[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2023162797A1 - 水中油型乳化物及び水中油型乳化物の製造方法 - Google Patents

水中油型乳化物及び水中油型乳化物の製造方法 Download PDF

Info

Publication number
WO2023162797A1
WO2023162797A1 PCT/JP2023/005101 JP2023005101W WO2023162797A1 WO 2023162797 A1 WO2023162797 A1 WO 2023162797A1 JP 2023005101 W JP2023005101 W JP 2023005101W WO 2023162797 A1 WO2023162797 A1 WO 2023162797A1
Authority
WO
WIPO (PCT)
Prior art keywords
oil
water emulsion
mass
hours
stored
Prior art date
Application number
PCT/JP2023/005101
Other languages
English (en)
French (fr)
Inventor
弘志 狩野
美友紀 金谷
洋幸 金谷
Original Assignee
不二製油グループ本社株式会社
不二製油株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 不二製油グループ本社株式会社, 不二製油株式会社 filed Critical 不二製油グループ本社株式会社
Priority to JP2023544167A priority Critical patent/JP7365534B1/ja
Publication of WO2023162797A1 publication Critical patent/WO2023162797A1/ja

Links

Classifications

    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23DEDIBLE OILS OR FATS, e.g. MARGARINES, SHORTENINGS, COOKING OILS
    • A23D7/00Edible oil or fat compositions containing an aqueous phase, e.g. margarines
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23GCOCOA; COCOA PRODUCTS, e.g. CHOCOLATE; SUBSTITUTES FOR COCOA OR COCOA PRODUCTS; CONFECTIONERY; CHEWING GUM; ICE-CREAM; PREPARATION THEREOF
    • A23G1/00Cocoa; Cocoa products, e.g. chocolate; Substitutes therefor
    • A23G1/30Cocoa products, e.g. chocolate; Substitutes therefor
    • A23G1/32Cocoa products, e.g. chocolate; Substitutes therefor characterised by the composition containing organic or inorganic compounds
    • A23G1/44Cocoa products, e.g. chocolate; Substitutes therefor characterised by the composition containing organic or inorganic compounds containing peptides or proteins
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23GCOCOA; COCOA PRODUCTS, e.g. CHOCOLATE; SUBSTITUTES FOR COCOA OR COCOA PRODUCTS; CONFECTIONERY; CHEWING GUM; ICE-CREAM; PREPARATION THEREOF
    • A23G3/00Sweetmeats; Confectionery; Marzipan; Coated or filled products
    • A23G3/34Sweetmeats, confectionery or marzipan; Processes for the preparation thereof
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L23/00Soups; Sauces; Preparation or treatment thereof
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L11/00Pulses, i.e. fruits of leguminous plants, for production of food; Products from legumes; Preparation or treatment thereof

Definitions

  • the present invention relates to an oil-in-water emulsion and a method for producing an oil-in-water emulsion.
  • Patent Document 2 a technique of blending starch into pasty foods such as fillings
  • Patent Document 3 a technique for blending a specific emulsified oil and fat composition for kneading into a product such as a hamburger
  • the present invention has an appropriate hardness for mixing and encrusting raw materials and has good workability, and after frozen distribution, when thawed and refrigerated / eaten at room temperature, it does not remain hard and becomes soft physical properties.
  • An object is to provide an oil-in-water emulsion such as a filling.
  • the inventors have diligently studied how to solve the above problems. As a result of various studies on oils and fats used in oil-in-water emulsions, it was found that the physical properties of oils and fats in the freezing temperature range and the refrigeration temperature range have an effect, and when the physical properties are measured with a differential scanning calorimeter, the temperature at a specific temperature. The inventors have found that the physical properties of the oil-in-water emulsion can be represented by the heat of fusion, and that the hardness ratio at a specific temperature can be used as an index, and the present invention has been completed.
  • the oil phase of the oil-in-water emulsion has a heat of fusion of 13.0 J / g or less at 4 ° C. and a heat of fusion of -20 ° C. J / g or more, an oil-in-water emulsion having a fat content of 20% by mass or more in the oil-in-water emulsion, wherein the oil-in-water emulsion is the following (A) to (C) Oil-in-water emulsion having a maximum load of (A) of 1.0 N or more and (C)/(B) of 0.80 or less when the maximum load of the product stored under the conditions is measured, (A) Maximum load when stored at 4°C for 24 hours, (B) maximum load when stored at 4°C for 24 hours and then stored at 25°C for 24 hours; (C) Maximum load when stored at -20°C for 24 hours and then stored at 25°C for 24 hours, (2) The oil-in-water emulsion according to (1), wherein
  • a method for producing an oil-in-water emulsion (A) Maximum load when stored at 4°C for 24 hours, (B) maximum load when stored at 4°C for 24 hours and then stored at 25°C for 24 hours; (C) Maximum load when stored at -20°C for 24 hours and then stored at 25°C for 24 hours, (8)
  • the method for producing an oil-in-water emulsion according to (7), wherein the fat content in the oil-in-water emulsion is 20 to 90% by mass (9) The method for producing an oil-in-water emulsion according to (7), which further contains a protein material as a raw material, (10) The method for producing an oil-in-water emulsion according to (8), which further contains a protein material as a raw material, (11)
  • the present invention has an appropriate hardness for mixing and encrusting raw materials and has good workability, and after frozen distribution, when it is thawed and refrigerated / eaten at room temperature, it does not remain hard and has soft physical properties.
  • Oil-in-water emulsions such as fillings can be provided.
  • the oil phase of the oil-in-water emulsion has a heat of fusion at 4 ° C. of 13.0 J / g or less, and - An oil-in-water emulsion having a heat of fusion at 20 ° C. of 15.0 J / g or more and a fat content in the oil-in-water emulsion of 20% by mass or more, wherein the oil-in-water emulsion is subjected to the following (A ) ⁇ When the maximum load of the product stored under the conditions of (C) is measured, (A) is 1.0 N or more and (C)/(B) is 0.80 or less.
  • oil-in-water emulsion It is an oil-in-water emulsion. .
  • A Maximum load when stored at 4°C for 24 hours.
  • B After storage at 4°C for 24 hours, storage at 25°C for 24 hours.
  • C After storage at -20°C for 24 hours, storage at 25°C for 24 hours.
  • the above-mentioned oil-in-water emulsion of the present invention has an appropriate hardness for mixing and encasing raw materials and has good workability, and after frozen distribution, it is hard when thawed and refrigerated / eaten at room temperature. It becomes a soft physical property instead of staying.
  • the oil-in-water emulsion of the present invention does not demulsify in a temperature range above refrigeration, and does not have soft physical properties while maintaining hardness. It is suitable for work such as mixing and filling.
  • the oil-in-water emulsion of the present invention is frozen and then thawed, demulsification occurs, and it becomes soft when eaten.
  • the oil-in-water emulsion of the present invention does not demulsify in a temperature range above refrigeration, and exhibits reversible physical properties showing hardness according to each temperature.
  • one of the requirements is (A) a maximum load of 1.0 N or more when stored at 4° C. for 24 hours. This indicates that it has a moderate hardness and good workability for mixing raw materials and encasing.
  • the maximum load when stored at 4°C for 24 hours is preferably 1.5 N or more.
  • the upper limit is preferably 50N or less, more preferably 40N or less, still more preferably 30N or less, and 25N or less.
  • the value of (C)/(B) is another requirement. This is a state in which the oil-in-water emulsion of the present invention does not demulsify in the temperature range of refrigeration or room temperature as described above and maintains its hardness, but when it is thawed after freezing, demulsification occurs and soft physical properties are obtained. It is an index that expresses the nature of the material.
  • the value of (C)/(B) is preferably 0.75 or less, more preferably 0.73 or less, and still more preferably 0.71 or less. The conditions for measuring the maximum load will be described later.
  • the Leonar measurement of the oil-in-water emulsion is performed using a creep meter (model RHEONER II CREEP METER RE2-33005B) manufactured by Yamaden Co., Ltd.
  • the measurement conditions are as follows. Measurement distortion rate: 90%, measurement speed: 0.5 mm/sec, contact surface diameter: 16 mm, jig used: 16 mm circle. Under the above conditions, find the maximum load value (unit: N) when the measured strain rate is 90%.
  • the state in the refrigeration temperature range and the freezing temperature range that is, the amount of crystals in each temperature range is important.
  • an analytical value of the heat of fusion measured by a differential scanning calorimeter (DSC) is used as an index of the amount of crystals. That is, in the measurement of the heat of fusion of fats and oils with a differential scanning calorimeter (DSC), the heat of fusion at 4 ° C. is 13.0 J / g or less and the heat of fusion at -20 ° C. is 15.0 J / g or more.
  • the heat of fusion at 4°C is preferably 12.0 J/g or less and the heat of fusion at -20°C is preferably 20.0 J/g or more.
  • the fats and oils to be used are not particularly limited as long as they satisfy the above requirements. For example, soybean oil, rapeseed oil, sunflower oil, high oleic sunflower oil, rice oil, cottonseed oil, corn oil, safflower oil, peanut oil, palm oil, palm kernel oil, coconut oil, olive oil, kapok oil, moringa oil, sesame oil, etc.
  • Vegetable oils and fats, MCT, or their fractionated oils, transesterified oils, hydrogenated oils, and the like can be used. These oils and fats can be used singly or in combination of two or more. That is, one type of fat or fat obtained by combining two or more types of fat has a heat of fusion at 4 ° C. of 13.0 J / g or less in the measurement of the heat of fusion with a differential scanning calorimeter (DSC), and - The heat of fusion at 20°C should be 15.0 J/g or more. Measurement conditions using a differential scanning calorimeter (DSC) will be described later.
  • DSC differential scanning calorimeter
  • the heat of fusion of fats and oils is measured using a differential scanning calorimeter (DSC) (DISCOVERY series DSC2500 manufactured by TA instrument).
  • DSC differential scanning calorimeter
  • the measurement conditions for the heat of fusion of fats and oils are as follows. (Conditions for measuring heat of fusion) ⁇ Oils and fats: Melts at 80°C ⁇ Cooling rate: -5°C/min (cools down to 4°C or -20°C) ⁇ Holding time: Hold at 4°C or -20°C for 180 minutes ⁇ Temperature increase rate: 5°C/min (heat up to 60°C)
  • the fat and oil content in the oil-in-water emulsion of the present invention is 20% by mass or more.
  • the lower limit is preferably 22% by mass or more, more preferably 24% by mass or more, and still more preferably 25% by mass or more.
  • 90% by mass or less, 85% by mass or less, 80% by mass or less, 78% by mass or less, 76% by mass or less, or 75% by mass or less can be selected.
  • the % by mass, 24-90% by mass, 24-85% by mass, 24-80% by mass, 24-75% by mass, 25-90% by mass, 25-85% by mass, 25-80% by mass, 25-75% by mass etc. can be exemplified.
  • a vegetable protein material and an animal protein material can be used as the protein material of the present invention.
  • the concept of the protein material of the present invention is a food material containing vegetable or animal protein as a main component and used as a raw material for various processed foods and beverages.
  • Examples of the origin of the vegetable protein material include beans such as soybeans, peas, mung beans, lupine beans, chickpeas, kidney beans, lentils and cowpeas, seeds such as sesame seeds, canola seeds, coconut seeds and almond seeds, and corn. , cereals such as buckwheat, wheat, and rice, vegetables, and fruits.
  • the plant protein material is prepared from legume protein.
  • the plant protein material is prepared from soy protein, pea protein, mung bean protein or fava bean protein.
  • the vegetable protein material is prepared from soy protein or pea protein.
  • soybean-derived protein materials are prepared by further concentrating protein from soybean raw materials such as defatted soybeans and whole soybeans.
  • animal protein materials include milk proteins such as casein, sodium caseinate, and whey protein, and egg whites.
  • the content of the protein material in the oil-in-water emulsion is preferably 0.1 to 20% by mass. More preferably 0.5 to 15% by mass, still more preferably 0.8 to 10% by mass.
  • a vegetable protein material A having characteristics satisfying the following a) to c) can be used.
  • the vegetable protein material A has a protein content of 70 mass % or more, for example, 80 mass % or more, 85 mass % or more, or 90 mass % or more in solid content.
  • isolated protein is preferable, and examples thereof include isolated soybean protein and isolated pea protein.
  • Protein purity is determined by the Kjeldahl method. Specifically, the mass of nitrogen measured by the Kjeldahl method with respect to the mass of the protein material dried at 105°C for 12 hours is expressed as "% by mass" as the protein content in the dried matter.
  • the nitrogen conversion factor is 6.25. Basically, it is obtained by rounding off the second decimal place.
  • the vegetable protein material A has an NSI (Nitrogen Solubility Index) of 80 or higher, which is used as an index of protein solubility. More preferably, those having an NSI of 85 or higher, 90 or higher, 95 or higher, or 97 or higher can be used.
  • NSI Nonrogen Solubility Index
  • As a vegetable protein material with a high NSI it is possible to use a material that has not been subjected to a treatment that makes the protein insolubilized, such as an enzymatic decomposition treatment or a mineral addition treatment, or even if it has been, to a small extent. preferable.
  • the NSI is expressed as the ratio (% by mass) of water-soluble nitrogen (crude protein) to the total nitrogen content based on the method described later, and in the present invention, it is a value measured according to the method described later.
  • ⁇ Measurement method of NSI> Add 60 ml of water to 3 g of the sample, stir with a propeller at 37° C. for 1 hour, centrifuge at 1400 ⁇ g for 10 minutes, and collect the supernatant (I). Next, 100 ml of water is added to the remaining precipitate, and the mixture is stirred again at 37°C for 1 hour with a propeller, and then centrifuged to collect the supernatant (II). Combine solution (I) and solution (II), and add water to the mixture to bring the total volume to 250 ml. After filtering this with filter paper (NO.5), the nitrogen content in the filtrate is measured by the Kjeldahl method.
  • the amount of nitrogen in the sample is measured by the Kjeldahl method, and the ratio of the amount of nitrogen (water-soluble nitrogen) recovered as a filtrate to the total amount of nitrogen in the sample is expressed as % by mass and is defined as NSI. Basically, it is obtained by rounding off the second decimal place.
  • the area ratio of the molecular weight distribution is 30% or more for 2,000 Da or more and less than 20,000 Da, and 70% or less for 20,000 Da or more. . In a specific embodiment, 35% or more is 2,000 Da or more and less than 20,000 Da, and 65% or more is 20,000 Da or more. In a specific embodiment, when the molecular weight of the vegetable protein material A is measured by gel filtration, the area ratio of the molecular weight distribution is 10 to 40% of 2,000 Da or more and less than 10,000 Da, preferably , 15-35%, more preferably 20-30%.
  • 10,000 Da or more is 50 to 80%, preferably 55 to 75%, more preferably 60 to 75%.
  • the area ratio of the molecular weight distribution is 45 to 90% of 2,000 Da or more and less than 20,000 Da, preferably , 47-85%, more preferably 50-75%.
  • the protein material is adjusted to a concentration of 0.1% by mass with the eluent, filtered through a 0.2 ⁇ m filter, and used as the sample solution.
  • a gel filtration system is assembled by connecting two columns in series, and a known protein or the like (Table 1) serving as a molecular weight marker is first charged, and a calibration curve is obtained from the relationship between molecular weight and retention time.
  • the sample solution is charged, and the content ratio % of each molecular weight fraction is determined by the ratio of the area of the specific molecular weight range (time range) to the total absorbance chart area (1st column: “TSK gel G3000SWXL” ( SIGMA-ALDRICH), 2nd column: “TSK gel G2000SWXL” (SIGMA-ALDRICH), eluent: 1% SDS + 1.17% NaCl + 50 mM phosphate buffer (pH 7.0), 23°C, flow rate: 0.4 ml/min, Detection: UV220nm). Basically, it is obtained by rounding off the second decimal place.
  • the vegetable protein material used in the oil/fat emulsified composition of this embodiment can be obtained by combining protein decomposition and/or denaturation and molecular weight distribution adjustment.
  • treatments for decomposing or denaturing proteins include enzyme treatment, pH adjustment treatment (e.g., acid treatment, alkali treatment), denaturant treatment, heat treatment, cooling treatment, high pressure treatment, organic solvent treatment, mineral addition treatment, supercritical treatment, sonication, electrolysis, combinations thereof, and the like.
  • treatments for adjusting the molecular weight distribution include enzymatic treatment, filtration, gel filtration, chromatography, centrifugation, electrophoresis, dialysis, combinations thereof, and the like.
  • the order and frequency of the treatment for degrading or denaturing the protein and the treatment for adjusting the molecular weight distribution are not particularly limited. After performing the treatment for adjusting the distribution, the treatment for degrading or denaturing the protein may be performed, or both treatments may be performed at the same time. Further, for example, a treatment for degrading or denaturing the protein is performed between two or more treatments for adjusting the molecular weight distribution, and a treatment for adjusting the molecular weight distribution is performed between two or more treatments for degrading or denaturing the protein. It is also possible to perform a plurality of processes in an arbitrary order.
  • the treatment for adjusting the molecular weight distribution may not be performed.
  • all the treatments starting from the raw material may be carried out continuously, or may be carried out after an interval of time.
  • a commercial product that has undergone a certain treatment may be used as a raw material and subjected to another treatment.
  • such treatment is referred to as “molecular weight distribution adjustment treatment” for the sake of convenience, and when accompanied by protein denaturation, is referred to as "denaturation/molecular weight distribution adjustment treatment".
  • the vegetable protein material that has undergone the molecular weight distribution adjustment treatment or denaturation/molecular weight distribution adjustment treatment and the protein that has not undergone the molecular weight distribution adjustment treatment or denaturation/molecular weight distribution adjustment treatment can be mixed to obtain a specific plant protein material. It may also be used as a sexual protein material.
  • the ratio between the two (treated protein material: untreated protein) can be appropriately adjusted within the range satisfying the above characteristics, but the mass ratio is, for example, 1:99-99:1, for example, 50:50-. 95:5, 75:25-90:10 and the like.
  • the quasi-vegetable protein material is a vegetable protein material that has undergone molecular weight distribution control treatment or denaturation/molecular weight distribution control treatment.
  • a person skilled in the art can appropriately set the conditions of treatment for decomposing or denaturing proteins, such as concentrations of enzymes, acids, alkalis, organic solvents, minerals, etc., temperature, pressure, output intensity, current, time, etc.
  • pH adjustment treatment any of pH 2, 2.5, 3, 3.5, 4, 4.5, 5, 5.5, 6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5, 10, 10.5, 11, 11.5, 12 It can be treated in a pH range with the upper and lower limits of the value of
  • acid treatment it may be a method of adding acid or a method of carrying out fermentation treatment such as lactic acid fermentation.
  • acids to be added include inorganic acids such as hydrochloric acid and phosphoric acid; Organic acids are mentioned.
  • acid may be added using acid-containing foods and drinks such as fruit juice such as lemon, concentrated fruit juice, fermented milk, yogurt, and brewed vinegar.
  • alkali treatment an alkali such as sodium hydroxide or potassium hydroxide can be added.
  • denaturants such as guanidine hydrochloride, urea, arginine, PEG, etc. may be added.
  • heating temperatures include 60 to 150°C, such as 80 to 110°C, 100 to 135°C, and 125 to 145°C.
  • cooling temperatures include -10 to -75°C, such as -15°C to -70°C, -20°C to -45°C.
  • heating or cooling times include 5 seconds to 200 minutes, such as 10 seconds to 10 minutes, 5 to 60 minutes, 30 to 120 minutes, 90 to 150 minutes, and the like.
  • pressure conditions include 100 to 1,000 MPa, for example, 200 to 700 MPa, 300 to 500 MPa, and the like.
  • solvents used include alcohols and ketones such as ethanol and acetone.
  • minerals used include divalent metal ions such as calcium and magnesium.
  • supercritical treatment for example, carbon dioxide in a supercritical state at a temperature of about 30° C. or higher and about 7 MPa or higher can be used.
  • treatment can be performed by irradiating with a frequency of 100 KHz to 2 MHz and an output of 100 to 1,000 W.
  • electrolysis treatment for example, a protein aqueous solution can be treated by applying a voltage of 100 mV to 1,000 mV.
  • the treatment that degrades or denatures proteins is selected from denaturant treatment, heat treatment, and combinations thereof.
  • a person skilled in the art can appropriately set the processing conditions for adjusting the molecular weight distribution, such as the type of enzyme, the type of filter medium, the rotation speed, the current, the time, and the like.
  • enzymes that may be used include proteases classified as “metalloproteases,” “acid proteases,” “thiol proteases,” and “serine proteases.”
  • the reaction temperature is 20 to 80°C, preferably 40 to 60°C.
  • filter media include filter paper, filter cloth, diatomaceous earth, ceramics, glass, membranes, and the like.
  • carriers for gel filtration include dextran and agarose.
  • centrifugation conditions include 1,000-3,000 ⁇ g for 5-20 minutes.
  • the oil-in-water emulsion of the present invention can contain various raw materials as necessary.
  • the oil-in-water emulsion of the present invention can be produced using a known method.
  • the protein material, oil, water, and other auxiliary materials are mixed as necessary, and then mixed with a homogenizer, a high-pressure homogenizer, a cutter blade mixer such as a silent cutter or a stephan cooker, a rotor mixer such as an adihomomixer, a colloid mill, an extruder, or an emulder.
  • the solution is homogenized with a stator type in-line mixer or the like, and heat sterilized if necessary to obtain the oil-in-water emulsion of the present invention.
  • the oil-in-water emulsion of the present invention includes chocolate filling, condensed milk filling, matcha filling, cheese filling, whipped cream, custard cream, cream for kneading, ice cream, various fruits such as strawberry cream and lemon cream, fruit puree, fruit It can be used as cream containing fruit juice, acidic cream, flour paste, chocolate-like food, water-containing chocolate, raw chocolate, caramel, cheese, cheese sauce, pasta sauce, curry and stew roux, and the like.
  • Example 1 Oil A, soy protein (Fujipro CL, manufactured by Fuji Oil Co., Ltd.) as the protein material, or denatured and molecular weight distribution-adjusted separated soy protein (Fuji Oil Co., Ltd. test product available from Fuji Oil Co., Ltd.) 2,000
  • An oil-in-water emulsion was prepared using a protein material having a molecular weight of Da or more and less than 20,000 Da of 64%, an NSI of 98.1, and a protein content of 80% (referred to as protein material A-1 in the table). According to the composition shown in Table 2, raw materials were mixed using a cutter blade mixer (R3 1500, Robocoup) to obtain an oil-in-water emulsion.
  • the evaluation of the oil-in-water emulsion is as follows, and " ⁇ " is acceptable.
  • Good (A) The maximum load at 4°C is 1.0 N or more, and the maximum load (C)/(B) value is 0.80 or less.
  • (A) If the maximum load at 4°C is less than 1.0N, if the maximum load (C)/(B) value exceeds 0.80, or if both (B) and (C) of the maximum load are solved If one or more of the above are satisfied when there is no emulsified hardness and the measured value is 0.
  • the evaluation When the evaluation is " ⁇ ", it does not demulsify in a temperature range above refrigeration and has a certain hardness, but when it is thawed after freezing, it demulsifies and becomes a soft physical property. That is, when the maximum load at 4 ° C is 1.0 N or more, it has an appropriate hardness for mixing and encrusting raw materials, indicating that workability is good. ) is 0.80 or less, it means that after frozen distribution, when it is thawed and refrigerated or eaten at room temperature, it will not remain hard and will have soft physical properties.
  • the oil-in-water emulsion prepared using fat A having a heat of fusion of 13.0 J / g or less at 4 ° C. and a heat of fusion of -20 ° C. of 15.0 J / g or more is (A) The maximum load was 1.0 N or more when stored at 4°C for 24 hours. In addition, (B) the maximum load when stored at 4°C for 24 hours and then stored at 25°C for 24 hours, (C) the maximum load when stored at -20°C for 24 hours and then stored at 25°C for 24 hours ( The value of C)/(B) was 0.80 or less, which was good.
  • Examples 3-9 Comparative Examples 1-5) An oil-in-water emulsion was prepared and evaluated in the same manner as in Example 1 according to the formulation shown in Table 2 using oils and fats C to N and vegetable protein material A-1 produced by the method described below as the protein material. Ta. Table 3 shows the evaluation results.
  • the oil-in-water emulsions of Examples 2 to 8 prepared using fats G, H, I, J, K, L, and M had a maximum load of 1.0 N or more when stored at (A) 4 ° C. for 24 hours. Met.
  • the value of (C)/(B) was 0.80 or less, which was good.
  • the oil-in-water emulsions of Comparative Examples 1 to 5 prepared using fats D, E, F, N, and C were evaluated poorly.
  • Examples 10-15 Comparative Examples 6-9
  • An oil-in-water emulsion was prepared and evaluated in the same manner as in Example 1 using oil B and soybean protein (Fujipro CL, manufactured by Fuji Oil Co., Ltd.) as the protein material according to the formulation in Table 4.
  • This embodiment can be used as a chocolate filling.
  • Table 4 shows the evaluation results.
  • As the cocoa powder one manufactured by Guan Chong Berhad was used.
  • the oil-in-water emulsions of Examples 9-14 were prepared with a content of oil in the oil-in-water emulsion of 20% or more, and the maximum load when stored at (A) 4 ° C. for 24 hours was 1.0N or more.
  • the value of (C)/(B) was 0.80 or less, which was good.
  • Example 16-18 An oil-in-water emulsion was prepared and evaluated in the same manner as in Example 1 using fat B and the protein material A-1 used as the protein material in Example 2 as the protein material according to the formulation in Table 5. .
  • Example 15 can be used as condensed milk filling
  • Example 16 can be used as green tea filling
  • Example 17 can be used as cheese filling. Table 5 shows the evaluation results.
  • the oil-in-water emulsions of Examples 15 to 17 (A) had a maximum load of 1.0 N or more when stored at 4°C for 24 hours.
  • the value of (C)/(B) was 0.80 or less, and the shape retention was also evaluated as acceptable.
  • the oil-in-water emulsions of Examples 18 and 19 had (A) a maximum load of 1.0 N or more when stored at 4°C for 24 hours. In addition, (B) the maximum load when stored at 4 ° C for 24 hours and then stored at 25 ° C for 24 hours, and (C) the maximum load when stored at -20 ° C for 24 hours and then stored at 25 ° C for 24 hours. The value of (C)/(B) was 0.80 or less, which was good.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Food Science & Technology (AREA)
  • Polymers & Plastics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Nutrition Science (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Edible Oils And Fats (AREA)

Abstract

本発明は、原料の混合や包餡するのに適度な固さを有して作業性が良く冷凍流通後、解凍して冷蔵/室温で喫食する際には固いままではなく、柔らかい物性となるフィリング等の水中油型乳化物を提供することを目的とする。 示差走査熱量計で測定したときの特定の温度での融解熱で表された油脂を用いた水中油型乳化物が、課題を解決できることを見出した。

Description

水中油型乳化物及び水中油型乳化物の製造方法
 本発明は、水中油型乳化物及び水中油型乳化物の製造方法に関する。
 冷凍流通菓子市場では最終消費者の下で、冷蔵/室温で喫食した際にとろけるような柔らかいフィリングの需要がある。これまではもともと柔らかいフィリングを生地中に充填して、菓子製品を製造している。しかし、もともと柔らかいフィリングは充填、包餡をしにくい問題がある。また、焼成生地の場合は、後充填となり、必要な設備が増えるという問題もある。
 従来技術としては、例えば、製菓用セルクルに冷凍可能なフィリングを該セルクルに注入後、該フィリングの外表面のみを冷凍固化した後、外表面を冷凍固化したフィリングを可食性シート生地で被覆する技術がある(特許文献1)。
 また、冷凍温度帯でのフィリング等の食感、品質を維持する試みもなされている。例えば、フィリング等のペースト状食品に澱粉を配合する技術(特許文献2)がある。
 また、冷凍した乳化組成物を含む食品を加熱後、良好な状態で喫食させる技術として、ハンバーグ等の製品に特定の練り込み用乳化油脂組成物を配合する技術(特許文献3)等がある。
特開2002-095418号公報 特開2006-042739号公報 特開2005-087014号公報
 上記、柔らかいフィリングの需要に対応するためには、原料の混合や包餡するのに適度な固さを有して作業性が良く冷凍流通後、解凍して冷蔵/室温で喫食する際には固いままではなく、とろけるような柔らかい状態となるフィリング等が必要である。
 しかし、特許文献1の技術ではフィリング外表面だけを凍結するような冷凍温度帯を設定しなければならない等条件面で煩雑で、冷凍温度によってはフィリング自体の食感にも影響があるという問題がある。また、特許文献2の技術では、フィリングとして生地に充填する場合に充填性や冷凍保存時の品質にも改良の余地がある。また、特許文献3の技術についても、物性等まだまだ満足できるものではない。
 本発明は、原料の混合や包餡するのに適度な固さを有して作業性が良く冷凍流通後、解凍して冷蔵/室温で喫食する際には固いままではなく、柔らかい物性となるフィリング等の水中油型乳化物を提供することを目的とする。
 本発明者らは、上記の課題の解決に対し鋭意検討を重ねた。水中油型乳化物に用いる油脂を種々検討した結果、冷凍温度帯と冷蔵温度帯の油脂の物性が影響することが判明し、その物性を示差走査熱量計で測定したときの特定の温度での融解熱で表すことができ、さらに水中油型乳化物に関して特定の温度での硬さの比を指標とすることで物性を表現できることを見出し、本発明を完成するに至った。
 すなわち本発明は、
(1)水中油型乳化物の油相が、示差走査熱量計(DSC)による油脂の融解熱の測定において、4℃の融解熱が13.0J/g以下、かつ-20℃の融解熱が15.0J/g以上であり、該水中油型乳化物中の油脂含量が20質量%以上である水中油型乳化物であって、前記水中油型乳化物を以下の(A)~(C)の条件で保存したものの最大荷重を測定したとき、(A)の最大荷重が1.0N以上であり、かつ、(C)/(B)が0.80以下である、水中油型乳化物、
(A)4℃で24時間保存したときの最大荷重、
(B)4℃で24時間保存後、25℃で24時間保存したときの最大荷重、
(C)-20℃で24時間保存後、25℃で24時間保存したときの最大荷重、
(2)水中油型乳化物中の油脂含量が20~90質量%である、(1)記載の水中油型乳化物、
(3)水中油型乳化物がさらに蛋白質素材を含む、(1)記載の水中油型乳化物、
(4)水中油型乳化物がさらに蛋白質素材を含む、(2)記載の水中油型乳化物、
(5)水中油型乳化物の油脂含量が20~90質量%、蛋白質素材の含量が0.1~20質量%である、(3)記載の水中油型乳化物、
(6)水中油型乳化物の油脂含量が20~90質量%、蛋白質素材の含量が0.1~20質量%である、(4)記載の水中油型乳化物、
(7)油脂、及び水を含有する原料を乳化する水中油型乳化物の製造方法であって、該水中油型乳化物の油相が、示差走査熱量計(DSC)による油脂の融解熱の測定において、4℃の融解熱が13.0J/g以下、かつ-20℃の融解熱が15.0J/g以上であり、該水中油型乳化物中の油脂含量が20質量%以上であり、該水中油型乳化物を以下の(A)~(C)の条件で保存したものの最大荷重を測定したとき、(A)が1.0N以上であり、かつ、(C)/(B)が0.80以下である、水中油型乳化物の製造方法、
(A)4℃で24時間保存したときの最大荷重、
(B)4℃で24時間保存後、25℃で24時間保存したときの最大荷重、
(C)-20℃で24時間保存後、25℃で24時間保存したときの最大荷重、
(8)水中油型乳化物中の油脂含量が20~90質量%である、(7)記載の水中油型乳化物の製造方法、
(9)さらに原料として蛋白質素材を含む、(7)記載の水中油型乳化物の製造方法、
(10)さらに原料として蛋白質素材を含む、(8)記載の水中油型乳化物の製造方法、
(11)水中油型乳化物の油脂含量が20~90質量%、蛋白質素材の含量が0.1~20質量%である、(9)記載の水中油型乳化物の製造方法、
(12)水中油型乳化物の油脂含量が20~90質量%、蛋白質素材の含量が0.1~20質量%である、(10)記載の水中油型乳化物の製造方法、
である。
 本発明により、原料の混合や包餡するのに適度な固さを有して作業性が良く冷凍流通後、解凍して冷蔵/室温で喫食する際には固いままではなく、柔らかい物性となるフィリング等の水中油型乳化物を提供することができる。
(水中油型乳化物)
 本発明の水中油型乳化物は、水中油型乳化物の油相が、示差走査熱量計(DSC)による油脂の融解熱の測定において、4℃の融解熱が13.0J/g以下、かつ-20℃の融解熱が15.0J/g以上であり、水中油型乳化物中の油脂含量が20質量%以上である水中油型乳化物であって、前記水中油型乳化物を以下の(A)~(C)の条件で保存したものの最大荷重を測定したとき、(A)が1.0N以上であり、かつ、(C)/(B)が0.80以下である、水中油型乳化物である。
(A)4℃で24時間保存したときの最大荷重。
(B)4℃で24時間保存後、25℃で24時間保存。
(C)-20℃で24時間保存後、25℃で24時間保存。
 上記、本発明の水中油型乳化物は、原料の混合や包餡するのに適度な固さを有して作業性が良く冷凍流通後、解凍して冷蔵/室温で喫食する際には固いままではなく、柔らかい物性となる。
 具体的にいうと、本発明の水中油型乳化物は、冷蔵以上の温度帯であれば解乳化はせず、硬さを保持した状態で、柔らかい物性とはならないため、このような温度帯で混合や包餡など作業適正がある。一方、本発明の水中油型乳化物を冷凍後、解凍すると解乳化がおこり、喫食する際には柔らかい物性となる。
 本発明の水中油型乳化物は冷蔵以上の温度帯では解乳化せず、各温度に応じた硬さを示す可逆的な物性となる。一方、冷凍後、解凍した場合は、冷凍時は硬さがある物性であるが、解凍後は解乳化して柔らかな物性となり、冷凍時の物性と解凍後の物性は不可逆なものとなる。
 本発明において、(A)4℃で24時間保存したときの最大荷重が1.0N以上を要件の1つとしている。これは、原料の混合や包餡するのに適度な固さを有して作業性が良いことを示している。 (A)4℃で24時間保存したときの最大荷重は、好ましくは1.5N以上である。また、上限は、好ましくは、50N以下であり、より好ましくは40N以下、さらに好ましくは30N以下、25N以下である。
 また、本発明においては前記(C)/(B)の値をもう1つの要件としている。これは本発明の水中油型乳化物が、上記の通り冷蔵や室温の温度帯では解乳化せず硬さを保持した状態であるが、冷凍後解凍した際には解乳化が起こり柔らかい物性を持つ性質を表す指標となるものである。
 前記(C)/(B)の値は、好ましくは0.75以下であり、より好ましくは0.73以下であり、さらに好ましくは0.71以下である。
 なお、最大荷重の測定条件は後述する。
(レオナーを用いた最大荷重の測定方法)
 本発明において水中油型乳化物のレオナー測定は、(株)山電製のクリープメーター(型式RHEONER II CREEP METER RE2-33005B)を用いて測定する。測定条件は以下の通りである。
 測定歪率:90%、測定速度:0.5mm/sec、接触面直径:16mm、使用治具:16mm丸。
上記条件で測定歪率が90%時点での最大荷重値(単位:N)を求める。
(油脂)
 本発明に用いる油脂は、冷蔵温度域と冷凍温度域での状態、つまり、各温度域での結晶量が重要と考えている。この結晶量の指標として、本発明では示差走査熱量計(DSC)で測定したときの融解熱の分析値を用いて表す。
 すなわち、示差走査熱量計(DSC)による油脂の融解熱の測定において、4℃の融解熱が13.0J/g以下、かつ-20℃の融解熱が15.0J/g以上である油脂であり、この数値範囲の物性を示す油脂を用いることで、冷凍した状態では固化した状態であるが解凍後に柔らかい物性となる水中油型乳化物を製造することが可能となる。
 4℃の融解熱は好ましくは12.0J/g以下であり、-20℃の融解熱は好ましくは20.0J/g以上である。
 使用する油脂は、上記要件を満たす限りにおいて、特に制限されない。
 例えば、大豆油、菜種油、ひまわり油、ハイオレイックひまわり油、米油、綿実油、コーン油、サフラワー油、落花生油、パーム油、パーム核油、ヤシ油、オリーブ油、カポック油、モリンガ油、ゴマ油等の植物性油脂、MCT、もしくはこれらの分別油、エステル交換油、硬化油等を用いることができる。これらの油脂は、1種、または2種以上を併用して使用することができる。すなわち、1種の油脂または、2種以上の油脂を併用して得られる油脂が、示差走査熱量計(DSC)による融解熱の測定において、4℃の融解熱が13.0J/g以下、かつ-20℃の融解熱が15.0J/g以上となるようにすれば良い。
 示差走査熱量計(DSC)を用いた測定条件は後述する。
(示差走査熱量計を用いた融解熱の測定方法)
 本発明において油脂の融解熱は示差走査熱量計(DSC)(TA instrument製のDISCOVERY series DSC2500)を用いて測定する。油脂の融解熱の測定条件は、以下の通りである。
(融解熱の測定条件)
○油脂:80℃で溶解
○冷却速度:-5℃/分(4℃あるいは-20℃まで冷却)
○保持時間:4℃あるいは-20℃で180分間保持
○昇温速度:5℃/分(60℃まで昇温)
 本発明の水中油型乳化物中の油脂含量は20質量%以上である。下限として好ましくは、22質量%以上であり、より好ましくは24質量%以上であり、さらに好ましくは25質量%以上である。上限として好ましくは90質量%以下、85質量%以下、80質量%以下、78質量%以下、76質量%以下、75質量%以下を選択することできる。
 具体的には、20~90質量%、20~85質量%、20~80質量%、20~75質量%、22~90質量%、22~85質量%、22~80質量%、22~75質量%、24~90質量%、24~85質量%、24~80質量%、24~75質量%、25~90質量%、25~85質量%、25~80質量%、25~75質量%等を例示できる。
(蛋白質素材)
 本発明の蛋白質素材は植物性蛋白質素材、動物性蛋白質素材を用いることができる。
 本発明の蛋白質素材の概念は、植物性あるいは動物性蛋白質を主成分とし、各種加工食品や飲料に原料として使用されている食品素材である。該植物性蛋白質素材の由来の例として、大豆、エンドウ、緑豆、ルピン豆、ヒヨコ豆、インゲン豆、ヒラ豆、ササゲ等の豆類、ゴマ、キャノーラ種子、ココナッツ種子、アーモンド種子等の種子類、とうもろこし、そば、麦、米などの穀物類、野菜類、果物類などが挙げられる。より具体的な実施形態では、該植物性蛋白質素材は、豆類の蛋白質から調製される。さらに具体的な実施形態では、該植物性蛋白質素材は大豆蛋白質、エンドウ豆蛋白質、緑豆蛋白質又は空豆蛋白質から調製される。さらにより具体的な実施形態では、該植物性蛋白質素材は大豆蛋白質又はエンドウ豆蛋白質から調製される。一例として大豆由来の蛋白質素材の場合、脱脂大豆や丸大豆等の大豆原料からさらに蛋白質を濃縮加工して調製されるものであり、一般には分離大豆蛋白質、濃縮大豆蛋白質や粉末豆乳、あるいはそれらを種々加工したものなどが概念的に包含される。
 また、動物性蛋白質素材としては、例えば、カゼイン、カゼインナトリウム、ホエー蛋白等の乳蛋白、卵白等が挙げられる。
 蛋白質素材の水中油型乳化物中の含量は、好ましくは0.1~20質量%である。より好ましくは0.5~15質量%であり、さらに好ましくは0.8~10質量%である。
(植物性蛋白質素材A)
 本発明において、使用する植物性蛋白質素材の1態様として以下のa)~c)を満たす特徴を有する植物性蛋白質素材Aを用いることができる。
a)蛋白質純度
 該植物性蛋白質素材Aは固形分中の蛋白質含量が70質量%以上、例えば、80質量%以上、85質量%以上、又は90質量%以上である。上記範囲に含まれる植物性蛋白質素材の原料としては、分離蛋白質が好ましく、分離大豆蛋白質や分離エンドウ蛋白質などが挙げられる。
<蛋白質純度の測定>
 蛋白質純度はケルダール法により測定する。具体的には、105℃で12時間乾燥した蛋白質素材質量に対して、ケルダール法により測定した窒素の質量を、乾燥物中の蛋白質含量として「質量%」で表す。なお、窒素換算係数は6.25とする。基本的に、小数点以下第2桁の数値を四捨五入して求められる。
b)蛋白質のNSI
 該植物性蛋白質素材Aは、蛋白質の溶解性の指標として用いられているNSI(Nitrogen Solubility Index:窒素溶解指数)が80以上のものである。より好ましくはNSIが85以上、90以上、95以上、又は97以上のものを用いることができる。例えば、NSIが高い植物性蛋白質素材として、蛋白質が不溶化される処理、例えば酵素分解処理やミネラルの添加処理等、がされていないもの、あるいはされていたとしてもわずかであるもの、を用いることが好ましい。
 なお、NSIは後述する方法に基づき、全窒素量に占める水溶性窒素(粗蛋白)の比率(質量%)で表すものとし、本発明においては後述の方法に準じて測定された値とする。
<NSIの測定法>
 試料3gに60mlの水を加え、37℃で1時間プロペラ攪拌した後、1400×gにて10分間遠心分離し、上澄み液(I)を採取する。次に、残った沈殿に再度水100mlを加え、再度37℃で1時間プロペラ撹拌した後、遠心分離し、上澄み液(II)を採取する。(I)液及び(II)液を合わせ、その混合液に水を加えて250mlとする。これをろ紙(NO.5)にてろ過した後、ろ液中の窒素含量をケルダール法にて測定する。同時に試料中の窒素量をケルダール法にて測定し、ろ液として回収された窒素量(水溶性窒素)の試料中の全窒素量に対する割合を質量%として表したものをNSIとする。基本的に、小数点以下第2桁の数値を四捨五入して求められる。
c)分子量分布
 該植物性蛋白質素材Aは、ゲルろ過によって分子量を測定した場合に、その分子量分布の面積比率は、2,000Da以上20,000Da未満が30%以上、20,000Da以上が70%以下である。具体的な実施形態では、2,000Da以上20,000Da未満が35%以上、20,000Da以上が65%以下である。
 また、ある特定の実施形態では、植物性蛋白質素材Aは、ゲルろ過によって分子量を測定した場合に、その分子量分布の面積比率は、2,000Da以上10,000Da未満が10~40%であり、好ましくは、15~35%であり、より好ましくは、20~30%である。また、10,000Da以上が50~80%であり、好ましくは55~75%であり、より好ましくは60~75%である。
 また別のある特定の実施形態では、植物性蛋白質素材Aはゲルろ過によって分子量を測定した場合に、その分子量分布の面積比率は、2,000Da以上20,000Da未満が45~90%であり、好ましくは、47~85%、より好ましくは50~75%である。
<分子量分布>
 溶離液で蛋白質素材を0.1質量%濃度に調整し、0.2μmフィルターでろ過したものを試料液とする。2種のカラム直列接続によってゲルろ過システムを組み、はじめに分子量マーカーとなる既知の蛋白質等(表1)をチャージし、分子量と保持時間の関係において検量線を求める。次に試料液をチャージし、各分子量画分の含有量比率%を全体の吸光度のチャート面積に対する、特定の分子量範囲(時間範囲)の面積の割合によって求める(1stカラム:「TSK gel G3000SWXL」(SIGMA-ALDRICH社)、2ndカラム:「TSK gel G2000SWXL」(SIGMA-ALDRICH社)、溶離液:1%SDS+1.17%NaCl+50mMリン酸バッファー(pH7.0)、23℃、流速:0.4ml/分、検出:UV220nm)。基本的に、小数点以下第2桁の数値を四捨五入して求められる。
Figure JPOXMLDOC01-appb-I000001
(分子量分布調整処理または変性・分子量分布調整処理)
 本態様の油脂乳化組成物に用いられる植物性蛋白質素材は、蛋白質の分解及び/又は変性と、分子量分布の調整を組み合わせることにより得られ得る。蛋白質を分解又は変性させる処理の例として、酵素処理、pH調整処理(例えば、酸処理、アルカリ処理)、変性剤処理、加熱処理、冷却処理、高圧処理、有機溶媒処理、ミネラル添加処理、超臨界処理、超音波処理、電気分解処理及びこれらの組み合わせ等が挙げられる。分子量分布を調整する処理の例として、酵素処理、ろ過、ゲルろ過、クロマトグラフィー、遠心分離、電気泳動、透析及びこれらの組み合わせ等が挙げられる。蛋白質を分解又は変性させる処理と、分子量分布を調整する処理の順序及び回数は特に限定されず、蛋白質を分解又は変性させる処理を行ってから分子量分布を調整する処理を行ってもよいし、分子量分布を調整する処理を行ってから蛋白質を分解又は変性させる処理を行ってもよいし、両処理を同時に行ってもよい。また、例えば2回以上の分子量分布を調整する処理の間に蛋白質を分解又は変性する処理を行う、2回以上の蛋白質を分解又は変性する処理の間に分子量分布を調整する処理を行う、各々複数回の処理を任意の順に行う、等も可能である。なお、蛋白質を分解又は変性させる処理によって所望の分子量分布が得られる場合は、分子量分布の調整のための処理を行わなくてもよい。これらの処理を組み合わせて、複数回行う際、原料から全ての処理を連続で行ってもよいし、時間をおいてから行ってもよい。例えば、ある処理を経た市販品を原料として他の処理を行ってもよい。本明細書において、このような処理を便宜上「分子量分布調整処理」、蛋白質の変性を伴う場合は「変性・分子量分布調整処理」と称する。なお、上記特性を満たす限り、分子量分布調整処理又は変性・分子量分布調整処理を経た植物性蛋白質素材と、分子量分布調整処理又は変性・分子量分布調整処理を経ていない蛋白質を混合して、特定の植物性蛋白質素材としてもよい。この場合、両者の比率(処理を経たタンパク質素材:処理を経ていない蛋白質)は上記特性を満たす範囲で適宜調整可能であるが、質量比で例えば1:99~99:1、例えば50:50~95:5、75:25~90:10等が挙げられる。ある実施形態では、概植物性蛋白質素材は、分子量分布調整処理又は変性・分子量分布調整処理を経た植物性蛋白質素材からなる。
 蛋白質を分解又は変性させる処理の条件、例えば酵素、酸、アルカリ、有機溶媒、ミネラル等の濃度、温度、圧力、出力強度、電流、時間等は、当業者が適宜設定できる。pH調整処理の場合、例えばpH2、2.5、3、3.5、4、4.5、5、5.5、6、6.5、7、7.5、8、8.5、9、9.5、10、10.5、11、11.5、12の任意の値を上限、下限とするpH範囲で処理し得る。酸処理の場合、酸を添加する方法であっても、また、乳酸発酵などの発酵処理を行う方法であってもよい。添加する酸の例として、塩酸、リン酸等の無機酸、酢酸、乳酸、クエン酸、グルコン酸、フィチン酸、ソルビン酸、アジピン酸、コハク酸、酒石酸、フマル酸、リンゴ酸、アスコルビン酸等の有機酸が挙げられる。また、レモンなどの果汁、濃縮果汁、発酵乳、ヨーグルト、醸造酢などの酸を含有する飲食品を用いて酸を添加してもよい。アルカリ処理の場合、水酸化ナトリウム、水酸化カリウム等のアルカリを添加し得る。変性剤処理の場合、塩酸グアニジン、尿素、アルギニン、PEG等の変性剤を添加し得る。加熱又は冷却処理の場合、加熱温度の例として、60~150℃、例えば80℃~110℃、100℃~135℃、125℃~145℃が挙げられる。冷却温度の例として、-10~-75℃、例えば-15℃~-70℃、-20℃~-45℃が挙げられる。加熱又は冷却時間の例として、5秒~200分間、例えば10秒~10分間、5~60分間、30~120分間、90~150分間等が挙げられる。高圧処理の場合、圧力の条件として、100~1,000MPa、例えば200~700MPa、300~500MPa等が挙げられる。有機溶媒処理の場合、用いられる溶媒の例として、アルコールやケトン、例えばエタノールやアセトンが挙げられる。ミネラル添加処理の場合、用いられるミネラルの例として、カルシウム、マグネシウムなどの2価金属イオンが挙げられる。超臨界処理の場合、例えば、温度約30℃以上で約7MPa以上の超臨界状態の二酸化炭素を使用して処理できる。超音波処理の場合、例えば100KHz~2MHzの周波数で100~1,000Wの出力で照射して処理し得る。電気分解処理の場合、例えば蛋白質水溶液を100mV~1,000mVの電圧を印加することにより処理し得る。具体的な実施形態において、蛋白質を分解又は変性させる処理は、変性剤処理、加熱処理、及びそれらの組み合わせから選択される。
 分子量分布を調整する処理の条件、例えば酵素の種類、ろ材の種類、回転数、電流、時間等は、当業者が適宜設定できる。使用される酵素の例として、「金属プロテアーゼ」、「酸性プロテアーゼ」、「チオールプロテアーゼ」、「セリンプロテアーゼ」に分類されるプロテアーゼが挙げられる。反応温度は20~80℃、好ましくは40~60℃で反応を行うことができる。ろ材の例として、ろ紙、ろ布、ケイ藻土、セラミック、ガラス、メンブラン等が挙げられる。ゲルろ過の担体の例として、デキストラン、アガロース等が挙げられる。遠心分離の条件の例として、1,000~3,000×g、5~20分間等が挙げられる。
(その他の原料)
 本発明の水中油型乳化物には、各種原料を必要に応じて含有させることができる。
 例えば、糖類、糖アルコール類、澱粉、食物繊維、不溶性食物繊維、水溶性食物繊維、水溶性多糖類、増粘多糖類、乳化剤、塩類、香料、甘味料、着色料、保存料、pH調整剤、安定剤、牛乳・バター・チーズ等の乳製品及び乳加工品、果汁、カカオマス、ココアパウダー,抹茶パウダー等の各種パウダー、焼酎・ウイスキー・ウオッカ・ブランデーなどの蒸留酒、ワイン・日本酒・ビールなどの醸造酒、各種リキュール等のアルコール類等が挙げられる。
(水中油型乳化物の製造)
 本発明の水中油型乳化物の製造は公知の方法を用いて製造することができる。
 例えば、蛋白質素材、油脂、水及びその他必要により副原料を混合し、ホモミキサー、高圧ホモゲナイザー、サイレントカッターやステファンクッカー等のカッター刃ミキサー、アジホモミキサー、コロイドミル、エクストルーダーやエマルダーなどのローター・ステーター型インラインミキサー等により溶液を均質化し、必要により加熱殺菌を行い、本発明の水中油型乳化物を得ることができる。
(用途)
 本発明の水中油型乳化物は、チョコレートフィリング、練乳フィリング、抹茶フィリング、チーズフィリング、ホイップクリーム、カスタードクリーム、練り込み用クリーム、アイスクリーム、イチゴクリームやレモンクリーム等の各種フルーツ、フルーツピューレ、フルーツ果汁などを配合したクリーム、酸性クリーム、フラワーペースト、チョコレート様食品、含水チョコレート、生チョコレート、キャラメル、チーズ、チーズソース、パスタソース、カレーやシチューのルー等として使用することができる。
 以下に実施例を記載することで本発明を説明する。尚、例中の%は特に断らない限り質量基準を意味するものとする。
(各種油脂の融解熱の測定)
 表1に示す油脂について示差走査熱量計(DSC)で4℃、-20℃の融解熱を測定し、結果を表1に示した。評価として、本発明の油脂の融解熱の規定を満たすものは、「○」、満たさないものは、「×」とした。
 なお、パームスーパーオレイン(商品名:パームエース10)、ハイオレイックひまわり油(商品名:ハイオール75B)、パームオレイン(商品名:PWLNS-N)、大豆油はいずれも不二製油製のものを用いた。
(表1)
Figure JPOXMLDOC01-appb-I000002
(実施例1~2)
 油脂A、蛋白質素材として大豆蛋白(フジプロCL、不二製油製)、あるいは分離大豆蛋白質の変性・分子量分布調整処理品(不二製油株式会社テスト製造品で不二製油株式会社より入手可能。2,000Da以上20,000Da未満の分子量が64%、NSIが98.1、蛋白質含量は80%。表中、蛋白質素材A-1と表記)を用いて水中油型乳化物を調製した。
 表2の配合に従い、原料をカッター刃ミキサー(R3 1500、ロボクープ製)を用いて、混合し水中油型乳化物を得た。各水中油型乳化物についてレオナーで最大荷重の測定を行った(表2)。なお、表中、「(A)4℃の最大荷重」と表記したものが、水中油型乳化物を4℃で24時間保存後、測定したものであり、「(B)4℃→25℃の最大荷重」と表記したものが、水中油型乳化物を4℃で24時間保存後、25℃で24時間保存して測定したものであり、「(C)-20℃→25℃の最大荷重」と表記したものが、水中油型乳化物を-20℃で24時間保存後、25℃で24時間保存して測定したものである。
 水中油型乳化物の評価は以下の通りで「○」が合格である。
 ○:(A)4℃の最大荷重が1.0N以上、かつ、最大荷重の(C)/(B)の値が0.80以下。
 ×:(A)4℃の最大荷重が1.0N未満の場合、最大荷重の(C)/(B)の値が0.80を超える場合、または、最大荷重の(B)、(C)いずれも解乳化して硬さがなく測定値が0の場合、の1つ以上を満たす場合。

 評価が「○」の場合、冷蔵以上の温度帯では解乳化せず、一定の硬さを有するが、冷凍後、解凍した場合は、解乳化して柔らかな物性となることを示している。すなわち、4℃の最大荷重が1.0N以上であることで、原料の混合や包餡するのに適度な固さを有して作業性が良いことを示し、最大荷重の(C)/(B)の値が0.80以下となることで、冷凍流通後、解凍して冷蔵/室温で喫食する際には固いままではなく、柔らかい物性となることを示す。
(表2)
Figure JPOXMLDOC01-appb-I000003
 表2に示す通り、4℃の融解熱が13.0J/g以下、かつ-20℃の融解熱が15.0J/g以上である油脂Aを用いて調製した水中油型乳化物は、(A)4℃で24時間保存したときの最大荷重が1.0N以上であった。また、(B)4℃で24時間保存後、25℃で24時間保存したときの最大荷重、(C)-20℃で24時間保存後、25℃で24時間保存したときの最大荷重の(C)/(B)の値が0.80以下であり、良好だった。
(実施例3~9、比較例1~5)
 油脂C~N、蛋白質素材として、以下に記載する方法で製造した植物蛋白質素材A-1を用いて表2の配合に従い、実施例1と同様に水中油型乳化物を調製し、評価を行った。評価結果を表3に示した。
(表3)
Figure JPOXMLDOC01-appb-I000004
 油脂G、H、I、J、K、L、Mを用いて調製した実施例2~8の水中油型乳化物は、(A)4℃で24時間保存したときの最大荷重が1.0N以上であった。また、(B)4℃で24時間保存後、25℃で24時間保存したときの最大荷重、(C)-20℃で24時間保存後、25℃で24時間保存したときの最大荷重、の(C)/(B)の値が0.80以下であり、良好であった。一方、油脂D、E、F、N、Cを用いて調製した比較例1~5の水中油型乳化物は評価が悪かった。
(実施例10~15、比較例6~9)
 表4の配合に従い、油脂B、蛋白質素材として大豆蛋白(フジプロCL、不二製油製)を用いて、実施例1と同様にして水中油型乳化物を調製し、評価を行った。本態様はチョコレートフィリングとして使用できるものである。評価結果を表4に示した。
 なお、ココアパウダーとして、Guan Chong Berhad製のものを用いた。
(表4)
Figure JPOXMLDOC01-appb-I000005
 油脂Bを用いて、水中油型乳化物中の油脂の含量を20%以上で調製した実施例9~14の水中油型乳化物は、(A)4℃で24時間保存したときの最大荷重が1.0N以上であった。また、(B)4℃で24時間保存後、25℃で24時間保存したときの最大荷重、(C)-20℃で24時間保存後、25℃で24時間保存したときの最大荷重、の(C)/(B)の値が0.80以下であり、良好だった。一方、水中油型乳化物中の油脂の含量が20%未満である比較例6~9は評価が悪かった。
(実施例16~18)
 表5の配合に従い、油脂B、蛋白質素材として実施例2で蛋白質素材として使用した蛋白質素材A-1を用いて、実施例1と同様にして水中油型乳化物を調製し、評価を行った。本態様で実施例15は練乳フィリング、実施例16は抹茶フィリング、実施例17はチーズフィリングとして使用できるものである。評価結果を表5に示した。
(表5)
Figure JPOXMLDOC01-appb-I000006
 実施例15~17の水中油型乳化物は、(A)4℃で24時間保存したときの最大荷重が1.0N以上であった。また、(B)4℃で24時間保存後、25℃で24時間保存したときの最大荷重、(C)-20℃で24時間保存後、25℃で24時間保存したときの最大荷重、の(C)/(B)の値が0.80以下であり、保形性の評価も合格であった。
(実施例19~20)
 表6の配合に従い、油脂B、蛋白質素材として、カゼインまたは、分離エンドウ蛋白質の変性・分子量分布調整処理品(不二製油株式会社テスト製造品で不二製油株式会社より入手可能。2,000Da以上20,000Da未満の分子量が68%、NSIが100.1、蛋白質含量は80%。表中、蛋白質素材A-2と表記)を用いて、実施例1と同様にして水中油型乳化物を調製し、評価を行った。評価結果を表6に示した。
(表6)
Figure JPOXMLDOC01-appb-I000007
 実施例18、19の水中油型乳化物は、(A)4℃で24時間保存したときの最大荷重が1.0N以上であった。また、(B)4℃で24時間保存後、25℃で24時間保存したときの最大荷重、(C)-20℃で24時間保存後、25℃で24時間保存したときの最大荷重、の(C)/(B)の値が0.80以下であり、良好だった。

Claims (12)

  1. 水中油型乳化物の油相が、示差走査熱量計(DSC)による油脂の融解熱の測定において、4℃の融解熱が13.0J/g以下、かつ-20℃の融解熱が15.0J/g以上であり、該水中油型乳化物中の油脂含量が20質量%以上である水中油型乳化物であって、前記水中油型乳化物を以下の(A)~(C)の条件で保存したものの最大荷重を測定したとき、(A)の最大荷重が1.0N以上であり、かつ、(C)/(B)が0.80以下である、水中油型乳化物。
    (A)4℃で24時間保存したときの最大荷重。
    (B)4℃で24時間保存後、25℃で24時間保存したときの最大荷重。
    (C)-20℃で24時間保存後、25℃で24時間保存したときの最大荷重。
  2. 水中油型乳化物中の油脂含量が20~90質量%である、請求項1記載の水中油型乳化物。
  3. 水中油型乳化物がさらに蛋白質素材を含む、請求項1記載の水中油型乳化物。
  4. 水中油型乳化物がさらに蛋白質素材を含む、請求項2記載の水中油型乳化物。
  5. 水中油型乳化物の油脂含量が20~90質量%、蛋白質素材の含量が0.1~20質量%である、請求項3記載の水中油型乳化物。
  6. 水中油型乳化物の油脂含量が20~90質量%、蛋白質素材の含量が0.1~20質量%である、請求項4記載の水中油型乳化物。
  7. 油脂、及び水を含有する原料を乳化する水中油型乳化物の製造方法であって、該水中油型乳化物の油相が、示差走査熱量計(DSC)による油脂の融解熱の測定において、4℃の融解熱が13.0J/g以下、かつ-20℃の融解熱が15.0J/g以上であり、該水中油型乳化物中の油脂含量が20質量%以上であり、該水中油型乳化物を以下の(A)~(C)の条件で保存したものの最大荷重を測定したとき、(A)が1.0N以上であり、かつ、(C)/(B)が0.80以下である、水中油型乳化物の製造方法。
    (A)4℃で24時間保存したときの最大荷重。
    (B)4℃で24時間保存後、25℃で24時間保存したときの最大荷重。
    (C)-20℃で24時間保存後、25℃で24時間保存したときの最大荷重。
  8. 水中油型乳化物中の油脂含量が20~90質量%である、請求項7記載の水中油型乳化物の製造方法。
  9. さらに原料として蛋白質素材を含む、請求項7記載の水中油型乳化物の製造方法。
  10. さらに原料として蛋白質素材を含む、請求項8記載の水中油型乳化物の製造方法。
  11. 水中油型乳化物の油脂含量が20~90質量%、蛋白質素材の含量が0.1~20質量%である、請求項9記載の水中油型乳化物の製造方法。
  12. 水中油型乳化物の油脂含量が20~90質量%、蛋白質素材の含量が0.1~20質量%である、請求項10記載の水中油型乳化物の製造方法。
PCT/JP2023/005101 2022-02-22 2023-02-15 水中油型乳化物及び水中油型乳化物の製造方法 WO2023162797A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023544167A JP7365534B1 (ja) 2022-02-22 2023-02-15 水中油型乳化物及び水中油型乳化物の製造方法

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-025485 2022-02-22
JP2022025485 2022-02-22

Publications (1)

Publication Number Publication Date
WO2023162797A1 true WO2023162797A1 (ja) 2023-08-31

Family

ID=87765927

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/005101 WO2023162797A1 (ja) 2022-02-22 2023-02-15 水中油型乳化物及び水中油型乳化物の製造方法

Country Status (2)

Country Link
JP (1) JP7365534B1 (ja)
WO (1) WO2023162797A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0787895A (ja) * 1993-09-24 1995-04-04 Fuji Oil Co Ltd 水中油型エマルジョン及びそれを含むフィリング材並びに冷菓
JPH11169074A (ja) * 1997-12-12 1999-06-29 Fuji Oil Co Ltd 練込み用油脂及び冷菓並びに冷菓の製造法
WO2012074008A1 (ja) * 2010-12-03 2012-06-07 日清オイリオグループ株式会社 起泡性水中油型乳化物用油脂組成物および該油脂組成物を含んでなる起泡性水中油型乳化物
WO2012105073A1 (ja) * 2011-01-31 2012-08-09 日清オイリオグループ株式会社 パーム分別軟質油およびそれを使用した加工乳化食品

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6539034B2 (ja) * 2014-10-27 2019-07-03 株式会社カネカ 新規なホイップドクリーム
JP7197289B2 (ja) * 2018-06-18 2022-12-27 森永製菓株式会社 菓子及び菓子の製造方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0787895A (ja) * 1993-09-24 1995-04-04 Fuji Oil Co Ltd 水中油型エマルジョン及びそれを含むフィリング材並びに冷菓
JPH11169074A (ja) * 1997-12-12 1999-06-29 Fuji Oil Co Ltd 練込み用油脂及び冷菓並びに冷菓の製造法
WO2012074008A1 (ja) * 2010-12-03 2012-06-07 日清オイリオグループ株式会社 起泡性水中油型乳化物用油脂組成物および該油脂組成物を含んでなる起泡性水中油型乳化物
WO2012105073A1 (ja) * 2011-01-31 2012-08-09 日清オイリオグループ株式会社 パーム分別軟質油およびそれを使用した加工乳化食品

Also Published As

Publication number Publication date
JPWO2023162797A1 (ja) 2023-08-31
JP7365534B1 (ja) 2023-10-19

Similar Documents

Publication Publication Date Title
US20220279824A1 (en) Functional adzuki bean-derived compositions
AU2017220193B2 (en) Functional mung bean-derived compositions
CA2981361A1 (en) Legume-based dairy substitute and consumable food products incorporating same
US20140134316A1 (en) Dessert compositions comprising soy whey proteins that have been isolated from processing streams
JP7532397B2 (ja) フィールドビーンタンパク質組成物
US20070128323A1 (en) Creams, whipped products thereof, dry powders thereof and process for producing the same
EP3603408A1 (en) Method for producing plant-derived cheese-like food product
JP7365534B1 (ja) 水中油型乳化物及び水中油型乳化物の製造方法
WO2023248862A1 (ja) 油脂組成物
JP7509326B2 (ja) 卵代替物及び卵代替物の製造方法
JP4152060B2 (ja) 水中油型乳化組成物及びこれを用いた可塑性乳化油脂組成物
WO2023145757A1 (ja) 高油分水中油型油脂乳化組成物
WO2024204314A1 (ja) 含水チョコレート類
JP2024049222A (ja) 油脂含有食品用起泡剤
US20240065289A1 (en) Extracts from oil seeds and methods for processing oil seeds
JP2024049221A (ja) 飲食品用起泡剤
WO2024075757A1 (ja) 酸性調味料
WO2022210754A1 (ja) 乳化食品製造用タンパク質含有油脂乳化組成物
WO2024204292A1 (ja) 植物ベースの水中油型乳化物及びその製造方法
WO2023137570A1 (en) Preparation of non-soy oilseed protein products ("*810")
JP2006204208A (ja) 冷凍豆乳の製造法
CN113438902A (zh) 稳定化的半固体食品
KR20190049607A (ko) 알룰로스를 포함하는 크림 조성물
CN110072397A (zh) 充气食品
JP2019076073A (ja) 焼菓子生地

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023544167

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23759798

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE