WO2023153332A1 - 接合用樹脂材及びその製造方法並びに接合用樹脂材を用いた接合方法 - Google Patents
接合用樹脂材及びその製造方法並びに接合用樹脂材を用いた接合方法 Download PDFInfo
- Publication number
- WO2023153332A1 WO2023153332A1 PCT/JP2023/003621 JP2023003621W WO2023153332A1 WO 2023153332 A1 WO2023153332 A1 WO 2023153332A1 JP 2023003621 W JP2023003621 W JP 2023003621W WO 2023153332 A1 WO2023153332 A1 WO 2023153332A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- bonding
- resin material
- joining
- region
- interface
- Prior art date
Links
- 239000000463 material Substances 0.000 title claims abstract description 220
- 229920005989 resin Polymers 0.000 title claims abstract description 183
- 239000011347 resin Substances 0.000 title claims abstract description 183
- 238000005304 joining Methods 0.000 title claims abstract description 67
- 238000000034 method Methods 0.000 title claims abstract description 51
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 23
- 229920005992 thermoplastic resin Polymers 0.000 claims abstract description 48
- 239000000853 adhesive Substances 0.000 claims abstract description 41
- 230000001070 adhesive effect Effects 0.000 claims abstract description 41
- 239000007769 metal material Substances 0.000 claims abstract description 38
- 229920001187 thermosetting polymer Polymers 0.000 claims abstract description 19
- 229910003481 amorphous carbon Inorganic materials 0.000 claims abstract description 8
- 239000002245 particle Substances 0.000 claims description 19
- 229910044991 metal oxide Inorganic materials 0.000 claims description 14
- 150000004706 metal oxides Chemical class 0.000 claims description 14
- 238000010438 heat treatment Methods 0.000 claims description 13
- 230000001678 irradiating effect Effects 0.000 claims description 7
- 238000012986 modification Methods 0.000 claims description 4
- 230000004048 modification Effects 0.000 claims description 4
- 230000001590 oxidative effect Effects 0.000 claims description 3
- 238000001237 Raman spectrum Methods 0.000 description 21
- 230000005284 excitation Effects 0.000 description 19
- 239000004696 Poly ether ether ketone Substances 0.000 description 18
- 229920002530 polyetherether ketone Polymers 0.000 description 18
- 230000015572 biosynthetic process Effects 0.000 description 14
- 238000005259 measurement Methods 0.000 description 13
- 238000001069 Raman spectroscopy Methods 0.000 description 11
- 230000000694 effects Effects 0.000 description 11
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 9
- -1 polyethylene Polymers 0.000 description 8
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 8
- 239000004810 polytetrafluoroethylene Substances 0.000 description 8
- 230000008569 process Effects 0.000 description 8
- 229910052799 carbon Inorganic materials 0.000 description 7
- 238000013507 mapping Methods 0.000 description 7
- 238000001228 spectrum Methods 0.000 description 7
- 238000002844 melting Methods 0.000 description 6
- 230000008018 melting Effects 0.000 description 6
- 229920000139 polyethylene terephthalate Polymers 0.000 description 6
- 239000005020 polyethylene terephthalate Substances 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 229910000838 Al alloy Inorganic materials 0.000 description 5
- 238000010521 absorption reaction Methods 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 239000006260 foam Substances 0.000 description 5
- 229920000620 organic polymer Polymers 0.000 description 5
- 238000004611 spectroscopical analysis Methods 0.000 description 5
- 238000009864 tensile test Methods 0.000 description 5
- 239000004698 Polyethylene Substances 0.000 description 4
- 239000004743 Polypropylene Substances 0.000 description 4
- 229920000122 acrylonitrile butadiene styrene Polymers 0.000 description 4
- 239000000956 alloy Substances 0.000 description 4
- 239000004918 carbon fiber reinforced polymer Substances 0.000 description 4
- 150000001875 compounds Chemical class 0.000 description 4
- 238000013461 design Methods 0.000 description 4
- 230000006866 deterioration Effects 0.000 description 4
- 229920006351 engineering plastic Polymers 0.000 description 4
- 150000002576 ketones Chemical class 0.000 description 4
- 229920000573 polyethylene Polymers 0.000 description 4
- 229920001155 polypropylene Polymers 0.000 description 4
- 239000004593 Epoxy Substances 0.000 description 3
- 238000005033 Fourier transform infrared spectroscopy Methods 0.000 description 3
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 3
- 239000006096 absorbing agent Substances 0.000 description 3
- 239000012790 adhesive layer Substances 0.000 description 3
- 238000004458 analytical method Methods 0.000 description 3
- 238000003763 carbonization Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 230000003247 decreasing effect Effects 0.000 description 3
- 230000007547 defect Effects 0.000 description 3
- 239000010410 layer Substances 0.000 description 3
- 239000007788 liquid Substances 0.000 description 3
- 238000004020 luminiscence type Methods 0.000 description 3
- 238000009832 plasma treatment Methods 0.000 description 3
- 229920000647 polyepoxide Polymers 0.000 description 3
- 229910052708 sodium Inorganic materials 0.000 description 3
- 239000011734 sodium Substances 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 2
- 239000004793 Polystyrene Substances 0.000 description 2
- 229910001069 Ti alloy Inorganic materials 0.000 description 2
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 description 2
- 238000002835 absorbance Methods 0.000 description 2
- 230000008859 change Effects 0.000 description 2
- 230000006378 damage Effects 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 238000010494 dissociation reaction Methods 0.000 description 2
- 230000005593 dissociations Effects 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 239000003822 epoxy resin Substances 0.000 description 2
- 239000011152 fibreglass Substances 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- 125000000524 functional group Chemical group 0.000 description 2
- 239000011521 glass Substances 0.000 description 2
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 description 2
- 230000033001 locomotion Effects 0.000 description 2
- 239000011259 mixed solution Substances 0.000 description 2
- 230000003287 optical effect Effects 0.000 description 2
- 238000000879 optical micrograph Methods 0.000 description 2
- 230000003647 oxidation Effects 0.000 description 2
- 238000007254 oxidation reaction Methods 0.000 description 2
- 229920003023 plastic Polymers 0.000 description 2
- 239000004033 plastic Substances 0.000 description 2
- 239000000088 plastic resin Substances 0.000 description 2
- 229920000515 polycarbonate Polymers 0.000 description 2
- 239000004417 polycarbonate Substances 0.000 description 2
- 229920006324 polyoxymethylene Polymers 0.000 description 2
- 239000004800 polyvinyl chloride Substances 0.000 description 2
- 230000009257 reactivity Effects 0.000 description 2
- 238000004904 shortening Methods 0.000 description 2
- 239000010936 titanium Substances 0.000 description 2
- 229910052719 titanium Inorganic materials 0.000 description 2
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 1
- 229910000975 Carbon steel Inorganic materials 0.000 description 1
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 description 1
- 229910000881 Cu alloy Inorganic materials 0.000 description 1
- 229920001651 Cyanoacrylate Polymers 0.000 description 1
- 229910001335 Galvanized steel Inorganic materials 0.000 description 1
- 206010027146 Melanoderma Diseases 0.000 description 1
- 229930182556 Polyacetal Natural products 0.000 description 1
- 239000004952 Polyamide Substances 0.000 description 1
- 238000003841 Raman measurement Methods 0.000 description 1
- 229910000831 Steel Inorganic materials 0.000 description 1
- 238000000862 absorption spectrum Methods 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 238000009825 accumulation Methods 0.000 description 1
- 229920006397 acrylic thermoplastic Polymers 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 239000011203 carbon fibre reinforced carbon Substances 0.000 description 1
- 125000002915 carbonyl group Chemical group [*:2]C([*:1])=O 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 239000010949 copper Substances 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- NLCKLZIHJQEMCU-UHFFFAOYSA-N cyano prop-2-enoate Chemical class C=CC(=O)OC#N NLCKLZIHJQEMCU-UHFFFAOYSA-N 0.000 description 1
- 238000001514 detection method Methods 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000009792 diffusion process Methods 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 238000002845 discoloration Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 229920006332 epoxy adhesive Polymers 0.000 description 1
- 125000003700 epoxy group Chemical group 0.000 description 1
- 150000002170 ethers Chemical class 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 239000000945 filler Substances 0.000 description 1
- 238000005187 foaming Methods 0.000 description 1
- 239000008397 galvanized steel Substances 0.000 description 1
- 125000002887 hydroxy group Chemical group [H]O* 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 230000006872 improvement Effects 0.000 description 1
- 238000002329 infrared spectrum Methods 0.000 description 1
- 239000004615 ingredient Substances 0.000 description 1
- 238000010030 laminating Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 238000002095 near-infrared Raman spectroscopy Methods 0.000 description 1
- 229910001000 nickel titanium Inorganic materials 0.000 description 1
- 238000010606 normalization Methods 0.000 description 1
- 239000005011 phenolic resin Substances 0.000 description 1
- 229920003229 poly(methyl methacrylate) Polymers 0.000 description 1
- 229920002647 polyamide Polymers 0.000 description 1
- 229920002312 polyamide-imide Polymers 0.000 description 1
- 229920001721 polyimide Polymers 0.000 description 1
- 239000009719 polyimide resin Substances 0.000 description 1
- 229920000642 polymer Polymers 0.000 description 1
- 229920001296 polysiloxane Polymers 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000002250 progressing effect Effects 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 238000010926 purge Methods 0.000 description 1
- 230000006798 recombination Effects 0.000 description 1
- 238000005215 recombination Methods 0.000 description 1
- 238000007788 roughening Methods 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 229920002050 silicone resin Polymers 0.000 description 1
- 238000001179 sorption measurement Methods 0.000 description 1
- 230000003595 spectral effect Effects 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
- 239000002344 surface layer Substances 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 238000011191 terminal modification Methods 0.000 description 1
- ISXSCDLOGDJUNJ-UHFFFAOYSA-N tert-butyl prop-2-enoate Chemical compound CC(C)(C)OC(=O)C=C ISXSCDLOGDJUNJ-UHFFFAOYSA-N 0.000 description 1
- 229920001169 thermoplastic Polymers 0.000 description 1
- 229920002803 thermoplastic polyurethane Polymers 0.000 description 1
- 239000004416 thermosoftening plastic Substances 0.000 description 1
- 238000002834 transmittance Methods 0.000 description 1
- 229920006337 unsaturated polyester resin Polymers 0.000 description 1
- 150000003673 urethanes Chemical class 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B29—WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
- B29C—SHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
- B29C65/00—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
- B29C65/48—Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor using adhesives, i.e. using supplementary joining material; solvent bonding
-
- C—CHEMISTRY; METALLURGY
- C08—ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
- C08J—WORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
- C08J7/00—Chemical treatment or coating of shaped articles made of macromolecular substances
-
- C—CHEMISTRY; METALLURGY
- C09—DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
- C09J—ADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
- C09J5/00—Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers
- C09J5/02—Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers involving pretreatment of the surfaces to be joined
Definitions
- the present invention relates to a bonding resin material that can be used for bonding between resin materials and between a resin material and a metal material, a manufacturing method thereof, and a bonding method using the bonding resin material.
- adhesives are used to join resin materials together
- adhesives and riveting are generally used to join metal materials and resin materials.
- bonding is achieved by physical or chemical adsorption force
- riveting is used, bonding is achieved by mechanical fastening with rivets.
- the parts that can be applied are limited due to the size and weight of the fastening part, which increases the size and weight of the parts and also reduces the degree of freedom in design.
- general-purpose plastics such as polyethylene (PE), polypropylene (PP), polystyrene (PS), polyvinyl chloride (PVC) and ABS resin (ABS), polyethylene terephthalate (PET), polycarbonate (PC), etc.
- engineering plastics and super engineering plastics such as polyetheretherketone (PEEK) and polyamide-imide (PAI) are used in large quantities in various fields. There is a strong demand for direct bonding between resin materials and metal materials.
- thermoplastic resins have a stable molecular structure and are inert, direct bonding between thermoplastic resin materials and metal materials is extremely difficult. It is essential. In the case of surface treatment using metallic sodium, which is currently widely used in industrial applications, high adhesive strength can be expected by combining it with epoxy adhesives, but a clean alternative method is desired due to environmental concerns. In addition, since the adhesive has low heat resistance, it is difficult to use it continuously in a high-temperature atmosphere by making use of the characteristics of the thermoplastic resin, and it is limited to use at a relatively low temperature. Furthermore, the use of adhesives should be avoided as much as possible, especially in the medical and food fields, and direct bonding without using adhesives is desired from this point of view as well.
- thermosetting resins have a more stable molecular structure than thermoplastic resins, and are more inert than thermoplastic resins. becomes even more difficult.
- adhesives are mainly used to join thermosetting resin materials, but for carbon fiber reinforced plastics (CFRP), for which demand has been increasing in recent years, problems caused by the above adhesives are serious. is becoming
- Patent Document 1 Japanese Patent Application Laid-Open No. 2005-104132
- a method for joining thermoplastic resin members has been proposed, which includes a step of melting opposing surfaces of flat thermoplastic resin members and a step of fusing the melted thermoplastic resin members together.
- thermoplastic resin material In the method for joining thermoplastic resin materials described in Patent Document 1, wettability is improved by forming a rough surface on at least one surface of each thermoplastic resin material in advance, and the liquid laser absorber heats. It is stated that the thermoplastic resin material can be stably joined by irradiating the laser beam because it spreads evenly on the surface of the plastic resin material and no welding unevenness occurs.
- Patent Document 2 Japanese Patent Application Laid-Open No. 2016-56363
- the surface temperature of a molded body containing an organic polymer compound is set to (the melting point of the organic polymer compound -120) ° C. or higher, and the surface of the molded body is
- atmospheric pressure plasma treatment is performed on the surface of the molded body to introduce peroxide radicals into the molded body.
- Patent Document 3 Japanese Patent Application Laid-Open No. 2019-123153
- a method for directly joining one member to be joined and the other member to be joined wherein one member to be joined is thermoplastic.
- a method for joining thermoplastic resins comprising: a second step of forming a joint interface by bringing a member to be joined into contact; and a third step of raising the temperature of the joint interface by laser irradiation. is suggesting.
- thermoplastic resins described in Patent Document 3 the CF bond of the thermoplastic resin is separated by laser irradiation, and sodium and fluorine, which have a high bonding property with fluorine, are combined to form a molecular structure. can improve the bondability of stable and inert thermoplastic resins.
- Patent Document 1 the joining method described in Patent Document 1 is intended only for joining thermoplastic resin materials together, and cannot join thermoplastic resin materials and metal materials.
- the materials to be joined are limited to thermoplastic resin materials having laser transparency, a laser absorber that does not directly contribute to improving the strength of the joint interface remains at the joint interface.
- thermoplastic resin material in the method for manufacturing a surface-modified molded body described in Patent Document 2, it is necessary to place a thermoplastic resin material in a chamber having an evacuation system and perform atmospheric pressure plasma treatment. It is necessary to raise the surface temperature of the plastic resin material to a specified temperature range. That is, the applicable size and shape of the thermoplastic resin material are restricted, and the process becomes complicated. Furthermore, only adherends having reactive functional groups can be adhered to thermoplastic resin materials.
- thermoplastic resin joining method described in Patent Document 3 a metal thermoplastic resin joint having higher strength than other joining methods can be obtained. It has a wet process of coating, and there is room for improvement from the viewpoint of mass production of homogeneous and high-strength joints with high efficiency.
- Patent Documents 1 to 3 are intended only for thermoplastic resins, and there are suitable techniques for firmly bonding thermosetting resin materials to each other and thermosetting resin materials to metal materials. do not.
- the present invention provides a method that can be suitably used for joining resin materials together and resin materials and metal materials without using mechanical joining such as riveting. It is an object of the present invention to provide a bonding resin material capable of bonding, a simple and efficient manufacturing method thereof, and a bonding method using the bonding resin material. In addition, the present invention targets both thermoplastic resins and thermosetting resins, and is capable of improving the bonding strength and the reliability of joints in both direct bonding and bonding using an adhesive between materials to be bonded. It is also an object of the present invention to provide a bonding resin material capable of bonding, a simple and efficient manufacturing method thereof, and a bonding method using the bonding resin material.
- the unsaturated graphitized regions having C ⁇ C bonds and/or C—C bonds in the bonding resin material of the present invention have a higher energy state and are more active than the other surfaces, A favorable direct bonding interface can be formed by contacting the bonding interface and applying heat and pressure.
- the graphitized region is amorphous carbon.
- the resin material is a thermoplastic resin. Since the thermoplastic resin softens as the temperature rises during bonding, it can ensure sufficient adhesion to the other bonding material, suppressing defect formation and promoting bonding between the graphitized region and the other bonded interface. Therefore, a good bonding interface can be stably formed.
- the resin material is a thermosetting resin.
- Graphitized regions formed on the surface of thermosetting resins which have extremely poor reactivity, form a strong bonding interface for both direct bonding and adhesives, improving the strength and reliability of the bonding interface. can be made
- a method of manufacturing a resin material is also provided.
- the graphitized region is amorphous carbon.
- the surface state of the region irradiated with the pulse laser can be confirmed, for example, by microscopic FT-IR or Raman spectroscopic analysis. etc. can achieve this.
- this can be achieved by lowering the output of the pulse laser, shortening the irradiation time, or the like.
- the pulse laser is a nanosecond short pulse laser.
- a nanosecond short pulse laser it is possible to easily and efficiently form an unsaturated graphitized region having C ⁇ C bonds and/or C—C bonds on the surface of a bonding resin material.
- a continuous wave laser it is difficult to adjust the energy applied to the surface of the resin material for bonding. It is difficult to make the graphitized region unsaturated with C ⁇ C bonds and/or C—C bonds.
- At least one member to be joined is the joining resin material of the present invention, a joining interface forming step of forming a joining interface by bringing the joining resin material and the other joining material into contact with each other through the graphitized region on the surface of the joining resin material; a bonding step of increasing the temperature of the interface to be bonded by external heating means to achieve bonding; directly bonding the bonding resin material and the other material to be bonded through the graphitized region;
- a method for joining resin materials characterized by
- the method for joining the resin materials of the present invention includes (1) joining of the joining resin materials of the present invention, (2) joining of the joining resin material of the present invention with an arbitrary resin material, and (3) joining of the joining resin materials of the present invention. Bonding between a bonding resin material and any metal material is included. In any of these modes, by raising the temperature of the interface to be joined by the external heating means, it is possible to obtain a good joint in which the materials to be joined are directly joined via the graphitized region.
- the external heating means can raise the temperature of the interface to be joined, various conventionally known external heating means can be used as long as they do not impair the effects of the present invention.
- the interfaces to be bonded need only be in close contact with each other, but it is preferable to apply a bonding pressure.
- the other material to be joined is a metal material
- the surface of the metal material is irradiated with a pulsed laser in an oxidizing atmosphere to form metal oxide particle clusters in which metal oxide particles having a particle size of 5 to 500 nm are continuously bonded.
- a surface modification region Contacting the graphitized region and the surface modified region at the interface to be bonded; is preferred.
- the surface-modified region having metal oxide particle clusters in which metal oxide particles having a particle size of 5 to 500 nm are continuously bonded to C C bonds and/or C- It promotes the dissociation of C-bonds, and efficiently obtains strong joints.
- the maximum height (Sz) of the surface of the metal oxide particle cluster, which is the interface to be bonded on the metal material side, to 50 nm to 3 ⁇ m the adhesion between the metal oxide particle cluster and the bonding resin material is improved. can be secured.
- the temperature of the interface to be joined it is preferable to raise the temperature of the interface to be joined by laser irradiation.
- laser irradiation as the external heating means, the temperature of the interface to be bonded can be easily and efficiently raised regardless of the shape and size of the region to be bonded.
- the present invention provides At least one member to be joined is the joining resin material of the present invention, a bonding interface forming step of forming a bonding interface by bringing the bonding resin material and the other bonding material into contact via the graphitized region and an adhesive; and a bonding step of curing the adhesive;
- a method for joining resin materials characterized by
- a bonding resin material that can be suitably used for bonding resin materials together or resin materials and metal materials without using mechanical bonding such as riveting, and a simple and efficient bonding resin material thereof. It is possible to provide a manufacturing method and a bonding method using the bonding resin material. In addition, according to the present invention, both thermoplastic resins and thermosetting resins are targeted, and the bonding strength and the reliability of the joint are improved in both direct bonding between the materials to be bonded and bonding using an adhesive. It is also possible to provide a bonding resin material capable of bonding, a simple and efficient manufacturing method thereof, and a bonding method using the bonding resin material.
- FIG. 4 is a schematic diagram of the microstructure in the cross section of the graphitized region 4.
- FIG. It is process drawing in the case of performing direct joining in this invention. It is process drawing in the case of adhering in this invention.
- It is an optical micrograph of the surface of a PEEK plate irradiated with a laser. It is an optical microscope photograph of a cross section of a PEEK plate irradiated with a laser. IR spectra from a laser-irradiated portion and an untreated portion, and their difference spectra. It is an IR mapping image obtained in an example.
- FIG. 1 is a schematic cross-sectional view showing one embodiment of the bonding resin material of the present invention.
- An unsaturated graphitized region 4 having C ⁇ C bonds and/or C—C bonds is formed on at least part of the surface of the bonding resin material 2 of the present invention.
- the graphitized region 4 is preferably formed with a thickness of 50 to 200 ⁇ m from the outermost surface of the bonding resin material 2 .
- the thickness of the graphitized region 4 is more preferably 100 to 150 ⁇ m.
- a schematic diagram of the microstructure in the cross section of the graphitized region 4 is shown in FIG.
- fine black dots 6 are preferably dispersed.
- the diameter of the black dots 6 is preferably 1 to 100 ⁇ m. By setting the diameter of the black dots 6 to 1 ⁇ m or more, unsaturated bonds including C ⁇ C bonds and/or C—C bonds are reliably formed. can do. In addition, by setting the diameter of the black dots 6 to 100 ⁇ m or less, it is possible not only to suppress excessive destruction of the resin structure, but also to homogenize the distribution of unsaturated bonds including C ⁇ C bonds and/or C—C bonds. can be done.
- the blackened region 4 since the blackened region 4 is formed by irradiation with a pulse laser, the blackened region 4 has fine foam traces 8 scattered about.
- the diameter of the foam traces 8 is preferably 500 ⁇ m or less, more preferably 250 ⁇ m or less, and most preferably 100 ⁇ m or less.
- the bonding state of carbon atoms in the graphitized region 4 can be confirmed using Raman spectroscopic analysis. Specifically, the laser spot diameter is set to about 1 ⁇ m, and the graphitized region 4 and the untreated region (region not affected by pulse laser irradiation) are measured in microscopic mode, and the obtained Raman spectrum is Just compare.
- Raman spectrum from the black point 6 broad Raman bands near 1600 cm ⁇ 1 and 1350 cm ⁇ 1 may be confirmed.
- the Raman band is attributed to low-crystalline carbon, and indicates a state in which the formation of an unsaturated structure has progressed particularly.
- the state of the graphitized region 4 can also be confirmed using microscopic FT-IR. Specifically, FT-IR-ATR measurement may be performed on the graphitized region 4 and the untreated region, and the obtained spectra and mapping images may be compared. For example, by evaluating the baseline drift due to the presence of carbon in the spectrum from the graphitized region 4, the progress of the formation of the unsaturated structure in the graphitized region 4 can be confirmed.
- the graphitized region 4 may be formed in a region that will be the interface to be joined of the joining resin material 2 .
- the graphitized regions 4 are preferably formed over the entire area of the interface to be joined, but may be formed in a linear or dotted pattern, for example.
- the resin material is preferably a thermoplastic resin. Since the thermoplastic resin is softened by the temperature rise at the time of bonding, it is possible to ensure sufficient adhesion with the other bonding material, suppress the formation of defects, and improve the bonding between the graphitized region 4 and the other bonded interface. Acceleration can stably form a good bonding interface.
- thermoplastic resin is not particularly limited as long as it does not impair the effects of the present invention, and may be various conventionally known thermoplastic resins, such as polyetheretherketone resin (PEEK).
- PEEK polyetheretherketone resin
- thermosetting resin in the bonding resin material 2, a thermosetting resin can be suitably used as the resin material. Even with a thermosetting resin that has extremely poor reactivity, the graphitized region 4 formed on the surface forms a strong bonding interface in both direct bonding and adhesive, increasing the strength and reliability of the bonding interface. can be improved.
- thermosetting resin is not particularly limited as long as it does not impair the effects of the present invention, and can be various conventionally known thermoplastic resins, such as epoxy resins and thermosetting polyimide resins.
- the surface of a resin material is irradiated with a pulse laser, and unsaturated graphite having a C ⁇ C bond and/or a C—C bond is formed on the surface. forming a softening region.
- the chemical structure of the surface of the resin material changes, forming an unsaturated graphitized region 4 having C ⁇ C bonds and/or C—C bonds in the region. can be done.
- it is necessary to apply appropriate energy to the region which can be achieved by using a pulse laser.
- the graphitized region 4 is preferably amorphous carbon.
- the surface state of the region irradiated with the pulse laser can be confirmed, for example, by microscopic FT-IR or Raman spectroscopic analysis. etc. can achieve this.
- this can be achieved by lowering the output of the pulse laser, shortening the irradiation time, or the like.
- a continuous wave laser it is difficult to adjust the energy applied to the surface of the resin material for bonding. It is difficult to make the graphitized region 4 in an unsaturated state with C ⁇ C bonds and/or C—C bonds.
- the irradiation of the pulse laser should be applied to the range that will be the area to be bonded. Although at least a part of the region to be bonded may be irradiated, it is preferable to irradiate the entire surface of the region.
- the scanning pattern of the pulse laser is not particularly limited, and the linear irradiation area may be wrapped, or any pattern shape may be used. Alternatively, a large number of dot-like irradiation regions may be formed.
- the type of resin material is not particularly limited as long as it does not impair the effects of the present invention, and various conventionally known resin materials can be used.
- the resin material may be a thermoplastic resin or a thermosetting resin.
- the size and shape of the resin material are not particularly limited, and may be the size and shape desired as the material to be joined.
- the bonding method of the present invention is most characterized in that the bonding resin material 2 is used as at least one of the materials to be bonded. It includes bonding between the material 2 and any resin material and bonding between the bonding resin material 2 and any metal material.
- the method is roughly divided into a method of directly joining materials to be joined and a method of joining using an adhesive. In the following, the case of directly joining and the case of using an adhesive (adhesion) will be described in detail, taking the case of joining the joining resin material 2 and the metal material as a representative example.
- FIG. 3 is a process diagram for performing direct bonding in the present invention.
- the resin material bonding method of the present invention includes a bonding interface forming step (S01) for forming a bonding interface, and a bonding step (S02) for achieving bonding by raising the temperature of the bonding interface. .
- the metal material and the bonding resin material 2 may be brought into contact with each other so that their planes are in contact with each other in a general overlapping state. , a so-called T-shaped joint.
- a heat-resistant glass plate or the like is brought into contact with the surface of one or both of the materials to be bonded to constrain the entire surface.
- the materials can be brought into closer contact with each other, and misalignment or the like of the interface to be joined in the joining step (S02) can be suppressed. It is preferable to use a heat-resistant glass having excellent laser transmittance.
- the jig to be used is not particularly limited, and conventionally known various jigs can be used.
- the thermoplastic resin is not particularly limited as long as it does not impair the effects of the present invention, and conventionally known general-purpose plastics, engineering plastics and super engineering plastics can be suitably used. can. More specifically, for example, polyethylene (PE), polypropylene (PP), polystyrene (PS), polyacetal (POM), polyvinyl chloride (PVC), polyethylene terephthalate (PET), ABS resin (ABS), polyamide (PA ), polycarbonate (PC), PET (polyethylene terephthalate), and various carbon fiber reinforced plastics (CFRP) and glass fiber reinforced plastics (GFRP).
- PE polyethylene
- PP polypropylene
- PS polystyrene
- POM polyacetal
- PVC polyvinyl chloride
- PET polyethylene terephthalate
- ABS resin ABS resin
- PA polyamide
- PC polycarbonate
- PET polyethylene terephthalate
- GFRP glass fiber reinforced plastics
- thermosetting resin is not particularly limited as long as it does not impair the effects of the present invention, and conventionally known various thermosetting resins can be used.
- thermosetting resins include epoxy resins, phenol resins, unsaturated polyester resins, urethane resins, and silicone resins.
- the metal material used as the material to be joined is not particularly limited as long as it does not impair the effects of the present invention, and various conventionally known metal materials can be used.
- steel materials, aluminum materials, aluminum alloy materials, titanium materials, Any one of titanium alloy material, nickel-titanium alloy material, copper material, and copper alloy material can be used. From such viewpoints, it is preferable to use stainless steel, titanium and titanium alloys, and from the viewpoint of material cost, it is preferable to use various carbon steels including galvanized steel sheets.
- the surface of the metal material used as the material to be bonded is irradiated with a pulse laser in an oxidizing atmosphere, and metal oxide particles having a particle size of 5 to 500 nm are formed continuously. It is preferable to form a surface modified region having metal oxide particle clusters that are physically bonded together, and bring the graphitized region 4 into contact with the surface modified region at the interface to be bonded.
- the maximum height (Sz) of the surface of the metal oxide particle cluster, which is the interface to be bonded on the metal material side is set to 50 nm to 3 ⁇ m, the adhesion between the metal oxide particle cluster and the bonding resin material is improved. can be secured.
- the bonding step (S02) is a step for achieving bonding by raising the temperature of the interface to be bonded using an external heating means.
- an external heating means can raise the temperature of the interface to be joined
- various conventionally known external heating means can be used as long as they do not impair the effects of the present invention, but laser irradiation is preferably used.
- the temperature of the interface to be joined can be easily and efficiently raised regardless of the shape and size of the area to be joined.
- the laser can also be used to form a graphitized region on the surface of a resin material and to form a surface-modified region on the surface of a metal material, thereby streamlining the bonding line. can be planned.
- the bonding resin material 2 When the bonding resin material 2 is transparent, it is preferable to irradiate the laser from the bonding resin material 2 side, and when the bonding resin material 2 is opaque, it is preferable to irradiate the laser from the metal material side.
- the bonding resin material 2 When the bonding resin material 2 is transparent, the pulse laser is irradiated from the bonding resin material 2 side. can be raised effectively.
- the laser from the metal material side it can be used as a material to be bonded regardless of the type of the bonding resin material 2 .
- a space can be provided on the bonding resin material 2 side, and pressure can be applied from the surface of the bonding resin material 2 as necessary.
- the bonding step (S02) it is preferable to apply a bonding pressure to the interface to be bonded.
- a bonding pressure By applying pressure to the interface to be bonded, the adhesion between the metal material and the bonding resin material 2 can be improved, the formation of defects can be suppressed, and the bonding strength of the bonding interface can be improved.
- the joints obtained by the resin material joining method of the present invention have sufficiently high strength, but by adding a pressure process, it is possible to reduce quality variations.
- the softened thermoplastic resin material spreads beyond the range of the heat-affected zone of the metal material by the pressurization, so that the joint interface between the metal material and the thermoplastic resin material can be expanded.
- FIG. 4 is a process diagram for bonding in the present invention.
- the resin material bonding method of the present invention includes a bonding interface forming step (S01) of forming a bonding interface and a bonding step (S02) of curing an adhesive on the bonding interface to achieve bonding. ing.
- the adhesive applied to the interface to be joined is not particularly limited as long as it does not impair the effects of the present invention, and various conventionally known adhesives can be used. It may be appropriately selected according to the joint characteristics and the like. Examples of adhesives include epoxies, acrylics, cyanoacrylates, urethanes, and silicones.
- the bonding step (S02) is a step for achieving bonding by curing the adhesive on the interface to be bonded. If the adhesive needs to be heated to cure, the interface to be bonded may be heated using a suitable external heating means. Also, the effect of the adhesive may be advanced by adding suitable ingredients. By curing the adhesive, it is possible to obtain a good bonded portion in which the materials to be bonded are bonded via the graphitized region 4 and the adhesive layer.
- a YLP pulse laser manufactured by IPG was used as the laser, and the laser irradiation conditions were an average output of 50 W (one pulse energy: 1 mj), a focus diameter of 59 ⁇ m, and a laser of 30 ⁇ m in the plate width direction and 70 ⁇ m in the longitudinal direction. Irradiated at intervals of .
- the laser pulse width is 100 ns.
- FIGS. 5 and 6 Optical micrographs of the surface and cross section of the laser-irradiated PEEK plate are shown in FIGS. 5 and 6, respectively.
- the laser-irradiated region is blackened, and this region is the graphitized region.
- the cross-sectional photograph is a cross section cut along the dotted line of the surface photograph, and discoloration is observed up to a depth of 150 to 200 ⁇ m from the surface, and it can be seen that a large number of fine black dots are dispersed in the discolored area.
- the diameter of the black dots is several ⁇ m to several tens of ⁇ m, and many foam marks are also confirmed along with the black dots.
- brown areas are present around the black spots, and black spots, brown areas, and foam marks are dispersed in the graphitized areas. These are formed by pulsed laser irradiation.
- FT-IR-ATR imaging measurements were performed on the cross section shown in FIG.
- the apparatus used for the measurement is a microscopic infrared apparatus (Hyperion 3000) manufactured by Bruker, and the measurement conditions are light source: special ceramics, purge: nitrogen gas, detector: two-dimensional detector, detection pixel size: 4 ⁇ m/pixel, Resolution: 4 cm ⁇ 1 , measurement wavelength range: 3900 to 750 cm ⁇ 1 , number of times of accumulation: 256 times.
- the peak intensity differs depending on the state of adhesion to the ATR prism, so it is necessary to perform normalization with a reference peak . was standardized as the reference peak.
- FIG. 7 shows the spectra from the laser-irradiated portion and the untreated portion and their difference spectra. From the difference spectrum, the laser-irradiated surface shows a clear decrease in ketones (1650 cm ⁇ 1 ) and ethers (1280 cm ⁇ 1 ), hydroxyl groups (3300 cm ⁇ 1 ) and carbonyls (1760 to 1700 cm ⁇ 1 ) derived from oxidation, compared to the untreated surface. -1 ) did not increase, it is considered that no oxidized/denatured product occurred.
- the crystallinity was lower than that in the inner layer to a depth of about 100 to 150 ⁇ m from the surface. It is considered that the melting effect due to the heat of the laser irradiation occurs to a depth of about 100 to 150 ⁇ m from the surface.
- Raman spectroscopic analysis was performed on the cross section shown in FIG.
- a near-infrared Raman spectrometer manufactured by Photon Design and an inVia manufactured by RENISHAW were used for Raman spectroscopic analysis, and both were analyzed in a microscopic Raman measurement mode.
- the excitation wavelengths used for the measurements were 1064 nm and 532 nm, and the laser spot diameter was about 1 ⁇ m.
- the measurement points were an untreated portion, a discolored portion (brown portion), and a black portion (black spot), and three points were measured at different locations for each portion.
- the Raman spectrum of the untreated portion obtained by near-infrared light excitation (1064 nm) is shown in FIG. 9, the Raman spectrum of the discolored portion is shown in FIG. 10, and the Raman spectra of the untreated portion and the discolored portion are shown in FIG.
- a PEEK-derived Raman band and fluorescence (increased background) were obtained from all of them.
- the spectral shape of PEEK is similar, and it is considered that the composition of PEEK is not significantly modified in the discolored portion. As a slight change, a broadening of the band width was recognized, and it is considered that the crystallinity is lowered in the discolored portion (Fig. 12).
- the black part was damaged by near-infrared light excitation, and the Raman spectrum could not be obtained.
- the damage is caused by the absorption of the excitation light and the heat generated thereby, meaning that the absorption in the near-infrared region is large in the black portion. It is presumed that the formation of an unsaturated structure proceeds in the black part and a large ⁇ -electron conjugated structure is formed.
- FIG. 13 shows an untreated portion
- FIG. 14 shows a discolored portion
- FIG. 15 shows a black portion
- FIG. 16 shows comparison of each Raman spectrum
- FIG. 17 shows a Raman spectrum detected in a very small portion of the black portion.
- the intensity of fluorescence is determined by the magnitude of absorption and the probability of emission at the excitation wavelength, which depend on the molecular structure and accompanying electronic states. It is considered that the formation of unsaturated bonds progressed in the discolored portion and the absorbance increased. Since no significant change was observed in the primary structure of PEEK by measurement using near-infrared excitation, it is presumed that slight terminal modification has occurred. In the black part, as was inferred from the measurement of near-infrared excitation, a large ⁇ -electron conjugated structure is thought to be formed, which is thought to reduce the luminescence probability.
- the PEEK bonds are cut and recombined to form unsaturated bonds and form a large ⁇ -electron conjugated structure. Modification has progressed to a level corresponding to carbon in a very small portion, but carbonization has not occurred in most of the portions, and a structure similar to its precursor is considered to be formed. In the discolored portion around the black portion, the crystallinity is lowered and the formation of unsaturated bonds (increase in fluorescence) progresses slightly, but the structure of PEEK is maintained as a whole.
- the A2024 aluminum alloy plate has a size of 1.5 mm ⁇ 10 mm ⁇ 45 mm. spliced.
- a 4 kW semiconductor laser manufactured by Laserline was used for laser irradiation, and a line laser of 5 mm x 12 mm was used using a zoom homogenizer for the optical system.
- temperature feedback control was used to vary the laser output so as to keep the bonding temperature constant.
- the laser scanning speed was set to 0.3 mm/s, and the temperature of the interface to be joined was controlled to 380°C.
- the average maximum load and shear strength are 2309.6 N and 45.8 MPa, respectively, indicating that a strong and highly reliable joint is formed. In addition, when the graphitized region was not formed, a joint capable of strength measurement could not be obtained.
- the average maximum load and shear strength are 3063.8 N and 26.4 MPa, respectively, and it can be seen that a strong and highly reliable joint is formed.
- the maximum load and shear strength obtained are significantly higher than those without graphitized regions.
- a region (20 mm ⁇ 25 mm) on the surface of a 0.5 mm ⁇ 20 mm ⁇ 45 mm filler (carbon) containing polytetrafluoroethylene (PTFE) plate that will be the interface to be joined is subjected to laser irradiation in the atmosphere and graphitized.
- a region was formed.
- a YLP pulse laser manufactured by IPG was used as the laser, and the laser irradiation conditions were an average output of 50 W (one pulse energy: 1 mj), a focus diameter of 59 ⁇ m, and a laser of 30 ⁇ m in the plate width direction and 70 ⁇ m in the longitudinal direction. Irradiated at intervals of .
- the laser pulse width is 100 ns.
- the PTFE plates were placed on top of each other and the interface to be bonded was held at room temperature for about 60 minutes to cure the adhesive and bond. did A two-liquid mixed epoxy system was used as the adhesive and was applied uniformly over the entire surface of the interface to be joined.
- the strength of the obtained joint was evaluated by a shear tensile test in the same manner as in the case of direct joint. Test temperature, test humidity, test chamber temperature and test chamber humidity are the same as for direct bonding. The obtained test force (N)-displacement (mm) curve is shown in FIG. After the joint exhibited a large elongation, the base material of the PTFE plate was broken at a maximum load of about 190N. The results indicate that the PTFE plate/PTFE plate bonding interface strength is extremely high.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Health & Medical Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Medicinal Chemistry (AREA)
- Polymers & Plastics (AREA)
- Lining Or Joining Of Plastics Or The Like (AREA)
Abstract
リベット締結等の機械的接合を用いることなく、樹脂材同士及び樹脂材と金属材とを接合するために好適に用いることができる接合用樹脂材及びその簡便かつ効率的な製造方法並びに当該接合用樹脂材を用いた接合方法を提供する。また、熱可塑性樹脂と熱硬化性樹脂の両方に適用可能であり、被接合材同士の直接接合と接着剤を使用した接合の両方において接合強度及び接合部の信頼性を向上させることができる接合用樹脂材及びその簡便かつ効率的な製造方法並びに当該接合用樹脂材を用いた接合方法を提供する。本発明の接合用樹脂材は、樹脂材の表面の少なくとも一部に、C=C結合及び/又はC-C結合を有する不飽和な黒鉛化領域を有すること、を特徴とする。黒鉛化領域はアモルファスカーボンであることが好ましい。
Description
本発明は樹脂材同士及び樹脂材と金属材との接合に用いることができる接合用樹脂材及びその製造方法並びに接合用樹脂材を用いた接合方法に関する。
従来、樹脂材同士の接合には接着剤が用いられ、金属材と樹脂材との接合には、接着剤やリベット締結を用いるのが一般的である。接着剤を用いる場合は物理的吸着力や化学的吸着力により接合が達成され、リベット締結を用いる場合はリベットによる機械的な締結によって接合が達成される。
しかしながら、接着剤を用いる場合、接合強度が被接合面の状態に大きく影響され、樹脂材同士を接合する場合及び金属材と樹脂材を接合する場合の両方において、十分な接合強度が得られない場合が存在する。
また、リベット締結を用いる場合、締結部の大きさや重量によって部品が大型化・重量化することに加え、設計の自由度も低下することから、適用できる部品が限定されてしまう。
このような状況において、ポリエチレン(PE)、ポリプロピレン(PP)、ポリスチレン(PS)、ポリ塩化ビニル(PVC)及びABS樹脂(ABS)等の汎用プラスチックや、ポリエチレンテレフタレート(PET)、ポリカーボネート(PC)等のエンジニアリングプラスチック及びポリエーテルエーテルケトン(PEEK)、ポリアミドイミド(PAI)等のスーパーエンジニアリングプラスチックは、種々の分野で大量に使用されており、これらの熱可塑性樹脂材同士の接合だけでなく、熱可塑性樹脂材と金属材との直接接合が切望されている。
しかしながら、熱可塑性樹脂は分子構造が安定で不活性であることから、熱可塑性樹脂材と金属材との直接接合は極めて困難であり、良好な接合部を得るためには基本的に表面処理が不可欠である。現在、工業用途で汎用されている金属ナトリウムを用いた表面処理の場合、エポキシ系接着剤との組み合わせによって高い接着強度が期待できるが、環境上の問題からクリーンな代替手法が望まれている。また、接着剤は耐熱性が低いため、熱可塑性樹脂の特徴を活用した高温雰囲気下での連続使用は難しく、比較的低温での使用に限られてしまう。更に、特に医療や食品等の分野では接着剤の使用は極力控えるべきであり、このような観点からも接着剤を用いない直接接合が望まれている。
また、熱硬化性樹脂は熱可塑性樹脂よりも分子構造が安定で不活性であり、熱硬化性樹脂材同士及び熱硬化性樹脂材と金属材との直接接合は、熱可塑性樹脂の場合よりも更に困難となる。現状では熱硬化性樹脂材の接合には主に接着剤が使用されているが、例えば、近年需要が高まっている炭素繊維強化プラスチック(CFRP)等では、上記の接着剤に起因する問題が深刻化している。
これに対し、例えば、特許文献1(特開2005-104132号公報)においては、レーザ透過性を備えた第1の平板状熱可塑性樹脂材の表面及びレーザ透過性を備えた第2の平板状熱可塑性樹脂材の裏面に粗面化処理を施す工程と、それぞれの粗面間に液状のレーザ吸収体を介装させた状態で、第1の平板状熱可塑性樹脂材及び第2の平板状熱可塑性樹脂材を積層させる工程と、第2の平板状熱可塑性樹脂材の表面側からレーザビームLを照射してレーザ吸収体を加熱し、第1の平板状熱可塑性樹脂材及び第2の平板状熱可塑性樹脂材の対向面を溶融させる工程と、溶融した熱可塑性樹脂材同士を融着させる工程とを備えた熱可塑性樹脂材間の接合方法、が提案されている。
前記特許文献1に記載の熱可塑性樹脂材間の接合方法においては、予め各熱可塑性樹脂材の少なくとも一方の表面に粗面を形成することによって濡れ性が向上し、液状のレーザ吸収体が熱可塑性樹脂材の表面に均一に広がることとなり、溶着むらが生じなくなることから、熱可塑性樹脂材同士をレーザビームの照射によって安定的に接合することができる、としている。
また、特許文献2(特開2016-56363号公報)においては、有機高分子化合物を含む成型体の表面温度を(前記有機高分子化合物の融点-120)℃以上にして、当該成型体の表面に大気圧プラズマ処理を行い、過酸化物ラジカルを導入することを特徴とする表面改質成型体の製造方法、が提案されている。
前記特許文献2に記載の表面改質成型体の製造方法においては、大気圧プラズマによる処理を行う際に、成型体表面を融点近くの高温とすることによって、有機高分子化合物の高分子の運動性を向上させることができ、成型体表面に過酸化物ラジカルを導入するとともに、有機高分子同士間に炭素-炭素結合が生じ、表面硬さを向上させることができることから、熱可塑性樹脂などのように接着性の低い有機高分子化合物を含む成型体を被着体と接合する際に、接着剤を用いない場合であっても接合を達成することができる、としている。
更に、本発明者らも、特許文献3(特開2019-123153号公報)において、一方の被接合材と他方の被接合材を直接接合する方法であって、一方の被接合材が熱可塑性樹脂材であり、当該一方の被接合材の表面にナトリウムを含む混合溶液を塗布した後、混合溶液が 塗布された表面にレーザ照射を施す第一工程と、混合溶液を塗布した表面に他方の被接合材を当接させ、被接合界面を形成する第二工程と、レーザ照射によって被接合界面を昇温する第三工程と、を有すること、を特徴とする熱可塑性樹脂の接合方法、を提案している。
上記特許文献3に記載の熱可塑性樹脂の接合方法においては、レーザ照射によって熱可塑性樹脂のC-F結合を分離し、フッ素との結合性が高いナトリウムとフッ素とを結合させることで、分子構造が安定で不活性な熱可塑性樹脂の接合性を向上させることができる。
しかしながら、前記特許文献1に記載の接合方法は、熱可塑性樹脂材同士の接合のみを対象としており、熱可塑性樹脂材と金属材を接合することはできない。また、被接合材はレーザ透過性を有する熱可塑性樹脂材に限定されることに加え、接合界面強度の向上に直接寄与しないレーザ吸収体が接合界面に残存してしまう。
また、前記特許文献2に記載の表面改質成型体の製造方法では、真空排気系を有するチャンバー内に熱可塑性樹脂材を配置して大気圧プラズマ処理を施す必要があることに加え、当該熱可塑性樹脂材の表面温度を規定の温度域に昇温する必要がある。即ち、適用できる熱可塑性樹脂材のサイズ及び形状が制限されると共に、工程が煩雑になってしまう。更に、熱可塑性樹脂材と接着できるのは反応性官能基を有する被着体に限られる。
また、前記特許文献3に記載の熱可塑性樹脂の接合方法では、他の接合方法と比較して高い強度を有する金属熱可塑性樹脂継手を得ることができるが、被接合材の表面に混合溶液を塗布する湿式の工程を有しており、均質かつ高強度な接合部を大量かつ高効率に製造する観点からは、改善の余地がある。
更に、前記特許文献1~3に開示されている接合技術は熱可塑性樹脂のみを対象としており、熱硬化性樹脂材同士及び熱硬化性樹脂材と金属材を強固に接合する適当な技術は存在しない。
以上のような従来技術における問題点に鑑み、本発明の目的は、リベット締結等の機械的接合を用いることなく、樹脂材同士及び樹脂材と金属材とを接合するために好適に用いることができる接合用樹脂材及びその簡便かつ効率的な製造方法並びに当該接合用樹脂材を用いた接合方法を提供することにある。また、本発明は、熱可塑性樹脂と熱硬化性樹脂の両方を対象とし、被接合材同士の直接接合と接着剤を使用した接合の両方において接合強度及び接合部の信頼性を向上させることができる接合用樹脂材及びその簡便かつ効率的な製造方法並びに当該接合用樹脂材を用いた接合方法を提供することも目的としている。
本発明者は上記目的を達成すべく、被接合材とする樹脂材(接合用樹脂材)の表面状態等について鋭意研究を重ねた結果、被接合領域となる表面にC=C結合及び/又はC-C結合を有する不飽和な黒鉛化領域を形成させること等が極めて効果的であることを見出し、本発明に到達した。
即ち、本発明は、樹脂材の表面の少なくとも一部に、C=C結合及び/又はC-C結合を有する不飽和な黒鉛化領域を有すること、を特徴とする接合用樹脂材、を提供する。
本発明の接合用樹脂材におけるC=C結合及び/又はC-C結合を有する不飽和な黒鉛化領域は、その他の表面と比較してエネルギー状態が高く活性であり、当該領域と他方の被接合界面とを当接し、加熱及び加圧することで良好な直接接合界面を形成させることができる。
また、接着剤を用いて接合を達成する場合であっても、C=C結合及び/又はC-C結合を有する不飽和な黒鉛化領域は接合用樹脂材/接着層の接合界面の高強度化に大きく寄与する。
本発明の接合用樹脂材においては、前記黒鉛化領域がアモルファスカーボンであること、が好ましい。アモルファスカーボンは無定形炭素であり、C=C結合及び/又はC-C結合を多く有する不飽和な状態であることから、直接接合及び接着剤の両方において、強固な接合界面が形成され、接合界面の強度及び信頼性を向上させることができる。
また、本発明の接合用樹脂材においては、前記樹脂材が熱可塑性樹脂であること、が好ましい。熱可塑性樹脂は接合時の昇温によって軟化するため、他方の接合材との十分な密着性を担保することができ、欠陥形成の抑制及び黒鉛化領域と他方の被接合界面との結合の促進によって、良好な接合界面を安定して形成させることができる。
更に、本発明の接合用樹脂材においては、前記樹脂材が熱硬化性樹脂であること、が好ましい。極めて反応性に乏しい熱硬化性樹脂であっても、表面に形成された黒鉛化領域によって、直接接合及び接着剤の両方において、強固な接合界面が形成され、接合界面の強度及び信頼性を向上させることができる。
また、本発明は、樹脂材の表面にパルスレーザを照射し、前記表面にC=C結合及び/又はC-C結合を有する不飽和な黒鉛化領域を形成させること、を特徴とする接合用樹脂材の製造方法、も提供する。
樹脂材の表面にパルスレーザを照射することで、樹脂材表面の化学構造が変化し、当該領域にC=C結合及び/又はC-C結合を有する不飽和な黒鉛化領域を形成させることができる。樹脂材の最表面のみに当該黒鉛化領域を形成させるためには、当該領域に適当なエネルギーを投入する必要があるが、パルスレーザを用いることでこれを実現することができる。
本発明の接合用樹脂材の製造方法においては、前記黒鉛化領域をアモルファスカーボンとすることが好ましい。パルスレーザを照射した領域の表面状態は、例えば、顕微FT-IRやラマン分光分析で確認すればよく、結合の不飽和度を増加させるためには、パルスレーザの出力の増加や照射時間の増加等でこれを達成できる。一方で、接合用樹脂材の劣化を抑制したい場合は、パルスレーザの出力の低下や照射時間の短縮等でこれを達成できる。
また、本発明の接合用樹脂材の製造法においては、前記パルスレーザをナノ秒短パルスレーザとすること、が好ましい。ナノ秒短パルスレーザを用いることで、簡便かつ効率的に、接合用樹脂材の表面にC=C結合及び/又はC-C結合を有する不飽和な黒鉛化領域を形成させることができる。例えば、連続波レーザを用いると、接合用樹脂材の表面に投入するエネルギーの調整が難しく、パルスレーザを用いた場合であっても、ピコ秒以下のパルス幅とすると、1パルスあたりのエネルギーが少なくなり、黒鉛化領域をC=C結合及び/又はC-C結合を有する不飽和な状態とすることが難しい。
また、本発明は、
少なくとも一方の被接合材を本発明の接合用樹脂材とし、
前記接合用樹脂材の表面の黒鉛化領域を介して前記接合用樹脂材と他方の被接合材とを当接させ、被接合界面を形成する被接合界面形成工程と、
外部加熱手段によって前記被接合界面を昇温して接合を達成する接合工程と、を有し、
前記接合用樹脂材と前記他方の被接合材とを前記黒鉛化領域を介して直接接合すること、
を特徴とする樹脂材の接合方法、も提供する。
少なくとも一方の被接合材を本発明の接合用樹脂材とし、
前記接合用樹脂材の表面の黒鉛化領域を介して前記接合用樹脂材と他方の被接合材とを当接させ、被接合界面を形成する被接合界面形成工程と、
外部加熱手段によって前記被接合界面を昇温して接合を達成する接合工程と、を有し、
前記接合用樹脂材と前記他方の被接合材とを前記黒鉛化領域を介して直接接合すること、
を特徴とする樹脂材の接合方法、も提供する。
本発明の樹脂材の接合方法には、(1)本発明の接合用樹脂材同士の接合、(2)本発明の接合用樹脂材と任意の樹脂材との接合、(3)本発明の接合用樹脂材と任意の金属材との接合、が含まれる。これらのいずれの態様においても、外部加熱手段によって被接合界面を昇温することで、黒鉛化領域を介して被接合材が直接接合した良好な接合部を得ることができる。
外部加熱手段は被接合界面を昇温できればよく、本発明の効果を損なわない限りにおいて従来公知の種々の外部加熱手段を用いることができる。また、接合工程において、被接合界面同士は密着していればよいが、接合圧力を印加することが好ましい。
本発明の樹脂材の接合方法においては、
前記他方の被接合材を金属材とし、
接合の予備処理として、酸化性雰囲気下において前記金属材の表面にパルスレーザを照射し、5~500nmの粒径を有する金属酸化物粒子が連続的に接合されてなる金属酸化物粒子クラスターを有する表面改質領域を形成し、
前記被接合界面において、前記黒鉛化領域と前記表面改質領域を当接させること、
が好ましい。
前記他方の被接合材を金属材とし、
接合の予備処理として、酸化性雰囲気下において前記金属材の表面にパルスレーザを照射し、5~500nmの粒径を有する金属酸化物粒子が連続的に接合されてなる金属酸化物粒子クラスターを有する表面改質領域を形成し、
前記被接合界面において、前記黒鉛化領域と前記表面改質領域を当接させること、
が好ましい。
5~500nmの粒径を有する金属酸化物粒子が連続的に接合されてなる金属酸化物粒子クラスターを有する表面改質領域は、昇温時における黒鉛化領域のC=C結合及び/又はC-C結合の解離を促進し、効率的に強固な接合部を得ることができる。ここで、金属材側の被接合界面となる金属酸化物粒子クラスターの表面の最大高さ(Sz)を50nm~3μmとすることで、金属酸化物粒子クラスターと接合用樹脂材との密着性を担保することができる。
また、本発明の樹脂材の接合方法においては、レーザ照射によって前記被接合界面を昇温すること、が好ましい。外部加熱手段にレーザ照射を用いることで、被接合領域の形状及び大きさに依らず、簡便かつ効率的に被接合界面を昇温することができる。
更に、本発明は、
少なくとも一方の被接合材を本発明の接合用樹脂材とし、
前記黒鉛化領域と接着剤を介して前記接合用樹脂材と他方の被接合材とを当接させ、被接合界面を形成する被接合界面形成工程と、
前記接着剤を硬化させる接着工程と、を有すること、
を特徴とする樹脂材の接合方法、も提供する。
少なくとも一方の被接合材を本発明の接合用樹脂材とし、
前記黒鉛化領域と接着剤を介して前記接合用樹脂材と他方の被接合材とを当接させ、被接合界面を形成する被接合界面形成工程と、
前記接着剤を硬化させる接着工程と、を有すること、
を特徴とする樹脂材の接合方法、も提供する。
接着剤を用いる場合においても、(1)本発明の接合用樹脂材同士の接合、(2)本発明の接合用樹脂材と任意の樹脂材との接合、(3)本発明の接合用樹脂材と任意の金属材との接合、が含まれる。これらのいずれの態様においても、接着剤を硬化させることで、黒鉛化領域と接着層を介して被接合材が接合した良好な接合部を得ることができる。
本発明によれば、リベット締結等の機械的接合を用いることなく、樹脂材同士及び樹脂材と金属材とを接合するために好適に用いることができる接合用樹脂材及びその簡便かつ効率的な製造方法並びに当該接合用樹脂材を用いた接合方法を提供することができる。また、本発明によれば、熱可塑性樹脂と熱硬化性樹脂の両方を対象とし、被接合材同士の直接接合と接着剤を使用した接合の両方において接合強度及び接合部の信頼性を向上させることができる接合用樹脂材及びその簡便かつ効率的な製造方法並びに当該接合用樹脂材を用いた接合方法を提供することもできる。
以下、図面を参照しながら本発明の接合用樹脂材及びその製造方法並びに接合用樹脂材を用いた接合方法の代表的な実施形態について詳細に説明するが、本発明はこれらのみに限定されるものではない。なお、以下の説明では、同一または相当部分には同一符号を付し、重複する説明は省略する場合がある。また、図面は、本発明を概念的に説明するためのものであるから、表された各構成要素の寸法やそれらの比は実際のものとは異なる場合もある。
1.接合用樹脂材
図1は、本発明の接合用樹脂材の一態様を示す概略断面図である。本発明の接合用樹脂材2の表面の少なくとも一部には、C=C結合及び/又はC-C結合を有する不飽和な黒鉛化領域4が形成されている。
図1は、本発明の接合用樹脂材の一態様を示す概略断面図である。本発明の接合用樹脂材2の表面の少なくとも一部には、C=C結合及び/又はC-C結合を有する不飽和な黒鉛化領域4が形成されている。
黒鉛化領域4は、接合用樹脂材2の最表面から50~200μmの厚さで形成されていることが好ましい。黒鉛化領域4の厚さを50μm以上とすることで、C=C結合及び/又はC-C結合を含む不飽和結合の形成を促進させることができる。一方で、黒鉛化領域4の厚さを200μm以下とすることで、接合用樹脂材2の劣化が抑制され、接合部に応力が印加された際に、黒鉛化領域4から破断することを抑制できる。また、より好ましい黒鉛化領域4の厚さは100~150μmである。
黒鉛化領域4の断面における微細組織の模式図を図2に示す。黒鉛化領域4においては、微細な黒色点6が分散していることが好ましい。黒色点6は、パルスレーザの照射によって樹脂の原子結合の切断と再結合が生じ、不飽和構造の形成が進行して大きなπ電子共役構造が形成された領域である。即ち、黒色点6の存在は黒鉛化領域4にC=C結合及び/又はC-C結合を含む不飽和結合が形成されていることを意味し、実際には黒色点6の周囲の変色領域においても当該不飽和結合の形成が進行している。
また、黒色点6の直径は1~100μmとすることが好ましい、黒色点6の直径を1μm以上とすることで、C=C結合及び/又はC-C結合を含む不飽和結合を確実に形成することができる。また、黒色点6の直径を100μm以下とすることで、樹脂構造の過度な破壊を抑制できるだけでなく、C=C結合及び/又はC-C結合を含む不飽和結合の分布を均質化することができる。
また、黒色化領域4はパルスレーザの照射によって形成されることから、黒色化領域4には微細な発泡痕8が散在している。ここで、発泡痕8の直径は500μm以下とすることが好ましく、250μm以下とすることがより好ましく、100μm以下とすることが最も好ましい。発泡痕8を微細化することで、接合部に応力が印加された際に、黒鉛化領域4から破断することを抑制できる。
黒鉛化領域4における炭素原子の結合状態は、ラマン分光分析を用いて確認することができる。具体的には、レーザのスポット径を1μm程度として、顕微モードで黒鉛化領域4と未処理領域(パルスレーザ照射の影響を受けていない領域)に対して測定を行い、得られたラマンスペクトルを比較すればよい。
例えば、近赤外光(1064nm)励起によって得られたラマンスペクトルでは、黒鉛化領域4のラマンスペクトルにおけるバンド幅のブロード化(結晶性の低下に起因)を確認すればよい。また、黒色点6は近赤外光励起ではダメージが発生し、ラマンスペクトルを取得することができないが、これは黒色点6では近赤外領域の吸収が大きくなっていることに対応しており、黒色点6では不飽和構造の形成が進行し、大きなπ電子共役構造が形成していることを意味している(π電子共役長の増大は吸収スペクトルの長波長化を生じる)。
また、可視光(532nm)励起の場合は、黒鉛化領域4と未処理領域のいずれからも強い蛍光のみが検出され、ラマンバンドが検出されないことがあるが、この場合は蛍光の強度を比較すればよい。未処理部と比べて黒鉛化領域4からの蛍光が強い状態(黒色点6では微弱)であれば、黒鉛化領域4に不飽和構造が形成されていると見做すことができる。不飽和結合の形成が進行すると吸光度が増大し、蛍光の強度が大きくなる。一方で、黒色点6では大きなπ電子共役構造が形成していることから、発光確率が減少する(π電子の自由な運動に伴う熱拡散効率の増大により発光確率が低下する)。
また、黒色点6からのラマンスペクトルに関して、1600cm-1と1350cm-1付近におけるブロードなラマンバンドを確認してもよい。当該ラマンバンドは低結晶性のカーボンに起因するものであり、不飽和構造の形成が特に進行した状態を示すものである。
黒鉛化領域4の状態は、顕微FT-IRを用いて確認することもできる。具体的には、黒鉛化領域4と未処理領域に対してFT-IR-ATR測定を行い、得られたスペクトルやマッピング像を比較すればよい。例えば、黒鉛化領域4からのスペクトルにおいて、カーボンの存在に起因するベースラインのドリフトを評価することで、黒鉛化領域4における不飽和構造の形成の進行を確認することができる。
また、黒鉛化領域4からのスペクトルにおいて、結晶性に由来する1306cm-1の吸収帯が減少していれば、当該現象は樹脂の融解によって結晶性が低下したことを示唆しており、間接的に黒鉛化領域4における不飽和構造の形成の進行を確認することができる。
黒鉛化領域4は接合用樹脂材2の被接合界面となる領域に形成されていればよい。黒鉛化領域4は当該被接合界面の全域に形成されていることが好ましいが、例えば、線状や点状からなるパターン形状として形成されていてもよい。
接合用樹脂材2においては、樹脂材が熱可塑性樹脂であることが好ましい。熱可塑性樹脂は接合時の昇温によって軟化するため、他方の接合材との十分な密着性を担保することができ、欠陥形成の抑制及び黒鉛化領域4と他方の被接合界面との結合の促進によって、良好な接合界面を安定して形成させることができる。
熱可塑性樹脂は本発明の効果を損なわない限りにおいて特に限定されず、従来公知の種々の熱可塑性樹脂とすることができ、例えば、ポリエーテルエーテルケトン樹脂(PEEK)とすることができる。
また、接合用樹脂材2においては、樹脂材として熱硬化性樹脂を好適に用いることができる。極めて反応性に乏しい熱硬化性樹脂であっても、表面に形成された黒鉛化領域4によって、直接接合及び接着剤の両方において、強固な接合界面が形成され、接合界面の強度及び信頼性を向上させることができる。
熱硬化性樹脂は本発明の効果を損なわない限りにおいて特に限定されず、従来公知の種々の熱可塑性樹脂とすることができ、例えば、エポキシ樹脂や熱硬化性ポリイミド樹脂とすることができる。
2.接合用樹脂材の製造方法
本発明の接合用樹脂材の製造方法は、樹脂材の表面にパルスレーザを照射し、当該表面にC=C結合及び/又はC-C結合を有する不飽和な黒鉛化領域を形成させること、を特徴とするものである。
本発明の接合用樹脂材の製造方法は、樹脂材の表面にパルスレーザを照射し、当該表面にC=C結合及び/又はC-C結合を有する不飽和な黒鉛化領域を形成させること、を特徴とするものである。
樹脂材の表面にパルスレーザを照射することで、樹脂材表面の化学構造が変化し、当該領域にC=C結合及び/又はC-C結合を有する不飽和な黒鉛化領域4を形成させることができる。樹脂材の最表面のみに黒鉛化領域4を形成させるためには、当該領域に適当なエネルギーを投入する必要があるが、パルスレーザを用いることでこれを実現することができる。
本発明の接合用樹脂材の製造方法においては、黒鉛化領域4をアモルファスカーボンとすることが好ましい。パルスレーザを照射した領域の表面状態は、例えば、顕微FT-IRやラマン分光分析で確認すればよく、結合の不飽和度を増加させるためには、パルスレーザの出力の増加や照射時間の増加等でこれを達成できる。一方で、接合用樹脂材2の劣化を抑制したい場合は、パルスレーザの出力の低下や照射時間の短縮等でこれを達成できる。
また、本発明の接合用樹脂材の製造法においては、パルスレーザをナノ秒短パルスレーザとすること、が好ましい。ナノ秒短パルスレーザを用いることで、簡便かつ効率的に、接合用樹脂材2の表面にC=C結合及び/又はC-C結合を有する不飽和な黒鉛化領域4を形成させることができる。例えば、連続波レーザを用いると、接合用樹脂材の表面に投入するエネルギーの調整が難しく、パルスレーザを用いた場合であっても、ピコ秒以下のパルス幅とすると、1パルスあたりのエネルギーが少なくなり、黒鉛化領域4をC=C結合及び/又はC-C結合を有する不飽和な状態とすることが難しい。
パルスレーザの照射は、被接合領域となる範囲に施せばよい。被接合領域の少なくとも一部に照射されていればよいが、当該領域の全面に照射することが好ましい。
パルスレーザの走査パターンは特に限定されず、線状の照射領域をラッピングしてもよく、任意のパターン形状としてもよい。また、多数の点状の照射領域を形成させてもよい。
樹脂材の種類は本発明の効果を損なわない限りにおいて特に限定されず、従来公知の種々の樹脂材を用いることができる。樹脂材は熱可塑性樹脂であっても熱硬化性樹脂であってもよい。また、樹脂材の大きさ及び形状についても特に限定されず、被接合材として所望される大きさ及び形状とすればよい。
3.接合用樹脂材を用いた接合方法
本発明の接合方法は、接合用樹脂材2を少なくとも一方の被接合材とすることを最大の特徴としており、接合用樹脂材同士2の接合、接合用樹脂材2と任意の樹脂材との接合、及び接合用樹脂材2と任意の金属材との接合、を含んでいる。また、被接合材同士を直接接合する方法と、接着剤を用いて接合する方法に大別される。以下、接合用樹脂材2と金属材とを接合する場合を代表例として、直接接合する場合と接着剤を用いる場合(接着)について詳細に説明する。
本発明の接合方法は、接合用樹脂材2を少なくとも一方の被接合材とすることを最大の特徴としており、接合用樹脂材同士2の接合、接合用樹脂材2と任意の樹脂材との接合、及び接合用樹脂材2と任意の金属材との接合、を含んでいる。また、被接合材同士を直接接合する方法と、接着剤を用いて接合する方法に大別される。以下、接合用樹脂材2と金属材とを接合する場合を代表例として、直接接合する場合と接着剤を用いる場合(接着)について詳細に説明する。
(1)直接接合
図3は、本発明において直接接合を行う場合の工程図である。本発明の樹脂材の接合方法は、被接合界面を形成する被接合界面形成工程(S01)と、被接合界面を昇温して接合を達成する接合工程(S02)と、を有している。
図3は、本発明において直接接合を行う場合の工程図である。本発明の樹脂材の接合方法は、被接合界面を形成する被接合界面形成工程(S01)と、被接合界面を昇温して接合を達成する接合工程(S02)と、を有している。
(1-1)被接合界面形成工程(S01)
被接合界面形成工程(S01)は、黒鉛化領域4を介して被接合材が直接接合した良好な接合部を得るために、黒鉛化領域4と他方の被接合材である金属材の表面を密着させるための工程である。以下、被接合界面では黒鉛化領域4を介して被接合材同士が当接している状態を示している。
被接合界面形成工程(S01)は、黒鉛化領域4を介して被接合材が直接接合した良好な接合部を得るために、黒鉛化領域4と他方の被接合材である金属材の表面を密着させるための工程である。以下、被接合界面では黒鉛化領域4を介して被接合材同士が当接している状態を示している。
ここで、金属材と接合用樹脂材2とは、平面同士を当接させて一般的な重ね合わせの状態としてもよく、例えば、接合用樹脂材2の表面に金属材の端面を当接させ、所謂T字継手の状態としてもよい。
また、金属材と接合用樹脂材2とを重ね継手の状態とする場合、どちらか一方又は両方の被接合材の表面に耐熱性ガラス板等を当接させて全面拘束することで、被接合材同士をより密着させることができ、接合工程(S02)における被接合界面のずれ等を抑制することができる。なお、耐熱性ガラスはレーザの透過性に優れたものを用いることが好ましい。
また、接合工程(S02)における被接合材の位置変化を防止するために、金属材及び接合用樹脂材2の位置を適当な治具を用いて拘束する(被接合界面を密着させる)ことが好ましい。ここで、用いる治具については特に限定されず、従来周知の種々の治具を用いることができる。
接合用樹脂材2を熱可塑性樹脂とする場合、当該熱可塑性樹脂は本発明の効果を損なわない限りにおいて特に限定されず、従来公知の汎用プラスチック、エンジニアリングプラスチック及びスーパーエンジニアリングプラスチックを好適に用いることができる。より具体的には、例えば、ポリエチレン(PE)、ポリプロピレン(PP)、ポリスチレン(PS)、ポリアセタール(POM)、ポリ塩化ビニル(PVC)、ポリエチレンテレフタレート(PET)、ABS樹脂(ABS)、ポリアミド(PA)、ポリカーボネート(PC)、PET(Polyethylene Terephthalate)、及び種々の炭素繊維強化プラスチック(CFRP)やガラス繊維強化プラスチック(GFRP)等を用いることができる。
また、接合用樹脂材2を熱硬化性樹脂とする場合、当該熱硬化性樹脂は本発明の効果を損なわない限りにおいて特に限定されず、従来公知の種々の熱硬化性樹脂を用いることができる。熱硬化性樹脂としては、例えば、エポキシ樹脂、フェノール樹脂、不飽和ポリエステル樹脂、ウレタン樹脂、シリコーン樹脂を挙げることができる。
被接合材として用いる金属材は、本発明の効果を損なわない限りにおいて特に限定されず、従来公知の種々の金属材を用いることができ、例えば、鋼材、アルミニウム材、アルミニウム合金材、チタン材、チタン合金材、ニッケル‐チタン合金材、銅材及び銅合金材のうちのいずれかを用いることができるが、比強度の観点からはアルミニウム、アルミニウム合金、チタン及びチタン合金を用いることが好ましく、耐食性等の観点からは、ステンレス鋼、チタン及びチタン合金を用いることが好ましく、材料コストの観点からは、亜鉛メッキ鋼板を含む種々の炭素鋼を用いることが好ましい。
また、被接合材として用いる金属材の表面には、接合の予備処理として、酸化性雰囲気下において金属材の表面にパルスレーザを照射し、5~500nmの粒径を有する金属酸化物粒子が連続的に接合されてなる金属酸化物粒子クラスターを有する表面改質領域を形成し、被接合界面において、黒鉛化領域4と当該表面改質領域を当接させること、が好ましい。
5~500nmの粒径を有する金属酸化物粒子が連続的に接合されてなる金属酸化物粒子クラスターを有する表面改質領域は、昇温時における黒鉛化領域4のC=C結合及び/又はC-C結合の解離を促進し、効率的に強固な接合部を得ることができる。ここで、金属材側の被接合界面となる金属酸化物粒子クラスターの表面の最大高さ(Sz)を50nm~3μmとすることで、金属酸化物粒子クラスターと接合用樹脂材との密着性を担保することができる。
(1-2)接合工程(S02)
接合工程(S02)は、外部加熱手段を用いて被接合界面を昇温し、接合を達成するための工程である。外部加熱手段は被接合界面を昇温できればよく、本発明の効果を損なわない限りにおいて従来公知の種々の外部加熱手段を用いることができるが、レーザ照射を用いることが好ましい。
接合工程(S02)は、外部加熱手段を用いて被接合界面を昇温し、接合を達成するための工程である。外部加熱手段は被接合界面を昇温できればよく、本発明の効果を損なわない限りにおいて従来公知の種々の外部加熱手段を用いることができるが、レーザ照射を用いることが好ましい。
外部加熱手段にレーザ照射を用いることで、被接合領域の形状及び大きさに依らず、簡便かつ効率的に被接合界面を昇温することができる。加えて、パルスレーザを用いることで、樹脂材の表面への黒鉛化領域の形成及び金属材の表面への表面改質領域の形成にも当該レーザを用いることができ、接合ラインの合理化等を図ることができる。
接合用樹脂材2が透明な場合は接合用樹脂材2側からレーザを照射し、接合用樹脂材2が不透明な場合は金属材側からレーザを照射することが好ましい。接合用樹脂材2が透明な場合は接合用樹脂材2側からパルスレーザを照射し、接合用樹脂材2が不透明な場合は金属材側からレーザを照射することで、被接合界面の温度を効率的に上昇させることができる。また、金属材側からレーザ照射することにより、接合用樹脂材2の種類に依らず被接合材として用いることができる。更に、金属材側から加熱することにより、接合用樹脂材2側に空間を設けることができ、必要に応じて接合用樹脂材2の表面から加圧することができる。
また、接合工程(S02)においては、被接合界面に接合圧力を印加することが好ましい。被接合界面に圧力を印加することで、金属材と接合用樹脂材2との密着性が向上し、欠陥の形成を抑制すると共に接合界面の接合強度を向上させることができる。
本発明の樹脂材の接合方法によって得られる接合部は十分に高い強度を有しているが、加圧工程を加えることで、品質のばらつきを小さくすることができる。当該加圧により、例えば、軟化した熱可塑性樹脂材が金属材の熱影響部の範囲を超えて広がることから、金属材と熱可塑性樹脂材との接合界面を拡大することもできる。
(2)接着(接着剤を用いた接合)
図4は、本発明において接着を行う場合の工程図である。本発明の樹脂材の接合方法は、被接合界面を形成する被接合界面形成工程(S01)と、被接合界面の接着剤を硬化させて接合を達成する接着工程(S02)と、を有している。
図4は、本発明において接着を行う場合の工程図である。本発明の樹脂材の接合方法は、被接合界面を形成する被接合界面形成工程(S01)と、被接合界面の接着剤を硬化させて接合を達成する接着工程(S02)と、を有している。
(2-1)被接合界面形成工程(S01)
被接合界面形成工程(S01)は、黒鉛化領域4と接着剤を介して接合用樹脂材2と他方の被接合材である金属材とを当接させ、被接合材を形成すること以外は、上記の直接接合の場合と同様である。
被接合界面形成工程(S01)は、黒鉛化領域4と接着剤を介して接合用樹脂材2と他方の被接合材である金属材とを当接させ、被接合材を形成すること以外は、上記の直接接合の場合と同様である。
被接合界面に塗布する接着剤は本発明の効果を損なわない限りにおいて特に限定されず、従来公知の種々の接着剤を使用することができ、接合用樹脂材2及び金属材の種類や所望の接合部特性等に応じて適宜選定すればよい。接着剤としては、例えば、エポキシ、アクリル、シアノアクリレート、ウレタン、シリコーンを挙げることができる。
(2-2)接着工程(S02)
接着工程(S02)は、被接合界面の接着剤を硬化させて接合を達成するための工程である。接着剤の硬化に昇温が必要な場合は、適当な外部加熱手段を用いて被接合界面を加熱すればよい。また、適当な成分を添加することによって、接着剤の効果を進行させてもよい。接着剤を硬化させることで、黒鉛化領域4と接着層を介して被接合材が接合した良好な接合部を得ることができる。
接着工程(S02)は、被接合界面の接着剤を硬化させて接合を達成するための工程である。接着剤の硬化に昇温が必要な場合は、適当な外部加熱手段を用いて被接合界面を加熱すればよい。また、適当な成分を添加することによって、接着剤の効果を進行させてもよい。接着剤を硬化させることで、黒鉛化領域4と接着層を介して被接合材が接合した良好な接合部を得ることができる。
また、直接接合における接合工程と同様に、外部加熱にはレーザ照射を用いることが好ましく、接合圧力を印加することが好ましい。
以上、本発明の代表的な実施形態について説明したが、本発明はこれらのみに限定されるものではなく、種々の設計変更が可能であり、それら設計変更は全て本発明の技術的範囲に含まれる。
≪接合用樹脂材≫
3mm×10mm×45mmのポリエーテルエーテルケトン樹脂(PEEK)板の表面の被接合界面となる領域(10mm×10mm)に対して大気中にてレーザ照射を施し、黒鉛化領域を形成させた。レーザにはIPG社製のYLPパルスレーザを用い、レーザの照射条件は平均出力:50W(1パルスのエネルギー:1 mj)、フォーカス径:59μmとし、レーザを板幅方向へ30μm、長手方向へ70μmの間隔で照射した。レーザのパルス幅は100ナノ秒である。
3mm×10mm×45mmのポリエーテルエーテルケトン樹脂(PEEK)板の表面の被接合界面となる領域(10mm×10mm)に対して大気中にてレーザ照射を施し、黒鉛化領域を形成させた。レーザにはIPG社製のYLPパルスレーザを用い、レーザの照射条件は平均出力:50W(1パルスのエネルギー:1 mj)、フォーカス径:59μmとし、レーザを板幅方向へ30μm、長手方向へ70μmの間隔で照射した。レーザのパルス幅は100ナノ秒である。
レーザ照射を施したPEEK板の表面及び断面の光学顕微鏡写真を図5及び図6にそれぞれ示す。表面写真において、レーザを照射した領域が黒色化しており、当該領域が黒鉛化領域である。また、断面写真は表面写真の点線に沿って切断した断面であり、表面から150~200μmの深さまで変色が認められ、変色領域には多数の微細な黒色点が分散していることが分かる。
黒色点の直径は数μm~数十μmであり、黒色点と共に多数の発泡痕も確認される。また、黒色点の周囲には褐色領域が存在しており、黒鉛化領域には黒色点、褐色領域及び発泡痕が分散している。これらはパルスレーザの照射によって形成されたものである。
図6に示す断面に対して、FT-IR-ATRイメージング測定を行った。測定に用いた装置はブルカー社製の顕微赤外装置(Hyperion 3000)であり、測定条件は光源:特殊セラミックス、パージ:窒素ガス、検知器:2次元検出器、検出ピクセルサイズ:4μm/ピクセル、分解能:4cm-1、測定波長範囲:3900~750cm-1、積算回数:256回とした。
また、官能基マッピング像の作図時には、ATRプリズムへの密着状態の違いによりピーク強度が異なるため、基準ピークによる規格化を行う必要があるが、本測定ではPEEKの芳香環に由来する1490cm-1を基準ピークとして規格化を行った。
レーザ照射部と未処理部からのスペクトル及びこれらの差スペクトルを図7に示す。差スペクトルから、レーザ照射表面では、未処理表面と比較してケトン(1650cm-1)やエーテル(1280cm-1)の明確な減少や酸化に由来する水酸基(3300cm-1)やカルボニル(1760~1700cm-1)の増加は生じていないことから、酸化・変性物は生じていないと考えられる。
また、レーザ照射表面では、ベースラインのドリフトが生じており、カーボンの存在が示唆された。カーボンは炭化に由来した成分と推測される。結晶性に由来する1306cm-1吸収帯がレーザ照射表面では減少しており、樹脂の融解が生じたことにより、結晶性が低下した可能性が推測される。
表面の組成分析結果に基づいて、酸化により分解しやすいケトン(1650cm-1)および結晶性に由来する1305cm-1のピークに着目して、マッピング像を作成した。得られた結果を図8に示す。
ケトン(1650cm-1)のマッピングでは、表層と内層部と強度分布に違いは認められなかった。極表層および内層部に強度が低い箇所が点在しているのは、炭化に由来した箇所(黒色点)と考えられる。マッピング像からも、樹脂部でのケトンの変性は認められない。
結晶性に由来する1305cm-1のマッピングでは、表面から100~150μm程度の深さまで結晶性が内層部よりも低下していた。表面から100~150μm程度の深さまで、レーザ照射の熱による融解の影響が生じていると考えられる。
次に、黒鉛化領域の構造を解析するために、図6に示す断面に対して、ラマン分光分析を行った。ラマン分光分析に用いたのはPhoton Design社製の近赤外ラマン分光装置とRENISHAW社製のinViaであり、共に顕微ラマン測定モードにて分析を行った。
測定に用いた励起波長は1064nm及び532nmとし、レーザのスポット径は約1μmである。また、測定箇所は未処理部、変色部(褐色部)及び黒色部(黒色点)とし、それぞれの箇所について、場所を変えて3点の測定を行った。
近赤外光励起(1064nm)により得られた未処理部のラマンスペクトルを図9、変色部のラマンスペクトルを図10、未処理部と変色部のラマンスペクトルの比較を図11に示す。いずれからもPEEK由来のラマンンバンドと蛍光(バックグラウンドの上昇)が得られた。PEEKのスペクトル形状は類似しており、変色部においてPEEKの組成に大きな変性は生じていないと考えられる。僅かな変化として、バンド幅のブロード化が認められ、変色部では結晶性が低下していると考えられる(図12)。これらの特徴はIR分析で認められるものと同様である。黒色部は近赤外光励起ではダメージが発生し、ラマンスペクトルを取得することができなかった。ダメージは励起光を吸収と、それにより発生する熱によるものであり、黒色部では近赤外領域の吸収が大きくなっていることを意味している。黒色部では不飽和構造の形成が進行し、大きなπ電子共役構造が形成されていると推定される。
可視光(532nm)励起により得られたラマンスペクトルを図13~17に示す。図13は未処理部、図14は変色部、図15は黒色部、図16は各ラマンスペクトルの比較、図17は黒色部のごく一部で検出されるラマンスペクトルを示している。
いずれの測定領域からも強い蛍光のみが検出され、ラマンバンドは検出されなかった(蛍光が強すぎるため)。ただし、蛍光の強度に特徴が認められ、未処理部に比べて、変色部で強く、黒色部では微弱であった。蛍光の強度は励起波長における吸収の大きさと発光の確率で決定され、それらは分子構造やそれに伴う電子状態に依存する。変色部では不飽和結合の形成が進行し、吸光度が増大したと考えられる。近赤外励起による測定でPEEKの一次構造に顕著な変化が認められなかったことから、僅かな末端変性が生じていると推定される。黒色部では近赤外励起の測定でも推察されたように、大きなπ電子共役構造が形成されたと考えられ、それにより発光確率が減少したと考えられる。
図17において、1600cm-1と1350cm-1付近にブロードなラマンバンドが検出されており、これらは低結晶性のカーボンに帰属される。カーボン構造はπ電子共役構造が2次元面で大きく成長し、さらにそれらが厚み方向にスタックして積層構造を形成したものである。このような構造は、前述の黒色部の構造がさらに進展したものとみなすことができ、局所的に強い熱履歴を受けた箇所に相当すると考えられる。
以上の分析結果より、黒色部ではPEEKの結合の切断と再結合により、不飽和結合が形成され、大きなπ電子共役構造が形成されていると判断できる。ごく一部でカーボンに相当するレベルにまで変性が進行しているが、殆どの箇所では炭化にまでは至っておらず、その前駆体のような構造を形成していると考えられる。黒色部周辺の変色部では結晶性の低下や僅かに不飽和結合の形成(蛍光の増大)が進行しているが、全体としてはPEEKの構造が保持されている。
≪樹脂材と金属材の直接接合≫
上記の黒色化領域を形成させたPEEK板(本発明の接合用樹脂材)とA2024アルミニウム合金板の直接接合を行った。A2024アルミニウム合金板は1.5mm×10mm×45mmであり、図18に示すように黒色化領域を介してPEEK板とA2024アルミニウム合金板を重ね合わせて、A2024アルミニウム合金板側からレーザを照射して接合を行った。
上記の黒色化領域を形成させたPEEK板(本発明の接合用樹脂材)とA2024アルミニウム合金板の直接接合を行った。A2024アルミニウム合金板は1.5mm×10mm×45mmであり、図18に示すように黒色化領域を介してPEEK板とA2024アルミニウム合金板を重ね合わせて、A2024アルミニウム合金板側からレーザを照射して接合を行った。
レーザ照射にはLaserline社製の4kw半導体レーザを用い、光学系にズームホモジナイザーを用いて5mm×12mmのラインレーザとした。また、接合温度が一定となるように、レーザ出力を可変とする温度フィードバック制御を利用した。レーザ走査速度は0.3mm/sとし、被接合界面の温度が380℃となるように制御した。
同じ接合条件で5本の継手を作製し、せん断引張試験にて接合部の強度を評価した。せん断引張試験はISO-19095に準じ、測定装置にはINSTRON5982を用いた。測定条件及び得られた結果を表1に示す。
最大荷重及びせん断強度の平均値はそれぞれ2309.6N及び45.8MPaとなっており、強固かつ信頼性の高い接合部が形成されていることが分かる。なお、黒鉛化領域を形成させなかった場合、強度測定が可能な継手を得ることができなかった。
≪樹脂材と金属材の接着≫
上記の黒色化領域を形成させたPEEK板(本発明の接合用樹脂材)とA2024アルミニウム合金板の接着を行った。被接合界面に接着剤を塗布したこと以外は直接接合の場合と同様にして、PEEK板とA2024アルミニウム合金板を重ね合わせて、被接合界面を常温にて約60分保持することで接着剤を硬化させて接着を行った。接着剤には二液混合エポキシ系を使用し、被接合界面の全面に均一に塗布した。
上記の黒色化領域を形成させたPEEK板(本発明の接合用樹脂材)とA2024アルミニウム合金板の接着を行った。被接合界面に接着剤を塗布したこと以外は直接接合の場合と同様にして、PEEK板とA2024アルミニウム合金板を重ね合わせて、被接合界面を常温にて約60分保持することで接着剤を硬化させて接着を行った。接着剤には二液混合エポキシ系を使用し、被接合界面の全面に均一に塗布した。
同じ接着条件で5本の継手を作製し、直接接合の場合と同様にして、せん断引張試験にて接合部の強度を評価した。測定条件及び得られた結果を表2に示す。
最大荷重及びせん断強度の平均値はそれぞれ3063.8N及び26.4MPaとなっており、強固かつ信頼性の高い接合部が形成されていることが分かる。得られた最大荷重及びせん断強度は、黒鉛化領域を形成させない場合と比較して、大幅に高い値である。
《樹脂材と樹脂材の接着》
0.5mm×20mm×45mmの充填剤(カーボン)入りポリテトラフルオロエチレン(PTFE)板の表面の被接合界面となる領域(20mm×25mm)に対して大気中にてレーザ照射を施し、黒鉛化領域を形成させた。レーザにはIPG社製のYLPパルスレーザを用い、レーザの照射条件は平均出力:50W(1パルスのエネルギー:1 mj)、フォーカス径:59μmとし、レーザを板幅方向へ30μm、長手方向へ70μmの間隔で照射した。レーザのパルス幅は100ナノ秒である。
0.5mm×20mm×45mmの充填剤(カーボン)入りポリテトラフルオロエチレン(PTFE)板の表面の被接合界面となる領域(20mm×25mm)に対して大気中にてレーザ照射を施し、黒鉛化領域を形成させた。レーザにはIPG社製のYLPパルスレーザを用い、レーザの照射条件は平均出力:50W(1パルスのエネルギー:1 mj)、フォーカス径:59μmとし、レーザを板幅方向へ30μm、長手方向へ70μmの間隔で照射した。レーザのパルス幅は100ナノ秒である。
被接合界面に接着剤を塗布したこと以外は直接接合の場合と同様にして、PTFE板同士を重ね合わせて、被接合界面を常温にて約60分保持することで接着剤を硬化させて接着を行った。接着剤には二液混合エポキシ系を使用し、被接合界面の全面に均一に塗布した。
直接接合の場合と同様にして、得られた接合部の強度をせん断引張試験にて評価した。試験温度、試験湿度、試験室温度及び試験室湿度は直接接合の場合と同様である。得られた試験力(N)-変位(mm)曲線を図19に示す。継手は大きな伸びを示した後、約190Nの最大荷重でPTFE板の母材破断となった。当該結果は、PTFE板/PTFE板の接合界面強度が極めて高いことを示している。
2・・・接合用樹脂材、
4・・・黒鉛化領域、
6・・・黒色点、
8・・・発泡痕。
4・・・黒鉛化領域、
6・・・黒色点、
8・・・発泡痕。
Claims (11)
- 樹脂材の表面の少なくとも一部に、C=C結合及び/又はC-C結合を有する不飽和な黒鉛化領域を有すること、
を特徴とする接合用樹脂材。 - 前記黒鉛化領域がアモルファスカーボンであること、
を特徴とする請求項1に記載の接合用樹脂材。 - 前記樹脂材が熱可塑性樹脂であること、
を特徴とする請求項1又は2に記載の接合用樹脂材。 - 前記樹脂材が熱硬化性樹脂であること、
を特徴とする請求項1又は2に記載の接合用樹脂材。 - 樹脂材の表面にパルスレーザを照射し、前記表面にC=C結合及び/又はC-C結合を有する不飽和な黒鉛化領域を形成させること、
を特徴とする接合用樹脂材の製造方法。 - 前記黒鉛化領域をアモルファスカーボンとすること、
を特徴とする請求項5に記載の接合用樹脂材の製造方法。 - 前記パルスレーザをナノ秒短パルスレーザとすること、
を特徴とする請求項5又は6に記載の接合用樹脂材の製造方法。 - 少なくとも一方の被接合材を請求項1~4のうちのいずれかに記載の接合用樹脂材とし、
前記接合用樹脂材の表面の黒鉛化領域を介して前記接合用樹脂材と他方の被接合材とを当接させ、被接合界面を形成する被接合界面形成工程と、
外部加熱手段によって前記被接合界面を昇温して接合を達成する接合工程と、を有し、
前記接合用樹脂材と前記他方の被接合材とを前記黒鉛化領域を介して直接接合すること、
を特徴とする樹脂材の接合方法。 - 前記他方の被接合材を金属材とし、
接合の予備処理として、酸化性雰囲気下において前記金属材の表面にパルスレーザを照射し、5~500nmの粒径を有する金属酸化物粒子が連続的に接合されてなる金属酸化物粒子クラスターを有する表面改質領域を形成し、
前記被接合界面において、前記黒鉛化領域と前記表面改質領域を当接させること、
を特徴とする請求項8に記載の樹脂材の接合方法。 - レーザ照射によって前記被接合界面を昇温すること、
を特徴とする請求項8又は9に記載の樹脂材の接合方法。 - 少なくとも一方の被接合材を請求項1~4のうちのいずれかに記載の接合用樹脂材とし、
前記黒鉛化領域と接着剤を介して前記接合用樹脂材と他方の被接合材とを当接させ、被接合界面を形成する被接合界面形成工程と、
前記接着剤を硬化させる接着工程と、を有すること、
を特徴とする樹脂材の接合方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023580221A JPWO2023153332A1 (ja) | 2022-02-08 | 2023-02-03 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022-017976 | 2022-02-08 | ||
JP2022017976 | 2022-02-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023153332A1 true WO2023153332A1 (ja) | 2023-08-17 |
Family
ID=87564386
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2023/003621 WO2023153332A1 (ja) | 2022-02-08 | 2023-02-03 | 接合用樹脂材及びその製造方法並びに接合用樹脂材を用いた接合方法 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2023153332A1 (ja) |
WO (1) | WO2023153332A1 (ja) |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62501427A (ja) * | 1985-06-18 | 1987-06-11 | ザ ダウ ケミカル カンパニ− | 製品の少なくとも2つの表面間の接着剤結合からなる製品を製造する方法 |
JP2001345469A (ja) * | 2000-06-01 | 2001-12-14 | Canon Inc | 光起電力素子および光起電力素子の製造方法 |
JP2018080360A (ja) * | 2016-11-15 | 2018-05-24 | 株式会社デンソー | 金属部材および金属部材と樹脂部材との複合体並びにそれらの製造方法 |
JP2019123153A (ja) * | 2018-01-17 | 2019-07-25 | 株式会社ヒロテック | フッ素樹脂の接合方法及び金属樹脂接合体 |
JP2021120196A (ja) * | 2020-01-30 | 2021-08-19 | オムロン株式会社 | 接合構造体 |
WO2021230025A1 (ja) * | 2020-05-13 | 2021-11-18 | 株式会社ヒロテック | 熱可塑性樹脂と金属の接合方法 |
-
2023
- 2023-02-03 JP JP2023580221A patent/JPWO2023153332A1/ja active Pending
- 2023-02-03 WO PCT/JP2023/003621 patent/WO2023153332A1/ja unknown
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS62501427A (ja) * | 1985-06-18 | 1987-06-11 | ザ ダウ ケミカル カンパニ− | 製品の少なくとも2つの表面間の接着剤結合からなる製品を製造する方法 |
JP2001345469A (ja) * | 2000-06-01 | 2001-12-14 | Canon Inc | 光起電力素子および光起電力素子の製造方法 |
JP2018080360A (ja) * | 2016-11-15 | 2018-05-24 | 株式会社デンソー | 金属部材および金属部材と樹脂部材との複合体並びにそれらの製造方法 |
JP2019123153A (ja) * | 2018-01-17 | 2019-07-25 | 株式会社ヒロテック | フッ素樹脂の接合方法及び金属樹脂接合体 |
JP2021120196A (ja) * | 2020-01-30 | 2021-08-19 | オムロン株式会社 | 接合構造体 |
WO2021230025A1 (ja) * | 2020-05-13 | 2021-11-18 | 株式会社ヒロテック | 熱可塑性樹脂と金属の接合方法 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2023153332A1 (ja) | 2023-08-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Tao et al. | Laser-based surface patterning of composite plates for improved secondary adhesive bonding | |
WO2021230025A1 (ja) | 熱可塑性樹脂と金属の接合方法 | |
JP7372679B2 (ja) | 接合物の製造方法 | |
Lamberti et al. | Laser assisted joining of hybrid polyamide-aluminum structures | |
US10744719B2 (en) | Method for bonding metal and resin and metal resin bonded body | |
Torrisi et al. | Polyethylene welding by pulsed visible laser irradiation | |
JP2019123153A (ja) | フッ素樹脂の接合方法及び金属樹脂接合体 | |
Kim et al. | Intense pulsed light surface treatment for improving adhesive bonding of aluminum and carbon fiber reinforced plastic (CFRP) | |
WO2023153332A1 (ja) | 接合用樹脂材及びその製造方法並びに接合用樹脂材を用いた接合方法 | |
Biswal et al. | Ultrasonic welding of fiber reinforced vitrimer composites | |
Kawahito et al. | Laser direct joining of glassy metal Zr55Al10Ni5Cu30 to engineering plastic polyethylene terephthalate | |
JP7191350B2 (ja) | 接合体、基板、接合体の製造方法、及び、基板の製造方法 | |
Yu et al. | Strategic dual laser 3D printing of structural metal-plastic hybrid materials | |
Wang et al. | Room-temperature direct heterogeneous bonding of glass and polystyrene substrates | |
JP2016016429A (ja) | レーザを用いた部材の接合方法 | |
Georgiev et al. | XPS study of laser fabricated titanium/KaptonFN interfaces | |
JP2013253132A (ja) | 芳香族ポリエーテルケトン樹脂加工物の表面処理方法および芳香族ポリエーテルケトン樹脂加工物 | |
EP3695932B1 (en) | Method for producing a bonded body of different materials | |
US11465368B2 (en) | Joining carbon laminates using pulsed laser irradiation | |
JP2021020354A (ja) | 接合物の製造方法、接合物及び接合対象物 | |
JP2024148648A (ja) | 樹脂セラミックス直接接合方法及び樹脂セラミックス接合体並びに樹脂セラミックス部材 | |
JP2012135979A (ja) | 積層体およびその製造方法 | |
Zeller et al. | Thermo-mechanically joined hybrids from carbon fiber-reinforced PA12 with die-cast alloy AlSi10Mg: how surface and interlayer design affect shear strength and fracture behavior | |
Kim et al. | Ultraviolet surface treatment for adhesion strength improvement of carbon/epoxy composite | |
JP2024066570A (ja) | 樹脂材と金属材の抵抗溶接方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 23752797 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2023580221 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |