[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2023162921A1 - Power supply device, power supply device control method, program, and storage medium - Google Patents

Power supply device, power supply device control method, program, and storage medium Download PDF

Info

Publication number
WO2023162921A1
WO2023162921A1 PCT/JP2023/005947 JP2023005947W WO2023162921A1 WO 2023162921 A1 WO2023162921 A1 WO 2023162921A1 JP 2023005947 W JP2023005947 W JP 2023005947W WO 2023162921 A1 WO2023162921 A1 WO 2023162921A1
Authority
WO
WIPO (PCT)
Prior art keywords
power
storage unit
unit
power storage
power supply
Prior art date
Application number
PCT/JP2023/005947
Other languages
French (fr)
Japanese (ja)
Inventor
椎山拓己
島達也
Original Assignee
本田技研工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 本田技研工業株式会社 filed Critical 本田技研工業株式会社
Priority to JP2024503134A priority Critical patent/JPWO2023162921A1/ja
Publication of WO2023162921A1 publication Critical patent/WO2023162921A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J1/00Circuit arrangements for dc mains or dc distribution networks
    • H02J1/10Parallel operation of dc sources
    • H02J1/12Parallel operation of dc generators with converters, e.g. with mercury-arc rectifier
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02JCIRCUIT ARRANGEMENTS OR SYSTEMS FOR SUPPLYING OR DISTRIBUTING ELECTRIC POWER; SYSTEMS FOR STORING ELECTRIC ENERGY
    • H02J7/00Circuit arrangements for charging or depolarising batteries or for supplying loads from batteries

Definitions

  • the present invention relates to a power supply, a power supply control method, a program, and a storage medium.
  • an electric power output device including a power storage unit.
  • the power output device converts DC power output from the power storage unit into AC power.
  • the power output device outputs the converted AC power to the outside.
  • each power storage unit When power is supplied to the load from two power output devices, the two power output devices are connected in parallel to the load. If the amount of power stored in each power storage unit drops to a threshold value when each of the two power output devices is operated at rated power, each power storage unit needs to be replaced. In this case, power cannot be supplied from each power output device to the load during replacement of each power storage unit.
  • An object of the present invention is to solve the above-described problems.
  • a first aspect of the present invention is a power supply device that outputs electric power to the outside, wherein the power supply device is connected to a first power storage unit, a second power storage unit, the first power storage unit, and a load.
  • a first power transmission path connecting a load connection section; a second power transmission path connecting the second power storage section and the load connection section; a first power conversion unit that converts power supplied from the second power transmission path, a second power conversion unit that converts power supplied from the second power storage unit, and the first power conversion unit and a second control unit that controls the second power conversion unit, wherein the first power storage unit and the second power storage unit are connected in parallel to the load connection unit.
  • the first control unit is configured such that as the first output current output from the first power conversion unit increases, the first output voltage output from the first power conversion unit gradually decreases.
  • the first power conversion unit is controlled, and as the second output current output from the second power conversion unit increases, the second control unit outputs from the second power conversion unit
  • the second power conversion unit is controlled based on a second step-down characteristic such that the output voltage is stepped down, and the first step-down characteristic and the second step-down characteristic are set to be different from each other. .
  • a second aspect of the present invention is a second power storage unit connected in parallel to the first power storage unit with respect to the load when the first power storage unit and the load are connected via a first power transmission path.
  • a power supply device including a power storage unit, the power supply device being arranged in a second power transmission path connecting the second power storage unit and the load, a power conversion unit that converts supplied power; and a control unit that controls the power conversion unit.
  • the control unit controls the second output output from the power conversion unit.
  • the power conversion unit is controlled based on a fourth gradual decrease characteristic such that the second output current output from the power conversion unit gradually decreases as the voltage increases, and the fourth gradual decrease characteristic is the third gradual decrease characteristic. is set differently from
  • a third aspect of the present invention is a control method for a power supply device that outputs electric power to the outside, wherein the power supply device includes a first power storage unit, a second power storage unit, the first power storage unit, and a load. a first power transmission path that connects a connected load connection section; a second power transmission path that connects the second power storage section and the load connection section; a first power conversion unit that converts power supplied from one power storage unit; a second power conversion unit that is arranged in the second power transmission path and converts power supplied from the second power storage unit; a control unit that controls the first power conversion unit and the second power conversion unit, the first power storage unit and the second power storage unit being connected in parallel to the load connection unit; is output from the first power conversion unit as the first output current output from the first power conversion unit increases by controlling the first power conversion unit based on the first gradual decrease characteristic a step of stepping down a first output voltage; and a second output output from the second power conversion unit by controlling the second power conversion unit based on a second
  • a fourth aspect of the present invention is a program that causes a computer to execute the power supply control method of the third aspect.
  • a fifth aspect of the present invention is a storage medium that stores the program of the fourth aspect.
  • the replacement timings of the two power storage units do not overlap, it is possible to continue supplying power to the load.
  • FIG. 1 is a configuration diagram of a power supply device according to this embodiment.
  • FIG. 2 is a circuit configuration diagram of the power device.
  • FIG. 3 is a flow chart of the first embodiment.
  • FIG. 4 is a diagram showing voltage-current characteristics of the base.
  • FIG. 5 is a timing chart of SOC in the first embodiment.
  • FIG. 6 is a diagram showing first voltage-current characteristics and second voltage-current characteristics.
  • FIG. 7 is a flow chart of the second embodiment.
  • FIG. 8 is a timing chart of SOC in the second embodiment.
  • FIG. 1 is a configuration diagram of a power supply device 10 according to this embodiment.
  • the power supply device 10 includes a first power device 12 (power source device), a second power device 14 (power source device), a first power transmission path 16 , and a second power transmission path 18 .
  • the first power device 12 and the second power device 14 are feeders capable of outputting power to the outside.
  • the first power device 12 and the second power device 14 have the same external shape.
  • the first power device 12 has a substantially rectangular parallelepiped first housing 22 .
  • the second power device 14 has a substantially rectangular parallelepiped second housing 24 .
  • Each of the first power device 12 and the second power device 14 can transmit and receive signals or information to and from the mobile terminal 26 by wireless communication.
  • the mobile terminal 26 is a mobile device that can be operated by the user of the power supply device 10 .
  • the first power device 12 and the second power device 14 can transmit and receive signals or information by wireless communication via the mobile terminal 26 .
  • signals or information may be transmitted and received directly between the first power device 12 and the second power device 14 via radio.
  • the first power transmission path 16 electrically connects the first power device 12 and a load connection section 28 such as an AC outlet.
  • the first power transmission path 16 is composed of two wires, a first positive line 30 and a first negative line 32 .
  • the second power transmission path 18 electrically connects the second power device 14 and the load connection portion 28 .
  • the second power transmission path 18 is composed of two wires, a second positive line 34 and a second negative line 36 .
  • the first power device 12 and the second power device 14 are connected in parallel to the load connection 28 .
  • a load 38 is connected to the load connection portion 28 .
  • First power device 12 provides first output power to load 38 via first power transmission path 16 and load connection 28 .
  • Second power device 14 provides second output power to load 38 via second power transmission path 18 and load connection 28 .
  • the first output power and the second output power are AC power.
  • FIG. 2 is a circuit configuration diagram of the first power device 12 and the second power device 14.
  • FIG. The first power device 12 and the second power device 14 have the same configuration as each other including the circuit configuration.
  • FIG. 2 shows the circuit configuration of one power device.
  • the first power device 12 includes a first power storage unit 40, a first DC/DC converter 42, a first inverter 44, a first CPU 46 (control unit, storage amount acquisition unit, power consumption amount acquisition unit, calculation unit, first control unit, computer), a first filter 48 , a first voltage sensor 50 , a first current sensor 52 , a first communication section 54 (receiving section), a first outlet 56 and a first parallel terminal 58 .
  • the first DC/DC converter 42 and the first inverter 44 constitute a first power converter 60 .
  • the first power storage unit 40, the first power conversion unit 60, the first CPU (Central Processing Unit) 46, the first filter 48, the first voltage sensor 50, the first current sensor 52, and the first communication unit 54 are 22 (see FIG. 1).
  • a first outlet 56 and a first parallel terminal 58 are provided on the first housing 22 .
  • the second power device 14 includes a second power storage unit 62, a second DC/DC converter 64, a second inverter 66, a second CPU 68 (a control unit, a storage amount acquisition unit, a power consumption amount acquisition unit, a calculation unit, a voltage acquisition unit, a 2 control unit, computer), a second filter 70 , a second voltage sensor 72 , a second current sensor 74 , a second communication unit 76 (receiving unit), a second outlet 78 and a second parallel terminal 80 .
  • the second DC/DC converter 64 and the second inverter 66 constitute a second power converter 82 .
  • the second power storage unit 62, the second power conversion unit 82, the second CPU 68, the second filter 70, the second voltage sensor 72, the second current sensor 74, and the second communication unit 76 are connected to the second housing 24 (see FIG. 1). ) is housed inside. A second outlet 78 and a second parallel terminal 80 are provided on the second housing 24 .
  • the first power device 12 and the second power device 14 have the same configuration including the circuit configuration. Therefore, the configuration of the first power device 12 will be described as a representative. Therefore, detailed description of the second power device 14 is omitted.
  • the first power storage unit 40 is a DC power supply.
  • the first power storage unit 40 is arranged (accommodated) inside the first housing 22 (see FIG. 1).
  • the first power storage unit 40 is detachable from the first power device 12 .
  • the first power storage unit 40 is a mobile battery detachable from the first power device 12 .
  • the first power storage unit 40 is preferably a detachable lithium-ion battery pack, for example.
  • At least one first power storage unit 40 should be attached to the first power device 12 .
  • first power device 12 includes a plurality of first power storage units 40
  • at least one first power storage unit 40 among the plurality of first power storage units 40 may be detachable from first power device 12 .
  • first power storage unit 40 is preferably detachable from first power device 12 without using a separate work tool or the like. That is, the first power storage unit 40 is configured to be freely attachable to and detachable from the first power device 12 without using a work tool or the like.
  • attachment to and detaching from the first power device 12 includes a case where the first power storage unit 40 is attached to the first power device 12, and a case where the first power storage unit 40 is removed from the first power device 12. This includes cases where In the following description, a case where one first power storage unit 40 is detachable from the first power device 12 will be described.
  • the first power storage unit 40 can output DC power based on a control signal from the first CPU 46 .
  • the first power storage unit 40 sequentially notifies the first CPU 46 of SOC (State Of Charge), which is the amount of power stored.
  • the first power transmission path 16 connects the first power storage unit 40 and the load connection unit 28 .
  • a portion of the first power transmission path 16 within the first power device 12 connects the first power storage unit 40 and the first outlet 56 .
  • a portion of the first power transmission path 16 outside the first power device 12 connects the first outlet 56 and the load connection 28 .
  • a first DC/DC converter 42 , a first inverter 44 , a first filter 48 are provided in a portion of the first power transmission path 16 within the first power device 12 from the first power storage unit 40 toward the first outlet 56 .
  • a first voltage sensor 50 and a first current sensor 52 are arranged in order.
  • the portion between the first voltage sensor 50 and the first current sensor 52 and the first outlet 56 is connected by two wires 84. It is connected to the first parallel terminal 58 via.
  • the first DC/DC converter 42 converts the DC voltage of the first power storage unit 40 into a desired value of DC voltage based on the control signal from the first CPU 46 .
  • the first inverter 44 converts the DC voltage converted by the first DC/DC converter 42 into a first output voltage based on the control signal from the first CPU 46 . Therefore, the first power converter 60 converts the DC voltage of the first power storage unit 40 into the first output voltage.
  • the first output voltage is an alternating voltage.
  • the first filter 48 removes noise superimposed on the first output voltage converted by the first inverter 44 .
  • the first voltage sensor 50 is arranged in the portion of the first power transmission path 16 between the first filter 48 and the connection point between the first power transmission path 16 and the two wires 84 .
  • One end of the first voltage sensor 50 is connected to the first positive line 30 .
  • the other end of the first voltage sensor 50 is connected to the first negative line 32 .
  • the first voltage sensor 50 sequentially detects the first output voltage that has passed through the first filter 48 and outputs the detection results to the first CPU 46 .
  • the first current sensor 52 is connected to one end of the first voltage sensor 50 in the first positive line 30 of the first power transmission path 16 and connected to the first positive line 30 and one wiring 84 . It is located in the part between The first current sensor 52 successively detects the first output current flowing from the first inverter 44 to the load connecting portion 28 and outputs the detection result to the first CPU 46 .
  • the first output current is alternating current.
  • the first CPU 46 is a computer that comprehensively controls each part of the first power device 12 .
  • the first CPU 46 implements various functions by reading and executing programs stored in the memory 86 (storage medium). Functions of the first CPU 46 will be described later.
  • the first communication unit 54 transmits and receives signals or information to and from the mobile terminal 26 by wireless communication.
  • the first communication unit 54 also transmits and receives signals or information by wireless communication with the second power device 14 via the mobile terminal 26 .
  • the first communication unit 54 can directly transmit and receive signals or information to and from the second power device 14 by wireless communication.
  • FIG. 1 the case where the SOC of first power storage unit 40 is lower than the SOC of second power storage unit 62 will be described.
  • step S1 of FIG. 3 the user of the power supply device 10 (see FIG. 1) operates the mobile terminal 26 to instruct execution of parallel operation.
  • the user operates the portable terminal 26 so as to execute the operation mode (specification aspect) of the first embodiment.
  • the mobile terminal 26 transmits an instruction signal for instructing execution of the operation mode of the first embodiment to the first power device 12 and the second power device 14 based on the user's operation content (request).
  • the first communication unit 54 (see FIG. 2) of the first power device 12 receives the instruction signal and outputs it to the first CPU 46 .
  • the second communication unit 76 of the second power device 14 receives the instruction signal and outputs it to the second CPU 68 .
  • the request from the user also includes the share of the output power supplied from the first power storage unit 40 and the second power storage unit 62 to the load 38 (sharing rate).
  • step S2 the first CPU 46 executes the operation mode based on the instruction signal.
  • a map 88 is stored in the memory 86 of the first CPU 46 .
  • This map 88 as shown in FIG. 4, has voltage-current characteristics (first decreasing characteristic (third decreasing characteristic), 1 drooping characteristics).
  • the vertical axis is the effective value of the output voltage
  • the horizontal axis is the effective value of the output current.
  • effective value of output voltage may be referred to as “output voltage”
  • output current may be referred to as “output current”.
  • This map 88 has a gradual decrease characteristic (first gradual decrease characteristic) such that the output voltage gradually decreases as the output current increases. Further, this map 88 has a drooping characteristic (first drooping characteristic) such that the output voltage sharply decreases when the output current is equal to or greater than the threshold value Ith0 (third predetermined value).
  • the droop feature is provided to protect the power supply 10 (power unit) from overcurrent.
  • the first CPU 46 controls the first power converter 60 so that the first output voltage and the first output current of desired values are output. Specifically, the first CPU 46 sets target values for the first output voltage and the first output current based on the map 88 . The first CPU 46 outputs a control signal corresponding to the target value to the first power converter 60 .
  • the memory 86 may store a map 88 having a plurality of voltage-current characteristics with different descent characteristics and drooping characteristics.
  • the first CPU 46 selects an appropriate voltage-current characteristic from among the plurality of voltage-current characteristics, refers to the selected voltage-current characteristic, and sets the target values of the first output voltage and the first output current. good.
  • the first DC/DC converter 42 converts the DC voltage of the first power storage unit 40 into a desired value of DC voltage based on the control signal.
  • the first inverter 44 converts the DC voltage converted by the first DC/DC converter 42 into a first output voltage based on the control signal.
  • supply of first output power (first output voltage, first output current) from the first power device 12 to the load 38 is started.
  • the first output power is active power
  • the first output power is the product of the effective value of the first output voltage, the effective value of the first output current, and the power factor.
  • the first voltage sensor 50 detects the first output voltage and outputs the detection result to the first CPU 46 .
  • the first current sensor 52 detects the first output current and outputs the detection result to the first CPU 46 . Therefore, the first CPU 46 can perform feedback control so that the first output voltage and the first output current become the target values.
  • the first CPU 46 notifies the second power device 14 via the first communication unit 54 that the first power device 12 has started executing the operation mode.
  • the second communication unit 76 of the second power device 14 receives the content of the notification from the first CPU 46 and outputs it to the second CPU 68 .
  • the second CPU 68 executes the operation mode based on the contents of the notification from the first CPU 46.
  • a map 88 is also stored in the memory 86 of the second CPU 68 . This map 88 is similar to the map 88 stored in the memory 86 of the first CPU 46 (see FIG. 4).
  • the first power device 12 and the second power device 14 are connected in parallel to the load connection section 28 .
  • First power device 12 provides a first output voltage to load 38 . Therefore, the second outlet 78 of the second power device 14 is also supplied with the first output voltage.
  • the second voltage sensor 72 detects the first output voltage and outputs the detection result to the second CPU 68 .
  • the first CPU 46 may notify the second CPU 68 of the detection result of the first voltage sensor 50 via the first communication unit 54 .
  • the second CPU 68 sets target values for the second output voltage and the second output current based on the map 88 . In this case, the second CPU 68 sets the target value such that the first output voltage and the second output voltage are equal. The second CPU 68 outputs a control signal corresponding to the target value to the second power converter 82 .
  • the second DC/DC converter 64 converts the DC voltage of the second power storage unit 62 into a desired value of DC voltage based on the control signal.
  • the second inverter 66 converts the DC voltage converted by the second DC/DC converter 64 into a second output voltage based on the control signal. Thereby, supply of the second output power (second output voltage, second output current) from the second power device 14 to the load 38 is started.
  • the second output power is active power
  • the second output power is the product of the effective value of the second output voltage, the effective value of the second output current, and the power factor.
  • the second voltage sensor 72 detects the second output voltage and outputs the detection result to the second CPU 68.
  • the second current sensor 74 detects the second output current and outputs the detection result to the second CPU 68 . Therefore, the second CPU 68 can perform feedback control so that the second output voltage and the second output current become the target values.
  • parallel operation is started in which the load 38 is supplied with the first output power from the first power device 12 and the second output power is supplied from the second power device 14 to the load 38 .
  • the first power conversion section 60 and the second power conversion section 82 are controlled based on the same first voltage-current characteristics. Therefore, the amounts of power (shared power) shared by the first power device 12 and the second power device 14 with respect to the load 38 are equal.
  • the first power converter 60 and the second power converter 82 are controlled so that the first output voltage and the second output voltage are equal. That is, in the parallel operation, synchronization processing is performed to match the first output voltage and the second output voltage.
  • the second power device 14 may synchronize the first output voltage and the second output voltage in the following manner.
  • the second CPU 68 controls the second power converter so that the first state quantity correlated with the frequency of the second output voltage and the second state quantity correlated with the phase of the second output voltage match the first output voltage. control 82; Also, the second CPU 68 controls the second power converter 82 such that the third state quantity correlated with the amplitude of the second output voltage matches the first output voltage.
  • the first state quantity is a physical quantity related to the frequencies of the first output voltage and the second output voltage. Specifically, the first state quantity is the frequency, period, or wavelength of the first output voltage and the second output voltage.
  • the second state quantity is a physical quantity related to the phases of the first output voltage and the second output voltage. A phase of the first output voltage and the second output voltage may be the second state quantity.
  • the third state quantity is a physical quantity relating to the amplitudes of the first output voltage and the second output voltage. Specifically, the third state quantity refers to the magnitude of the voltage at a predetermined phase of the first output voltage and the second output voltage. Amplitudes of the first output voltage and the second output voltage may be the third state quantity.
  • step S ⁇ b>3 the first CPU 46 acquires the current state of charge (SOC) from the first power storage unit 40 .
  • the second CPU 68 acquires the current state of charge (SOC) from the second power storage unit 62 .
  • Second CPU 68 notifies first CPU 46 of the SOC of second power storage unit 62 via second communication unit 76 . Thereby, the first CPU 46 can obtain the SOCs of the first power storage unit 40 and the second power storage unit 62 .
  • step S4 the first CPU 46 identifies the power storage unit with the lower SOC among the first power storage unit 40 and the second power storage unit 62. Specifically, first CPU 46 specifies that the SOC of first power storage unit 40 is less than the SOC of second power storage unit 62 . Next, the first CPU 46 determines to promote the supply of the first output power from the first power storage unit 40 to the load 38 . That is, it is determined to shift the replacement timings of first power storage unit 40 and second power storage unit 62 and replace first power storage unit 40 first.
  • FIG. 5 is a timing chart showing temporal changes in the SOCs of the first power storage unit 40 (see FIG. 2) and the second power storage unit 62.
  • FIG. 5 the change over time of the SOC of first power storage unit 40 is indicated by a solid line, and the change over time of the SOC of second power storage unit 62 is indicated by a dashed line.
  • Time t1 is the time immediately after the start of parallel operation.
  • the first CPU 46 changes the voltage-current characteristics used to control the first power conversion unit 60 . Specifically, as shown in FIG. 6, the first CPU 46 (see FIG. 2) sets the voltage-current characteristics used for controlling the first power conversion unit 60 to the first voltage-current characteristics (first decreasing characteristics, The first drooping characteristic) is changed to the second voltage-current characteristic (second gradual decrease characteristic (fourth gradual decrease characteristic), second drooping characteristic) indicated by the dashed line.
  • the first voltage-current characteristic is the same characteristic as the voltage-current characteristic shown in FIG. Similar to the first voltage-current characteristic, the second voltage-current characteristic includes a gradual decrease characteristic (second gradual decrease characteristic) in which the output voltage gradually decreases as the output current increases, and ), it has a drooping characteristic (second drooping characteristic) such that the output voltage sharply decreases.
  • the second droop characteristic is provided to protect power supply 10 (see FIG. 1) from overcurrent.
  • the first gradual decrease characteristic (third gradual decrease characteristic) and the second gradual decrease characteristic (fourth gradual decrease characteristic) are set to be different from each other.
  • the degree of gradual decrease in the output voltage with respect to the increase in the output current is smaller than that in the first gradual decrease characteristic. Therefore, the output current of the first decreasing characteristic becomes I0 and the output current of the second decreasing characteristic becomes Ia (I0 ⁇ Ia) with respect to the output voltage having the value of V0. That is, when the output current reaches Ia, the load on the power device increases. Therefore, when the output voltage and output current are controlled using the second step-down characteristic, the load on the power device increases and the SOC of the power storage unit quickly decreases. In this way, using the second gradual decrease characteristic increases the load on the electric power device, so the threshold Itha for the second drooping characteristic is set lower than the threshold Ith0 for the first drooping characteristic (Itha ⁇ Ith0).
  • the first voltage-current characteristic and the second voltage-current characteristic may be changed as follows.
  • a plurality of voltage-current characteristics are stored in advance in the map 88 (see FIG. 2).
  • the first CPU 46 selects an arbitrary voltage-current characteristic from among the plurality of voltage-current characteristics as the first voltage-current characteristic or the second voltage-current characteristic, thereby changing the voltage-current characteristic used for controlling the first power conversion unit 60. do.
  • the map 88 stores only the first voltage-current characteristics.
  • the first voltage-current characteristic is a base voltage-current characteristic.
  • the first CPU 46 generates a second voltage-current characteristic by appropriately adjusting the voltage-current characteristic of the base. Thereby, the first CPU 46 changes the voltage-current characteristic used for controlling the first power conversion unit 60 from the first voltage-current characteristic to the second voltage-current characteristic.
  • the first CPU 46 sets the target values of the first output voltage and the first output current based on the changed second voltage-current characteristics.
  • the first CPU 46 outputs a control signal corresponding to the set target value to the first power converter 60 .
  • the first power converter 60 outputs a first output voltage and a first output current based on the control signal.
  • the first output current increases as the first output voltage decreases.
  • the SOC of first power storage unit 40 rapidly decreases with time after time t1.
  • first CPU 46 maintains the voltage-current characteristics used for controlling second power conversion unit 82 at the first voltage-current characteristics. to decide.
  • the first CPU 46 notifies the content of the determination to the second CPU 68 via the first communication unit 54 .
  • the second CPU 68 Based on the notification from the first CPU 46, the second CPU 68 continues to control the second power converter 82 based on the first voltage-current characteristics. As a result, the SOC of second power storage unit 62 slowly decreases over time after time t1.
  • the first power conversion section 60 and the second power conversion section 82 are controlled by voltage-current characteristics different from each other.
  • the shared power of the first power device 12 and the second power device 14 to the load 38 can be changed arbitrarily.
  • step S5 of FIG. 3 the first CPU 46 (see FIG. 2) acquires the current SOC from the first power storage unit 40 again.
  • Second CPU 68 acquires the current SOC again from second power storage unit 62 .
  • Second CPU 68 notifies first CPU 46 of the SOC of second power storage unit 62 again via second communication unit 76 . Thereby, the first CPU 46 can acquire the SOCs of the first power storage unit 40 and the second power storage unit 62 again.
  • step S6 the first CPU 46 determines whether the SOC of the first power storage unit 40 has decreased to the threshold SOCth1 (first predetermined value, second predetermined value) shown in FIG.
  • step S6 NO
  • the first CPU 46 repeats the process of step S5.
  • step S6 in FIG. 3: YES first CPU 46 proceeds to step S7.
  • step S7 first CPU 46 determines that first power storage unit 40 needs to be replaced because the SOC of first power storage unit 40 has decreased to threshold SOCth1 (see FIG. 5).
  • first CPU 46 transmits a message prompting replacement of first power storage unit 40 to portable terminal 26 via first communication unit 54 .
  • the mobile terminal 26 notifies the received message to the outside. The user can recognize that it is time to replace the first power storage unit 40 by checking the content of the notification from the mobile terminal 26 .
  • step S8 the first CPU 46 determines whether the user has replaced the first power storage unit 40 or not. For example, when the SOC of first power storage unit 40 becomes greater than threshold SOCth1 due to replacement of first power storage unit 40, first CPU 46 determines that first power storage unit 40 has been replaced (step S8: YES). ).
  • the first CPU 46 determines whether or not to stop parallel operation. In this case, the first CPU 46 determines whether or not to stop the parallel operation by confirming whether or not a command to stop the operation mode has been sent from the portable terminal 26 .
  • step S9 NO
  • the first CPU 46 decides to continue the parallel operation. Next, the first CPU 46 returns to step S3 and repeats the processing of steps S3 to S9.
  • step S7 When the SOC of second power storage unit 62 (see FIG. 2) has decreased to threshold SOCth1 at time t3 in FIG. is transmitted to the mobile terminal 26 via the first communication unit 54 (step S7).
  • the mobile terminal 26 notifies the received message to the outside, so that the user can recognize that the timing for replacing the second power storage unit 62 has come.
  • the user replaces second power storage unit 62 according to the message.
  • the SOC of second power storage unit 62 becomes greater than threshold SOCth1, first CPU 46 can determine that second power storage unit 62 has been replaced (step S8: YES).
  • step S9 when the user operates the mobile terminal 26 to give an instruction (request) to stop the operation mode, the mobile terminal 26 sends an instruction signal corresponding to the stop instruction to the first power device 12 and the second power device. 14.
  • the first communication unit 54 outputs the received instruction signal to the first CPU 46 .
  • the second communication unit 76 outputs the received instruction signal to the second CPU 68 .
  • the process proceeds to step S10.
  • step S ⁇ b>10 the first CPU 46 stops controlling the first power conversion unit 60 . This stops the supply of the first output power from the first power device 12 to the load 38 . Also, the first CPU 46 notifies the second CPU 68 via the first communication unit 54 that the supply of the first output power has stopped. The second CPU 68 receives the notification from the first CPU 46 and stops controlling the second power converter 82 . This stops the supply of the second output power from the second power device 14 to the load 38 . As a result, the parallel operation in the power supply device 10 is stopped. The second CPU 68 may stop supplying the second output power to the load 38 based on the instruction signal from the mobile terminal 26 .
  • the time point at which the SOC of first power storage unit 40 (see FIG. 2) drops to threshold SOCth1 is set to an arbitrary time point within time T1 from time t2 to time t3. can be adjusted to
  • step S9 when the parallel operation is to be continued (step S9: NO) after replacing the first power storage unit 40 (step S8: YES in FIG. 3), the first CPU 46 operates as follows. good too. Due to the replacement of first power storage unit 40 , the SOC of first power storage unit 40 may become higher than the SOC of second power storage unit 62 . Therefore, in step S4, the first CPU 46 returns the voltage-current characteristic for controlling the first power conversion section 60 from the second voltage-current characteristic to the first voltage-current characteristic. Thereby, the first CPU 46 can control the first power converter 60 based on the first voltage-current characteristic.
  • the first CPU 46 determines to change the voltage-current characteristic for controlling the second power converter 82 from the first voltage-current characteristic to the second voltage-current characteristic.
  • the first CPU 46 notifies the second CPU 68 of this decision via the first communication unit 54 .
  • the second CPU 68 changes from the first voltage-current characteristic to the second voltage-current characteristic based on the notified content of the decision.
  • the second CPU 68 controls the second power converter 82 based on the changed second voltage-current characteristics. As a result, the SOC of second power storage unit 62 can be quickly reduced.
  • first CPU 46 can perform the same operation. That is, when the SOC of second power storage unit 62 is lower than the SOC of first power storage unit 40, the voltage-current characteristic for controlling second power conversion unit 82 is changed from the first voltage-current characteristic to the second voltage-current characteristic. Change to characteristics. As a result, the second output current becomes larger than the first output current, and the supply of the second output power from second power storage unit 62 to load 38 is facilitated.
  • FIG. 7 the case where the SOC of first power storage unit 40 (see FIG. 2) is higher than the SOC of second power storage unit 62 will be described.
  • step S11 of FIG. 7 the user of the power supply device 10 (see FIG. 1) operates the mobile terminal 26 to instruct execution of parallel operation, as in step S1 of FIG.
  • the user operates the portable terminal 26 so as to execute the operation mode (specification aspect) of the second embodiment.
  • the portable terminal 26 transmits an instruction signal for instructing execution of the operation mode of the second embodiment to the first power device 12 and the second power device 14 based on the user's operation content (request).
  • the first communication unit 54 (see FIG. 2) of the first power device 12 receives the instruction signal and outputs it to the first CPU 46 .
  • the second communication unit 76 of the second power device 14 receives the instruction signal and outputs it to the second CPU 68 .
  • step S12 the first CPU 46 executes the operation mode based on the instruction signal, as in step S2 of FIG.
  • the first CPU 46 sets the target values of the first output voltage and the first output current based on the map 88 (see FIG. 4).
  • the first CPU 46 outputs a control signal corresponding to the target value to the first power converter 60 .
  • the first power conversion unit 60 converts the DC voltage of the first power storage unit 40 into the first output voltage based on the control signal. Thereby, supply of the first output power from the first power device 12 to the load 38 is started.
  • the first voltage sensor 50 detects the first output voltage and outputs the detection result to the first CPU 46 .
  • the first current sensor 52 detects the first output current and outputs the detection result to the first CPU 46 . Therefore, the first CPU 46 can perform feedback control so that the first output voltage and the first output current become the target values.
  • the first CPU 46 notifies the second power device 14 via the first communication unit 54 that the first power device 12 has started executing the operation mode.
  • the second CPU 68 executes the operation mode based on the content of notification from the first CPU 46 .
  • the second CPU 68 sets target values for the second output voltage and the second output current based on the map 88 .
  • the second CPU 68 sets the target value such that the first output voltage and the second output voltage are equal.
  • the second CPU 68 outputs a control signal corresponding to the target value to the second power converter 82 .
  • the second power converter 82 converts the DC voltage of the second power storage unit 62 into a second output voltage based on the control signal. Thereby, supply of the second output power from the second power device 14 to the load 38 is started.
  • the second voltage sensor 72 detects the second output voltage and outputs the detection result to the second CPU 68 .
  • the second current sensor 74 detects the second output current and outputs the detection result to the second CPU 68 . Therefore, the second CPU 68 can perform feedback control so that the second output voltage and the second output current become the target values.
  • parallel operation is started in which the load 38 is supplied with the first output power from the first power device 12 and the second output power is supplied from the second power device 14 to the load 38 .
  • synchronization processing may be performed to match the first output voltage and the second output voltage.
  • step S13 the first CPU 46 acquires the current SOC of the first power storage unit 40 and the current SOC of the second power storage unit 62, as in step S3 of FIG.
  • step S14 the first CPU 46 identifies the power storage unit with the higher SOC among the first power storage unit 40 and the second power storage unit 62. Specifically, first CPU 46 identifies that the SOC of first power storage unit 40 is higher than the SOC of second power storage unit 62 . Next, the first CPU 46 determines to promote the supply of the first output power from the first power storage unit 40 to the load 38 .
  • FIG. 8 is a timing chart showing temporal changes in the SOCs of the first power storage unit 40 (see FIG. 2) and the second power storage unit 62.
  • FIG. 8 the change over time of the SOC of first power storage unit 40 is indicated by a solid line, and the change over time of the SOC of second power storage unit 62 is indicated by a dashed line.
  • Time t11 is a time immediately after the start of parallel operation.
  • first CPU 46 converts the voltage-current characteristics used for controlling first power conversion unit 60 from the first voltage-current characteristics of FIG. is changed to the second voltage-current characteristic of The first CPU 46 sets the target values of the first output voltage and the first output current based on the changed second voltage-current characteristics.
  • the first CPU 46 outputs a control signal corresponding to the set target value to the first power converter 60 .
  • the first power converter 60 outputs a first output voltage and a first output current based on the control signal. As a result, the first output current increases as the first output voltage decreases.
  • the SOC of first power storage unit 40 rapidly decreases with time after time t11 in FIG.
  • first CPU 46 maintains the voltage-current characteristics used to control second power conversion unit 82 at the first voltage-current characteristics. to decide.
  • the first CPU 46 notifies the content of the determination to the second CPU 68 via the first communication unit 54 .
  • the second CPU 68 Based on the notification from the first CPU 46, the second CPU 68 continues to control the second power converter 82 based on the first voltage-current characteristics. As a result, the SOC of second power storage unit 62 slowly decreases over time after time t11.
  • the first power conversion section 60 and the second power conversion section 82 are controlled by voltage-current characteristics different from each other.
  • the shared power of the first power device 12 and the second power device 14 to the load 38 can be changed arbitrarily.
  • step S15 the first CPU 46 acquires again the current SOC of the first power storage unit 40 and the current SOC of the second power storage unit 62, as in step S5 of FIG.
  • step S16 the first CPU 46 determines whether the SOC of the first power storage unit 40 is lower than the SOC of the second power storage unit 62 (SOClow).
  • step S16 NO
  • the first CPU 46 repeats the process of step S15.
  • step S16 When the SOC of the first power storage unit 40 falls below the SOC (SOClow) of the second power storage unit 62 at time t12 in FIG. 8 (step S16: YES), the first CPU 46 proceeds to step S17.
  • step S17 the first CPU 46 determines whether the SOC of the first power storage unit 40 is equal to or less than the threshold SOCth2.
  • step S17: NO the first CPU 46 returns to step S14 and repeats the processes of steps S14 to S17.
  • step S14 since the SOC of first power storage unit 40 is lower than the SOC of second power storage unit 62, first CPU 46 supplies the second output power from second power storage unit 62 having a large SOC to load 38. Decide to promote
  • the first CPU 46 restores the voltage-current characteristics used for controlling the first power conversion unit 60 from the second voltage-current characteristics to the first voltage-current characteristics, and controls the first power conversion unit 60 based on the returned first voltage-current characteristics. Control. As a result, the first output current becomes smaller, and the SOC of first power storage unit 40 gradually decreases over time.
  • the first CPU 46 determines to change the voltage-current characteristic used for controlling the second power converter 82 from the first voltage-current characteristic to the second voltage-current characteristic.
  • the first CPU 46 notifies the content of the determination to the second CPU 68 via the first communication unit 54 .
  • the second CPU 68 controls the second power converter 82 based on the second voltage-current characteristic.
  • the second output current increases, and the SOC of second power storage unit 62 rapidly decreases over time.
  • step S17 When the SOCs of the first power storage unit 40 and the second power storage unit 62 have decreased to the threshold SOCth2 at time t13 (step S17: YES), the first CPU 46 proceeds to step S18.
  • step S18 the first CPU 46 determines whether the SOC of the first power storage unit 40 has decreased to the threshold SOCth3 (first predetermined value, second predetermined value).
  • the first CPU 46 controls the first power converter 60 based on the second voltage-current characteristics.
  • the second CPU 68 controls the second power converter 82 based on the first voltage-current characteristics. Therefore, the SOC of first power storage unit 40 decreases rapidly over time, and the SOC of second power storage unit 62 decreases gently over time.
  • step S18 When the SOC of the first power storage unit 40 has decreased to the threshold SOCth3 at time t14 (step S18: YES), the first CPU 46 proceeds to step S19.
  • step S19 first CPU 46 determines that first power storage unit 40 needs to be replaced because the SOC of first power storage unit 40 has decreased to threshold SOCth3.
  • first CPU 46 transmits a message prompting replacement of first power storage unit 40 to portable terminal 26 via first communication unit 54 .
  • the mobile terminal 26 notifies the received message to the outside. The user can recognize that it is time to replace the first power storage unit 40 by checking the content of the notification from the mobile terminal 26 .
  • step S20 the first CPU 46 determines whether the user has replaced the first power storage unit 40 or not. For example, when the SOC of first power storage unit 40 becomes greater than threshold SOCth3 due to replacement of first power storage unit 40, first CPU 46 determines that first power storage unit 40 has been replaced (step S20: YES). ).
  • step S21 the first CPU 46 determines whether or not to stop the parallel operation, similar to step S9 in FIG.
  • step S21: NO If the mobile terminal 26 has not sent an operation mode stop command (step S21: NO), the first CPU 46 returns to step S13 and repeats the processing of steps S13 to S21.
  • first CPU 46 When the SOC of second power storage unit 62 has decreased to threshold SOCth3 at time t15 (step S18: YES), first CPU 46 carries a message prompting replacement of second power storage unit 62 via first communication unit 54. It is transmitted to the terminal 26 (step S19). The mobile terminal 26 notifies the received message to the outside, so that the user can recognize that the timing for replacing the second power storage unit 62 has come. Therefore, the user replaces the second power storage unit 62 according to the message. When the SOC of second power storage unit 62 becomes greater than threshold SOCth3, first CPU 46 can determine that second power storage unit 62 has been replaced (step S20: YES).
  • step S21 when the user operates the mobile terminal 26 to issue a stop command (request) for the operation mode, the mobile terminal 26 sends an instruction signal corresponding to the stop command to the first power device 12 and the second power device. 14.
  • the first communication unit 54 outputs the received instruction signal to the first CPU 46 .
  • the second communication unit 76 outputs the received instruction signal to the second CPU 68 .
  • the process proceeds to step S22.
  • step S22 the first CPU 46 stops controlling the first power converter 60, as in step S10 of FIG. This stops the supply of the first output power from the first power device 12 to the load 38 . Also, the first CPU 46 notifies the second CPU 68 via the first communication unit 54 that the supply of the first output power has stopped. The second CPU 68 receives the notification from the first CPU 46 and stops controlling the second power converter 82 . This stops the supply of the second output power from the second power device 14 to the load 38 . As a result, the parallel operation in the power supply device 10 is stopped. The second CPU 68 may stop supplying the second output power to the load 38 based on the instruction signal from the mobile terminal 26 .
  • the time point at which the SOC of first power storage unit 40 (see FIG. 2) drops to threshold SOCth3 is set to any time point within time T2 from time t14 to time t15. can be adjusted to Further, the point in time when the SOC of second power storage unit 62 drops to threshold SOCth3 can be adjusted to any point in time T3 from point t15 to point t16.
  • the case where the SOC of first power storage unit 40 is higher than the SOC of second power storage unit 62 has been described. Even when the SOC of second power storage unit 62 is higher than the SOC of first power storage unit 40, first CPU 46 can perform the same operation. That is, when the SOC of second power storage unit 62 is greater than the SOC of first power storage unit 40, the voltage-current characteristic for controlling second power conversion unit 82 is changed from the first voltage-current characteristic to the second voltage-current characteristic. Change to characteristics. As a result, the second output current becomes larger than the first output current, and the supply of the second output power from second power storage unit 62 to load 38 is facilitated.
  • the portable terminal 26 may monitor the SOCs of the first power storage unit 40 and the second power storage unit 62 using application software (app).
  • the mobile terminal 26 may be a device capable of wireless communication with the first power device 12 or the second power device 14 .
  • the mobile terminal 26 may be a smart phone, a tablet, or a server.
  • a command may be transmitted from the mobile terminal 26 to the first power device 12 and the second power device 14 by wireless communication.
  • the wireless communication method may be Bluetooth (registered trademark), WiFi (registered trademark), or Internet line.
  • the second CPU 68 may be the main operating body. That is, in the first and second embodiments, the first CPU 46 controls the operations of the first power device 12 and the second power device 14 in an integrated manner, as described above. In the first and second embodiments, the second CPU 68 may centrally control the operations of the first power device 12 and the second power device 14 . Alternatively, the functions of the CPU may be integrated into one of the power devices, and the operations of the first power device 12 and the second power device 14 may be controlled by the CPU with the integrated functions.
  • the first CPU 46 controls only the operation of the first power device 12, and the second CPU 68 controls the second power device. It is also possible to control only the operation of device 14 .
  • the portable terminal 26 transmits an operation command or a stop command to both the first power device 12 and the second power device 14 .
  • Each of the first power device 12 and the second power device 14 starts operating based on the operation command.
  • Each of the first power device 12 and the second power device 14 stops operating based on the stop command. That is, each of the first power device 12 and the second power device 14 operates according to the request from the mobile terminal 26 .
  • first and second embodiments the case where the voltage-current characteristics are switched based on the SOCs of the first power storage unit 40 and the second power storage unit 62 after starting parallel operation has been described. If the SOCs of first power storage unit 40 and second power storage unit 62 are known in advance, the voltage-current characteristics of first power device 12 and second power device 14 may be initially set to be different from each other. This eliminates the need for communication between the first power device 12 and the second power device 14 .
  • the user of the power supply device 10 operates the mobile terminal 26 to give an instruction to the power supply device 10, and various notifications are sent from the power supply device 10 to the mobile terminal 26 (user). I explained what would happen.
  • the owner or administrator of the power supply device 10 operates the mobile terminal 26 to instruct the power supply device 10, and the power supply device 10 sends the mobile terminal 26 (owner or administrator)
  • Various notifications may be made.
  • the user, owner, or administrator of the first power storage unit 40 or the second power storage unit 62 operates the mobile terminal 26 to instruct the power supply device 10, and from the power supply device 10 to the mobile terminal 26 (user, owner or administrator) may receive various notifications.
  • the owner of power supply device 10 , first power storage unit 40 or second power storage unit 62 may be the right holder of power supply device 10 , first power storage unit 40 or second power storage unit 62 .
  • the first CPU 46 only needs to acquire the SOC of at least one of the first power storage unit 40 and the second power storage unit 62 (the power storage unit to be replaced).
  • the first CPU 46 may acquire the power consumption of the load 38 .
  • a power monitoring device (not shown) continuously monitors the power consumption of the load 38 .
  • the power monitoring device transmits the power consumption monitoring result to the mobile terminal 26 .
  • the first CPU 46 acquires the power consumption of the load 38 from the portable terminal 26 by wireless communication.
  • First CPU 46 calculates the time when each SOC becomes SOCth1 or SOCth3 or less based on the acquired power consumption amount and each SOC of first power storage unit 40 and second power storage unit 62 .
  • first CPU 46 calculates a period from the current time to the time when each SOC becomes SOCth1 or SOCth3 or less based on the acquired power consumption amount and each SOC of first power storage unit 40 and second power storage unit 62. . This makes it possible to notify the portable terminal 26 (user) in advance of the remaining power supply time of the first power storage unit 40 and the second power storage unit 62, the timing of replacement, and the like.
  • connection points between the first power transmission path 16 and the second power transmission path 18 are the first housing 22 of the first power device 12 and the second housing of the second power device 14 . 24 is provided outside.
  • the first power transmission path 16 and the second power transmission path 18 are provided inside the first housing 22 of the first power device 12 or inside the second housing 24 of the second power device 14.
  • connection point may be provided.
  • a connection point between the first power transmission path 16 and the second power transmission path 18 is provided at an arbitrary point between the first power conversion section 60 and the second power conversion section 82 and the load connection section 28 . All you have to do is
  • the load 38 may be an AC device that operates with output power (AC power) supplied from the power supply device 10 .
  • AC appliances include AC consumer electronics, AC motors, AC/DC inverters, and the like.
  • the mobile terminal 26 may visually and audibly notify the user of the power supply device 10 of various types of information.
  • the portable terminal 26 sets the shared power, the sharing ratio, or the supplied power value of the first power storage unit 40 and the second power storage unit 62 with respect to the power consumption of the load 38 in accordance with the operation command. It may be transmitted to the two power device 14 . Alternatively, the portable terminal 26 may set the shared power, the sharing ratio, or the supplied power value of one of the first power storage unit 40 and the second power storage unit 62 to the first power device 12 and the second power device 14 . may be sent to
  • signals or information are transmitted and received by wireless communication between the mobile terminal 26 and the first power device 12 and the second power device 14 has been described.
  • signals or information may be transmitted and received between the mobile terminal 26 and the first power device 12 and the second power device 14 by wired communication. Further, in the present embodiment, signals or information may be transmitted and received between the first power device 12 and the second power device 14 by wired communication.
  • either one of the power devices may operate to match one of the first output voltage and the second output voltage to the other output voltage.
  • the first power device 12 and the second power device 14 may cooperate to control the first output voltage and the second output voltage to be equal.
  • each component of the first power device 12 including the first power storage unit 40 is arranged inside the first housing 22, and the second power device 14 including the second power storage unit 62 A case where each component is arranged in the second housing 24 has been described.
  • each component of the first power device 12 and the second power device 14 may be arranged inside the same (single) housing. In this case, even the load connection section 28 may be arranged (accommodated) inside the same housing.
  • a first aspect of the present invention is a power supply device (10) that outputs electric power to the outside, the power supply device comprising a first power storage unit (40), a second power storage unit (62), and the first power storage unit (40).
  • a second power conversion section (82) that converts the power supplied from the second power storage section, a first control section (46) that controls the first power conversion section, and a second power conversion section that controls the second power conversion section.
  • control unit (68) wherein the first power storage unit and the second power storage unit are connected in parallel to the load connection unit, and the first control unit is connected to the first power conversion unit. Controlling the first power conversion unit based on a first step-down characteristic such that the first output voltage output from the first power conversion unit gradually decreases as the first output current output from increases,
  • the second control unit is based on a second decreasing characteristic such that the second output voltage output from the second power conversion unit gradually decreases as the second output current output from the second power conversion unit increases. , and controls the second power conversion unit, and the first gradual decrease characteristic and the second gradual decrease characteristic are set to be different from each other.
  • the replacement timings of the two power storage units do not overlap, it is possible to continue supplying power to the load.
  • the present invention will be explained in more detail. Since the timing of replacement of the two power storage units is shifted, by replacing with a charged power storage unit, the power supply device can theoretically supply output power to the load indefinitely. In addition, unlike an uninterruptible power supply (UPS) with a so-called pass-through function, it is not necessary to connect to a power system. Furthermore, even when two power storage units with arbitrary remaining amounts (charge amounts) are attached, the timing of replacement of each power storage unit can be easily controlled.
  • UPS uninterruptible power supply
  • the first control section may control the first power conversion section such that the first output voltage and the second output voltage are equal.
  • the first control unit changes the first output current to the second output current when the power storage amount of the first power storage unit is less than the power storage amount of the second power storage unit. You may control a said 1st power conversion part so that it may become larger than.
  • the first control unit changes the first output current to the second output current when the power storage amount of the first power storage unit is greater than the power storage amount of the second power storage unit. You may control a said 1st power conversion part so that it may become larger than.
  • the power supply device includes a stored electricity amount acquiring unit (46 , 68) and use of the power supply device, the first power storage unit, or the second power storage unit when the power storage amount acquired by the power storage amount acquiring unit becomes equal to or less than a first predetermined value (SOCth1, SOCth3). and a notification unit for notifying the person, owner, or administrator.
  • a stored electricity amount acquiring unit 46 , 68
  • SOCth1, SOCth3 a stored electricity amount acquiring unit
  • the power supply device includes a power consumption acquisition unit (46, 68) that acquires the power consumption of the load, the storage amount acquired by the storage amount acquisition unit, and the consumption Based on the power consumption acquired by the power acquisition unit, the time when the power storage amount becomes equal to or less than the second predetermined value (SOCth1, SOCth3), or the power storage amount becomes equal to or less than the second predetermined value from the current time point.
  • a calculation unit (46, 68) for calculating the period up to the point in time may be further provided.
  • the first control section is configured based on a first drooping characteristic such that the first output voltage sharply decreases when the first output current is equal to or greater than a third predetermined value (Ith0). and the second control unit controls the first power conversion unit, and the second control unit provides a second drooping characteristic such that the second output voltage sharply decreases when the second output current is equal to or greater than a fourth predetermined value (Itha). You may control a said 2nd power conversion part based on.
  • the power supply device includes a receiving unit that receives a request from a user regarding usage of power stored in at least one of the first power storage unit and the second power storage unit. (54, 76) may further be provided.
  • At least one of the first control unit and the second control unit controls, based on the request received by the receiving unit, the first power conversion unit and the At least one of the second power conversion units may be controlled.
  • the power converter can be appropriately controlled according to the user's request.
  • the receiving unit may communicate with the mobile terminal (26) of the user and receive the request input by the user to the mobile terminal.
  • the power converter can be controlled more appropriately according to the user's request.
  • the receiving unit makes the request for shared power shared by at least one of the first power storage unit and the second power storage unit with respect to power consumption of the load. You may accept.
  • the first power storage unit and the second power storage unit may be detachable from the power supply device.
  • the first power storage unit and the second power storage unit can be easily replaced.
  • the power supply device includes: a first housing (22) housing the first power storage unit, the first power conversion unit, and the first control unit; the second power storage unit; A second housing (24) that houses the second power converter and the second controller may be further provided.
  • the first control section and the second control section may be provided so as to communicate with each other.
  • a second aspect of the present invention is a second power storage unit connected in parallel to the first power storage unit with respect to the load when the first power storage unit and the load are connected via a first power transmission path.
  • a power supply device (14) including a power storage unit, wherein the power supply device is arranged in a second power transmission path connecting the second power storage unit and the load, and arranged in the second power transmission path to A power conversion unit (82) that converts power supplied from a power storage unit, and a control unit (68) that controls the power conversion unit, wherein the first output voltage output from the first power transmission path is
  • the control unit controls the power controlling the power conversion unit based on a fourth decreasing characteristic such that the second output current output from the power conversion unit gradually decreases as the second output voltage output from the conversion unit increases;
  • the gradual decrease characteristic is set to be different from the third gradual decrease characteristic.
  • the present invention also provides the same effect as the first aspect.
  • the power supply device further includes a voltage acquisition section (68) that acquires the first output voltage, and the control section controls the power conversion section to control the second
  • the first state quantity correlated with the frequency of the output voltage and the second state quantity correlated with the phase of the second output voltage are controlled to match the first output voltage acquired by the voltage acquisition unit. good too.
  • control unit controls the power conversion unit to acquire the third state quantity correlated with the amplitude of the second output voltage from the first state obtained by the voltage obtaining unit. It may be controlled to match the output voltage.
  • a third aspect of the present invention is a control method for a power supply device that outputs electric power to the outside, wherein the power supply device includes a first power storage unit, a second power storage unit, the first power storage unit, and a load. a first power transmission path that connects a connected load connection section; a second power transmission path that connects the second power storage section and the load connection section; a first power conversion unit that converts power supplied from one power storage unit; a second power conversion unit that is arranged in the second power transmission path and converts power supplied from the second power storage unit; a control unit that controls the first power conversion unit and the second power conversion unit, the first power storage unit and the second power storage unit being connected in parallel to the load connection unit; is output from the first power conversion unit as the first output current output from the first power conversion unit increases by controlling the first power conversion unit based on the first gradual decrease characteristic a step of stepping down a first output voltage; and a second output output from the second power conversion unit by controlling the second power conversion unit based on a second
  • the present invention also provides the same effects as the first and second aspects.
  • a fourth aspect of the present invention is a program that causes a computer (46, 68) to execute the power supply control method of the third aspect.
  • the present invention also provides the same effects as the first and second aspects.
  • a fifth aspect of the present invention is a storage medium (86) that stores the program of the fourth aspect.
  • the present invention also provides the same effects as the first and second aspects.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Charge And Discharge Circuits For Batteries Or The Like (AREA)

Abstract

In a power supply device (10) and a method for controlling the power supply device (10), a first power conversion unit (60) is controlled on the basis of a first decrease characteristic such that a first output voltage decreases as a first output current increases. Also, a second power conversion unit (82) is controlled on the basis of a second decrease characteristic such that a second output voltage decreases as a second output current increases. The first decrease characteristic and the second diminishing characteristic are set so as to be different from each other.

Description

電源装置、電源装置の制御方法、プログラム及び記憶媒体Power supply, power supply control method, program and storage medium
 本発明は、電源装置、電源装置の制御方法、プログラム及び記憶媒体に関する。 The present invention relates to a power supply, a power supply control method, a program, and a storage medium.
 国際公開第2020/235617号には、蓄電部を備える電力出力装置が開示されている。電力出力装置は、蓄電部から出力される直流電力を交流電力に変換する。電力出力装置は、変換した交流電力を外部に出力する。 International Publication No. 2020/235617 discloses an electric power output device including a power storage unit. The power output device converts DC power output from the power storage unit into AC power. The power output device outputs the converted AC power to the outside.
 2台の電力出力装置から負荷に電力を供給する場合、2台の電力出力装置は、負荷に対して並列に接続される。2台の電力出力装置の各々を定格運転するときに、各蓄電部の蓄電量が閾値まで低下すれば、各蓄電部を交換する必要がある。この場合、各蓄電部の交換中、各電力出力装置から負荷に電力を供給することができない。 When power is supplied to the load from two power output devices, the two power output devices are connected in parallel to the load. If the amount of power stored in each power storage unit drops to a threshold value when each of the two power output devices is operated at rated power, each power storage unit needs to be replaced. In this case, power cannot be supplied from each power output device to the load during replacement of each power storage unit.
 本発明は、上述した課題を解決することを目的とする。 An object of the present invention is to solve the above-described problems.
 本発明の第1の態様は、外部に電力を出力する電源装置であって、前記電源装置は、第1蓄電部と、第2蓄電部と、前記第1蓄電部と、負荷が接続される負荷接続部とを接続する第1電力伝達経路と、前記第2蓄電部と前記負荷接続部とを接続する第2電力伝達経路と、前記第1電力伝達経路に配置され、前記第1蓄電部から供給される電力を変換する第1電力変換部と、前記第2電力伝達経路に配置され、前記第2蓄電部から供給される電力を変換する第2電力変換部と、前記第1電力変換部を制御する第1制御部と、前記第2電力変換部を制御する第2制御部と、を備え、前記第1蓄電部と前記第2蓄電部とは、前記負荷接続部に対して並列に接続され、前記第1制御部は、前記第1電力変換部から出力される第1出力電流が上昇するにつれて、前記第1電力変換部から出力される第1出力電圧が逓減するような第1逓減特性に基づき、前記第1電力変換部を制御し、前記第2制御部は、前記第2電力変換部から出力される第2出力電流が上昇するにつれて、前記第2電力変換部から出力される第2出力電圧が逓減するような第2逓減特性に基づき、前記第2電力変換部を制御し、前記第1逓減特性と、前記第2逓減特性とは、互いに異なるように設定される。 A first aspect of the present invention is a power supply device that outputs electric power to the outside, wherein the power supply device is connected to a first power storage unit, a second power storage unit, the first power storage unit, and a load. a first power transmission path connecting a load connection section; a second power transmission path connecting the second power storage section and the load connection section; a first power conversion unit that converts power supplied from the second power transmission path, a second power conversion unit that converts power supplied from the second power storage unit, and the first power conversion unit and a second control unit that controls the second power conversion unit, wherein the first power storage unit and the second power storage unit are connected in parallel to the load connection unit. , and the first control unit is configured such that as the first output current output from the first power conversion unit increases, the first output voltage output from the first power conversion unit gradually decreases. Based on the step-down characteristic, the first power conversion unit is controlled, and as the second output current output from the second power conversion unit increases, the second control unit outputs from the second power conversion unit The second power conversion unit is controlled based on a second step-down characteristic such that the output voltage is stepped down, and the first step-down characteristic and the second step-down characteristic are set to be different from each other. .
 本発明の第2の態様は、第1蓄電部と負荷とが第1電力伝達経路を介して接続されている場合に、前記負荷に対して前記第1蓄電部と並列に接続される第2蓄電部を備える電源装置であって、前記電源装置は、前記第2蓄電部と前記負荷とを接続する第2電力伝達経路と、前記第2電力伝達経路に配置され、前記第2蓄電部から供給される電力を変換する電力変換部と、前記電力変換部を制御する制御部と、を備え、前記第1電力伝達経路から出力される第1出力電圧が上昇するにつれて、前記第1電力伝達経路から出力される第1出力電流が逓減するような第3逓減特性に基づき、前記第1蓄電部が電力を出力する場合に、前記制御部は、前記電力変換部から出力される第2出力電圧が上昇するにつれて、前記電力変換部から出力される第2出力電流が逓減するような第4逓減特性に基づき、前記電力変換部を制御し、前記第4逓減特性は、前記第3逓減特性と異なるように設定される。 A second aspect of the present invention is a second power storage unit connected in parallel to the first power storage unit with respect to the load when the first power storage unit and the load are connected via a first power transmission path. A power supply device including a power storage unit, the power supply device being arranged in a second power transmission path connecting the second power storage unit and the load, a power conversion unit that converts supplied power; and a control unit that controls the power conversion unit. When the first power storage unit outputs electric power based on a third decreasing characteristic such that the first output current output from the path gradually decreases, the control unit controls the second output output from the power conversion unit. The power conversion unit is controlled based on a fourth gradual decrease characteristic such that the second output current output from the power conversion unit gradually decreases as the voltage increases, and the fourth gradual decrease characteristic is the third gradual decrease characteristic. is set differently from
 本発明の第3の態様は、外部に電力を出力する電源装置の制御方法であって、前記電源装置は、第1蓄電部と、第2蓄電部と、前記第1蓄電部と、負荷が接続される負荷接続部とを接続する第1電力伝達経路と、前記第2蓄電部と前記負荷接続部とを接続する第2電力伝達経路と、前記第1電力伝達経路に配置され、前記第1蓄電部から供給される電力を変換する第1電力変換部と、前記第2電力伝達経路に配置され、前記第2蓄電部から供給される電力を変換する第2電力変換部と、前記第1電力変換部及び前記第2電力変換部を制御する制御部と、を備え、前記第1蓄電部と前記第2蓄電部とは、前記負荷接続部に対して並列に接続され、前記制御方法は、第1逓減特性に基づいて前記第1電力変換部を制御することにより、前記第1電力変換部から出力される第1出力電流が上昇するにつれて、前記第1電力変換部から出力される第1出力電圧を逓減させるステップと、前記第1逓減特性とは異なる第2逓減特性に基づいて前記第2電力変換部を制御することにより、前記第2電力変換部から出力される第2出力電流が上昇するにつれて、前記第2電力変換部から出力される第2出力電圧を逓減させるステップと、を有する。 A third aspect of the present invention is a control method for a power supply device that outputs electric power to the outside, wherein the power supply device includes a first power storage unit, a second power storage unit, the first power storage unit, and a load. a first power transmission path that connects a connected load connection section; a second power transmission path that connects the second power storage section and the load connection section; a first power conversion unit that converts power supplied from one power storage unit; a second power conversion unit that is arranged in the second power transmission path and converts power supplied from the second power storage unit; a control unit that controls the first power conversion unit and the second power conversion unit, the first power storage unit and the second power storage unit being connected in parallel to the load connection unit; is output from the first power conversion unit as the first output current output from the first power conversion unit increases by controlling the first power conversion unit based on the first gradual decrease characteristic a step of stepping down a first output voltage; and a second output output from the second power conversion unit by controlling the second power conversion unit based on a second stepping-down characteristic different from the first stepping-down characteristic. and stepping down a second output voltage output from the second power converter as the current increases.
 本発明の第4の態様は、第3の態様の電源装置の制御方法をコンピュータに実行させるプログラムである。 A fourth aspect of the present invention is a program that causes a computer to execute the power supply control method of the third aspect.
 本発明の第5の態様は、第4の態様のプログラムを記憶する記憶媒体である。 A fifth aspect of the present invention is a storage medium that stores the program of the fourth aspect.
 本発明によれば、2つの蓄電部の交換のタイミングが重ならないので、負荷に電力を供給し続けることが可能となる。 According to the present invention, since the replacement timings of the two power storage units do not overlap, it is possible to continue supplying power to the load.
図1は、本実施形態に係る電源装置の構成図である。FIG. 1 is a configuration diagram of a power supply device according to this embodiment. 図2は、電力装置の回路構成図である。FIG. 2 is a circuit configuration diagram of the power device. 図3は、第1実施例のフローチャートである。FIG. 3 is a flow chart of the first embodiment. 図4は、ベースの電圧電流特性を示す図である。FIG. 4 is a diagram showing voltage-current characteristics of the base. 図5は、第1実施例でのSOCのタイミングチャートである。FIG. 5 is a timing chart of SOC in the first embodiment. 図6は、第1電圧電流特性及び第2電圧電流特性を示す図である。FIG. 6 is a diagram showing first voltage-current characteristics and second voltage-current characteristics. 図7は、第2実施例のフローチャートである。FIG. 7 is a flow chart of the second embodiment. 図8は、第2実施例でのSOCのタイミングチャートである。FIG. 8 is a timing chart of SOC in the second embodiment.
 図1は、本実施形態に係る電源装置10の構成図である。電源装置10は、第1電力装置12(電源装置)と、第2電力装置14(電源装置)と、第1電力伝達経路16と、第2電力伝達経路18とを備える。 FIG. 1 is a configuration diagram of a power supply device 10 according to this embodiment. The power supply device 10 includes a first power device 12 (power source device), a second power device 14 (power source device), a first power transmission path 16 , and a second power transmission path 18 .
 第1電力装置12及び第2電力装置14は、外部に電力を出力可能な給電器である。第1電力装置12及び第2電力装置14は、同じ外観形状を有する。第1電力装置12は、略直方体状の第1筐体22を有する。第2電力装置14は、略直方体状の第2筐体24を有する。 The first power device 12 and the second power device 14 are feeders capable of outputting power to the outside. The first power device 12 and the second power device 14 have the same external shape. The first power device 12 has a substantially rectangular parallelepiped first housing 22 . The second power device 14 has a substantially rectangular parallelepiped second housing 24 .
 第1電力装置12及び第2電力装置14の各々は、携帯端末26との間で、無線通信による信号又は情報の送受信が可能である。携帯端末26は、電源装置10の利用者が操作可能な携帯機器である。第1電力装置12と第2電力装置14とは、携帯端末26を介して、無線通信による信号又は情報の送受信が可能である。あるいは、第1電力装置12と第2電力装置14との間では、無線を介して、信号又は情報の送受信が直接行われてもよい。 Each of the first power device 12 and the second power device 14 can transmit and receive signals or information to and from the mobile terminal 26 by wireless communication. The mobile terminal 26 is a mobile device that can be operated by the user of the power supply device 10 . The first power device 12 and the second power device 14 can transmit and receive signals or information by wireless communication via the mobile terminal 26 . Alternatively, signals or information may be transmitted and received directly between the first power device 12 and the second power device 14 via radio.
 第1電力伝達経路16は、第1電力装置12と、交流アウトレット等の負荷接続部28とを電気的に接続する。第1電力伝達経路16は、第1正極線30と第1負極線32との2つの配線で構成される。第2電力伝達経路18は、第2電力装置14と負荷接続部28とを電気的に接続する。第2電力伝達経路18は、第2正極線34と第2負極線36との2つの配線で構成される。第1電力装置12及び第2電力装置14は、負荷接続部28に対して並列に接続されている。 The first power transmission path 16 electrically connects the first power device 12 and a load connection section 28 such as an AC outlet. The first power transmission path 16 is composed of two wires, a first positive line 30 and a first negative line 32 . The second power transmission path 18 electrically connects the second power device 14 and the load connection portion 28 . The second power transmission path 18 is composed of two wires, a second positive line 34 and a second negative line 36 . The first power device 12 and the second power device 14 are connected in parallel to the load connection 28 .
 負荷接続部28には、負荷38が接続される。第1電力装置12は、第1電力伝達経路16と負荷接続部28とを介して、負荷38に第1出力電力を供給する。第2電力装置14は、第2電力伝達経路18と負荷接続部28とを介して、負荷38に第2出力電力を供給する。第1出力電力及び第2出力電力は、交流電力である。 A load 38 is connected to the load connection portion 28 . First power device 12 provides first output power to load 38 via first power transmission path 16 and load connection 28 . Second power device 14 provides second output power to load 38 via second power transmission path 18 and load connection 28 . The first output power and the second output power are AC power.
 図2は、第1電力装置12及び第2電力装置14の回路構成図である。第1電力装置12及び第2電力装置14は、回路構成も含めて互いに同じ構成を有する。図2では、1台分の電力装置の回路構成を図示している。 FIG. 2 is a circuit configuration diagram of the first power device 12 and the second power device 14. FIG. The first power device 12 and the second power device 14 have the same configuration as each other including the circuit configuration. FIG. 2 shows the circuit configuration of one power device.
 第1電力装置12は、第1蓄電部40、第1DC/DCコンバータ42、第1インバータ44、第1CPU46(制御部、蓄電量取得部、消費電力量取得部、算出部、第1制御部、コンピュータ)、第1フィルタ48、第1電圧センサ50、第1電流センサ52、第1通信部54(受領部)、第1アウトレット56、及び、第1並列端子58を備える。第1DC/DCコンバータ42及び第1インバータ44は、第1電力変換部60を構成する。第1蓄電部40、第1電力変換部60、第1CPU( Central Processing Unit)46、第1フィルタ48、第1電圧センサ50、第1電流センサ52及び第1通信部54は、第1筐体22(図1参照)の内部に収容されている。第1アウトレット56、及び、第1並列端子58は、第1筐体22に設けられている。 The first power device 12 includes a first power storage unit 40, a first DC/DC converter 42, a first inverter 44, a first CPU 46 (control unit, storage amount acquisition unit, power consumption amount acquisition unit, calculation unit, first control unit, computer), a first filter 48 , a first voltage sensor 50 , a first current sensor 52 , a first communication section 54 (receiving section), a first outlet 56 and a first parallel terminal 58 . The first DC/DC converter 42 and the first inverter 44 constitute a first power converter 60 . The first power storage unit 40, the first power conversion unit 60, the first CPU (Central Processing Unit) 46, the first filter 48, the first voltage sensor 50, the first current sensor 52, and the first communication unit 54 are 22 (see FIG. 1). A first outlet 56 and a first parallel terminal 58 are provided on the first housing 22 .
 第2電力装置14は、第2蓄電部62、第2DC/DCコンバータ64、第2インバータ66、第2CPU68(制御部、蓄電量取得部、消費電力量取得部、算出部、電圧取得部、第2制御部、コンピュータ)、第2フィルタ70、第2電圧センサ72、第2電流センサ74、第2通信部76(受領部)、第2アウトレット78、及び、第2並列端子80を備える。第2DC/DCコンバータ64及び第2インバータ66は、第2電力変換部82を構成する。第2蓄電部62、第2電力変換部82、第2CPU68、第2フィルタ70、第2電圧センサ72、第2電流センサ74、及び、第2通信部76は、第2筐体24(図1参照)の内部に収容されている。第2アウトレット78、及び、第2並列端子80は、第2筐体24に設けられている。 The second power device 14 includes a second power storage unit 62, a second DC/DC converter 64, a second inverter 66, a second CPU 68 (a control unit, a storage amount acquisition unit, a power consumption amount acquisition unit, a calculation unit, a voltage acquisition unit, a 2 control unit, computer), a second filter 70 , a second voltage sensor 72 , a second current sensor 74 , a second communication unit 76 (receiving unit), a second outlet 78 and a second parallel terminal 80 . The second DC/DC converter 64 and the second inverter 66 constitute a second power converter 82 . The second power storage unit 62, the second power conversion unit 82, the second CPU 68, the second filter 70, the second voltage sensor 72, the second current sensor 74, and the second communication unit 76 are connected to the second housing 24 (see FIG. 1). ) is housed inside. A second outlet 78 and a second parallel terminal 80 are provided on the second housing 24 .
 上記のように、第1電力装置12及び第2電力装置14は、回路構成も含めて互いに同じ構成を有する。そのため、代表的に、第1電力装置12の構成について説明する。従って、第2電力装置14の詳細な説明については省略する。 As described above, the first power device 12 and the second power device 14 have the same configuration including the circuit configuration. Therefore, the configuration of the first power device 12 will be described as a representative. Therefore, detailed description of the second power device 14 is omitted.
 第1蓄電部40は、直流電源である。第1蓄電部40は、第1筐体22の内部に配置(収容)されている(図1参照)。第1蓄電部40は、第1電力装置12に対して着脱可能である。第1蓄電部40は、第1電力装置12に着脱可能なモバイルバッテリである。第1蓄電部40は、例えば、着脱式のリチウムイオンバッテリのバッテリパックが好適である。 The first power storage unit 40 is a DC power supply. The first power storage unit 40 is arranged (accommodated) inside the first housing 22 (see FIG. 1). The first power storage unit 40 is detachable from the first power device 12 . The first power storage unit 40 is a mobile battery detachable from the first power device 12 . The first power storage unit 40 is preferably a detachable lithium-ion battery pack, for example.
 第1電力装置12には、少なくとも1つの第1蓄電部40が装着されていればよい。第1電力装置12が複数の第1蓄電部40を備える場合、複数の第1蓄電部40のうち、少なくとも1つの第1蓄電部40が第1電力装置12に対して着脱可能であればよい。この場合、第1蓄電部40は、別途の作業工具等を用いることなく、第1電力装置12に対して着脱可能であることがより好ましい。つまり、第1蓄電部40は、作業工具等を用いなくても、第1電力装置12に対して自在に着脱できるように構成されている。また、「第1電力装置12に対して着脱」には、第1電力装置12に対して第1蓄電部40を装着する場合と、第1電力装置12に対して第1蓄電部40を離脱させる場合とが含まれる。以下の説明では、第1電力装置12に対して、1つの第1蓄電部40が着脱可能である場合について説明する。 At least one first power storage unit 40 should be attached to the first power device 12 . When first power device 12 includes a plurality of first power storage units 40 , at least one first power storage unit 40 among the plurality of first power storage units 40 may be detachable from first power device 12 . . In this case, first power storage unit 40 is preferably detachable from first power device 12 without using a separate work tool or the like. That is, the first power storage unit 40 is configured to be freely attachable to and detachable from the first power device 12 without using a work tool or the like. Further, "attachment to and detaching from the first power device 12" includes a case where the first power storage unit 40 is attached to the first power device 12, and a case where the first power storage unit 40 is removed from the first power device 12. This includes cases where In the following description, a case where one first power storage unit 40 is detachable from the first power device 12 will be described.
 第1蓄電部40は、第1CPU46からの制御信号に基づき、直流電力を出力可能である。第1蓄電部40は、蓄電量であるSOC(State Of Charge)を第1CPU46に逐次報知する。 The first power storage unit 40 can output DC power based on a control signal from the first CPU 46 . The first power storage unit 40 sequentially notifies the first CPU 46 of SOC (State Of Charge), which is the amount of power stored.
 第1電力伝達経路16は、第1蓄電部40と負荷接続部28とを接続する。第1電力伝達経路16のうち、第1電力装置12内の部分は、第1蓄電部40と第1アウトレット56とを接続する。第1電力伝達経路16のうち、第1電力装置12外の部分は、第1アウトレット56と負荷接続部28とを接続する。 The first power transmission path 16 connects the first power storage unit 40 and the load connection unit 28 . A portion of the first power transmission path 16 within the first power device 12 connects the first power storage unit 40 and the first outlet 56 . A portion of the first power transmission path 16 outside the first power device 12 connects the first outlet 56 and the load connection 28 .
 第1電力伝達経路16のうち、第1電力装置12内の部分には、第1蓄電部40から第1アウトレット56に向かって、第1DC/DCコンバータ42、第1インバータ44、第1フィルタ48、第1電圧センサ50及び第1電流センサ52が順に配置されている。第1電力伝達経路16の第1正極線30及び第1負極線32のうち、第1電圧センサ50及び第1電流センサ52と第1アウトレット56との間の部分は、2本の配線84を介して、第1並列端子58と接続されている。 A first DC/DC converter 42 , a first inverter 44 , a first filter 48 are provided in a portion of the first power transmission path 16 within the first power device 12 from the first power storage unit 40 toward the first outlet 56 . , a first voltage sensor 50 and a first current sensor 52 are arranged in order. Of the first positive line 30 and the first negative line 32 of the first power transmission path 16, the portion between the first voltage sensor 50 and the first current sensor 52 and the first outlet 56 is connected by two wires 84. It is connected to the first parallel terminal 58 via.
 第1DC/DCコンバータ42は、第1CPU46からの制御信号に基づき、第1蓄電部40の直流電圧を所望の値の直流電圧に変換する。第1インバータ44は、第1CPU46からの制御信号に基づき、第1DC/DCコンバータ42で変換された直流電圧を第1出力電圧に変換する。従って、第1電力変換部60は、第1蓄電部40の直流電圧を第1出力電圧に変換する。第1出力電圧は、交流電圧である。第1フィルタ48は、第1インバータ44で変換された第1出力電圧に重畳しているノイズを除去する。 The first DC/DC converter 42 converts the DC voltage of the first power storage unit 40 into a desired value of DC voltage based on the control signal from the first CPU 46 . The first inverter 44 converts the DC voltage converted by the first DC/DC converter 42 into a first output voltage based on the control signal from the first CPU 46 . Therefore, the first power converter 60 converts the DC voltage of the first power storage unit 40 into the first output voltage. The first output voltage is an alternating voltage. The first filter 48 removes noise superimposed on the first output voltage converted by the first inverter 44 .
 第1電圧センサ50は、第1電力伝達経路16のうち、第1フィルタ48と、第1電力伝達経路16と2本の配線84との接続箇所との間の部分に配置されている。第1電圧センサ50の一端は、第1正極線30に接続されている。第1電圧センサ50の他端は、第1負極線32に接続されている。第1電圧センサ50は、第1フィルタ48を通過した第1出力電圧を逐次検出し、その検出結果を第1CPU46に出力する。 The first voltage sensor 50 is arranged in the portion of the first power transmission path 16 between the first filter 48 and the connection point between the first power transmission path 16 and the two wires 84 . One end of the first voltage sensor 50 is connected to the first positive line 30 . The other end of the first voltage sensor 50 is connected to the first negative line 32 . The first voltage sensor 50 sequentially detects the first output voltage that has passed through the first filter 48 and outputs the detection results to the first CPU 46 .
 第1電流センサ52は、第1電力伝達経路16の第1正極線30のうち、第1電圧センサ50の一端との接続箇所と、第1正極線30と1本の配線84との接続箇所との間の部分に配置されている。第1電流センサ52は、第1インバータ44から負荷接続部28に流れる第1出力電流を逐次検出し、その検出結果を第1CPU46に出力する。第1出力電流は、交流電流である。 The first current sensor 52 is connected to one end of the first voltage sensor 50 in the first positive line 30 of the first power transmission path 16 and connected to the first positive line 30 and one wiring 84 . It is located in the part between The first current sensor 52 successively detects the first output current flowing from the first inverter 44 to the load connecting portion 28 and outputs the detection result to the first CPU 46 . The first output current is alternating current.
 第1CPU46は、第1電力装置12の各部を統括的に制御するコンピュータである。第1CPU46は、メモリ86(記憶媒体)に記憶されたプログラムを読み出して実行することにより、各種の機能を実現する。第1CPU46の機能については後述する。 The first CPU 46 is a computer that comprehensively controls each part of the first power device 12 . The first CPU 46 implements various functions by reading and executing programs stored in the memory 86 (storage medium). Functions of the first CPU 46 will be described later.
 第1通信部54は、携帯端末26との間で、無線通信による信号又は情報の送受信を行う。また、第1通信部54は、携帯端末26を介して、第2電力装置14との間で、無線通信による信号又は情報の送受信を行う。あるいは、第1通信部54は、第2電力装置14との間で、無線通信による信号又は情報の送受信を直接行うことも可能である。 The first communication unit 54 transmits and receives signals or information to and from the mobile terminal 26 by wireless communication. The first communication unit 54 also transmits and receives signals or information by wireless communication with the second power device 14 via the mobile terminal 26 . Alternatively, the first communication unit 54 can directly transmit and receive signals or information to and from the second power device 14 by wireless communication.
 なお、上記の回路構成の説明において、「第1」の文言を「第2」に置き換え、且つ、「第2」の文言を「第1」に置き換えることにより、第2電力装置14の回路構成の説明となる。 In the above description of the circuit configuration, by replacing the wording "first" with "second" and the wording "second" with "first", the circuit configuration of the second power device 14 is an explanation.
 以上のように構成される電源装置10の動作について、図3~図8を参照しながら説明する。この動作の説明では、必要に応じて、図1及び図2も参照しながら説明する。 The operation of the power supply device 10 configured as above will be described with reference to FIGS. 3 to 8. FIG. This operation will be described with reference to FIGS. 1 and 2 as necessary.
 ここでは、第1電力装置12及び第2電力装置14の双方から負荷38に電力を出力する並列運転について説明する。また、並列運転中に第1電力装置12及び第2電力装置14に装着された第1蓄電部40及び第2蓄電部62を交換するときの動作について説明する。具体的には、図3~図6の第1実施例と、図7及び図8の第2実施例とについて説明する。いずれの実施例でも、電源装置10は、並列運転中、第1蓄電部40及び第2蓄電部62の交換のタイミングをずらすように動作する。また、いずれの実施例でも、第1CPU46が電源装置10の動作主体である場合について説明する。 Here, parallel operation in which power is output from both the first power device 12 and the second power device 14 to the load 38 will be described. Also, an operation when replacing the first power storage unit 40 and the second power storage unit 62 attached to the first power device 12 and the second power device 14 during parallel operation will be described. Specifically, a first embodiment shown in FIGS. 3 to 6 and a second embodiment shown in FIGS. 7 and 8 will be described. In any embodiment, the power supply device 10 operates so as to stagger the replacement timing of the first power storage unit 40 and the second power storage unit 62 during parallel operation. Also, in any of the embodiments, the case where the first CPU 46 is the operating body of the power supply device 10 will be described.
 先ず、第1実施例について、図3~図6を参照しながら説明する。第1実施例では、第1蓄電部40のSOCが第2蓄電部62のSOCよりも少ない場合について説明する。 First, the first embodiment will be described with reference to FIGS. 3 to 6. FIG. In the first embodiment, the case where the SOC of first power storage unit 40 is lower than the SOC of second power storage unit 62 will be described.
 図3のステップS1において、電源装置10(図1参照)の利用者は、並列運転の実行を指示するため、携帯端末26を操作する。利用者は、第1実施例の動作モード(仕様態様)を実行するように、携帯端末26を操作する。携帯端末26は、利用者の操作内容(要求)に基づき、第1実施例の動作モードの実行を指示するための指示信号を、第1電力装置12及び第2電力装置14に送信する。第1電力装置12の第1通信部54(図2参照)は、指示信号を受信し、第1CPU46に出力する。第2電力装置14の第2通信部76は、指示信号を受信し、第2CPU68に出力する。なお、利用者の要求には、第1蓄電部40及び第2蓄電部62から負荷38に供給される出力電力の負担割合(分担割合)も含まれる。 In step S1 of FIG. 3, the user of the power supply device 10 (see FIG. 1) operates the mobile terminal 26 to instruct execution of parallel operation. The user operates the portable terminal 26 so as to execute the operation mode (specification aspect) of the first embodiment. The mobile terminal 26 transmits an instruction signal for instructing execution of the operation mode of the first embodiment to the first power device 12 and the second power device 14 based on the user's operation content (request). The first communication unit 54 (see FIG. 2) of the first power device 12 receives the instruction signal and outputs it to the first CPU 46 . The second communication unit 76 of the second power device 14 receives the instruction signal and outputs it to the second CPU 68 . The request from the user also includes the share of the output power supplied from the first power storage unit 40 and the second power storage unit 62 to the load 38 (sharing rate).
 ステップS2において、第1CPU46は、指示信号に基づき、動作モードを実行する。第1CPU46のメモリ86には、マップ88が格納されている。このマップ88は、図4に示すように、出力電圧の実効値(V)と出力電流の実効値(I)との関係を表わす電圧電流特性(第1逓減特性(第3逓減特性)、第1垂下特性)のマップである。 In step S2, the first CPU 46 executes the operation mode based on the instruction signal. A map 88 is stored in the memory 86 of the first CPU 46 . This map 88, as shown in FIG. 4, has voltage-current characteristics (first decreasing characteristic (third decreasing characteristic), 1 drooping characteristics).
 このマップ88では、縦軸が出力電圧の実効値であり、横軸が出力電流の実効値である。以下の説明では、便宜上、「出力電圧の実効値」を「出力電圧」といい、「出力電流の実効値」を「出力電流」という場合がある。 In this map 88, the vertical axis is the effective value of the output voltage, and the horizontal axis is the effective value of the output current. In the following description, for convenience, "effective value of output voltage" may be referred to as "output voltage", and "effective value of output current" may be referred to as "output current".
 このマップ88は、出力電流が上昇するにつれて、出力電圧が逓減するような逓減特性(第1逓減特性)を有する。また、このマップ88は、出力電流が閾値Ith0(第3所定値)以上のときに、出力電圧が急減するような垂下特性(第1垂下特性)を有する。垂下特性は、電源装置10(電力装置)を過電流から保護するために設けられている。 This map 88 has a gradual decrease characteristic (first gradual decrease characteristic) such that the output voltage gradually decreases as the output current increases. Further, this map 88 has a drooping characteristic (first drooping characteristic) such that the output voltage sharply decreases when the output current is equal to or greater than the threshold value Ith0 (third predetermined value). The droop feature is provided to protect the power supply 10 (power unit) from overcurrent.
 第1CPU46は、このマップ88に基づき、所望の値の第1出力電圧及び第1出力電流が出力されるように、第1電力変換部60を制御する。具体的には、第1CPU46は、マップ88に基づき、第1出力電圧及び第1出力電流の目標値を設定する。第1CPU46は、目標値に応じた制御信号を第1電力変換部60に出力する。 Based on this map 88, the first CPU 46 controls the first power converter 60 so that the first output voltage and the first output current of desired values are output. Specifically, the first CPU 46 sets target values for the first output voltage and the first output current based on the map 88 . The first CPU 46 outputs a control signal corresponding to the target value to the first power converter 60 .
 なお、メモリ86には、逓減特性及び垂下特性が異なる複数の電圧電流特性を有するマップ88が格納されてもよい。この場合、第1CPU46は、複数の電圧電流特性のうち、適切な電圧電流特性を選択し、選択した電圧電流特性を参照して、第1出力電圧及び第1出力電流の目標値を設定すればよい。 Note that the memory 86 may store a map 88 having a plurality of voltage-current characteristics with different descent characteristics and drooping characteristics. In this case, the first CPU 46 selects an appropriate voltage-current characteristic from among the plurality of voltage-current characteristics, refers to the selected voltage-current characteristic, and sets the target values of the first output voltage and the first output current. good.
 第1DC/DCコンバータ42は、制御信号に基づき、第1蓄電部40の直流電圧を所望の値の直流電圧に変換する。第1インバータ44は、制御信号に基づき、第1DC/DCコンバータ42で変換された直流電圧を、第1出力電圧に変換する。これにより、第1電力装置12から負荷38への第1出力電力(第1出力電圧、第1出力電流)の供給が開始される。なお、第1出力電力が有効電力である場合、第1出力電力は、第1出力電圧の実効値と、第1出力電流の実効値と、力率との積である。 The first DC/DC converter 42 converts the DC voltage of the first power storage unit 40 into a desired value of DC voltage based on the control signal. The first inverter 44 converts the DC voltage converted by the first DC/DC converter 42 into a first output voltage based on the control signal. As a result, supply of first output power (first output voltage, first output current) from the first power device 12 to the load 38 is started. When the first output power is active power, the first output power is the product of the effective value of the first output voltage, the effective value of the first output current, and the power factor.
 第1電圧センサ50は、第1出力電圧を検出し、検出結果を第1CPU46に出力する。第1電流センサ52は、第1出力電流を検出し、検出結果を第1CPU46に出力する。従って、第1CPU46は、第1出力電圧及び第1出力電流が目標値となるようにフィードバック制御を行うことができる。 The first voltage sensor 50 detects the first output voltage and outputs the detection result to the first CPU 46 . The first current sensor 52 detects the first output current and outputs the detection result to the first CPU 46 . Therefore, the first CPU 46 can perform feedback control so that the first output voltage and the first output current become the target values.
 第1CPU46は、第1通信部54を介して、第2電力装置14に、第1電力装置12が動作モードの実行を開始したことを通知する。第2電力装置14の第2通信部76は、第1CPU46からの通知内容を受信し、第2CPU68に出力する。 The first CPU 46 notifies the second power device 14 via the first communication unit 54 that the first power device 12 has started executing the operation mode. The second communication unit 76 of the second power device 14 receives the content of the notification from the first CPU 46 and outputs it to the second CPU 68 .
 第2CPU68は、第1CPU46からの通知内容に基づき、動作モードを実行する。第2CPU68のメモリ86にも、マップ88が格納されている。このマップ88は、第1CPU46のメモリ86に格納されているマップ88と同様のマップである(図4参照)。 The second CPU 68 executes the operation mode based on the contents of the notification from the first CPU 46. A map 88 is also stored in the memory 86 of the second CPU 68 . This map 88 is similar to the map 88 stored in the memory 86 of the first CPU 46 (see FIG. 4).
 上記のように、第1電力装置12と第2電力装置14とは負荷接続部28に対して並列に接続されている。第1電力装置12は、第1出力電圧を負荷38に供給している。そのため、第2電力装置14の第2アウトレット78にも第1出力電圧が供給される。第2電圧センサ72は、第1出力電圧を検出し、検出結果を第2CPU68に出力する。あるいは、第1CPU46は、第1通信部54を介して、第1電圧センサ50の検出結果を第2CPU68に通知してもよい。 As described above, the first power device 12 and the second power device 14 are connected in parallel to the load connection section 28 . First power device 12 provides a first output voltage to load 38 . Therefore, the second outlet 78 of the second power device 14 is also supplied with the first output voltage. The second voltage sensor 72 detects the first output voltage and outputs the detection result to the second CPU 68 . Alternatively, the first CPU 46 may notify the second CPU 68 of the detection result of the first voltage sensor 50 via the first communication unit 54 .
 第2CPU68は、マップ88に基づき、第2出力電圧及び第2出力電流の目標値を設定する。この場合、第2CPU68は、第1出力電圧と第2出力電圧とが等しくなるように、目標値を設定する。第2CPU68は、目標値に応じた制御信号を第2電力変換部82に出力する。 The second CPU 68 sets target values for the second output voltage and the second output current based on the map 88 . In this case, the second CPU 68 sets the target value such that the first output voltage and the second output voltage are equal. The second CPU 68 outputs a control signal corresponding to the target value to the second power converter 82 .
 第2DC/DCコンバータ64は、制御信号に基づき、第2蓄電部62の直流電圧を所望の値の直流電圧に変換する。第2インバータ66は、制御信号に基づき、第2DC/DCコンバータ64で変換された直流電圧を、第2出力電圧に変換する。これにより、第2電力装置14から負荷38への第2出力電力(第2出力電圧、第2出力電流)の供給が開始される。なお、第2出力電力が有効電力である場合、第2出力電力は、第2出力電圧の実効値と、第2出力電流の実効値と、力率との積である。 The second DC/DC converter 64 converts the DC voltage of the second power storage unit 62 into a desired value of DC voltage based on the control signal. The second inverter 66 converts the DC voltage converted by the second DC/DC converter 64 into a second output voltage based on the control signal. Thereby, supply of the second output power (second output voltage, second output current) from the second power device 14 to the load 38 is started. When the second output power is active power, the second output power is the product of the effective value of the second output voltage, the effective value of the second output current, and the power factor.
 第2電圧センサ72は、第2出力電圧を検出し、検出結果を第2CPU68に出力する。第2電流センサ74は、第2出力電流を検出し、検出結果を第2CPU68に出力する。従って、第2CPU68は、第2出力電圧及び第2出力電流が目標値となるようにフィードバック制御を行うことができる。 The second voltage sensor 72 detects the second output voltage and outputs the detection result to the second CPU 68. The second current sensor 74 detects the second output current and outputs the detection result to the second CPU 68 . Therefore, the second CPU 68 can perform feedback control so that the second output voltage and the second output current become the target values.
 このように、第1電力装置12から負荷38に第1出力電力が供給されると共に、第2電力装置14から負荷38に第2出力電力が供給される並列運転が開始される。並列運転の開始当初は、第1電力変換部60及び第2電力変換部82は、同じ第1電圧電流特性に基づき制御される。そのため、負荷38に対して第1電力装置12と第2電力装置14とが分担する電力量(分担電力)は、均等である。 In this way, parallel operation is started in which the load 38 is supplied with the first output power from the first power device 12 and the second output power is supplied from the second power device 14 to the load 38 . At the beginning of parallel operation, the first power conversion section 60 and the second power conversion section 82 are controlled based on the same first voltage-current characteristics. Therefore, the amounts of power (shared power) shared by the first power device 12 and the second power device 14 with respect to the load 38 are equal.
 また、並列運転では、第1出力電圧と第2出力電圧とが等しくなるように、第1電力変換部60及び第2電力変換部82が制御される。すなわち、並列運転では、第1出力電圧と第2出力電圧とを一致させる同期処理が行われる。並列運転において、第2電力装置14は、下記のような手法で、第1出力電圧と第2出力電圧とを同期させてもよい。 Also, in parallel operation, the first power converter 60 and the second power converter 82 are controlled so that the first output voltage and the second output voltage are equal. That is, in the parallel operation, synchronization processing is performed to match the first output voltage and the second output voltage. In parallel operation, the second power device 14 may synchronize the first output voltage and the second output voltage in the following manner.
 第2CPU68は、第2出力電圧の周波数に相関する第1状態量と、第2出力電圧の位相に相関する第2状態量とが、第1出力電圧と一致するように、第2電力変換部82を制御する。また、第2CPU68は、第2出力電圧の振幅に相関する第3状態量が第1出力電圧と一致するように、第2電力変換部82を制御する。 The second CPU 68 controls the second power converter so that the first state quantity correlated with the frequency of the second output voltage and the second state quantity correlated with the phase of the second output voltage match the first output voltage. control 82; Also, the second CPU 68 controls the second power converter 82 such that the third state quantity correlated with the amplitude of the second output voltage matches the first output voltage.
 第1状態量は、第1出力電圧及び第2出力電圧の周波数に関連する物理量である。具体的には、第1状態量は、第1出力電圧及び第2出力電圧の周波数、周期又は波長である。第2状態量は、第1出力電圧及び第2出力電圧の位相に関連する物理量である。第1出力電圧及び第2出力電圧の位相が第2状態量であってもよい。第3状態量は、第1出力電圧及び第2出力電圧の振幅に関する物理量である。具体的には、第3状態量は、第1出力電圧及び第2出力電圧の所定の位相での電圧の大きさをいう。第1出力電圧及び第2出力電圧の振幅が第3状態量であってもよい。 The first state quantity is a physical quantity related to the frequencies of the first output voltage and the second output voltage. Specifically, the first state quantity is the frequency, period, or wavelength of the first output voltage and the second output voltage. The second state quantity is a physical quantity related to the phases of the first output voltage and the second output voltage. A phase of the first output voltage and the second output voltage may be the second state quantity. The third state quantity is a physical quantity relating to the amplitudes of the first output voltage and the second output voltage. Specifically, the third state quantity refers to the magnitude of the voltage at a predetermined phase of the first output voltage and the second output voltage. Amplitudes of the first output voltage and the second output voltage may be the third state quantity.
 ステップS3において、第1CPU46は、第1蓄電部40から現在の蓄電量(SOC)を取得する。第2CPU68は、第2蓄電部62から現在の蓄電量(SOC)を取得する。第2CPU68は、第2通信部76を介して、第1CPU46に、第2蓄電部62のSOCを通知する。これにより、第1CPU46は、第1蓄電部40及び第2蓄電部62の各SOCを取得できる。 In step S<b>3 , the first CPU 46 acquires the current state of charge (SOC) from the first power storage unit 40 . The second CPU 68 acquires the current state of charge (SOC) from the second power storage unit 62 . Second CPU 68 notifies first CPU 46 of the SOC of second power storage unit 62 via second communication unit 76 . Thereby, the first CPU 46 can obtain the SOCs of the first power storage unit 40 and the second power storage unit 62 .
 ステップS4において、第1CPU46は、第1蓄電部40及び第2蓄電部62のうち、SOCが少ない蓄電部を特定する。具体的には、第1CPU46は、第1蓄電部40のSOCが第2蓄電部62のSOCよりも少ないことを特定する。次に、第1CPU46は、第1蓄電部40から負荷38への第1出力電力の供給を促進させることを決定する。すなわち、第1蓄電部40及び第2蓄電部62の交換のタイミングをずらし、第1蓄電部40を先に交換することを決定する。 In step S4, the first CPU 46 identifies the power storage unit with the lower SOC among the first power storage unit 40 and the second power storage unit 62. Specifically, first CPU 46 specifies that the SOC of first power storage unit 40 is less than the SOC of second power storage unit 62 . Next, the first CPU 46 determines to promote the supply of the first output power from the first power storage unit 40 to the load 38 . That is, it is determined to shift the replacement timings of first power storage unit 40 and second power storage unit 62 and replace first power storage unit 40 first.
 図5は、第1蓄電部40(図2参照)及び第2蓄電部62の各SOCの時間変化を示すタイミングチャートである。図5では、第1蓄電部40のSOCの時間変化を実線で図示すると共に、第2蓄電部62のSOCの時間変化を一点鎖線で図示している。時点t1は、並列運転の開始直後の時点である。 FIG. 5 is a timing chart showing temporal changes in the SOCs of the first power storage unit 40 (see FIG. 2) and the second power storage unit 62. FIG. In FIG. 5 , the change over time of the SOC of first power storage unit 40 is indicated by a solid line, and the change over time of the SOC of second power storage unit 62 is indicated by a dashed line. Time t1 is the time immediately after the start of parallel operation.
 第1CPU46は、第1蓄電部40のSOCが第2蓄電部62のSOCよりも少ないため、第1電力変換部60の制御に用いる電圧電流特性を変更する。具体的には、図6に示すように、第1CPU46(図2参照)は、第1電力変換部60の制御に用いる電圧電流特性を、実線に示す第1電圧電流特性(第1逓減特性、第1垂下特性)から、一点鎖線に示す第2電圧電流特性(第2逓減特性(第4逓減特性)、第2垂下特性)に変更する。 Since the SOC of the first power storage unit 40 is lower than the SOC of the second power storage unit 62 , the first CPU 46 changes the voltage-current characteristics used to control the first power conversion unit 60 . Specifically, as shown in FIG. 6, the first CPU 46 (see FIG. 2) sets the voltage-current characteristics used for controlling the first power conversion unit 60 to the first voltage-current characteristics (first decreasing characteristics, The first drooping characteristic) is changed to the second voltage-current characteristic (second gradual decrease characteristic (fourth gradual decrease characteristic), second drooping characteristic) indicated by the dashed line.
 第1電圧電流特性は、図4に示す電圧電流特性と同じ特性である。第2電圧電流特性は、第1電圧電流特性と同様に、出力電流が上昇するにつれて、出力電圧が逓減するような逓減特性(第2逓減特性)と、出力電流が閾値Itha(第4所定値)以上のときに、出力電圧が急減するような垂下特性(第2垂下特性)とを有する。第2垂下特性は、電源装置10(図1参照)を過電流から保護するために設けられている。 The first voltage-current characteristic is the same characteristic as the voltage-current characteristic shown in FIG. Similar to the first voltage-current characteristic, the second voltage-current characteristic includes a gradual decrease characteristic (second gradual decrease characteristic) in which the output voltage gradually decreases as the output current increases, and ), it has a drooping characteristic (second drooping characteristic) such that the output voltage sharply decreases. The second droop characteristic is provided to protect power supply 10 (see FIG. 1) from overcurrent.
 図6に示すように、第1逓減特性(第3逓減特性)と第2逓減特性(第4逓減特性)とは、互いに異なるように設定されている。具体的には、第2逓減特性は、第1逓減特性と比較して、出力電流の増加に対する出力電圧の逓減度が小さい。そのため、V0の値の出力電圧に対して、第1逓減特性の出力電流がI0になると共に、第2逓減特性の出力電流がIaになる(I0<Ia)。すなわち、出力電流がIaになると、電力装置の負荷が大きくなる。従って、第2逓減特性を用いて出力電圧及び出力電流を制御する場合、電力装置の負荷が大きくなり、蓄電部のSOCは速く減少する。このように、第2逓減特性を用いると、電力装置の負荷が大きくなるので、第2垂下特性の閾値Ithaは、第1垂下特性の閾値Ith0よりも低く設定されている(Itha<Ith0)。 As shown in FIG. 6, the first gradual decrease characteristic (third gradual decrease characteristic) and the second gradual decrease characteristic (fourth gradual decrease characteristic) are set to be different from each other. Specifically, in the second gradual decrease characteristic, the degree of gradual decrease in the output voltage with respect to the increase in the output current is smaller than that in the first gradual decrease characteristic. Therefore, the output current of the first decreasing characteristic becomes I0 and the output current of the second decreasing characteristic becomes Ia (I0<Ia) with respect to the output voltage having the value of V0. That is, when the output current reaches Ia, the load on the power device increases. Therefore, when the output voltage and output current are controlled using the second step-down characteristic, the load on the power device increases and the SOC of the power storage unit quickly decreases. In this way, using the second gradual decrease characteristic increases the load on the electric power device, so the threshold Itha for the second drooping characteristic is set lower than the threshold Ith0 for the first drooping characteristic (Itha<Ith0).
 なお、第1電圧電流特性と第2電圧電流特性との変更は、下記のように行えばよい。マップ88(図2参照)に複数の電圧電流特性を予め格納しておく。第1CPU46は、複数の電圧電流特性のうち、任意の電圧電流特性を第1電圧電流特性又は第2電圧電流特性に選択することにより、第1電力変換部60の制御に用いる電圧電流特性を変更する。あるいは、マップ88に第1電圧電流特性のみ格納しておく。この場合、第1電圧電流特性は、ベースとなる電圧電流特性である。第1CPU46は、ベースの電圧電流特性を適宜調整することにより、第2電圧電流特性を生成する。これにより、第1CPU46は、第1電力変換部60の制御に用いる電圧電流特性を、第1電圧電流特性から第2電圧電流特性に変更する。 It should be noted that the first voltage-current characteristic and the second voltage-current characteristic may be changed as follows. A plurality of voltage-current characteristics are stored in advance in the map 88 (see FIG. 2). The first CPU 46 selects an arbitrary voltage-current characteristic from among the plurality of voltage-current characteristics as the first voltage-current characteristic or the second voltage-current characteristic, thereby changing the voltage-current characteristic used for controlling the first power conversion unit 60. do. Alternatively, the map 88 stores only the first voltage-current characteristics. In this case, the first voltage-current characteristic is a base voltage-current characteristic. The first CPU 46 generates a second voltage-current characteristic by appropriately adjusting the voltage-current characteristic of the base. Thereby, the first CPU 46 changes the voltage-current characteristic used for controlling the first power conversion unit 60 from the first voltage-current characteristic to the second voltage-current characteristic.
 第1CPU46は、変更した第2電圧電流特性に基づき、第1出力電圧及び第1出力電流の目標値を設定する。第1CPU46は、設定した目標値に応じた制御信号を第1電力変換部60に出力する。第1電力変換部60は、制御信号に基づき第1出力電圧及び第1出力電流を出力する。これにより、第1出力電圧の低下に対応して、第1出力電流が大きくなる。この結果、図5に示すように、第1蓄電部40(図2参照)のSOCは、時点t1以降、時間経過に伴い、速やかに減少する。 The first CPU 46 sets the target values of the first output voltage and the first output current based on the changed second voltage-current characteristics. The first CPU 46 outputs a control signal corresponding to the set target value to the first power converter 60 . The first power converter 60 outputs a first output voltage and a first output current based on the control signal. As a result, the first output current increases as the first output voltage decreases. As a result, as shown in FIG. 5, the SOC of first power storage unit 40 (see FIG. 2) rapidly decreases with time after time t1.
 また、第1CPU46は、第2蓄電部62のSOCが第1蓄電部40のSOCよりも多いため、第2電力変換部82の制御に用いる電圧電流特性を、第1電圧電流特性に維持することを決定する。第1CPU46は、第1通信部54を介して、第2CPU68に決定内容を通知する。 Further, since the SOC of second power storage unit 62 is greater than the SOC of first power storage unit 40, first CPU 46 maintains the voltage-current characteristics used for controlling second power conversion unit 82 at the first voltage-current characteristics. to decide. The first CPU 46 notifies the content of the determination to the second CPU 68 via the first communication unit 54 .
 第2CPU68は、第1CPU46からの通知に基づき、第1電圧電流特性に基づく第2電力変換部82の制御を継続して行う。これにより、第2蓄電部62のSOCは、時点t1以降、時間経過に伴い、ゆっくりと減少する。 Based on the notification from the first CPU 46, the second CPU 68 continues to control the second power converter 82 based on the first voltage-current characteristics. As a result, the SOC of second power storage unit 62 slowly decreases over time after time t1.
 このように、第1実施例では、第1電力変換部60及び第2電力変換部82は、互いに異なる電圧電流特性によって制御される。負荷38に対する第1電力装置12及び第2電力装置14の分担電力を任意に変更することができる。 Thus, in the first embodiment, the first power conversion section 60 and the second power conversion section 82 are controlled by voltage-current characteristics different from each other. The shared power of the first power device 12 and the second power device 14 to the load 38 can be changed arbitrarily.
 図3のステップS5において、第1CPU46(図2参照)は、第1蓄電部40から現在のSOCを再度取得する。第2CPU68は、第2蓄電部62から現在のSOCを再度取得する。第2CPU68は、第2通信部76を介して、第1CPU46に第2蓄電部62のSOCを再度通知する。これにより、第1CPU46は、第1蓄電部40及び第2蓄電部62の各SOCを再度取得できる。 In step S5 of FIG. 3, the first CPU 46 (see FIG. 2) acquires the current SOC from the first power storage unit 40 again. Second CPU 68 acquires the current SOC again from second power storage unit 62 . Second CPU 68 notifies first CPU 46 of the SOC of second power storage unit 62 again via second communication unit 76 . Thereby, the first CPU 46 can acquire the SOCs of the first power storage unit 40 and the second power storage unit 62 again.
 ステップS6において、第1CPU46は、第1蓄電部40のSOCが図5に示す閾値SOCth1(第1所定値、第2所定値)にまで低下したかどうかを判定する。 In step S6, the first CPU 46 determines whether the SOC of the first power storage unit 40 has decreased to the threshold SOCth1 (first predetermined value, second predetermined value) shown in FIG.
 第1蓄電部40のSOCが閾値SOCth1にまで低下していない場合(ステップS6:NO)、第1CPU46は、ステップS5の処理を繰り返し行う。 When the SOC of the first power storage unit 40 has not decreased to the threshold SOCth1 (step S6: NO), the first CPU 46 repeats the process of step S5.
 図5の時点t2において、第1蓄電部40(図2参照)のSOCが閾値SOCth1にまで低下した場合(図3のステップS6:YES)、第1CPU46は、ステップS7に進む。 At time t2 in FIG. 5, when the SOC of first power storage unit 40 (see FIG. 2) has decreased to threshold SOCth1 (step S6 in FIG. 3: YES), first CPU 46 proceeds to step S7.
 ステップS7において、第1CPU46は、第1蓄電部40のSOCが閾値SOCth1(図5参照)にまで低下したので、第1蓄電部40を交換する必要があると判断する。次に、第1CPU46は、第1通信部54を介して携帯端末26に、第1蓄電部40の交換を促すメッセージを送信する。携帯端末26は、受信したメッセージを外部に報知する。利用者は、携帯端末26からの報知内容を確認することで、第1蓄電部40の交換のタイミングに至ったことを認識することができる。 In step S7, first CPU 46 determines that first power storage unit 40 needs to be replaced because the SOC of first power storage unit 40 has decreased to threshold SOCth1 (see FIG. 5). Next, first CPU 46 transmits a message prompting replacement of first power storage unit 40 to portable terminal 26 via first communication unit 54 . The mobile terminal 26 notifies the received message to the outside. The user can recognize that it is time to replace the first power storage unit 40 by checking the content of the notification from the mobile terminal 26 .
 ステップS8において、第1CPU46は、利用者が第1蓄電部40を交換したかどうかを判定する。例えば、第1蓄電部40の交換に伴い、第1蓄電部40のSOCが閾値SOCth1よりも大きくなった場合に、第1CPU46は、第1蓄電部40が交換されたと判定する(ステップS8:YES)。 In step S8, the first CPU 46 determines whether the user has replaced the first power storage unit 40 or not. For example, when the SOC of first power storage unit 40 becomes greater than threshold SOCth1 due to replacement of first power storage unit 40, first CPU 46 determines that first power storage unit 40 has been replaced (step S8: YES). ).
 次のステップS9において、第1CPU46は、並列運転を停止させるかどうかを判定する。この場合、第1CPU46は、携帯端末26から動作モードの停止指令が通知されているかどうかを確認することで、並列運転を停止させるかどうかを判定する。 In the next step S9, the first CPU 46 determines whether or not to stop parallel operation. In this case, the first CPU 46 determines whether or not to stop the parallel operation by confirming whether or not a command to stop the operation mode has been sent from the portable terminal 26 .
 携帯端末26から動作モードの停止指令が通知されていない場合(ステップS9:NO)、第1CPU46は、並列運転の継続を決定する。次に、第1CPU46は、ステップS3に戻り、ステップS3~S9の処理を繰り返し行う。 If the portable terminal 26 has not sent an operation mode stop command (step S9: NO), the first CPU 46 decides to continue the parallel operation. Next, the first CPU 46 returns to step S3 and repeats the processing of steps S3 to S9.
 図5の時点t3で第2蓄電部62(図2参照)のSOCが閾値SOCth1にまで低下した場合(図3のステップS6:YES)、第1CPU46は、第2蓄電部62の交換を促すメッセージを、第1通信部54を介して携帯端末26に送信する(ステップS7)。受信したメッセージを携帯端末26が外部に報知することで、利用者は、第2蓄電部62の交換のタイミングに至ったことを認識することができる。次に、利用者は、メッセージに従って、第2蓄電部62を交換する。第1CPU46は、第2蓄電部62のSOCが閾値SOCth1よりも大きくなった場合に、第2蓄電部62が交換されたと判定することができる(ステップS8:YES)。 When the SOC of second power storage unit 62 (see FIG. 2) has decreased to threshold SOCth1 at time t3 in FIG. is transmitted to the mobile terminal 26 via the first communication unit 54 (step S7). The mobile terminal 26 notifies the received message to the outside, so that the user can recognize that the timing for replacing the second power storage unit 62 has come. Next, the user replaces second power storage unit 62 according to the message. When the SOC of second power storage unit 62 becomes greater than threshold SOCth1, first CPU 46 can determine that second power storage unit 62 has been replaced (step S8: YES).
 ステップS9において、利用者が携帯端末26を操作し、動作モードの停止指令(要求)を指示した場合、携帯端末26は、停止指令に応じた指示信号を第1電力装置12及び第2電力装置14に送信する。第1通信部54は、受信した指示信号を第1CPU46に出力する。第2通信部76は、受信した指示信号を第2CPU68に出力する。第1CPU46は、指示信号に基づき、停止指令が通知されたことを確認すると(ステップS9:YES)、ステップS10に進む。 In step S9, when the user operates the mobile terminal 26 to give an instruction (request) to stop the operation mode, the mobile terminal 26 sends an instruction signal corresponding to the stop instruction to the first power device 12 and the second power device. 14. The first communication unit 54 outputs the received instruction signal to the first CPU 46 . The second communication unit 76 outputs the received instruction signal to the second CPU 68 . When the first CPU 46 confirms that the stop command has been notified based on the instruction signal (step S9: YES), the process proceeds to step S10.
 ステップS10において、第1CPU46は、第1電力変換部60に対する制御を停止する。これにより、第1電力装置12から負荷38への第1出力電力の供給が停止する。また、第1CPU46は、第1通信部54を介して、第1出力電力の供給が停止したことを、第2CPU68に通知する。第2CPU68は、第1CPU46からの通知を受けて、第2電力変換部82に対する制御を停止する。これにより、第2電力装置14から負荷38への第2出力電力の供給が停止する。この結果、電源装置10での並列運転が停止する。なお、第2CPU68は、携帯端末26からの指示信号に基づき、負荷38への第2出力電力の供給を停止させてもよい。 In step S<b>10 , the first CPU 46 stops controlling the first power conversion unit 60 . This stops the supply of the first output power from the first power device 12 to the load 38 . Also, the first CPU 46 notifies the second CPU 68 via the first communication unit 54 that the supply of the first output power has stopped. The second CPU 68 receives the notification from the first CPU 46 and stops controlling the second power converter 82 . This stops the supply of the second output power from the second power device 14 to the load 38 . As a result, the parallel operation in the power supply device 10 is stopped. The second CPU 68 may stop supplying the second output power to the load 38 based on the instruction signal from the mobile terminal 26 .
 第1実施例では、図5に示すように、第1蓄電部40(図2参照)のSOCが閾値SOCth1にまで低下する時点を、時点t2から時点t3までの時間T1のうち、任意の時点に調整可能である。 In the first embodiment, as shown in FIG. 5, the time point at which the SOC of first power storage unit 40 (see FIG. 2) drops to threshold SOCth1 is set to an arbitrary time point within time T1 from time t2 to time t3. can be adjusted to
 また、第1実施例では、第1蓄電部40の交換後(図3のステップS8:YES)、並列運転を継続する場合(ステップS9:NO)、第1CPU46は、下記のように動作してもよい。第1蓄電部40の交換によって、第1蓄電部40のSOCが第2蓄電部62のSOCよりも大きくなる場合がある。そこで、ステップS4において、第1CPU46は、第1電力変換部60を制御するための電圧電流特性を、第2電圧電流特性から第1電圧電流特性に戻す。これにより、第1CPU46は、第1電圧電流特性に基づき、第1電力変換部60を制御することができる。 Further, in the first embodiment, when the parallel operation is to be continued (step S9: NO) after replacing the first power storage unit 40 (step S8: YES in FIG. 3), the first CPU 46 operates as follows. good too. Due to the replacement of first power storage unit 40 , the SOC of first power storage unit 40 may become higher than the SOC of second power storage unit 62 . Therefore, in step S4, the first CPU 46 returns the voltage-current characteristic for controlling the first power conversion section 60 from the second voltage-current characteristic to the first voltage-current characteristic. Thereby, the first CPU 46 can control the first power converter 60 based on the first voltage-current characteristic.
 また、第1CPU46は、第2電力変換部82を制御するための電圧電流特性を、第1電圧電流特性から第2電圧電流特性に変更することを決定する。第1CPU46は、この決定内容を、第1通信部54を介して、第2CPU68に通知する。第2CPU68は、通知された決定内容に基づき、第1電圧電流特性から第2電圧電流特性に変更する。第2CPU68は、変更後の第2電圧電流特性に基づき、第2電力変換部82を制御する。これにより、第2蓄電部62のSOCを速やかに減少させることができる。 Also, the first CPU 46 determines to change the voltage-current characteristic for controlling the second power converter 82 from the first voltage-current characteristic to the second voltage-current characteristic. The first CPU 46 notifies the second CPU 68 of this decision via the first communication unit 54 . The second CPU 68 changes from the first voltage-current characteristic to the second voltage-current characteristic based on the notified content of the decision. The second CPU 68 controls the second power converter 82 based on the changed second voltage-current characteristics. As a result, the SOC of second power storage unit 62 can be quickly reduced.
 なお、第1実施例の説明では、第1蓄電部40のSOCが第2蓄電部62のSOCよりも少ない場合について説明した。第2蓄電部62のSOCが第1蓄電部40のSOCよりも少ない場合でも、第1CPU46は、同様の動作を行うことが可能である。すなわち、第2蓄電部62のSOCが第1蓄電部40のSOCよりも少ない場合には、第2電力変換部82を制御するための電圧電流特性を、第1電圧電流特性から第2電圧電流特性に変更する。これにより、第2出力電流が第1出力電流よりも大きくなり、第2蓄電部62から負荷38への第2出力電力の供給が促進される。 In addition, in the description of the first embodiment, the case where the SOC of first power storage unit 40 is lower than the SOC of second power storage unit 62 has been described. Even when the SOC of second power storage unit 62 is lower than the SOC of first power storage unit 40, first CPU 46 can perform the same operation. That is, when the SOC of second power storage unit 62 is lower than the SOC of first power storage unit 40, the voltage-current characteristic for controlling second power conversion unit 82 is changed from the first voltage-current characteristic to the second voltage-current characteristic. Change to characteristics. As a result, the second output current becomes larger than the first output current, and the supply of the second output power from second power storage unit 62 to load 38 is facilitated.
 次に、第2実施例について、図7及び図8を参照しながら説明する。第2実施例では、第1蓄電部40(図2参照)のSOCが第2蓄電部62のSOCよりも多い場合について説明する。 Next, a second embodiment will be described with reference to FIGS. 7 and 8. FIG. In the second embodiment, the case where the SOC of first power storage unit 40 (see FIG. 2) is higher than the SOC of second power storage unit 62 will be described.
 図7のステップS11において、電源装置10(図1参照)の利用者は、図3のステップS1と同様に、並列運転の実行を指示するため、携帯端末26を操作する。利用者は、第2実施例の動作モード(仕様態様)を実行するように、携帯端末26を操作する。携帯端末26は、利用者の操作内容(要求)に基づき、第2実施例の動作モードの実行を指示するための指示信号を、第1電力装置12及び第2電力装置14に送信する。第1電力装置12の第1通信部54(図2参照)は、指示信号を受信し、第1CPU46に出力する。第2電力装置14の第2通信部76は、指示信号を受信し、第2CPU68に出力する。 In step S11 of FIG. 7, the user of the power supply device 10 (see FIG. 1) operates the mobile terminal 26 to instruct execution of parallel operation, as in step S1 of FIG. The user operates the portable terminal 26 so as to execute the operation mode (specification aspect) of the second embodiment. The portable terminal 26 transmits an instruction signal for instructing execution of the operation mode of the second embodiment to the first power device 12 and the second power device 14 based on the user's operation content (request). The first communication unit 54 (see FIG. 2) of the first power device 12 receives the instruction signal and outputs it to the first CPU 46 . The second communication unit 76 of the second power device 14 receives the instruction signal and outputs it to the second CPU 68 .
 ステップS12において、第1CPU46は、図3のステップS2と同様に、指示信号に基づき、動作モードを実行する。 In step S12, the first CPU 46 executes the operation mode based on the instruction signal, as in step S2 of FIG.
 この場合、第1CPU46は、マップ88(図4参照)に基づき、第1出力電圧及び第1出力電流の目標値を設定する。第1CPU46は、目標値に応じた制御信号を第1電力変換部60に出力する。 In this case, the first CPU 46 sets the target values of the first output voltage and the first output current based on the map 88 (see FIG. 4). The first CPU 46 outputs a control signal corresponding to the target value to the first power converter 60 .
 第1電力変換部60は、制御信号に基づき、第1蓄電部40の直流電圧を第1出力電圧に変換する。これにより、第1電力装置12から負荷38への第1出力電力の供給が開始される。第1電圧センサ50は、第1出力電圧を検出し、検出結果を第1CPU46に出力する。第1電流センサ52は、第1出力電流を検出し、検出結果を第1CPU46に出力する。従って、第1CPU46は、第1出力電圧及び第1出力電流が目標値となるようにフィードバック制御を行うことができる。 The first power conversion unit 60 converts the DC voltage of the first power storage unit 40 into the first output voltage based on the control signal. Thereby, supply of the first output power from the first power device 12 to the load 38 is started. The first voltage sensor 50 detects the first output voltage and outputs the detection result to the first CPU 46 . The first current sensor 52 detects the first output current and outputs the detection result to the first CPU 46 . Therefore, the first CPU 46 can perform feedback control so that the first output voltage and the first output current become the target values.
 また、第1CPU46は、第1通信部54を介して、第2電力装置14に、第1電力装置12が動作モードの実行を開始したことを通知する。第2CPU68は、第1CPU46からの通知内容に基づき、動作モードを実行する。 Also, the first CPU 46 notifies the second power device 14 via the first communication unit 54 that the first power device 12 has started executing the operation mode. The second CPU 68 executes the operation mode based on the content of notification from the first CPU 46 .
 具体的には、第2CPU68は、マップ88に基づき、第2出力電圧及び第2出力電流の目標値を設定する。この場合、第2CPU68は、第1出力電圧と第2出力電圧とが等しくなるように、目標値を設定する。第2CPU68は、目標値に応じた制御信号を第2電力変換部82に出力する。第2電力変換部82は、制御信号に基づき、第2蓄電部62の直流電圧を第2出力電圧に変換する。これにより、第2電力装置14から負荷38への第2出力電力の供給が開始される。第2電圧センサ72は、第2出力電圧を検出し、検出結果を第2CPU68に出力する。第2電流センサ74は、第2出力電流を検出し、検出結果を第2CPU68に出力する。従って、第2CPU68は、第2出力電圧及び第2出力電流が目標値となるようにフィードバック制御を行うことができる。 Specifically, the second CPU 68 sets target values for the second output voltage and the second output current based on the map 88 . In this case, the second CPU 68 sets the target value such that the first output voltage and the second output voltage are equal. The second CPU 68 outputs a control signal corresponding to the target value to the second power converter 82 . The second power converter 82 converts the DC voltage of the second power storage unit 62 into a second output voltage based on the control signal. Thereby, supply of the second output power from the second power device 14 to the load 38 is started. The second voltage sensor 72 detects the second output voltage and outputs the detection result to the second CPU 68 . The second current sensor 74 detects the second output current and outputs the detection result to the second CPU 68 . Therefore, the second CPU 68 can perform feedback control so that the second output voltage and the second output current become the target values.
 このように、第1電力装置12から負荷38に第1出力電力が供給されると共に、第2電力装置14から負荷38に第2出力電力が供給される並列運転が開始される。なお、第2実施例でも、並列運転では、第1出力電圧と第2出力電圧とを一致させる同期処理を行ってもよい。 In this way, parallel operation is started in which the load 38 is supplied with the first output power from the first power device 12 and the second output power is supplied from the second power device 14 to the load 38 . Also in the second embodiment, in the parallel operation, synchronization processing may be performed to match the first output voltage and the second output voltage.
 ステップS13において、図3のステップS3と同様に、第1CPU46は、第1蓄電部40の現在のSOCと、第2蓄電部62の現在のSOCとを取得する。 In step S13, the first CPU 46 acquires the current SOC of the first power storage unit 40 and the current SOC of the second power storage unit 62, as in step S3 of FIG.
 ステップS14において、第1CPU46は、第1蓄電部40及び第2蓄電部62のうち、SOCが多い蓄電部を特定する。具体的には、第1CPU46は、第1蓄電部40のSOCが第2蓄電部62のSOCよりも多いことを特定する。次に、第1CPU46は、第1蓄電部40から負荷38への第1出力電力の供給を促進させることを決定する。 In step S14, the first CPU 46 identifies the power storage unit with the higher SOC among the first power storage unit 40 and the second power storage unit 62. Specifically, first CPU 46 identifies that the SOC of first power storage unit 40 is higher than the SOC of second power storage unit 62 . Next, the first CPU 46 determines to promote the supply of the first output power from the first power storage unit 40 to the load 38 .
 図8は、第1蓄電部40(図2参照)及び第2蓄電部62の各SOCの時間変化を示すタイミングチャートである。図8では、第1蓄電部40のSOCの時間変化を実線で図示すると共に、第2蓄電部62のSOCの時間変化を一点鎖線で図示している。時点t11は、並列運転の開始直後の時点である。 FIG. 8 is a timing chart showing temporal changes in the SOCs of the first power storage unit 40 (see FIG. 2) and the second power storage unit 62. FIG. In FIG. 8 , the change over time of the SOC of first power storage unit 40 is indicated by a solid line, and the change over time of the SOC of second power storage unit 62 is indicated by a dashed line. Time t11 is a time immediately after the start of parallel operation.
 第1CPU46は、第1蓄電部40のSOCが第2蓄電部62のSOCよりも多いため、第1電力変換部60の制御に用いる電圧電流特性を、図4の第1電圧電流特性から図6の第2電圧電流特性に変更する。第1CPU46は、変更した第2電圧電流特性に基づき、第1出力電圧及び第1出力電流の目標値を設定する。第1CPU46は、設定した目標値に応じた制御信号を第1電力変換部60に出力する。第1電力変換部60は、制御信号に基づき第1出力電圧及び第1出力電流を出力する。これにより、第1出力電圧の低下に対応して、第1出力電流が大きくなる。この結果、第1蓄電部40のSOCは、図8の時点t11以降、時間経過に伴い、速やかに減少する。 Since the SOC of first power storage unit 40 is greater than the SOC of second power storage unit 62, first CPU 46 converts the voltage-current characteristics used for controlling first power conversion unit 60 from the first voltage-current characteristics of FIG. is changed to the second voltage-current characteristic of The first CPU 46 sets the target values of the first output voltage and the first output current based on the changed second voltage-current characteristics. The first CPU 46 outputs a control signal corresponding to the set target value to the first power converter 60 . The first power converter 60 outputs a first output voltage and a first output current based on the control signal. As a result, the first output current increases as the first output voltage decreases. As a result, the SOC of first power storage unit 40 rapidly decreases with time after time t11 in FIG.
 また、第1CPU46は、第2蓄電部62のSOCが第1蓄電部40のSOCよりも少ないため、第2電力変換部82の制御に用いる電圧電流特性を、第1電圧電流特性に維持することを決定する。第1CPU46は、第1通信部54を介して、第2CPU68に決定内容を通知する。 In addition, since the SOC of second power storage unit 62 is lower than the SOC of first power storage unit 40, first CPU 46 maintains the voltage-current characteristics used to control second power conversion unit 82 at the first voltage-current characteristics. to decide. The first CPU 46 notifies the content of the determination to the second CPU 68 via the first communication unit 54 .
 第2CPU68は、第1CPU46からの通知に基づき、第1電圧電流特性に基づく第2電力変換部82の制御を継続して行う。これにより、第2蓄電部62のSOCは、時点t11以降、時間経過に伴い、ゆっくりと減少する。 Based on the notification from the first CPU 46, the second CPU 68 continues to control the second power converter 82 based on the first voltage-current characteristics. As a result, the SOC of second power storage unit 62 slowly decreases over time after time t11.
 このように、第2実施例でも、第1電力変換部60及び第2電力変換部82は、互いに異なる電圧電流特性によって制御される。負荷38に対する第1電力装置12及び第2電力装置14の分担電力を任意に変更することができる。 Thus, also in the second embodiment, the first power conversion section 60 and the second power conversion section 82 are controlled by voltage-current characteristics different from each other. The shared power of the first power device 12 and the second power device 14 to the load 38 can be changed arbitrarily.
 ステップS15において、第1CPU46は、図3のステップS5と同様に、第1蓄電部40の現在のSOCと、第2蓄電部62の現在のSOCとを再度取得する。 In step S15, the first CPU 46 acquires again the current SOC of the first power storage unit 40 and the current SOC of the second power storage unit 62, as in step S5 of FIG.
 ステップS16において、第1CPU46は、第1蓄電部40のSOCが第2蓄電部62のSOC(SOClow)よりも下回ったかどうかを判定する。 In step S16, the first CPU 46 determines whether the SOC of the first power storage unit 40 is lower than the SOC of the second power storage unit 62 (SOClow).
 第1蓄電部40のSOCが第2蓄電部62のSOCを下回っていない場合(ステップS16:NO)、第1CPU46は、ステップS15の処理を繰り返し行う。 When the SOC of the first power storage unit 40 is not lower than the SOC of the second power storage unit 62 (step S16: NO), the first CPU 46 repeats the process of step S15.
 図8の時点t12において、第1蓄電部40のSOCが第2蓄電部62のSOC(SOClow)を下回った場合(ステップS16:YES)、第1CPU46は、ステップS17に進む。 When the SOC of the first power storage unit 40 falls below the SOC (SOClow) of the second power storage unit 62 at time t12 in FIG. 8 (step S16: YES), the first CPU 46 proceeds to step S17.
 ステップS17において、第1CPU46は、第1蓄電部40のSOCが閾値SOCth2以下であるかどうかを判定する。 In step S17, the first CPU 46 determines whether the SOC of the first power storage unit 40 is equal to or less than the threshold SOCth2.
 第1蓄電部40のSOCが閾値SOCth2以下でない場合(ステップS17:NO)、第1CPU46は、ステップS14に戻り、ステップS14~S17の処理を繰り返し行う。 When the SOC of the first power storage unit 40 is not equal to or lower than the threshold SOCth2 (step S17: NO), the first CPU 46 returns to step S14 and repeats the processes of steps S14 to S17.
 この場合、ステップS14では、第1CPU46は、第1蓄電部40のSOCが第2蓄電部62のSOCよりも少ないため、SOCの多い第2蓄電部62から負荷38への第2出力電力の供給を促進させることを決定する。 In this case, in step S14, since the SOC of first power storage unit 40 is lower than the SOC of second power storage unit 62, first CPU 46 supplies the second output power from second power storage unit 62 having a large SOC to load 38. Decide to promote
 第1CPU46は、第1電力変換部60の制御に用いる電圧電流特性を、第2電圧電流特性から第1電圧電流特性に戻し、戻した第1電圧電流特性に基づき、第1電力変換部60を制御する。これにより、第1出力電流が小さくなり、第1蓄電部40のSOCは、時間経過に伴い、ゆるやかに減少する。 The first CPU 46 restores the voltage-current characteristics used for controlling the first power conversion unit 60 from the second voltage-current characteristics to the first voltage-current characteristics, and controls the first power conversion unit 60 based on the returned first voltage-current characteristics. Control. As a result, the first output current becomes smaller, and the SOC of first power storage unit 40 gradually decreases over time.
 また、第1CPU46は、第2電力変換部82の制御に用いる電圧電流特性を、第1電圧電流特性から第2電圧電流特性に変更することを決定する。第1CPU46は、第1通信部54を介して、第2CPU68に決定内容を通知する。第2CPU68は、第1CPU46からの通知に基づき、第2電圧電流特性に基づく第2電力変換部82の制御を行う。これにより、第2出力電流が大きくなり、第2蓄電部62のSOCは、時間経過に伴い、速やかに減少する。 Also, the first CPU 46 determines to change the voltage-current characteristic used for controlling the second power converter 82 from the first voltage-current characteristic to the second voltage-current characteristic. The first CPU 46 notifies the content of the determination to the second CPU 68 via the first communication unit 54 . Based on the notification from the first CPU 46, the second CPU 68 controls the second power converter 82 based on the second voltage-current characteristic. As a result, the second output current increases, and the SOC of second power storage unit 62 rapidly decreases over time.
 このように、ステップS14~S17の処理を繰り返し行うことにより、図8の時点t12以降、第1CPU46及び第2CPU68で用いる電圧電流特性は、第1電圧電流特性と第2電圧電流特性とに交互に切り替わる。これにより、時点t12以降、第1蓄電部40及び第2蓄電部62の各SOCは、時間経過に伴い、略同じ値で減少する。 In this way, by repeating the processing of steps S14 to S17, the voltage-current characteristics used by the first CPU 46 and the second CPU 68 are alternated between the first voltage-current characteristics and the second voltage-current characteristics after time t12 in FIG. switch. Accordingly, after time t12, the SOCs of first power storage unit 40 and second power storage unit 62 decrease by substantially the same value over time.
 時点t13で第1蓄電部40及び第2蓄電部62の各SOCが閾値SOCth2にまで低下した場合(ステップS17:YES)、第1CPU46は、ステップS18に進む。 When the SOCs of the first power storage unit 40 and the second power storage unit 62 have decreased to the threshold SOCth2 at time t13 (step S17: YES), the first CPU 46 proceeds to step S18.
 ステップS18において、第1CPU46は、第1蓄電部40のSOCが閾値SOCth3(第1所定値、第2所定値)にまで低下したかどうかを判定する。 In step S18, the first CPU 46 determines whether the SOC of the first power storage unit 40 has decreased to the threshold SOCth3 (first predetermined value, second predetermined value).
 時点t13以降、第1CPU46は、第2電圧電流特性に基づく第1電力変換部60の制御を行っている。第2CPU68は、第1電圧電流特性に基づく第2電力変換部82の制御を行っている。そのため、第1蓄電部40のSOCは、時間経過に伴い、速やかに減少すると共に、第2蓄電部62のSOCは、時間経過に伴い、緩やかに減少している。 After time t13, the first CPU 46 controls the first power converter 60 based on the second voltage-current characteristics. The second CPU 68 controls the second power converter 82 based on the first voltage-current characteristics. Therefore, the SOC of first power storage unit 40 decreases rapidly over time, and the SOC of second power storage unit 62 decreases gently over time.
 時点t14で第1蓄電部40のSOCが閾値SOCth3にまで低下した場合(ステップS18:YES)、第1CPU46は、ステップS19に進む。 When the SOC of the first power storage unit 40 has decreased to the threshold SOCth3 at time t14 (step S18: YES), the first CPU 46 proceeds to step S19.
 ステップS19において、第1CPU46は、第1蓄電部40のSOCが閾値SOCth3にまで低下したので、第1蓄電部40を交換する必要があると判断する。次に、第1CPU46は、第1通信部54を介して携帯端末26に、第1蓄電部40の交換を促すメッセージを送信する。携帯端末26は、受信したメッセージを外部に報知する。利用者は、携帯端末26からの報知内容を確認することで、第1蓄電部40の交換のタイミングに至ったことを認識することができる。 In step S19, first CPU 46 determines that first power storage unit 40 needs to be replaced because the SOC of first power storage unit 40 has decreased to threshold SOCth3. Next, first CPU 46 transmits a message prompting replacement of first power storage unit 40 to portable terminal 26 via first communication unit 54 . The mobile terminal 26 notifies the received message to the outside. The user can recognize that it is time to replace the first power storage unit 40 by checking the content of the notification from the mobile terminal 26 .
 ステップS20において、第1CPU46は、利用者が第1蓄電部40を交換したかどうかを判定する。例えば、第1蓄電部40の交換に伴い、第1蓄電部40のSOCが閾値SOCth3よりも大きくなった場合に、第1CPU46は、第1蓄電部40が交換されたと判定する(ステップS20:YES)。 In step S20, the first CPU 46 determines whether the user has replaced the first power storage unit 40 or not. For example, when the SOC of first power storage unit 40 becomes greater than threshold SOCth3 due to replacement of first power storage unit 40, first CPU 46 determines that first power storage unit 40 has been replaced (step S20: YES). ).
 次のステップS21において、第1CPU46は、図3のステップS9と同様に、並列運転を停止させるかどうかを判定する。 In the next step S21, the first CPU 46 determines whether or not to stop the parallel operation, similar to step S9 in FIG.
 携帯端末26から動作モードの停止指令が通知されていない場合(ステップS21:NO)、第1CPU46は、ステップS13に戻り、ステップS13~S21の処理を繰り返し行う。 If the mobile terminal 26 has not sent an operation mode stop command (step S21: NO), the first CPU 46 returns to step S13 and repeats the processing of steps S13 to S21.
 時点t15で第2蓄電部62のSOCが閾値SOCth3にまで低下した場合(ステップS18:YES)、第1CPU46は、第2蓄電部62の交換を促すメッセージを、第1通信部54を介して携帯端末26に送信する(ステップS19)。受信したメッセージを携帯端末26が外部に報知することで、利用者は、第2蓄電部62の交換のタイミングに至ったことを認識することができる。従って、利用者は、メッセージに従って、第2蓄電部62を交換する。第1CPU46は、第2蓄電部62のSOCが閾値SOCth3よりも大きくなった場合に、第2蓄電部62が交換されたと判定することができる(ステップS20:YES)。 When the SOC of second power storage unit 62 has decreased to threshold SOCth3 at time t15 (step S18: YES), first CPU 46 carries a message prompting replacement of second power storage unit 62 via first communication unit 54. It is transmitted to the terminal 26 (step S19). The mobile terminal 26 notifies the received message to the outside, so that the user can recognize that the timing for replacing the second power storage unit 62 has come. Therefore, the user replaces the second power storage unit 62 according to the message. When the SOC of second power storage unit 62 becomes greater than threshold SOCth3, first CPU 46 can determine that second power storage unit 62 has been replaced (step S20: YES).
 ステップS21において、利用者が携帯端末26を操作し、動作モードの停止指令(要求)を指示した場合、携帯端末26は、停止指令に応じた指示信号を第1電力装置12及び第2電力装置14に送信する。第1通信部54は、受信した指示信号を第1CPU46に出力する。第2通信部76は、受信した指示信号を第2CPU68に出力する。第1CPU46は、指示信号に基づき、停止指令が通知されたことを確認すると(ステップS21:YES)、ステップS22に進む。 In step S21, when the user operates the mobile terminal 26 to issue a stop command (request) for the operation mode, the mobile terminal 26 sends an instruction signal corresponding to the stop command to the first power device 12 and the second power device. 14. The first communication unit 54 outputs the received instruction signal to the first CPU 46 . The second communication unit 76 outputs the received instruction signal to the second CPU 68 . When the first CPU 46 confirms that the stop command has been notified based on the instruction signal (step S21: YES), the process proceeds to step S22.
 ステップS22において、第1CPU46は、図3のステップS10と同様に、第1電力変換部60に対する制御を停止する。これにより、第1電力装置12から負荷38への第1出力電力の供給が停止する。また、第1CPU46は、第1通信部54を介して、第1出力電力の供給が停止したことを、第2CPU68に通知する。第2CPU68は、第1CPU46からの通知を受けて、第2電力変換部82に対する制御を停止する。これにより、第2電力装置14から負荷38への第2出力電力の供給が停止する。この結果、電源装置10での並列運転が停止する。なお、第2CPU68は、携帯端末26からの指示信号に基づき、負荷38への第2出力電力の供給を停止させてもよい。 In step S22, the first CPU 46 stops controlling the first power converter 60, as in step S10 of FIG. This stops the supply of the first output power from the first power device 12 to the load 38 . Also, the first CPU 46 notifies the second CPU 68 via the first communication unit 54 that the supply of the first output power has stopped. The second CPU 68 receives the notification from the first CPU 46 and stops controlling the second power converter 82 . This stops the supply of the second output power from the second power device 14 to the load 38 . As a result, the parallel operation in the power supply device 10 is stopped. The second CPU 68 may stop supplying the second output power to the load 38 based on the instruction signal from the mobile terminal 26 .
 第2実施例では、図8に示すように、第1蓄電部40(図2参照)のSOCが閾値SOCth3にまで低下する時点を、時点t14から時点t15までの時間T2のうち、任意の時点に調整可能である。また、第2蓄電部62のSOCが閾値SOCth3にまで低下する時点を、時点t15から時点t16までの時間T3のうち、任意の時点に調整可能である。 In the second embodiment, as shown in FIG. 8, the time point at which the SOC of first power storage unit 40 (see FIG. 2) drops to threshold SOCth3 is set to any time point within time T2 from time t14 to time t15. can be adjusted to Further, the point in time when the SOC of second power storage unit 62 drops to threshold SOCth3 can be adjusted to any point in time T3 from point t15 to point t16.
 また、第2実施例の説明では、第1蓄電部40のSOCが第2蓄電部62のSOCよりも多い場合について説明した。第2蓄電部62のSOCが第1蓄電部40のSOCよりも多い場合でも、第1CPU46は、同様の動作を行うことが可能である。すなわち、第2蓄電部62のSOCが第1蓄電部40のSOCよりも多い場合には、第2電力変換部82を制御するための電圧電流特性を、第1電圧電流特性から第2電圧電流特性に変更する。これにより、第2出力電流が第1出力電流よりも大きくなり、第2蓄電部62から負荷38への第2出力電力の供給が促進される。 Also, in the description of the second embodiment, the case where the SOC of first power storage unit 40 is higher than the SOC of second power storage unit 62 has been described. Even when the SOC of second power storage unit 62 is higher than the SOC of first power storage unit 40, first CPU 46 can perform the same operation. That is, when the SOC of second power storage unit 62 is greater than the SOC of first power storage unit 40, the voltage-current characteristic for controlling second power conversion unit 82 is changed from the first voltage-current characteristic to the second voltage-current characteristic. Change to characteristics. As a result, the second output current becomes larger than the first output current, and the supply of the second output power from second power storage unit 62 to load 38 is facilitated.
 第1実施例及び第2実施例では、上記のように、携帯端末26と第1電力装置12及び第2電力装置14との間で、無線通信による信号又は情報の送受信が可能である。そのため、携帯端末26では、アプリケーションソフト(アプリ)によって、第1蓄電部40及び第2蓄電部62の各SOCを監視してもよい。 In the first and second embodiments, as described above, it is possible to transmit and receive signals or information by wireless communication between the mobile terminal 26 and the first power device 12 and the second power device 14 . Therefore, the portable terminal 26 may monitor the SOCs of the first power storage unit 40 and the second power storage unit 62 using application software (app).
 携帯端末26は、第1電力装置12又は第2電力装置14との間で無線通信が行える機器であればよい。スマートフォン、タブレット、サーバが携帯端末26であってもよい。また、携帯端末26から無線通信により第1電力装置12及び第2電力装置14に指令を送信すればよい。無線通信の方式としては、Bluetooth(登録商標)、WiFi(登録商標)、インターネット回線でもよい。 The mobile terminal 26 may be a device capable of wireless communication with the first power device 12 or the second power device 14 . The mobile terminal 26 may be a smart phone, a tablet, or a server. Also, a command may be transmitted from the mobile terminal 26 to the first power device 12 and the second power device 14 by wireless communication. The wireless communication method may be Bluetooth (registered trademark), WiFi (registered trademark), or Internet line.
 第1実施例及び第2実施例の説明では、第1CPU46が動作主体である場合について説明した。第1電力装置12及び第2電力装置14が同じ構成を有するため、第2CPU68が動作主体となってもよい。すなわち、第1実施例及び第2実施例では、上記のように、第1CPU46が第1電力装置12及び第2電力装置14の動作を統括(統合)的に制御している。第1実施例及び第2実施例では、第2CPU68が第1電力装置12及び第2電力装置14の動作を統括的に制御してもよい。あるいは、いずれか一方の電力装置にCPUの機能を集約させ、機能を集約させたCPUによって、第1電力装置12及び第2電力装置14の動作を制御してもよい。 In the description of the first and second embodiments, the case where the first CPU 46 is the subject of action has been described. Since the first power device 12 and the second power device 14 have the same configuration, the second CPU 68 may be the main operating body. That is, in the first and second embodiments, the first CPU 46 controls the operations of the first power device 12 and the second power device 14 in an integrated manner, as described above. In the first and second embodiments, the second CPU 68 may centrally control the operations of the first power device 12 and the second power device 14 . Alternatively, the functions of the CPU may be integrated into one of the power devices, and the operations of the first power device 12 and the second power device 14 may be controlled by the CPU with the integrated functions.
 また、第1電力装置12と第2電力装置14との間で信号又は情報の送受信が可能であるため、第1CPU46は、第1電力装置12の動作のみ制御し、第2CPU68は、第2電力装置14の動作のみ制御することも可能である。 In addition, since signals or information can be transmitted and received between the first power device 12 and the second power device 14, the first CPU 46 controls only the operation of the first power device 12, and the second CPU 68 controls the second power device. It is also possible to control only the operation of device 14 .
 上記のように、第1実施例及び第2実施例では、携帯端末26から第1電力装置12及び第2電力装置14の双方に動作指令又は停止指令が送信される。第1電力装置12及び第2電力装置14の各々は、動作指令に基づき動作を開始する。第1電力装置12及び第2電力装置14の各々は、停止指令に基づき動作を停止する。つまり、第1電力装置12及び第2電力装置14の各々は、携帯端末26からの要求に応じて動作する。 As described above, in the first and second embodiments, the portable terminal 26 transmits an operation command or a stop command to both the first power device 12 and the second power device 14 . Each of the first power device 12 and the second power device 14 starts operating based on the operation command. Each of the first power device 12 and the second power device 14 stops operating based on the stop command. That is, each of the first power device 12 and the second power device 14 operates according to the request from the mobile terminal 26 .
 そのため、電圧電流特性の切り替えが行われる場合には、上記のように、第1電力装置12と第2電力装置14との間で、信号又は情報の送受信が行われる。また、電圧電流特性の切り替えが行われない場合には、第1電力装置12と第2電力装置14との間での通信は不要である。 Therefore, when the voltage-current characteristics are switched, signals or information are transmitted and received between the first power device 12 and the second power device 14 as described above. Also, if the voltage-current characteristics are not switched, communication between the first power device 12 and the second power device 14 is unnecessary.
 また、第1実施例及び第2実施例では、並列運転の開始後、第1蓄電部40及び第2蓄電部62の各SOCに基づき、電圧電流特性を切り替える場合について説明した。第1蓄電部40及び第2蓄電部62の各SOCが予め分かっている場合には、第1電力装置12及び第2電力装置14の電圧電流特性が互いに異なるように初期設定してもよい。これにより、第1電力装置12と第2電力装置14との間での通信が不要となる。 Also, in the first and second embodiments, the case where the voltage-current characteristics are switched based on the SOCs of the first power storage unit 40 and the second power storage unit 62 after starting parallel operation has been described. If the SOCs of first power storage unit 40 and second power storage unit 62 are known in advance, the voltage-current characteristics of first power device 12 and second power device 14 may be initially set to be different from each other. This eliminates the need for communication between the first power device 12 and the second power device 14 .
 第1実施例及び第2実施例の説明では、電源装置10の利用者が携帯端末26を操作して電源装置10に指示し、電源装置10から携帯端末26(利用者)に各種の通知が行われる場合について説明した。第1実施例及び第2実施例では、電源装置10の所有者又は管理者が携帯端末26を操作して電源装置10に指示し、電源装置10から携帯端末26(所有者又は管理者)に各種の通知が行われてもよい。あるいは、第1蓄電部40又は第2蓄電部62の利用者、所有者又は管理者が携帯端末26を操作して電源装置10に指示し、電源装置10から携帯端末26(利用者、所有者又は管理者)に各種の通知が行われてもよい。なお、電源装置10、第1蓄電部40又は第2蓄電部62の所有者は、電源装置10、第1蓄電部40又は第2蓄電部62の権利者であってもよい。 In the explanations of the first and second embodiments, the user of the power supply device 10 operates the mobile terminal 26 to give an instruction to the power supply device 10, and various notifications are sent from the power supply device 10 to the mobile terminal 26 (user). I explained what would happen. In the first and second embodiments, the owner or administrator of the power supply device 10 operates the mobile terminal 26 to instruct the power supply device 10, and the power supply device 10 sends the mobile terminal 26 (owner or administrator) Various notifications may be made. Alternatively, the user, owner, or administrator of the first power storage unit 40 or the second power storage unit 62 operates the mobile terminal 26 to instruct the power supply device 10, and from the power supply device 10 to the mobile terminal 26 (user, owner or administrator) may receive various notifications. The owner of power supply device 10 , first power storage unit 40 or second power storage unit 62 may be the right holder of power supply device 10 , first power storage unit 40 or second power storage unit 62 .
 第1実施例及び第2実施例では、ステップS7、S19において、蓄電部の交換が必要であることを携帯端末26(利用者)に通知できればよい。そのため、第1実施例及び第2実施例では、第1CPU46は、第1蓄電部40及び第2蓄電部62のうち、少なくとも1つの蓄電部(交換対象の蓄電部)のSOCを取得できればよい。 In the first and second embodiments, in steps S7 and S19, it is sufficient to notify the mobile terminal 26 (user) that the power storage unit needs to be replaced. Therefore, in the first and second embodiments, the first CPU 46 only needs to acquire the SOC of at least one of the first power storage unit 40 and the second power storage unit 62 (the power storage unit to be replaced).
 第1実施例及び第2実施例では、第1CPU46は、負荷38の消費電力量を取得してもよい。例えば、電力監視装置(不図示)が負荷38の消費電力量を逐次監視する。電力監視装置は、消費電力量の監視結果を携帯端末26に送信する。第1CPU46は、携帯端末26から無線通信により負荷38の消費電力量を取得する。第1CPU46では、取得した消費電力量と、第1蓄電部40及び第2蓄電部62の各SOCとに基づいて、各SOCがSOCth1又はSOCth3以下となる時点を算出する。あるいは、第1CPU46では、取得した消費電力量と、第1蓄電部40及び第2蓄電部62の各SOCとに基づいて、現時点から各SOCがSOCth1又はSOCth3以下となる時点までの期間を算出する。これにより、第1蓄電部40及び第2蓄電部62の残りの給電時間、交換のタイミング等を携帯端末26(利用者)に予め通知することが可能となる。 In the first and second embodiments, the first CPU 46 may acquire the power consumption of the load 38 . For example, a power monitoring device (not shown) continuously monitors the power consumption of the load 38 . The power monitoring device transmits the power consumption monitoring result to the mobile terminal 26 . The first CPU 46 acquires the power consumption of the load 38 from the portable terminal 26 by wireless communication. First CPU 46 calculates the time when each SOC becomes SOCth1 or SOCth3 or less based on the acquired power consumption amount and each SOC of first power storage unit 40 and second power storage unit 62 . Alternatively, first CPU 46 calculates a period from the current time to the time when each SOC becomes SOCth1 or SOCth3 or less based on the acquired power consumption amount and each SOC of first power storage unit 40 and second power storage unit 62. . This makes it possible to notify the portable terminal 26 (user) in advance of the remaining power supply time of the first power storage unit 40 and the second power storage unit 62, the timing of replacement, and the like.
 図1に示すように、第1電力伝達経路16と第2電力伝達経路18との接続箇所は、第1電力装置12の第1筐体22、及び、第2電力装置14の第2筐体24の外部に設けられている。本実施形態では、第1電力装置12の第1筐体22の内部、又は、第2電力装置14の第2筐体24の内部に、第1電力伝達経路16と第2電力伝達経路18との接続箇所を設けてもよい。すなわち、第1電力変換部60及び第2電力変換部82と負荷接続部28との間の任意の箇所に、第1電力伝達経路16と第2電力伝達経路18との接続箇所が設けられていればよい。 As shown in FIG. 1 , the connection points between the first power transmission path 16 and the second power transmission path 18 are the first housing 22 of the first power device 12 and the second housing of the second power device 14 . 24 is provided outside. In this embodiment, the first power transmission path 16 and the second power transmission path 18 are provided inside the first housing 22 of the first power device 12 or inside the second housing 24 of the second power device 14. connection point may be provided. In other words, a connection point between the first power transmission path 16 and the second power transmission path 18 is provided at an arbitrary point between the first power conversion section 60 and the second power conversion section 82 and the load connection section 28 . All you have to do is
 負荷38は、電源装置10から供給される出力電力(交流電力)によって動作する交流機器であればよい。このような交流機器としては、交流消費家電、交流モータ、AC/DCインバータ等が挙げられる。 The load 38 may be an AC device that operates with output power (AC power) supplied from the power supply device 10 . Such AC appliances include AC consumer electronics, AC motors, AC/DC inverters, and the like.
 携帯端末26は、電源装置10の利用者等に対して、視覚的、聴覚的に各種の情報を通知してもよい。 The mobile terminal 26 may visually and audibly notify the user of the power supply device 10 of various types of information.
 携帯端末26は、負荷38の消費電力量に対する第1蓄電部40及び第2蓄電部62の分担電力、分担比率、又は、供給電力値を、動作指令に併せて、第1電力装置12及び第2電力装置14に送信してもよい。あるいは、携帯端末26は、第1蓄電部40及び第2蓄電部62のうち、一方の蓄電部の分担電力、分担率、又は、供給電力値を、第1電力装置12及び第2電力装置14に送信してもよい。 The portable terminal 26 sets the shared power, the sharing ratio, or the supplied power value of the first power storage unit 40 and the second power storage unit 62 with respect to the power consumption of the load 38 in accordance with the operation command. It may be transmitted to the two power device 14 . Alternatively, the portable terminal 26 may set the shared power, the sharing ratio, or the supplied power value of one of the first power storage unit 40 and the second power storage unit 62 to the first power device 12 and the second power device 14 . may be sent to
 上記の説明では、携帯端末26と第1電力装置12及び第2電力装置14との間で、無線通信により、信号又は情報の送受信を行う場合について説明した。本実施形態では、携帯端末26と第1電力装置12及び第2電力装置14との間で、有線通信により、信号又は情報の送受信を行ってもよい。また、本実施形態では、第1電力装置12と第2電力装置14との間で、有線通信により、信号又は情報の送受信を行ってもよい。 In the above description, a case where signals or information are transmitted and received by wireless communication between the mobile terminal 26 and the first power device 12 and the second power device 14 has been described. In this embodiment, signals or information may be transmitted and received between the mobile terminal 26 and the first power device 12 and the second power device 14 by wired communication. Further, in the present embodiment, signals or information may be transmitted and received between the first power device 12 and the second power device 14 by wired communication.
 また、上記の説明では、第1電力装置12及び第2電力装置14の双方において、第1出力電圧と第2出力電圧とが等しくなるように制御が行われる場合について説明した。本実施形態では、第1出力電圧及び第2出力電圧のうち、一方の出力電圧を他方の出力電圧に合わせるように、いずれかの電力装置が動作してもよい。あるいは、第1電力装置12及び第2電力装置14が協調して、第1出力電圧と第2出力電圧とが等しくなるように制御してもよい。 Also, in the above description, the case where control is performed so that the first output voltage and the second output voltage are equal in both the first power device 12 and the second power device 14 has been described. In this embodiment, either one of the power devices may operate to match one of the first output voltage and the second output voltage to the other output voltage. Alternatively, the first power device 12 and the second power device 14 may cooperate to control the first output voltage and the second output voltage to be equal.
 さらに、上記の説明では、第1蓄電部40を含む第1電力装置12の各構成要素が第1筐体22の内部に配置されると共に、第2蓄電部62を含む第2電力装置14の各構成要素が第2筐体24に配置される場合について説明した。本実施形態では、第1電力装置12及び第2電力装置14の各構成要素が同一(単一)の筐体の内部に配置されてもよい。この場合、同一の筐体の内部には、負荷接続部28まで配置(収容)されてもよい。  Furthermore, in the above description, each component of the first power device 12 including the first power storage unit 40 is arranged inside the first housing 22, and the second power device 14 including the second power storage unit 62 A case where each component is arranged in the second housing 24 has been described. In this embodiment, each component of the first power device 12 and the second power device 14 may be arranged inside the same (single) housing. In this case, even the load connection section 28 may be arranged (accommodated) inside the same housing. 
 上記の実施形態から把握し得る発明について、以下に記載する。 The inventions that can be understood from the above embodiments are described below.
 本発明の第1の態様は、外部に電力を出力する電源装置(10)であって、前記電源装置は、第1蓄電部(40)と、第2蓄電部(62)と、前記第1蓄電部と、負荷(38)が接続される負荷接続部(28)とを接続する第1電力伝達経路(16)と、前記第2蓄電部と前記負荷接続部とを接続する第2電力伝達経路(18)と、前記第1電力伝達経路に配置され、前記第1蓄電部から供給される電力を変換する第1電力変換部(60)と、前記第2電力伝達経路に配置され、前記第2蓄電部から供給される電力を変換する第2電力変換部(82)と、前記第1電力変換部を制御する第1制御部(46)と、前記第2電力変換部を制御する第2制御部(68)と、を備え、前記第1蓄電部と前記第2蓄電部とは、前記負荷接続部に対して並列に接続され、前記第1制御部は、前記第1電力変換部から出力される第1出力電流が上昇するにつれて、前記第1電力変換部から出力される第1出力電圧が逓減するような第1逓減特性に基づき、前記第1電力変換部を制御し、前記第2制御部は、前記第2電力変換部から出力される第2出力電流が上昇するにつれて、前記第2電力変換部から出力される第2出力電圧が逓減するような第2逓減特性に基づき、前記第2電力変換部を制御し、前記第1逓減特性と、前記第2逓減特性とは、互いに異なるように設定される。 A first aspect of the present invention is a power supply device (10) that outputs electric power to the outside, the power supply device comprising a first power storage unit (40), a second power storage unit (62), and the first power storage unit (40). a first power transmission path (16) connecting a power storage unit and a load connection (28) to which a load (38) is connected; and a second power transmission connecting the second power storage unit and the load connection. a path (18); a first power conversion unit (60) arranged in the first power transmission path and configured to convert power supplied from the first power storage unit; A second power conversion section (82) that converts the power supplied from the second power storage section, a first control section (46) that controls the first power conversion section, and a second power conversion section that controls the second power conversion section. 2 control unit (68), wherein the first power storage unit and the second power storage unit are connected in parallel to the load connection unit, and the first control unit is connected to the first power conversion unit. Controlling the first power conversion unit based on a first step-down characteristic such that the first output voltage output from the first power conversion unit gradually decreases as the first output current output from increases, The second control unit is based on a second decreasing characteristic such that the second output voltage output from the second power conversion unit gradually decreases as the second output current output from the second power conversion unit increases. , and controls the second power conversion unit, and the first gradual decrease characteristic and the second gradual decrease characteristic are set to be different from each other.
 本発明によれば、2つの蓄電部の交換のタイミングが重ならないので、負荷に電力を供給し続けることが可能となる。 According to the present invention, since the replacement timings of the two power storage units do not overlap, it is possible to continue supplying power to the load.
 本発明について、より詳しく説明する。2つの蓄電部の交換のタイミングがずれるので、充電済みの蓄電部に交換することで、電源装置は、理論上、無期限に出力電力を負荷に供給することができる。また、いわゆるパススルー機能付きの無停電電源装置(UPS)のように、電力系統に繋いでおくことが不要となる。さらに、任意の残量(蓄電量)の2つの蓄電部を装着している場合でも、各蓄電部の交換のタイミングを容易に制御することができる。 The present invention will be explained in more detail. Since the timing of replacement of the two power storage units is shifted, by replacing with a charged power storage unit, the power supply device can theoretically supply output power to the load indefinitely. In addition, unlike an uninterruptible power supply (UPS) with a so-called pass-through function, it is not necessary to connect to a power system. Furthermore, even when two power storage units with arbitrary remaining amounts (charge amounts) are attached, the timing of replacement of each power storage unit can be easily controlled.
 本発明の第1の態様において、前記第1制御部は、前記第1出力電圧と前記第2出力電圧とが等しくなるように、前記第1電力変換部を制御してもよい。 In the first aspect of the present invention, the first control section may control the first power conversion section such that the first output voltage and the second output voltage are equal.
 これにより、出力電圧の不均衡による第1蓄電部と第2蓄電部との間での出力電流の横流の発生を抑制することが可能となる。この結果、負荷に出力電流を確実に流すことができる。 This makes it possible to suppress the occurrence of a cross current of the output current between the first power storage unit and the second power storage unit due to the output voltage imbalance. As a result, the output current can reliably flow to the load.
 本発明の第1の態様において、前記第1制御部は、前記第1蓄電部の蓄電量が前記第2蓄電部の蓄電量よりも少ないときに、前記第1出力電流が前記第2出力電流よりも大きくなるように、前記第1電力変換部を制御してもよい。 In the first aspect of the present invention, the first control unit changes the first output current to the second output current when the power storage amount of the first power storage unit is less than the power storage amount of the second power storage unit. You may control a said 1st power conversion part so that it may become larger than.
 これにより、第1蓄電部を早期に交換することが可能となる。 This makes it possible to replace the first power storage unit early.
 本発明の第1の態様において、前記第1制御部は、前記第1蓄電部の蓄電量が前記第2蓄電部の蓄電量よりも多いときに、前記第1出力電流が前記第2出力電流よりも大きくなるように、前記第1電力変換部を制御してもよい。 In the first aspect of the present invention, the first control unit changes the first output current to the second output current when the power storage amount of the first power storage unit is greater than the power storage amount of the second power storage unit. You may control a said 1st power conversion part so that it may become larger than.
 この場合でも、第1蓄電部を早期に交換することが可能となる。あるいは、第1蓄電部及び第2蓄電部の双方の交換のタイミングを揃えることも可能となる。 Even in this case, it is possible to replace the first power storage unit early. Alternatively, it is also possible to synchronize the replacement timings of both the first power storage unit and the second power storage unit.
 本発明の第1の態様において、前記電源装置は、前記第1蓄電部の蓄電量、及び、前記第2蓄電部の蓄電量のうち、少なくとも一方の蓄電量を取得する蓄電量取得部(46、68)と、前記蓄電量取得部が取得した前記蓄電量が第1所定値(SOCth1、SOCth3)以下となったときに、前記電源装置、前記第1蓄電部又は前記第2蓄電部の利用者、所有者又は管理者に通知する通知部と、をさらに備えてもよい。 In the first aspect of the present invention, the power supply device includes a stored electricity amount acquiring unit (46 , 68) and use of the power supply device, the first power storage unit, or the second power storage unit when the power storage amount acquired by the power storage amount acquiring unit becomes equal to or less than a first predetermined value (SOCth1, SOCth3). and a notification unit for notifying the person, owner, or administrator.
 これにより、蓄電部の交換のタイミングを利用者、所有者又は管理者に確実に通知することができる。 As a result, it is possible to reliably notify the user, owner, or administrator of the timing of replacement of the power storage unit.
 本発明の第1の態様において、前記電源装置は、前記負荷の消費電力量を取得する消費電力量取得部(46、68)と、前記蓄電量取得部が取得した前記蓄電量と、前記消費電力量取得部が取得した前記消費電力量とに基づいて、前記蓄電量が第2所定値(SOCth1、SOCth3)以下となる時点、又は、現時点から前記蓄電量が前記第2所定値以下となる時点までの期間を算出する算出部(46、68)と、をさらに備えてもよい。 In the first aspect of the present invention, the power supply device includes a power consumption acquisition unit (46, 68) that acquires the power consumption of the load, the storage amount acquired by the storage amount acquisition unit, and the consumption Based on the power consumption acquired by the power acquisition unit, the time when the power storage amount becomes equal to or less than the second predetermined value (SOCth1, SOCth3), or the power storage amount becomes equal to or less than the second predetermined value from the current time point. A calculation unit (46, 68) for calculating the period up to the point in time may be further provided.
 これにより、蓄電部の残りの給電時間、交換のタイミングを利用者等に予め通知することが可能となる。 As a result, it is possible to notify users in advance of the remaining power supply time of the power storage unit and the timing of replacement.
 本発明の第1の態様において、前記第1制御部は、前記第1出力電流が第3所定値(Ith0)以上のときに、前記第1出力電圧が急減するような第1垂下特性に基づき、前記第1電力変換部を制御し、前記第2制御部は、前記第2出力電流が第4所定値(Itha)以上のときに、前記第2出力電圧が急減するような第2垂下特性に基づき、前記第2電力変換部を制御してもよい。 In the first aspect of the present invention, the first control section is configured based on a first drooping characteristic such that the first output voltage sharply decreases when the first output current is equal to or greater than a third predetermined value (Ith0). and the second control unit controls the first power conversion unit, and the second control unit provides a second drooping characteristic such that the second output voltage sharply decreases when the second output current is equal to or greater than a fourth predetermined value (Itha). You may control a said 2nd power conversion part based on.
 これにより、電源装置を過電流から保護することができる。 This allows the power supply to be protected from overcurrent.
 本発明の第1の態様において、前記電源装置は、前記第1蓄電部及び前記第2蓄電部のうち、少なくとも一方の蓄電部に蓄電された電力の使用態様に関する利用者の要求を受ける受領部(54、76)をさらに備えてもよい。 In the first aspect of the present invention, the power supply device includes a receiving unit that receives a request from a user regarding usage of power stored in at least one of the first power storage unit and the second power storage unit. (54, 76) may further be provided.
 これにより、利用者の要求に応じた仕様態様にて、電源装置から負荷に出力電力を供給することができる。 As a result, it is possible to supply output power from the power supply to the load according to the specification mode according to the user's request.
 本発明の第1の態様において、前記第1制御部及び前記第2制御部のうち、少なくとも一方の制御部は、前記受領部が受けた前記要求に基づいて、前記第1電力変換部及び前記第2電力変換部のうち、少なくとも一方の電力変換部を制御してもよい。 In the first aspect of the present invention, at least one of the first control unit and the second control unit controls, based on the request received by the receiving unit, the first power conversion unit and the At least one of the second power conversion units may be controlled.
 これにより、利用者の要求に応じて、電力変換部を適切に制御することができる。 As a result, the power converter can be appropriately controlled according to the user's request.
 本発明の第1の態様において、前記受領部は、前記利用者の携帯端末(26)と通信可能であり、前記利用者が前記携帯端末に入力した前記要求を受信してもよい。 In the first aspect of the present invention, the receiving unit may communicate with the mobile terminal (26) of the user and receive the request input by the user to the mobile terminal.
 これにより、利用者の要求に応じて、電力変換部をより適切に制御することができる。 As a result, the power converter can be controlled more appropriately according to the user's request.
 本発明の第1の態様において、前記受領部は、前記負荷の消費電力について、前記第1蓄電部及び前記第2蓄電部のうち、少なくとも一方の蓄電部が分担する分担電力についての前記要求を受けてもよい。 In the first aspect of the present invention, the receiving unit makes the request for shared power shared by at least one of the first power storage unit and the second power storage unit with respect to power consumption of the load. You may accept.
 これにより、負荷の消費電力に対して、第1蓄電部及び第2蓄電部の各々が分担する割合を外部から制御することが可能となる。 This makes it possible to externally control the proportion of the power consumption of the load shared by each of the first power storage unit and the second power storage unit.
 本発明の第1の態様において、前記第1蓄電部及び前記第2蓄電部は、前記電源装置に対して着脱可能であってもよい。 In the first aspect of the present invention, the first power storage unit and the second power storage unit may be detachable from the power supply device.
 これにより、第1蓄電部及び第2蓄電部を容易に交換することができる。 Thereby, the first power storage unit and the second power storage unit can be easily replaced.
 本発明の第1の態様において、前記電源装置は、前記第1蓄電部、前記第1電力変換部及び前記第1制御部を収容する第1筐体(22)と、前記第2蓄電部、前記第2電力変換部及び前記第2制御部を収容する第2筐体(24)と、をさらに備えてもよい。 In the first aspect of the present invention, the power supply device includes: a first housing (22) housing the first power storage unit, the first power conversion unit, and the first control unit; the second power storage unit; A second housing (24) that houses the second power converter and the second controller may be further provided.
 これにより、第1筐体と第2筐体とを独立した電力装置として機能させることが可能となる。 This allows the first housing and the second housing to function as independent power devices.
 本発明の第1の態様において、前記第1制御部と前記第2制御部とは、互いに通信可能に設けられてもよい。 In the first aspect of the present invention, the first control section and the second control section may be provided so as to communicate with each other.
 これにより、第1筐体の部分と第2筐体の部分との間で、信号又は情報の送受信を容易に行うことができる。 Thereby, it is possible to easily transmit and receive signals or information between the portion of the first housing and the portion of the second housing.
 本発明の第2の態様は、第1蓄電部と負荷とが第1電力伝達経路を介して接続されている場合に、前記負荷に対して前記第1蓄電部と並列に接続される第2蓄電部を備える電源装置(14)であって、前記電源装置は、前記第2蓄電部と前記負荷とを接続する第2電力伝達経路と、前記第2電力伝達経路に配置され、前記第2蓄電部から供給される電力を変換する電力変換部(82)と、前記電力変換部を制御する制御部(68)と、を備え、前記第1電力伝達経路から出力される第1出力電圧が上昇するにつれて、前記第1電力伝達経路から出力される第1出力電流が逓減するような第3逓減特性に基づき、前記第1蓄電部が電力を出力する場合に、前記制御部は、前記電力変換部から出力される第2出力電圧が上昇するにつれて、前記電力変換部から出力される第2出力電流が逓減するような第4逓減特性に基づき、前記電力変換部を制御し、前記第4逓減特性は、前記第3逓減特性と異なるように設定される。 A second aspect of the present invention is a second power storage unit connected in parallel to the first power storage unit with respect to the load when the first power storage unit and the load are connected via a first power transmission path. A power supply device (14) including a power storage unit, wherein the power supply device is arranged in a second power transmission path connecting the second power storage unit and the load, and arranged in the second power transmission path to A power conversion unit (82) that converts power supplied from a power storage unit, and a control unit (68) that controls the power conversion unit, wherein the first output voltage output from the first power transmission path is When the first power storage unit outputs power based on a third decreasing characteristic in which the first output current output from the first power transmission path gradually decreases as it rises, the control unit controls the power controlling the power conversion unit based on a fourth decreasing characteristic such that the second output current output from the power conversion unit gradually decreases as the second output voltage output from the conversion unit increases; The gradual decrease characteristic is set to be different from the third gradual decrease characteristic.
 本発明でも、第1の態様と同様の効果が得られる。 The present invention also provides the same effect as the first aspect.
 本発明の第2の態様において、前記電源装置は、前記第1出力電圧を取得する電圧取得部(68)をさらに備え、前記制御部は、前記電力変換部を制御することで、前記第2出力電圧の周波数に相関する第1状態量と、前記第2出力電圧の位相に相関する第2状態量とを、前記電圧取得部が取得した前記第1出力電圧と一致させるように制御してもよい。 In the second aspect of the present invention, the power supply device further includes a voltage acquisition section (68) that acquires the first output voltage, and the control section controls the power conversion section to control the second The first state quantity correlated with the frequency of the output voltage and the second state quantity correlated with the phase of the second output voltage are controlled to match the first output voltage acquired by the voltage acquisition unit. good too.
 これにより、出力電圧の不均衡による第1蓄電部と第2蓄電部との間での出力電流の横流の発生を抑制することが可能となる。この結果、負荷に出力電流を確実に流すことができる。 This makes it possible to suppress the occurrence of a cross current of the output current between the first power storage unit and the second power storage unit due to the output voltage imbalance. As a result, the output current can reliably flow to the load.
 本発明の第2の態様において、前記制御部は、前記電力変換部を制御することで、前記第2出力電圧の振幅に相関する第3状態量を、前記電圧取得部が取得した前記第1出力電圧と一致させるように制御してもよい。 In the second aspect of the present invention, the control unit controls the power conversion unit to acquire the third state quantity correlated with the amplitude of the second output voltage from the first state obtained by the voltage obtaining unit. It may be controlled to match the output voltage.
 これにより、出力電圧の不均衡による第1蓄電部と第2蓄電部との間での出力電流の横流の発生を一層抑制することができる。この結果、負荷に出力電流をより確実に流すことができる。 As a result, it is possible to further suppress the occurrence of a cross current of the output current between the first power storage unit and the second power storage unit due to the output voltage imbalance. As a result, the output current can flow more reliably through the load.
 本発明の第3の態様は、外部に電力を出力する電源装置の制御方法であって、前記電源装置は、第1蓄電部と、第2蓄電部と、前記第1蓄電部と、負荷が接続される負荷接続部とを接続する第1電力伝達経路と、前記第2蓄電部と前記負荷接続部とを接続する第2電力伝達経路と、前記第1電力伝達経路に配置され、前記第1蓄電部から供給される電力を変換する第1電力変換部と、前記第2電力伝達経路に配置され、前記第2蓄電部から供給される電力を変換する第2電力変換部と、前記第1電力変換部及び前記第2電力変換部を制御する制御部と、を備え、前記第1蓄電部と前記第2蓄電部とは、前記負荷接続部に対して並列に接続され、前記制御方法は、第1逓減特性に基づいて前記第1電力変換部を制御することにより、前記第1電力変換部から出力される第1出力電流が上昇するにつれて、前記第1電力変換部から出力される第1出力電圧を逓減させるステップと、前記第1逓減特性とは異なる第2逓減特性に基づいて前記第2電力変換部を制御することにより、前記第2電力変換部から出力される第2出力電流が上昇するにつれて、前記第2電力変換部から出力される第2出力電圧を逓減させるステップと、を有する。 A third aspect of the present invention is a control method for a power supply device that outputs electric power to the outside, wherein the power supply device includes a first power storage unit, a second power storage unit, the first power storage unit, and a load. a first power transmission path that connects a connected load connection section; a second power transmission path that connects the second power storage section and the load connection section; a first power conversion unit that converts power supplied from one power storage unit; a second power conversion unit that is arranged in the second power transmission path and converts power supplied from the second power storage unit; a control unit that controls the first power conversion unit and the second power conversion unit, the first power storage unit and the second power storage unit being connected in parallel to the load connection unit; is output from the first power conversion unit as the first output current output from the first power conversion unit increases by controlling the first power conversion unit based on the first gradual decrease characteristic a step of stepping down a first output voltage; and a second output output from the second power conversion unit by controlling the second power conversion unit based on a second stepping-down characteristic different from the first stepping-down characteristic. and stepping down a second output voltage output from the second power converter as the current increases.
 本発明でも、第1の態様及び第2の態様と同様の効果が得られる。 The present invention also provides the same effects as the first and second aspects.
 本発明の第4の態様は、第3の態様の電源装置の制御方法をコンピュータ(46、68)に実行させるプログラムである。 A fourth aspect of the present invention is a program that causes a computer (46, 68) to execute the power supply control method of the third aspect.
 本発明でも、第1の態様及び第2の態様と同様の効果が得られる。 The present invention also provides the same effects as the first and second aspects.
 本発明の第5の態様は、第4の態様のプログラムを記憶する記憶媒体(86)である。 A fifth aspect of the present invention is a storage medium (86) that stores the program of the fourth aspect.
 本発明でも、第1の態様及び第2の態様と同様の効果が得られる。 The present invention also provides the same effects as the first and second aspects.
 なお、本発明は、上述した開示に限らず、本発明の要旨を逸脱することなく、種々の構成を採り得る。 It should be noted that the present invention is not limited to the above disclosure, and can adopt various configurations without departing from the gist of the present invention.

Claims (20)

  1.  外部に電力を出力する電源装置(10)であって、
     第1蓄電部(40)と、
     第2蓄電部(62)と、
     前記第1蓄電部と、負荷(38)が接続される負荷接続部(28)とを接続する第1電力伝達経路(16)と、
     前記第2蓄電部と前記負荷接続部とを接続する第2電力伝達経路(18)と、
     前記第1電力伝達経路に配置され、前記第1蓄電部から供給される電力を変換する第1電力変換部(60)と、
     前記第2電力伝達経路に配置され、前記第2蓄電部から供給される電力を変換する第2電力変換部(82)と、
     前記第1電力変換部を制御する第1制御部(46)と、
     前記第2電力変換部を制御する第2制御部(68)と、
     を備え、
     前記第1蓄電部と前記第2蓄電部とは、前記負荷接続部に対して並列に接続され、
     前記第1制御部は、前記第1電力変換部から出力される第1出力電流が上昇するにつれて、前記第1電力変換部から出力される第1出力電圧が逓減するような第1逓減特性に基づき、前記第1電力変換部を制御し、
     前記第2制御部は、前記第2電力変換部から出力される第2出力電流が上昇するにつれて、前記第2電力変換部から出力される第2出力電圧が逓減するような第2逓減特性に基づき、前記第2電力変換部を制御し、
     前記第1逓減特性と、前記第2逓減特性とは、互いに異なるように設定される、電源装置。
    A power supply device (10) that outputs electric power to the outside,
    a first power storage unit (40);
    a second power storage unit (62);
    a first power transmission path (16) connecting the first power storage unit and a load connection (28) to which a load (38) is connected;
    a second power transmission path (18) connecting the second power storage unit and the load connection unit;
    a first power conversion unit (60) arranged on the first power transmission path and configured to convert power supplied from the first power storage unit;
    a second power conversion unit (82) arranged on the second power transmission path and configured to convert power supplied from the second power storage unit;
    a first control unit (46) that controls the first power conversion unit;
    a second control unit (68) that controls the second power conversion unit;
    with
    the first power storage unit and the second power storage unit are connected in parallel to the load connection unit,
    The first control unit has a first decreasing characteristic such that the first output voltage output from the first power converting unit gradually decreases as the first output current output from the first power converting unit increases. Based on, controlling the first power conversion unit,
    The second control unit has a second step-down characteristic such that the second output voltage output from the second power conversion unit gradually decreases as the second output current output from the second power conversion unit increases. Based on, controlling the second power conversion unit,
    The power supply device, wherein the first gradual decrease characteristic and the second gradual decrease characteristic are set to be different from each other.
  2.  請求項1記載の電源装置において、
     前記第1制御部は、前記第1出力電圧と前記第2出力電圧とが等しくなるように、前記第1電力変換部を制御する、電源装置。
    The power supply device according to claim 1,
    The power supply device, wherein the first control unit controls the first power conversion unit such that the first output voltage and the second output voltage are equal.
  3.  請求項1又は2記載の電源装置において、
     前記第1制御部は、前記第1蓄電部の蓄電量が前記第2蓄電部の蓄電量よりも少ないときに、前記第1出力電流が前記第2出力電流よりも大きくなるように、前記第1電力変換部を制御する、電源装置。
    The power supply device according to claim 1 or 2,
    The first control unit controls the first power storage unit so that the first output current is greater than the second output current when the power storage amount of the first power storage unit is less than the power storage amount of the second power storage unit. 1 A power supply device that controls a power converter.
  4.  請求項1又は2記載の電源装置において、
     前記第1制御部は、前記第1蓄電部の蓄電量が前記第2蓄電部の蓄電量よりも多いときに、前記第1出力電流が前記第2出力電流よりも大きくなるように、前記第1電力変換部を制御する、電源装置。
    The power supply device according to claim 1 or 2,
    The first control unit controls the first power storage unit so that the first output current is greater than the second output current when the power storage amount of the first power storage unit is greater than the power storage amount of the second power storage unit. 1 A power supply device that controls a power converter.
  5.  請求項1~4のいずれか1項に記載の電源装置において、
     前記第1蓄電部の蓄電量、及び、前記第2蓄電部の蓄電量のうち、少なくとも一方の蓄電量を取得する蓄電量取得部(46、68)と、
     前記蓄電量取得部が取得した前記蓄電量が第1所定値(SOCth1、SOCth3)以下となったときに、前記電源装置、前記第1蓄電部又は前記第2蓄電部の利用者、所有者又は管理者に通知する通知部と、
     をさらに備える、電源装置。
    In the power supply device according to any one of claims 1 to 4,
    a stored electricity amount acquisition unit (46, 68) that acquires at least one of the stored electricity amount of the first electricity storage unit and the electricity storage amount of the second electricity storage unit;
    When the stored electricity amount acquired by the stored electricity amount acquisition unit becomes equal to or less than a first predetermined value (SOCth1, SOCth3), the user, owner, or a notification unit for notifying an administrator;
    A power supply, further comprising:
  6.  請求項5記載の電源装置において、
     前記負荷の消費電力量を取得する消費電力量取得部(46、68)と、
     前記蓄電量取得部が取得した前記蓄電量と、前記消費電力量取得部が取得した前記消費電力量とに基づいて、前記蓄電量が第2所定値(SOCth1、SOCth3)以下となる時点、又は、現時点から前記蓄電量が前記第2所定値以下となる時点までの期間を算出する算出部(46、68)と、
     をさらに備える、電源装置。
    In the power supply device according to claim 5,
    a power consumption acquisition unit (46, 68) for acquiring the power consumption of the load;
    a time point when the stored electricity amount becomes equal to or less than a second predetermined value (SOCth1, SOCth3) based on the stored electricity amount obtained by the electricity storage amount obtaining unit and the power consumption amount obtained by the electricity consumption amount obtaining unit; or , a calculation unit (46, 68) for calculating a period from the current time to the time when the charged amount becomes equal to or less than the second predetermined value;
    A power supply, further comprising:
  7.  請求項1~6のいずれか1項に記載の電源装置において、
     前記第1制御部は、前記第1出力電流が第3所定値(Ith0)以上のときに、前記第1出力電圧が急減するような第1垂下特性に基づき、前記第1電力変換部を制御し、
     前記第2制御部は、前記第2出力電流が第4所定値(Itha)以上のときに、前記第2出力電圧が急減するような第2垂下特性に基づき、前記第2電力変換部を制御する、電源装置。
    In the power supply device according to any one of claims 1 to 6,
    The first control unit controls the first power conversion unit based on a first drooping characteristic such that the first output voltage sharply decreases when the first output current is equal to or greater than a third predetermined value (Ith0). death,
    The second control unit controls the second power conversion unit based on a second drooping characteristic such that the second output voltage sharply decreases when the second output current is equal to or greater than a fourth predetermined value (Itha). power supply.
  8.  請求項1~7のいずれか1項に記載の電源装置において、
     前記第1蓄電部及び前記第2蓄電部のうち、少なくとも一方の蓄電部に蓄電された電力の使用態様に関する利用者の要求を受ける受領部(54、76)をさらに備える、電源装置。
    In the power supply device according to any one of claims 1 to 7,
    A power supply device, further comprising: a receiving unit (54, 76) for receiving a user's request regarding a mode of use of power stored in at least one of the first power storage unit and the second power storage unit.
  9.  請求項8記載の電源装置において、
     前記第1制御部及び前記第2制御部のうち、少なくとも一方の制御部は、前記受領部が受けた前記要求に基づいて、前記第1電力変換部及び前記第2電力変換部のうち、少なくとも一方の電力変換部を制御する、電源装置。
    The power supply device according to claim 8,
    At least one of the first control unit and the second control unit controls at least one of the first power conversion unit and the second power conversion unit based on the request received by the receiving unit. A power supply that controls one of the power converters.
  10.  請求項8又は9記載の電源装置において、
     前記受領部は、前記利用者の携帯端末(26)と通信可能であり、前記利用者が前記携帯端末に入力した前記要求を受信する、電源装置。
    The power supply device according to claim 8 or 9,
    The power supply device, wherein the receiving unit is capable of communicating with the mobile terminal (26) of the user and receives the request input by the user to the mobile terminal.
  11.  請求項8~10のいずれか1項に記載の電源装置において、
     前記受領部は、前記負荷の消費電力について、前記第1蓄電部及び前記第2蓄電部のうち、少なくとも一方の蓄電部が分担する分担電力についての前記要求を受ける、電源装置。
    In the power supply device according to any one of claims 8 to 10,
    The power supply device, wherein the receiving unit receives the request for shared power shared by at least one of the first power storage unit and the second power storage unit with respect to the power consumption of the load.
  12.  請求項1~11のいずれか1項に記載の電源装置において、
     前記第1蓄電部及び前記第2蓄電部は、前記電源装置に対して着脱可能である、電源装置。
    In the power supply device according to any one of claims 1 to 11,
    The power supply device, wherein the first power storage unit and the second power storage unit are detachable from the power supply device.
  13.  請求項1~12のいずれか1項に記載の電源装置において、
     前記第1蓄電部、前記第1電力変換部及び前記第1制御部を収容する第1筐体(22)と、
     前記第2蓄電部、前記第2電力変換部及び前記第2制御部を収容する第2筐体(24)と、
     をさらに備える、電源装置。
    In the power supply device according to any one of claims 1 to 12,
    a first housing (22) housing the first power storage unit, the first power conversion unit, and the first control unit;
    a second housing (24) housing the second power storage unit, the second power conversion unit, and the second control unit;
    A power supply, further comprising:
  14.  請求項13記載の電源装置において、
     前記第1制御部と前記第2制御部とは、互いに通信可能に設けられる、電源装置。
    14. The power supply device of claim 13, wherein
    The power supply device, wherein the first control unit and the second control unit are provided so as to be able to communicate with each other.
  15.  第1蓄電部と負荷とが第1電力伝達経路を介して接続されている場合に、前記負荷に対して前記第1蓄電部と並列に接続される第2蓄電部を備える電源装置(14)であって、
     前記第2蓄電部と前記負荷とを接続する第2電力伝達経路と、
     前記第2電力伝達経路に配置され、前記第2蓄電部から供給される電力を変換する電力変換部(82)と、
     前記電力変換部を制御する制御部(68)と、
     を備え、
     前記第1電力伝達経路から出力される第1出力電圧が上昇するにつれて、前記第1電力伝達経路から出力される第1出力電流が逓減するような第3逓減特性に基づき、前記第1蓄電部が電力を出力する場合に、
     前記制御部は、前記電力変換部から出力される第2出力電圧が上昇するにつれて、前記電力変換部から出力される第2出力電流が逓減するような第4逓減特性に基づき、前記電力変換部を制御し、
     前記第4逓減特性は、前記第3逓減特性と異なるように設定される、電源装置。
    A power supply device (14) comprising a second power storage unit connected in parallel to the first power storage unit with respect to the load when the first power storage unit and the load are connected via a first power transmission path. and
    a second power transmission path connecting the second power storage unit and the load;
    a power conversion unit (82) arranged in the second power transmission path and configured to convert power supplied from the second power storage unit;
    a control unit (68) that controls the power conversion unit;
    with
    Based on a third decreasing characteristic such that the first output current output from the first power transmission path gradually decreases as the first output voltage output from the first power transmission path increases, the first power storage unit outputs power,
    The control unit controls the power conversion unit based on a fourth decreasing characteristic such that the second output current output from the power conversion unit gradually decreases as the second output voltage output from the power conversion unit increases. to control the
    The power supply device, wherein the fourth gradually decreasing characteristic is set to be different from the third gradually decreasing characteristic.
  16.  請求項15記載の電源装置において、
     前記第1出力電圧を取得する電圧取得部(68)をさらに備え、
     前記制御部は、前記電力変換部を制御することで、前記第2出力電圧の周波数に相関する第1状態量と、前記第2出力電圧の位相に相関する第2状態量とを、前記電圧取得部が取得した前記第1出力電圧と一致させるように制御する、電源装置。
    16. The power supply device of claim 15, wherein
    Further comprising a voltage acquisition unit (68) that acquires the first output voltage,
    The control unit controls the power conversion unit to convert a first state quantity correlated with the frequency of the second output voltage and a second state quantity correlated with the phase of the second output voltage into the voltage A power supply device that controls to match the first output voltage acquired by the acquisition unit.
  17.  請求項16記載の電源装置において、
     前記制御部は、前記電力変換部を制御することで、前記第2出力電圧の振幅に相関する第3状態量を、前記電圧取得部が取得した前記第1出力電圧と一致させるように制御する、電源装置。
    17. The power supply device of claim 16, wherein
    The control unit controls the power conversion unit so that a third state quantity correlated with the amplitude of the second output voltage matches the first output voltage acquired by the voltage acquisition unit. , power supply.
  18.  外部に電力を出力する電源装置の制御方法であって、
     前記電源装置は、第1蓄電部と、第2蓄電部と、前記第1蓄電部と、負荷が接続される負荷接続部とを接続する第1電力伝達経路と、前記第2蓄電部と前記負荷接続部とを接続する第2電力伝達経路と、前記第1電力伝達経路に配置され、前記第1蓄電部から供給される電力を変換する第1電力変換部と、前記第2電力伝達経路に配置され、前記第2蓄電部から供給される電力を変換する第2電力変換部と、前記第1電力変換部及び前記第2電力変換部を制御する制御部と、を備え、
     前記第1蓄電部と前記第2蓄電部とは、前記負荷接続部に対して並列に接続され、
     前記制御方法は、
     第1逓減特性に基づいて前記第1電力変換部を制御することにより、前記第1電力変換部から出力される第1出力電流が上昇するにつれて、前記第1電力変換部から出力される第1出力電圧を逓減させるステップと、
     前記第1逓減特性とは異なる第2逓減特性に基づいて前記第2電力変換部を制御することにより、前記第2電力変換部から出力される第2出力電流が上昇するにつれて、前記第2電力変換部から出力される第2出力電圧を逓減させるステップと、
     を有する、電源装置の制御方法。
    A control method for a power supply that outputs power to the outside, comprising:
    The power supply device includes: a first power storage unit; a second power storage unit; a first power transmission path connecting the first power storage unit and a load connection unit to which a load is connected; a second power transmission path that connects a load connecting portion; a first power conversion portion that is arranged in the first power transmission path and converts power supplied from the first power storage unit; and the second power transmission path. A second power conversion unit arranged in a second power storage unit that converts power supplied from the second power storage unit, and a control unit that controls the first power conversion unit and the second power conversion unit,
    the first power storage unit and the second power storage unit are connected in parallel to the load connection unit,
    The control method is
    By controlling the first power conversion unit based on the first step-down characteristic, as the first output current output from the first power conversion unit increases, the first power conversion unit output from the first power conversion unit stepping down the output voltage;
    By controlling the second power conversion unit based on a second step-down characteristic different from the first step-down characteristic, the second power is increased as the second output current output from the second power conversion unit increases. stepping down the second output voltage output from the conversion unit;
    A control method for a power supply device, comprising:
  19.  請求項18記載の電源装置の制御方法をコンピュータ(46、68)に実行させるプログラム。 A program for causing a computer (46, 68) to execute the power supply control method according to claim 18.
  20.  請求項19記載のプログラムを記憶する記憶媒体(86)。 A storage medium (86) for storing the program according to claim 19.
PCT/JP2023/005947 2022-02-25 2023-02-20 Power supply device, power supply device control method, program, and storage medium WO2023162921A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2024503134A JPWO2023162921A1 (en) 2022-02-25 2023-02-20

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-027483 2022-02-25
JP2022027483 2022-02-25

Publications (1)

Publication Number Publication Date
WO2023162921A1 true WO2023162921A1 (en) 2023-08-31

Family

ID=87765774

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/005947 WO2023162921A1 (en) 2022-02-25 2023-02-20 Power supply device, power supply device control method, program, and storage medium

Country Status (2)

Country Link
JP (1) JPWO2023162921A1 (en)
WO (1) WO2023162921A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013080797A1 (en) * 2011-11-30 2013-06-06 日本電気株式会社 Power system and method for controlling same
US20170110877A1 (en) * 2015-10-15 2017-04-20 General Electric Company Direct current power distribution and conversion system
WO2020161766A1 (en) * 2019-02-04 2020-08-13 Tdk株式会社 Direct-current power supply system
WO2020224842A1 (en) * 2019-05-06 2020-11-12 Aradex Ag Device comprising at least one rechargeable battery
WO2020235617A1 (en) * 2019-05-21 2020-11-26 本田技研工業株式会社 Power output device, power input device, and power output/input device

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013080797A1 (en) * 2011-11-30 2013-06-06 日本電気株式会社 Power system and method for controlling same
US20170110877A1 (en) * 2015-10-15 2017-04-20 General Electric Company Direct current power distribution and conversion system
WO2020161766A1 (en) * 2019-02-04 2020-08-13 Tdk株式会社 Direct-current power supply system
WO2020224842A1 (en) * 2019-05-06 2020-11-12 Aradex Ag Device comprising at least one rechargeable battery
WO2020235617A1 (en) * 2019-05-21 2020-11-26 本田技研工業株式会社 Power output device, power input device, and power output/input device

Also Published As

Publication number Publication date
JPWO2023162921A1 (en) 2023-08-31

Similar Documents

Publication Publication Date Title
JP6192345B2 (en) Battery pack and power supply device including the same
JP2012514971A (en) Wireless charging system with device power compliance
US10343539B2 (en) Power supply device for supplying electricity to a load utilizing electric power of a storage-battery-equipped vehicle
KR20120011237A (en) Power supply apparatus
JPWO2016121273A1 (en) Power control apparatus, power control method, and power control system
JP2021177697A (en) Control device for vehicle and power control system
WO2023162921A1 (en) Power supply device, power supply device control method, program, and storage medium
TW201509069A (en) Uninterruptible power supply with inverter, charger, and active filter
JP2017147898A (en) Electricity storage device and micro battery
CN218891307U (en) Portable welding machine powered by battery pack
JP6566345B2 (en) Storage battery control device, power storage system
CN109936127A (en) Distribution method, device, equipment and the system of data center
JP6895604B2 (en) Power conversion system
US20150130397A1 (en) Mobile device solar powered charging apparatus, method, and system
US20150033046A1 (en) Method of power management, portable system and portable power bank
JP2013201816A (en) Power storage device
US11916478B2 (en) Parallel charger circuit with battery feedback control
WO2018193730A1 (en) Power feeding device and power feeding method
JP6757700B2 (en) Power conditioner, power storage system with this power conditioner, and wiring method
WO2018142543A1 (en) Higher harmonic suppression device and higher harmonic suppression system
US11296515B2 (en) Storage battery unit
JP2015080375A (en) Power conversion device
EP2879263A1 (en) Power supply device, power supply system, and electronic device
CN112821546A (en) Multi-battery uninterrupted power supply device, X-ray imaging system and power supply control method
JP7021431B2 (en) Charging system, charger, and program

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23759922

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2024503134

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE