[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2023167297A1 - 二次電池用合剤、二次電池用合剤シート及びその製造方法並びに固体二次電池 - Google Patents

二次電池用合剤、二次電池用合剤シート及びその製造方法並びに固体二次電池 Download PDF

Info

Publication number
WO2023167297A1
WO2023167297A1 PCT/JP2023/007904 JP2023007904W WO2023167297A1 WO 2023167297 A1 WO2023167297 A1 WO 2023167297A1 JP 2023007904 W JP2023007904 W JP 2023007904W WO 2023167297 A1 WO2023167297 A1 WO 2023167297A1
Authority
WO
WIPO (PCT)
Prior art keywords
secondary battery
mixture
binder
sheet
less
Prior art date
Application number
PCT/JP2023/007904
Other languages
English (en)
French (fr)
Inventor
貴哉 山田
雅彦 山田
純平 寺田
花英 藤原
健太郎 平賀
献偉 随
Original Assignee
ダイキン工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ダイキン工業株式会社 filed Critical ダイキン工業株式会社
Priority to KR1020247031322A priority Critical patent/KR20240153360A/ko
Priority to JP2024504761A priority patent/JPWO2023167297A1/ja
Priority to CN202380024673.8A priority patent/CN118805273A/zh
Publication of WO2023167297A1 publication Critical patent/WO2023167297A1/ja

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0561Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of inorganic materials only
    • H01M10/0562Solid materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/131Electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/13Electrodes for accumulators with non-aqueous electrolyte, e.g. for lithium-accumulators; Processes of manufacture thereof
    • H01M4/139Processes of manufacture
    • H01M4/1391Processes of manufacture of electrodes based on mixed oxides or hydroxides, or on mixtures of oxides or hydroxides, e.g. LiCoOx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0065Solid electrolytes
    • H01M2300/0068Solid electrolytes inorganic
    • H01M2300/0071Oxides
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present disclosure relates to a secondary battery mixture, a secondary battery mixture sheet, a method for producing the same, and a solid secondary battery.
  • a slurry obtained by mixing a binder and a solvent is applied to an electrode active material and a conductive aid, and dried to produce a solid secondary battery sheet. is commonly performed.
  • fibrillar resins such as polytetrafluoroethylene resins are also used and fibrillated to be used as binders.
  • Patent Literature 1 discloses a method for fabricating an electrode in which polytetrafluoroethylene is fibrillated by subjecting a mixture containing an active material and a polytetrafluoroethylene mixed binder material to high shear treatment with a jet mill.
  • Patent Document 2 discloses obtaining an all-solid lithium ion secondary battery by using a specific oxide-based solid electrolyte and preparing an electrolyte layer and an electrode layer from a slurry.
  • the present disclosure uses a secondary battery mixture containing an oxide-based solid electrolyte, a secondary battery mixture sheet containing the mixture, and the secondary battery mixture sheet having good properties
  • An object of the present invention is to provide a solid secondary battery.
  • Another object of the present disclosure is to provide a method for producing a secondary battery mixture sheet containing a binder having a fine fiber structure.
  • the present disclosure is a secondary battery mixture containing an oxide-based solid electrolyte and a binder
  • the binder is a mixture for a secondary battery, characterized in that it is a fibrillar resin.
  • the fibrillar resin preferably has a fibrous structure with a fibril diameter (median value) of 100 nm or less.
  • the fibrillar resin is preferably polytetrafluoroethylene resin.
  • the secondary battery mixture is a secondary battery mixture obtained by using a raw material composition containing an oxide-based solid electrolyte and a binder, It is preferable that the binder in the raw material composition is a powdery fibrillar resin. Preferably, the raw material composition does not substantially contain a liquid medium.
  • the powdery fibrillar resin preferably has a water content of 500 ppm or less.
  • the powdery fibrillar resin is preferably powdery polytetrafluoroethylene resin.
  • the powdery polytetrafluoroethylene resin preferably has a standard specific gravity of 2.12 to 2.20.
  • the powdery polytetrafluoroethylene resin preferably contains 50% by mass or more of polytetrafluoroethylene resin having a secondary particle size of 450 ⁇ m or more.
  • the powdery polytetrafluoroethylene resin preferably contains 80% by mass or more of polytetrafluoroethylene resin having a secondary particle size of 450 ⁇ m or more.
  • the oxide-based solid electrolyte is preferably a solid electrolyte containing four or more elements (excluding carbon atoms and hydrogen atoms) in addition to oxygen atoms. At least one of the four or more elements is preferably selected from the group consisting of Mg, Al, Si, Ca, Ti, Ga, Sr, Nb, Sn, Ba and W.
  • the secondary battery mixture preferably further contains a nickel-containing positive electrode active material.
  • the present disclosure is also a secondary battery mixture sheet containing the secondary battery mixture.
  • the present disclosure is also an electrode including a secondary battery mixture sheet containing a secondary battery mixture containing the nickel-containing positive electrode active material.
  • the present disclosure provides a step (1) of applying shear force while mixing a raw material composition containing an oxide-based solid electrolyte and a binder.
  • Step (3) wherein the binder is a powdery fibrillar resin.
  • the present disclosure is also a solid secondary battery having the mixture sheet for a secondary battery.
  • no solvent is used when forming a secondary battery mixture sheet containing an oxide-based solid electrolyte, and a powdery binder with little moisture is used to prevent deterioration of the oxide-based solid electrolyte.
  • a battery with less energy can be manufactured.
  • a mixture sheet for a secondary battery containing a binder having a fine fiber structure can be produced, and since slurry is not produced, the burden of the production process can be reduced. can be mitigated.
  • the present disclosure provides a secondary battery mixture and a mixture sheet containing the same that can be suitably used in an oxide-based solid secondary battery.
  • a fibrillar resin such as polytetrafluoroethylene resin (PTFE) is used as a binder.
  • PTFE polytetrafluoroethylene resin
  • a resin that dissolves in a solvent such as a copolymer of vinylidene fluoride and hexafluoropropylene, is used as a binder, and a slurry containing this is applied and dried.
  • a method of creating a mixture for a solid secondary battery was common.
  • solvents capable of dissolving binder resins react with oxide-based solid electrolytes to deteriorate the performance of oxide-based solid electrolytes, resulting in deterioration of battery performance.
  • Solvents are therefore limited to specific low-polarity solvents such as butyl butyrate.
  • low-polarity solvents have a low boiling point and high volatility, so there are problems in slurry preparation and storage control.
  • an alkaline component originating from the active material and solid electrolyte accelerates the gelation of the slurry, causing poor processing and deterioration of battery performance.
  • PTFE can be used as a binding agent.
  • the fibrillated PTFE entangles other powder components and binds the powder components, thereby acting as a binder when molding the powder components.
  • the present disclosure uses a fibrillar resin as a binder to obtain a secondary battery having good properties without using a solvent.
  • the inventors have found that a mixture for a battery and a mixture sheet containing the same can be obtained, thereby completing the present disclosure.
  • the secondary battery mixture of the present disclosure is obtained by using a raw material composition containing an oxide-based solid electrolyte and a binder, and the binder may be a powdery fibrillar resin. preferable. Since a powdery binder is used as a raw material instead of a binder-containing dispersion, the problem of solvent selectivity is resolved. Moreover, since no dispersion liquid is used, the secondary battery mixture contains little moisture derived from raw materials, and no problems due to contamination of moisture occur. As a result, there is an advantage that a battery with excellent ion conductivity can be obtained and the battery performance can be improved.
  • the raw material composition substantially does not contain a liquid medium.
  • the secondary battery mixture of the present disclosure has the advantage of not using a solvent in its production. That is, the conventional method for forming a mixture for a secondary battery uses a solvent in which a binder is dissolved to prepare a slurry in which powder as a mixture component for a secondary battery is dispersed, and then apply the slurry. ⁇ It was common to prepare a mixture sheet for a secondary battery by drying. In this case, a solvent that dissolves the binder is used.
  • a specific solvent such as butyl butyrate that can dissolve the binder resin that has been generally used deteriorates the oxide-based solid electrolyte, as described above, and causes deterioration of battery performance.
  • the binder resin that can be dissolved in a low-polarity solvent such as heptane is very limited, and the flash point is low, making handling difficult.
  • the content of the liquid medium in the secondary battery mixture of the present disclosure is preferably 1% by mass or less. Also in the raw material composition, the content of the liquid medium is preferably 1% by mass or less.
  • the secondary battery mixture of the present disclosure has a binder having a fibrous structure as a constituent element in forming a secondary battery mixture containing an oxide-based electrolyte.
  • the binder is fibrillated.
  • the fibrillated binder is present in the secondary battery mixture and acts to bind the powders of the components constituting the secondary battery mixture, thereby achieving the object of the present invention. is achieved. That is, the present disclosure uses a fibrillar resin as a binder, and the binder in the secondary battery mixture has a fiber structure, so that the secondary battery mixture has good properties. and found that a mixture sheet containing the same can be obtained, thereby completing the present disclosure.
  • the binder in the secondary battery mixture is a fibrillar resin, and preferably has a fibrous structure with a fibril diameter (median value) of 100 nm or less.
  • the presence of the binder having a small fibril diameter in the secondary battery mixture has the effect of further binding the powders of the components constituting the secondary battery mixture.
  • the binder is finely fibrillated so that the binder has a fibrous structure with a fibril diameter (median value) of 100 nm or less.
  • a fibril diameter median value
  • deterioration of the oxide-based solid electrolyte can be further reduced, and good performance can be exhibited.
  • the above fibril diameter is a value measured by the following method. (1) Using a scanning electron microscope (Model S-4800, manufactured by Hitachi, Ltd.), an enlarged photograph (7000 times) of the mixture sheet for a secondary battery is taken to obtain an image. (2) Draw two lines on this image at equal intervals in the horizontal direction to divide the image into three equal parts. (3) For all fibrillated binders on the upper straight line, measure the diameter at three locations per fibrillated binder, and take the average value as the diameter of the fibrillated binder. do.
  • the three points to be measured are the intersection point of the fibrillated binder and the straight line, and the points that are vertically shifted by 0.5 ⁇ m from the intersection point (excluding the primary particles of the non-fibrillated binder).
  • (4) Perform the operation of (3) above for all the fibrillated binders on the lower straight line.
  • (5) Starting from the first image, the image is moved 1 mm to the right of the screen, photographed again, and the diameter of the binder fibrillated by the above (3) and (4) is measured. This is repeated, and when the measured number exceeds 80, the process ends.
  • the median value of the diameters of all the fibrillated binders measured above was taken as the size of the fibril diameter.
  • the fibril diameter (median value) is preferably 100 nm or less, more preferably 85 nm or less, and even more preferably 70 nm or less. It should be noted that excessive fibrillation tends to result in loss of flexibility.
  • the lower limit is not particularly limited, but from the viewpoint of strength, for example, it is preferably 15 nm or more, more preferably 20 nm or more, and particularly preferably 31 nm or more.
  • Step (1) of applying a shearing force while mixing a raw material composition containing an oxide-based solid electrolyte and a binder powder.
  • a method performed by step (3) can be mentioned.
  • step (1) by setting the mixing condition of the raw material composition to 1000 rpm or less, the fibrillation of the binder can be advanced while maintaining the flexibility, and the shear applied By controlling the stress, the fibril diameter (median value) of the binder can be 100 nm or less.
  • step (4) of applying a larger load to the obtained rolled sheet and rolling it into a thinner sheet after the step (3). It is also preferred to repeat step (4). Further, after step (3) or step (4), the obtained rolled sheet is coarsely crushed, then bulk-formed again and rolled into a sheet (5) to adjust the fibril diameter. can do. It is preferable to repeat step (5), for example, 1 to 12 times.
  • the binder powder is fibrillated, and by entangling it with the powder component such as the oxide-based solid electrolyte, a mixture for a secondary battery can be produced.
  • the said manufacturing method is mentioned later.
  • binder powder means a solid state as powder, not a dispersed state mixed with a liquid medium.
  • the object of the present disclosure can be suitably achieved by producing a mixture for a secondary battery by using the binder in such a state and using the binder in the absence of the liquid medium.
  • the powdery fibrillar resin which is a raw material for preparing the secondary battery mixture of the present disclosure, preferably has a moisture content of 500 ppm or less.
  • a water content of 500 ppm or less is preferable in terms of reducing deterioration of the oxide-based solid electrolyte. More preferably, the water content is 300 ppm or less.
  • a fibrillar resin indicates a resin that readily fibrillates when shear stress is applied.
  • the fibrillated resin entangles with other powder components, etc., thereby binding the powder components, thereby making it easier to mold the powder components.
  • It can act as a binder.
  • fibrillar resins include liquid crystal polymer (LCP), cellulose, acrylic resin, ultra-high molecular weight polyethylene, PTFE, etc.
  • LCP liquid crystal polymer
  • cellulose acrylic resin
  • PTFE ultra-high molecular weight polyethylene
  • PTFE is preferable in terms of chemical stability, thermal stability and workability. be.
  • the PTFE is not particularly limited, and may be a homopolymer or a copolymer that can be fibrillated.
  • fluorine atom-containing monomers that are comonomers include chlorotrifluoroethylene, hexafluoropropylene, fluoroalkylethylene, perfluoroalkylethylene, fluoroalkyl-fluorovinyl ether, and the like.
  • the powdered PTFE preferably has a standard specific gravity of 2.12 to 2.20.
  • a standard specific gravity within this range is advantageous in that an electrode mixture sheet with high strength can be produced. More preferably, the lower limit of the standard specific gravity is 2.13 or more.
  • the upper limit of the standard specific gravity is more preferably 2.19 or less, even more preferably 2.18 or less.
  • the powdery PTFE preferably contains 50% by mass or more, more preferably 80% by mass or more, of a polytetrafluoroethylene resin having a secondary particle size of 450 ⁇ m or more.
  • a polytetrafluoroethylene resin having a secondary particle size of 450 ⁇ m or more.
  • the lower limit of the average secondary particle size of the powdery PTFE is more preferably 450 ⁇ m, and still more preferably 500 ⁇ m.
  • the upper limit of the secondary particle size is more preferably 700 ⁇ m or less, and even more preferably 600 ⁇ m or less.
  • the secondary particle size can be determined by, for example, a sieving method.
  • the powdery PTFE preferably has an average primary particle size of 150 nm or more, since an electrode mixture sheet having higher strength and excellent homogeneity can be obtained. It is more preferably 180 nm or more, still more preferably 210 nm or more, and particularly preferably 220 nm or more.
  • the upper limit is not particularly limited, it may be 500 nm. From the viewpoint of productivity in the polymerization step, the upper limit is preferably 350 nm.
  • the average primary particle size is calculated by using an aqueous dispersion of PTFE obtained by polymerization and adjusting the polymer concentration to 0.22% by mass. Create a calibration curve with the average primary particle diameter determined by measuring the directional diameter in the electron micrograph, measure the transmittance of the aqueous dispersion to be measured, and determine based on the calibration curve. can.
  • PTFE for use in the present disclosure may have a core-shell structure.
  • PTFE having a core-shell structure includes, for example, polytetrafluoroethylene comprising a core of high molecular weight polytetrafluoroethylene and a shell of lower molecular weight polytetrafluoroethylene or modified polytetrafluoroethylene in the particles.
  • modified polytetrafluoroethylene include polytetrafluoroethylene described in JP-T-2005-527652.
  • PTFE in powder form that satisfies the above parameters can be obtained by a conventional manufacturing method.
  • it may be produced following the production methods described in International Publication No. 2015-080291, International Publication No. 2012-086710, and the like.
  • the lower limit of the binder content in the secondary battery mixture is preferably 0.2% by mass or more, and more preferably 0.3% by mass or more. More preferably, it exceeds 0.5% by mass.
  • the upper limit of the content of the binder in the secondary battery mixture is preferably 10% by mass or less, more preferably 6.0% by mass or less, and even more preferably 4% by mass or less. It is more preferably 1.7% by mass, most preferably 1.0% by mass. If the binder is within the above range, it is possible to form a self-supporting sheet with excellent handleability while suppressing an increase in electrode resistance.
  • the solid electrolyte used in the secondary battery mixture of the present disclosure is an oxide-based solid electrolyte.
  • the oxide-based solid electrolyte is preferably a compound containing an oxygen atom (O), having ion conductivity of a metal belonging to Group 1 or Group 2 of the periodic table, and having electronic insulation.
  • the ion conductivity of the oxide-based solid electrolyte is preferably 1 ⁇ 10 ⁇ 6 S/cm or more, more preferably 5 ⁇ 10 ⁇ 6 S/cm or more, and 1 ⁇ 10 ⁇ 5 S/cm or more. cm or more is particularly preferred.
  • a specific example of the compound is Li xa La ya TiO 3 [xa satisfies 0.3 ⁇ xa ⁇ 0.7, and ya satisfies 0.3 ⁇ ya ⁇ 0.7. ] (LLT); Li xb Layb Zr zb M bb mb Onb (M bb is one or more elements selected from Al, Mg, Ca, Sr, V, Nb, Ta, Ti, Ge, In and Sn xb satisfies 5 ⁇ xb ⁇ 10, yb satisfies 1 ⁇ yb ⁇ 4, zb satisfies 1 ⁇ zb ⁇ 4, mb satisfies 0 ⁇ mb ⁇ 2, and nb satisfies 5 ⁇ nb ⁇ 20.
  • M bb is one or more elements selected from Al, Mg, Ca, Sr, V, Nb, Ta, Ti, Ge, In and Sn xb satisfies 5 ⁇ xb ⁇ 10, yb satisfies 1 ⁇ yb ⁇
  • Mcc is one or more elements selected from C, S, Al, Si, Ga, Ge, In and Sn.
  • xc is 0 ⁇ xc ⁇ 5 , yc satisfies 0 ⁇ yc ⁇ 1, zc satisfies 0 ⁇ zc ⁇ 1, and nc satisfies 0 ⁇ nc ⁇ 6.);
  • Li xd (Al, Ga) yd (Ti, Ge) zd Si ad P md O nd xd satisfies 1 ⁇ xd ⁇ 3, yd satisfies 0 ⁇ yd ⁇ 1, zd satisfies 0 ⁇ zd ⁇ 2, ad satisfies 0 ⁇ ad ⁇ 1, md satisfies 1 ⁇ satisfies md ⁇ 7 , and nd satisfies 3 ⁇ nd ⁇ 13
  • a ceramic material is also known in which element substitution is performed on LLZ.
  • Specific examples include Li6.25La3Zr2Al0.25O12 , Li6.24La3Zr2Al0.24O11.98 , Li6.2Al0.2La3Zr1 _ _ _ _ _ _ _ .8 Ta 0.2 O 12 and the like.
  • Li, P and O Phosphorus compounds containing Li, P and O are also desirable.
  • lithium phosphate Li 3 PO 4
  • LiPON LiPOD 1
  • LiPOD 1 LiPOD 1
  • LiA 1 ON A 1 is one or more elements selected from Si, B, Ge, Al, C, Ga, etc.
  • the oxide-based inorganic solid electrolyte contains at least one element selected from the group consisting of Mg, Al, Si, Ca, Ti, Ga, Sr, Nb, Sn, Ba, and W. preferable. Oxide-based inorganic solid electrolytes containing these are particularly preferable in terms of good Li ion conductivity.
  • the oxide-based solid electrolyte used in the present disclosure is preferably a solid electrolyte containing four or more elements in addition to oxygen atoms.
  • the above-mentioned "four or more elements” excludes carbon atoms and hydrogen atoms.
  • At least one of the four or more elements is preferably selected from the group consisting of Mg, Al, Si, Ca, Ti, Ga, Sr, Nb, Sn, Ba and W.
  • a solid electrolyte that satisfies a composition containing four or more elements in addition to oxygen atoms is advantageous in that high ionic conductivity can be stably obtained.
  • the oxide-based solid electrolyte preferably contains lithium.
  • a lithium-containing oxide-based solid electrolyte is used for a solid battery using lithium ions as a carrier, and is particularly preferable in terms of an electrochemical device having a high energy density.
  • the oxide-based solid electrolyte is preferably an oxide having a crystal structure.
  • Oxides having a crystalline structure are particularly preferred in terms of good Li ion conductivity.
  • oxides having a crystal structure perovskite type (La 0.51 Li 0.34 TiO 2.94 etc.), NASICON type (Li 1.3 Al 0.3 Ti 1.7 (PO 4 ) 3 etc.), Garnet type ( Li7La3Zr2O12 ( LLZ ) , Li6.25La3Zr2Al0.25O12 , Li6.24La3Zr2Al0.24O11.98 , Li6 . _ 2Al0.2La3Zr1.8Ta0.2O12 ) and the like .
  • the NASICON type is preferable.
  • the volume average particle size of the oxide-based solid electrolyte is not particularly limited, but is preferably 0.01 ⁇ m or more, more preferably 0.03 ⁇ m or more.
  • the upper limit is preferably 100 ⁇ m or less, more preferably 50 ⁇ m or less.
  • the average particle size of the oxide-based solid electrolyte particles is measured according to the following procedure. A 1% by mass dispersion of the oxide-based solid electrolyte particles is diluted and adjusted in a 20 ml sample bottle using water (heptane in the case of water-labile substances). The dispersed sample after dilution is irradiated with ultrasonic waves of 1 kHz for 10 minutes and used for the test immediately after that.
  • the content of the oxide-based solid electrolyte in the solid components in the mixture for secondary batteries is 100 solid components when considering the reduction of interfacial resistance when used in a solid secondary battery and the maintenance of the reduced interfacial resistance.
  • % by mass in the electrode, it is preferably 5% by mass or more, more preferably 9% by mass or more, and particularly preferably 12% by mass or more.
  • the upper limit is preferably 60% by mass or less, more preferably 50% by mass or less, and particularly preferably 40% by mass or less.
  • the content is preferably 50% by mass or more, more preferably 60% by mass or more, and particularly preferably 70% by mass or more.
  • the upper limit is preferably 99.9% by mass or less, more preferably 99.8% by mass or less, and particularly preferably 99.7% by mass or less.
  • the oxide-based solid electrolytes may be used singly or in combination of two or more.
  • the solid content refers to a component that does not disappear by volatilization or evaporation when drying treatment is performed at 170° C. for 6 hours in a nitrogen atmosphere.
  • the secondary battery mixture of the present disclosure is particularly suitable for lithium ion solid state secondary batteries.
  • the secondary battery mixture of the present disclosure is usually used in a sheet form when used in a solid secondary battery.
  • the secondary battery mixture sheet of the present disclosure can be used as a positive electrode sheet or can be used as a negative electrode sheet. Further, it can be a sheet for a solid electrolyte layer. Among these, the electrode sheet further contains active material particles. The active material particles can be used as a positive electrode active material or a negative electrode active material. The secondary battery mixture sheet of the present disclosure can be more suitably used as a positive electrode sheet using a positive electrode active material. Moreover, when setting it as an electrode sheet, you may contain a conductive support agent as needed.
  • Electrode active materials are described below.
  • the secondary battery mixture sheet of the present disclosure contains a positive electrode active material.
  • a positive electrode active material known as a positive electrode active material for solid batteries can be applied.
  • the positive electrode active material is not particularly limited as long as it can electrochemically occlude and release alkali metal ions.
  • a material containing an alkali metal and at least one transition metal is preferable.
  • Specific examples include alkali metal-containing transition metal composite oxides, alkali metal-containing transition metal phosphate compounds, conductive polymers, and the like.
  • an alkali metal-containing transition metal composite oxide that produces a high voltage is particularly preferable.
  • the alkali metal ions include lithium ions, sodium ions, and potassium ions.
  • the alkali metal ions may be lithium ions. That is, in this aspect, the alkali metal ion secondary battery is a lithium ion secondary battery.
  • alkali metal-containing transition metal composite oxide examples include: Formula: M a Mn 2-b M 1 b O 4 (Wherein, M is at least one metal selected from the group consisting of Li, Na and K; 0.9 ⁇ a; 0 ⁇ b ⁇ 1.5; M 1 is Fe, Co, Ni, at least one metal selected from the group consisting of Cu, Zn, Al, Sn, Cr, V, Ti, Mg, Ca, Sr, B, Ga, In, Si and Ge) and manganese spinel composite oxide, Formula: MNi 1-c M 2 cO 2 (wherein M is at least one metal selected from the group consisting of Li, Na and K; 0 ⁇ c ⁇ 0.5; M2 is Fe, Co, Mn, Cu, Zn, Al, at least one metal selected from the group consisting of Sn, Cr, V, Ti, Mg, Ca, Sr, B, Ga, In, Si and Ge), or Formula: MCo 1-d M 3 d O 2 (Wherein, M is at least one metal selected from the group consisting
  • MCoO 2 , MMnO 2 , MNiO 2 , MMn 2 O 4 , MNi 0.8 Co 0.15 Al 0.05 O 2 , or MNi 1/3 Co 1/3 Mn 1/3 O 2 and the like are preferable, and compounds represented by the following general formula (3) are preferable.
  • M is at least one metal selected from the group consisting of Li, Na and K
  • alkali metal-containing transition metal phosphate compound for example, the following formula (4) M e M 4 f (PO 4 ) g (4) (wherein M is at least one metal selected from the group consisting of Li, Na and K, and M4 is selected from the group consisting of V, Ti, Cr, Mn, Fe, Co, Ni and Cu 0.5 ⁇ e ⁇ 3, 1 ⁇ f ⁇ 2, 1 ⁇ g ⁇ 3).
  • M is preferably one metal selected from the group consisting of Li, Na and K, more preferably Li or Na, still more preferably Li.
  • the transition metal of the lithium-containing transition metal phosphate compound is preferably V, Ti, Cr, Mn, Fe, Co, Ni, Cu, etc. Specific examples include LiFePO 4 and Li 3 Fe 2 (PO 4 ). 3 , iron phosphates such as LiFeP 2 O 7 , cobalt phosphates such as LiCoPO 4 , and some of the transition metal atoms that are the main component of these lithium transition metal phosphate compounds are Al, Ti, V, Cr, Mn , Fe, Co, Li, Ni, Cu, Zn, Mg, Ga, Zr, Nb, Si, and the like.
  • the lithium-containing transition metal phosphate compound preferably has an olivine structure.
  • positive electrode active materials include MFePO4 , MNi0.8Co0.2O2 , M1.2Fe0.4Mn0.4O2 , MNi0.5Mn1.5O2 and MV3 .
  • M 2 MnO 3 (wherein M is at least one metal selected from the group consisting of Li, Na and K) and the like.
  • positive electrode active materials such as M 2 MnO 3 and MNi 0.5 Mn 1.5 O 2 are used even when the secondary battery is operated at a voltage exceeding 4.4 V or at a voltage of 4.6 V or higher. , is preferable in that the crystal structure does not collapse.
  • an electrochemical device such as a secondary battery using a positive electrode material containing the above-exemplified positive electrode active material is less likely to decrease in remaining capacity and less likely to change in resistance increase rate even when stored at high temperature. It is preferable because the battery performance does not deteriorate even if it is operated with a voltage.
  • positive electrode active materials include M 2 MnO 3 and MM 6 O 2 (wherein M is at least one metal selected from the group consisting of Li, Na and K, M 6 is Co, Ni , transition metals such as Mn and Fe), and the like.
  • Examples of the solid solution material include alkali metal manganese oxide represented by the general formula Mx[Mn (1-y) M 7 y ]O 2 .
  • M in the formula is at least one metal selected from the group consisting of Li, Na and K
  • M 7 consists of at least one metal element other than M and Mn, such as Co, Ni , Fe, Ti, Mo, W, Cr, Zr and Sn.
  • the values of x, y, and z in the formula are in the ranges of 1 ⁇ x ⁇ 2, 0 ⁇ y ⁇ 1, and 1.5 ⁇ z ⁇ 3.
  • a manganese - containing solid solution material such as Li1.2Mn0.5Co0.14Ni0.14O2 , in which LiNiO2 or LiCoO2 is dissolved based on Li2MnO3 has a high energy density. It is preferable from the point that an alkali metal ion secondary battery can be provided.
  • lithium phosphate in the positive electrode active material because the continuous charging characteristics are improved.
  • the use of lithium phosphate is not limited, it is preferable to use a mixture of the positive electrode active material and lithium phosphate.
  • the lower limit of the amount of lithium phosphate used is preferably 0.1% by mass or more, more preferably 0.3% by mass or more, and still more preferably 0.5% by mass, based on the total of the positive electrode active material and lithium phosphate. % or more, and the upper limit is preferably 10% by mass or less, more preferably 8% by mass or less, and even more preferably 5% by mass or less.
  • Examples of the conductive polymer include p-doping type conductive polymer and n-doping type conductive polymer.
  • Examples of conductive polymers include polyacetylene-based, polyphenylene-based, heterocyclic polymers, ionic polymers, ladder and network polymers, and the like.
  • a nickel-containing positive electrode active material is suitable.
  • the capacity of the active material can be increased, and the battery performance can be improved.
  • cobalt which is a rare metal, can be reduced, which is advantageous in terms of cost.
  • lithium-nickel-based composite oxide As the lithium-nickel-based composite oxide, general formula (1): Li y Ni 1-x M x O 2 (Wherein, x is 0.01 ⁇ x ⁇ 0.5, y is 0.9 ⁇ y ⁇ 1.2, and M represents a metal atom (excluding Ni).) A lithium-nickel composite oxide is preferred. Such a positive electrode active material containing a large amount of Ni is useful for increasing the capacity of a secondary battery.
  • x is a coefficient that satisfies 0.01 ⁇ x ⁇ 0.5, and a secondary battery with a higher capacity can be obtained. 4, more preferably 0.10 ⁇ x ⁇ 0.3.
  • the metal atom of M includes V, Ti, Cr, Mn, Fe, Co, Cu, Al, Zn, Mg, Ga, Zr, Si and the like.
  • the metal atoms of M include transition metals such as V, Ti, Cr, Mn, Fe, Co, and Cu, or the above transition metals and Al, Ti, V, Cr, Mn, Fe, Co, Cu, Zn, Combinations with other metals such as Mg, Ga, Zr, Si are preferred.
  • LiNi 0.82 Co 0.15 Al 0.03 O 2 , LiNi 0.6 Mn 0.2 Co 0.2 O 2 , and LiNi 0.8 Mn 0.1 as lithium-nickel-based composite oxides At least one selected from the group consisting of Co 0.1 O 2 is preferred, and LiNi 0.82 Co 0.15 Al 0.03 O 2 and LiNi 0.8 Mn 0.1 Co 0.1 O 2 At least one selected from the group consisting of is more preferable.
  • a positive electrode active material different from this may be used in combination with the lithium-nickel-based composite oxide represented by the general formula (1).
  • specific examples of different positive electrode active materials include LiCoO 2 , LiMnO 2 , LiMn 2 O 4 , Li 2 MnO 3 , LiMn 1.8 Al 0.2 O 4 , Li 4 Ti 5 O 12 , LiFePO 4 , Li 3 Fe 2 ( PO4 ) 3 , LiFeP2O7 , LiCoPO4 , Li1.2Fe0.4Mn0.4O2 , LiNiO2 , LiNi0.5Mn0.3Co0.2O2 and the like . be done.
  • the above positive electrode active material may be used in which a material having a different composition is attached to the surface of the positive electrode active material.
  • Surface adhering substances include aluminum oxide, silicon oxide, titanium oxide, zirconium oxide, magnesium oxide, calcium oxide, boron oxide, antimony oxide, oxides such as bismuth oxide, lithium sulfate, sodium sulfate, potassium sulfate, magnesium sulfate, and calcium sulfate.
  • sulfates such as aluminum sulfate
  • carbonates such as lithium carbonate, calcium carbonate and magnesium carbonate, and carbon.
  • These surface-adhering substances are, for example, dissolved or suspended in a solvent and impregnated or added to the positive electrode active material, followed by drying; After impregnating and adding to the substance, it can be attached to the surface of the positive electrode active material by a method of reacting by heating or the like, a method of adding to the positive electrode active material precursor and baking at the same time, or the like.
  • a method of mechanically depositing carbonaceous matter in the form of activated carbon or the like later can also be used.
  • the lower limit is preferably 0.1 ppm or more, more preferably 1 ppm or more, and still more preferably 10 ppm or more, and the upper limit is preferably 20% or less, more preferably 20% or less, by mass relative to the positive electrode active material. is used at 10% or less, more preferably 5% or less.
  • the surface-adhering substance can suppress the oxidation reaction of the solid electrolyte on the surface of the positive electrode active material, thereby improving the battery life. If the amount of adhesion is too small, the effect is not sufficiently exhibited, and if it is too large, the resistance may increase due to hindrance to the entry and exit of lithium ions.
  • the shape of the particles of the positive electrode active material includes conventionally used lumps, polyhedrons, spheres, ellipsoids, plates, needles, columns, and the like. Also, the primary particles may aggregate to form secondary particles.
  • the tap density of the positive electrode active material is preferably 0.5 g/cm 3 or more, more preferably 0.8 g/cm 3 or more, and still more preferably 1.0 g/cm 3 or more. If the tap density of the positive electrode active material is less than the above lower limit, the amount of dispersion medium required for forming the positive electrode active material layer increases, and the required amount of the conductive material and the binder increases, and the positive electrode to the positive electrode active material layer increases. In some cases, the filling rate of the active material is restricted, and the battery capacity is restricted.
  • a high-density positive electrode active material layer can be formed by using a composite oxide powder with a high tap density. Generally, the higher the tap density, the better, and there is no particular upper limit.
  • the upper limit is preferably 4.0 g/cm 3 or less, more preferably 3.7 g/cm 3 or less, still more preferably 3.5 g/cm 3 or less.
  • the tap density is the powder filling density (tap density) g/cm 3 when 5 to 10 g of the positive electrode active material powder is placed in a 10 ml glass graduated cylinder and tapped 200 times with a stroke of about 20 mm. Ask as
  • the median diameter d50 of the particles of the positive electrode active material is preferably 0.3 ⁇ m or more, more preferably 0.5 ⁇ m or more, and even more preferably 0.5 ⁇ m or more. is 0.8 ⁇ m or more, most preferably 1.0 ⁇ m or more, and is preferably 30 ⁇ m or less, more preferably 27 ⁇ m or less, even more preferably 25 ⁇ m or less, and most preferably 22 ⁇ m or less. If the lower limit is not reached, it may not be possible to obtain a product with high tap density.
  • the diffusion of lithium in the particles takes time, resulting in a decrease in battery performance or the creation of the positive electrode of the battery, that is, the active material.
  • the active material that is, the active material.
  • a conductive material, binder, or the like is slurried with a solvent and applied as a thin film, problems such as streaks may occur.
  • by mixing two or more kinds of positive electrode active materials having different median diameters d50 it is possible to further improve the filling property during the production of the positive electrode.
  • the median diameter d50 is measured by a known laser diffraction/scattering particle size distribution analyzer.
  • HORIBA's LA-920 is used as a particle size distribution analyzer
  • a 0.1% by mass sodium hexametaphosphate aqueous solution is used as a dispersion medium for measurement, and a measurement refractive index of 1.24 is set after ultrasonic dispersion for 5 minutes. measured as
  • the average primary particle size of the positive electrode active material is preferably 0.05 ⁇ m or more, more preferably 0.1 ⁇ m or more, and still more preferably 0.1 ⁇ m or more. It is 2 ⁇ m or more, and the upper limit is preferably 5 ⁇ m or less, more preferably 4 ⁇ m or less, even more preferably 3 ⁇ m or less, and most preferably 2 ⁇ m or less. If the above upper limit is exceeded, it is difficult to form spherical secondary particles, which adversely affects the powder filling property, and the specific surface area is greatly reduced, so the battery performance such as output characteristics is likely to deteriorate. Sometimes. Conversely, below the above lower limit, problems such as poor reversibility of charge/discharge may occur due to underdevelopment of crystals.
  • the average primary particle size of the positive electrode active material is measured by observation using a scanning electron microscope (SEM). Specifically, in a photograph at a magnification of 10,000 times, the maximum value of the intercept of the left and right boundary lines of the primary particles with respect to the horizontal straight line is obtained for arbitrary 50 primary particles, and the average value is obtained. be done.
  • SEM scanning electron microscope
  • the BET specific surface area of the positive electrode active material is preferably 0.1 m 2 /g or more, more preferably 0.2 m 2 /g or more, still more preferably 0.3 m 2 /g or more, and the upper limit is preferably 50 m 2 /g. g or less, more preferably 40 m 2 /g or less, and even more preferably 30 m 2 /g or less. If the BET specific surface area is smaller than this range, the battery performance tends to deteriorate.
  • the BET specific surface area is measured using a surface area meter (for example, a fully automatic surface area measuring device manufactured by Okura Riken Co., Ltd.). It is defined as a value measured by the nitrogen adsorption BET one-point method by the gas flow method using a nitrogen-helium mixed gas accurately adjusted so that the value of the relative pressure of nitrogen to the atmospheric pressure is 0.3.
  • the particles of the positive electrode active material are mainly secondary particles.
  • the positive electrode active material particles preferably contain 0.5 to 7.0% by volume of fine particles having an average secondary particle size of 40 ⁇ m or less and an average primary particle size of 1 ⁇ m or less.
  • a method for producing the positive electrode active material a general method for producing an inorganic compound is used.
  • various methods are conceivable for producing spherical or ellipsoidal active materials.
  • a transition metal raw material is dissolved or pulverized and dispersed in a solvent such as water, and the pH is adjusted while stirring.
  • a Li source such as LiOH, Li 2 CO 3 , LiNO 3 is added and sintered at a high temperature to obtain an active material. .
  • the above positive electrode active materials may be used alone, or two or more of different compositions may be used together in any combination or ratio.
  • Preferred combinations in this case include a combination of LiCoO 2 and a ternary system such as LiNi 0.33 Co 0.33 Mn 0.33 O 2 , LiCoO 2 and LiMn 2 O 4 or a portion of this Mn
  • a combination of one substituted with a transition metal or the like, or a combination of LiFePO 4 and LiCoO 2 or a combination of a part of this Co substituted with another transition metal or the like can be mentioned.
  • the content of the positive electrode active material is preferably 40 to 95% by mass, more preferably 50 to 91% by mass in the positive electrode mixture, in terms of high battery capacity. Also, the content of the positive electrode active material is preferably 40% by mass or more, more preferably 50% by mass or more, and particularly preferably 60% by mass or more. The upper limit is preferably 95% by mass or less, more preferably 91% by mass or less, and particularly preferably 88% by mass or less. If the content of the positive electrode active material in the positive electrode mixture is low, the electric capacity may become insufficient. Conversely, if the content is too high, the electron/ion conduction of the positive electrode and the strength of the electrode may be insufficient.
  • the negative electrode active material is not particularly limited, and examples thereof include lithium metal, artificial graphite, graphite carbon fiber, resin baked carbon, pyrolytic vapor growth carbon, coke, mesocarbon microbeads (MCMB), furfuryl alcohol resin baked carbon. , polyacene, pitch-based carbon fiber, vapor-grown carbon fiber, natural graphite and those containing carbonaceous materials such as non-graphitizable carbon, silicon-containing compounds such as silicon and silicon alloys, Li 4 Ti 5 O 12 , etc. Either selected or a mixture of two or more types can be mentioned. Among them, those containing carbonaceous material at least in part and silicon-containing compounds can be particularly preferably used.
  • the content of the negative electrode active material is preferably 40 to 95% by mass, more preferably 50 to 91% by mass, in the negative electrode mixture in order to increase the capacity of the resulting secondary battery mixture sheet. Also, the content of the negative electrode active material is preferably 40% by mass or more, more preferably 50% by mass or more, and particularly preferably 60% by mass or more. The upper limit is preferably 95% by mass or less, more preferably 91% by mass or less, and particularly preferably 88% by mass or less.
  • Conductivity aid Any known conductive material can be used as the conductive aid. Specific examples include metal materials such as copper and nickel, graphite such as natural graphite and artificial graphite, carbon black such as acetylene black, ketjen black, channel black, furnace black, lamp black and thermal black, and needle coke. , carbon nanotubes, fullerenes, and amorphous carbon such as VGCF. In addition, these may be used individually by 1 type, and may use 2 or more types together by arbitrary combinations and ratios.
  • the conductive aid is usually 0.01% by mass or more, preferably 0.1% by mass or more, more preferably 0.5% by mass or more in the electrode sheet, and , usually 50% by mass or less, preferably 30% by mass or less, more preferably 15% by mass or less. If the content is lower than this range, the electrical conductivity may be insufficient. Conversely, if the content is higher than this range, the battery capacity may decrease.
  • the secondary battery mixture sheet may further contain a thermoplastic resin.
  • thermoplastic resins include vinylidene fluoride, polypropylene, polyethylene, polystyrene, polyethylene terephthalate, and polyethylene oxide. One type may be used alone, or two or more types may be used together in any combination and ratio.
  • the ratio of the thermoplastic resin to the electrode active material is usually 0.01% by mass or more, preferably 0.05% by mass or more, more preferably 0.10% by mass or more, and is usually 3.0% by mass or less, The range is preferably 2.5% by mass or less, more preferably 2.0% by mass or less.
  • the content of the binder is usually 0.2% by mass or more, preferably 0.3% by mass, as the ratio of the binder in the secondary battery mixture sheet. % or more, more preferably more than 0.5% by mass. Also, it is preferably 10% by mass or less, more preferably 8% by mass or less, and most preferably 6% by mass or less. If the ratio of the binder is too low, the active material cannot be sufficiently retained in the secondary battery mixture sheet, resulting in insufficient mechanical strength of the secondary battery mixture sheet and deterioration of battery performance such as cycle characteristics. It may let you. On the other hand, if it is too high, it may lead to a decrease in battery capacity and conductivity.
  • the manufacturing method of the mixture sheet for a secondary battery of the present disclosure uses a raw material composition obtained by mixing the components described above and forming the composition into a sheet. Since the drying process can be omitted in the sheet formation, the amount of liquid medium used is reduced or not used at all, and a shear stress is applied to the powdery raw material composition without preparing a slurry. is preferred. Also, a small amount of solvent may be added as a lubricant in order to reduce the load on the device.
  • the solvent is preferably an organic solvent, and the content of the solvent is preferably 10% by mass or less, more preferably 5% by mass or less, and even more preferably 3% by mass or less, relative to the raw material composition.
  • the secondary battery mixture sheet of the present disclosure is Step (1) of applying a shearing force while mixing a raw material composition containing an oxide-based solid electrolyte and a binder A step (2) of forming the secondary battery mixture obtained in the step (1) into a bulk shape, and rolling the bulk secondary battery mixture obtained in the step (2) into a sheet. Step (3) It can be obtained by a method for producing an electrode mixture sheet for a secondary battery having.
  • the resulting mixture for a secondary battery is determined by simply mixing an oxide-based solid electrolyte, a binder, and the like. It exists in an intangible state.
  • Specific mixing methods include W-type mixers, V-type mixers, drum-type mixers, ribbon mixers, conical screw-type mixers, single-screw kneaders, twin-screw kneaders, mix mullers, agitating mixers, and planeters.
  • a method of mixing using a Lee mixer, a Henschel mixer, a high-speed mixer, or the like can be mentioned.
  • the mixing conditions may be appropriately set in terms of rotation speed and mixing time.
  • the number of revolutions is preferably 15000 rpm or less.
  • the range is preferably 10 rpm or more, more preferably 1000 rpm or more, still more preferably 3000 rpm or more, and preferably 12000 rpm or less, more preferably 11000 rpm or less, still more preferably 10000 rpm. If it falls below the above range, it takes time for mixing, which affects productivity. On the other hand, if it exceeds, the fibrillation may proceed excessively, resulting in an electrode mixture sheet with inferior strength.
  • the above step (1) is preferably carried out at 30° C. or higher, more preferably 60° C. or higher. Moreover, it is preferable to include a step (A) of mixing the raw material composition and dispersing the binder before the step (1). In the above step (A), it is preferable to suppress fibrillation and mix with a shear force as small as possible.
  • mixing conditions may be appropriately set such as rotation speed and mixing time.
  • the number of revolutions is preferably 1000 rpm or less. It is preferably 10 rpm or more, more preferably 15 rpm or more, still more preferably 20 rpm or more, and preferably 500 rpm or less.
  • the mixing temperature is preferably 19° C. or lower. By setting such a temperature range, it is possible to improve the dispersibility of the binder and process it into a more uniform desired sheet shape.
  • PTFE has two transition temperatures at about 19°C and about 30°C. Below 19°C, PTFE can be easily mixed while maintaining its shape. However, above 19°C, the structure of the PTFE particles becomes looser and more sensitive to mechanical shear. At temperatures above 30° C., a higher degree of fibrillation occurs.
  • the above step (A) is preferably carried out at a temperature of 19°C or less, preferably 0°C to 19°C. That is, in such step (A), it is preferable to mix and homogenize without causing fibrillation. Then, it is preferable to fibrillate by subsequent steps (1) to (5).
  • the raw material composition preferably contains substantially no liquid medium, and is preferably powder.
  • the content of the liquid medium in the raw material composition, which is powder, is preferably 1% by mass or less.
  • forming into a bulk shape means that the secondary battery mixture is made into one lump.
  • Specific methods for bulk molding include extrusion molding and press molding.
  • the term "bulk” does not have a specific shape, and may be in the form of a mass, and includes rods, sheets, spheres, cubes, and the like.
  • the diameter of the cross section or the minimum side is 10000 ⁇ m or more. More preferably, it is 20000 ⁇ m or more.
  • a specific rolling method in the step (3) includes a method of rolling using a roll press machine, a plate press machine, a calender roll machine, or the like.
  • step (4) of applying a larger load to the obtained rolled sheet and rolling it into a thinner sheet after the step (3). It is also preferred to repeat step (4). In this way, the rolling sheet is not thinned all at once, but is gradually rolled in stages to achieve better flexibility.
  • the number of times of step (4) is preferably 2 or more and 10 or less, more preferably 3 or more and 9 or less.
  • a specific rolling method includes, for example, a method in which two or a plurality of rolls are rotated and a rolled sheet is passed between them to form a thinner sheet.
  • the rolled sheet may be coarsely crushed, then bulk-formed again, and rolled into a sheet (5). preferable. It is also preferred to repeat step (5).
  • the number of times of step (5) is preferably 1 time or more and 12 times or less, more preferably 2 times or more and 11 times or less.
  • step (5) specific methods for crushing the rolled sheet and forming it into bulk include a method of folding the rolled sheet, a method of forming it into a rod or a thin film sheet, a method of chipping, and the like.
  • crushing means changing the form of the rolled sheet obtained in step (3) or step (4) into another form in order to roll it into a sheet in the next step. It also includes the case of simply folding a rolled sheet.
  • step (4) may be performed after step (5), or may be performed repeatedly.
  • uniaxial stretching or biaxial stretching may be carried out in steps (2) to (3), (4) and (5).
  • the fibril diameter (median value) can also be adjusted by the degree of coarse grinding in step (5).
  • Steps (2) to (5) are preferably carried out at 30°C or higher, more preferably 60°C or higher.
  • the rolling reduction is preferably 10% or more, more preferably 20% or more, preferably 80% or less, more preferably 65% or less, and further The range is preferably 50% or less. If it is less than the above range, it takes time as the number of rolling increases, which affects productivity. On the other hand, if it exceeds, fibrillation may proceed excessively, resulting in a mixture sheet having inferior strength and flexibility.
  • the rolling rate refers to the reduction rate of the thickness of the sample after rolling with respect to the thickness of the sample before rolling.
  • the sample before rolling may be a bulk mixture or a sheet mixture.
  • the thickness of a sample refers to the thickness in the direction in which a load is applied during rolling.
  • PTFE powder is fibrillated by applying a shearing force.
  • a fibrous structure with a fibril diameter (median value) of 100 nm or less excessive shear stress may excessively promote fibrillation and impair flexibility.
  • weak shear stress may not be sufficient in terms of strength.
  • the fibril diameter (median ) can have a fibrous structure of 100 nm or less.
  • the secondary battery mixture sheet of the present disclosure can be either a positive electrode sheet or a negative electrode sheet. Further, it can be a sheet for a solid electrolyte layer. When a positive electrode mixture sheet or a negative electrode sheet is produced, the positive electrode active material or negative electrode active material may be mixed together with the solid electrolyte and the binder in the production of the secondary battery mixture sheet.
  • the positive electrode is preferably composed of a current collector and the positive electrode sheet.
  • materials for the positive electrode current collector include metals such as aluminum, titanium, tantalum, stainless steel and nickel, and metal materials such as alloys thereof; and carbon materials such as carbon cloth and carbon paper. Among them, metal materials, particularly aluminum or alloys thereof, are preferred.
  • the shape of the current collector examples include metal foil, metal cylinder, metal coil, metal plate, expanded metal, punch metal, foam metal, etc. in the case of metal materials, and carbon plate, carbon thin film, carbon thin film, carbon A cylinder etc. are mentioned. Among these, metal foil is preferred. Note that the metal foil may be appropriately formed in a mesh shape. Although the thickness of the metal foil is arbitrary, it is usually 1 ⁇ m or more, preferably 3 ⁇ m or more, more preferably 5 ⁇ m or more, and usually 1 mm or less, preferably 100 ⁇ m or less, more preferably 50 ⁇ m or less. If the metal foil is thinner than this range, the strength required as a current collector may be insufficient. Conversely, if the metal foil is thicker than this range, the handleability may be impaired.
  • the surface of the current collector is coated with a conductive aid from the viewpoint of reducing the electrical contact resistance between the current collector and the positive electrode material mixture sheet.
  • conductive aids include carbon and noble metals such as gold, platinum, and silver.
  • the production of the positive electrode may be carried out according to a conventional method. For example, a method of laminating the positive electrode sheet and the current collector via an adhesive and drying the laminate can be used.
  • the density of the positive electrode sheet is preferably 2.0 g/cm 3 or more, more preferably 2.1 g/cm 3 or more, still more preferably 2.3 g/cm 3 or more, and preferably 4.0 g/cm 3 or more. 3 or less, more preferably 3.9 g/cm 3 or less, and still more preferably 3.8 g/cm 3 or less. If this range is exceeded, the conductivity between the active materials will decrease, the battery resistance will increase, and high output may not be obtained. If it is less than that, the content of the hard and fragile active material may be low, resulting in a battery with low capacity.
  • the thickness of the positive electrode is not particularly limited, but from the viewpoint of high capacity and high output, the thickness of the mixture sheet after subtracting the thickness of the current collector is preferably 10 ⁇ m as the lower limit with respect to one side of the current collector. Above, it is more preferably 20 ⁇ m or more, more preferably 500 ⁇ m or less, more preferably 450 ⁇ m or less.
  • the positive electrode having a different composition adhered to the surface of the positive electrode may be used.
  • Surface adhering substances include aluminum oxide, silicon oxide, titanium oxide, zirconium oxide, magnesium oxide, calcium oxide, boron oxide, antimony oxide, oxides such as bismuth oxide, lithium sulfate, sodium sulfate, potassium sulfate, magnesium sulfate, and calcium sulfate.
  • oxides such as bismuth oxide, lithium sulfate, sodium sulfate, potassium sulfate, magnesium sulfate, and calcium sulfate.
  • sulfates such as aluminum sulfate
  • carbonates such as lithium carbonate, calcium carbonate and magnesium carbonate, and carbon.
  • the negative electrode is preferably composed of a current collector and the negative electrode sheet.
  • Materials for the negative electrode current collector include metals such as copper, nickel, titanium, tantalum, and stainless steel, and metal materials such as alloys thereof; and carbon materials such as carbon cloth and carbon paper. Among them, metal materials, particularly copper, nickel, or alloys thereof are preferred.
  • the shape of the current collector examples include metal foil, metal cylinder, metal coil, metal plate, expanded metal, punch metal, foam metal, etc. in the case of metal materials, and carbon plate, carbon thin film, carbon thin film, carbon A cylinder etc. are mentioned. Among these, metal foil is preferred. Note that the metal foil may be appropriately formed in a mesh shape. Although the thickness of the metal foil is arbitrary, it is usually 1 ⁇ m or more, preferably 3 ⁇ m or more, more preferably 5 ⁇ m or more, and usually 1 mm or less, preferably 100 ⁇ m or less, more preferably 50 ⁇ m or less. If the metal foil is thinner than this range, the strength required as a current collector may be insufficient. Conversely, if the metal foil is thicker than this range, the handleability may be impaired.
  • the production of the negative electrode may be carried out according to a conventional method.
  • a method of laminating the negative electrode sheet and the current collector with an adhesive interposed therebetween and drying the laminate can be used.
  • the density of the negative electrode sheet is preferably 1.3 g/cm 3 or more, more preferably 1.4 g/cm 3 or more, still more preferably 1.5 g/cm 3 or more, and preferably 2.0 g/cm 3 or more. 3 or less, more preferably 1.9 g/cm 3 or less, and still more preferably 1.8 g/cm 3 or less. If this range is exceeded, the permeability of the solid electrolyte to the vicinity of the interface between the current collector and the active material is reduced, and the charging/discharging characteristics especially at high current densities are deteriorated, and high output may not be obtained. On the other hand, if it falls below, the conductivity between the active materials will decrease, the battery resistance will increase, and high output may not be obtained.
  • the thickness of the negative electrode is not particularly limited, but from the viewpoint of high capacity and high output, the thickness of the mixture sheet minus the thickness of the metal foil of the current collector is preferably the lower limit with respect to one side of the current collector. is 10 ⁇ m or more, more preferably 20 ⁇ m or more, and preferably 500 ⁇ m or less, more preferably 450 ⁇ m or less.
  • the present disclosure is also a solid secondary battery using the mixture sheet for a secondary battery.
  • the solid secondary battery may be an all-solid secondary battery or a hybrid solid secondary battery in which a gel polymer electrolyte and a solid electrolyte are combined. Further, the solid secondary battery is preferably a lithium ion solid secondary battery.
  • a solid secondary battery of the present disclosure is a solid secondary battery comprising a positive electrode, a negative electrode, and a solid electrolyte layer interposed between the positive electrode and the negative electrode, wherein the positive electrode, the negative electrode, and the solid electrolyte layer include the present It contains a positive electrode sheet, a negative electrode sheet, or a solid electrolyte layer sheet, which is the disclosed secondary battery mixture sheet.
  • a material other than the secondary battery mixture sheet of the present disclosure may be used for part of the positive electrode, the negative electrode, and the solid electrolyte layer.
  • the laminated structure of the solid secondary battery in the present disclosure includes a positive electrode including a positive electrode sheet and a positive electrode current collector, a negative electrode including a negative electrode sheet and a negative electrode current collector, and an oxide system sandwiched between the positive electrode and the negative electrode.
  • a solid electrolyte layer is provided.
  • the solid secondary battery of the present disclosure may have a separator between the positive electrode and the negative electrode.
  • the separator include porous membranes such as polyethylene and polypropylene; nonwoven fabrics made of resins such as polypropylene; and nonwoven fabrics such as glass fiber nonwoven fabrics.
  • the solid secondary battery of the present disclosure may further include a battery case.
  • the shape of the battery case used in the present disclosure is not particularly limited as long as it can accommodate the above-described positive electrode, negative electrode, electrolyte layer for oxide-based solid battery, and the like. Specifically, it is cylindrical. , square type, coin type, laminate type, and the like.
  • the positive electrode, the solid electrolyte layer sheet, and the negative electrode may be sequentially laminated and pressed to form a solid secondary battery.
  • the secondary battery mixture sheet of the present disclosure it is possible to manufacture a solid secondary battery in a state where the system contains less water, and a solid secondary battery having good performance can be obtained. , is preferred.
  • the polytetrafluoroethylene aqueous dispersion thus obtained was diluted to a solid content concentration of 15% and gently stirred in the presence of nitric acid in a vessel equipped with a stirrer to solidify the polytetrafluoroethylene.
  • the solidified polytetrafluoroethylene was separated and dried at 160° C. for 18 hours to obtain powdery PTFE-1.
  • Powdered PTFE-2 was produced with reference to Preparation Example 3 of International Publication No. 2015-080291.
  • Powdered PTFE-3 was produced with reference to Preparation Example 1 of International Publication No. 2012/086710.
  • Powdered PTFE-4 was produced with reference to Preparation Example 1 of WO 2012-063622. Table 1 shows the physical properties of the produced PTFE.
  • the powdery PTFE was sieved in advance using a stainless steel sieve with an opening of 500 ⁇ m, and the material remaining on the sieve was used.
  • the resulting mixture was formed into bulk and rolled into sheets. Rolling was performed by heating to 80°C. After that, the obtained rolled sheet is folded in two to coarsely crush it, and after forming it into a bulk shape again, it is rolled into a sheet shape using a metal roll on a flat plate to promote fibrillation. This step was repeated four times. After that, by further rolling, a sheet-like solid electrolyte layer having a thickness of 500 ⁇ m was obtained. Furthermore, the sheet-like solid electrolyte layer was cut out, put into a roll press machine heated to 80° C., and rolled. Furthermore, the thickness was adjusted by repeatedly applying a load of 5 kN. The gap was adjusted so that the final thickness of the solid electrolyte layer was 150 ⁇ m.
  • the above work was performed in an environment with a dew point of about -60°
  • NANOMYTE registered trademark
  • the secondary battery mixture of the present disclosure and the secondary battery mixture sheet containing the same can be used for manufacturing a solid secondary battery.

Landscapes

  • Chemical & Material Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Physics & Mathematics (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本開示は、良好な性質を有する、酸化物系電解質を含有する二次電池用合剤、また、その合剤を含有する二次電池用合剤シート及び、また、その二次電池用合剤シートを使用した固体二次電池を提供する。 また、本開示は、微細な繊維構造を有する結着剤を含有する二次電池用合剤シートを製造する方法を提供する。 酸化物系固体電解質及び結着剤を含有する二次電池用合剤であって、結着剤は、フィブリル性樹脂であることを特徴とする二次電池用合剤。フィブリル性樹脂は、フィブリル径(中央値)が100nm以下の繊維状構造を有することが好適である。

Description

二次電池用合剤、二次電池用合剤シート及びその製造方法並びに固体二次電池
本開示は、二次電池用合剤、二次電池用合剤シート及びその製造方法並びに固体二次電池に関する。
リチウムイオン二次電池において、電極活物質及び導電助剤に対して、結着剤及び溶媒を混合して得られたスラリーを塗工、乾燥することによって、固体二次電池用シートを作製することが一般的に行われている。
他方、ポリテトラフルオロエチレン樹脂等のフィブリル性樹脂を使用し、これをフィブリル化することで結着剤として使用することも行われている。
特許文献1には、活性材料とポリテトラフルオロエチレン混合バインダ材とを含む混合物を、ジェットミルによって高せん断処理することにより、ポリテトラフルオロエチレンをフィブリル化する電極の作製方法が開示されている。
特許文献2には、特定の酸化物系固体電解質を用い、電解質層や電極層をスラリーから作製して全固体リチウムイオン二次電池を得ることが開示されている。
特表2017-517862号公報 特表2015-153588号公報
本開示は、良好な性質を有する、酸化物系固体電解質を含有する二次電池用合剤、その合剤を含有する二次電池用合剤シート、及びその二次電池用合剤シートを使用した固体二次電池を提供することを目的とする。
また、本開示は、微細な繊維構造を有する結着剤を含有する二次電池用合剤シートを製造する方法を提供することを目的とする。
本開示は、酸化物系固体電解質及び結着剤を含有する二次電池用合剤であって、
前記結着剤は、フィブリル性樹脂であることを特徴とする二次電池用合剤である。
前記フィブリル性樹脂は、フィブリル径(中央値)が100nm以下の繊維状構造を有することが好ましい。
前記フィブリル性樹脂はポリテトラフルオロエチレン樹脂であることが好ましい。
前記二次電池用合剤は、酸化物系固体電解質及び結着剤を含有する原料組成物を使用して得られた二次電池用合剤であって、
前記原料組成物中の結着剤が粉末状のフィブリル性樹脂であることが好ましい。
前記原料組成物は、実質的に液体媒体を含有しないことが好ましい。
前記粉末状のフィブリル性樹脂は、水分含有量が500ppm以下であることが好ましい。
前記粉末状のフィブリル性樹脂が粉末状のポリテトラフルオロエチレン樹脂であることが好ましい。
前記粉末状のポリテトラフルオロエチレン樹脂は、標準比重が2.12~2.20であることが好ましい。
前記粉末状のポリテトラフルオロエチレン樹脂は、二次粒子径が450μm以上のポリテトラフルオロエチレン樹脂を50質量%以上含むことが好ましい。
前記粉末状のポリテトラフルオロエチレン樹脂は、二次粒子径が450μm以上のポリテトラフルオロエチレン樹脂を80質量%以上含むことが好ましい。
前記酸化物系固体電解質は、酸素原子の他に、4種類以上の元素(炭素原子、水素原子を除く)を含む固体電解質であることが好ましい。
前記4種類以上の元素のうち少なくとも1つは、Mg、Al、Si、Ca、Ti、Ga、Sr、Nb、Sn、Ba及びWからなる群より選択されるものであることが好ましい。
前記二次電池用合剤は、更に、ニッケル含有正極活物質を含むことが好ましい。
本開示は、前記二次電池用合剤を含む二次電池用合剤シートでもある。
本開示は、前記ニッケル含有正極活物質を含む二次電池用合剤を含む二次電池用合剤シートを含む電極でもある。
本開示は、酸化物系固体電解質及び結着剤を含む原料組成物を混合しながら、剪断力を付与する工程(1)
前記工程(1)によって得られた二次電池用合剤をバルク状に成形する工程(2)及び
前記工程(2)によって得られたバルク状の二次電池用合剤をシート状に圧延する工程(3)
を有する二次電池用合剤シートの製造方法であって、結着剤は、粉末状のフィブリル性樹脂であることを特徴とする二次電池用合剤シートの製造方法でもある。
本開示は、前記二次電池用合剤シートを有する固体二次電池でもある。
本開示においては、酸化物系固体電解質を含有する二次電池用合剤シート形成時に溶媒を使用せず、水分の少ない粉体状の結着剤を用いることで、酸化物系固体電解質の劣化が少ない電池を製造することができる。更に、本開示の製造方法においては、微細な繊維構造を有する結着剤を含有する二次電池用合剤シートを製造することができ、また、スラリーを作製しないことから、製造プロセスの負担を軽減することができる。
実施例で用いた圧力セルの断面の概略を示す説明図である。
以下、本開示を詳細に説明する。
本開示は、酸化物系固体二次電池において好適に使用することができる二次電池用合剤及びこれを含有する合剤シートを提供する。
本開示の二次電池用合剤及びこれを含有する合剤シートにおいては、ポリテトラフルオロエチレン樹脂(PTFE)等のフィブリル性樹脂を結着剤として使用するものである。従来の固体二次電池用合剤においては、ビニリデンフルオライドとヘキサフルオロプロピレンとの共重合体等の、溶媒に溶解する樹脂を結着剤として使用し、これを含有するスラリーの塗布・乾燥によって、固体二次電池用合剤を作成する方法が一般的であった。
しかしながら、従来一般に使用されてきたバインダー樹脂を溶解することができる溶媒は酸化物系固体電解質と反応して、酸化物系固体電解質の性能を劣化させるため、電池性能の低下原因となる。そのため、溶媒は、酪酸ブチル等の特定の低極性溶媒に限定される。しかし、低極性溶媒は、沸点が低く揮発性が高いため、スラリー調整・保管のコントロールに課題を抱える。また、活物質や固体電解質起因によるアルカリ成分がスラリーのゲル化を促進し、加工不良を引き起こして電池性能の低下原因となる。
一方、例えば、粒子状態のPTFEにせん断応力を与えると、容易にフィブリル化することが知られている。このようなフィブリル化する性質を利用して、PTFEを結着剤として使用することができる。すなわち、フィブリル化したPTFEがその他の粉体成分等に絡みつくことで、粉体成分を結着させ、これによって粉体成分を成形する際のバインダーとして作用することができる。
本開示は、酸化物系固体電解質を含有する二次電池用合剤を得るにあたり、フィブリル性樹脂を結着剤として使用することで、溶媒を使用しなくても、良好な性質を有する二次電池用合剤及びこれを含有する合剤シートを得ることができることを見出し、これによって本開示を完成したものである。
本開示の二次電池用合剤は、酸化物系固体電解質及び結着剤を含有する原料組成物を使用して得られるものであり、結着剤は粉末状のフィブリル性樹脂であることが好ましい。原料として、結着剤含有分散液ではなく、粉体状の結着剤を使用することから、溶媒選択性という課題から開放される。また、分散液を用いないことから、二次電池用合剤中に原料由来の水分が少なく、水分の混在による問題を生じることがない。これによって、イオン伝導の優れた電池とすることができ、電池性能を向上させることができるという利点がある。
更に、上記原料組成物は、実質的に液体媒体を含有しないことが好ましい。このように、本開示の二次電池用合剤は、製造において溶媒を使用しないという利点を有する。すなわち、従来の二次電池用合剤形成方法は、結着剤が溶解した溶媒を使用して、二次電池用合剤成分である粉体を分散させたスラリーを調製し、当該スラリーの塗布・乾燥によって二次電池用合剤シートを調製することが一般的であった。この場合、バインダーを溶解する溶媒を使用する。しかし、従来一般に使用されてきたバインダー樹脂を溶解することができる酪酸ブチル等の特定の溶媒は、上記したように、酸化物系固体電解質を劣化させ、電池性能の低下原因となる。また、ヘプタンなどの低極性溶媒では溶解するバインダー樹脂が非常に限定されるうえ、引火点が低く、取り扱いが煩雑である。
以上の観点から、本開示の二次電池用合剤は、液体媒体の含有量が、1質量%以下であることが好ましい。また、原料組成物においても、液体媒体の含有量が1質量%以下であることが好ましい。
本開示の二次電池用合剤は、酸化物系電解質を含有する二次電池用合剤とするにあたり、繊維状構造を有する結着剤を構成要素として有するものである。本開示においては、結着剤がフィブリル化して存在している点が重要である。このようにフィブリル化した結着剤が二次電池用合剤中に存在し、これが二次電池用合剤を構成する成分の粉体同士を結着させる作用を奏することによって、本発明の目的を達成するものである。
すなわち、本開示は、フィブリル性樹脂を結着剤として使用し、二次電池用合剤中の結着剤が繊維構造を有するものとすることで、良好な性質を有する二次電池用合剤及びこれを含有する合剤シートを得ることができることを見出し、これによって本開示を完成したものである。
また、二次電池用合剤中の結着剤は、フィブリル性樹脂であり、フィブリル径(中央値)が100nm以下の繊維状構造を有することが好ましい。フィブリル径が細い結着剤が二次電池用合剤中に存在することで、二次電池用合剤を構成する成分の粉体同士をより結着させる作用を奏する。
本開示においては、結着剤が、フィブリル径(中央値)が100nm以下の繊維状構造を有するように、微細なフィブリル化加工を行うことによって、フィブリル化した結着剤が二次電池用合剤の結着剤として、酸化物系固体電解質の劣化をより少なくすることができ、良好な性能を発揮することができるものである。
上記フィブリル径(中央値)は、以下の方法によって測定した値である。
(1)走査型電子顕微鏡(S-4800型 日立製作所製)を用いて、二次電池用合剤シートの拡大写真(7000倍)を撮影し画像を得る。
(2)この画像に水平方向に等間隔で2本の線を引き、画像を三等分する。
(3)上方の直線上にある全てのフィブリル化した結着剤について、フィブリル化した結着剤1本あたり3箇所の直径を測定し、平均した値を当該フィブリル化した結着剤の直径とする。測定する3箇所は、フィブリル化した結着剤と直線との交点、交点からそれぞれ上下に0.5μmずつずらした場所を選択する(未繊維化の結着剤一次粒子は除く。)。
(4)上記(3)の作業を、下方の直線上にある全てのフィブリル化した結着剤に対して行う。
(5)1枚目の画像を起点に画面右方向に1mm移動し、再度撮影を行い、上記(3)及び(4)によりフィブリル化した結着剤の直径を測定する。これを繰り返し、測定した数が80本を超えた時点で終了とする。
(6)上記測定した全てのフィブリル化した結着剤の直径の中央値をフィブリル径の大きさとした。
上記フィブリル径(中央値)は、100nm以下であることが好ましく、85nm以下であることがより好ましく、70nm以下であることが更に好ましい。なお、フィブリル化を進めすぎると、柔軟性が失われる傾向にある。下限は特に限定されるものではないが、強度の観点から、例えば、15nm以上であることが好ましく、20nm以上であることがより好ましく、31nm以上であることが特に好ましくい。
上記フィブリル径(中央値)を有する結着剤を得る方法としては特に限定されるものではないが、例えば、
酸化物系固体電解質及び結着剤粉体を含む原料組成物を混合しながら、剪断力を付与する工程(1)
前記工程(1)によって得られた二次電池用合剤をバルク状に成形する工程(2)及び
前記工程(2)によって得られたバルク状の二次電池用合剤をシート状に圧延する工程(3)によって行う方法を挙げることができる。
このような方法において、例えば、工程(1)においては原料組成物の混合条件を1000rpm以下とすることにより、柔軟性を維持しながらも結着剤のフィブリル化を進行させることができ、与えるせん断応力をコントロールすることで、結着剤のフィブリル径(中央値)を100nm以下とすることができる。
また、工程(3)のあとに、得られた圧延シートに、より大きい荷重を加えて、さらに薄いシート状に圧延する工程(4)を有することも好ましい。また、工程(4)を繰り返すことも好ましい。
また、工程(3)又は工程(4)のあとに、得られた圧延シートを粗砕したのち再度バルク状に成形し、シート状に圧延する工程(5)を有することによってもフィブリル径を調整することができる。工程(5)は、例えば1回以上12回以下繰り返すことが好ましい。
すなわち、せん断力をかけることによって、結着剤粉体をフィブリル化し、これが酸化物系固体電解質等の粉体成分と絡み合うことによって、二次電池用合剤を製造することができる。なお、当該製造方法については後述する。
なお、上記「結着剤粉体」とは、液体媒体と混在した分散状態ではなく、粉体としての固体状態を意味するものである。このような状態のものを利用し、液体媒体が存在しない状態の結着剤を使用して二次電池用合剤を製造することで、本開示の目的が好適に達成できる。
本開示の二次電池用合剤を調製する際の原料となる粉末形状のフィブリル性樹脂は、水分含有量が500ppm以下であることが好ましい。
水分含有量が500ppm以下であることによって、酸化物系固体電解質の劣化を低減させるという点で好ましい。
上記水分含有量は、300ppm以下であることが更に好ましい。
本開示において、フィブリル性樹脂は、せん断応力を与えると、容易にフィブリル化するような樹脂のことを示す。このようなフィブリル性樹脂を結着剤として使用することで、フィブリル化した樹脂がその他の粉体成分等に絡みつくことで、粉体成分を結着させ、これによって粉体成分を成形する際のバインダーとして作用することができる。例えば、フィブリル性樹脂として、液晶ポリマー(LCP)、セルロース、アクリル樹脂、超高分子量ポリエチレン、PTFEなどが挙げられ、中でも、PTFEが化学的安定性、熱的安定性、加工性の点で好適である。
本開示において、上記PTFEとしては特に限定されず、ホモポリマーであってもよいし、フィブリル化させることのできる共重合体であってもよい。
共重合体の場合、コモノマーであるフッ素原子含有モノマーとしては、クロロトリフルオロエチレン、ヘキサフルオロプロピレン、フルオロアルキルエチレン、パーフルオロアルキルエチレン、フルオロアルキル・フルオロビニルエーテル等を挙げることができる。
粉末形状のPTFEは、標準比重が2.12~2.20であることが好ましい。標準比重が当該範囲内のものであることによって、強度の高い電極合剤シートを作製できるという点で利点を有する。上記標準比重の下限は、2.13以上であることがより好ましい。上記標準比重の上限は、2.19以下であることがより好ましく、2.18以下であることが更に好ましい。
標準比重〔SSG〕はASTM D-4895-89に準拠して試料を作製し、得られた試料の比重を水置換法によって測定する。
上記粉末状のPTFEは、二次粒子径が450μm以上のポリテトラフルオロエチレン樹脂を50質量%以上含むことが好ましく、80質量%以上含むことがより好ましい。二次粒子径が450μm以上のPTFEが当該範囲内のものであることによって、強度の高い合剤シートを作製できるという利点を有する。
二次粒子径が450μm以上のPTFEを用いることで、より抵抗が低く、靭性に富んだ合剤シートを得ることができる。
上記粉末状のPTFEの平均二次粒子径の下限は、450μmであることがより好ましく、500μmであることが更に好ましい。上記二次粒子径の上限は、700μm以下であることがより好ましく、600μm以下であることが更に好ましい。二次粒子径は例えばふるい分け法などで求めることができる。
上記粉末状のPTFEは、より高強度でかつ均質性に優れる電極合剤シートが得られることから、平均一次粒子径が150nm以上であることが好ましい。より好ましくは、180nm以上であり、更に好ましくは210nm以上であり、特に好ましくは220nm以上である。
PTFEの平均一次粒子径が大きいほど、その粉末を用いて押出成形をする際に、押出圧力の上昇を抑えられ、成形性にも優れる。上限は特に限定されないが500nmであってよい。重合工程における生産性の観点からは、上限は350nmであることが好ましい。
上記平均一次粒子径は、重合により得られたPTFEの水性分散液を用い、ポリマー濃度を0.22質量%に調整した水性分散液の単位長さに対する550nmの投射光の透過率と、透過型電子顕微鏡写真における定方向径を測定して決定された平均一次粒子径との検量線を作成し、測定対象である水性分散液について、上記透過率を測定し、上記検量線をもとに決定できる。
本開示に使用するPTFEは、コアシェル構造を有していてもよい。コアシェル構造を有するPTFEとしては、例えば、粒子中に高分子量のポリテトラフルオロエチレンのコアと、より低分子量のポリテトラフルオロエチレンまたは変性ポリテトラフルオロエチレンのシェルとを含むポリテトラフルオロエチレンが挙げられる。このような変性ポリテトラフルオロエチレンとしては、例えば、特表2005-527652号公報に記載されるポリテトラフルオロエチレン等が挙げられる。
上述したような各パラメータを満たす粉末形状のPTFEは、従来の製造方法により得ることができる。例えば、国際公開第2015-080291号や国際公開第2012-086710号等に記載された製造方法に倣って製造すればよい。
本開示において、二次電池用合剤中、結着剤の含有量の下限は、好ましくは0.2質量%以上であり、より好ましくは0.3質量%以上である。0.5質量%を超えることが更に好ましい。二次電池用合剤中、結着剤の含有量の上限は、好ましくは10質量%以下であり、より好ましくは6.0質量%以下であり、更に好ましくは4質量%以下であり、より更に好ましくは1.7質量%であり、最も好ましくは1.0質量%である。結合剤が上記範囲内であれば、電極抵抗の上昇を押さえながら、ハンドリング性に優れた自立性のあるシートの成形が可能である。
本開示の二次電池用合剤に使用される固体電解質は、酸化物系固体電解質である。
上記酸化物系固体電解質は、酸素原子(O)を含有し、かつ、周期律表第1族又は第2族に属する金属のイオン伝導性を有し、かつ、電子絶縁性を有する化合物が好ましい。
酸化物系固体電解質は、イオン伝導度として、1×10-6S/cm以上であることが好ましく、5×10-6S/cm以上であることがより好ましく、1×10-5S/cm以上であることが特に好ましい。
具体的な化合物例としては、例えば、LixaLayaTiO〔xaは0.3≦xa≦0.7を満たし、yaは0.3≦ya≦0.7を満たす。〕(LLT);LixbLaybZrzbbb mbnb(MbbはAl,Mg,Ca,Sr,V,Nb,Ta,Ti,Ge,In及びSnから選ばれる1種以上の元素である。xbは5≦xb≦10を満たし、ybは1≦yb≦4を満たし、zbは1≦zb≦4を満たし、mbは0≦mb≦2を満たし、nbは5≦nb≦20を満たす。);Lixcyccc zcnc(MccはC,S,Al,Si,Ga,Ge,In及びSnから選ばれる1種以上の元素である。xcは0≦xc≦5を満たし、ycは0≦yc≦1を満たし、zcは0≦zc≦1を満たし、ncは0≦nc≦6を満たす。);Lixd(Al,Ga)yd(Ti,Ge)zdSiadmdnd(xdは1≦xd≦3を満たし、ydは0≦yd≦1を満たし、zdは0≦zd≦2を満たし、adは0≦ad≦1を満たし、mdは1≦md≦7を満たし、ndは3≦nd≦13を満たす。);Li(3-2xe)ee xeeeO(xeは0以上0.1以下の数を表し、Meeは2価の金属原子を表す。Deeはハロゲン原子または2種以上のハロゲン原子の組み合わせを表す。);LixfSiyfzf(xfは1≦xf≦5を満たし、yfは0<yf≦3を満たし、zfは1≦zf≦10を満たす。);Lixgygzg(xgは1≦xg≦3を満たし、ygは0<yg≦2を満たし、zgは1≦zg≦10を満たす。);LiBO;LiBO-LiSO、LiO-B-P、LiO-SiO、LiBaLaTa12、LiPO(4-3/2w)N (wはw<1)、LISICON(Lithium super ionic conductor)型結晶構造を有するLi3.5Zn0.25GeO;ペロブスカイト型結晶構造を有するLa0.55Li0.35TiO
NASICON(Natrium super ionic conductor)型結晶構造を有するLiTi12、Li1+xh+yh(Al,Ga)xh(Ti,Ge)2-xhSiyh3-yh12(xhは0≦xh≦1を満たし、yhは0≦yh≦1を満たす。);具体例として、例えば、Li1.3Al0.3Ti1.7(PO等が挙げられる。
ガーネット型結晶構造を有するLiLaZr12(LLZ)等が挙げられる。
また、LLZに対して元素置換を行ったセラミックス材料も知られている。例えば、Mg、Al、Si、Ca(カルシウム)、Ti、V(バナジウム)、Ga(ガリウム)、Sr、Y(イットリウム)、Nb(ニオブ)、Sn(スズ)、Sb(アンチモン)、Ba(バリウム)、Hf(ハフニウム)、Ta(タンタル)、W(タングステン)、Bi(ビスマス)およびランタノイド元素からなる群より選択される少なくとも1種類の元素を含むものを採用することが好ましい。具体例として、例えば、Li6.25LaZrAl0.2512、Li6.24LaZrAl0.2411.98、Li6.2Al0.2LaZr1.8Ta0.212等が挙げられる。
また、Li、P及びOを含むリン化合物も望ましい。例えば、リン酸リチウム(LiPO);リン酸リチウムの酸素の一部を窒素で置換したLiPON、LiPOD(Dは、好ましくは、Ti、V、Cr、Mn、Fe、Co、Ni、Cu、Zr、Nb、Mo、Ru、Ag、Ta、W、Pt及びAuから選ばれる1種以上の元素である。)等が挙げられる。
更に、LiAON(Aは、Si、B、Ge、Al、C及びGa等から選ばれる1種以上の元素である。)等も好ましく用いることができる。
具体例として、例えば、LiO-Al-SiO-P-TiO-GeO、LiO-Al-SiO-P-TiO等が挙げられる。
上記酸化物系無機固体電解質は、Mg、Al、Si、Ca、Ti、Ga、Sr、Nb、Sn、Ba、Wからなる群より選択される少なくとも1種類の元素を含有するものであることが好ましい。これらを含有する酸化物系無機固体電解質は、良好なLiイオン伝導性という点で特に好ましいものである。
特に、本開示において用いる酸化物系固体電解質は、酸素原子の他に、4種類以上の元素を含む固体電解質であることが好ましい。なお、上記「4種類以上の元素」は、炭素原子及び水素原子を除くものである。上記4種類以上の元素のうち少なくとも1つは、Mg、Al、Si、Ca、Ti、Ga、Sr、Nb、Sn、Ba及びWからなる群より選択されるものであることが好ましい。
酸素原子の他に、4種類以上の元素を含む組成を満たす固体電解質であることで、高いイオン伝導性を安定して得られる点で有利である。
上記酸化物系固体電解質は、リチウムを含有するものであることが好ましい。リチウムを含有する酸化物系固体電解質は、リチウムイオンをキャリアとして使用する固体電池に使用されるものであり、高エネルギー密度を有する電気化学デバイスという点で特に好ましいものである。
上記酸化物系固体電解質は、結晶構造を有する酸化物であることが好ましい。結晶構造を有する酸化物は、良好なLiイオン伝導性という点で特に好ましいものである。
結晶構造を有する酸化物としては、ペロブスカイト型(La0.51Li0.34TiO2.94など)、NASICON型(Li1.3Al0.3Ti1.7(POなど)、ガーネット型(LiLaZr12(LLZ)、Li6.25LaZrAl0.2512、Li6.24LaZrAl0.2411.98、Li6.2Al0.2LaZr1.8Ta0.212など)等が挙げられる。なかでも、NASICON型が好ましい。
酸化物系固体電解質の体積平均粒子径は特に限定されないが、0.01μm以上であることが好ましく、0.03μm以上であることがより好ましい。上限としては、100μm以下であることが好ましく、50μm以下であることがより好ましい。なお、酸化物系固体電解質粒子の平均粒子径の測定は、以下の手順で行う。酸化物系固体電解質粒子を、水(水に不安定な物質の場合はヘプタン)を用いて20mlサンプル瓶中で1質量%の分散液を希釈調整する。希釈後の分散試料は、1kHzの超音波を10分間照射し、その直後に試験に使用する。この分散液試料を用い、レーザー回折/散乱式粒度分布測定装置LA-920(HORIBA社製)を用いて、温度25℃で測定用石英セルを使用してデータ取り込みを50回行い、体積平均粒子径を得る。その他の詳細な条件等は必要によりJIS Z8828:2013「粒子径解析-動的光散乱法」の記載を参照する。1水準につき5つの試料を作製しその平均値を採用する。
二次電池用合剤中の固形成分における酸化物系固体電解質の含有量は、固体二次電池に用いたときの界面抵抗の低減と低減された界面抵抗の維持を考慮したとき、固形成分100質量%において、電極においては5質量%以上であることが好ましく、9質量%以上であることがより好ましく、12質量%以上であることが特に好ましい。上限としては、電池容量の観点から、60質量%以下であることが好ましく、50質量%以下であることがより好ましく、40質量%以下であることが特に好ましい。
また、正極と負極の間に配置される固体電解質層においては50質量%以上であることが好ましく、60質量%以上であることがより好ましく、70質量%以上であることが特に好ましい。上限としては、同様の観点から、99.9質量%以下であることが好ましく、99.8質量%以下であることがより好ましく、99.7質量%以下であることが特に好ましい。
上記酸化物系固体電解質は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。
なお、本明細書において固形分(固形成分)とは、窒素雰囲気下170℃で6時間乾燥処理を行ったときに、揮発ないし蒸発して消失しない成分をいう。
本開示の二次電池用合剤は、特に、リチウムイオン固体二次電池に好適である。
本開示の二次電池用合剤は、固体二次電池に使用するにあたっては、通常、シート状の形態で使用される。
本開示の二次電池用合剤シートは、正極用シートとすることもできるし、負極用シートとすることもできる。更に、固体電解質層用シートとすることもできる。
これらのうち、電極用シートとする場合は、更に、活物質粒子を含有するものである。活物質粒子は、正極活物質、負極活物質とすることができる。本開示の二次電池用合剤シートは、正極活物質を使用した正極用シートとしてより好適に使用することができる。また、電極シートとする場合、必要に応じて、導電助剤を含有するものであってもよい。
以下、電極活物質、導電助剤等について説明する。
(電極活物質)
本開示の二次電池用合剤シートを正極用シートとして使用する場合、二次電池用合剤シートには正極活物質を配合する。上記正極活物質は、固体電池の正極活物質として公知の正極活物質を適用可能である。特に、リチウムイオンを吸蔵・放出可能な正極活物質を用いることが好ましい。
上記正極活物質としては、電気化学的にアルカリ金属イオンを吸蔵・放出可能なものであれば特に制限されないが、例えば、アルカリ金属と少なくとも1種の遷移金属を含有する物質が好ましい。具体例としては、アルカリ金属含有遷移金属複合酸化物、アルカリ金属含有遷移金属リン酸化合物、導電性高分子等が挙げられる。
なかでも、正極活物質としては、特に、高電圧を産み出すアルカリ金属含有遷移金属複合酸化物が好ましい。上記アルカリ金属イオンとしては、リチウムイオン、ナトリウムイオン、カリウムイオン等が挙げられる。好ましい態様において、アルカリ金属イオンは、リチウムイオンであり得る。即ち、この態様において、アルカリ金属イオン二次電池は、リチウムイオン二次電池である。
上記アルカリ金属含有遷移金属複合酸化物としては、例えば、
式:MMn2-b
(式中、Mは、Li、Na及びKからなる群より選択される少なくとも1種の金属であり;0.9≦a;0≦b≦1.5;MはFe、Co、Ni、Cu、Zn、Al、Sn、Cr、V、Ti、Mg、Ca、Sr、B、Ga、In、SiおよびGeよりなる群より選択される少なくとも1種の金属)で表されるアルカリ金属・マンガンスピネル複合酸化物、
式:MNi1-ccO
(式中、Mは、Li、Na及びKからなる群より選択される少なくとも1種の金属であり;0≦c≦0.5;MはFe、Co、Mn、Cu、Zn、Al、Sn、Cr、V、Ti、Mg、Ca、Sr、B、Ga、In、SiおよびGeよりなる群より選択される少なくとも1種の金属)で表されるアルカリ金属・ニッケル複合酸化物、または、
式:MCo1-d
(式中、Mは、Li、Na及びKからなる群より選択される少なくとも1種の金属であり;0≦d≦0.5;MはFe、Ni、Mn、Cu、Zn、Al、Sn、Cr、V、Ti、Mg、Ca、Sr、B、Ga、In、SiおよびGeよりなる群より選択される少なくとも1種の金属)
で表されるアルカリ金属・コバルト複合酸化物が挙げられる。上記において、Mは、好ましくは、Li、Na及びKからなる群より選択される1種の金属であり、より好ましくはLiまたはNaであり、さらに好ましくはLiである。
なかでも、エネルギー密度が高く、高出力な二次電池を提供できる点から、MCoO、MMnO、MNiO、MMn、MNi0.8Co0.15Al0.05、またはMNi1/3Co1/3Mn1/3等が好ましく、下記一般式(3)で表される化合物であることが好ましい。
MNiCoMn   (3)
(式中、Mは、Li、Na及びKからなる群より選択される少なくとも1種の金属であり、MはFe、Cu、Zn、Al、Sn、Cr、V、Ti、Mg、Ca、Sr、B、Ga、In、Si及びGeからなる群より選択される少なくとも1種を示し、(h+i+j+k)=1.0、0≦h≦1.0、0≦i≦1.0、0≦j≦1.5、0≦k≦0.2である。)
上記アルカリ金属含有遷移金属リン酸化合物としては、例えば、下記式(4)
(PO   (4)
(式中、Mは、Li、Na及びKからなる群より選択される少なくとも1種の金属であり、MはV、Ti、Cr、Mn、Fe、Co、Ni及びCuからなる群より選択される少なくとも1種を示し、0.5≦e≦3、1≦f≦2、1≦g≦3)で表される化合物が挙げられる。上記において、Mは、好ましくは、Li、Na及びKからなる群より選択される1種の金属であり、より好ましくはLiまたはNaであり、さらに好ましくはLiである。
リチウム含有遷移金属リン酸化合物の遷移金属としては、V、Ti、Cr、Mn、Fe、Co、Ni、Cu等が好ましく、具体例としては、例えば、LiFePO、LiFe(PO、LiFeP等のリン酸鉄類、LiCoPO等のリン酸コバルト類、これらのリチウム遷移金属リン酸化合物の主体となる遷移金属原子の一部をAl、Ti、V、Cr、Mn、Fe、Co、Li、Ni、Cu、Zn、Mg、Ga、Zr、Nb、Si等の他の元素で置換したもの等が挙げられる。
上記リチウム含有遷移金属リン酸化合物としては、オリビン型構造を有するものが好ましい。
その他の正極活物質としては、MFePO、MNi0.8Co0.2、M1.2Fe0.4Mn0.4、MNi0.5Mn1.5、MV、MMnO(式中、Mは、Li、Na及びKからなる群より選択される少なくとも1種の金属である。)等が挙げられる。特に、MMnO、MNi0.5Mn1.5等の正極活物質は、4.4Vを超える電圧や、4.6V以上の電圧で二次電池を作動させた場合であって、結晶構造が崩壊しない点で好ましい。従って、上記に例示した正極活物質を含む正極材を用いた二次電池等の電気化学デバイスは、高温で保管した場合でも、残存容量が低下しにくく、抵抗増加率も変化しにくい上、高電圧で作動させても電池性能が劣化しないことから、好ましい。
その他の正極活物質として、MMnOとMM(式中、Mは、Li、Na及びKからなる群より選択される少なくとも1種の金属であり、Mは、Co、Ni、Mn、Fe等の遷移金属)との固溶体材料等も挙げられる。
上記固溶体材料としては、例えば、一般式Mx[Mn(1-y) ]Oで表わされるアルカリ金属マンガン酸化物である。ここで式中のMは、Li、Na及びKからなる群より選択される少なくとも1種の金属であり、Mは、M及びMn以外の少なくとも一種の金属元素からなり、例えば、Co,Ni,Fe,Ti,Mo,W,Cr,ZrおよびSnからなる群から選択される一種または二種以上の元素を含んでいる。また、式中のx、y、zの値は、1<x<2、0≦y<1、1.5<z<3の範囲である。中でも、Li1.2Mn0.5Co0.14Ni0.14のようなLiMnOをベースにLiNiOやLiCoOを固溶したマンガン含有固溶体材料は、高エネルギー密度を有するアルカリ金属イオン二次電池を提供できる点から好ましい。
また、正極活物質にリン酸リチウムを含ませると、連続充電特性が向上するので好ましい。リン酸リチウムの使用に制限はないが、前記の正極活物質とリン酸リチウムを混合して用いることが好ましい。使用するリン酸リチウムの量は上記正極活物質とリン酸リチウムの合計に対し、下限が、好ましくは0.1質量%以上、より好ましくは0.3質量%以上、更に好ましくは0.5質量%以上であり、上限が、好ましくは10質量%以下、より好ましくは8質量%以下、更に好ましくは5質量%以下である。
上記導電性高分子としては、p-ドーピング型の導電性高分子やn-ドーピング型の導電性高分子が挙げられる。導電性高分子としては、ポリアセチレン系、ポリフェニレン系、複素環ポリマー、イオン性ポリマー、ラダー及びネットワーク状ポリマー等が挙げられる。
上記正極活物質の中でも、ニッケル含有正極活物質が好適である。ニッケルを含有することで、活物質が高容量化することができ、電池性能の向上をはかることができる。また、レアメタルであるコバルトを削減することができ、コスト面でも優位である。
特に、リチウム・ニッケル系複合酸化物を含有することが好ましい。
リチウム・ニッケル系複合酸化物としては、一般式(1):LiNi1-x
(式中、xは、0.01≦x≦0.5、yは、0.9≦y≦1.2であり、Mは金属原子(但しNiを除く)を表す。)で表されるリチウム・ニッケル系複合酸化物が好ましい。このようにNiを多く含有する正極活物質は、二次電池の高容量化に有益である。
一般式(1)において、xは、0.01≦x≦0.5を充足する係数であり、さらに高容量の二次電池を得ることができることから、好ましくは0.05≦x≦0.4であり、さらに好ましくは0.10≦x≦0.3である。
一般式(1)において、Mの金属原子としては、V、Ti、Cr、Mn、Fe、Co、Cu、Al、Zn、Mg、Ga、Zr、Si等が挙げられる。Mの金属原子としては、V、Ti、Cr、Mn、Fe、Co、Cu等の遷移金属、または、上記遷移金属と、Al、Ti、V、Cr、Mn、Fe、Co、Cu、Zn、Mg、Ga、Zr、Si等の他の金属との組み合わせが好ましい。
リチウム・ニッケル系複合酸化物としては、LiNi0.82Co0.15Al0.03、LiNi0.6Mn0.2Co0.2、および、LiNi0.8Mn0.1Co0.1からなる群より選択される少なくとも1種が好ましく、LiNi0.82Co0.15Al0.03、および、LiNi0.8Mn0.1Co0.1からなる群より選択される少なくとも1種がより好ましい。
一般式(1)で表されるリチウム・ニッケル系複合酸化物とともに、これとは異なる正極活物質を組み合わせて用いてもよい。異なる正極活物質として具体的には、LiCoO、LiMnO、LiMn、LiMnO、LiMn1.8Al0.2、LiTi12、LiFePO、LiFe(PO、LiFeP、LiCoPO、Li1.2Fe0.4Mn0.4、LiNiO、LiNi0.5Mn0.3Co0.2等が挙げられる。
また、上記正極活物質の表面に、これとは異なる組成の物質が付着したものを用いてもよい。表面付着物質としては酸化アルミニウム、酸化ケイ素、酸化チタン、酸化ジルコニウム、酸化マグネシウム、酸化カルシウム、酸化ホウ素、酸化アンチモン、酸化ビスマス等の酸化物、硫酸リチウム、硫酸ナトリウム、硫酸カリウム、硫酸マグネシウム、硫酸カルシウム、硫酸アルミニウム等の硫酸塩、炭酸リチウム、炭酸カルシウム、炭酸マグネシウム等の炭酸塩、炭素等が挙げられる。
これら表面付着物質は、例えば、溶媒に溶解又は懸濁させて該正極活物質に含浸させ、又は添加した後、乾燥する方法、表面付着物質前駆体を溶媒に溶解又は懸濁させて該正極活物質に含浸添加後、加熱等により反応させる方法、正極活物質前駆体に添加して同時に焼成する方法等により正極活物質表面に付着させることができる。なお、炭素を付着させる場合には、炭素質を、例えば、活性炭等の形で後から機械的に付着させる方法も用いることもできる。
表面付着物質の量としては、上記正極活物質に対して質量で、下限として好ましくは0.1ppm以上、より好ましくは1ppm以上、更に好ましくは10ppm以上、上限として、好ましくは20%以下、より好ましくは10%以下、更に好ましくは5%以下で用いられる。表面付着物質により、正極活物質表面での固体電解質の酸化反応を抑制することができ、電池寿命を向上させることができる。その付着量が少なすぎる場合、その効果は十分に発現せず、多すぎる場合には、リチウムイオンの出入りを阻害するため抵抗が増加する場合がある。
正極活物質の粒子の形状は、従来用いられるような、塊状、多面体状、球状、楕円球状、板状、針状、柱状等が挙げられる。また、一次粒子が凝集して、二次粒子を形成していてもよい。
正極活物質のタップ密度は、好ましくは0.5g/cm以上、より好ましくは0.8g/cm以上、更に好ましくは1.0g/cm以上である。該正極活物質のタップ密度が上記下限を下回ると正極活物質層形成時に、必要な分散媒量が増加すると共に、導電材や結着剤の必要量が増加し、正極活物質層への正極活物質の充填率が制約され、電池容量が制約される場合がある。タップ密度の高い複合酸化物粉体を用いることにより、高密度の正極活物質層を形成することができる。タップ密度は一般に大きいほど好ましく、特に上限はないが、大きすぎると、正極活物質層内における固体電解質を媒体としたリチウムイオンの拡散が律速となり、負荷特性が低下しやすくなる場合があるため、上限は、好ましくは4.0g/cm以下、より好ましくは3.7g/cm以下、更に好ましくは3.5g/cm以下である。
なお、本開示では、タップ密度は、正極活物質粉体5~10gを10mlのガラス製メスシリンダーに入れ、ストローク約20mmで200回タップした時の粉体充填密度(タップ密度)g/cmとして求める。
正極活物質の粒子のメジアン径d50(一次粒子が凝集して二次粒子を形成している場合には二次粒子径)は好ましくは0.3μm以上、より好ましくは0.5μm以上、更に好ましくは0.8μm以上、最も好ましくは1.0μm以上であり、また、好ましくは30μm以下、より好ましくは27μm以下、更に好ましくは25μm以下、最も好ましくは22μm以下である。上記下限を下回ると、高タップ密度品が得られなくなる場合があり、上限を超えると粒子内のリチウムの拡散に時間がかかるため、電池性能の低下をきたしたり、電池の正極作成、即ち活物質と導電材やバインダー等を溶媒でスラリー化し、薄膜状に塗布する際に、スジを引いたり等の問題を生ずる場合がある。ここで、異なるメジアン径d50をもつ上記正極活物質を2種類以上混合することで、正極作成時の充填性を更に向上させることができる。
なお、本開示では、メジアン径d50は、公知のレーザー回折/散乱式粒度分布測定装置によって測定される。粒度分布計としてHORIBA社製LA-920を用いる場合、測定の際に用いる分散媒として、0.1質量%ヘキサメタリン酸ナトリウム水溶液を用い、5分間の超音波分散後に測定屈折率1.24を設定して測定される。
一次粒子が凝集して二次粒子を形成している場合には、上記正極活物質の平均一次粒子径としては、好ましくは0.05μm以上、より好ましくは0.1μm以上、更に好ましくは0.2μm以上であり、上限は、好ましくは5μm以下、より好ましくは4μm以下、更に好ましくは3μm以下、最も好ましくは2μm以下である。上記上限を超えると球状の二次粒子を形成し難く、粉体充填性に悪影響を及ぼしたり、比表面積が大きく低下したりするために、出力特性等の電池性能が低下する可能性が高くなる場合がある。逆に、上記下限を下回ると、通常、結晶が未発達であるために充放電の可逆性が劣る等の問題を生ずる場合がある。
なお、本開示では、上記正極活物質の平均一次粒子径は、走査電子顕微鏡(SEM)を用いた観察により測定される。具体的には、10000倍の倍率の写真で、水平方向の直線に対する一次粒子の左右の境界線による切片の最長の値を、任意の50個の一次粒子について求め、平均値をとることにより求められる。
正極活物質のBET比表面積は、好ましくは0.1m/g以上、より好ましくは0.2m/g以上、更に好ましくは0.3m/g以上であり、上限は好ましくは50m/g以下、より好ましくは40m/g以下、更に好ましくは30m/g以下である。BET比表面積がこの範囲よりも小さいと電池性能が低下しやすく、大きいとタップ密度が上がりにくくなり、正極活物質層形成時の塗布性に問題が発生しやすい場合がある。
なお、本開示では、BET比表面積は、表面積計(例えば、大倉理研社製全自動表面積測定装置)を用い、試料に対して窒素流通下150℃で30分間、予備乾燥を行なった後、大気圧に対する窒素の相対圧の値が0.3となるように正確に調整した窒素ヘリウム混合ガスを用い、ガス流動法による窒素吸着BET1点法によって測定した値で定義される。
本開示の二次電池が、ハイブリッド自動車用や分散電源用の大型リチウムイオン二次電池として使用される場合、高出力が要求されるため、上記正極活物質の粒子は二次粒子が主体となることが好ましい。
上記正極活物質の粒子は、二次粒子の平均粒子径が40μm以下で、かつ、平均一次粒子径が1μm以下の微粒子を、0.5~7.0体積%含むものであることが好ましい。平均一次粒子径が1μm以下の微粒子を含有させることにより、固体電解質との接触面積が大きくなり、全固体二次電池用シートと固体電解質との間でのリチウムイオンの拡散をより速くすることができ、その結果、電池の出力性能を向上させることができる。
正極活物質の製造法としては、無機化合物の製造法として一般的な方法が用いられる。特に球状ないし楕円球状の活物質を作成するには種々の方法が考えられるが、例えば、遷移金属の原料物質を水等の溶媒中に溶解ないし粉砕分散して、攪拌をしながらpHを調節して球状の前駆体を作成回収し、これを必要に応じて乾燥した後、LiOH、LiCO、LiNO等のLi源を加えて高温で焼成して活物質を得る方法等が挙げられる。
正極の製造のために、前記の正極活物質を単独で用いてもよく、異なる組成の2種以上を、任意の組み合わせ又は比率で併用してもよい。この場合の好ましい組み合わせとしては、LiCoOとLiNi0.33Co0.33Mn0.33等の三元系との組み合わせ、LiCoOとLiMn若しくはこのMnの一部を他の遷移金属等で置換したものとの組み合わせ、あるいは、LiFePOとLiCoO若しくはこのCoの一部を他の遷移金属等で置換したものとの組み合わせが挙げられる。
上記正極活物質の含有量は、電池容量が高い点で、正極合剤中40~95質量%が好ましく、50~91質量%がより好ましい。
また、正極活物質の含有量は、好ましくは40質量%以上、より好ましくは50質量%以上、特に好ましくは60質量%以上である。また上限は、好ましくは95質量%以下、より好ましくは91質量%以下、特に好ましくは88質量%以下である。正極合剤中の正極活物質の含有量が低いと電気容量が不十分となる場合がある。逆に含有量が高すぎると正極の電子・イオン伝導や電極強度が不足する場合がある。
上記負極活物質としては特に限定されず、例えば、リチウム金属、人造黒鉛、黒鉛炭素繊維、樹脂焼成炭素、熱分解気相成長炭素、コークス、メソカーボンマイクロビーズ(MCMB)、フルフリルアルコール樹脂焼成炭素、ポリアセン、ピッチ系炭素繊維、気相成長炭素繊維、天然黒鉛及び、難黒鉛化性炭素等の炭素質材料を含むもの、ケイ素及びケイ素合金等のシリコン含有化合物、LiTi12等から選択されるいずれか、又は2種類以上の混合物等を挙げることができる。なかでも、炭素質材料を少なくとも一部に含むものや、シリコン含有化合物を特に好適に使用することができる。
上記負極活物質の含有量は、得られる二次電池用合剤シートの容量を増やすために、負極合剤中40~95質量%が好ましく、50~91質量%がより好ましい。
また、負極活物質の含有量は、好ましくは40質量%以上、より好ましくは50質量%以上、特に好ましくは60質量%以上である。また上限は、好ましくは95質量%以下、より好ましくは91質量%以下、特に好ましくは88質量%以下である。
(導電助剤)
上記導電助剤としては、公知の導電材を任意に用いることができる。具体例としては、銅、ニッケル等の金属材料、天然黒鉛、人造黒鉛等の黒鉛(グラファイト)、アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラック等のカーボンブラック、ニードルコークス、カーボンナノチューブ、フラーレン、VGCF等の無定形炭素等の炭素材料等が挙げられる。なお、これらは、1種を単独で用いてもよく、2種以上を任意の組み合わせ及び比率で併用してもよい。
導電助剤を用いる場合には、導電助剤は、電極用シート中に、通常0.01質量%以上、好ましくは0.1質量%以上、より好ましくは0.5質量%以上であり、また、通常50質量%以下、好ましくは30質量%以下、より好ましくは15質量%以下含有するように用いられる。含有量がこの範囲よりも低いと導電性が不十分となる場合がある。逆に、含有量がこの範囲よりも高いと電池容量が低下する場合がある。
(その他の成分)
二次電池用合剤シートは、更に、熱可塑性樹脂を含んでいてもよい。
熱可塑性樹脂としては、フッ化ビニリデンや、ポリプロピレン、ポリエチレン、ポリスチレン、ポリエチレンテレフタレート、ポリエチレンオキシドなどが挙げられる。1種を単独で用いても、2種以上を任意の組み合わせ及び比率で併用してもよい。
電極活物質に対する熱可塑性樹脂の割合は、通常0.01質量%以上、好ましくは0.05質量%以上、より好ましくは0.10質量%以上であり、また、通常3.0質量%以下、好ましくは2.5質量%以下、より好ましくは2.0質量%以下の範囲である。熱可塑性樹脂を添加することで、電極の機械的強度を向上させることができる。この範囲を上回ると、電極合剤に占める活物質の割合が低下し、電池の容量が低下する問題や活物質間の抵抗が増大する問題が生じる場合がある。
本開示の二次電池用合剤シートにおいて、結着剤の含有量は、二次電池用合剤シート中の結着剤の割合として、通常0.2質量%以上、好ましくは0.3質量%以上、更に好ましくは0.5質量%を超えることが好ましい。また、好ましくは10質量%以下、更に好ましくは8質量%以下、最も好ましくは6質量%以下である。結着剤の割合が低すぎると、二次電池用合剤シート内で活物質を十分保持できずに二次電池用合剤シートの機械的強度が不足し、サイクル特性等の電池性能を悪化させてしまう場合がある。一方で、高すぎると、電池容量や導電性の低下につながる場合がある。
(製造方法)
本開示の二次電池用合剤シートの製造方法は、上述した各成分を混合して得られた原料組成物を使用し、これをシート化するものであることが好ましい。シート化においては、乾燥工程が省けるため、液体媒体の使用量を低減させるか全く使用せずに、スラリーを調製せずに粉体である原料組成物に対して剪断応力を与えることによって行う方法が好ましい。また、装置の負荷を軽減するために、潤滑剤として溶剤を少量添加してもよい。溶剤は有機溶剤が望ましく、含有溶剤量としては、原料組成物に対し10質量%以下が好ましく、5質量%以下がより好ましく、3質量%以下が更に好ましい。
本開示の二次電池用合剤シートは、その製造方法を限定されるものではないが、以下に具体的な製造方法の一例を示す。
本開示の二次電池用合剤シートは、
酸化物系固体電解質及び結着剤を含む原料組成物を混合しながら、剪断力を付与する工程(1)
前記工程(1)によって得られた二次電池用合剤をバルク状に成形する工程(2)及び
前記工程(2)によって得られたバルク状の二次電池用合剤をシート状に圧延する工程(3)
を有する二次電池用電極合剤シートの製造方法によって得ることができる。
上記工程(1)において原料組成物を混合しながら、剪断力を付与した段階では、得られる二次電池用合剤は、酸化物系固体電解質、結着剤等が単に混ざっているだけで定まった形のない状態で存在している。具体的な混合方法としては、W型混合機、V型混合機、ドラム型混合機、リボン混合機、円錐スクリュー型混合機、1軸混練機、2軸混練機、ミックスマラー、撹拌ミキサー、プラネタリーミキサー、ヘンシェルミキサー、高速ミキサーなどを用いて混合する方法が挙げられる。
上記工程(1)において、混合条件は、回転数と混合時間を適宜設定すればよい。例えば、回転数は、15000rpm以下とすることが好適である。好ましくは10rpm以上、より好ましくは1000rpm以上、更に好ましくは3000rpm以上であり、また、好ましくは12000rpm以下、より好ましくは11000rpm以下、更に好ましくは10000rpmの範囲である。上記の範囲を下回ると、混合に時間がかかることとなり生産性に影響を与える。また、上回ると、フィブリル化が過度に進行し、強度の劣る電極合剤シートとなるおそれがある。
上記工程(1)において、30℃以上で行うのが好ましく、60℃以上がより好ましい。
また上記工程(1)の前に原料組成物を混合して、結着剤を分散させる工程(A)を含むことが好ましい。上記工程(A)ではできるだけ小さな剪断力でフィブリル化を抑制し混合することが好ましい。
上記工程(A)において、混合条件は、回転数と混合時間を適宜設定すればよい。例えば、回転数は、1000rpm以下とすることが好適である。好ましくは10rpm以上、より好ましくは15rpm以上、更に好ましくは20rpm以上であり、また、好ましくは500rpm以下の範囲である。
上記工程(A)において、混合温度を19℃以下で行うことが好ましい。
このような温度範囲を取ることで、結着剤の分散性を高め、より均一な所望のシート状へと加工を行うことができるものである。
PTFEは、約19℃及び約30℃で2つの転移温度を有する。19℃未満では、PTFEは形状を維持した状態で容易に混合することができる。しかし、19℃を超えると、PTFE粒子の構造が緩くなり、機械的せん断に対してより敏感になる。30℃を超える温度では、より高度なフィブリル化が生じるようになる。
このため、PTFE樹脂をフィブリル性樹脂として使用する場合、上記工程(A)は、19℃以下、好ましくは0℃~19℃の温度で実施することが好ましい。
すなわち、このような工程(A)においては、フィブリル化を生じさせることなく、混合して均質化することが好ましい。そして、その後の工程(1)~(5)によってフィブリル化することが好ましい。
上述の通り、上記原料組成物は、実質的に液体媒体を含有しないことが好ましく、粉体であることが好ましい。粉体である原料組成物において、液体媒体の含有量は、1質量%以下であることが好ましい。
上記工程(2)において、バルク状に成形するとは、二次電池用合剤を1つの塊とするものである。
バルク状に成形する具体的な方法として、押出成形、プレス成形などが挙げられる。
また、「バルク状」とは、特に形状が特定されるものではなく、1つの塊状になっている状態であればよく、ロッド状、シート状、球状、キューブ状等の形態が含まれる。上記塊の大きさは、その断面の直径または最小の一辺が10000μm以上であることが好ましい。より好ましくは20000μm以上である。
上記工程(3)における具体的な圧延方法としては、ロールプレス機、平板プレス機、カレンダーロール機などを用いて圧延する方法が挙げられる。
また、工程(3)のあとに、得られた圧延シートに、より大きい荷重を加えて、さらに薄いシート状に圧延する工程(4)を有することも好ましい。工程(4)を繰り返すことも好ましい。このように、圧延シートを一度に薄くするのではなく、段階に分けて少しずつ圧延することで柔軟性がより良好となる。
工程(4)の回数としては、2回以上10回以下が好ましく、3回以上9回以下がより好ましい。
具体的な圧延方法としては、例えば、2つあるいは複数のロールを回転させ、その間に圧延シートを通すことによって、より薄いシート状に加工する方法等が挙げられる。
また、フィブリル径を調整する観点で、工程(3)または工程(4)のあとに、圧延シートを粗砕したのち再度バルク状に成形し、シート状に圧延する工程(5)を有することも好ましい。工程(5)を繰り返すことも好ましい。工程(5)の回数としては、1回以上12回以下が好ましく、2回以上11回以下がより好ましい。
工程(5)において、圧延シートを粗砕してバルク状に成形する具体的な方法として、圧延シートを折りたたむ方法、あるいはロッドもしくは薄膜シート状に成形する方法、チップ化する方法などが挙げられる。本開示において、「粗砕する」とは、次工程でシート状に圧延するために、工程(3)又は工程(4)で得られた圧延シートの形態を別の形態に変化させることを意味するものであり、単に圧延シートを折りたたむような場合も含まれる。
また、工程(5)の後に、工程(4)を行うようにしてもよく、繰り返し行ってもよい。
また、工程(2)ないし、(3)、(4)、(5)において1軸延伸もしくは2軸延伸を行っても良い。
また、工程(5)での粗砕程度によってもフィブリル径(中央値)を調整することができる。
工程(2)~(5)は30℃以上で行うのが好ましく、60℃以上がより好ましい。
上記工程(3)、(4)又は(5)において、圧延率は、好ましくは10%以上、更に好ましくは20%以上であり、また、好ましくは80%以下、より好ましくは65%以下、更に好ましくは50%以下の範囲である。上記の範囲を下回ると、圧延回数の増大とともに時間がかかることとなり生産性に影響を与える。また、上回ると、フィブリル化が過度に進行し、強度および柔軟性の劣る合剤シートとなるおそれがある。
なお、ここでいう圧延率とは、試料の圧延加工前の厚みに対する加工後の厚みの減少率を指す。圧延前の試料は、バルク状の合剤であっても、シート状の合剤であってもよい。試料の厚みとは、圧延時に荷重をかける方向の厚みを指す。
上述したように、PTFE粉末は、せん断力をかけることでフィブリル化する。そして、フィブリル径(中央値)が100nm以下の繊維状構造を有するものとするには、過度なせん断応力では、フィブリル化が促進しすぎてしまい、柔軟性が損なわれることがある。また、弱いせん断応力では強度の面で充分ではないことがある。このため、混合時や圧延時に、PTFEに適度なせん断応力を与えてフィブリル化を促進し、合剤を圧延してシート状に延ばす、という工程を上記範囲でおこなうことによって、フィブリル径(中央値)が100nm以下の繊維状構造を有するものとすることができる。
本開示の二次電池用合剤シートは、上記の通り、正極用シート、負極用シートのいずれとすることもできる。更に、固体電解質層用シートとすることもできる。
正極用合剤シート又は負極用シートとする場合、上記二次電池用合剤シートの製造において、固体電解質及び結着剤と共に、正極活物質又は負極活物質を混合するようにすればよい。
以下、正極及び負極について説明する。
(正極)
本開示において、正極は、集電体と、上記正極用シートとから構成されることが好適である。
正極用集電体の材質としては、アルミニウム、チタン、タンタル、ステンレス鋼、ニッケル等の金属、又は、その合金等の金属材料;カーボンクロス、カーボンペーパー等の炭素材料が挙げられる。なかでも、金属材料、特にアルミニウム又はその合金が好ましい。
集電体の形状としては、金属材料の場合、金属箔、金属円柱、金属コイル、金属板、エキスパンドメタル、パンチメタル、発泡メタル等が挙げられ、炭素材料の場合、炭素板、炭素薄膜、炭素円柱等が挙げられる。これらのうち、金属箔が好ましい。なお、金属箔は適宜メッシュ状に形成してもよい。
金属箔の厚さは任意であるが、通常1μm以上、好ましくは3μm以上、より好ましくは5μm以上、また、通常1mm以下、好ましくは100μm以下、より好ましくは50μm以下である。金属箔がこの範囲よりも薄いと集電体として必要な強度が不足する場合がある。逆に、金属箔がこの範囲よりも厚いと取り扱い性が損なわれる場合がある。
また、集電体の表面に導電助剤が塗布されていることも、集電体と正極合剤シートの電気接触抵抗を低下させる観点で好ましい。導電助剤としては、炭素や、金、白金、銀等の貴金属類が挙げられる。
正極の製造は、常法によればよい。例えば、上記正極用シートと集電体とを接着剤を介して積層し、乾燥する方法等が挙げられる。
正極用シートの密度は、好ましくは2.0g/cm以上、より好ましくは2.1g/cm以上、更に好ましくは2.3g/cm以上であり、また、好ましくは4.0g/cm以下、より好ましくは3.9g/cm以下、更に好ましくは3.8g/cm以下の範囲である。この範囲を上回ると活物質間の導電性が低下し、電池抵抗が増大し高出力が得られない場合がある。下回ると硬く割れやすい活物質の含有量が低く、容量の低い電池となってしまう場合がある。
正極の厚さは特に限定されないが、高容量かつ高出力の観点から、集電体の厚さを差し引いた合剤シートの厚さは、集電体の片面に対して下限として、好ましくは10μm以上、より好ましくは20μm以上で、また、好ましくは500μm以下、より好ましくは450μm以下である。
また、上記正極の表面に、これとは異なる組成の物質が付着したものを用いてもよい。表面付着物質としては酸化アルミニウム、酸化ケイ素、酸化チタン、酸化ジルコニウム、酸化マグネシウム、酸化カルシウム、酸化ホウ素、酸化アンチモン、酸化ビスマス等の酸化物、硫酸リチウム、硫酸ナトリウム、硫酸カリウム、硫酸マグネシウム、硫酸カルシウム、硫酸アルミニウム等の硫酸塩、炭酸リチウム、炭酸カルシウム、炭酸マグネシウム等の炭酸塩、炭素等が挙げられる。
(負極)
本開示において、負極は、集電体と、上記負極用シートとから構成されることが好適である。
負極用集電体の材質としては、銅、ニッケル、チタン、タンタル、ステンレス鋼等の金属、又は、その合金等の金属材料;カーボンクロス、カーボンペーパー等の炭素材料が挙げられる。なかでも、金属材料、特に銅、ニッケル、又はその合金が好ましい。
集電体の形状としては、金属材料の場合、金属箔、金属円柱、金属コイル、金属板、エキスパンドメタル、パンチメタル、発泡メタル等が挙げられ、炭素材料の場合、炭素板、炭素薄膜、炭素円柱等が挙げられる。これらのうち、金属箔が好ましい。なお、金属箔は適宜メッシュ状に形成してもよい。金属箔の厚さは任意であるが、通常1μm以上、好ましくは3μm以上、より好ましくは5μm以上、また、通常1mm以下、好ましくは100μm以下、より好ましくは50μm以下である。金属箔がこの範囲よりも薄いと集電体として必要な強度が不足する場合がある。逆に、金属箔がこの範囲よりも厚いと取り扱い性が損なわれる場合がある。
負極の製造は、常法によればよい。例えば、上記負極用シートと集電体とを接着剤を介して積層し、乾燥する方法等が挙げられる。
負極用シートの密度は、好ましくは1.3g/cm以上、より好ましくは1.4g/cm以上、更に好ましくは1.5g/cm以上であり、また、好ましくは2.0g/cm以下、より好ましくは1.9g/cm以下、更に好ましくは1.8g/cm以下の範囲である。この範囲を上回ると、集電体と活物質との界面付近への固体電解質の浸透性が低下し、特に高電流密度での充放電特性が低下し高出力が得られない場合がある。また下回ると活物質間の導電性が低下し、電池抵抗が増大し高出力が得られない場合がある。
負極の厚さは特に限定されないが、高容量かつ高出力の観点から、集電体の金属箔厚さを差し引いた合剤シートの厚さは、集電体の片面に対して下限として、好ましくは10μm以上、より好ましくは20μm以上で、また、好ましくは500μm以下、より好ましくは450μm以下である。
(固体二次電池)
本開示は、上記二次電池用合剤シートを用いた固体二次電池でもある。
固体二次電池としては、全固体二次電池であっても、ゲル状のポリマー電解質と固体電解質とを組合せたハイブリッド系の固体二次電池であってもよい。
また、固体二次電池は、リチウムイオン固体二次電池であることが好ましい。
本開示の固体二次電池は、正極、負極、並びに、当該正極及び当該負極の間に介在する固体電解質層を備える固体二次電池であって、正極、負極及び固体電解質層に、上述した本開示の二次電池用合剤シートである、正極用シート、負極用シート、又は固体電解質層シートを含有するものである。なお、本開示の固体二次電池は、正極、負極及び固体電解質層の一部に、本開示の二次電池用合剤シートでないものを用いるものであっても良い。
本開示に固体二次電池の積層構造は、正極用シート及び正極集電体を備える正極と、負極用シート及び負極集電体を備える負極と、上記正極及び上記負極に挟持される酸化物系固体電解質層を備える。
以下、本開示に係る固体二次電池に用いられるセパレータ及び電池ケースについて、詳細に説明する。
(セパレータ)
本開示の固体二次電池は、正極及び負極の間にセパレータを備えていてもよい。上記セパレータとしては、例えばポリエチレン、ポリプロピレン等の多孔膜;及びポリプロピレン等の樹脂製の不織布、ガラス繊維不織布等の不織布等を挙げることができる。
(電池設計)
本開示の固体二次電池は、さらに電池ケースを備えていてもよい。本開示に用いられる電池ケースの形状としては、上述した正極、負極、酸化物系固体電池用電解質層等を収納できるものであれば特に限定されるものではないが、具体的には、円筒型、角型、コイン型、ラミネート型等を挙げることができる。
本開示の固体二次電池の製造方法は、例えば、まず、上記正極、固体電解質層シート、負極を順に積層し、プレスすることにより固体二次電池としてもよい。
本開示の二次電池用合剤シートを使用することにより、系内の水分が少ない状態で固体二次電池の製造を行うことができ、良好な性能を有する固体二次電池とすることができ、好適である。
以下、本開示を実施例に基づいて具体的に説明する。
以下の実施例においては特に言及しない場合は、「部」「%」はそれぞれ「質量部」「質量%」を表す。
〔作製例1〕
重合開始からTFEが367g(TFEの全重合量1032gに対して35.6質量%)消費された時点で、ラジカル捕捉剤としてヒドロキノン12.0mgを水20mlに溶解した水溶液をTFEで圧入した(水性媒体に対して濃度4.0ppm)。重合はその後も継続し、TFEの重合量が重合開始から1000gになった時点でTFEの供給を止め、直ちに系内のガスを放出して常圧とし、重合反応を終了してポリテトラフルオロエチレン水性分散体(固形分31.2質量%)を得た。得られたポリテトラフルオロエチレン水性分散体を固形分濃度15%まで希釈し、攪拌機付き容器内で硝酸の存在下において静かに攪拌し、ポリテトラフルオロエチレンを凝固させた。凝固したポリテトラフルオロエチレンを分離し、160℃において18時間乾燥し、粉末状のPTFE-1を得た。
〔作製例2〕
国際公開第2015‐080291号の作成例3を参考にして、粉末状のPTFE-2を作製した。
〔作製例3〕
国際公開第2012/086710号の作製例1を参考にして、粉末状のPTFE-3を作製した。
〔作製例4〕
国際第2012‐063622号の調整例1を参考にして、粉末状のPTFE-4を作製した。
作製したPTFEの物性表を表1に示す。
(実施例1)
酸化物系固体電解質Li6.25LaZrAl0.2512と粉末状PTFE-1を秤量し、高速ミキサー(500rpm、1分間)で混合した。撹拌は容器を10℃に冷やして行った。その後、高速ミキサー(10000rpm、3分間)で撹拌し、混合物を得た。撹拌は容器を60℃に加温して行った。
組成比は質量比で固体電解質:結着剤=98.5:1.5となるようにした。
なお、粉末状のPTFE-1は真空乾燥機にて50℃、1時間乾燥して用いた。粉末状PTFEは事前に、目開き500μmのステンレスふるいを用いてふるいにかけ、ふるい上に残ったものを用いた。
得られた混合物をバルク状に成形し、シート状に圧延した。圧延は80℃に加温し行った。
その後、得られた圧延シートを2つに折りたたむことにより粗砕して、再度バルク状に成形した後、平らな板の上で金属ロールを用いてシート状に圧延することで、フィブリル化を促進させる工程を四度繰り返した。その後、更に圧延することで、厚さ500μmのシート状固体電解質層を得た。さらに、シート状固体電解質層を切り出し、80℃に加温したロールプレス機に投入し圧延をおこなった。
さらに、5kNの荷重を繰り返しかけて厚みを調整した。最終的な固体電解質層の厚みは150μmになるようにギャップを調整した。なお、上記作業は露点約-60℃の環境下で行った。
(実施例2)
酸化物系固体電解質Li6.25LaZrAl0.2512と粉末状PTFE-2を秤量し、実施例1と同様手順でシート成形を行った。組成比は質量比で固体電解質:結着剤=99.2:0.8となるようにした。
(実施例3)
酸化物系固体電解質Li6.25LaZrAl0.2512と粉末状PTFE-3を秤量し、実施例1と同様手順でシート成形を行った。組成比は質量比で固体電解質:結着剤=98.5:1.5となるようにした。
(実施例4)
酸化物系固体電解質Li6.25LaZrAl0.2512と粉末状PTFE-4を秤量し、実施例1と同様手順でシート成形を行った。
組成比は質量比で固体電解質:結着剤=98.5:1.5となるようにした。
(実施例5)
酸化物系固体電解質Li1.3l0.3Ti1.712と粉末状PTFE-1を秤量し、実施例1と同様手順でシート成形を行った。組成比は質量比で固体電解質:結着剤=98.5:1.5となるようにした。
(実施例6)
酸化物系固体電解質Li6.2Al0.2LaZr1.8Ta0.212(NANOMYTE(登録商標) SOX-30)と粉末状PTFE-1を秤量し、実施例1と同様手順でシート成形を行った。組成比は質量比で固体電解質:結着剤=98.5:1.5となるようにした。
(実施例7)
酸化物系固体電解質Li6.24LaZrAl0.2411.98(NANOMYTE(登録商標) SOX-25)と粉末状PTFE-1を秤量し、実施例1と同様手順でシート成形を行った。組成比は質量比で固体電解質:結着剤=98.5:1.5となるようにした。
(実施例8)
活物質LiNi0.8Mn0.1Co0.1、酸化物系固体電解質Li1.3Al0.3Ti1.712と粉末状PTFE-1を秤量し、実施例1と同様手順でシート成形を行った。
組成比は質量比で活物質:固体電解質:結着剤=80.2:19:0.8となるようにした。
(実施例9)
活物質LiNi0.5Mn1.5、酸化物系固体電解質Li1.3Al0.3Ti1.712と粉末状PTFE-1を秤量し、実施例1と同様手順でシート成形を行った。
組成比は質量比で活物質:固体電解質:結着剤=80.2:19:0.8となるようにした。
各試験は以下の方法で行った。
[含有水分量測定]
粉末状のPTFEは真空乾燥機にて50℃、1時間乾燥して用いた。真空乾燥後のPTFEの水分量は、ボートタイプ水分気化装置を有するカールフィッシャー水分計(ADP-511/MKC-510N 京都電子工業(株)製)を使用し、水分気化装置で210℃に加熱して、気化させた水分を測定した。キャリアガスとして、窒素ガスを流量200mL/minで流し、測定時間を30分とした。また、カールフィッシャー試薬としてケムアクアを使用した。サンプル量は1.5gとした。
[PTFEのフィブリル径(中央値)]
(1)走査型電子顕微鏡(S-4800型 日立製作所製)を用いて、シート状固体電解質層の拡大写真(7000倍)を撮影し画像を得る。
(2)この画像に水平方向に等間隔で2本の線を引き、画像を三等分する。
(3)上方の直線上にある全てのPTFE繊維について、PTFE繊維1本あたり3箇所の直径を測定し、平均した値を当該PTFE繊維の直径とする。測定する3箇所は、PTFE繊維と直線との交点、交点からそれぞれ上下0.5μmずつずらした場所を選択する。(未繊維化のPTFE一次粒子は除く)。
(4)上記(3)の作業を、下方の直線上にある全てのPTFE繊維に対して行う。
(5)1枚目の画像を起点に画面右方向に1mm移動し、再度撮影を行い、上記(3)及び(4)によりPTFE繊維の直径を測定する。これを繰り返し、測定した繊維数が80本を超えた時点で終了とする。
(6)上記測定した全てのPTFE繊維の直径の中央値をフィブリル径の大きさとした。
[柔軟性評価]
作製した固体電解質シートを縦2cm、横6cmに切り取り試験片とした。直径4mmサイズの丸棒に巻き付けた後、目視で試験片を確認し、以下の基準で評価した。傷や割れが確認されない場合は○、ひび割れが確認された場合は×と評価した。
[強度測定]
デジタルフォースゲージ(イマダ製 ZTS-20N)を使用して、100mm/分の条件下、4mm幅の短冊状の電極合剤試験片にて測定した。チャック間距離は30mmとした。破断するまで変位を与え、測定した結果の最大応力を各サンプルの強度とした。試験は5回行い、平均値を評価結果とした。
試験結果を、表2、3に示す。
<固体電解質合剤シートのイオン伝導度>
実施例6および7の固体電解質合剤シートを適当な大きさに切り出し、両面に金を蒸着した。その後、パンチでΦ10mmの円形に打ち抜いた固体電解質合剤シートを圧力セルに納め、セルのネジを8Nで締め、セルの上下から電極をとった。用いた圧力セルの断面の概略図を図1に示す。
この試料について、東陽テクニカ製インピーダンス装置を用い、50℃、AC振幅変調10mV、周波数5×10~0.1Hzの条件でイオン伝導度を測定した。
実施例6は5×10-5S/cm、実施例7は3×10-5S/cmであった。
表2、3の結果から、実施例のシート状固体電解質層は、物性に優れたものであった。
本開示の二次電池用合剤及びそれを含有する二次電池用合剤シートは、固体二次電池の製造に使用することができる。
1:ネジ
2:ナット
3:絶縁シート
4:固体電解質合剤シート
5:金蒸着
6:上部電極
7:下部電極

Claims (17)

  1. 酸化物系固体電解質及び結着剤を含有する二次電池用合剤であって、
    前記結着剤は、フィブリル性樹脂であることを特徴とする二次電池用合剤。
  2. フィブリル性樹脂は、フィブリル径(中央値)が100nm以下の繊維状構造を有する請求項1記載の二次電池用合剤。
  3. フィブリル性樹脂は、ポリテトラフルオロエチレン樹脂である請求項1又は2記載の二次電池合剤。
  4. 酸化物系固体電解質及び結着剤を含有する原料組成物を使用して得られた請求項1記載の二次電池用合剤であって、
    原料組成物中の結着剤が粉末状のフィブリル性樹脂である請求項1記載の二次電池用合剤。
  5. 原料組成物は、実質的に液体媒体を含有しない請求項4記載の二次電池用合剤。
  6. 粉末状のフィブリル性樹脂は、水分含有量が500ppm以下である請求項4又は5記載の二次電池用合剤。
  7. 粉末状のフィブリル性樹脂が粉末状のポリテトラフルオロエチレン樹脂である請求項4,5又は6記載の二次電池合剤。
  8. 粉末状のポリテトラフルオロエチレン樹脂は、標準比重が2.12~2.20である請求項7記載の二次電池用合剤。
  9. 粉末状のポリテトラフルオロエチレン樹脂は、二次粒子径が450μm以上のポリテトラフルオロエチレン樹脂を50質量%以上含む請求項7又は8記載の二次電池用合剤。
  10. 粉末状のポリテトラフルオロエチレン樹脂は、二次粒子径が450μm以上のポリテトラフルオロエチレン樹脂を80質量%以上含む請求項7又は8記載の二次電池用合剤。
  11. 前記酸化物系固体電解質は、酸素原子の他に、4種類以上の元素(炭素原子、水素原子を除く)を含む固体電解質である請求項1~10いずれか1項に記載の二次電池用合剤。
  12. 前記4種類以上の元素のうち少なくとも1つは、Mg、Al、Si、Ca、Ti、Ga、Sr、Nb、Sn、Ba及びWからなる群より選択されるものである請求項11記載の二次電池用合剤。
  13. 更に、ニッケル含有正極活物質を含む請求項1~12いずれか1項の二次電池用合剤。
  14. 請求項1~13いずれか1項に記載の二次電池用合剤を含む二次電池用合剤シート。
  15. 請求項13に記載の二次電池用合剤を含む二次電池用合剤シートを含む電極。
  16. 酸化物系固体電解質及び結着剤を含む原料組成物を混合しながら、剪断力を付与する工程(1)
    前記工程(1)によって得られた二次電池用合剤をバルク状に成形する工程(2)及び
    前記工程(2)によって得られたバルク状の二次電池用合剤をシート状に圧延する工程(3)
    を有する二次電池用合剤シートの製造方法であって、結着剤は、粉末状のフィブリル性樹脂であることを特徴とする二次電池用合剤シートの製造方法。
  17. 請求項14に記載の二次電池用合剤シートを有する固体二次電池。
PCT/JP2023/007904 2022-03-02 2023-03-02 二次電池用合剤、二次電池用合剤シート及びその製造方法並びに固体二次電池 WO2023167297A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020247031322A KR20240153360A (ko) 2022-03-02 2023-03-02 이차 전지용 합제, 이차 전지용 합제 시트 및 그 제조 방법 그리고 고체 이차 전지
JP2024504761A JPWO2023167297A1 (ja) 2022-03-02 2023-03-02
CN202380024673.8A CN118805273A (zh) 2022-03-02 2023-03-02 二次电池用合剂、二次电池用合剂片及其制造方法以及固态二次电池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022032055 2022-03-02
JP2022-032055 2022-03-02

Publications (1)

Publication Number Publication Date
WO2023167297A1 true WO2023167297A1 (ja) 2023-09-07

Family

ID=87883761

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/007904 WO2023167297A1 (ja) 2022-03-02 2023-03-02 二次電池用合剤、二次電池用合剤シート及びその製造方法並びに固体二次電池

Country Status (5)

Country Link
JP (1) JPWO2023167297A1 (ja)
KR (1) KR20240153360A (ja)
CN (1) CN118805273A (ja)
TW (1) TW202347853A (ja)
WO (1) WO2023167297A1 (ja)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012063622A1 (ja) 2010-11-10 2012-05-18 ダイキン工業株式会社 電気二重層キャパシタ用電解液
WO2012086710A1 (ja) 2010-12-21 2012-06-28 ダイキン工業株式会社 ポリテトラフルオロエチレン混合物
WO2015080291A1 (ja) 2013-11-29 2015-06-04 ダイキン工業株式会社 二軸延伸多孔質膜
CN112421114A (zh) * 2019-08-21 2021-02-26 南京博驰新能源股份有限公司 一种固态电解质膜的制备加工方法
WO2021172456A1 (ja) * 2020-02-28 2021-09-02 日本ゼオン株式会社 電気化学デバイス用電解液、可塑性組成物、用途及び製造方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012063622A1 (ja) 2010-11-10 2012-05-18 ダイキン工業株式会社 電気二重層キャパシタ用電解液
WO2012086710A1 (ja) 2010-12-21 2012-06-28 ダイキン工業株式会社 ポリテトラフルオロエチレン混合物
WO2015080291A1 (ja) 2013-11-29 2015-06-04 ダイキン工業株式会社 二軸延伸多孔質膜
CN112421114A (zh) * 2019-08-21 2021-02-26 南京博驰新能源股份有限公司 一种固态电解质膜的制备加工方法
WO2021172456A1 (ja) * 2020-02-28 2021-09-02 日本ゼオン株式会社 電気化学デバイス用電解液、可塑性組成物、用途及び製造方法

Also Published As

Publication number Publication date
JPWO2023167297A1 (ja) 2023-09-07
CN118805273A (zh) 2024-10-18
TW202347853A (zh) 2023-12-01
KR20240153360A (ko) 2024-10-22

Similar Documents

Publication Publication Date Title
JP7269512B2 (ja) 固体二次電池用シートの製造方法及び固体二次電池用結着剤
WO2022050252A1 (ja) 全固体二次電池用合剤、全固体二次電池用合剤シート及びその製造方法並びに全固体二次電池
JP7560764B2 (ja) 二次電池用電極合剤、二次電池用電極合剤シート及びその製造方法並びに二次電池
WO2023167297A1 (ja) 二次電池用合剤、二次電池用合剤シート及びその製造方法並びに固体二次電池
JP7364973B2 (ja) 二次電池用合剤、二次電池用合剤シート及びその製造方法並びに二次電池
JP7485999B2 (ja) 二次電池用合剤、二次電池用合剤シート及びその製造方法並びに二次電池
JP7486006B2 (ja) 固体二次電池用シートの製造方法、固体二次電池電極用結着剤、電極作製用組成物、電極合剤、及び、電極
JP7485998B2 (ja) 二次電池用合剤、二次電池用合剤シート及びその製造方法並びに二次電池
JP7364972B2 (ja) 二次電池用合剤、二次電池用合剤シート、二次電池用合剤シートの製造方法及び二次電池
WO2023167298A1 (ja) 二次電池用合剤、二次電池用合剤シート及びその製造方法並びに固体二次電池
CN118946987A (en) Mixture for secondary battery, mixture sheet for secondary battery, method for producing same, and solid-state secondary battery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23763554

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2024504761

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20247031322

Country of ref document: KR

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 1020247031322

Country of ref document: KR

WWE Wipo information: entry into national phase

Ref document number: 2023763554

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2023763554

Country of ref document: EP

Effective date: 20241002