WO2023157386A1 - 粉末冶金用鉄基混合粉および鉄基焼結体 - Google Patents
粉末冶金用鉄基混合粉および鉄基焼結体 Download PDFInfo
- Publication number
- WO2023157386A1 WO2023157386A1 PCT/JP2022/040258 JP2022040258W WO2023157386A1 WO 2023157386 A1 WO2023157386 A1 WO 2023157386A1 JP 2022040258 W JP2022040258 W JP 2022040258W WO 2023157386 A1 WO2023157386 A1 WO 2023157386A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- powder
- iron
- mass
- less
- sintered body
- Prior art date
Links
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 title claims abstract description 214
- 229910052742 iron Inorganic materials 0.000 title claims abstract description 102
- 239000011812 mixed powder Substances 0.000 title claims abstract description 63
- 238000004663 powder metallurgy Methods 0.000 title claims abstract description 53
- 239000000843 powder Substances 0.000 claims abstract description 301
- 229910000831 Steel Inorganic materials 0.000 claims abstract description 52
- 239000010959 steel Substances 0.000 claims abstract description 52
- 239000002245 particle Substances 0.000 claims abstract description 38
- 229910052751 metal Inorganic materials 0.000 claims abstract description 36
- 239000002184 metal Substances 0.000 claims abstract description 36
- 238000005275 alloying Methods 0.000 claims abstract description 30
- 238000009792 diffusion process Methods 0.000 claims description 47
- 229910000851 Alloy steel Inorganic materials 0.000 claims description 25
- 230000036961 partial effect Effects 0.000 claims description 15
- 239000012535 impurity Substances 0.000 claims description 12
- 238000010791 quenching Methods 0.000 claims description 12
- 230000000171 quenching effect Effects 0.000 claims description 12
- 238000005255 carburizing Methods 0.000 claims description 8
- 238000005496 tempering Methods 0.000 claims description 8
- 229910002065 alloy metal Inorganic materials 0.000 claims description 6
- 238000004519 manufacturing process Methods 0.000 abstract description 21
- 238000000465 moulding Methods 0.000 abstract description 21
- 239000000203 mixture Substances 0.000 abstract description 9
- 239000010949 copper Substances 0.000 description 44
- 238000005245 sintering Methods 0.000 description 38
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 19
- 238000000034 method Methods 0.000 description 18
- 239000000314 lubricant Substances 0.000 description 17
- 238000010438 heat treatment Methods 0.000 description 16
- 239000002994 raw material Substances 0.000 description 14
- 230000000694 effects Effects 0.000 description 12
- 229910045601 alloy Inorganic materials 0.000 description 11
- 239000000956 alloy Substances 0.000 description 11
- 238000011282 treatment Methods 0.000 description 11
- 229910052799 carbon Inorganic materials 0.000 description 10
- 230000007423 decrease Effects 0.000 description 9
- 238000009826 distribution Methods 0.000 description 9
- 238000002156 mixing Methods 0.000 description 8
- 229910052750 molybdenum Inorganic materials 0.000 description 7
- 229910052760 oxygen Inorganic materials 0.000 description 7
- 238000001816 cooling Methods 0.000 description 6
- 229910052802 copper Inorganic materials 0.000 description 6
- 229910052759 nickel Inorganic materials 0.000 description 6
- 229910001309 Ferromolybdenum Inorganic materials 0.000 description 4
- 239000007789 gas Substances 0.000 description 4
- 229910052739 hydrogen Inorganic materials 0.000 description 4
- 230000006872 improvement Effects 0.000 description 4
- 230000001965 increasing effect Effects 0.000 description 4
- 230000002829 reductive effect Effects 0.000 description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- 239000001257 hydrogen Substances 0.000 description 3
- 239000007791 liquid phase Substances 0.000 description 3
- 230000008569 process Effects 0.000 description 3
- 238000006722 reduction reaction Methods 0.000 description 3
- 238000009864 tensile test Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 229910002482 Cu–Ni Inorganic materials 0.000 description 2
- 229910001182 Mo alloy Inorganic materials 0.000 description 2
- 230000003213 activating effect Effects 0.000 description 2
- 150000001408 amides Chemical class 0.000 description 2
- 229910002091 carbon monoxide Inorganic materials 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 230000001186 cumulative effect Effects 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 238000005516 engineering process Methods 0.000 description 2
- 230000002708 enhancing effect Effects 0.000 description 2
- 238000011049 filling Methods 0.000 description 2
- HGPXWXLYXNVULB-UHFFFAOYSA-M lithium stearate Chemical compound [Li+].CCCCCCCCCCCCCCCCCC([O-])=O HGPXWXLYXNVULB-UHFFFAOYSA-M 0.000 description 2
- 239000010721 machine oil Substances 0.000 description 2
- 239000000463 material Substances 0.000 description 2
- 238000002844 melting Methods 0.000 description 2
- 230000008018 melting Effects 0.000 description 2
- JKQOBWVOAYFWKG-UHFFFAOYSA-N molybdenum trioxide Chemical compound O=[Mo](=O)=O JKQOBWVOAYFWKG-UHFFFAOYSA-N 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000012071 phase Substances 0.000 description 2
- 229910052698 phosphorus Inorganic materials 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 230000008707 rearrangement Effects 0.000 description 2
- 230000009467 reduction Effects 0.000 description 2
- 239000000344 soap Substances 0.000 description 2
- 229910052717 sulfur Inorganic materials 0.000 description 2
- 238000009692 water atomization Methods 0.000 description 2
- XOOUIPVCVHRTMJ-UHFFFAOYSA-L zinc stearate Chemical compound [Zn+2].CCCCCCCCCCCCCCCCCC([O-])=O.CCCCCCCCCCCCCCCCCC([O-])=O XOOUIPVCVHRTMJ-UHFFFAOYSA-L 0.000 description 2
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 235000021355 Stearic acid Nutrition 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 238000000137 annealing Methods 0.000 description 1
- 229910021383 artificial graphite Inorganic materials 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000000889 atomisation Methods 0.000 description 1
- 229910001566 austenite Inorganic materials 0.000 description 1
- 230000002902 bimodal effect Effects 0.000 description 1
- 239000006229 carbon black Substances 0.000 description 1
- 238000005256 carbonitriding Methods 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 238000005238 degreasing Methods 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 229910002804 graphite Inorganic materials 0.000 description 1
- 239000010439 graphite Substances 0.000 description 1
- 230000006698 induction Effects 0.000 description 1
- 230000002401 inhibitory effect Effects 0.000 description 1
- 230000000670 limiting effect Effects 0.000 description 1
- 230000014759 maintenance of location Effects 0.000 description 1
- 229910052748 manganese Inorganic materials 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 239000000155 melt Substances 0.000 description 1
- 229910021382 natural graphite Inorganic materials 0.000 description 1
- QIQXTHQIDYTFRH-UHFFFAOYSA-N octadecanoic acid Chemical compound CCCCCCCCCCCCCCCCCC(O)=O QIQXTHQIDYTFRH-UHFFFAOYSA-N 0.000 description 1
- OQCDKBAXFALNLD-UHFFFAOYSA-N octadecanoic acid Natural products CCCCCCCC(C)CCCCCCCCC(O)=O OQCDKBAXFALNLD-UHFFFAOYSA-N 0.000 description 1
- WGOROJDSDNILMB-UHFFFAOYSA-N octatriacontanediamide Chemical compound NC(=O)CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC(N)=O WGOROJDSDNILMB-UHFFFAOYSA-N 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 238000011084 recovery Methods 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 229920006395 saturated elastomer Polymers 0.000 description 1
- 238000005204 segregation Methods 0.000 description 1
- 238000007873 sieving Methods 0.000 description 1
- 238000004513 sizing Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000006104 solid solution Substances 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000008117 stearic acid Substances 0.000 description 1
- 238000005482 strain hardening Methods 0.000 description 1
- 238000005728 strengthening Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000005979 thermal decomposition reaction Methods 0.000 description 1
- 229910052721 tungsten Inorganic materials 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F1/00—Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
- B22F1/09—Mixtures of metallic powders
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/10—Sintering only
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/24—After-treatment of workpieces or articles
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C19/00—Alloys based on nickel or cobalt
- C22C19/03—Alloys based on nickel or cobalt based on nickel
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C33/00—Making ferrous alloys
- C22C33/02—Making ferrous alloys by powder metallurgy
- C22C33/0257—Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C33/00—Making ferrous alloys
- C22C33/02—Making ferrous alloys by powder metallurgy
- C22C33/0257—Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements
- C22C33/0264—Making ferrous alloys by powder metallurgy characterised by the range of the alloying elements the maximum content of each alloying element not exceeding 5%
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/02—Ferrous alloys, e.g. steel alloys containing silicon
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/04—Ferrous alloys, e.g. steel alloys containing manganese
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/08—Ferrous alloys, e.g. steel alloys containing nickel
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/12—Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C38/00—Ferrous alloys, e.g. steel alloys
- C22C38/16—Ferrous alloys, e.g. steel alloys containing copper
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22C—ALLOYS
- C22C9/00—Alloys based on copper
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22F—WORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
- B22F3/00—Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
- B22F3/24—After-treatment of workpieces or articles
- B22F2003/248—Thermal after-treatment
-
- C—CHEMISTRY; METALLURGY
- C21—METALLURGY OF IRON
- C21D—MODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
- C21D6/00—Heat treatment of ferrous alloys
- C21D6/008—Heat treatment of ferrous alloys containing Si
Definitions
- the present invention relates to an iron-based mixed powder for powder metallurgy, and in particular, an iron-based mixed powder for powder metallurgy that is excellent in compressibility as a powder and capable of obtaining a sintered body having both excellent strength and impact resistance. Regarding.
- the present invention also relates to an iron-based sintered body produced using the iron-based mixed powder for powder metallurgy.
- Powder metallurgy products are generally manufactured by mixing raw material powders, filling the mixture into a mold, pressing to form a compact, and then sintering the compact.
- the sintered body obtained by sintering is further subjected to sizing and cutting as necessary.
- alloying powders such as Cu powder and graphite powder
- lubricants such as stearic acid and lithium stearate are added to iron-based powders. It is common to use mixed powders.
- powder metallurgy products are used in many fields. Among them, iron-based powder metallurgy products are widely used for various mechanical parts and structural parts including automobile parts because of their excellent strength.
- iron-based powder metallurgy products are required to have even higher strength in order to reduce the size and weight of parts.
- sintering is performed using a continuous sintering furnace called a belt furnace.
- Belt furnaces have the advantages of high productivity and low running costs, as they are continuously sintered while being transported on mesh belts.
- the maximum sintering temperature in a belt furnace is about 1150° C., it is necessary to use a tray pusher furnace which is inferior in productivity in order to perform sintering at a high temperature exceeding 1200° C. as described above.
- sintering is performed at such a high temperature, there is also a problem that the wear of the furnace body is severe and the running cost is high.
- Patent Document 1 proposes an alloyed steel powder in which at least one of Mo: 1.5 to 2.0% by mass and W: 3.0 to 20% by mass is prealloyed.
- Patent Document 2 proposes an alloyed steel powder prealloyed with Mo: 0.2 to 1.5% and Mn: 0.05 to 0.25% by weight.
- Patent Document 3 proposes an alloyed steel powder in which Cu and Ni are diffusely adhered in the form of powder to the surface of iron powder prealloyed with Mo: 0.1 to 1.0% by mass.
- Patent Document 4 a powder metallurgy powder containing alloy steel powder containing 0.2 to 1.5% by mass of Mo and copper powder having an average particle size of 25 ⁇ m or less and a specific surface area of 0.30 m 2 /g or more Iron-based mixed powders have been proposed.
- Patent Document 5 proposes an iron-based mixed powder for powder metallurgy containing pre-alloyed steel powder in which Mo, Cu, and Ni are pre-alloyed, and graphite powder.
- Patent Documents 1 to 5 have the following problems.
- the Mo content is 1.5% by mass or less, so it does not form a single ⁇ -phase. Therefore, since the progress of sintering between particles is not promoted, the strength of the sintered neck portion becomes insufficient at the sintering temperature (1120 to 1140° C.) of the mesh belt furnace generally used.
- Mn is added as a prealloying element, but if the amount of Mn added is increased to improve hardenability, the compressibility of the powder decreases, so a sufficient strength improvement effect can be obtained. Can not.
- high-strength sintered parts can be obtained by sintering using an ordinary belt furnace and carburizing, quenching, and tempering treatments.
- the compressibility of the mixed powder is equivalent to that of a general iron-based alloy powder, molding at a high pressure of 688 MPa is required to obtain high tensile strength, resulting in large mold wear.
- the present invention has been made in view of the above-mentioned actual situation, and even in a general manufacturing process with excellent compressibility and a molding pressure of less than 600 MPa, a tensile strength of 1200 MPa or more and an impact value of 13 J / cm
- An object of the present invention is to provide an iron-based mixed powder for powder metallurgy, which can produce a sintered body having two or more excellent impact resistances.
- the compressibility refers to the easiness of compression when the mixed powder is filled in a mold and pressure-molded.
- the density of a molded body obtained by molding at a predetermined pressure can be used, and the higher the density, the better the compressibility.
- Another object of the present invention is to provide an iron-based sintered body using the iron-based mixed powder for powder metallurgy.
- the present invention was made to solve the above problems, and the gist and configuration thereof are as follows.
- An iron-based mixed powder for powder metallurgy comprising a partially diffusion-alloyed steel powder in which Mo is diffusely attached to the particle surface of the iron-based powder and a metal powder for alloying,
- the iron-based powder is Mn: 0.04% by mass or more and 0.15% by mass or less, Si: 0.01% by mass or more and 0.10% by mass or less, and the balance is Fe and unavoidable impurities.
- Mo content in the partial diffusion alloy steel powder is 0.20% by mass or more and 1.5% by mass or less
- the partial diffusion alloy steel powder has an apparent density of 2.8 g/cm 3 or more and 3.6 g/cm 3 or less
- the alloy metal powder contains Cu powder with an apparent density of 0.5 to 2.0 g/cm 3 and Ni powder with an apparent density of 0.5 to 2.0 g/cm 3 , or both, With respect to the total mass of the partially diffusion alloyed steel powder and the alloying metal powder, The amount of the Cu powder added is 0 to 3.0% by mass, The amount of the Ni powder added is 0 to 3.0% by mass, and An iron-based mixed powder for powder metallurgy, wherein the total amount of the Cu powder and the Ni powder added is 0.5% by mass or more.
- An iron-based sintered body obtained by carburizing, quenching and tempering a sintered body using the iron-based mixed powder for powder metallurgy according to 1 or 2 above.
- the iron-based mixed powder for powder metallurgy of the present invention has excellent compressibility, a high-density sintered body can be obtained by using the iron-based mixed powder for powder metallurgy. Further, according to the iron-based mixed powder for powder metallurgy of the present invention, it is possible to produce a sintered body having both high tensile strength and excellent impact resistance even in a general production process in which the molding pressure is less than 600 MPa. can. In addition, the iron-based mixed powder for powder metallurgy of the present invention does not contain Ni, or even if it contains Ni, the amount added is 3.0% by mass or less. characteristics.
- the iron-based mixed powder for powder metallurgy in one embodiment of the present invention consists of partial diffusion alloyed steel powder and alloying metal powder.
- the term “iron-based mixed powder” refers to a mixed powder in which the mass ratio of Fe contained in the mixed powder is 50% or more with respect to the total mass of the partially diffused alloy steel powder and the alloying metal powder. shall be
- the partial diffusion alloy steel powder and the metal powder for alloying will be described below.
- partially-diffusion alloyed steel powder As the partially-diffusion alloyed steel powder (hereinafter also referred to as "alloyed steel powder"), a partially-diffusion alloyed steel powder in which Mo diffusely adheres to the particle surface of an iron-based powder is used.
- the term “partially-diffused alloyed steel powder” is a technical term commonly used in this technical field, and generally refers to an iron-based powder as a core and at least one It refers to a powder composed of alloying element particles, in which the iron-based powder and the alloying element particles are diffusion-bonded.
- iron-based powder refers to a powder in which the mass ratio of Fe contained in the powder is 50% or more.
- the iron-based powder has a composition of Mn: 0.04% or more and 0.15% or less, Si: 0.01% or more and 0.10% or less, and the balance of Fe and unavoidable impurities. to use. The reason for the limitation will be explained below.
- Mn 0.04-0.15%
- Mn is an element contained as an unavoidable impurity in the iron-based powder.
- the Mn content exceeds 0.15%, the amount of Mn oxide produced increases.
- Mn oxide not only lowers the compressibility of the iron-based mixed powder for powder metallurgy, but also serves as a starting point for fracture inside the sintered body, thereby lowering the strength of the sintered body. Therefore, the Mn content should be 0.15% or less, preferably 0.10% or less.
- a low Mn content is desirable from the viewpoint of improving compressibility, but an excessive reduction causes an increase in the time required for Mn removal treatment and an increase in manufacturing cost. Therefore, the Mn content is set to 0.04% or more.
- Si 0.01-0.10% Si is an element contained as an unavoidable impurity in the iron-based powder. If the Si content exceeds 0.10%, the amount of Si oxide produced increases. Si oxide not only lowers the compressibility of the iron-based mixed powder for powder metallurgy, but also serves as a starting point for fracture inside the sintered body, thereby lowering the strength of the sintered body. Therefore, the Si content should be 0.10% or less, preferably 0.05% or less. On the other hand, a low Si content is desirable from the viewpoint of improving compressibility, but an excessive reduction causes an increase in the time required for the Si removal treatment and an increase in manufacturing costs. Therefore, the Si content is set to 0.01% or more.
- the iron-based powder is preferably atomized powder.
- the atomized powder may be either gas atomized powder or water atomized powder, but is more preferably water atomized powder. It is preferable that the atomized powder is subjected to heat treatment for reducing C and O by heating in a reducing atmosphere (for example, hydrogen atmosphere) after atomization.
- a reducing atmosphere for example, hydrogen atmosphere
- an as-atomized iron-based powder that has not been subjected to such heat treatment can also be used.
- the Mo content in the partially diffusion alloyed steel powder is set to 0.20% or more and 1.5% or less. The reason for the limitation will be explained below.
- Mo 0.20-1.5%
- Mo is an element that has the effect of improving the hardenability and thereby improving the strength of the sintered body, and compared to Ni, it is possible to obtain a sufficient effect of improving the hardenability by adding a small amount. If the Mo content in the partially-diffusion alloyed steel powder is less than 0.20%, the strength-enhancing effect of Mo is insufficient. Therefore, the Mo content in the partially diffusion alloyed steel powder is set to 0.20% or more, preferably 0.40% or more. On the other hand, if the Mo content exceeds 1.5%, the effect of improving the strength of the sintered body due to Mo is saturated, and the compressibility of the partially diffused alloy steel powder is reduced, resulting in wear on the molding die. easier to do. Therefore, the Mo content in the partial diffusion alloy steel powder is set to 1.5% or less, preferably 1.0% or less.
- the partially diffused alloy steel powder in one embodiment of the present invention contains Mn derived from the iron-based powder, Si derived from the iron-based powder, and diffusion-adhered Mo, and the balance is Fe and unavoidable impurities. It has a component composition consisting of
- the components contained as the inevitable impurities and their amounts are not particularly limited, but it is desirable to reduce them as much as possible.
- Ni when Ni is included as the unavoidable impurity, Ni causes an increase in material cost, so the Ni content is preferably 0.1% or less.
- the content of C, O, P, S, and N as the unavoidable impurities be in the following ranges. C: 0.01% or less O: 0.20% or less P: 0.025% or less S: 0.025% or less N: 0.05% or less
- the above O content also includes the amount of oxygen contained in oxides that are unavoidably generated in the alloy steel powder. Also, the total amount of elements other than those listed above, which are contained as the inevitable impurities, is preferably suppressed to 0.01% or less.
- the apparent density of the partially diffusion alloyed steel powder is a parameter determined by the shape and particle size distribution of particles constituting the alloyed steel powder, and greatly affects the compressibility of the iron-based mixed powder for powder metallurgy.
- the smaller the apparent density of the alloy steel powder the larger the volume when the iron-based mixed powder for powder metallurgy is filled into a mold.
- the work hardening of the alloy steel powder particles during press molding increases, inhibiting the plastic deformation of the particles, and lowering the compact density. This decrease in density of the molded body becomes particularly noticeable when the apparent density of the partially diffusion alloyed steel powder is less than 2.8 g/cm 3 .
- the apparent density of the partial diffusion alloyed steel powder is set to 2.8 g/cm 3 or more, preferably 2.9 g/cm 3 or more.
- the apparent density of the partially diffusion alloyed steel powder is higher than 3.6 g/cm 3 , not only does the effect of improving compressibility saturate, but also the strength of the compact decreases, resulting in a compact after press molding. Cracks are likely to occur when removing from the mold.
- the apparent density of the alloy steel powder should be 3.6 g/cm 3 or less, preferably 3.3 g/cm 3 or less.
- the apparent density can be measured according to JIS Z 2504:2012.
- the particle size of the partially-diffusion alloyed steel powder is not particularly limited, and may be any particle size. From the viewpoint of ease of production, it is preferable that the average particle size of the partially-diffused alloyed steel powder is 30 ⁇ m or more and 150 ⁇ m or less.
- the average particle diameter refers to the median diameter (D50) on a mass basis.
- the average particle size can be obtained from the particle size distribution measured by the dry sieving method described in JIS-Z2510. Specifically, the mass-based cumulative particle size distribution is calculated from the obtained particle size distribution, the particle size (D50) at which the cumulative ratio is 50% is obtained by interpolation, and the value is averaged. Particle size.
- the method for producing the partially-diffusion alloyed steel powder is not particularly limited, but typically, after the iron-based powder and the Mo raw material powder are mixed, the mixture is held at a high temperature to cause Mo to diffuse and adhere to the surface of the iron-based powder. It can be manufactured by
- the Mo raw material powder is a powder that functions as a Mo source in the diffusion adhesion process, which will be described later.
- Mo raw material powder any powder can be used as long as it contains Mo as an element. Therefore, as the Mo raw material powder, metal Mo powder (powder consisting only of Mo), Mo alloy powder , and Mo compound powder can be used.
- Mo alloy powder for example, it is preferable to use Fe—Mo (ferromolybdenum) powder.
- Fe—Mo powder it is preferable to use atomized powder of Fe—Mo containing 5% or more of Mo.
- the atomized powder may be gas atomized powder or water atomized powder.
- Mo compound powder it is preferable to use Mo oxide because of its availability and ease of reduction reaction. These Mo raw material powders may be used singly or in combination.
- the iron-based powder and the Mo raw material powder are mixed.
- the blending amounts of the iron-based powder and the Mo-containing powder are adjusted so that the Mo content in the finally obtained partial diffusion alloyed steel powder is within the range described above.
- the mixing method is not particularly limited, and can be carried out according to a conventional method using, for example, a Henschel mixer or cone-type mixer.
- an alloyed steel powder in which Mo diffuses and adheres as metal Mo or a Mo-containing alloy is obtained.
- a reducing atmosphere such as a hydrogen atmosphere
- the iron-based powder does not contain a large amount of C and O, but the heat treatment can reduce C and O.
- C and O are reduced during the diffusion adhesion treatment, and the surface of the iron-based powder becomes active, so that the metal Mo or Mo-containing alloy adheres by diffusion. Easy and preferred.
- the partial diffusion alloyed steel powder obtained by the above procedure has a part of Mo in the metal Mo or the Mo-containing alloy in the iron-based powder particles at the site where the metal Mo or the Mo-containing alloy and the iron-based powder come into contact. It diffuses and adheres to the surface of the iron-based powder (hereinafter also referred to as diffusion adhesion).
- Mo oxide powder is used as the Mo raw material powder
- the Mo oxide is reduced to the form of metal Mo in the heat treatment.
- a state in which the Mo content is partially increased by diffusion adhesion is obtained.
- the iron-based powder and the metal Mo or Mo-containing alloy are usually sintered, so they are pulverized and classified to the desired particle size. Moreover, annealing can be further applied as necessary.
- the iron-based mixed powder for powder metallurgy in one embodiment of the present invention comprises Cu powder having an apparent density of 0.5 to 2.0 g/cm 3 and Cu powder having an apparent density of 0.5 to 2.0 g/cm 3 as the metal powder for alloying. 2.0 g/cm 3 of Ni powder, one or both.
- the fact that the alloy metal powder contains Cu powder having an apparent density of 0.5 to 2.0 g/cm 3 means that the Cu powder contained in the alloy metal powder has an apparent density of 0.5 to 2.0 g/cm 3 . ⁇ 2.0 g/cm 3 .
- the alloy metal powder contains Ni powder having an apparent density of 0.5 to 2.0 g/cm 3
- the Ni powder contained in the alloy metal powder has an apparent density of 0.5 to 2.0 g/cm 3 . ⁇ 2.0 g/cm 3 .
- the amounts of Cu powder and Ni powder to be added must satisfy the following conditions. - The amount of the Cu powder added is 0 to 3.0% by mass. - The amount of the Ni powder added is 0 to 3.0% by mass. - The total addition amount of the Cu powder and the Ni powder is 0.5% by mass or more.
- the added amount of the Cu powder is defined as the ratio of the mass of the Cu powder to the total mass of the partially diffusion alloyed steel powder and the alloying metal powder.
- the amount of the Ni powder added is defined as the ratio of the mass of the Ni powder to the total mass of the partially diffusion alloyed steel powder and the metal powder for alloying.
- the total addition amount is defined as the sum of the addition amount of the Cu powder and the addition amount of the Ni powder.
- Cu powder 0 to 3.0% Cu is an element that improves hardenability and is advantageous in that it is less expensive than Ni.
- sintering is generally performed at about 1130°C, and Cu melts at 1083°C to become a liquid phase.
- the molten Cu expands the sintered body and reduces the density after sintering.
- the amount of Cu powder to be added is 3.0% or less, preferably 2.0% or less.
- the lower limit of the amount of Cu powder to be added is not limited, and may be 0%.
- the amount of Cu powder added is preferably 0.5% or more, more preferably 1.0% or more.
- Apparent density of Cu powder 0.5 to 2.0 g/cm 3
- the apparent density of the Cu powder is a parameter determined by the size and shape of the particles forming the Cu powder, the particle size distribution of the Cu powder, etc., and affects the powder properties and sintering properties of the mixed powder. If the apparent density of the Cu powder is less than 0.5 g/cm 3 , the flowability of the mixed powder deteriorates, so the height of the mixed powder filled in the mold increases, and during press molding Rearrangement of alloy steel powder particles in is inhibited. As a result, the density of the molded body is lowered. Therefore, the Cu powder has an apparent density of 0.5 g/cm 3 or more, preferably 1.0 g/cm 3 or more.
- the Cu powder has an apparent density of 2.0 g/cm 3 or less, preferably 1.5 g/cm 3 or less.
- the apparent density can be measured according to JIS Z 2504:2012.
- Ni powder 0 to 3.0%
- the Ni powder has the effect of activating the sintering reaction of the alloy steel powder, miniaturizing the pores of the sintered body, and increasing the tensile strength and impact resistance of the sintered body.
- the amount of Ni powder added is more than 3.0%, the amount of retained austenite in the sintered body will significantly increase and the strength of the sintered body will decrease.
- the amount of Ni powder to be added is 3.0% or less, preferably 2.0% or less.
- the lower limit of the amount of Ni powder to be added is not limited, and may be 0%. However, from the viewpoint of enhancing the effect of activating the sintering reaction by Ni, the amount of Ni powder added is preferably 0.5% or more, more preferably 1.0% or more.
- Ni powder can be used without any particular limitation as the Ni powder.
- Ni powder that can be preferably used include Ni powder produced by reducing Ni oxides and carbonyl Ni powder produced by thermal decomposition.
- Apparent density of Ni powder 0.5 to 2.0 g/cm 3
- the apparent density of the Ni powder is a parameter determined by the size and shape of the particles forming the Ni powder, the particle size distribution of the Ni powder, etc., and affects the powder properties and sintering properties of the mixed powder. If the apparent density of the Ni powder is less than 0.5 g/cm 3 , the flowability of the mixed powder deteriorates, so that the volume of the mixed powder filled in the mold significantly increases, and in addition to this, during press molding Particle rearrangement of the alloy steel powder particles in is inhibited. As a result, the density of the molded body is lowered.
- the apparent density of the Ni powder should be 0.5 g/cm 3 or more, preferably 1.0 g/cm 3 or more.
- the apparent density of the Ni powder is higher than 2.0 g/cm 3 , the pores after sintering become large, resulting in deterioration of mechanical properties such as tensile strength and impact value. Therefore, the Ni powder has an apparent density of 2.0 g/cm 3 or less, preferably 1.5 g/cm 3 or less.
- the apparent density can be measured according to JIS Z 2504:2012.
- the total amount of the Cu powder and the Ni powder added must be 0.5% or more.
- the upper limit of the total amount to be added is not particularly limited. The upper limit of the amount is 6.0%. The total amount added is preferably 5.0% or less, more preferably 4.0% or less.
- Mass ratio of Ni powder 0.8 or less Cu-Ni alloy is known as a complete solid solution, and the melting point of Cu-Ni alloy is 1083 ° C. at 100% Cu-0% Ni depending on the ratio of Ni. to 1455° C. at 0% Cu-100% Ni. If the ratio of the mass of the Ni powder to the total mass of the Cu powder and the Ni powder (hereinafter referred to as the mass ratio) is 0.8 or less, the increase in the melting point is suppressed, and liquid phase sintering of the Cu powder is inhibited. However, the sintering acceleration effect increases. As a result, strength and impact resistance can be further improved. Therefore, the mass ratio of the Ni powder is preferably 0.8 or less, more preferably 0.5 or less. Since the Ni powder is not an essential component in the present invention, the lower limit of the mass ratio of the Ni powder is not particularly limited, and may be zero. However, in order to obtain a higher sintered density, it is preferably 0.2 or more.
- the metal powder for alloying is substantially composed of Cu powder having an apparent density of 0.5 to 2.0 g/cm 3 and an apparent density of 0.5 to 2.0 g/cm 3 . It may consist of one or both of 0 g/cm 3 Ni powder.
- the iron-based mixed powder for powder metallurgy in another embodiment of the present invention can optionally contain other components in addition to the partially diffusion alloyed steel powder and the alloying metal powder.
- the other component for example, at least one of carbon powder, lubricant, and machinability improving powder can be contained.
- the carbon powder is not particularly limited, and any carbon powder can be used.
- the carbon powder for example, one or both of graphite powder and carbon black can be used.
- the graphite powder both natural graphite powder and artificial graphite powder can be used.
- the amount of the carbon powder to be added should be 0.2 parts by mass or more with respect to a total of 100 parts by mass of the partial diffusion alloy steel powder and the metal powder for alloying, from the viewpoint of strength improvement effect. is preferred.
- the amount of the carbon powder to be blended is preferably 1.2 parts by mass or less with respect to a total of 100 parts by mass of the partially diffusion alloyed steel powder and the metal powder for alloying.
- a lubricant By containing a lubricant, it is possible to facilitate ejection of the compact from the mold. Any lubricant can be used as the lubricant without particular limitation.
- the lubricant for example, one or both of metal soap and amide wax can be used. Examples of the metal soap include zinc stearate and lithium stearate. Examples of the amide wax include ethylenebisstearic acid amide.
- the lubricant is preferably powdery.
- the amount of the lubricant to be added may be 0.3 parts by mass or more and 1.0 parts by mass or less with respect to a total of 100 parts by mass of the partially diffusion alloyed steel powder and the metal powder for alloying. preferable.
- the Machinability-improving powder is not particularly limited, and any machinability-improving powder can be used.
- the machinability improving powder for example, one or both of MnS powder and oxide powder can be used.
- the amount of the machinability improving powder to be added is 0.1 parts by mass or more and 0.7 parts by mass with respect to a total of 100 parts by mass of the partially diffusion alloyed steel powder and the metal powder for alloying. It is preferable to make it below a part.
- the iron-based mixed powder for powder metallurgy of the present invention can be produced by any method without particular limitation.
- it can be produced by mixing metal powder for alloying with the above-mentioned alloyed steel powder so as to achieve the above-mentioned addition amount.
- Said mixing can be done in any way.
- they can be mixed using a V-type mixer, a double cone type mixer, a Henschel mixer, a Nauta mixer, or the like.
- machine oil or the like may be added to prevent segregation of Cu powder and Ni powder.
- the alloy steel powder and the metal powder for alloying may be filled into a mold for pressure molding so as to have the above addition amounts to form a mixed powder.
- An iron-based sintered body in one embodiment of the present invention is an iron-based sintered body obtained by carburizing, quenching and tempering a sintered body using the iron-based mixed powder for powder metallurgy.
- An iron-based sintered body in one embodiment of the present invention is formed by pressure-molding the iron-based mixed powder for powder metallurgy to obtain a compact, sintering the compact to obtain a sintered compact, and further obtaining the sintered compact. It can be manufactured by subjecting to heat treatment. Each step will be described below.
- the iron-based mixed powder for powder metallurgy is pressure-molded into a desired shape to obtain a compact.
- the iron-based mixed powder for powder metallurgy may optionally be blended with an auxiliary raw material, a lubricant, a powder for improving machinability, and the like.
- the pressure molding method is not particularly limited, and any method can be used.
- a method of filling a mixed powder into a mold and performing pressure molding can be mentioned.
- a lubricant can be applied or adhered to the mold, and the amount of the lubricant at that time is 0.3 parts by mass or more with respect to a total of 100 parts by mass of the partially diffusion alloyed steel powder and the metal powder for alloying. It is preferably 0 parts by mass or less.
- the pressure for pressure molding can be 400 MPa or more and 1000 MPa or less. However, when the pressure exceeds 600 MPa, wear of the mold increases and manufacturing costs increase. Therefore, the pressure is preferably 400-600 MPa. According to the iron-based mixed powder for powder metallurgy of the present invention, for example, the density of the compact can be 7.10 g/cm 3 or more under the condition of compacting pressure of 588 MPa.
- the sintering method is not particularly limited, and any method can be used.
- the sintering temperature can be set to 1100° C. or higher, preferably 1120° C. or higher, in order to allow the sintering to proceed sufficiently.
- the higher the sintering temperature the more uniform the distribution of Cu and Mo in the sintered body, so the upper limit of the sintering temperature is not particularly limited, but from the viewpoint of suppressing the manufacturing cost, the sintering temperature is 1250 ° C. or less. is preferred, and 1180°C or lower is more preferred.
- the sintering time can be 15 minutes or more and 50 minutes or less. Within this range, insufficient sintering and insufficient strength can be avoided, and manufacturing costs can be suppressed.
- the cooling rate for cooling after sintering can be 20° C./min or more and 40° C./min or less. If the cooling rate is less than 20°C/min, quenching cannot be sufficiently performed, and the tensile strength may decrease. If the cooling rate exceeds 40°C/min, incidental facilities are required to accelerate the cooling rate, increasing the manufacturing cost.
- a degreasing process may be performed before sintering in which the molded body is held at a temperature of 400°C or higher and 700°C or lower for a certain period of time in order to decompose and remove the lubricant.
- the manufacturing conditions and equipment for the sintered body other than the above are not particularly limited, and any one can be applied.
- the obtained iron-based sintered body can be further heat-treated.
- the heat treatment can further increase the strength of the sintered body.
- strengthening treatment such as carburizing quenching, bright quenching, induction quenching, and carbonitriding heat treatment can be performed.
- the sintered body after quenching may be subjected to impact resistance recovery treatment such as tempering.
- the tempering temperature is preferably about 100 to 300°C.
- the iron-based sintered body in one embodiment of the present invention is formed by pressure-molding the iron-based mixed powder for powder metallurgy into a desired shape to obtain a compact, sintering the compact to obtain a sintered compact, and It can be obtained by sequentially subjecting a sintered body to carburizing, quenching, and tempering.
- an iron-based powder having the component composition shown in Tables 1 to 3 was produced by the water atomization method.
- the amounts of P and S contained as inevitable impurities in the iron-based powder were P: less than 0.025% by mass and S: less than 0.025% by mass.
- MoO3 powder was added as Mo raw material powder to the obtained iron-based powder, and mixed in a V-type mixer for 15 minutes. Thereafter, heat treatment was performed in a hydrogen atmosphere to reduce the MoO 3 powder and cause Mo to diffuse and adhere to the particle surfaces of the iron-based powder. The heat treatment was performed at a temperature of 900° C. for 60 minutes.
- the heat-treated body in which the particles are sintered together to form a mass is pulverized using a hammer mill and classified with a sieve having an opening of 180 ⁇ m, and the powder under the sieve is collected and partially diffused. An alloyed steel powder was obtained.
- the amounts of C, O, and N contained as impurities in the partial diffusion alloy steel powder were C: less than 0.01% by mass, O: less than 0.20% by mass, and N: less than 0.05% by mass. .
- the apparent densities of the partially-diffusion alloy steel powder, Cu powder, and Ni powder used were as shown in Tables 1-3.
- the apparent density was measured according to JIS Z 2504:2012.
- the iron-based mixed powder for powder metallurgy was molded at a molding pressure of 588 MPa to form a rectangular solid of 10 mm x 10 mm x 55 mm.
- the weight of the obtained molded body was measured, and the density of the molded body was determined by dividing the weight by the volume of the molded body.
- the densities of the obtained compacts were as shown in Tables 1-3.
- the obtained compact is sintered in an RX atmosphere (N 2 -32 vol% H 2 -24 vol% CO -0.3 vol% CO 2 ) (holding temperature 1130° C., holding time 20 minutes), A sintered body was obtained.
- the obtained sintered body was subjected to gas carburization (holding temperature 870°C, holding time 60 minutes) at a carbon potential of 0.8% by mass, and then quenching (temperature 60°C, oil quenching) and tempering (holding temperature 200°C, retention time 60 minutes) was performed.
- the carbon potential is an index indicating the carburizing ability of the atmosphere in which the steel is heated, and is represented by the carbon concentration on the surface of the steel when equilibrium is reached with the gas atmosphere at that temperature.
- the density of the obtained sintered body was measured according to JIS Z 2501. Also, in order to evaluate the strength and impact resistance of the sintered body, the tensile strength and impact value were measured. Tensile strength was measured by a tensile test specified in JIS Z 2241. The tensile test was carried out at room temperature using a test piece having a parallel portion with a diameter of 5 mm, taken from the sintered body. The maximum stress before fracture measured in the tensile test was taken as the tensile strength. The impact value was obtained by measuring the absorbed energy at room temperature in accordance with JIS Z 2242 and dividing the absorbed energy by the cross-sectional area of the test piece. The measurement results were as shown in Tables 1-3.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Powder Metallurgy (AREA)
Abstract
Description
前記鉄基粉末は、
Mn:0.04質量%以上0.15質量%以下、
Si:0.01質量%以上0.10質量%以下、および
残部のFeおよび不可避的不純物からなる成分組成を有し、
前記部分拡散合金鋼粉におけるMo含有量が0.20質量%以上1.5質量%以下であり、
前記部分拡散合金鋼粉の見掛密度が2.8g/cm3以上3.6g/cm3以下であり、
前記合金用金属粉末は、見掛密度:0.5~2.0g/cm3のCu粉と、見掛密度:0.5~2.0g/cm3のNi粉の一方または両方を含み、
前記部分拡散合金鋼粉および前記合金用金属粉末の合計質量に対し、
前記Cu粉の添加量が0~3.0質量%であり、
前記Ni粉の添加量が0~3.0質量%であり、かつ、
前記Cu粉と前記Ni粉の合計添加量が0.5質量%以上である、粉末冶金用鉄基混合粉。
前記部分拡散合金鋼粉(以下、「合金鋼粉」ともいう)としては、鉄基粉末の粒子表面にMoが拡散付着した部分拡散合金鋼粉を使用する。ここで、「部分拡散合金鋼粉」とは、本技術分野において慣用されている技術用語であり、一般的に、核としての鉄基粉末と、前記鉄基粉末の表面に付着した少なくとも1つの合金元素粒子からなり、前記鉄基粉末と前記合金元素粒子とが拡散接合している粉末を指す。また、「鉄基粉末」とは、当該粉末に含まれるFeの質量の割合が50%以上である粉末を指すものとする。
Mnは、鉄基粉末中に不可避的不純物として含まれる元素である。Mn含有量が0.15%を超えると、Mn酸化物の生成量が多くなる。Mn酸化物は、粉末冶金用鉄基混合粉の圧縮性を低下させるのみならず、焼結体内部の破壊の起点となるため、焼結体の強度を低下させる。そのため、Mn含有量は0.15%以下、好ましくは0.10%以下とする。一方、圧縮性向上の観点からはMn含有量が低いことが望ましいが、過度の低減は、Mn除去処理に要する時間の増加と、それによる製造コストの上昇を招く。そのため、Mn含有量は0.04%以上とする。
Siは鉄基粉末中に不可避的不純物として含まれる元素である。Si含有量が0.10%を超えると、Si酸化物の生成量が多くなる。Si酸化物は、粉末冶金用鉄基混合粉の圧縮性を低下させるのみならず、焼結体内部の破壊の起点となるため、焼結体の強度を低下させる。そのため、Si含有量は0.10%以下、好ましくは0.05%以下とする。一方、圧縮性向上の観点からはSi含有量が低いことが望ましいが、過度の低減は、Si除去処理に要する時間の増加と、それによる製造コストの上昇を招く。そのため、Si含有量は0.01%以上とする。
Moは、焼入れ性を向上させ、それにより焼結体の強度を向上させる効果を有する元素であり、Niに比べて少量の添加で十分な焼入れ性向上効果を得ることができる。前記部分拡散合金鋼粉におけるMo含有量が0.20%未満であると、Moによる強度向上効果が不十分となる。そのため、前記部分拡散合金鋼粉におけるMo含有量は0.20%以上、好ましくは0.40%以上とする。一方、前記Mo含有量が1.5%を超えると、Moによる焼結体の強度の向上効果が飽和することに加え、部分拡散合金鋼粉の圧縮性が低下して成形用金型が損耗しやすくなる。そのため、前記部分拡散合金鋼粉におけるMo含有量は1.5%以下、好ましくは1.0%以下とする。
C:0.01%以下
O:0.20%以下
P:0.025%以下
S:0.025%以下
N:0.05%以下
前記部分拡散合金鋼粉の見掛密度は、該合金鋼粉を構成する粒子の形状や粒度分布などによって決まるパラメータであり、粉末冶金用鉄基混合粉の圧縮性に大きな影響を及ぼす。合金鋼粉の見掛密度が小さいほど、粉末冶金用鉄基混合粉を金型に充填した際の体積が大きくなる。そしてその結果、プレス成形時における合金鋼粉粒子の加工硬化が大きくなり、粒子の塑性変形が阻害されるため、成形体密度が低くなる。この成形体密度の低下は、前記部分拡散合金鋼粉の見掛密度が2.8g/cm3未満のとき特に顕著となる。そのため、前記部分拡散合金鋼粉の見掛密度は2.8g/cm3以上、好ましくは2.9g/cm3以上とする。一方、前記部分拡散合金鋼粉の見掛密度が3.6g/cm3より高い場合、圧縮性向上効果が飽和するのみならず、成形体の強度が低下することにより、プレス成形後に成形体を金型から抜出す際に割れが生じやすくなる。また、部分拡散合金鋼粉の見掛密度を過度に高めようとすると、該部分拡散合金鋼粉を構成する粒子の形状を球形に近づける処理や、該合金鋼粉の粒度分布を双峰分布にする処理を行う必要が生じるため、製造コストが増加する。そのため、合金鋼粉の見掛密度は3.6g/cm3以下、好ましくは3.3g/cm3以下とする。前記見掛密度は、JIS Z 2504:2012に準拠して測定することができる。
次に、本発明の粉末冶金用鉄基混合粉のもう一つの成分である合金用金属粉末について説明する。本発明の一実施形態における粉末冶金用鉄基混合粉は、前記合金用金属粉末として、見掛密度:0.5~2.0g/cm3のCu粉と、見掛密度:0.5~2.0g/cm3のNi粉の一方または両方を含む。ここで、合金用金属粉末が見掛密度:0.5~2.0g/cm3のCu粉を含むとは、該合金用金属粉末に含まれているCu粉の見掛密度が0.5~2.0g/cm3であることを意味する。同様に、合金用金属粉末が見掛密度:0.5~2.0g/cm3のNi粉を含むとは、該合金用金属粉末に含まれているNi粉の見掛密度が0.5~2.0g/cm3であることを意味する。
・前記Cu粉の添加量が0~3.0質量%である。
・前記Ni粉の添加量が0~3.0質量%である。
・前記Cu粉と前記Ni粉の合計添加量が0.5質量%以上である。
ここで、前記Cu粉の添加量とは、前記部分拡散合金鋼粉および前記合金用金属粉末の合計質量に対する前記Cu粉の質量の割合と定義される。同様に、前記Ni粉の添加量とは、前記部分拡散合金鋼粉および前記合金用金属粉末の合計質量に対する前記Ni粉の質量の割合と定義される。そして、前記合計添加量とは、前記Cu粉の添加量と前記Ni粉の添加量の和と定義される。
Cuは、焼入れ性を向上させる元素であり、Niと比べて安価である点で有利である。しかし、焼結体の製造では一般に1130℃程度で焼結が行われるが、Cuは1083℃で溶融して液相となる。溶融したCuは、焼結体を膨張させて焼結後の密度を低下させる。Cu粉の添加量が3.0%より多いと、この密度低下に起因する焼結体の機械的特性の低下が顕著となる。そのため、Cu粉の添加量は3.0%以下、好ましくは2.0%以下とする。一方、Cu粉の添加量の下限については限定されず、0%であってよい。しかし、Cuによる焼入れ性向上効果を高めるという観点からは、Cu粉の添加量を0.5%以上とすることが好ましく、1.0%以上とすることがより好ましい。
Cu粉の見掛密度は、Cu粉を構成する粒子の大きさや形状、Cu粉の粒度分布などによって決まるパラメータであり、混合粉の粉体特性および焼結特性に影響を及ぼす。Cu粉の見掛密度が0.5g/cm3未満であると、混合粉の流動性が悪化するため、金型に充填された混合粉の高さが高くなることに加えて、プレス成形時における合金鋼粉粒子の再配列が阻害される。そしてその結果、成形体の密度が低下する。そのため、Cu粉の見掛密度は0.5g/cm3以上、好ましくは1.0g/cm3以上とする。一方、Cu粉の見掛密度が2.0g/cm3より高いと液相焼結時の焼結膨張が大きくなることにより、結果として到達密度が低くなる。そのため、Cu粉の見掛密度は2.0g/cm3以下、好ましくは1.5g/cm3以下とする。前記見掛密度は、JIS Z 2504:2012に準拠して測定することができる。
Ni粉は、合金鋼粉の焼結反応を活性化し、焼結体の気孔を微細化して、焼結体の引張強さおよび耐衝撃性を高める作用を有する。しかし、Ni粉の添加量が3.0%より多いと、焼結体中の残留オーステナイトが著しく増加し、焼結体の強度が低下する。また、Niは高価な元素であるため、Ni粉の添加量が3.0%より多いと原料コストの増加が顕著となる。そのため、Ni粉の添加量は3.0%以下、好ましくは2.0%以下とする。一方、Ni粉の添加量の下限については限定されず、0%であってよい。しかし、Niによる焼結反応を活性化する効果を高めるという観点からは、Ni粉の添加量を0.5%以上とすることが好ましく、1.0%以上とすることがより好ましい。
Ni粉の見掛密度は、Ni粉を構成する粒子の大きさや形状、Ni粉の粒度分布などによって決まるパラメータであり、混合粉の粉体特性および焼結特性に影響を及ぼす。Ni粉の見掛密度が0.5g/cm3未満であると、混合粉の流動性が悪化するため、金型に充填された混合粉の体積が著しく増大することに加えて、プレス成形時における合金鋼粉粒子の粒子再配列が阻害される。そしてその結果、成形体の密度が低下する。そのため、Ni粉の見掛密度は0.5g/cm3以上、好ましくは1.0g/cm3以上とする。一方、Ni粉の見掛密度が2.0g/cm3より高いと焼結後の気孔が大きくなることにより、引張強さや衝撃値といった機械的性質が低下する。そのため、Ni粉の見掛密度は2.0g/cm3以下、好ましくは1.5g/cm3以下とする。前記見掛密度は、JIS Z 2504:2012に準拠して測定することができる。
上述したように、CuとNiは、いずれも焼結体の強度を向上させる作用を有する元素である。所望の強度を得るためには、前記Cu粉と前記Ni粉の合計添加量を0.5%以上とする必要がある。一方、前記合計添加量の上限は特に限定されないが、上述したようにCu粉の添加量の上限が3.0%、Ni分の添加量の上限が3.0%であることから、合計添加量の上限は6.0%となる。前記合計添加量は、5.0%以下であることが好ましく、4.0%以下であることが好ましい。
Cu-Ni合金は全率固溶体として知られており、Cu-Ni合金の融点は、Niの比率に応じて100%Cu-0%Niの時の1083℃から0%Cu-100%Niの時の1455℃まで上昇する。Cu粉とNi粉の合計質量に対するNi粉の質量の比(以下、質量比という)が0.8以下であれば、融点の上昇が抑制されるため、Cu粉の液相焼結が阻害されず、焼結促進効果が高くなる。そしてその結果、強度と耐衝撃性をさらに向上させることができる。そのため、Ni粉の質量比は0.8以下とすることが好ましく、0.5以下とすることが好ましい。本発明においてNi粉は必須成分ではないため、Ni粉の質量比の下限はとくに限定されず、0であってよい。しかし、より高い焼結密度を得るためには、0.2以上とすることが好ましい。
炭素粉を添加することにより、焼結体の強度をさらに向上させることができる。前記炭素粉としては、特に限定されず任意の炭素粉を用いることができる。前記炭素粉としては、例えば、黒鉛粉およびカーボンブラックの一方または両方を用いることができる。前記黒鉛粉としては、天然黒鉛粉と人造黒鉛粉のいずれも用いることができる。炭素粉を添加する場合、強度向上効果の点から、該炭素粉の配合量は、前記部分拡散合金鋼粉と合金用金属粉末の合計100質量部に対し、0.2質量部以上とすることが好ましい。一方、該炭素粉の配合量は、前記部分拡散合金鋼粉と合金用金属粉末の合計100質量部に対し、1.2質量部以下とすることが好ましい。
潤滑剤を含有させることで、成形体の金型からの抜出を容易にすることができる。前記潤滑剤としては、特に限定されることなく任意の潤滑剤を使用することができる。前記潤滑剤としては、例えば、金属石鹸およびアミド系ワックスの一方または両方を用いることができる。前記金属石鹸としては、例えば、ステアリン酸亜鉛、ステアリン酸リチウム等が挙げられる。また、前記アミド系ワックスとしては、例えば、エチレンビスステアリン酸アミド等が挙げられる。
前記切削性改善用粉末としては、特に限定されることなく任意の切削性改善用粉末を用いることができる。前記切削性改善用粉末としては、例えば、MnS粉末および酸化物粉末の一方または両方を用いることができる。切削性改善用粉末を使用する場合、該切削性改善用粉末の添加量は、上記部分拡散合金鋼粉と合金用金属粉末の合計100質量部に対し、0.1質量部以上0.7質量部以下とすることが好ましい。
本発明の粉末冶金用鉄基混合粉は、特に限定されることなく任意の方法で製造することができる。例えば、上記合金鋼粉に対して合金用金属粉末を、上記の添加量となるように混合することによって製造することができる。前記混合は、任意の方法で行うことができる。例えば、V型混合機、ダブルコーン型混合機、へンシェルミキサ、ナウターミキサ等を用いて混合することができる。混合時には、Cu粉およびNi粉の偏析防止のために、マシン油等を添加してもよい。あるいは、上記合金鋼粉および合金用金属粉末を、上記添加量となるよう、加圧成形用の金型に充填して混合粉としてもよい。
本発明の一実施形態における鉄基焼結体は、上記粉末冶金用鉄基混合粉を用いた焼結体を浸炭、焼入れおよび焼戻してなる鉄基焼結体である。
まず、上記粉末冶金用鉄基混合粉を所望の形状に加圧成形して成形体とする。前記加圧成形に際しては、前記粉末冶金用鉄基混合粉に、任意に副原料、潤滑剤、切削性改善用粉末等を配合してもよい。前記加圧成形の方法は、特に限定されず、任意の方法を用いることができ、例えば、混合粉を金型内に充填して、加圧成形する方法が挙げられる。金型に潤滑剤を塗布または付着させることもでき、その際の潤滑剤の量は、上記部分拡散合金鋼粉と合金用金属粉末の合計100質量部に対し、0.3質量部以上1.0質量部以下とすることが好ましい。
焼結の方法は、特に限定されず、任意の方法で行うことができる。焼結温度は、十分に焼結を進行させる点から、1100℃以上とすることができ、1120℃以上とすることが好ましい。一方、焼結温度が高いほど焼結体中のCuやMoの分布が均一となるため、焼結温度の上限は特に限定されないが、製造コストの抑制の点から、焼結温度は1250℃以下が好ましく、1180℃以下がより好ましい。
得られた鉄基焼結体に対して、さらに熱処理を施すこともできる。熱処理を施すことにより、焼結体の強度をさらに高めることができる。前記熱処理としては、急冷を伴う処理を行うことが好ましく、例えば、浸炭焼入れ、光輝焼入れ、高周波焼入れ、浸炭窒化熱処理等の強化処理を施すことができる。また、急冷後の焼結体には焼き戻し等といった耐衝撃性の回復処理を施しても良い。焼き戻し温度は100~300℃程度とすることが好ましい。
Claims (3)
- 鉄基粉末の粒子表面にMoが拡散付着した部分拡散合金鋼粉と、合金用金属粉末からなる粉末冶金用鉄基混合粉であって、
前記鉄基粉末は、
Mn:0.04質量%以上0.15質量%以下、
Si:0.01質量%以上0.10質量%以下、および
残部のFeおよび不可避的不純物からなる成分組成を有し、
前記部分拡散合金鋼粉におけるMo含有量が0.20質量%以上1.5質量%以下であり、
前記部分拡散合金鋼粉の見掛密度が2.8g/cm3以上3.6g/cm3以下であり、
前記合金用金属粉末は、見掛密度:0.5~2.0g/cm3のCu粉と、見掛密度:0.5~2.0g/cm3のNi粉の一方または両方を含み、
前記部分拡散合金鋼粉および前記合金用金属粉末の合計質量に対し、
前記Cu粉の添加量が0~3.0質量%であり、
前記Ni粉の添加量が0~3.0質量%であり、かつ、
前記Cu粉と前記Ni粉の合計添加量が0.5質量%以上である、粉末冶金用鉄基混合粉。 - 前記Cu粉および前記Ni粉の合計質量に対する前記Ni粉の質量の比が0.8以下である、請求項1に記載の粉末冶金用鉄基混合粉。
- 請求項1または2に記載の粉末冶金用鉄基混合粉を用いた焼結体を浸炭、焼入れ、および焼戻してなる鉄基焼結体。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP22927280.2A EP4446032A1 (en) | 2022-02-18 | 2022-10-27 | Iron-based mixed powder for powder metallurgy, and iron-based sintered body |
KR1020247017612A KR20240095297A (ko) | 2022-02-18 | 2022-10-27 | 분말 야금용 철기 혼합분 및 철기 소결체 |
CN202280086493.8A CN118450954A (zh) | 2022-02-18 | 2022-10-27 | 粉末冶金用铁基混合粉末和铁基烧结体 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022024201A JP2023121011A (ja) | 2022-02-18 | 2022-02-18 | 粉末冶金用鉄基混合粉および鉄基焼結体 |
JP2022-024201 | 2022-02-18 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023157386A1 true WO2023157386A1 (ja) | 2023-08-24 |
Family
ID=87577913
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/040258 WO2023157386A1 (ja) | 2022-02-18 | 2022-10-27 | 粉末冶金用鉄基混合粉および鉄基焼結体 |
Country Status (5)
Country | Link |
---|---|
EP (1) | EP4446032A1 (ja) |
JP (1) | JP2023121011A (ja) |
KR (1) | KR20240095297A (ja) |
CN (1) | CN118450954A (ja) |
WO (1) | WO2023157386A1 (ja) |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59215401A (ja) | 1983-05-19 | 1984-12-05 | Kawasaki Steel Corp | 粉末冶金用合金鋼粉およびその製造方法 |
JPS61295302A (ja) | 1985-06-25 | 1986-12-26 | Toyota Motor Corp | 焼結用低合金鉄粉末 |
JPS63297502A (ja) * | 1987-05-29 | 1988-12-05 | Kobe Steel Ltd | 粉末冶金用高強度合金鋼粉及びその製造方法 |
JPH01142002A (ja) | 1987-11-27 | 1989-06-02 | Kawasaki Steel Corp | 粉末冶金用アトマイズ予合金鋼粉 |
JP2014167141A (ja) * | 2013-02-28 | 2014-09-11 | Toyota Motor Corp | 焼結合金配合用合金粉末及びこれを用いた焼結合金の製造方法 |
WO2015045273A1 (ja) * | 2013-09-26 | 2015-04-02 | Jfeスチール株式会社 | 粉末冶金用合金鋼粉および鉄基焼結体の製造方法 |
JP2018123428A (ja) * | 2017-02-03 | 2018-08-09 | Jfeスチール株式会社 | 粉末冶金用鉄基混合粉末およびその製造方法ならびに引張強さと耐衝撃性に優れた焼結体 |
JP2018123412A (ja) | 2017-02-03 | 2018-08-09 | Jfeスチール株式会社 | 粉末冶金用鉄基混合粉末およびその製造方法ならびに引張強さと耐衝撃性に優れた焼結体 |
JP2019070183A (ja) * | 2017-10-10 | 2019-05-09 | Ntn株式会社 | 焼結体並びにこの焼結体を含む接合体、及び焼結体の製造方法 |
WO2020202805A1 (ja) | 2019-04-05 | 2020-10-08 | Jfeスチール株式会社 | 粉末冶金用鉄基混合粉末および鉄基焼結体 |
-
2022
- 2022-02-18 JP JP2022024201A patent/JP2023121011A/ja active Pending
- 2022-10-27 WO PCT/JP2022/040258 patent/WO2023157386A1/ja active Application Filing
- 2022-10-27 EP EP22927280.2A patent/EP4446032A1/en active Pending
- 2022-10-27 KR KR1020247017612A patent/KR20240095297A/ko unknown
- 2022-10-27 CN CN202280086493.8A patent/CN118450954A/zh active Pending
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS59215401A (ja) | 1983-05-19 | 1984-12-05 | Kawasaki Steel Corp | 粉末冶金用合金鋼粉およびその製造方法 |
JPS61295302A (ja) | 1985-06-25 | 1986-12-26 | Toyota Motor Corp | 焼結用低合金鉄粉末 |
JPS63297502A (ja) * | 1987-05-29 | 1988-12-05 | Kobe Steel Ltd | 粉末冶金用高強度合金鋼粉及びその製造方法 |
JPH01142002A (ja) | 1987-11-27 | 1989-06-02 | Kawasaki Steel Corp | 粉末冶金用アトマイズ予合金鋼粉 |
JP2014167141A (ja) * | 2013-02-28 | 2014-09-11 | Toyota Motor Corp | 焼結合金配合用合金粉末及びこれを用いた焼結合金の製造方法 |
WO2015045273A1 (ja) * | 2013-09-26 | 2015-04-02 | Jfeスチール株式会社 | 粉末冶金用合金鋼粉および鉄基焼結体の製造方法 |
JP2018123428A (ja) * | 2017-02-03 | 2018-08-09 | Jfeスチール株式会社 | 粉末冶金用鉄基混合粉末およびその製造方法ならびに引張強さと耐衝撃性に優れた焼結体 |
JP2018123412A (ja) | 2017-02-03 | 2018-08-09 | Jfeスチール株式会社 | 粉末冶金用鉄基混合粉末およびその製造方法ならびに引張強さと耐衝撃性に優れた焼結体 |
JP2019070183A (ja) * | 2017-10-10 | 2019-05-09 | Ntn株式会社 | 焼結体並びにこの焼結体を含む接合体、及び焼結体の製造方法 |
WO2020202805A1 (ja) | 2019-04-05 | 2020-10-08 | Jfeスチール株式会社 | 粉末冶金用鉄基混合粉末および鉄基焼結体 |
Also Published As
Publication number | Publication date |
---|---|
JP2023121011A (ja) | 2023-08-30 |
KR20240095297A (ko) | 2024-06-25 |
EP4446032A1 (en) | 2024-10-16 |
CN118450954A (zh) | 2024-08-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CA2911031C (en) | Alloy steel powder for powder metallurgy and method of producing iron-based sintered body | |
JP6146548B1 (ja) | 粉末冶金用混合粉末の製造方法、焼結体の製造方法、および焼結体 | |
CA2922018C (en) | Alloy steel powder for powder metallurgy and method of producing iron-based sintered body | |
JP2010090470A (ja) | 鉄系焼結合金およびその製造方法 | |
JP2015108195A (ja) | 低合金鋼粉体 | |
JP5125158B2 (ja) | 粉末冶金用合金鋼粉 | |
CN110267754B (zh) | 粉末冶金用混合粉、烧结体及烧结体的制造方法 | |
JP5929084B2 (ja) | 粉末冶金用合金鋼粉ならびに鉄基焼結材料およびその製造方法 | |
JP6743720B2 (ja) | 粉末冶金用鉄基混合粉末およびその製造方法ならびに引張強さと耐衝撃性に優れた焼結体 | |
KR102533137B1 (ko) | 분말 야금용 철기 혼합 분말 및 철기 소결체 | |
JP3351844B2 (ja) | 鉄系焼結材料用の合金鋼粉及びその製造方法 | |
JP6645631B1 (ja) | 粉末冶金用合金鋼粉および粉末冶金用鉄基混合粉末 | |
WO2023157386A1 (ja) | 粉末冶金用鉄基混合粉および鉄基焼結体 | |
US6652618B1 (en) | Iron based mixed power high strength sintered parts | |
WO2018143088A1 (ja) | 粉末冶金用混合粉、焼結体、および焼結体の製造方法 | |
JP2012126972A (ja) | 粉末冶金用合金鋼粉ならびに鉄基焼結材料およびその製造方法 | |
CN110234448B (zh) | 粉末冶金用混合粉、烧结体及烧结体的制造方法 | |
JP2010255082A (ja) | 鉄系焼結合金およびその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22927280 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280086493.8 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2022927280 Country of ref document: EP |
|
ENP | Entry into the national phase |
Ref document number: 2022927280 Country of ref document: EP Effective date: 20240708 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18834624 Country of ref document: US |
|
NENP | Non-entry into the national phase |
Ref country code: DE |