposing ends;
an electrode rod that fusion-connects the ends of the two multi-core optical fibers;
This can be realized with an optical fiber connection device equipped with
 なお、上記各発明は、可能な限り組み合わせることができる。 Note that the above inventions can be combined as much as possible.
 本発明は、マルチコア光ファイバのコアの位置を外部から特定し、マルチコア光ファイバ同士の融着接続を可能とすることができるコア位置特定方法、光ファイバ接続方法および光ファイバ接続装置を提供することができる。 The present invention provides a core position identification method, an optical fiber connection method, and an optical fiber connection device that can identify the core position of a multicore optical fiber from the outside and enable fusion splicing of the multicore optical fibers. I can do it.
光ファイバの構造を説明する図である。FIG. 2 is a diagram illustrating the structure of an optical fiber. 光ファイバの断面構造を説明する図である。FIG. 2 is a diagram illustrating a cross-sectional structure of an optical fiber. 光ファイバの接続方法を説明する図である。It is a figure explaining the connection method of an optical fiber. シングルコア光ファイバとマルチコア光ファイバを説明する図である。FIG. 2 is a diagram illustrating a single-core optical fiber and a multi-core optical fiber. マルチコア光ファイバの断面構造を説明する図である。FIG. 2 is a diagram illustrating a cross-sectional structure of a multi-core optical fiber. 本発明に係るコア位置特定方法を説明する図である。FIG. 3 is a diagram illustrating a core position specifying method according to the present invention. 本発明に係るコア位置特定方法に使用する干渉計を説明する図である。FIG. 3 is a diagram illustrating an interferometer used in the core position specifying method according to the present invention. 本発明に係る光ファイバ接続方法を説明する図である。FIG. 3 is a diagram illustrating an optical fiber connection method according to the present invention. 本発明に係る光ファイバ接続装置を説明する図である。FIG. 1 is a diagram illustrating an optical fiber connection device according to the present invention. 本発明に係る光ファイバ接続方法を説明する図である。FIG. 3 is a diagram illustrating an optical fiber connection method according to the present invention. 本発明に係る光ファイバ接続装置を説明する図である。FIG. 1 is a diagram illustrating an optical fiber connection device according to the present invention.
 添付の図面を参照して本発明の実施形態を説明する。以下に説明する実施形態は本発明の実施例であり、本発明は、以下の実施形態に制限されるものではない。なお、本明細書及び図面において符号が同じ構成要素は、相互に同一のものを示すものとする。 Embodiments of the present invention will be described with reference to the accompanying drawings. The embodiments described below are examples of the present invention, and the present invention is not limited to the following embodiments. Note that components with the same reference numerals in this specification and the drawings indicate the same components.
[実施形態1]
 図6及び図7は、本実施形態のコア位置特定方法を説明する図である。本コア位置特定方法は、
 光干渉計70からの試験光Lをマルチコア光ファイバ50の側面に垂直に入射すること(ステップS01)、
 マルチコア光ファイバ50内で試験光Lが反射した反射光Lを干渉計70で捉えること(ステップS02)、及び
 反射光Lの強度変化から、マルチコア光ファイバ50の断面におけるコアの位置を特定すること(ステップS03)
を特徴とする。
[Embodiment 1]
6 and 7 are diagrams illustrating the core position specifying method of this embodiment. This core location method is
Injecting test light L T from the optical interferometer 70 perpendicularly into the side surface of the multi-core optical fiber 50 (step S01);
The position of the core in the cross section of the multi-core optical fiber 50 is determined by capturing the reflected light L R reflected by the test light L T in the multi-core optical fiber 50 with the interferometer 70 (step S02), and from the change in the intensity of the reflected light L R. Identifying (step S03)
It is characterized by
 例えば、干渉計70は、波長掃引型光干渉断層計(SS-OCT)である。干渉計70は、波長掃引光源71、ビームスプリッタ72、参照ミラー73、及び検出器74を備える。干渉計70は、次のようにコア位置を特定する。 For example, the interferometer 70 is a swept wavelength optical coherence tomography (SS-OCT). The interferometer 70 includes a wavelength swept light source 71, a beam splitter 72, a reference mirror 73, and a detector 74. The interferometer 70 identifies the core position as follows.
 光源71からの光をビームスプリッタ72で分割し、一方を試験光Lとして測定対象の光ファイバ50へ、他方を参照光Lとして参照ミラー73に入射させる。光ファイバ50へ入射した試験光Lは、屈折率に差があるコアとクラッドとの界面で反射され、反射光Lとして光ファイバ50から出射される。つまり、反射光Lが発生した箇所が屈折率差がある場所、すなわちコアとクラッドの境界とみなすことができる。 The light from the light source 71 is split by a beam splitter 72, and one part is made into the optical fiber 50 to be measured as the test light LT , and the other part is made into the reference mirror 73 as the reference light LX . The test light LT incident on the optical fiber 50 is reflected at the interface between the core and the cladding, which have different refractive indexes, and is emitted from the optical fiber 50 as reflected light LR . In other words, the location where the reflected light LR is generated can be regarded as a location where there is a difference in refractive index, that is, the boundary between the core and the cladding.
 干渉計70は、次のようにして反射光Lが発生した箇所を特定する。
 光ファイバ50から反射して戻ってきた反射光Lと、参照ミラー73で反射されて戻ってきた参照光Lはビームスプリッタ72上で再び重なる。このとき、反射光Lと参照光Lは干渉し、光ファイバ50を往復する距離と参照ミラー73を往復する距離が等しければ干渉周波数が0になる。そこで、参照ミラー73を動かし、検出器74で反射光Lと参照光Lの干渉光の周波数が0になる位置を見つけることで、光ファイバ50内のどの深さに反射面、つまり、コアが存在するかを把握することができる。干渉計70は、このように光ファイバ50の側面から、コアとクラッドの屈折射の差を利用して複数のコアの位置を特定することができる。
The interferometer 70 identifies the location where the reflected light LR is generated in the following manner.
The reflected light L R reflected from the optical fiber 50 and the reference light L X reflected from the reference mirror 73 overlap again on the beam splitter 72 . At this time, the reflected light L R and the reference light L X interfere with each other, and if the distance traveled through the optical fiber 50 and the distance traveled back and forth through the reference mirror 73 are equal, the interference frequency becomes 0. Therefore, by moving the reference mirror 73 and using the detector 74 to find the position where the frequency of the interference light between the reflected light L R and the reference light L It is possible to determine whether a core exists. The interferometer 70 can thus identify the positions of a plurality of cores from the side of the optical fiber 50 by utilizing the difference in refraction between the core and the cladding.
 なお、干渉計70がSS-OCTであれば、光源71の波長を変化させることで参照ミラー73を動かさなくても複数のコアの位置を特定することができる。 Note that if the interferometer 70 is an SS-OCT, the positions of the plurality of cores can be specified by changing the wavelength of the light source 71 without moving the reference mirror 73.
[実施形態2]
 図8及び図9は、本実施形態の光ファイバ接続方法を説明する図である。本光ファイバ接続方法は、
 実施形態1で説明したコア位置特定方法で、2つのマルチコア光ファイバ50の端部50aにおける複数のコアの位置を特定すること(ステップS11)、
 それぞれのコアの位置が揃うように2つのマルチコア光ファイバ50の端部50aを向かい合わせること(ステップS12)、及び
 2つの前記マルチコア光ファイバの端部50aを接続すること(ステップS13)
を特徴とする。
[Embodiment 2]
8 and 9 are diagrams for explaining the optical fiber connection method of this embodiment. This optical fiber connection method is
Identifying the positions of the plurality of cores at the ends 50a of the two multi-core optical fibers 50 using the core position identifying method described in Embodiment 1 (step S11);
The ends 50a of the two multi-core optical fibers 50 are faced to each other so that the positions of their respective cores are aligned (step S12), and the ends 50a of the two multi-core optical fibers are connected (step S13).
It is characterized by
 ステップS11では、接続しようとする2本のマルチコア光ファイバ50について端部50aにおける複数のコア位置を、実施形態1で説明した方法で特定する。
 ステップS12では、2本のマルチコア光ファイバ50を図9のように端部50aを向き合わせてV溝30に配置する。ここで、両者とも端部50aにおける複数のコア位置が把握できているため、両者のそれぞれのコアが対向するように位置合わせする。
 ステップS13では、図3で説明したように2本のマルチコア光ファイバ50の端部50a同士を融着接続する。
In step S11, a plurality of core positions at the end portions 50a of the two multi-core optical fibers 50 to be connected are specified using the method described in the first embodiment.
In step S12, two multi-core optical fibers 50 are placed in the V-groove 30 with their ends 50a facing each other as shown in FIG. Here, since the positions of a plurality of cores at the end portion 50a are known in both cases, the positions of the two cores are aligned so that they face each other.
In step S13, the ends 50a of the two multi-core optical fibers 50 are fusion-spliced as described in FIG. 3.
[実施形態3]
 図10及び図11は、本実施形態の光ファイバ接続方法を説明する図である。本光ファイバ接続方法は、
 実施形態1で説明したコア位置特定方法で、一方のマルチコア光ファイバ50-1の端部50aにおける複数のコアの位置を特定すること(ステップS21)、
 他方のマルチコア光ファイバ50-2の端部50aを、マルチコア光ファイバ50-1の端部50aに向かい合わせること(ステップS22)、
 実施形態1で説明したコア位置特定方法で、マルチコア光ファイバ50-2の端部50aにおける複数のコアの位置を特定すること(ステップS23)、
 いずれかのマルチコア光ファイバ(50-1又は50-2)を軸を中心に回転し、向かい合わせた端部50aにおいてそれぞれのコアの位置を揃えること(ステップS24)、及び
 2つのマルチコア光ファイバ(50-1、50-2)の端部50aを接続すること(ステップS25)
を特徴とする。
[Embodiment 3]
10 and 11 are diagrams illustrating the optical fiber connection method of this embodiment. This optical fiber connection method is
Identifying the positions of the plurality of cores at the end 50a of one multi-core optical fiber 50-1 using the core position identifying method described in Embodiment 1 (step S21);
facing the end 50a of the other multi-core optical fiber 50-2 to the end 50a of the multi-core optical fiber 50-1 (step S22);
Identifying the positions of the plurality of cores at the end 50a of the multi-core optical fiber 50-2 using the core position identifying method described in Embodiment 1 (step S23);
Rotating one of the multi-core optical fibers (50-1 or 50-2) around the axis and aligning the positions of the respective cores at the opposing ends 50a (step S24), and rotating the two multi-core optical fibers ( 50-1, 50-2) (step S25)
It is characterized by
 図11は、本実施形態の光ファイバ接続装置を説明する図である。本光ファイバ接続装置は、
 試験光Lをマルチコア光ファイバ50の側面に垂直に入射すること、マルチコア光ファイバ50内で試験光Lが反射した反射光Lを捉えること、及び反射光Lの強度変化から、マルチコア光ファイバ50の断面における複数のコアの位置を特定することを行う干渉計70と、
 2つのマルチコア光ファイバ(50-1、50-2)をそれぞれの端部50aが向かい合わせとなるように保持するホルダ(V溝30)と、
 マルチコア光ファイバのいずれか(本実施形態ではマルチコア光ファイバ50-2)を軸を中心に回転し、向かい合わせた端部50aにおいてそれぞれのコアの位置を揃える回転機構80と、
 2つのマルチコア光ファイバ(50-1、50-2)の端部50a同士を融着接続する電極棒32と、
を備える。
FIG. 11 is a diagram illustrating the optical fiber connection device of this embodiment. This optical fiber connection device is
By making the test light L T perpendicularly incident on the side surface of the multi-core optical fiber 50, by capturing the reflected light L R reflected by the test light L T within the multi-core optical fiber 50, and by changing the intensity of the reflected light L R , the multi-core an interferometer 70 that specifies the positions of the plurality of cores in the cross section of the optical fiber 50;
a holder (V groove 30) that holds two multi-core optical fibers (50-1, 50-2) with their respective ends 50a facing each other;
a rotation mechanism 80 that rotates one of the multi-core optical fibers (in this embodiment, the multi-core optical fiber 50-2) around an axis and aligns the positions of the respective cores at the opposing ends 50a;
an electrode rod 32 that fusion-connects the ends 50a of two multi-core optical fibers (50-1, 50-2);
Equipped with
 実施形態1で説明したように2本のマルチコア光ファイバそれぞれのコアの位置を特定できる。しかし、多くの場合は、2本のマルチコア光ファイバの端部を突き合わせただけでは互いのコアの位置がずれているため、コア位置の合わせ込みが必要である。 As explained in Embodiment 1, the position of each core of two multi-core optical fibers can be specified. However, in many cases, simply butting the ends of two multicore optical fibers together will result in the cores being misaligned, so it is necessary to align the core positions.
 例えば、一方のマルチコア光ファイバを軸中心に回転させることで、他方のマルチコア光ファイバのコアの位置と一致させることができる。この時、図11のように、マルチコア光ファイバ50-2を回転させながら、干渉計70でマルチコア光ファイバ50-2の表面に試験光Lを入射することで、リアルタイムに複数のコアの位置を把握できる。マルチコア光ファイバ50-2のコア位置が、予めコア位置を把握して配置してあるマルチコア光ファイバ50-1のコア位置と一致したときに、融着接続を実施する。 For example, by rotating one multi-core optical fiber around its axis, it is possible to match the core position of the other multi-core optical fiber. At this time, as shown in FIG. 11, while rotating the multi-core optical fiber 50-2, the test light LT is incident on the surface of the multi-core optical fiber 50-2 using the interferometer 70, thereby positioning the multiple cores in real time. can be understood. Fusion splicing is performed when the core position of multi-core optical fiber 50-2 matches the core position of multi-core optical fiber 50-1, which has been arranged with the core position known in advance.
[得られる効果]
 従来の技術ではできなかった光ファイバの内のコアを外部から観察でき、モータと連動させることで、光ファイバのコア位置を制御でき、対向する2本のコア位置を合わせることができるため、マルチコアファイバの融着接続ができるようになる。
[Effects obtained]
It is possible to observe the core of an optical fiber from the outside, which was not possible with conventional technology, and by linking it with a motor, the core position of the optical fiber can be controlled and the positions of two opposing cores can be aligned, making multi-core Enables fiber fusion splicing.
11:コアガラス
12:クラッドガラス
13:被覆
30:V溝
31:光ファイバ
32:電極棒
33:アーク放電
50、50-1、50-2:マルチコア光ファイバ
50a:端部
70:干渉計
71:光源
72:ビームスプリッタ
73:参照ミラー
74:検出器
80:回転機構
11: Core glass 12: Clad glass 13: Coating 30: V groove 31: Optical fiber 32: Electrode rod 33: Arc discharge 50, 50-1, 50-2: Multi-core optical fiber 50a: End 70: Interferometer 71: Light source 72: Beam splitter 73: Reference mirror 74: Detector 80: Rotation mechanism

Claims (6)

  1.  干渉計からの試験光をマルチコア光ファイバの側面に垂直に入射すること、
     前記マルチコア光ファイバ内で前記試験光が反射した反射光を前記干渉計で捉えること、及び
     前記反射光の強度変化から、前記マルチコア光ファイバの断面におけるコアの位置を特定すること
    を特徴とするコア位置特定方法。
    Injecting the test light from the interferometer perpendicularly into the side of the multi-core optical fiber;
    A core characterized in that the reflected light of the test light reflected within the multi-core optical fiber is captured by the interferometer, and the position of the core in the cross section of the multi-core optical fiber is specified from the change in the intensity of the reflected light. Location method.
  2.  前記干渉計は、波長掃引型光干渉断層計(SS-OCT:Swept Source  Optical Coherence Tomography)であることを特徴とする請求項1に記載のコア位置特定方法。 The core position specifying method according to claim 1, wherein the interferometer is a swept wavelength optical coherence tomography (SS-OCT).
  3.  請求項1又は2に記載のコア位置特定方法で、2つの前記マルチコア光ファイバの端部における前記コアの位置を特定すること、
     前記コアの位置が揃うように2つの前記マルチコア光ファイバの前記端部を向かい合わせること、及び
     2つの前記マルチコア光ファイバの前記端部を接続すること
    を特徴とする光ファイバ接続方法。
    The core position specifying method according to claim 1 or 2, specifying the position of the core at the end of the two multi-core optical fibers;
    An optical fiber connecting method comprising: facing the ends of the two multi-core optical fibers so that the cores are aligned; and connecting the ends of the two multi-core optical fibers.
  4.  請求項1又は2に記載のコア位置特定方法で、一方の前記マルチコア光ファイバの端部における前記コアの位置を特定すること、
     他方の前記マルチコア光ファイバの端部を、前記マルチコア光ファイバの端部に向かい合わせること、
     請求項1又は2に記載のコア位置特定方法で、他方の前記マルチコア光ファイバの端部における前記コアの位置を特定すること、
     前記マルチコア光ファイバのいずれかを軸を中心に回転し、向かい合わせた前記端部において前記コアの位置を揃えること、及び
     2つの前記マルチコア光ファイバの前記端部を接続すること
    を特徴とする光ファイバ接続方法。
    The core position specifying method according to claim 1 or 2, specifying the position of the core at an end of one of the multi-core optical fibers;
    facing an end of the other multi-core optical fiber to an end of the multi-core optical fiber;
    The core position specifying method according to claim 1 or 2, specifying the position of the core at the other end of the multi-core optical fiber;
    An optical system characterized by rotating one of the multi-core optical fibers around an axis to align the cores at the opposing ends, and connecting the ends of the two multi-core optical fibers. Fiber connection method.
  5.  試験光をマルチコア光ファイバの側面に垂直に入射すること、前記マルチコア光ファイバ内で前記試験光が反射した反射光を捉えること、及び前記反射光の強度変化から、前記マルチコア光ファイバの断面におけるコアの位置を特定することを行う干渉計と、
     2つの前記マルチコア光ファイバをそれぞれの端部が向かい合わせとなるように保持するホルダと、
     前記マルチコア光ファイバのいずれかを軸を中心に回転し、向かい合わせた前記端部において前記コアの位置を揃える回転機構と、
     2つの前記マルチコア光ファイバの前記端部同士を融着接続する電極棒と、
    を備える光ファイバ接続装置。
    By injecting the test light perpendicularly into the side surface of the multi-core optical fiber, by capturing the reflected light reflected by the test light within the multi-core optical fiber, and from the change in the intensity of the reflected light, the core in the cross section of the multi-core optical fiber is detected. an interferometer for determining the position of the
    a holder that holds the two multi-core optical fibers with their respective ends facing each other;
    a rotation mechanism that rotates one of the multi-core optical fibers around an axis and aligns the cores at the opposing ends;
    an electrode rod that fusion-connects the ends of the two multi-core optical fibers;
    An optical fiber connection device comprising:
  6.  前記干渉計は、波長掃引型光干渉断層計(SS-OCT:Swept Source  Optical Coherence Tomography)であることを特徴とする請求項5に記載の光ファイバ接続装置。 The optical fiber connection device according to claim 5, wherein the interferometer is a swept wavelength optical coherence tomography (SS-OCT).
PCT/JP2022/010585 2022-03-10 2022-03-10 Core position specifying method, optical fiber connecton method, and optical fiber connection device WO2023170862A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/010585 WO2023170862A1 (en) 2022-03-10 2022-03-10 Core position specifying method, optical fiber connecton method, and optical fiber connection device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2022/010585 WO2023170862A1 (en) 2022-03-10 2022-03-10 Core position specifying method, optical fiber connecton method, and optical fiber connection device

Publications (1)

Publication Number Publication Date
WO2023170862A1 true WO2023170862A1 (en) 2023-09-14

Family

ID=87936384

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/010585 WO2023170862A1 (en) 2022-03-10 2022-03-10 Core position specifying method, optical fiber connecton method, and optical fiber connection device

Country Status (1)

Country Link
WO (1) WO2023170862A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009244082A (en) * 2008-03-31 2009-10-22 Fujifilm Corp Light source and optical tomographic imaging apparatus
KR20110005022A (en) * 2009-07-09 2011-01-17 한국과학기술연구원 Apparatus and method for measuring ellipticity of optical fibers
US20140376000A1 (en) * 2013-06-23 2014-12-25 Acacia Communications Inc. Integrated optical coherence tomography systems and methods
WO2017130627A1 (en) * 2016-01-25 2017-08-03 日本電信電話株式会社 Alignment device and alignment method
JP2018515799A (en) * 2015-03-27 2018-06-14 インテュイティブ サージカル オペレーションズ, インコーポレイテッド Interferometric alignment of multi-core optical fibers to be connected

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009244082A (en) * 2008-03-31 2009-10-22 Fujifilm Corp Light source and optical tomographic imaging apparatus
KR20110005022A (en) * 2009-07-09 2011-01-17 한국과학기술연구원 Apparatus and method for measuring ellipticity of optical fibers
US20140376000A1 (en) * 2013-06-23 2014-12-25 Acacia Communications Inc. Integrated optical coherence tomography systems and methods
JP2018515799A (en) * 2015-03-27 2018-06-14 インテュイティブ サージカル オペレーションズ, インコーポレイテッド Interferometric alignment of multi-core optical fibers to be connected
WO2017130627A1 (en) * 2016-01-25 2017-08-03 日本電信電話株式会社 Alignment device and alignment method

Similar Documents

Publication Publication Date Title
US6014483A (en) Method of fabricating a collective optical coupling device and device obtained by such a method
US9568684B2 (en) Apparatus for alignment of a multicore fiber in a multifiber connector and method of using same
JP3124465B2 (en) Optical coupler
US10955622B2 (en) Connection device, optical connector manufacturing device, connection method, and method for manufacturing optical connector
US20190113682A1 (en) Method for axial alignment of coupled multicore optical fiber
GB2301197A (en) In line two pass fibre optic rotary joint
JPH08201644A (en) 4-fiber ferrule for constant polarization optical fiber and optical branching/coupling device formed by using this ferrule
CN104536100A (en) Multi-core optical fiber connector based on gradient refractive index lenses
EP0190146B1 (en) Plural-channel optical rotary joint
JP2017021190A (en) Connecting method of multi-core optical fiber
US10775569B2 (en) Optical connector and optical connection structure
US9360634B2 (en) Structures and techniques for aligning a multicore fiber in a ferrule or production jig
WO2023170862A1 (en) Core position specifying method, optical fiber connecton method, and optical fiber connection device
CN112162365B (en) Single-mode fiber and multi-core fiber rapid coupling device and method
EP0091738B1 (en) Precise positioning of optical fibers
US20090214152A1 (en) Polarization-maintaining optical coupler and method of making the same
JPS6355505A (en) Method for aligning multicore optical fiber
US20130272658A1 (en) Multi-mode multi-fiber connection with expanded beam
US20240085644A1 (en) Method For Orienting And Terminating Polarization-Maintaining (PM) Optical Fiber And Forming A PM Optical Fiber Assembly
JP2012032524A (en) Multicore optical fiber and axis alignment method using the same
US9983364B2 (en) Interferometric measurement method for angular misalignment, fiber core concentricity and end face polish angle of single fiber connectors and ferrules
Oda et al. Loss performance of field-deployed high-density 1152-channel link constructed with 4-core multicore fiber cable
WO2024014103A1 (en) Method and device for measuring optical characteristics of multi-core optical fiber
WO2023175865A1 (en) Cylindrical multi-core ferrule and optical connector
WO2023166542A1 (en) Multicore fiber connecting device and multicore fiber connecting method

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22930843

Country of ref document: EP

Kind code of ref document: A1