WO2023162458A1 - Ceiling fan - Google Patents
Ceiling fan Download PDFInfo
- Publication number
- WO2023162458A1 WO2023162458A1 PCT/JP2022/048080 JP2022048080W WO2023162458A1 WO 2023162458 A1 WO2023162458 A1 WO 2023162458A1 JP 2022048080 W JP2022048080 W JP 2022048080W WO 2023162458 A1 WO2023162458 A1 WO 2023162458A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- angle
- attack
- wing
- blade
- hub
- Prior art date
Links
- 230000007423 decrease Effects 0.000 claims description 4
- 230000002093 peripheral effect Effects 0.000 description 50
- 238000003780 insertion Methods 0.000 description 6
- 230000037431 insertion Effects 0.000 description 6
- 230000000694 effects Effects 0.000 description 3
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 230000005494 condensation Effects 0.000 description 1
- 238000009833 condensation Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 239000003365 glass fiber Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D25/00—Pumping installations or systems
- F04D25/02—Units comprising pumps and their driving means
- F04D25/08—Units comprising pumps and their driving means the working fluid being air, e.g. for ventilation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04D—NON-POSITIVE-DISPLACEMENT PUMPS
- F04D29/00—Details, component parts, or accessories
- F04D29/26—Rotors specially for elastic fluids
- F04D29/32—Rotors specially for elastic fluids for axial flow pumps
- F04D29/38—Blades
Definitions
- the present invention relates to ceiling fans.
- the speed difference between the radially arranged blades (blades) on the outer and inner sides increases. Therefore, for example, in a blade having the same cross section (same angle of attack) with respect to the longitudinal direction of the blade as disclosed in Patent Document 1, the peripheral speed is faster toward the outer peripheral side and a large lift is generated, and the reaction force is a high-speed wind. occurs downwards. On the other hand, on the inner peripheral side, the opposite is true, and low-speed wind is generated downward on the inner peripheral side. Therefore, by changing the angle of attack in the longitudinal direction of the blade, specifically, the angle of attack is made small on the outer peripheral side and increased on the inner peripheral side to equalize the lift in the longitudinal direction of the blade. , to regulate the amount of air generated when the blades rotate (see, for example, US Pat.
- a stall is a phenomenon in which when the flow velocity of the air flowing through the blade becomes low and the angle of attack becomes too large, the airflow flowing on the blade surface separates and the lift disappears (the lift coefficient decreases).
- the lift coefficient When the angle of attack is increased from 0° at a constant air speed, the lift coefficient gradually increases, but after the angle of attack at which the lift coefficient reaches its maximum, the aircraft descends (stalls).
- the angle of attack at which the lift coefficient is maximized is called the stall angle, and in a stall region larger than this stall angle, separation occurs in the airflow on the upper surface of the blade and the lift coefficient decreases. It was well known not to use blades at angles of attack in the stall region, as lift (lift coefficient) is reduced in the aforementioned stall region.
- Patent Document 1 the wing portions of the blades are not arranged in the range of 10% to 30% of the diameter of the ceiling fan. As a matter of course, no descending wind is generated at a location where no blades are arranged (near the center of rotation of the ceiling fan). In addition, in Patent Document 2, blades are also arranged near the center of rotation of the ceiling fan, and it is described that an upward wind is generated near the center of rotation.
- an object of the present invention is to provide a ceiling fan that can generate descending wind even directly below the center of rotation of the ceiling fan and can make the wind speed uniform in the longitudinal direction of the blades.
- a ceiling fan includes a motor, a hub arranged on a rotating shaft rotated by the motor, and a plurality of blades radially arranged around the hub.
- the blade has a plurality of wing portions arranged linearly along the radial direction, the plurality of wing portions having the same airfoil cross-section, and facing a plane perpendicular to the axis of rotation. Each corner is provided and arranged.
- the plurality of wings of a blade are arranged with the angle of attack of the radially inner wing greater than the angle of attack of the radially outer wing.
- the ceiling fan it is possible to generate descending wind even directly below the center of rotation of the ceiling fan, and to make the wind speed uniform in the longitudinal direction of the blades.
- FIG. 1 is a perspective view of a ceiling fan according to an embodiment of the invention.
- 2 is a perspective view showing a main part of the ceiling fan shown in FIG. 1.
- FIG. 3 is a plan view of the main part of the ceiling fan shown in FIG. 2.
- FIG. 4 is a side view of the main part of the ceiling fan shown in FIG. 3.
- FIG. 5 is a cross-sectional view taken along line AA of FIG. 4.
- FIG. 6 is a cross-sectional view taken along line BB of FIG. 4.
- FIG. 7 is a cross-sectional view taken along line CC of FIG. 4.
- FIG. FIG. 8 is a cross-sectional view taken along line DD of FIG. FIG.
- FIG. 9 is a view of the airfoil portion of the blade viewed from the radial direction of the ceiling fan.
- FIG. 10 is a diagram showing the relationship of the angle of attack of each wing.
- FIG. 11 is a graph showing the relationship between lift coefficient and angle of attack for each wing.
- the ceiling fan 10 includes a motor 20, a hub 30, and a plurality of blades 40.
- the arrow R indicates the direction of rotation of the blade 40 when generating a downdraft (descending wind).
- "Rear” is the rear side in the rotational direction R of the blade 40 .
- 2 to 4 also show the hub 30 and one blade 40 out of the plurality of blades 40.
- the mount 11 of the ceiling fan 10 is suspended and fixed from the ceiling frame (not shown) of the building.
- a motor box 12 is connected (suspended and fixed) to the lower end of the pedestal 11 .
- a motor 20 as an electric motor that rotates a plurality of blades 40 and a gear box 21 as a speed reducer that reduces the rotation of the motor 20 are accommodated.
- 1, only the frame 13 of the motor box 12 is shown, and illustration of the outer panel is omitted.
- the rotation of the motor 20 is decelerated by the gear box 21, and the hub 30 as the center of rotation arranged below the motor box 12 is rotated.
- a hub 30 is connected to the gearbox 21 via a rotating shaft 22 (see FIGS. 3 and 4), and six blades 40 are radially arranged on the hub 30 at equal angles (60°).
- Three blade portions 41a, 41b, and 41c are arranged on one blade 40 on a straight line extending outward from the center of the ceiling fan 10 in the radial direction.
- the outer diameter (diameter) D of the ceiling fan 10 is approximately 9.6 m, and the length of one blade 40 is approximately 4.5 m. Therefore, the length L of one wing portion 41a, 41b, 41c is approximately 1.5 m.
- the radially innermost (inner peripheral side) blade 41 c is arranged near the hub 30 .
- the wing portion 41 c on the inner peripheral side is arranged at the same height as the mounting portion 31 of the hub 30 by contacting the mounting portion 31 of the hub 30 .
- the hub 30 has six mounting portions 31 radially formed at equal angles (60°), and each mounting portion 31 receives a shaft portion 43 of a connecting member 42 attached to a wing portion 41c on the inner peripheral side.
- An insertion hole 32 is provided.
- a connecting member 42 having a shaft portion 43, a holding portion 44, and a convex portion 45 is arranged at the radially inner end portion (inner peripheral side end portion) of the wing portion 41c on the inner peripheral side.
- the shaft portion 43 of the connecting member 42 is inserted into the insertion hole portion 32 described above, and the connecting member 42 is fixed to the hub 30 using a first fastening member 71 such as a bolt.
- a notch 33 is provided in each mounting portion 31 of the hub 30 .
- the inner circumferential side wing portions 41c are sandwiched between the sandwiching portions 44 of the connecting member 42, the inner circumferential side wing portions 41c are attached to the connecting member 42 using the second fastening members 72 such as bolts and nuts. fixed against.
- the three wing portions 41a, 41b, and 41c of the blade 40 all have an airfoil cross section with the same cross section.
- a plurality of (three in this embodiment) wings 41 cut in advance from a drawn aluminum material to a length of 1.5 m are connected to form one A single blade 40 is constructed.
- the wing portion 41 has a wing upper surface 46a that curves upwardly convex and a wing lower surface 46b that curves upwardly concavely.
- Connecting holes 47a and 47b through which a third fastening member 73 for fixing a winglet 60 (to be described later) is inserted are formed in the leading edge side portion and the trailing edge side portion of the wing portion 41, respectively.
- a cylindrical rib 48 and a plurality of angle-of-attack setting holes 49a, 49b, and 49c for setting the angle of attack of the wing portion 41 are provided between the front and rear connecting holes 47a and 47b of the wing portion 41. It is formed.
- These plurality of angle-of-attack setting holes 49a, 49b, and 49c are formed at equal angles (5°) with respect to each other with the center of the axis of the cylindrical rib 48 as a reference.
- Each wing portion 41a, 41b, 41c is provided with a first communication hole portion 50 that communicates with the rib 48, and a mounting member (not shown) such as a flat screw is attached to the first communication hole portion 50.
- a mounting member such as a flat screw is attached to the first communication hole portion 50.
- a member 51 having a rectangular cross-section is bridged at least between the angle-of-attack setting holes 49a, 49b, and 49c of the wing portions 41a, 41b, and 41c adjacent in the radial direction.
- a second communication hole portion 52 communicating with the angle-of-attack setting hole portions 49a, 49b, and 49c is provided in each of the wing portions 41a, 41b, and 41c.
- the blades 41a, 41b, and 41c have different angles of attack ⁇ 1, ⁇ 2, and ⁇ 3 with respect to the plane of rotation (the plane PL orthogonal to the rotation axis 22).
- the three wings 41a, 41b, and 41c are arranged so that the angles of attack ⁇ 1, ⁇ 2, and ⁇ 3 are 10°, 15°, and 20° from the outermost side. It is fixed while being rotated around the provided cylindrical rib 48 . That is, the plurality of wing portions 41a, 41b, 41c of one blade 40 are arranged such that the angle of attack of the inner wing portion is larger than the angle of attack of the outer wing portion in the radial direction.
- the angle of attack ⁇ 1 of the radially outermost (peripheral) blade portion 41a is 10°
- the angle of attack ⁇ 2 of the intermediate blade portion 41b is 15°
- the inner peripheral blade portion 41c is 20°. That is, the attack angle ⁇ 3 of the radially innermost (inner peripheral side) blade portion 41c is larger than the attack angle ⁇ 2 of the intermediate blade portion 41b.
- the angle of attack ⁇ 2 of the intermediate blade portion 41b is greater than the angle of attack ⁇ 1 of the radially outermost (peripheral) blade portion 41a. Therefore, the differences between the angles of attack ⁇ 1, ⁇ 2, and ⁇ 3 of the radially adjacent blade portions 41a, 41b, and 41c of the ceiling fan 10 are all the same angle (5°).
- a winglet 60 as a wing end plate composed of a vertical plate is fixed at least to the radially outer end portion (outer peripheral end portion) of the wing portion 41a on the outer peripheral side. be.
- This winglet 60 has a rectifying effect.
- winglets 60 are also arranged between the radially adjacent blade portions 41a, 41b, and 41c of the ceiling fan 10 .
- the winglets 60 fixed to the outer peripheral end or the inner peripheral end of the radially adjacent wings 41a, 41b, 41c of the ceiling fan 10 are connected to each other using connecting members 74 such as bolts and nuts. .
- connection holes 61 for inserting the connection members 74 are provided in the upper and lower portions of the winglets 60, respectively.
- a front mounting hole 62 through which a mounting member (not shown) such as a flat screw is inserted is formed in the front portion of the winglet 60 for connection to the wings 41a, 41b, and 41c.
- the rear portion of the winglet 60 has a plurality of rear mounting holes 63a, 63b through which mounting members (not shown) such as flat screws are inserted for connection to the wings 41a, 41b, 41c. , 63c are formed.
- first insertion hole 64 through which the aforementioned cylindrical member 34 is inserted
- second insertion hole through which the shaped member 51 is inserted is formed.
- the front mounting hole portion 62 is formed as an elongated hole extending in an arc with the hole center of the insertion hole portion 64 as a reference.
- the plurality of rear attachment holes 63a, 63b, 63c are formed at equal angles (5°) with respect to each other with the hole center of the insertion hole 64 as a reference.
- FIG. 11 shows the relationship between the angle of attack and the lift coefficient at representative positions P1, P2, and P3 (see FIG. 4) of each blade 41a, 41b, and 41c when the blade 40 is rotated at the rated speed (40 RPM). is a graph showing. In this graph, changes in the lift coefficients of the wings 41a, 41b and 41c are indicated by lines labeled CL1, CL2 and CL3, respectively.
- the angles of attack ⁇ 1, ⁇ 2, and ⁇ 3 of the three blades 41a, 41b, and 41c are set to 10°, 15°, and 20° in order from the outer peripheral side.
- the representative speeds of the outer, intermediate, and inner blades 41a, 41b, and 41c are 19.6 m/min. s, 10.4 m/s, and 3.9 m/s. That is, the graph line CL1 of the change in lift coefficient shows the relationship between the angle of attack and the lift coefficient at 19.6 m/s, CL2 at 10.4 m/s, and CL3 at 3.9 m/s.
- the lift coefficients of the wings 41a, 41b, and 41c at that time are the values indicated by points A, B, and C, respectively.
- Point A and point B have the same value, but it can be seen that the lift coefficient of point C is considerably inferior to the others. That is, when the angle of attack ⁇ 3 of the inner peripheral blade portion 41c is 10°, the lift coefficient is lowered and sufficient lift, that is, the wind speed (air volume) cannot be obtained.
- the angle of attack ⁇ 3 of the wing portion 41c on the inner peripheral side is set to 20°, it is possible to obtain a lift coefficient substantially equal to that of the other wing portions 41a and 41b.
- the blade 41c on the inner peripheral side can also obtain substantially the same wind speed (air volume) as the other blades 41a and 41b.
- the angle of attack ⁇ 3 of the wing portion 41c on the inner peripheral side is larger than the stall angle ⁇ s at which the stall occurs, and when the angle of attack is further increased beyond the stall angle ⁇ s, the lift coefficient increases again. It is set to be greater than the increasing angle ⁇ r.
- the angle of attack ⁇ 3 of the wing portion 41c on the inner peripheral side is set to be larger than the angle of attack of the same value as the lift coefficient of the stall angle ⁇ s (angle indicated by point D, about 14°).
- the angle of attack ⁇ 3 of the inner wing portion 41c is set to be larger than the angle of attack ⁇ 1 of the outer wing portion 41a and the angle of attack ⁇ 2 of the intermediate wing portion 41c ( ⁇ 3> ⁇ 2> ⁇ 1).
- the ceiling fan 10 includes a motor 20, a hub 30 arranged on a rotating shaft 22 rotated by the motor 20, and a plurality of blades 40 radially arranged around the hub 30.
- the blade 40 has a plurality of wings 41a, 41b, 41c linearly arranged along the radial direction.
- the plurality of blade portions 41a, 41b, and 41c have the same blade cross-section and are arranged at angles of attack ⁇ 1, ⁇ 2, and ⁇ 3 with respect to a plane PL perpendicular to the rotating shaft 22, respectively.
- the plurality of wings 41a, 41b, and 41c of one blade 40 are arranged such that the angle of attack of the inner wings is larger than the angle of attack of the radially outer wings.
- the attack angle ⁇ 3 of the radially innermost (inner peripheral side) blade portion 41c is greater than the attack angle ⁇ 2 of the intermediate blade portion 41b. Furthermore, the angle of attack ⁇ 2 of the intermediate blade portion 41b is greater than the angle of attack ⁇ 1 of the radially outermost (peripheral) blade portion 41a. In this way, in each blade 40, the wing on the outer peripheral side has a small angle of attack and the wing on the inner peripheral side has a large angle of attack, and by equalizing the lift in the longitudinal direction of the blade 40, It is possible to adjust the amount of air generated when the blade 40 rotates.
- the angle of attack ⁇ 3 of the wing portion 41c arranged on the innermost side in the radial direction (on the inner peripheral side) is a stall in which the lift coefficient decreases when the angle of attack is increased in the wing portion 41c when the blade 40 rotates. occurs and is greater than the angle ⁇ r at which the lift coefficient increases again if the angle of attack is made even greater than the stall angle ⁇ s.
- the angle of attack ⁇ 3 of the blade 41c on the inner peripheral side of the blade 40 of the ceiling fan 10 is made larger than the angle at which the stall occurs in the blade 41c (stall angle ⁇ s), so the lift coefficient increases. , can generate descending winds even at low speeds.
- the radially innermost (inner peripheral side) wing portion 41 c is arranged at the same height as the mounting portion 31 of the hub 30 by contacting the mounting portion 31 of the hub 30 .
- the inner peripheral blade plate (inner peripheral region) disclosed in Patent Document 2 Japanese Patent Application Laid-Open No. 2007-182816
- Patent Document 2 Japanese Patent Application Laid-Open No. 2007-182816
- the inner peripheral blade plate (inner peripheral region) and the hub (rotating portion) of Patent Document 2 are connected via an arm portion, and the inner peripheral blade plate (inner peripheral region) and the hub (rotating portion) are connected to each other. department) is maintained.
- the inner peripheral blade plate (inner peripheral region) of Patent Document 2 is arranged at a position lower than the hub (rotating portion). In Patent Document 2, there is a gap (distance) between the inner peripheral blade plate (inner peripheral region) and the hub (rotating portion).
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Structures Of Non-Positive Displacement Pumps (AREA)
Abstract
A ceiling fan 10 comprises: a motor 20; a hub 30 which is disposed on a rotary shaft 22 that is rotated by the motor 20; and a plurality of blades 40 which are arranged radially about the hub 30. The blades 40 each have a plurality of wing portions 41a, 41b, 41c which are linearly arranged along the radial direction. The plurality of wings portions have the same wing cross section and are arranged at respective elevation angles α1, α2, α3 with respect to a plane PL orthogonal to the rotary shaft 22. The wing portions 41a, 41b, 41c of each of the blades 40 are arranged such that a wing portion at the radially inner side has a greater elevation angle than a wing portion at the radially outer side.
Description
本発明は、シーリングファンに関する。
The present invention relates to ceiling fans.
大型のシーリングファンが工場、倉庫等の天井に取り付けられている。これは、大きな空間内の空気を攪拌し、作業環境改善、結露防止等の目的がある。近年はシーリングファンの直径を大きくして、大風量の風を広い範囲に送風するものが開発されている。シーリングファンの直径を大きくするので、回転速度が低くても大風量の風を発生することができ、騒音低下にも役立つ。
Large ceiling fans are attached to the ceilings of factories, warehouses, etc. This is intended to agitate the air in a large space, improve the work environment, prevent condensation, and the like. In recent years, a ceiling fan has been developed that has a large diameter and blows a large amount of air over a wide area. Since the diameter of the ceiling fan is increased, a large amount of air can be generated even at a low rotation speed, which helps reduce noise.
シーリングファンは直径が大きくなると、放射状に配置されるブレード(羽根)の外周側と内周側との速度差が大きくなる。したがって、例えば特許文献1に開示されているようにブレードの長手方向に関して同一断面(同一迎角)を持つブレードでは、外周側ほど周速度が速く大きな揚力が発生し、その反力で高速の風が下向きに発生する。その一方、内周側はその反対で、内周側においては低速の風が下向きに発生する。そこで、ブレードの長手方向で迎角を変えること、具体的には、外周側は迎角を小さく、内周側は迎角を大きくして、ブレードの長手方向での揚力を均等化することにより、ブレードの回転時に発生する風量を調整することが周知である(例えば、特許文献2)。
As the diameter of the ceiling fan increases, the speed difference between the radially arranged blades (blades) on the outer and inner sides increases. Therefore, for example, in a blade having the same cross section (same angle of attack) with respect to the longitudinal direction of the blade as disclosed in Patent Document 1, the peripheral speed is faster toward the outer peripheral side and a large lift is generated, and the reaction force is a high-speed wind. occurs downwards. On the other hand, on the inner peripheral side, the opposite is true, and low-speed wind is generated downward on the inner peripheral side. Therefore, by changing the angle of attack in the longitudinal direction of the blade, specifically, the angle of attack is made small on the outer peripheral side and increased on the inner peripheral side to equalize the lift in the longitudinal direction of the blade. , to regulate the amount of air generated when the blades rotate (see, for example, US Pat.
しかしながら、シーリングファンの回転軸近傍(回転中心部近傍)では、さらに周速度が低くなるので、ブレードの迎角を大きくし過ぎると、ブレードを流れる空気が失速現象を起こすことが知られている。失速とは、ブレードを流れる空気の流速が低くなり、且つ、迎角を大きくし過ぎると、ブレード表面を流れていた気流が剥離を起こし揚力が無くなる(揚力係数が減少する)現象である。
However, it is known that the air flowing through the blades will stall if the angle of attack of the blades is too large because the peripheral speed is even lower near the rotation axis (near the center of rotation) of the ceiling fan. A stall is a phenomenon in which when the flow velocity of the air flowing through the blade becomes low and the angle of attack becomes too large, the airflow flowing on the blade surface separates and the lift disappears (the lift coefficient decreases).
一定の空気速度で迎角を0°から大きくしていくと、揚力係数が次第に大きくなるが、揚力係数が最大となる迎角を過ぎると、逆に下降(失速)する。揚力係数が最大となる迎角は失速角と称され、この失速角よりも大きい失速域では、ブレード上面の気流に剥離が起き、揚力係数が低下する。前述の失速域では揚力(揚力係数)が低下するので、失速域となる迎角でブレードを使用しないのが周知であった。
When the angle of attack is increased from 0° at a constant air speed, the lift coefficient gradually increases, but after the angle of attack at which the lift coefficient reaches its maximum, the aircraft descends (stalls). The angle of attack at which the lift coefficient is maximized is called the stall angle, and in a stall region larger than this stall angle, separation occurs in the airflow on the upper surface of the blade and the lift coefficient decreases. It was well known not to use blades at angles of attack in the stall region, as lift (lift coefficient) is reduced in the aforementioned stall region.
そのため、特許文献1では、シーリングファンの直径の10%~30%の範囲にはブレードの翼部を配置しないようにしている。当然ながら、ブレードを配置していない箇所(シーリングファンの回転中心部近傍)には下降する風は発生しない。なお、特許文献2では、シーリングファンの回転中心部近傍にもブレードを配置しているが、この回転中心部近傍では上昇する風が発生することが記載されている。
Therefore, in Patent Document 1, the wing portions of the blades are not arranged in the range of 10% to 30% of the diameter of the ceiling fan. As a matter of course, no descending wind is generated at a location where no blades are arranged (near the center of rotation of the ceiling fan). In addition, in Patent Document 2, blades are also arranged near the center of rotation of the ceiling fan, and it is described that an upward wind is generated near the center of rotation.
そこで、本発明は、シーリングファンの回転中心部の直下においても下降する風を発生させ、ブレードの長手方向に関して風速の均一化を図ることができるシーリングファンを提供することを目的とする。
Therefore, an object of the present invention is to provide a ceiling fan that can generate descending wind even directly below the center of rotation of the ceiling fan and can make the wind speed uniform in the longitudinal direction of the blades.
本発明の一態様に係るシーリングファンは、モータと、モータにより回転する回転軸に配置されるハブと、ハブを中心に放射状に配置される複数のブレードと、を備える。ブレードは、放射方向に沿って直線状に配置される複数の翼部を有し、複数の翼部は、互いに同一の翼型断面を有し、且つ、回転軸に直交する平面に対して迎角をそれぞれ設けて配置される。一のブレードの複数の翼部は、放射方向の外側の翼部の迎角よりも内側の翼部の迎角を大きくして配置される。
A ceiling fan according to one aspect of the present invention includes a motor, a hub arranged on a rotating shaft rotated by the motor, and a plurality of blades radially arranged around the hub. The blade has a plurality of wing portions arranged linearly along the radial direction, the plurality of wing portions having the same airfoil cross-section, and facing a plane perpendicular to the axis of rotation. Each corner is provided and arranged. The plurality of wings of a blade are arranged with the angle of attack of the radially inner wing greater than the angle of attack of the radially outer wing.
本発明の一態様に係るシーリングファンによれば、シーリングファンの回転中心部の直下においても下降する風を発生させ、ブレードの長手方向に関して風速の均一化を図ることができる。
According to the ceiling fan according to one aspect of the present invention, it is possible to generate descending wind even directly below the center of rotation of the ceiling fan, and to make the wind speed uniform in the longitudinal direction of the blades.
以下、本実施形態に係るシーリングファンを、図面を参照して説明する。
A ceiling fan according to the present embodiment will be described below with reference to the drawings.
[シーリングファンの構成]
図1から図4に示すように、本実施形態に係るシーリングファン10は、モータ20と、ハブ30と、複数のブレード40と、を備える。なお、図1において、下降気流(下降する風)を発生させる際のブレード40の回転方向を矢印Rで示し、以下の説明における「前」はブレード40の回転方向Rの前方側であり、「後」はブレード40の回転方向Rの後方側である。また、図2から図4においては、ハブ30と、複数のブレード40の内の1枚のブレード40とが示される。 [Structure of ceiling fan]
As shown in FIGS. 1 to 4, theceiling fan 10 according to this embodiment includes a motor 20, a hub 30, and a plurality of blades 40. As shown in FIG. In FIG. 1, the arrow R indicates the direction of rotation of the blade 40 when generating a downdraft (descending wind). "Rear" is the rear side in the rotational direction R of the blade 40 . 2 to 4 also show the hub 30 and one blade 40 out of the plurality of blades 40. FIG.
図1から図4に示すように、本実施形態に係るシーリングファン10は、モータ20と、ハブ30と、複数のブレード40と、を備える。なお、図1において、下降気流(下降する風)を発生させる際のブレード40の回転方向を矢印Rで示し、以下の説明における「前」はブレード40の回転方向Rの前方側であり、「後」はブレード40の回転方向Rの後方側である。また、図2から図4においては、ハブ30と、複数のブレード40の内の1枚のブレード40とが示される。 [Structure of ceiling fan]
As shown in FIGS. 1 to 4, the
シーリングファン10の架台11が、建物の天井フレーム(図示せず)から吊り下げて固定される。この架台11の下端部には、モーターボックス12が接続(吊り下げて固定)される。モーターボックス12の内部には、複数のブレード40を回転させる電動機としてのモータ20と、モータ20の回転を減速させる減速機としてのギヤボックス21とが収納される。なお、図1においては、モーターボックス12の枠体13のみが示され、外側パネルは図示が省略される。
The mount 11 of the ceiling fan 10 is suspended and fixed from the ceiling frame (not shown) of the building. A motor box 12 is connected (suspended and fixed) to the lower end of the pedestal 11 . Inside the motor box 12, a motor 20 as an electric motor that rotates a plurality of blades 40 and a gear box 21 as a speed reducer that reduces the rotation of the motor 20 are accommodated. 1, only the frame 13 of the motor box 12 is shown, and illustration of the outer panel is omitted.
モータ20の回転をギヤボックス21により減速させ、モーターボックス12の下方に配置された回転中心部としてのハブ30を回転させる。
The rotation of the motor 20 is decelerated by the gear box 21, and the hub 30 as the center of rotation arranged below the motor box 12 is rotated.
ギヤボックス21には、回転軸22(図3及び図4参照)を介してハブ30が接続され、ハブ30には、6枚のブレード40が等角度(60°)で放射状に配置される。1枚のブレード40には、3枚の翼部41a,41b,41cがシーリングファン10の径方向中心から外方向に向かう一直線上に配置される。シーリングファン10の外径(直径)Dは約9.6mであり、1枚のブレード40の長さは約4.5mである。このため、1枚の翼部41a,41b,41cの長さLは約1.5mである。
A hub 30 is connected to the gearbox 21 via a rotating shaft 22 (see FIGS. 3 and 4), and six blades 40 are radially arranged on the hub 30 at equal angles (60°). Three blade portions 41a, 41b, and 41c are arranged on one blade 40 on a straight line extending outward from the center of the ceiling fan 10 in the radial direction. The outer diameter (diameter) D of the ceiling fan 10 is approximately 9.6 m, and the length of one blade 40 is approximately 4.5 m. Therefore, the length L of one wing portion 41a, 41b, 41c is approximately 1.5 m.
3枚の翼部41a,41b,41cのうち、最も半径方向内側(内周側)の翼部41cは、ハブ30の近傍に配置される。具体的には、内周側の翼部41cは、ハブ30の取付部31に当接させて、ハブ30の取付部31と同じ高さで配置される。
Of the three blades 41 a , 41 b , 41 c , the radially innermost (inner peripheral side) blade 41 c is arranged near the hub 30 . Specifically, the wing portion 41 c on the inner peripheral side is arranged at the same height as the mounting portion 31 of the hub 30 by contacting the mounting portion 31 of the hub 30 .
ハブ30には、6つの取付部31が等角度(60°)で放射状に形成され、各取付部31には、内周側の翼部41cに装着した連結部材42の軸部43が挿入される挿入孔部32が設けられる。
The hub 30 has six mounting portions 31 radially formed at equal angles (60°), and each mounting portion 31 receives a shaft portion 43 of a connecting member 42 attached to a wing portion 41c on the inner peripheral side. An insertion hole 32 is provided.
内周側の翼部41cの径方向内側端部(内周側端部)には、軸部43と挟持部44と凸部45とを有する連結部材42が配置される。連結部材42の軸部43が前述の挿入孔部32に挿入されて、ボルト等の第一締結部材71を用いて連結部材42がハブ30に対して固定される。
A connecting member 42 having a shaft portion 43, a holding portion 44, and a convex portion 45 is arranged at the radially inner end portion (inner peripheral side end portion) of the wing portion 41c on the inner peripheral side. The shaft portion 43 of the connecting member 42 is inserted into the insertion hole portion 32 described above, and the connecting member 42 is fixed to the hub 30 using a first fastening member 71 such as a bolt.
また、ハブ30の取付部31にはそれぞれ、切欠部33が設けられる。この切欠部33と連結部材42の凸部45とが係合することにより、連結部材42の軸部43がハブ30に回り止めされ、ハブ30とブレード40とが一体的に回転可能となる。
A notch 33 is provided in each mounting portion 31 of the hub 30 . By engaging the notch 33 with the protrusion 45 of the connecting member 42, the shaft 43 of the connecting member 42 is prevented from rotating by the hub 30, and the hub 30 and the blade 40 can rotate integrally.
その一方、内周側の翼部41cが連結部材42の挟持部44に挟持された状態で、ボルト及びナット等の第二締結部材72を用いて内周側の翼部41cが連結部材42に対して固定される。
On the other hand, in a state in which the inner circumferential side wing portions 41c are sandwiched between the sandwiching portions 44 of the connecting member 42, the inner circumferential side wing portions 41c are attached to the connecting member 42 using the second fastening members 72 such as bolts and nuts. fixed against.
ブレード40における3枚の翼部41a,41b,41cは、断面が全て同形状の翼型断面を有している。本実施形態では、製造コストを考慮し、アルミニウム材料の引き抜き加工材を予め1.5mに切断した翼部41(図9参照)を複数枚(本実施形態では、3枚)連結して、1枚のブレード40を構成している。
The three wing portions 41a, 41b, and 41c of the blade 40 all have an airfoil cross section with the same cross section. In this embodiment, in consideration of the manufacturing cost, a plurality of (three in this embodiment) wings 41 (see FIG. 9) cut in advance from a drawn aluminum material to a length of 1.5 m are connected to form one A single blade 40 is constructed.
図9に示すように、翼部41は、上方に凸となるように湾曲する翼上面46aと、上方に凹となるように湾曲する翼下面46bとを有する。翼部41の前縁側部分及び後縁側部分にはそれぞれ、後述するウイングレット60の固定のための第三締結部材73が挿通される連結孔部47a,47bが形成される。また、翼部41における前後の連結孔部47a,47b間には、円筒状のリブ48と、翼部41の迎角の設定のための複数の迎角設定孔部49a,49b,49cとが形成される。これら複数の迎角設定孔部49a,49b,49cは、円筒状のリブ48の軸中心を基準として互いに対して等角度(5°)で形成される。
As shown in FIG. 9, the wing portion 41 has a wing upper surface 46a that curves upwardly convex and a wing lower surface 46b that curves upwardly concavely. Connecting holes 47a and 47b through which a third fastening member 73 for fixing a winglet 60 (to be described later) is inserted are formed in the leading edge side portion and the trailing edge side portion of the wing portion 41, respectively. A cylindrical rib 48 and a plurality of angle-of- attack setting holes 49a, 49b, and 49c for setting the angle of attack of the wing portion 41 are provided between the front and rear connecting holes 47a and 47b of the wing portion 41. It is formed. These plurality of angle-of- attack setting holes 49a, 49b, and 49c are formed at equal angles (5°) with respect to each other with the center of the axis of the cylindrical rib 48 as a reference.
図2から図4に示すように、少なくとも径方向に隣り合う翼部41a,41b,41cのリブ48間には、例えばグラスファイバー製の円筒状部材34がかけ渡される。各翼部41a,41b,41cには、リブ48に連通する第一連通孔部50が設けられており、この第一連通孔部50に平ネジ等の取付部材(図示せず)を螺合することにより、円筒状部材34が各翼部41a,41b,41cに対して固定される。
As shown in FIGS. 2 to 4, at least between the ribs 48 of the radially adjacent wings 41a, 41b, and 41c, a cylindrical member 34 made of glass fiber, for example, is spanned. Each wing portion 41a, 41b, 41c is provided with a first communication hole portion 50 that communicates with the rib 48, and a mounting member (not shown) such as a flat screw is attached to the first communication hole portion 50. By screwing together, the cylindrical member 34 is fixed to each of the wings 41a, 41b, 41c.
また、少なくとも径方向に隣り合う翼部41a,41b,41cの迎角設定孔部49a,49b,49c間には、断面四角形状部材51がかけ渡される。各翼部41a,41b,41cには、迎角設定孔部49a,49b,49cに連通する第二連通孔部52が設けられている。この第二連通孔部52に平ネジ等の取付部材(図示せず)を螺合することにより、断面四角形状部材51が各翼部41a,41b,41cに対して固定される。
Also, a member 51 having a rectangular cross-section is bridged at least between the angle-of- attack setting holes 49a, 49b, and 49c of the wing portions 41a, 41b, and 41c adjacent in the radial direction. A second communication hole portion 52 communicating with the angle-of-attack setting hole portions 49a, 49b, and 49c is provided in each of the wing portions 41a, 41b, and 41c. By screwing an attachment member (not shown) such as a flat screw into the second communication hole 52, the member 51 having a rectangular cross section is fixed to each of the wings 41a, 41b, 41c.
さらに、図10に示されるように、各翼部41a,41b,41cは、回転面(回転軸22に直交する平面PL)に対する迎角α1,α2,α3がそれぞれ異なる。本実施形態では、3枚の翼部41a,41b,41cは、迎角α1,α2,α3が最も外周側から10°、15°、20°となるように、翼部41a,41b,41cに設けた円筒状のリブ48を中心に回転させた状態で固定される。すなわち、一のブレード40の複数の翼部41a,41b,41cは、放射方向の外側の翼部の迎角よりも内側の翼部の迎角を大きくして配置される。
Furthermore, as shown in FIG. 10, the blades 41a, 41b, and 41c have different angles of attack α1, α2, and α3 with respect to the plane of rotation (the plane PL orthogonal to the rotation axis 22). In this embodiment, the three wings 41a, 41b, and 41c are arranged so that the angles of attack α1, α2, and α3 are 10°, 15°, and 20° from the outermost side. It is fixed while being rotated around the provided cylindrical rib 48 . That is, the plurality of wing portions 41a, 41b, 41c of one blade 40 are arranged such that the angle of attack of the inner wing portion is larger than the angle of attack of the outer wing portion in the radial direction.
各々のブレード40において、最も半径方向外側(外周側)の翼部41aの迎角α1は10°であり、中間の翼部41bの迎角α2は15°であり、内周側の翼部41cの迎角α3が20°である。すなわち、最も半径方向内側(内周側)の翼部41cの迎角α3は、中間の翼部41bの迎角α2よりも大きい。さらに、中間の翼部41bの迎角α2は、最も半径方向外側(外周側)の翼部41aの迎角α1よりも大きい。このため、シーリングファン10の半径方向に隣接する翼部41a,41b,41cの迎角α1,α2,α3同士の差は、全て同等の角度(5°)である。
In each blade 40, the angle of attack α1 of the radially outermost (peripheral) blade portion 41a is 10°, the angle of attack α2 of the intermediate blade portion 41b is 15°, and the inner peripheral blade portion 41c is 20°. That is, the attack angle α3 of the radially innermost (inner peripheral side) blade portion 41c is larger than the attack angle α2 of the intermediate blade portion 41b. Furthermore, the angle of attack α2 of the intermediate blade portion 41b is greater than the angle of attack α1 of the radially outermost (peripheral) blade portion 41a. Therefore, the differences between the angles of attack α1, α2, and α3 of the radially adjacent blade portions 41a, 41b, and 41c of the ceiling fan 10 are all the same angle (5°).
図2から図8に示すように、少なくとも、外周側の翼部41aの径方向外側端部(外周側端部)には、垂直な板により構成される翼端板としてのウイングレット60が固定される。このウイングレット60には、整流の効果がある。
As shown in FIGS. 2 to 8, a winglet 60 as a wing end plate composed of a vertical plate is fixed at least to the radially outer end portion (outer peripheral end portion) of the wing portion 41a on the outer peripheral side. be. This winglet 60 has a rectifying effect.
また、本実施形態では、シーリングファン10の半径方向に隣接する翼部41a,41b,41c間にも、ウイングレット60が配置される。シーリングファン10の半径方向に隣接する翼部41a,41b,41cの外周側端部又は内周側端部に固定されたウイングレット60同士は、ボルト及びナット等の接続部材74を用いて接続される。
In addition, in this embodiment, winglets 60 are also arranged between the radially adjacent blade portions 41a, 41b, and 41c of the ceiling fan 10 . The winglets 60 fixed to the outer peripheral end or the inner peripheral end of the radially adjacent wings 41a, 41b, 41c of the ceiling fan 10 are connected to each other using connecting members 74 such as bolts and nuts. .
図8に示されるように、ウイングレット60の上部及び下部にはそれぞれ、接続部材74を挿通するための接続孔部61が設けられている。また、ウイングレット60の前側部分には、翼部41a,41b,41cへの連結のために平ネジ等の取付部材(図示せず)が挿通される前側取付孔部62が形成される。その一方、ウイングレット60の後側部分には、翼部41a,41b,41cへの連結のために平ネジ等の取付部材(図示せず)が挿通される複数の後側取付孔部63a,63b,63cが形成される。さらに、ウイングレット60における前側取付孔部62と後側取付孔部63a,63b,63cとの間には、前述の円筒状部材34が挿通される第一の挿通孔部64と、前述の断面四角形状部材51が挿通される第二の挿通孔部(図示省略)とが形成される。
As shown in FIG. 8, connection holes 61 for inserting the connection members 74 are provided in the upper and lower portions of the winglets 60, respectively. A front mounting hole 62 through which a mounting member (not shown) such as a flat screw is inserted is formed in the front portion of the winglet 60 for connection to the wings 41a, 41b, and 41c. On the other hand, the rear portion of the winglet 60 has a plurality of rear mounting holes 63a, 63b through which mounting members (not shown) such as flat screws are inserted for connection to the wings 41a, 41b, 41c. , 63c are formed. Further, between the front mounting hole 62 and the rear mounting holes 63a, 63b, 63c of the winglet 60, there are provided a first insertion hole 64 through which the aforementioned cylindrical member 34 is inserted, and A second insertion hole (not shown) through which the shaped member 51 is inserted is formed.
前側取付孔部62は、挿通孔部64の孔中心を基準として円弧状に延びる長孔として形成される。その一方、複数の後側取付孔部63a,63b,63cは、挿通孔部64の孔中心を基準として互いに対して等角度(5°)で形成される。
The front mounting hole portion 62 is formed as an elongated hole extending in an arc with the hole center of the insertion hole portion 64 as a reference. On the other hand, the plurality of rear attachment holes 63a, 63b, 63c are formed at equal angles (5°) with respect to each other with the hole center of the insertion hole 64 as a reference.
[各翼部の迎角の設定]
図11は、ブレード40を定格速度(40RPM)で回転させた場合の各翼部41a,41b,41cの代表位置P1,P2,P3(図4参照)での迎角と揚力係数との関係を示したグラフである。また、このグラフにおいては、各翼部41a,41b,41cにおける揚力係数の変化がそれぞれ、符号CL1,CL2,CL3を付した線で示される。 [Setting the angle of attack of each wing]
FIG. 11 shows the relationship between the angle of attack and the lift coefficient at representative positions P1, P2, and P3 (see FIG. 4) of each blade 41a, 41b, and 41c when the blade 40 is rotated at the rated speed (40 RPM). is a graph showing. In this graph, changes in the lift coefficients of the wings 41a, 41b and 41c are indicated by lines labeled CL1, CL2 and CL3, respectively.
図11は、ブレード40を定格速度(40RPM)で回転させた場合の各翼部41a,41b,41cの代表位置P1,P2,P3(図4参照)での迎角と揚力係数との関係を示したグラフである。また、このグラフにおいては、各翼部41a,41b,41cにおける揚力係数の変化がそれぞれ、符号CL1,CL2,CL3を付した線で示される。 [Setting the angle of attack of each wing]
FIG. 11 shows the relationship between the angle of attack and the lift coefficient at representative positions P1, P2, and P3 (see FIG. 4) of each
前述のように、3枚の翼部41a,41b,41cの迎角α1,α2,α3は、外周側から順に、10°、15°、20°に設定されている。例えば、本実施形態に係るシーリングファン10を40RPM(回転毎分)で回転させた場合、外周側、中間、内周側の各翼部41a,41b,41cの代表速度はそれぞれ、19.6m/s、10.4m/s、3.9m/sである。すなわち、揚力係数の変化のグラフ線CL1は19.6m/s、CL2は10.4m/s、CL3は3.9m/sでの迎角と揚力係数との関係を示している。各翼部41a,41b,41cにおける揚力係数の変化のグラフ線CL1,CL2,CL3に共通していることは、迎角を0°から大きくしていくと揚力係数も大きくなるが、その翼部の失速点を超えると揚力係数は一旦下降する。しかし、さらに迎角を大きくすると、揚力係数は上昇に転じて、失速点での揚力係数を上回る場合も見受けられる。
As described above, the angles of attack α1, α2, and α3 of the three blades 41a, 41b, and 41c are set to 10°, 15°, and 20° in order from the outer peripheral side. For example, when the ceiling fan 10 according to the present embodiment is rotated at 40 RPM (revolutions per minute), the representative speeds of the outer, intermediate, and inner blades 41a, 41b, and 41c are 19.6 m/min. s, 10.4 m/s, and 3.9 m/s. That is, the graph line CL1 of the change in lift coefficient shows the relationship between the angle of attack and the lift coefficient at 19.6 m/s, CL2 at 10.4 m/s, and CL3 at 3.9 m/s. What is common to the graph lines CL1, CL2, and CL3 of changes in lift coefficient in each of the wing portions 41a, 41b, and 41c is that as the angle of attack increases from 0°, the lift coefficient also increases, but the wing portion When the stall point is exceeded, the lift coefficient drops once. However, when the angle of attack is further increased, the lift coefficient turns to increase and sometimes exceeds the lift coefficient at the stall point.
例えば、3枚の翼部41a,41b,41cの迎角α1,α2,α3を全て同じ角度とする場合、具体的には迎角が全て10°であった場合を説明する。そのときの翼部41a,41b,41cの揚力係数は、それぞれポイントA,B,Cで示す値となる。ポイントA及びポイントBは同じ値となるが、ポイントCの揚力係数は他に比べかなり劣る数値となることが分かる。すなわち内周側の翼部41cの迎角α3が10°の場合、揚力係数が低下して十分な揚力、すなわち風速(風量)を得ることができない。
For example, a case where the angles of attack α1, α2, and α3 of the three blades 41a, 41b, and 41c are all set to the same angle, specifically, a case where the angles of attack are all 10° will be described. The lift coefficients of the wings 41a, 41b, and 41c at that time are the values indicated by points A, B, and C, respectively. Point A and point B have the same value, but it can be seen that the lift coefficient of point C is considerably inferior to the others. That is, when the angle of attack α3 of the inner peripheral blade portion 41c is 10°, the lift coefficient is lowered and sufficient lift, that is, the wind speed (air volume) cannot be obtained.
しかしながら、内周側の翼部41cの迎角α3を20°にすることにより他の翼部41a,41bとほぼ同等の揚力係数を得ることができる。すなわち、内周側の翼部41cも他の翼部41a,41bとほぼ同様の風速(風量)を得ることができる。
However, by setting the angle of attack α3 of the wing portion 41c on the inner peripheral side to 20°, it is possible to obtain a lift coefficient substantially equal to that of the other wing portions 41a and 41b. In other words, the blade 41c on the inner peripheral side can also obtain substantially the same wind speed (air volume) as the other blades 41a and 41b.
図11から分かるように、内周側の翼部41cの迎角α3は、失速が発生する失速角αsよりも大きく、且つ、迎角を失速角αsよりもさらに大きくした場合に揚力係数が再び増加する角度αrよりも大きくなるように設定される。尚且つ、内周側の翼部41cの迎角α3は、失速角αsの揚力係数と同じ値の迎角(ポイントDで示す角度、約14°)、よりも大きな角度に設定される。さらに、内周側の翼部41cの迎角α3は、外周側の翼部41aの迎角α1、及び中間の翼部41cの迎角α2よりも大きい角度に設定されている(α3>α2>α1)。
As can be seen from FIG. 11, the angle of attack α3 of the wing portion 41c on the inner peripheral side is larger than the stall angle αs at which the stall occurs, and when the angle of attack is further increased beyond the stall angle αs, the lift coefficient increases again. It is set to be greater than the increasing angle αr. In addition, the angle of attack α3 of the wing portion 41c on the inner peripheral side is set to be larger than the angle of attack of the same value as the lift coefficient of the stall angle αs (angle indicated by point D, about 14°). Further, the angle of attack α3 of the inner wing portion 41c is set to be larger than the angle of attack α1 of the outer wing portion 41a and the angle of attack α2 of the intermediate wing portion 41c (α3>α2> α1).
[作用効果等]
以下に、本実施形態による作用効果を説明する。 [Effects, etc.]
The effects of this embodiment will be described below.
以下に、本実施形態による作用効果を説明する。 [Effects, etc.]
The effects of this embodiment will be described below.
(1)本実施形態に係るシーリングファン10は、モータ20と、モータ20により回転する回転軸22に配置されるハブ30と、ハブ30を中心に放射状に配置される複数のブレード40と、を備える。ブレード40は、放射方向に沿って直線状に配置される複数の翼部41a,41b,41cを有する。複数の翼部41a,41b,41cは、互いに同一の翼型断面を有し、且つ、回転軸22に直交する平面PLに対して迎角α1,α2,α3をそれぞれ設けて配置される。一のブレード40の複数の翼部41a,41b,41cは、放射方向の外側の翼部の迎角よりも内側の翼部の迎角を大きくして配置される。
(1) The ceiling fan 10 according to the present embodiment includes a motor 20, a hub 30 arranged on a rotating shaft 22 rotated by the motor 20, and a plurality of blades 40 radially arranged around the hub 30. Prepare. The blade 40 has a plurality of wings 41a, 41b, 41c linearly arranged along the radial direction. The plurality of blade portions 41a, 41b, and 41c have the same blade cross-section and are arranged at angles of attack α1, α2, and α3 with respect to a plane PL perpendicular to the rotating shaft 22, respectively. The plurality of wings 41a, 41b, and 41c of one blade 40 are arranged such that the angle of attack of the inner wings is larger than the angle of attack of the radially outer wings.
すなわち、最も半径方向内側(内周側)の翼部41cの迎角α3は、中間の翼部41bの迎角α2よりも大きい。さらに、中間の翼部41bの迎角α2は、最も半径方向外側(外周側)の翼部41aの迎角α1よりも大きい。このように、各々のブレード40において、外周側の翼部は迎角を小さく、内周側の翼部は迎角を大きくして、ブレード40の長手方向での揚力を均等化することにより、ブレード40の回転時に発生する風量を調整することが可能である。
That is, the attack angle α3 of the radially innermost (inner peripheral side) blade portion 41c is greater than the attack angle α2 of the intermediate blade portion 41b. Furthermore, the angle of attack α2 of the intermediate blade portion 41b is greater than the angle of attack α1 of the radially outermost (peripheral) blade portion 41a. In this way, in each blade 40, the wing on the outer peripheral side has a small angle of attack and the wing on the inner peripheral side has a large angle of attack, and by equalizing the lift in the longitudinal direction of the blade 40, It is possible to adjust the amount of air generated when the blade 40 rotates.
(2)放射方向の最も内側に配置される(内周側の)翼部41cの迎角α3は、ブレード40の回転時に当該翼部41cにおいて迎角を大きくした場合に揚力係数が減少する失速が発生する失速角αsよりも大きく、且つ、迎角を失速角αsよりもさらに大きくした場合に揚力係数が再び増加する角度αrよりも大きい。
(2) The angle of attack α3 of the wing portion 41c arranged on the innermost side in the radial direction (on the inner peripheral side) is a stall in which the lift coefficient decreases when the angle of attack is increased in the wing portion 41c when the blade 40 rotates. occurs and is greater than the angle αr at which the lift coefficient increases again if the angle of attack is made even greater than the stall angle αs.
内周側の翼部41cにおいて、低速の風量では、揚力係数が低く、小さな迎角でも失速が始まるが、さらに大きな迎角(α3=20°)にすることにより、揚力係数が再度上昇する。このため、内周側の翼部41cにおいて、外周側の翼部41a(迎角α1=10°)及び中間の翼部41b(迎角α=15°)と同程度の揚力係数を得ることができる。
In the inner peripheral side blade portion 41c, the lift coefficient is low at low airflow, and the stall starts even at a small angle of attack. Therefore, the inner peripheral wing 41c can obtain a lift coefficient similar to that of the outer peripheral wing 41a (attack angle α1=10°) and intermediate wing 41b (attack angle α=15°). can.
以上要するに、シーリングファン10のブレード40の内周側の翼部41cの迎角α3を、当該翼部41cにおいて失速が発生する角度(失速角αs)よりもさらに大きくしたので、揚力係数が増加し、低速であっても下降する風を発生させることができる。
In short, the angle of attack α3 of the blade 41c on the inner peripheral side of the blade 40 of the ceiling fan 10 is made larger than the angle at which the stall occurs in the blade 41c (stall angle αs), so the lift coefficient increases. , can generate descending winds even at low speeds.
(3)放射方向の最も内側に配置される(内周側の)翼部41cは、ハブ30の取付部31に当接させて、ハブ30の取付部31と同じ高さで配置される。
(3) The radially innermost (inner peripheral side) wing portion 41 c is arranged at the same height as the mounting portion 31 of the hub 30 by contacting the mounting portion 31 of the hub 30 .
シーリングファン10のブレード40の内周側の翼部41cをハブ30の近傍に配置することにより、シーリングファン10の回転中心部(ハブ30)の直下にも下降する風を発生させることができる。このため、ブレード40が回転する全ての下部領域にほぼ均等に下降する風を送ることが可能になる。
By arranging the blades 41c on the inner peripheral side of the blades 40 of the ceiling fan 10 near the hub 30, it is possible to generate downward wind directly below the center of rotation of the ceiling fan 10 (hub 30). As a result, it is possible to send the descending wind substantially evenly to all the lower regions where the blades 40 rotate.
なお、前記特許文献2(特開2007-182816号公報)に開示されている内周側羽根板(内周側領域)は、前述の実施形態と同様に迎角が大きく設定されている。しかしながら、前記特許文献2の内周側羽根板(内周側領域)とハブ(回転部)とはアーム部を介して接続されて、内周側羽根板(内周側領域)とハブ(回転部)との距離が保たれている。さらに、前記特許文献2の内周側羽根板(内周側領域)はハブ(回転部)よりも低い位置に配置されている。前記特許文献2では、内周側羽根板(内周側領域)とハブ(回転部)との間に隙間(距離)がある。このため、シーリングファンのハブ(回転部)下方に下から上に向かう風が生じ、さらに内周側羽根板(内周側領域)とハブ(回転部)との間に隙間より内周側羽根板上部に回りこむ風が生じ得る。
The inner peripheral blade plate (inner peripheral region) disclosed in Patent Document 2 (Japanese Patent Application Laid-Open No. 2007-182816) has a large angle of attack as in the above-described embodiment. However, the inner peripheral blade plate (inner peripheral region) and the hub (rotating portion) of Patent Document 2 are connected via an arm portion, and the inner peripheral blade plate (inner peripheral region) and the hub (rotating portion) are connected to each other. department) is maintained. Furthermore, the inner peripheral blade plate (inner peripheral region) of Patent Document 2 is arranged at a position lower than the hub (rotating portion). In Patent Document 2, there is a gap (distance) between the inner peripheral blade plate (inner peripheral region) and the hub (rotating portion). For this reason, an upward wind is generated below the hub (rotating part) of the ceiling fan, and the inner peripheral blades are blown out from the gap between the inner peripheral blade plate (inner peripheral area) and the hub (rotating part). A wind that wraps around the top of the board can occur.
ところで、本発明のシーリングファンは前述の実施形態に例をとって説明したが、この実施形態に限ることなく本発明の要旨を逸脱しない範囲で他の実施形態を各種採用することができる。
By the way, although the ceiling fan of the present invention has been described by taking the above embodiment as an example, it is not limited to this embodiment, and various other embodiments can be adopted without departing from the gist of the present invention.
10 シーリングファン
20 モータ
22 回転軸
30 ハブ
31 取付部
40 ブレード
41,41a,41b,41c 翼部
60 ウイングレット
PL 平面
α1 迎角
α2 迎角
α3 迎角 10Ceiling fan 20 Motor 22 Rotating shaft 30 Hub 31 Mounting portion 40 Blades 41, 41a, 41b, 41c Wing portion 60 Winglet PL Plane α1 Angle of attack α2 Angle of attack α3 Angle of attack
20 モータ
22 回転軸
30 ハブ
31 取付部
40 ブレード
41,41a,41b,41c 翼部
60 ウイングレット
PL 平面
α1 迎角
α2 迎角
α3 迎角 10
Claims (3)
- モータと、
前記モータにより回転する回転軸に配置されるハブと、
前記ハブを中心に放射状に配置される複数のブレードと、を備え、
前記ブレードは、放射方向に沿って直線状に配置される複数の翼部を有し、
複数の前記翼部は、互いに同一の翼型断面を有し、且つ、前記回転軸に直交する平面に対して迎角をそれぞれ設けて配置され、
一の前記ブレードの複数の前記翼部は、前記放射方向の外側の前記翼部の迎角よりも内側の前記翼部の迎角を大きくして配置される、
シーリングファン。 a motor;
a hub arranged on a rotating shaft rotated by the motor;
a plurality of blades radially arranged around the hub;
The blade has a plurality of wing portions arranged linearly along the radial direction,
the plurality of wing sections have the same airfoil cross-section and are arranged at respective angles of attack with respect to a plane perpendicular to the rotation axis;
The plurality of wing portions of one of the blades are arranged such that the angle of attack of the inner wing portion is larger than the angle of attack of the outer wing portion in the radial direction.
ceiling fan. - 前記放射方向の最も内側に配置される前記翼部の迎角は、前記ブレードの回転時に当該翼部において迎角を大きくした場合に揚力係数が減少する失速が発生する失速角よりも大きく、且つ、迎角を前記失速角よりもさらに大きくした場合に揚力係数が再び増加する角度よりも大きい、
請求項1に記載のシーリングファン。 The angle of attack of the wing portion disposed on the innermost side in the radial direction is greater than the stall angle at which a stall occurs in which the lift coefficient decreases when the angle of attack is increased in the wing portion when the blade rotates, and , greater than the angle at which the lift coefficient increases again if the angle of attack is increased further above said stall angle;
A ceiling fan according to claim 1. - 前記放射方向の最も内側に配置される前記翼部は、前記ハブの取付部に当接させて、前記ハブの前記取付部と同じ高さで配置される、
請求項1又は2に記載のシーリングファン。 the radially innermost wing portion is arranged at the same height as the mounting portion of the hub by contacting the mounting portion of the hub;
A ceiling fan according to claim 1 or 2.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022-027781 | 2022-02-25 | ||
JP2022027781A JP7445690B2 (en) | 2022-02-25 | 2022-02-25 | ceiling fan |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023162458A1 true WO2023162458A1 (en) | 2023-08-31 |
Family
ID=87765355
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/048080 WO2023162458A1 (en) | 2022-02-25 | 2022-12-27 | Ceiling fan |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7445690B2 (en) |
WO (1) | WO2023162458A1 (en) |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE202008005703U1 (en) * | 2008-03-11 | 2008-07-31 | Kecur, Josef | Fan, device for ventilation of premises |
JP2008215248A (en) * | 2007-03-06 | 2008-09-18 | Matsushita Electric Ind Co Ltd | Ceiling fan |
CN210196072U (en) * | 2019-06-10 | 2020-03-27 | 新盛世机电制品(中山)有限公司 | Blade direct-mounted ceiling fan lamp |
-
2022
- 2022-02-25 JP JP2022027781A patent/JP7445690B2/en active Active
- 2022-12-27 WO PCT/JP2022/048080 patent/WO2023162458A1/en unknown
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2008215248A (en) * | 2007-03-06 | 2008-09-18 | Matsushita Electric Ind Co Ltd | Ceiling fan |
DE202008005703U1 (en) * | 2008-03-11 | 2008-07-31 | Kecur, Josef | Fan, device for ventilation of premises |
CN210196072U (en) * | 2019-06-10 | 2020-03-27 | 新盛世机电制品(中山)有限公司 | Blade direct-mounted ceiling fan lamp |
Also Published As
Publication number | Publication date |
---|---|
JP7445690B2 (en) | 2024-03-07 |
JP2023124173A (en) | 2023-09-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5422336B2 (en) | Vehicle heat exchange module | |
US7934907B2 (en) | Cuffed fan blade modifications | |
US7284960B2 (en) | Fan blades | |
JP5273475B2 (en) | Inline axial fan | |
US8167562B2 (en) | Centrifugal fan and blower having the same | |
CN101925783A (en) | Air conditioner | |
KR20060127737A (en) | Electric fan | |
US20120257957A1 (en) | Counter-rotating axial flow fan | |
US20180123428A1 (en) | Electric motor with improved cooling | |
JP4978495B2 (en) | Centrifugal multi-blade fan | |
EP2734442B1 (en) | Fan blade with flexible airfoil wing | |
WO2023162458A1 (en) | Ceiling fan | |
JP2021193302A (en) | Ceiling fan | |
KR100858395B1 (en) | Axial Fan | |
WO2006022812A1 (en) | Fan blades and modifications | |
JP3077371B2 (en) | Axial fan | |
JP4976791B2 (en) | Centrifugal fan impeller | |
JP2008069709A (en) | Impeller for centrifugal fan | |
JP4797392B2 (en) | Blower | |
JPH018653Y2 (en) | ||
JP4147150B2 (en) | Horizontal axis wind power generator and its direction 陀 mounting method | |
KR100446783B1 (en) | Cooling fan for motor | |
WO2023281994A1 (en) | Air blowing device and air conditioning system including same | |
JP6685433B2 (en) | Blower and air conditioner | |
CN103967817B (en) | A kind of 360 ° of fans of low noise |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22928973 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |