[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2023160732A1 - 基于智能标签控制的全通径无限级分段压裂滑套及实施方法 - Google Patents

基于智能标签控制的全通径无限级分段压裂滑套及实施方法 Download PDF

Info

Publication number
WO2023160732A1
WO2023160732A1 PCT/CN2023/090719 CN2023090719W WO2023160732A1 WO 2023160732 A1 WO2023160732 A1 WO 2023160732A1 CN 2023090719 W CN2023090719 W CN 2023090719W WO 2023160732 A1 WO2023160732 A1 WO 2023160732A1
Authority
WO
WIPO (PCT)
Prior art keywords
fracturing
sliding sleeve
smart label
sleeve
module
Prior art date
Application number
PCT/CN2023/090719
Other languages
English (en)
French (fr)
Inventor
宋文平
张多利
杨君
李凤龙
王化朋
Original Assignee
哈尔滨艾拓普科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 哈尔滨艾拓普科技有限公司 filed Critical 哈尔滨艾拓普科技有限公司
Priority to CA3219869A priority Critical patent/CA3219869A1/en
Publication of WO2023160732A1 publication Critical patent/WO2023160732A1/zh
Priority to US18/384,834 priority patent/US12104460B1/en

Links

Classifications

    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B34/00Valve arrangements for boreholes or wells
    • E21B34/06Valve arrangements for boreholes or wells in wells
    • E21B34/08Valve arrangements for boreholes or wells in wells responsive to flow or pressure of the fluid obtained
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B34/00Valve arrangements for boreholes or wells
    • E21B34/06Valve arrangements for boreholes or wells in wells
    • E21B34/14Valve arrangements for boreholes or wells in wells operated by movement of tools, e.g. sleeve valves operated by pistons or wire line tools
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B34/00Valve arrangements for boreholes or wells
    • E21B34/06Valve arrangements for boreholes or wells in wells
    • E21B34/063Valve or closure with destructible element, e.g. frangible disc
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B34/00Valve arrangements for boreholes or wells
    • E21B34/06Valve arrangements for boreholes or wells in wells
    • E21B34/14Valve arrangements for boreholes or wells in wells operated by movement of tools, e.g. sleeve valves operated by pistons or wire line tools
    • E21B34/142Valve arrangements for boreholes or wells in wells operated by movement of tools, e.g. sleeve valves operated by pistons or wire line tools unsupported or free-falling elements, e.g. balls, plugs, darts or pistons
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures
    • E21B43/2607Surface equipment specially adapted for fracturing operations
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures
    • E21B43/267Methods for stimulating production by forming crevices or fractures reinforcing fractures by propping
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B47/00Survey of boreholes or wells
    • E21B47/09Locating or determining the position of objects in boreholes or wells, e.g. the position of an extending arm; Identifying the free or blocked portions of pipes
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B2200/00Special features related to earth drilling for obtaining oil, gas or water
    • E21B2200/06Sleeve valves
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B2200/00Special features related to earth drilling for obtaining oil, gas or water
    • E21B2200/08Down-hole devices using materials which decompose under well-bore conditions
    • EFIXED CONSTRUCTIONS
    • E21EARTH OR ROCK DRILLING; MINING
    • E21BEARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
    • E21B43/00Methods or apparatus for obtaining oil, gas, water, soluble or meltable materials or a slurry of minerals from wells
    • E21B43/25Methods for stimulating production
    • E21B43/26Methods for stimulating production by forming crevices or fractures

Definitions

  • the invention relates to the technical field of oil and gas field development, in particular to a full-diameter infinitely staged fracturing sliding sleeve based on intelligent label control and an implementation method.
  • the multi-stage fracturing technology of horizontal wells is the key to the development of oil and gas fields.
  • the three mainstream technology series provide strong technical support for increasing the stimulation effect and large-scale and effective production of oil and gas reservoirs.
  • the main staged fracturing mode in oil and gas fields at home and abroad is combined pumping bridge plug perforation to meet the construction needs of large liquid volume and large displacement.
  • the number of pumping perforation fracturing stages is unlimited, and large-scale sand injection can be carried out Fracturing, but the construction takes a long time, the ground crossing operation is complicated, and the cable breakage and tool falling accidents are prone to occur when the tool is blocked or stuck, resulting in simultaneous fracturing and zipper fracturing that cannot be implemented smoothly, greatly affecting the efficiency of fracturing construction;
  • the staged fracturing technology of multi-stage sliding sleeve packer is used to run the sliding sleeve tool with the casing during the cementing of the horizontal section, and the sliding sleeve is opened by coiled tubing dragging or throwing a ball to perform each stage of fracturing.
  • the coiled tubing dragging is infinite
  • the multi-stage fracturing sleeve can achieve full diameter, due to the limitation of the size of the coiled tubing and the isolation tool in the wellbore during fracturing, the fracturing displacement is limited; The diameter of the sliding sleeve shrinks as it goes downwards, resulting in a limited number of fracturing stages.
  • the hydrojet staged fracturing process has high wellhead pressure during operation, high construction safety risks, and limited displacement and sand addition scale.
  • the invention provides a full-diameter infinite-stage fracturing sliding sleeve based on intelligent label control and an implementation method, with the purpose of realizing downhole large-diameter, full-diameter, infinite-stage fracturing.
  • a full-bore infinite-stage staged fracturing sleeve based on smart label control including full-bore infinite-stage Staged fracturing sleeves and smart labels;
  • the full-bore infinitely staged fracturing sleeve includes an outer shell, a sandblasting port set on the outer shell, and an identification module inside the outer shell representing the address of the current segment of the fracturing sleeve, and driven by a smart label. Achieving horizontal movement to open the spool of the sandblasting port, the smart label can automatically judge and trigger the execution module through the identification of the identification module, so as to be locked and set on the spool.
  • It also includes a locking mechanism arranged on the spool and a limiting groove arranged on the outer shell, and the locking mechanism can be locked in the limiting groove after the valve core is opened under the action of the smart label.
  • the smart label used in conjunction with the above-mentioned sliding sleeve includes an outer shell, and a detection module arranged in the outer shell for identifying the identification module to automatically determine the target fracturing interval.
  • It also includes claws installed in the outer casing, an execution module triggered by the detection module and connected to the claws, a sealing cylinder installed on the outer surface of the casing, and a pressure sleeve installed on the outer casing and located on the left side of the sealing cylinder;
  • the detection module detects that the identification module is the target opening segment, it triggers the action of the execution module.
  • the claws expand and the pressure sleeve moves to the right to expand the sealing cylinder;
  • the sealing cylinder cooperates with the inner wall of the valve core , the claws cooperate with the inner wall of the outer casing of the casing.
  • the full-diameter infinitely-staged fracturing sleeve is lowered along with the casing, and the number and position of the fracturing sleeve correspond to the number and position of each fracturing interval in the well;
  • the smart label sets the target layer through the ground controller, and then it is put into the wellhead and pumped forward by the ground fracturing crew.
  • Fig. 1 is the closed state of the full bore infinitely staged fracturing sleeve
  • Figures 2 and 3 are the closed state and open state of the full bore infinitely staged fracturing sleeve based on smart label control;
  • Fig. 4 is the initial state and the locking and setting states of the smart label
  • Figures 5 to 9 are the implementation methods of the full-bore infinitely staged fracturing sleeve based on smart label control.
  • Full bore infinitely staged fracturing sleeve based on smart tag control including full smart tag 1 and full bore infinitely staged fracturing sleeve 2;
  • the smart label 1 includes an outer casing 101, a power module 102, a claw 103, an execution module 104, a pressure sleeve 105, a sealing cylinder 106 and a detection module 107;
  • the full bore infinitely staged fracturing sleeve 2 includes an upper joint 201, an identification module 202, an outer shell 203, a sandblasting port 204, a valve core 205, a locking mechanism 206, a Bit groove 207 and lower joint 208;
  • the power supply module 102 is installed in the outer casing 101 for supplying power to the execution module 104 and the detection module 107;
  • the outer shell 101 is provided with a mounting groove, and the claws 103 are evenly distributed in the circumferential direction in the mounting groove provided by the outer shell 101.
  • the claws 103 are connected with the execution module 104 inside the outer shell. Driven by the execution module 104, the claws 103 can Expand outward to cooperate with the inner wall of the outer shell 203, so as to achieve locking engagement with the target sliding sleeve, so as to be locked at the valve core 205;
  • the surface of the outer shell 101 is provided with an annular groove, the annular groove is located on the right side of the installation groove, the sealing cylinder 106 is installed in the annular groove, the pressure sleeve 105 is arranged on the left side of the sealing cylinder 106, the pressure sleeve 105 It is connected with the executive module 104 inside the outer shell 101. Driven by the executive module 104, the pressing sleeve 105 can move to the right side of the figure in the installation groove opened in the outer shell 101.
  • the detection module 107 is arranged in the outer casing 101 to identify the identification module 202 in the fracturing sleeve and judge whether it is the target opening section.
  • the said 104 executive module the generation of its driving force can be the high-pressure gas generated by the detonation of gunpowder, the linear thrust provided by the electric push rod, and the expansion force provided by the motor torque;
  • the smart label as a whole is made of soluble materials such as magnesium and aluminum alloys, which can be completely dissolved within a certain period of time under immersion in fracturing fluid containing saline solution;
  • the smart tag 1 is put into the casing 4 from the wellhead, and the forward power of the smart tag 1 in the wellbore is provided by pumping.
  • the pump truck is pressurized to realize the opening of the fracturing sleeve, and the fracturing is performed step by step from bottom to top; each section of the fracturing sleeve is opened corresponding to a smart label 1, which is completed step by step through repeated labeling and fracturing operations from back to front
  • the smart label 1 is initially in the state shown on the left side of Fig. 4.
  • the detection module 107 is used to identify the location of the identification module 202.
  • the actuator module 104 operates, and driven by the actuator module 104, the jaws 103 and the sealing cylinder 106 expand to become the state shown on the right side of Figure 4, and are locked and set with the fracturing sleeve.
  • an upper joint 201 and a lower joint 208 are respectively provided at the left and right ends of the outer casing 203, wherein the full-diameter infinitely-staged fracturing sleeve 2 passes through
  • the upper joint 201 is connected with the upper casing 4, and connected with the lower casing 4 through the lower joint 208;
  • the spool 205 is installed inside the outer shell 203. In the closed state, as shown in FIG. 1 , the spool 205 blocks the 204 sandblasting openings uniformly distributed on the outer shell of the 203 outer shell. At this time, the inside of the casing 4 is not connected to the formation. ;
  • the identification module 202 is installed inside the outer casing 203 and is close to the side of the upper joint 201.
  • the identification module 202 represents the address of the fracturing sleeve described in the current paragraph.
  • the smart label 1 is locked and set at the spool 205 of the fracturing sleeve, and the state at this time is shown in Figure 2; the locking and setting are completed.
  • the valve core 205 is pushed to move to the right side as shown in Fig. 2 or Fig. 3, and is separated from the sandblasting port 204, and the fracturing sleeve is opened;
  • the 205 spool is provided with a 206 locking mechanism, which locks with the limit groove 207 provided in the upper joint 201 and close to the side of the lower joint 208 when it is opened in place, so as to realize the opening of the fracturing sleeve. Lock to prevent the fracturing sleeve from closing again, and the state after opening is shown in Figure 3;
  • the fracturing sliding sleeve is lowered into the wellbore along with the casing 4 and cemented with cement, and each fracturing sliding sleeve corresponds to a target fracturing section downhole.
  • the full-bore infinite-stage fracturing sleeve 2 can be configured arbitrarily according to the number of fracturing stages to realize infinite-stage fracturing.
  • the fracturing sleeve and the last toe-end sliding sleeve 3 follow the casing 4
  • the number and position of each fracturing interval correspond to each other;
  • the smart label 1 when the stage 1 is fracturing, the smart label 1 is placed through the wellhead, and when it is pumped to the first sliding sleeve of the fracturing section, the smart label 1 detects the identification module 202 in the sliding sleeve, That is to say, the detection module 107 sets the target interval through the ground controller, and then it is put into the wellhead and pumped forward by the ground fracturing train group. The identification module 202 in is detected;
  • Smart label 1 engages and sets with the sliding sleeve of section 1, pressurizes through the wellhead pump truck, and performs fracturing construction of section 1; that is, when it is detected that the sliding sleeve is the fracturing sliding sleeve of the target interval , the claws 103 protrude, the sealing cylinder 106 expands, the smart label pushes the valve core 205 to move to the right under the pumping pressure, opens the sandblasting port 204, and realizes the opening of the fracturing sleeve;
  • This application has the technical characteristics of large diameter, full diameter and infinite stages of the sliding sleeve in the well, and the wellhead pump Send smart label 1 to realize the opening control of the sliding sleeve in the target fracturing section, without the need for electric setting tools or coiled tubing operations, and the smart label can be completely dissolved after fracturing without grinding or fishing. While meeting the needs of multi-stage and large-scale fracturing, it effectively improves the efficiency of fracturing construction, greatly reduces the cost of construction operations, and provides strong technical support for increasing the stimulation effect and large-scale effective production of oil and gas reservoirs. .
  • the full-diameter infinite-stage fracturing sliding sleeve 2 of the present application has the characteristics of a full-diameter, and can realize stratified fracturing in a horizontal section of any length and with any number of stages.
  • the fracturing sleeve of each layer can be uniquely positioned through the built-in 202 identification module.

Landscapes

  • Geology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mining & Mineral Resources (AREA)
  • Physics & Mathematics (AREA)
  • Environmental & Geological Engineering (AREA)
  • Fluid Mechanics (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Geophysics (AREA)
  • Earth Drilling (AREA)
  • Fluid-Pressure Circuits (AREA)
  • Reciprocating Pumps (AREA)

Abstract

基于智能标签控制的全通径无限级分段压裂滑套,包括全通径无限级分段压裂滑套(2)和用于滑套开启的智能标签(1),全通径无限级分段压裂滑套随套管下入井眼中并采用水泥固井,每个压裂滑套都对应井下一个目标压裂段;智能标签由井口投入套管内,通过泵送方式提供智能标签在井筒内的前进动力,智能标签自动识别并卡定、坐封在目标段压裂滑套,伴随泵车加压实现滑套开启。每段压裂滑套开启都对应一个智能标签,从后至前,通过重复投放标签与压裂操作,逐级完成各段压裂滑套的开启与压裂施工。所有段压裂完成后,智能标签在压裂液的浸泡下,自行完全溶解。

Description

基于智能标签控制的全通径无限级分段压裂滑套及实施方法 技术领域
本发明涉及油气田开发技术领域,更具体的说是基于智能标签控制的全通径无限级分段压裂滑套及实施方法。
背景技术
水平井多级分段压裂工艺是油气田开发的关键,泵送桥塞射孔联作分段压裂技术、多级滑套封隔器分段压裂技术和水力喷射分段压裂技术作为三大主流技术系列,为油气田储层增大改造效果、规模化有效动用提供了强有力的技术支撑。
目前国内外油气田主要的分段压裂模式为泵送桥塞射孔联作,以满足其大液量大排量的施工需求,泵送射孔压裂段数无限制,可进行大规模加砂压裂,但施工耗时较长,地面交叉作业复杂,工具遇阻遇卡时易发生电缆断裂、工具落井事故,造成同步压裂、拉链式压裂无法顺利实施,大大影响压裂施工效率;多级滑套封隔器分段压裂技术在水平段固井时随套管下入滑套工具,通过连续油管拖动或投球打开滑套进行每一级压裂,连续油管拖动的无限级压裂滑套虽能实现全通径,但由于受到压裂时井筒内连续油管与封隔工具尺寸的限制,压裂施工排量有限;投球滑套分段压裂由于球座级差的存在使得滑套越向下越缩径,导致压裂级数有限。水力喷射分段压裂工艺在作业时井口压力高,施工安全风险大,排量和加砂规模有限。
发明内容
本发明提供基于智能标签控制的全通径无限级分段压裂滑套及实施方法,目的是可实现井下大通径、全通径、无限级分段压裂。
上述目的通过以下技术方案来实现:
一种基于智能标签控制的全通径无限级分段压裂滑套,包括全通径无限级 分段压裂滑套和智能标签;
全通径无限级分段压裂滑套包括外壳体,以及设置在外壳体上的喷砂口,以及设置在外壳体内的代表当前段压裂滑套地址的标识模块,以及通过智能标签带动下实现水平移动以用于开启喷砂口的阀芯,所述智能标签能够通过标识模块的识别,自动判断并触发执行模块,用以卡定和坐封在阀芯处。
还包括设置在阀芯上的卡定机构,以及设置在外壳体上的限位槽,在智能标签的作用下阀芯开启后卡定机构能够卡定在限位槽内。
配合上述滑套使用的智能标签,包括外壳体,以及设置在外壳体内用于识别标识模块以自动判断目标压裂层段的检测模块。
还包括安装在外壳体内的卡爪,以及通过检测模块触发且与卡爪连接的执行模块,以及安装在外壳体外表面的密封筒,以及安装在外壳体上且位于密封筒左侧的压套;当检测模块检测到标识模块为目标开启段后,触发执行模块动作,在执行模块的驱动下,卡爪胀开且压套向右移动使密封筒胀开;所述密封筒与阀芯内壁配合,卡爪与外壳体外壳体的内壁配合。
采用上述基于智能标签控制的全通径无限级分段压裂滑套与上述智能标签的实施方法,包括以下步骤:
S1、所述全通径无限级分段压裂滑套随套管下入,所述压裂滑套的数量和位置与井下各压裂层段的数量和位置一一对应;
S2、所述智能标签通过地面控制器进行目标层段设置,然后由井口投放、并通过地面压裂车组进行泵送前进,在泵送前进过程中检测模块对各层段压裂滑套中的标识模块进行检测;
S3、当检测到当前的所述滑套为目标层段压裂滑套时,所述滑套的卡爪伸出、密封筒胀开,所述智能标签在泵送压力作用下推动阀芯向右移动,打开喷砂口,实现压裂滑套开启。
附图说明
图1为全通径无限级分段压裂滑套的封闭状态;
图2和3分别为基于智能标签控制的全通径无限级分段压裂滑套的封闭状态和开启状态;
图4为智能标签的初始状态和卡定、坐封状态;
图5至图9为基于智能标签控制的全通径无限级分段压裂滑套的实施方法。
具体实施方式
基于智能标签控制的全通径无限级分段压裂滑套,包括全智能标签1和全通径无限级分段压裂滑套2;
如图4所示,所述智能标签1包括外壳体101、电源模块102、卡爪103、执行模块104、压套105、密封筒106和检测模块107;
如图1至3所示,所述全通径无限级分段压裂滑套2包括上接头201、标识模块202、外壳体203、喷砂口204、阀芯205、卡定机构206、限位槽207和下接头208;
在智能标签1中,具体的,所述电源模块102安装在外壳体101内,用于为104执行模块和107检测模块供电;
外壳体101上开设有安装槽,所述卡爪103周向均布在101外壳体开设的安装槽内,卡爪103在外壳体内部与执行模块104连接,在执行模块104驱动下,卡爪103可以向外胀开,与外壳体203外壳体的内壁配合,从而实现与目标滑套的卡定啮合,以卡定在阀芯205处;
外壳体101的表面上设有环槽,所述环槽位于所述安装槽的右侧,密封筒106安装在所述环槽内,压套105设置在密封筒106的左侧,压套105在外壳体101内部与执行模块104连接连接,在执行模块104驱动下,压套105可以在外壳体101开设的安装槽内向图示右侧移动,在压套105向右移动时,压缩密封筒106向外胀开,实现密封筒106与阀芯205的内壁配合,以坐封在阀芯205处,从而实现套管4封堵;
所述检测模块107设置在外壳体101内用于识别压裂滑套内的标识模块202,判断是否为目标开启段。
其中,所述所述104执行模块,其驱动力的产生可以是火药引爆产生高压气体、电动推杆提供直线推力、电机扭矩提供胀开力等;
其中,所述智能标签整体采用镁铝合金等可溶材料,在含盐溶液的压裂液浸泡下,在一定时间内可全部溶解;
其中,所述智能标签1由井口投入套管4内,通过泵送方式提供智能标签1在井筒内的前进动力,智能标签1自动识别并卡定、坐封在目标段压裂滑套,伴随泵车加压实现压裂滑套开启,由下至上逐级压裂;每段压裂滑套开启都对应一个智能标签1,从后至前,通过重复投放标签与压裂操作,逐级完成各段压裂滑套的开启与压裂施工,所有段压裂完成后,智能标签在压裂液的浸泡下,自行完全溶解,井筒内无金属破片残留,不会对后续井筒内下入的生产工具产生破坏隐患;
智能标签1初始为图4左侧所示的状态,所述检测模块107用于标识模块202的定位识别,当检测模块107检测到当前压裂滑套中标识模块202为目标开启段后,触发执行模块104动作,在执行模块104的驱动下,卡爪103与密封筒106胀开,变成图4右侧所示的状态,与压裂滑套卡定并坐封。
在全通径无限级分段压裂滑套2中,具体的,外壳体203的左右两端分别设有上接头201和下接头208,其中全通径无限级分段压裂滑套2通过上接头201与上部套管4连接,通过下接头208与下部套管4连接;
所述阀芯205安装在外壳体203内部,关闭状态下如图1所示,阀芯205封堵了203外壳体上周向均布开设的204喷砂口,此时套管4内部与地层不连通;
所述标识模块202安装在外壳体203内部,且靠近上接头201的一侧,标识模块202即代表为当前段所述压裂滑套地址,当智能标签1通过检测模块107识别到当前所述压裂滑套的标识模块202为目标开启段时,智能标签1卡定、坐封在所述压裂滑套的阀芯205处,此时状态如图2所示;卡定、坐封完成后,进一步的,伴随地面泵车加压,在智能标签1的作用下,推动阀芯205向图2或图3示中右侧移动,脱离喷砂口204,所述压裂滑套开启;
所述205阀芯上设置有206卡定机构,当开启到位后,与设置在上接头201内且靠近下接头208一侧的限位槽207卡定,实现所述压裂滑套开启后的锁定,防止压裂滑套再次关闭,开启后状态如图3所示;
所述压裂滑套随套管4下入井眼中并采用水泥固井,每个压裂滑套都对应井下一个目标压裂段。
基于智能标签控制的全通径无限级分段压裂滑套,其实施方法为:
S1、全通径无限级分段压裂滑套2可根据压裂段数任意配置,实现无限级分段压裂,所述压裂滑套与最末端的趾端滑套3随套管4下入井眼并水泥固井后,首先通过井口泵车加压实现趾端滑套的开启,建立泵送通道;即所述外壳体203随套管4下入,外壳体203的数量和位置与井下各压裂层段的数量和位置一一对应;
S2、如图5和图6所示,当进行段一压裂时,通过井口投放智能标签1,泵送至压裂段一滑套时,智能标签1对滑套内标识模块202进行检测,即所述检测模块107通过地面控制器进行目标层段设置,然后由井口投放、并通过地面压裂车组进行泵送前进,在泵送前进过程中检测模块107对各层段压裂滑套中的标识模块202进行检测;
S3、智能标签1与段一滑套卡定啮合、坐封,通过井口泵车加压,进行段一压裂施工;即当检测到当前的所述滑套为目标层段压裂滑套时,卡爪103伸出、密封筒106胀开,所述智能标签在泵送压力作用下推动阀芯205向右移动,打开喷砂口204,实现压裂滑套开启;
S4、如图7和图8所示,当段一压裂完成后,再次由井口投放控制段二开启的智能标签1,重复S2和S3,完成段二压裂施工,同理的完成段三压裂施工至段N的压裂施工,即通过智能标签逐级开启所有段滑套并分段压裂施工。
S5、如图9所示,当所有段压裂完成后,各段滑套内卡定、坐封的智能标签1在井下介质的浸泡下自行全部溶解,井下套管与各段滑套形成全通径、大通径过流。
本申请,具有井下滑套大通径、全通径、无限级的技术特点,通过井口泵 送智能标签1方式实现目标压裂段滑套的开启控制,无需电动坐封工具或连续油管作业,压裂后智能标签可实现完全溶解,无需磨钻或打捞。在满足多级段、大规模压裂需求的同时,有效提高了压裂施工效率,大幅度降低了施工作业成本,为油气田储层增大改造效果、规模化有效动用提供了强有力的技术支撑。本申请的全通径无限级分段压裂滑套2,具有全通径特点,可以实现任意长度水平段内、任意级数的分层段压裂。每层段的压裂滑套通过内置202标识模块,都可以实现唯一定位。

Claims (11)

  1. 基于智能标签控制的全通径无限级分段压裂滑套,包括外壳体(203),以及设置在外壳体(203)上的喷砂口(204),以及设置在外壳体(203)内的代表当前段压裂滑套地址的标识模块(202),以及通过智能标签带动下实现水平移动以用于开闭喷砂口(204)的阀芯(205),所述智能标签能够识别标识模块(202)以实现卡定和坐封在阀芯(205)处。
  2. 根据权利要求1所述的滑套,还包括设置在阀芯(205)上的卡定机构(206),以及设置在外壳体(203)上的限位槽(207),在智能标签的作用下阀芯(205)开启后卡定机构(206)能够卡定在限位槽(207)内。
  3. 根据权利要求2或1所述的滑套,所述标识模块(202)为磁环或无线射频芯片。
  4. 根据权利要求3所述的滑套,所述外壳体(203)的两端分别设有上接头(201)和下接头(208),标识模块(202)位于上接头(201)的右侧,限位槽(207)位于下接头(208)的左侧,阀芯(205)位于标识模块(202)和限位槽(207)之间,阀芯(205)向右移动为打开喷砂口(204)且此时向左移动能够关闭喷砂口(204),智能标签从上接头(201)进入外壳体(203)内。
  5. 一种智能标签,包括外壳体(101),以及设置在外壳体(101)内用于识别标识模块(202)以自动判断目标压裂层段的检测模块(107)。
  6. 根据权利要求5所述的智能标签,所述检测模块(107)能够通过霍尔元件或无线射频天线实现磁定位或无线射频定位识别。
  7. 根据权利要求6或5所述的智能标签,还包括安装在外壳体(101)内的卡爪(103),以及通过检测模块(107)触发且与卡爪(103)连接的执行模块(104),以及安装在外壳体(101)外表面的密封筒(106),以及安装在外壳体(101)上且位于密封筒(106)左侧的压套(105);当检测模块(107)检测到标识模块(202)为目标开启段后,触发执行模块(104)动作,在执行模块(104)的驱动下,卡爪(103)涨开且压套(105)向右移动使密封筒(106)涨开;所述密封筒(106)与阀芯(205)内壁配合,卡爪(103)与外壳体(203)外壳体的内壁配合。
  8. 根据权利要求7所述的智能标签,所述执行模块(104)的驱动力包括通过火药引爆产生高压气体或电动推杆提供的直线推力,以及电机扭矩提供的胀开力。
  9. 根据权利要求8所述的智能标签,还包括设置在外壳体(101)内为执行模块(104)与检测模块(107)供电的电源模块(102)。
  10. 根据权利要求9所述的智能标签,整体采用可溶材料制作,压裂施工完成后,在井液的浸泡下,能够自行全部溶解。
  11. 基于智能标签控制的全通径无限级分段压裂滑套的实施方法,包括以下步骤:
    S1、所述全通径无限级分段压裂滑套随套管(4)下入,所述压裂滑套的数量和位置与井下各压裂层段的数量和位置一一对应;
    S2、所述智能标签通过地面控制器进行目标层段设置,然后由井口投放、并通过地面压裂车组进行泵送前进,在泵送前进过程中检测模块(107)对各层段压裂滑套中的标识模块(202)进行检测;
    S3、当检测到当前的所述滑套为目标层段压裂滑套时,所述滑套的卡爪(103)伸出、密封筒(106)胀开,所述智能标签在泵送压力作用下推动阀芯(205)向右移动,打开喷砂口(204),实现压裂滑套开启。
PCT/CN2023/090719 2022-02-28 2023-04-26 基于智能标签控制的全通径无限级分段压裂滑套及实施方法 WO2023160732A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CA3219869A CA3219869A1 (en) 2022-02-28 2023-04-26 Full-bore and infinite-stage segmented-fracturing sliding sleeve based on intelligent label control, and implementation method
US18/384,834 US12104460B1 (en) 2022-02-28 2023-10-27 Full-bore indefinite-level staged fracturing sliding sleeve based on smart label and implementation method thereof

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210187900.6 2022-02-28
CN202210187900.6A CN114517660A (zh) 2022-02-28 2022-02-28 基于智能标签控制的全通径无限级分段压裂滑套及实施方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/384,834 Continuation US12104460B1 (en) 2022-02-28 2023-10-27 Full-bore indefinite-level staged fracturing sliding sleeve based on smart label and implementation method thereof

Publications (1)

Publication Number Publication Date
WO2023160732A1 true WO2023160732A1 (zh) 2023-08-31

Family

ID=81598736

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/090719 WO2023160732A1 (zh) 2022-02-28 2023-04-26 基于智能标签控制的全通径无限级分段压裂滑套及实施方法

Country Status (4)

Country Link
US (1) US12104460B1 (zh)
CN (1) CN114517660A (zh)
CA (1) CA3219869A1 (zh)
WO (1) WO2023160732A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114517660A (zh) * 2022-02-28 2022-05-20 哈尔滨艾拓普科技有限公司 基于智能标签控制的全通径无限级分段压裂滑套及实施方法
CN115653541B (zh) * 2022-12-23 2023-03-21 哈尔滨艾拓普科技有限公司 基于智能钥匙标签的分段多簇压裂智能滑套系统与方法
CN117552746B (zh) * 2023-12-29 2024-03-29 深蓝(天津)智能制造有限责任公司 井下多级压裂智能滑套控制方法及系统
CN118049200B (zh) * 2024-03-13 2024-09-17 宁波华奥智能装备有限公司 一种基于智能压裂滑套的水平井多级压裂与光纤监测系统

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105822278A (zh) * 2016-05-20 2016-08-03 中石化石油工程技术服务有限公司 一种等通径分段压裂装置及方法
CN106640014A (zh) * 2015-10-30 2017-05-10 中石化石油工程技术服务有限公司 计数式无限级多簇全通径分段压裂滑套
CN110080719A (zh) * 2019-03-25 2019-08-02 中国石油集团长城钻探工程有限公司 一种可溶压差滑套及水平井裸眼分段压裂施工方法
CN110529073A (zh) * 2019-09-17 2019-12-03 中国石油天然气股份有限公司西南油气田分公司工程技术研究院 一种基于智能控制的可溶全通径滑套
CN110593837A (zh) * 2019-09-17 2019-12-20 中国石油天然气股份有限公司西南油气田分公司工程技术研究院 一种可溶全通径滑套压裂施工作业方法
WO2021142878A1 (zh) * 2020-01-16 2021-07-22 成都维锐泰达能源技术有限公司 一种多级压裂智能控制系统及控制方法
CN113279725A (zh) * 2021-06-04 2021-08-20 西南石油大学 无限级智能旋转飞镖滑套
CN113356794A (zh) * 2021-06-04 2021-09-07 西南石油大学 全通径无限级的智能开关滑套
CN113404477A (zh) * 2021-08-05 2021-09-17 三一石油智能装备有限公司 一种压裂工具
CN113719257A (zh) * 2021-10-07 2021-11-30 哈尔滨工业大学重庆研究院 一种全通径无限级智能压裂滑套及其分层压裂实施方法
CN114517660A (zh) * 2022-02-28 2022-05-20 哈尔滨艾拓普科技有限公司 基于智能标签控制的全通径无限级分段压裂滑套及实施方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9187994B2 (en) * 2010-09-22 2015-11-17 Packers Plus Energy Services Inc. Wellbore frac tool with inflow control
EP2708694A1 (en) * 2012-09-14 2014-03-19 Welltec A/S Drop device
EP2778339A1 (en) * 2013-03-11 2014-09-17 Welltec A/S A completion component with position detection
US10006269B2 (en) * 2013-07-11 2018-06-26 Superior Energy Services, Llc EAP actuated valve
MX2016011100A (es) * 2014-04-16 2016-12-12 Halliburton Energy Services Inc Sistema de accionamiento de multiples zonas mediante el uso de dardos de pozo.
CN203978424U (zh) * 2014-05-06 2014-12-03 中国石油化工股份有限公司 一种井下作业装置
CN106050188B (zh) * 2016-06-01 2018-09-11 中国海洋石油集团有限公司 一种水平井多级压裂智能滑套
CN206162603U (zh) * 2016-07-29 2017-05-10 北京精密机电控制设备研究所 一种用于井下试油求产工具的rfid指令下传装置
CN106593352B (zh) * 2016-12-27 2019-07-09 中国石油天然气股份有限公司 电控滑套及压裂管柱
CN107218022A (zh) * 2017-07-06 2017-09-29 中国石油集团渤海钻探工程有限公司 一种泵送智能桥塞完井方法
CN108005631A (zh) * 2017-12-06 2018-05-08 东北石油大学 一种模块化无级差可反复开关式压裂滑套
CN110080738B (zh) * 2019-05-06 2024-08-02 中国石油天然气集团有限公司 基于无线射频识别通信技术的分压分测工艺管柱及方法
CN110593839A (zh) * 2019-10-15 2019-12-20 东北石油大学 一种可计数井下全通径压裂滑套
US11808124B1 (en) * 2022-06-28 2023-11-07 Halliburton Energy Services, Inc. Automated ball-seat event detection

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106640014A (zh) * 2015-10-30 2017-05-10 中石化石油工程技术服务有限公司 计数式无限级多簇全通径分段压裂滑套
CN105822278A (zh) * 2016-05-20 2016-08-03 中石化石油工程技术服务有限公司 一种等通径分段压裂装置及方法
CN110080719A (zh) * 2019-03-25 2019-08-02 中国石油集团长城钻探工程有限公司 一种可溶压差滑套及水平井裸眼分段压裂施工方法
CN110529073A (zh) * 2019-09-17 2019-12-03 中国石油天然气股份有限公司西南油气田分公司工程技术研究院 一种基于智能控制的可溶全通径滑套
CN110593837A (zh) * 2019-09-17 2019-12-20 中国石油天然气股份有限公司西南油气田分公司工程技术研究院 一种可溶全通径滑套压裂施工作业方法
WO2021142878A1 (zh) * 2020-01-16 2021-07-22 成都维锐泰达能源技术有限公司 一种多级压裂智能控制系统及控制方法
CN113279725A (zh) * 2021-06-04 2021-08-20 西南石油大学 无限级智能旋转飞镖滑套
CN113356794A (zh) * 2021-06-04 2021-09-07 西南石油大学 全通径无限级的智能开关滑套
CN113404477A (zh) * 2021-08-05 2021-09-17 三一石油智能装备有限公司 一种压裂工具
CN113719257A (zh) * 2021-10-07 2021-11-30 哈尔滨工业大学重庆研究院 一种全通径无限级智能压裂滑套及其分层压裂实施方法
CN114517660A (zh) * 2022-02-28 2022-05-20 哈尔滨艾拓普科技有限公司 基于智能标签控制的全通径无限级分段压裂滑套及实施方法

Also Published As

Publication number Publication date
US12104460B1 (en) 2024-10-01
CA3219869A1 (en) 2023-08-31
CN114517660A (zh) 2022-05-20

Similar Documents

Publication Publication Date Title
WO2023160732A1 (zh) 基于智能标签控制的全通径无限级分段压裂滑套及实施方法
EP3135858B1 (en) Reverse flow sleeve actuation method
US8567501B2 (en) System and method for stimulating multiple production zones in a wellbore with a tubing deployed ball seat
US9428988B2 (en) Hydrocarbon well and technique for perforating casing toe
US5845712A (en) Apparatus and associated methods for gravel packing a subterranean well
US8881814B2 (en) Liner cementation process and system
US7681654B1 (en) Isolating well bore portions for fracturing and the like
US10920531B2 (en) Wellbore isolation while placing valves on production
US9670750B2 (en) Methods of operating well bore stimulation valves
CA2943638C (en) Production enhancement system using robot drill for drilling multi-branched fishbone and radial microholes in shale gas reservoir, and method thereof
US20220235631A1 (en) Opening a casing with a hydraulic-powered setting tool
CA2674566A1 (en) Stimulated oil production using reactive fluids
CN111425148B (zh) 一种应用趾端滑套到全通径滑套的套管管柱及其使用方法
US3130784A (en) Secondary recovery of earth fluids
US20210079751A1 (en) Tool catcher system
CN106593387A (zh) 一种实现水平井分段多簇压裂的方法
GB2138925A (en) Firing of well perforation guns
CN104704196A (zh) 电缆泵
RU2196880C1 (ru) Способ двухступенчатого цементирования скважины
CN115370338A (zh) 一种水平井分段压裂作业方法
CN112627729B (zh) 一种涡轮式重入分支井方法及装置
Liu et al. Researching and testing on casing ball seat for multistage fracturing in horizontal wells
US3625285A (en) Stimulating wells with liquid explosives
US11448040B2 (en) Fluid loss device including a self-opening upside down flapper valve
CN117662095A (zh) 一种金属可溶密封组件及水平井分段压裂工艺

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23759353

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 3219869

Country of ref document: CA

NENP Non-entry into the national phase

Ref country code: DE