WO2023153021A1 - Member for semiconductor manufacturing device - Google Patents
Member for semiconductor manufacturing device Download PDFInfo
- Publication number
- WO2023153021A1 WO2023153021A1 PCT/JP2022/037638 JP2022037638W WO2023153021A1 WO 2023153021 A1 WO2023153021 A1 WO 2023153021A1 JP 2022037638 W JP2022037638 W JP 2022037638W WO 2023153021 A1 WO2023153021 A1 WO 2023153021A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- conductive
- ceramic plate
- wafer
- plug
- semiconductor manufacturing
- Prior art date
Links
- 238000004519 manufacturing process Methods 0.000 title claims abstract description 55
- 239000004065 semiconductor Substances 0.000 title claims abstract description 51
- 239000000919 ceramic Substances 0.000 claims abstract description 85
- 238000003780 insertion Methods 0.000 claims abstract description 46
- 230000037431 insertion Effects 0.000 claims abstract description 46
- 230000000149 penetrating effect Effects 0.000 claims abstract description 8
- 230000002093 peripheral effect Effects 0.000 claims description 29
- 239000000463 material Substances 0.000 claims description 27
- 238000004891 communication Methods 0.000 claims description 14
- 239000000758 substrate Substances 0.000 claims description 13
- 239000011248 coating agent Substances 0.000 claims description 8
- 238000000576 coating method Methods 0.000 claims description 8
- 238000001816 cooling Methods 0.000 abstract description 36
- 235000012431 wafers Nutrition 0.000 description 92
- 239000007789 gas Substances 0.000 description 65
- 229910052751 metal Inorganic materials 0.000 description 28
- 239000002184 metal Substances 0.000 description 28
- 239000010410 layer Substances 0.000 description 18
- 239000000853 adhesive Substances 0.000 description 12
- 230000001070 adhesive effect Effects 0.000 description 12
- 239000012790 adhesive layer Substances 0.000 description 6
- 239000002826 coolant Substances 0.000 description 6
- 239000011347 resin Substances 0.000 description 5
- 229920005989 resin Polymers 0.000 description 5
- 239000001307 helium Substances 0.000 description 4
- 229910052734 helium Inorganic materials 0.000 description 4
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 4
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 description 3
- 238000010586 diagram Methods 0.000 description 3
- 239000011156 metal matrix composite Substances 0.000 description 3
- 238000000034 method Methods 0.000 description 3
- 229910052710 silicon Inorganic materials 0.000 description 3
- 239000010703 silicon Substances 0.000 description 3
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 2
- 239000004020 conductor Substances 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 239000011148 porous material Substances 0.000 description 2
- 229910018566 Al—Si—Mg Inorganic materials 0.000 description 1
- ATJFFYVFTNAWJD-UHFFFAOYSA-N Tin Chemical compound [Sn] ATJFFYVFTNAWJD-UHFFFAOYSA-N 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- 230000006835 compression Effects 0.000 description 1
- 238000007906 compression Methods 0.000 description 1
- PMHQVHHXPFUNSP-UHFFFAOYSA-M copper(1+);methylsulfanylmethane;bromide Chemical compound Br[Cu].CSC PMHQVHHXPFUNSP-UHFFFAOYSA-M 0.000 description 1
- 238000005530 etching Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 238000007747 plating Methods 0.000 description 1
- 239000012495 reaction gas Substances 0.000 description 1
- 239000003507 refrigerant Substances 0.000 description 1
- 238000007751 thermal spraying Methods 0.000 description 1
- 229910052719 titanium Inorganic materials 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/30—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
- H01L21/302—Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
- H01L21/306—Chemical or electrical treatment, e.g. electrolytic etching
- H01L21/3065—Plasma etching; Reactive-ion etching
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/67—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
- H01L21/683—Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for supporting or gripping
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02N—ELECTRIC MACHINES NOT OTHERWISE PROVIDED FOR
- H02N13/00—Clutches or holding devices using electrostatic attraction, e.g. using Johnson-Rahbek effect
Definitions
- the present invention relates to members for semiconductor manufacturing equipment.
- the member for a semiconductor manufacturing apparatus of Patent Document 1 includes a gas supply hole provided in a cooling device, a recess provided in an electrostatic chuck so as to communicate with the gas supply hole, and a wafer mounting surface extending from the bottom surface of the recess. and a porous plug made of an insulating material filled in the recess.
- a backside gas such as helium is introduced into the gas supply holes, the gas is supplied through the gas supply holes, the porous plug and the pores into the space on the back side of the wafer.
- the present invention has been made to solve such problems, and its main purpose is to suppress unintentional etching of the back surface of the wafer.
- the member for semiconductor manufacturing equipment of the present invention is a ceramic plate having a wafer mounting surface on its upper surface; a plug insertion hole vertically penetrating the ceramic plate; a conductive substrate provided on the lower surface of the ceramic plate; a communication hole provided in the conductive base material and communicating with the plug insertion hole; It is arranged in the plug insertion hole so as to be electrically conductive with the wafer mounted on the wafer mounting surface, the bottom surface is positioned below the height of the bottom surface of the ceramic plate, and the gas supplied to the communication hole is supplied to the a conductive plug allowing communication to the wafer mounting surface; is provided.
- This member for semiconductor manufacturing equipment has a conductive plug.
- the conductive plug is arranged in the plug insertion hole so as to be electrically conductive with the wafer mounted on the wafer mounting surface, the bottom surface is positioned below the height of the bottom surface of the ceramic plate, and the gas supplied to the communication hole is It is allowed to flow to the wafer mounting surface. Therefore, when the conductive substrate is used to generate plasma above the wafer mounted on the wafer mounting surface, the conductive plug serves to prevent the potential gradient from occurring in the plug insertion hole of the ceramic plate. Fulfill. This suppresses the generation of plasma inside the conductive plug. As a result, it is possible to prevent the back surface of the wafer from being unintentionally etched.
- the material of the conductive plug may be Si or SiC ceramic.
- a silicon wafer is used as the wafer, it is preferable to use a conductive plug made of Si because of the same composition. Further, a conductive plug made of SiC ceramic is preferable because it can extend the period of use (life).
- the inner peripheral surface of the communication hole is provided with a An insulating tube may be arranged. This increases the creepage distance between the wafer and the conductive substrate. Therefore, creeping discharge (spark discharge) between the wafer and the conductive substrate can be suppressed.
- the wafer mounting surface has a large number of small protrusions for supporting the wafer.
- the conductive plug may supply the gas to a region surrounded by the wafer, the small projections, and a reference surface on which the small projections are not provided in the wafer mounting surface. good too. By doing so, the contact area between the wafer and the ceramic plate is reduced, so particles are less likely to be generated. Also, if a heat-conducting gas such as helium gas is used as the gas, heat conduction between the wafer and the ceramic plate is improved.
- the top surface of the conductive plug may be at the same height as the top surface of the small protrusion. In this way, the conductive plug is in direct contact with the wafer mounted on the wafer mounting surface.
- the upper surface of the small protrusion may have a conductive coating that contacts the wafer, and The top surface of the conductive plug may be lower than the conductive coating, and the conductive plug may be connected to the conductive coating. In this way, the conductive plug is in indirect contact with the wafer mounted on the wafer mounting surface via the conductive film.
- the top surface of the conductive plug is to be level with the top surface of the small protrusion, high positional accuracy is required for the top surface of the conductive plug. Since it is positioned lower than the overlying conductive coating, such high positional accuracy is not required.
- the plug insertion hole has a female screw portion on the inner peripheral surface.
- the conductive plug may have a male threaded portion on its outer peripheral surface that is screwed into the female threaded portion. This makes it possible to replace the conductive plug more smoothly than when the conductive plug is adhesively fixed to the plug insertion hole. Also, the height of the conductive plug can be easily adjusted.
- the conductive plug has a diameter that expands from top to bottom.
- the plug insertion hole may have a shape capable of coming into contact with the enlarged diameter portion. By doing so, it is possible to prevent the conductive plug from floating due to the pressure of the gas supplied from the lower surface of the conductive plug.
- Another member for semiconductor manufacturing equipment of the present invention is a ceramic plate having a wafer mounting surface on its upper surface; a ceramic plate through-hole vertically penetrating the ceramic plate; a conductive substrate provided on the lower surface of the ceramic plate; a communication hole provided in the conductive substrate and communicating with the ceramic plate through-hole; It covers the inner peripheral surface of the ceramic plate through-hole, is provided so as to be electrically connected to the wafer mounted on the wafer mounting surface, has a lower end positioned below the height of the lower surface of the ceramic plate, and communicates with the wafer.
- a conductive film that allows the gas supplied to the hole to flow to the wafer mounting surface; may be provided.
- This member for semiconductor manufacturing equipment includes a conductive film that covers the inner peripheral surface of the ceramic plate through-hole.
- the conductive film is provided so as to be electrically conductive with the wafer mounted on the wafer mounting surface, the lower end is positioned below the height of the lower surface of the ceramic plate, and the gas supplied to the communication hole flows to the wafer mounting surface. allow it to circulate. Therefore, when the conductive substrate is used to generate plasma above the wafer mounted on the wafer mounting surface, the conductive film plays a role in preventing the generation of a potential gradient in the through hole of the ceramic plate. This suppresses the generation of plasma inside the ceramic plate through hole. As a result, it is possible to prevent the back surface of the wafer from being unintentionally etched.
- FIG. 2 is a vertical cross-sectional view of the member 10 for semiconductor manufacturing equipment.
- 2 is a plan view of the ceramic plate 20;
- FIG. FIG. 2 is a partially enlarged view of FIG. 1;
- 4 is a plan view of a conductive plug 50;
- FIG. 4A to 4C are manufacturing process diagrams of the member 10 for a semiconductor manufacturing apparatus.
- 4A to 4C are manufacturing process diagrams of the member 10 for a semiconductor manufacturing apparatus.
- FIG. 4 is a partially enlarged view showing another example of the conductive plug 50;
- FIG. 11 is a partially enlarged view showing another example in which a conductive film 123 is provided instead of the conductive plug 50;
- FIG. 4 is a partially enlarged view showing another example of the conductive plug 50;
- FIG. 4 is a partially enlarged view showing another example of the conductive plug 50;
- FIG. 4 is a partially enlarged view showing another example of the conductive plug 50;
- FIG. 4 is a plan view showing another example of the conductive plug 50;
- FIG. 4 is a plan view showing another example of the conductive plug 50;
- FIG. 6 is a cross-sectional view of conductive plugs 150-650;
- FIG. 4 is a cross-sectional view of an insulating plug 160;
- FIG. 1 is a longitudinal sectional view of a member 10 for semiconductor manufacturing equipment
- FIG. 2 is a plan view of a ceramic plate 20
- FIG. 3 is a partially enlarged view of FIG.
- the semiconductor manufacturing apparatus member 10 includes a ceramic plate 20, a cooling plate 30, a metal bonding layer 40, a conductive plug 50, and an insulating tube 60.
- the ceramic plate 20 is a disk made of ceramic such as alumina sintered body or aluminum nitride sintered body (for example, diameter 300 mm, thickness 5 mm).
- the upper surface of the ceramic plate 20 serves as a wafer mounting surface 21 .
- the ceramic plate 20 incorporates electrodes 22 .
- the wafer mounting surface 21 of the ceramic plate 20 is provided with a seal band 21a along the outer edge and a plurality of small circular projections 21b formed on the entire surface.
- the seal band 21a and the circular small projection 21b have the same height, and the height is, for example, several micrometers to several tens of micrometers.
- the electrode 22 is a planar mesh electrode used as an electrostatic electrode, and can be applied with a DC voltage.
- the wafer W When a DC voltage is applied to this electrode 22, the wafer W is attracted and fixed to the wafer mounting surface 21 (specifically, the upper surface of the seal band 21a and the upper surface of the circular small projection 21b) by electrostatic attraction force, and the DC voltage is applied. When the application is released, the wafer W is released from the suction and fixation to the wafer mounting surface 21 .
- a portion of the wafer mounting surface 21 on which the seal band 21a and the small circular protrusions 21b are not provided is referred to as a reference surface 21c.
- the plug insertion hole 24 is a through hole penetrating through the ceramic plate 20 in the vertical direction. As shown in FIG. 3, the upper portion of the plug insertion hole 24 is a cylindrical large-diameter portion 24a, and the lower portion of the plug insertion hole 24 is a cylindrical small-diameter portion 24b. That is, the plug insertion hole 24 is a stepped hole.
- the plug insertion holes 24 are provided at a plurality of locations on the ceramic plate 20 (for example, a plurality of locations provided at equal intervals along the circumferential direction as shown in FIG. 2).
- a conductive plug 50 which will be described later, is arranged in the plug insertion hole 24 .
- the cooling plate 30 is a disk with good thermal conductivity (a disk with a diameter equal to or larger than that of the ceramic plate 20). Inside the cooling plate 30 are formed coolant channels 32 through which coolant circulates and gas holes 34 through which gas is supplied to the conductive plugs 50 .
- the coolant channel 32 is formed in a single stroke from the inlet to the outlet over the entire surface of the cooling plate 30 in a plan view.
- the gas hole 34 is a cylindrical hole provided at a position facing the plug insertion hole 24 .
- Materials for the cooling plate 30 include, for example, metal materials and metal matrix composite materials (MMC). Examples of metal materials include Al, Ti, Mo, and alloys thereof.
- MMC examples include a material containing Si, SiC and Ti (also referred to as SiSiCTi), and a material obtained by impregnating a porous SiC body with Al and/or Si.
- the material for the cooling plate 30 it is preferable to select a material having a coefficient of thermal expansion close to that of the material for the ceramic plate 20.
- FIG. Cooling plate 30 is also used as an RF electrode. Specifically, an upper electrode (not shown) is arranged above the wafer mounting surface 21, and plasma is generated when high-frequency power is applied between parallel plate electrodes consisting of the upper electrode and the cooling plate 30.
- the metal bonding layer 40 bonds the lower surface of the ceramic plate 20 and the upper surface of the cooling plate 30 .
- the metal bonding layer 40 is formed by TCB (Thermal Compression Bonding), for example.
- TCB is a known method in which a metal bonding material is sandwiched between two members to be bonded, and the two members are pressure-bonded while being heated to a temperature below the solidus temperature of the metal bonding material.
- the metal bonding layer 40 has a round hole 42 vertically penetrating the metal bonding layer 40 at a position facing the gas hole 34 .
- the metal bonding layer 40 and the cooling plate 30 of this embodiment correspond to the conductive substrate of the invention, and the round holes 42 and the gas holes 34 correspond to the communication holes.
- the conductive plug 50 is a plug that allows the gas supplied to the gas hole 34 to flow to the wafer mounting surface 21 , and is arranged in the plug insertion hole 24 .
- the upper portion of the conductive plug 50 is a cylindrical large-diameter portion 50a, and the lower portion of the conductive plug 50 is a cylindrical small-diameter portion 50b. That is, the conductive plug 50 is a stepped columnar member.
- the stepped portion 50c of the conductive plug 50 is adhered to the stepped portion 24c of the plug insertion hole 24 with an adhesive.
- the adhesive may be a resin (organic) adhesive or an inorganic adhesive.
- the outer peripheral surface of the large-diameter portion 50a of the conductive plug 50 and the inner peripheral surface of the large-diameter portion 24a of the plug insertion hole 24 may be bonded together, or the conductive plug 50 may be thin.
- the outer peripheral surface of the diameter portion 50b and the inner peripheral surface of the small diameter portion 24b of the plug insertion hole 24 may be adhered.
- the material of the conductive plug 50 is not particularly limited as long as it is an electrically conductive material, and may be, for example, metal or conductive ceramic.
- the conductive plug 50 made of Si is preferable, and the conductive plug 50 made of SiC ceramic is preferable if the usage period (life) is to be extended.
- Conductive plug 50 has a through hole 52 .
- the through hole 52 vertically penetrates the conductive plug 50 .
- the through hole 52 is provided along the central axis in this embodiment.
- a plurality of (here, three) slit grooves 54 are formed radially around the through hole 52 on the upper surface of the conductive plug 50 .
- the height of the top surface of the conductive plug 50 matches the height of the top surface of the small projection 21b.
- the lower surface of the conductive plug 50 is located inside the insulating tube 60 (below the height of the lower surface of the ceramic plate 20).
- the insulating tube 60 is a circular tube in plan view made of dense ceramic (for example, dense alumina).
- the outer peripheral surface of the insulating tube 60 is adhered to the inner peripheral surface of the circular hole 42 of the metal bonding layer 40 and the inner peripheral surface of the gas hole 34 of the cooling plate 30 via adhesive layers (not shown).
- the adhesive layer may be an organic adhesive layer (resin adhesive layer) or an inorganic adhesive layer. Note that the adhesive layer may be further provided between the upper surface of the insulating tube 60 and the lower surface of the ceramic plate 20 .
- the inside of the insulating tube 60 communicates with the through hole 52 of the conductive plug 50 . Therefore, when gas is introduced into the insulating tube 60 , the gas is supplied to the rear surface of the wafer W through the through hole 52 and the slit groove 54 of the conductive plug 50 .
- the wafer W is mounted on the wafer mounting surface 21 while the semiconductor manufacturing apparatus member 10 is installed in a chamber (not shown). Then, the inside of the chamber is decompressed by a vacuum pump and adjusted to a predetermined degree of vacuum. (Specifically, the upper surface of the seal band 21a and the upper surface of the circular small protrusion 21b) are fixed by suction. Next, the inside of the chamber is set to a reaction gas atmosphere of a predetermined pressure (for example, several tens to several hundred Pa), and in this state, an upper electrode (not shown) provided on the ceiling portion of the chamber and the cooling plate 30 of the semiconductor manufacturing apparatus member 10 are connected.
- a predetermined pressure for example, several tens to several hundred Pa
- a high-frequency voltage is applied between and plasma is generated.
- the surface of wafer W is processed by the generated plasma.
- a coolant is circulated through the coolant channels 32 of the cooling plate 30 .
- a backside gas is introduced into the gas hole 34 from a gas cylinder (not shown).
- a heat-conducting gas (for example, helium) is used as the backside gas.
- the backside gas is supplied to the space between the back surface of the wafer W and the reference surface 21c of the wafer mounting surface 21 through the insulating tube 60 and the conductive plug 50 and sealed therein. Due to the presence of this backside gas, heat conduction between the wafer W and the ceramic plate 20 is efficiently performed.
- FIG. 5 and 6 are manufacturing process diagrams of the member 10 for semiconductor manufacturing equipment.
- the ceramic plate 20, the cooling plate 30 and the metal bonding material 90 are prepared (Fig. 5A).
- the ceramic plate 20 has electrodes 22 and plug insertion holes 24 .
- the upper surface of the ceramic plate 20 is a flat surface, and the seal band 21a and the small circular projections 21b are not provided.
- the plug insertion hole 24 has a large diameter portion 24a, a small diameter portion 24b and a stepped portion 50c.
- the cooling plate 30 contains coolant channels 32 and includes gas holes 34 .
- the metal joint 90 has a round hole 92 that will eventually become the round hole 42 .
- TCB is performed, for example, as follows. First, a metal bonding material 90 is sandwiched between the lower surface of the ceramic plate 20 and the upper surface of the cooling plate 30 to form a laminate. At this time, the layers are stacked so that the plug insertion hole 24 of the ceramic plate 20, the round hole 92 of the metal joint material 90, and the gas hole 34 of the cooling plate 30 are coaxial. Then, the laminated body is pressurized and bonded at a temperature below the solidus temperature of the metal bonding material 90 (for example, the temperature obtained by subtracting 20° C.
- the metal bonding material 90 becomes the metal bonding layer 40 , the round hole 92 becomes the round hole 42 , and a bonded body 94 in which the ceramic plate 20 and the cooling plate 30 are bonded by the metal bonding layer 40 is obtained.
- an Al--Mg based bonding material or an Al--Si--Mg based bonding material can be used.
- the laminated body is pressed while being heated in a vacuum atmosphere.
- the metal bonding material 90 preferably has a thickness of about 100 ⁇ m.
- an insulating tube 60 is prepared, and an adhesive is applied to the inner peripheral surface of the circular hole 42 of the metal bonding layer 40 and the inner peripheral surface of the gas hole 34 of the cooling plate 30, and then the insulating tube 60 is inserted. , the insulating tube 60 is glued to the round hole 42 and the gas hole 34 (FIG. 5C).
- the adhesive may be a resin (organic) adhesive or an inorganic adhesive.
- the small diameter portion 50b is inserted from the upper opening of the plug insertion hole 24, and the stepped portion 50c of the conductive plug 50 and the plug insertion hole 24 are separated. is fixed to the stepped portion 24c (FIGS. 6A and 6B).
- the dimension of the conductive plug 50 is such that when the stepped portion 50c of the conductive plug 50 and the stepped portion 24c of the plug insertion hole 24 are aligned, the height of the top surface of the conductive plug 50 is equal to the height of the top surface of the small circular projection 21b. (see FIG.
- the adhesive may be a resin (organic) adhesive or an inorganic adhesive. As described above, the member 10 for semiconductor manufacturing equipment is obtained (FIG. 6B).
- the semiconductor manufacturing apparatus member 10 includes a conductive plug 50 .
- the conductive plug 50 is arranged in the plug insertion hole 24 so as to be electrically conductive with the wafer W mounted on the wafer mounting surface 21 , the lower surface is positioned below the height of the lower surface of the ceramic plate 20 , and the gas hole 34 allows the gas supplied to to flow to the wafer mounting surface 21 . Therefore, when the cooling plate 30 is used to generate plasma above the wafer W mounted on the wafer mounting surface 21 , the conductive plug 50 does not generate a potential gradient within the plug insertion hole 24 of the ceramic plate 20 . play a role in preventing This suppresses the generation of plasma inside the conductive plug 50 (that is, the through hole 52 and the slit groove 54).
- the lower surface of the conductive plug 50 is preferably positioned below the height of the upper surface of the conductive member (the upper surface of the metal bonding layer 40 in the above-described embodiment).
- the material of the conductive plug 50 may be Si or SiC ceramic.
- the conductive plug 50 made of Si because of the same composition.
- the conductive plug 50 made of SiC ceramic is preferable because it can extend the period of use (life).
- an insulating tube 60 is arranged on the inner peripheral surfaces of the round holes 42 and the gas holes 34 so as to abut on the lower surface of the ceramic plate 20 . Therefore, the creeping distance between the wafer W and the cooling plate 30 is increased. Therefore, occurrence of creeping discharge (spark discharge) between wafer W and cooling plate 30 can be suppressed.
- the wafer mounting surface 21 has a large number of small projections 21b for supporting the wafer W, and the conductive plug 50 is formed by the wafer W, the small projections 21b, and the wafer mounting surface.
- Gas is supplied to a region of the surface 21 surrounded by the reference surface 21c on which the small protrusions 21b are not provided.
- the contact area between the wafer W and the ceramic plate 20 is reduced, so particles are less likely to be generated.
- a heat-conducting gas such as helium gas is used as the gas, heat conduction between the wafer W and the ceramic plate 20 is improved.
- the upper surface of the conductive plug 50 is at the same height as the upper surface of the small protrusions 21b. Therefore, the conductive plug 50 is in direct contact with the wafer W mounted on the wafer mounting surface 21 .
- the height of the top surface of the conductive plug 50 is the same as the height of the top surface of the small protrusion 21b, but the present invention is not limited to this.
- the conductive film 23 is formed on the entire wafer mounting surface 21, and the top surface of the conductive plug 50 is made lower than the conductive film 23 formed on the top surface of the small protrusion 21b.
- a conductive plug 50 is connected to the conductive film 23 .
- the conductive film 23 may be made of any conductive material, such as Ti or TiN. In this way, the conductive plug 50 is in indirect contact with the wafer W mounted on the wafer mounting surface 21 via the conductive film 23 .
- the top surface of the conductive plug 50 is made to be the same height as the top surface of the small projection 21b, high positional accuracy is required for the top surface of the conductive plug 50. Such high positional accuracy is not required because it is positioned lower than the conductive film 23 covering the upper surface of the projection 21b. A portion of the conductive film 23 covering the upper surfaces of the small projections 21b corresponds to the conductive film of the present invention. Also, in the above-described embodiment, the slit groove 54 is formed on the upper surface of the conductive plug 50, but in FIG.
- the conductive film 123 shown in FIG. 8 may be used instead of using the conductive plug 50.
- the same symbols are attached to the same configurations as in the above-described embodiment.
- a hole penetrating vertically through the ceramic plate 20 is referred to as a ceramic plate through-hole 124 .
- the conductive film 123 covers the entire surface of the wafer mounting surface 21 and the inner peripheral surface of the ceramic plate through hole 124 . Since the conductive film 124 also covers the upper surface of the small projections 21 b , it is electrically connected to the wafer W placed on the small projections 21 b of the wafer mounting surface 21 .
- the lower end of the conductive film 123 is located below the height of the lower surface of the ceramic plate 20 .
- the lower end of the conductive film 123 is preferably positioned below the height of the upper surface of the conductive substrate (the upper surface of the metal bonding layer 40). Since the conductive film 123 is cylindrical, it allows the gas supplied to the communication hole 34 to flow to the wafer mounting surface 21 .
- the conductive film 123 passes through the ceramic plate. It serves to prevent potential gradients within the hole 124 from occurring. This suppresses the generation of plasma inside the ceramic plate through hole 124 .
- the conductive film 123 can be produced by, for example, thermal spraying or plating.
- the ceramic plate through hole 124 is a stepped hole in FIG. 8, it is not limited to a stepped hole, and may be a straight hole, for example.
- the conductive plug 50 is adhesively fixed to the plug insertion hole 24, but is not limited to this.
- a conductive plug 50 may be threaded into plug insertion hole 24 .
- the plug insertion hole 24 has a female screw portion on its inner peripheral surface.
- the conductive plug 50 as shown in FIG. 9, has a male screw portion on its outer peripheral surface. A male threaded portion formed on the outer peripheral surface of the conductive plug 50 is screwed into a female threaded portion formed on the inner peripheral surface of the plug insertion hole 24 .
- the male threaded portion of the conductive plug 50 can be screwed into the female threaded portion of the plug insertion hole 24 so that the height of the top surface of the conductive plug 50 matches the height of the top surface of the small projection 21b. good.
- repeated use of the member 10 for a semiconductor manufacturing apparatus may cause the conductive plug 50 to wear out and the height of the top surface of the conductive plug 50 to become lower than the top surface of the small projection 21b.
- the height of the top surface of the conductive plug 50 will match the height of the top surface of the small projection 21b. can be adjusted easily.
- the conductive plug 50 has the through hole 52 in the above-described embodiment, it is not limited to this.
- the conductive plug 50 may have gas passages 53 instead of the through holes 52 .
- One or more (here, four) gas passages 53 are formed along the outer peripheral surface of the conductive plug 50 .
- the gas passage 53 is a groove formed so as to extend from the lower end of the outer peripheral surface of the small diameter portion 50b through the stepped portion 50c to the upper end of the outer peripheral surface of the large diameter portion 50a.
- the upper surface of the conductive plug 50 may not have a slit groove as shown in FIG. 11, or may have a slit groove 55 as shown in FIG.
- the conductive plug 50 may have the through hole 52 and the slit groove 54 of the embodiment described above.
- the conductive plugs 150 to 650 shown in FIG. 13 may be used instead of the conductive plug 50 of the embodiment described above.
- the same components as those in FIG. 3 are denoted by the same reference numerals, and description thereof is omitted.
- the shape of the plug insertion hole 24 provided in the ceramic plate 20 is also changed to suit each of them.
- the conductive plug 150 of FIG. 13A has an inverted truncated cone shape with the upper base larger than the lower base.
- the conductive plug 250 of FIG. 13B has a frusto-conical shape with a lower base that is larger than an upper base.
- the conductive plug 450 of FIG. 13D has a shape in which a cylinder is connected to the upper surface of a truncated cone.
- the conductive plug 550 of FIG. 13E has a shape in which a small-diameter cylinder is connected to the upper surface of a large-diameter cylinder.
- the conductive plug 650 of FIG. 13F is cylindrical in shape. Among them, the conductive plugs 250, 450, and 550 have a diameter-enlarged portion E that expands from top to bottom.
- the conductive plugs 150-650 may have gas passages 53 (FIGS. 10 and 11) instead of or in addition to the through holes 52. FIG. In that case, the conductive plugs 150 to 650 may have slit grooves 55 (FIG. 12) formed on their upper surfaces.
- an insulating plug 160 incorporating a gas passage 162 shown in FIG. 14 may be used instead of the insulating tube 60 .
- the insulating plug 160 is formed by providing a spiral gas passage 162 inside a cylindrical body made of dense ceramic. The upper end of the gas passage 162 opens to the upper surface of the cylinder, and the lower end of the gas passage 162 opens to the lower surface of the cylinder.
- the creepage distance between the wafer W and the cooling plate 30 is longer than when the insulating tube 60 is used, so spark discharge in the conductive plug 50 can be further suppressed.
- the insulating tube 60 is provided in the above-described embodiment, the insulating tube 60 may be omitted.
- a gas channel structure may be provided.
- a gas channel structure a ring portion provided inside the cooling plate 30 and concentric with the cooling plate 30 in plan view, an introduction portion for introducing gas from the back surface of the cooling plate 30 to the ring portion, and each conductive plug from the ring portion.
- a structure including a distribution portion (corresponding to the gas hole 34 described above) for distributing gas to 50 may be employed.
- the number of introduction parts may be less than the number of distribution parts, for example one.
- the electrostatic electrode was exemplified as the electrode 22 embedded in the ceramic plate 20, but it is not particularly limited to this.
- the ceramic plate 20 may incorporate a heater electrode (resistance heating element) or may incorporate an RF electrode.
- the ceramic plate 20 and the cooling plate 30 are bonded with the metal bonding layer 40, but instead of the metal bonding layer 40, a resin bonding layer may be used.
- the cooling plate 30 corresponds to the conductive substrate of the present invention.
- the present invention can be used, for example, in an apparatus that plasma-processes wafers.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Manufacturing & Machinery (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- Plasma & Fusion (AREA)
- Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
- Drying Of Semiconductors (AREA)
Abstract
A member 10 for semiconductor manufacturing includes: a ceramic plate 20 having a wafer mounting surface 21 on an upper surface; plug insertion holes 24 vertically penetrating the ceramic plate 20; a cooling plate 30 provided on a lower surface of the ceramic plate 20; gas holes 34 provided in the cooling plate 30 and communicating with the plug insertion holes 24; and conductive plugs 50 that are arranged in the plug insertion holes 24 so as to be electrically conductive with a wafer W mounted on the wafer mounting surface 21, lower surfaces of the conductive plugs being positioned at or below the height of the lower surface of the ceramic plate 20, and the conductive plugs allowing the gas supplied to the gas holes 34 to pass through to the wafer mounting surface 21.
Description
本発明は、半導体製造装置用部材に関する。
The present invention relates to members for semiconductor manufacturing equipment.
従来、半導体製造装置用部材としては、ウエハ載置面を有する静電チャックが冷却装置上に設けられたものが知られている。例えば、特許文献1の半導体製造装置用部材は、冷却装置に設けられたガス供給孔と、ガス供給孔と連通するように静電チャックに設けられた凹部と、凹部の底面からウエハ載置面まで貫通する細孔と、凹部に充填された絶縁材料からなる多孔質プラグとを備えている。ヘリウム等のバックサイドガスがガス供給孔に導入されると、そのガスはガス供給孔、多孔質プラグおよび細孔を通ってウエハの裏面側の空間に供給される。
Conventionally, as a member for a semiconductor manufacturing apparatus, one in which an electrostatic chuck having a wafer mounting surface is provided on a cooling device is known. For example, the member for a semiconductor manufacturing apparatus of Patent Document 1 includes a gas supply hole provided in a cooling device, a recess provided in an electrostatic chuck so as to communicate with the gas supply hole, and a wafer mounting surface extending from the bottom surface of the recess. and a porous plug made of an insulating material filled in the recess. When a backside gas such as helium is introduced into the gas supply holes, the gas is supplied through the gas supply holes, the porous plug and the pores into the space on the back side of the wafer.
しかしながら、上述した半導体製造装置用部材では、ウエハ上部のプロセスガスをハイパワーでプラズマ化する際に、バックサイドガスが通過する細孔内でも意図せずプラズマが生成してしまい、ウエハの裏面がエッチングされてしまうことがあった。
However, in the semiconductor manufacturing apparatus member described above, when the process gas above the wafer is turned into plasma with high power, plasma is unintentionally generated even in the pores through which the backside gas passes, and the back surface of the wafer is damaged. It could have been etched.
本発明はこのような課題を解決するためになされたものであり、ウエハの裏面が意図せずにエッチングされてしまうのを抑制することを主目的とする。
The present invention has been made to solve such problems, and its main purpose is to suppress unintentional etching of the back surface of the wafer.
[1]本発明の半導体製造装置用部材は、
上面にウエハ載置面を有するセラミックプレートと、
前記セラミックプレートを上下方向に貫通するプラグ挿入穴と、
前記セラミックプレートの下面に設けられた導電性基材と、
前記導電性基材に設けられ、前記プラグ挿入穴に連通する連通穴と、
前記ウエハ載置面に載置されるウエハと導通可能なように前記プラグ挿入穴に配置され、下面が前記セラミックプレートの下面の高さ以下に位置し、前記連通穴に供給されたガスが前記ウエハ載置面へ流通するのを許容する導電性プラグと、
を備えたものである。 [1] The member for semiconductor manufacturing equipment of the present invention is
a ceramic plate having a wafer mounting surface on its upper surface;
a plug insertion hole vertically penetrating the ceramic plate;
a conductive substrate provided on the lower surface of the ceramic plate;
a communication hole provided in the conductive base material and communicating with the plug insertion hole;
It is arranged in the plug insertion hole so as to be electrically conductive with the wafer mounted on the wafer mounting surface, the bottom surface is positioned below the height of the bottom surface of the ceramic plate, and the gas supplied to the communication hole is supplied to the a conductive plug allowing communication to the wafer mounting surface;
is provided.
上面にウエハ載置面を有するセラミックプレートと、
前記セラミックプレートを上下方向に貫通するプラグ挿入穴と、
前記セラミックプレートの下面に設けられた導電性基材と、
前記導電性基材に設けられ、前記プラグ挿入穴に連通する連通穴と、
前記ウエハ載置面に載置されるウエハと導通可能なように前記プラグ挿入穴に配置され、下面が前記セラミックプレートの下面の高さ以下に位置し、前記連通穴に供給されたガスが前記ウエハ載置面へ流通するのを許容する導電性プラグと、
を備えたものである。 [1] The member for semiconductor manufacturing equipment of the present invention is
a ceramic plate having a wafer mounting surface on its upper surface;
a plug insertion hole vertically penetrating the ceramic plate;
a conductive substrate provided on the lower surface of the ceramic plate;
a communication hole provided in the conductive base material and communicating with the plug insertion hole;
It is arranged in the plug insertion hole so as to be electrically conductive with the wafer mounted on the wafer mounting surface, the bottom surface is positioned below the height of the bottom surface of the ceramic plate, and the gas supplied to the communication hole is supplied to the a conductive plug allowing communication to the wafer mounting surface;
is provided.
この半導体製造装置用部材では、導電性プラグを備える。導電性プラグは、ウエハ載置面に載置されるウエハと導通可能なようにプラグ挿入穴に配置され、下面がセラミックプレートの下面の高さ以下に位置し、連通穴に供給されたガスがウエハ載置面へ流通するのを許容する。そのため、導電性基材を利用してウエハ載置面に載置されるウエハの上部にプラズマを発生させる際、導電性プラグはセラミックプレートのプラグ挿入穴内の電位勾配が生じるのを防止する役割を果たす。これにより、導電性プラグの内部でのプラズマの生成が抑制される。その結果、ウエハの裏面が意図せずにエッチングされてしまうのを抑制することができる。
This member for semiconductor manufacturing equipment has a conductive plug. The conductive plug is arranged in the plug insertion hole so as to be electrically conductive with the wafer mounted on the wafer mounting surface, the bottom surface is positioned below the height of the bottom surface of the ceramic plate, and the gas supplied to the communication hole is It is allowed to flow to the wafer mounting surface. Therefore, when the conductive substrate is used to generate plasma above the wafer mounted on the wafer mounting surface, the conductive plug serves to prevent the potential gradient from occurring in the plug insertion hole of the ceramic plate. Fulfill. This suppresses the generation of plasma inside the conductive plug. As a result, it is possible to prevent the back surface of the wafer from being unintentionally etched.
[2]上述した半導体製造装置用部材(前記[1]に記載の半導体製造装置用部材)において、前記導電性プラグの材料は、Si又はSiCセラミックであってもよい。ウエハとしてシリコンウエハを用いる場合には、Si製の導電性プラグを用いることが同じ組成のため好ましい。また、SiCセラミック製の導電性プラグであれば、使用期間(寿命)を長くすることができるため好ましい。
[2] In the above-described member for a semiconductor manufacturing apparatus (the member for a semiconductor manufacturing apparatus described in [1] above), the material of the conductive plug may be Si or SiC ceramic. When a silicon wafer is used as the wafer, it is preferable to use a conductive plug made of Si because of the same composition. Further, a conductive plug made of SiC ceramic is preferable because it can extend the period of use (life).
[3]上述した半導体製造装置用部材(前記[1]又は[2]に記載の半導体製造装置用部材)において、前記連通穴の内周面には、前記セラミックプレートの下面と当接するように絶縁管が配置されていてもよい。こうすれば、ウエハと導電性基材との間の沿面距離が長くなる。そのため、ウエハと導電性基材との間で沿面放電(火花放電)が起きるのを抑制することができる。
[3] In the above-described member for a semiconductor manufacturing apparatus (the member for a semiconductor manufacturing apparatus according to [1] or [2] above), the inner peripheral surface of the communication hole is provided with a An insulating tube may be arranged. This increases the creepage distance between the wafer and the conductive substrate. Therefore, creeping discharge (spark discharge) between the wafer and the conductive substrate can be suppressed.
[4]上述した半導体製造装置用部材(前記[1]~[3]のいずれかに記載の半導体製造装置用部材)において、前記ウエハ載置面は、前記ウエハを支持する多数の小突起を有していてもよく、前記導電性プラグは、前記ウエハと前記小突起と前記ウエハ載置面のうち前記小突起の設けられていない基準面とで囲まれた領域に前記ガスを供給してもよい。こうすれば、ウエハとセラミックプレートとの接触面積が小さくなるため、パーティクルが発生しにくい。また、ガスとしてヘリウムガスのような熱伝導ガスを用いれば、ウエハとセラミックプレートとの熱伝導が良好になる。
[4] In the member for a semiconductor manufacturing apparatus described above (the member for a semiconductor manufacturing apparatus according to any one of [1] to [3]), the wafer mounting surface has a large number of small protrusions for supporting the wafer. The conductive plug may supply the gas to a region surrounded by the wafer, the small projections, and a reference surface on which the small projections are not provided in the wafer mounting surface. good too. By doing so, the contact area between the wafer and the ceramic plate is reduced, so particles are less likely to be generated. Also, if a heat-conducting gas such as helium gas is used as the gas, heat conduction between the wafer and the ceramic plate is improved.
[5]上述した半導体製造装置用部材(前記[4]に記載の半導体製造装置用部材)において、前記導電性プラグの上面は、前記小突起の上面と同じ高さにあってもよい。こうすれば、導電性プラグはウエハ載置面に載置されるウエハと直接接触する。
[5] In the above-described member for a semiconductor manufacturing apparatus (the member for a semiconductor manufacturing apparatus described in [4] above), the top surface of the conductive plug may be at the same height as the top surface of the small protrusion. In this way, the conductive plug is in direct contact with the wafer mounted on the wafer mounting surface.
[6]上述した半導体製造装置用部材(前記[4]に記載の半導体製造装置用部材)において、前記小突起の上面は、前記ウエハと接触する導電性被膜を有していてもよく、前記導電性プラグの上面は、前記導電性被膜よりも低い位置にあってもよく、前記導電性プラグは、前記導電性被膜に接続されていてもよい。こうすれば、導電性プラグはウエハ載置面に載置されるウエハと導電性被膜を介して間接的に接触する。また、導電性プラグの上面を小突起の上面と同じ高さにする場合には、導電性プラグの上面に高い位置精度が要求されるが、ここでは導電性プラグの上面は小突起の上面を覆う導電性被膜よりも低い位置にあるため、そのような高い位置精度は要求されない。
[6] In the above-described member for a semiconductor manufacturing apparatus (the member for a semiconductor manufacturing apparatus described in [4] above), the upper surface of the small protrusion may have a conductive coating that contacts the wafer, and The top surface of the conductive plug may be lower than the conductive coating, and the conductive plug may be connected to the conductive coating. In this way, the conductive plug is in indirect contact with the wafer mounted on the wafer mounting surface via the conductive film. In addition, when the top surface of the conductive plug is to be level with the top surface of the small protrusion, high positional accuracy is required for the top surface of the conductive plug. Since it is positioned lower than the overlying conductive coating, such high positional accuracy is not required.
[7]上述した半導体製造装置用部材(前記[1]~[6]のいずれかに記載の半導体製造装置用部材)において、前記プラグ挿入穴は、内周面に雌ネジ部を有していてもよく、前記導電性プラグは、前記雌ネジ部に螺合する雄ネジ部を外周面に有していてもよい。こうすれば、導電性プラグをプラグ挿入穴に接着固定する場合に比べて、導電性プラグの交換作業をスムーズに行うことができる。また、導電性プラグの高さを容易に調整することができる。
[7] In the above member for semiconductor manufacturing equipment (the member for semiconductor manufacturing equipment according to any one of [1] to [6] above), the plug insertion hole has a female screw portion on the inner peripheral surface. Alternatively, the conductive plug may have a male threaded portion on its outer peripheral surface that is screwed into the female threaded portion. This makes it possible to replace the conductive plug more smoothly than when the conductive plug is adhesively fixed to the plug insertion hole. Also, the height of the conductive plug can be easily adjusted.
[8]上述した半導体製造装置用部材(前記[1]~[7]のいずれかに記載の半導体製造装置用部材)において、前記導電性プラグは、上から下に向かって拡径する拡径部を有していてもよく、前記プラグ挿入穴は、前記拡径部と当接可能な形状となっていてもよい。こうすれば、導電性プラグの下面から供給されるガスの圧力によって導電性プラグが浮き上がるのを抑制することができる。
[8] In the above-described member for a semiconductor manufacturing apparatus (the member for a semiconductor manufacturing apparatus according to any one of [1] to [7]), the conductive plug has a diameter that expands from top to bottom. The plug insertion hole may have a shape capable of coming into contact with the enlarged diameter portion. By doing so, it is possible to prevent the conductive plug from floating due to the pressure of the gas supplied from the lower surface of the conductive plug.
[9]本発明のもう一つの半導体製造装置用部材は、
上面にウエハ載置面を有するセラミックプレートと、
前記セラミックプレートを上下方向に貫通するセラミックプレート貫通穴と、
前記セラミックプレートの下面に設けられた導電性基材と、
前記導電性基材に設けられ、前記セラミックプレート貫通穴に連通する連通穴と、
前記セラミックプレート貫通穴の内周面を被覆し、前記ウエハ載置面に載置されるウエハと導通可能なように設けられ、下端が前記セラミックプレートの下面の高さ以下に位置し、前記連通穴に供給されたガスが前記ウエハ載置面へ流通するのを許容する導電膜と、
を備えたものとしてもよい。 [9] Another member for semiconductor manufacturing equipment of the present invention is
a ceramic plate having a wafer mounting surface on its upper surface;
a ceramic plate through-hole vertically penetrating the ceramic plate;
a conductive substrate provided on the lower surface of the ceramic plate;
a communication hole provided in the conductive substrate and communicating with the ceramic plate through-hole;
It covers the inner peripheral surface of the ceramic plate through-hole, is provided so as to be electrically connected to the wafer mounted on the wafer mounting surface, has a lower end positioned below the height of the lower surface of the ceramic plate, and communicates with the wafer. a conductive film that allows the gas supplied to the hole to flow to the wafer mounting surface;
may be provided.
上面にウエハ載置面を有するセラミックプレートと、
前記セラミックプレートを上下方向に貫通するセラミックプレート貫通穴と、
前記セラミックプレートの下面に設けられた導電性基材と、
前記導電性基材に設けられ、前記セラミックプレート貫通穴に連通する連通穴と、
前記セラミックプレート貫通穴の内周面を被覆し、前記ウエハ載置面に載置されるウエハと導通可能なように設けられ、下端が前記セラミックプレートの下面の高さ以下に位置し、前記連通穴に供給されたガスが前記ウエハ載置面へ流通するのを許容する導電膜と、
を備えたものとしてもよい。 [9] Another member for semiconductor manufacturing equipment of the present invention is
a ceramic plate having a wafer mounting surface on its upper surface;
a ceramic plate through-hole vertically penetrating the ceramic plate;
a conductive substrate provided on the lower surface of the ceramic plate;
a communication hole provided in the conductive substrate and communicating with the ceramic plate through-hole;
It covers the inner peripheral surface of the ceramic plate through-hole, is provided so as to be electrically connected to the wafer mounted on the wafer mounting surface, has a lower end positioned below the height of the lower surface of the ceramic plate, and communicates with the wafer. a conductive film that allows the gas supplied to the hole to flow to the wafer mounting surface;
may be provided.
この半導体製造装置用部材では、セラミックプレート貫通穴の内周面を被覆する導電膜を備える。導電膜は、ウエハ載置面に載置されるウエハと導通可能なように設けられ、下端がセラミックプレートの下面の高さ以下に位置し、連通穴に供給されたガスがウエハ載置面へ流通するのを許容する。そのため、導電性基材を利用してウエハ載置面に載置されるウエハの上部にプラズマを発生させる際、導電膜はセラミックプレート貫通穴内の電位勾配が生じるのを防止する役割を果たす。これにより、セラミックプレート貫通穴の内部でのプラズマの生成が抑制される。その結果、ウエハの裏面が意図せずにエッチングされてしまうのを抑制することができる。
This member for semiconductor manufacturing equipment includes a conductive film that covers the inner peripheral surface of the ceramic plate through-hole. The conductive film is provided so as to be electrically conductive with the wafer mounted on the wafer mounting surface, the lower end is positioned below the height of the lower surface of the ceramic plate, and the gas supplied to the communication hole flows to the wafer mounting surface. allow it to circulate. Therefore, when the conductive substrate is used to generate plasma above the wafer mounted on the wafer mounting surface, the conductive film plays a role in preventing the generation of a potential gradient in the through hole of the ceramic plate. This suppresses the generation of plasma inside the ceramic plate through hole. As a result, it is possible to prevent the back surface of the wafer from being unintentionally etched.
次に、本発明の好適な実施形態について、図面を用いて説明する。図1は半導体製造装置用部材10の縦断面図、図2はセラミックプレート20の平面図、図3は図1の部分拡大図である。
Next, preferred embodiments of the present invention will be described with reference to the drawings. 1 is a longitudinal sectional view of a member 10 for semiconductor manufacturing equipment, FIG. 2 is a plan view of a ceramic plate 20, and FIG. 3 is a partially enlarged view of FIG.
半導体製造装置用部材10は、セラミックプレート20と、冷却プレート30と、金属接合層40と、導電性プラグ50と、絶縁管60とを備えている。
The semiconductor manufacturing apparatus member 10 includes a ceramic plate 20, a cooling plate 30, a metal bonding layer 40, a conductive plug 50, and an insulating tube 60.
セラミックプレート20は、アルミナ焼結体や窒化アルミニウム焼結体などのセラミック製の円板(例えば直径300mm、厚さ5mm)である。セラミックプレート20の上面は、ウエハ載置面21となっている。セラミックプレート20は、電極22を内蔵している。セラミックプレート20のウエハ載置面21には、図2に示すように、外縁に沿ってシールバンド21aが形成され、全面に複数の円形小突起21bが形成されている。シールバンド21a及び円形小突起21bは同じ高さであり、その高さは例えば数μm~数10μmである。電極22は、静電電極として用いられる平面状のメッシュ電極であり、直流電圧を印加可能となっている。この電極22に直流電圧が印加されるとウエハWは静電吸着力によりウエハ載置面21(具体的にはシールバンド21aの上面及び円形小突起21bの上面)に吸着固定され、直流電圧の印加を解除するとウエハWのウエハ載置面21への吸着固定が解除される。なお、ウエハ載置面21のうちシールバンド21aや円形小突起21bの設けられていない部分を、基準面21cと称する。
The ceramic plate 20 is a disk made of ceramic such as alumina sintered body or aluminum nitride sintered body (for example, diameter 300 mm, thickness 5 mm). The upper surface of the ceramic plate 20 serves as a wafer mounting surface 21 . The ceramic plate 20 incorporates electrodes 22 . As shown in FIG. 2, the wafer mounting surface 21 of the ceramic plate 20 is provided with a seal band 21a along the outer edge and a plurality of small circular projections 21b formed on the entire surface. The seal band 21a and the circular small projection 21b have the same height, and the height is, for example, several micrometers to several tens of micrometers. The electrode 22 is a planar mesh electrode used as an electrostatic electrode, and can be applied with a DC voltage. When a DC voltage is applied to this electrode 22, the wafer W is attracted and fixed to the wafer mounting surface 21 (specifically, the upper surface of the seal band 21a and the upper surface of the circular small projection 21b) by electrostatic attraction force, and the DC voltage is applied. When the application is released, the wafer W is released from the suction and fixation to the wafer mounting surface 21 . A portion of the wafer mounting surface 21 on which the seal band 21a and the small circular protrusions 21b are not provided is referred to as a reference surface 21c.
プラグ挿入穴24は、セラミックプレート20を上下方向に貫通する貫通穴である。図3に示すように、プラグ挿入穴24の上部は、円筒状の太径部24aになっており、プラグ挿入穴24の下部は、円筒状の細径部24bになっている。つまり、プラグ挿入穴24は、段付き穴になっている。プラグ挿入穴24は、セラミックプレート20の複数箇所(例えば図2に示すように周方向に沿って等間隔に設けられた複数箇所)に設けられている。プラグ挿入穴24には、後述する導電性プラグ50が配置されている。
The plug insertion hole 24 is a through hole penetrating through the ceramic plate 20 in the vertical direction. As shown in FIG. 3, the upper portion of the plug insertion hole 24 is a cylindrical large-diameter portion 24a, and the lower portion of the plug insertion hole 24 is a cylindrical small-diameter portion 24b. That is, the plug insertion hole 24 is a stepped hole. The plug insertion holes 24 are provided at a plurality of locations on the ceramic plate 20 (for example, a plurality of locations provided at equal intervals along the circumferential direction as shown in FIG. 2). A conductive plug 50 , which will be described later, is arranged in the plug insertion hole 24 .
冷却プレート30は、熱伝導率の良好な円板(セラミックプレート20と同じ直径かそれよりも大きな直径の円板)である。冷却プレート30の内部には、冷媒が循環する冷媒流路32やガスを導電性プラグ50へ供給するガス穴34が形成されている。冷媒流路32は、平面視で冷却プレート30の全面にわたって入口から出口まで一筆書きの要領で形成されている。ガス穴34は、円筒状の穴であり、プラグ挿入穴24に対向する位置に設けられている。冷却プレート30の材料は、例えば、金属材料や金属マトリックス複合材料(MMC)などが挙げられる。金属材料としては、Al、Ti、Mo又はそれらの合金などが挙げられる。MMCとしては、Si,SiC及びTiを含む材料(SiSiCTiともいう)やSiC多孔質体にAl及び/又はSiを含浸させた材料などが挙げられる。冷却プレート30の材料としては、セラミックプレート20の材料と熱膨張係数の近いものを選択するのが好ましい。冷却プレート30は、RF電極としても用いられる。具体的には、ウエハ載置面21の上方には上部電極(図示せず)が配置され、その上部電極と冷却プレート30とからなる平行平板電極間に高周波電力を印加するとプラズマが発生する。
The cooling plate 30 is a disk with good thermal conductivity (a disk with a diameter equal to or larger than that of the ceramic plate 20). Inside the cooling plate 30 are formed coolant channels 32 through which coolant circulates and gas holes 34 through which gas is supplied to the conductive plugs 50 . The coolant channel 32 is formed in a single stroke from the inlet to the outlet over the entire surface of the cooling plate 30 in a plan view. The gas hole 34 is a cylindrical hole provided at a position facing the plug insertion hole 24 . Materials for the cooling plate 30 include, for example, metal materials and metal matrix composite materials (MMC). Examples of metal materials include Al, Ti, Mo, and alloys thereof. Examples of MMC include a material containing Si, SiC and Ti (also referred to as SiSiCTi), and a material obtained by impregnating a porous SiC body with Al and/or Si. As the material for the cooling plate 30, it is preferable to select a material having a coefficient of thermal expansion close to that of the material for the ceramic plate 20. FIG. Cooling plate 30 is also used as an RF electrode. Specifically, an upper electrode (not shown) is arranged above the wafer mounting surface 21, and plasma is generated when high-frequency power is applied between parallel plate electrodes consisting of the upper electrode and the cooling plate 30. FIG.
金属接合層40は、セラミックプレート20の下面と冷却プレート30の上面とを接合している。金属接合層40は、例えばTCB(Thermal compression bonding)により形成される。TCBとは、接合対象の2つの部材の間に金属接合材を挟み込み、金属接合材の固相線温度以下の温度に加熱した状態で2つの部材を加圧接合する公知の方法をいう。金属接合層40は、ガス穴34に対向する位置に金属接合層40を上下方向に貫通する丸穴42を有する。本実施形態の金属接合層40及び冷却プレート30が本発明の導電性基材に相当し、丸穴42及びガス穴34が連通穴に相当する。
The metal bonding layer 40 bonds the lower surface of the ceramic plate 20 and the upper surface of the cooling plate 30 . The metal bonding layer 40 is formed by TCB (Thermal Compression Bonding), for example. TCB is a known method in which a metal bonding material is sandwiched between two members to be bonded, and the two members are pressure-bonded while being heated to a temperature below the solidus temperature of the metal bonding material. The metal bonding layer 40 has a round hole 42 vertically penetrating the metal bonding layer 40 at a position facing the gas hole 34 . The metal bonding layer 40 and the cooling plate 30 of this embodiment correspond to the conductive substrate of the invention, and the round holes 42 and the gas holes 34 correspond to the communication holes.
導電性プラグ50は、ガス穴34に供給されたガスがウエハ載置面21へ流通するのを許容するプラグであり、プラグ挿入穴24に配置されている。導電性プラグ50の上部は、円柱状の太径部50aになっており、導電性プラグ50の下部は、円柱状の細径部50bになっている。つまり、導電性プラグ50は、段付きの円柱部材になっている。導電性プラグ50の段差部50cは、プラグ挿入穴24の段差部24cと接着剤によって接着されている。接着剤は、樹脂(有機)接着剤でもよいし、無機接着剤でもよい。これに代えて又は加えて、導電性プラグ50の太径部50aの外周面とプラグ挿入穴24の太径部24aの内周面とが接着されていてもよいし、導電性プラグ50の細径部50bの外周面とプラグ挿入穴24の細径部24bの内周面とが接着されていてもよい。導電性プラグ50の材料は、電気伝導性の材料であれば特に限定されず、例えば金属でもよいし、導電性セラミックでもよい。ウエハWがシリコンウエハの場合には、Si製の導電性プラグ50が好ましく、使用期間(寿命)を長くしたいならば、SiCセラミック製の導電性プラグ50が好ましい。導電性プラグ50は、貫通穴52を有する。貫通穴52は、導電性プラグ50を上下方向に貫通している。貫通穴52は、本実施形態では、中心軸に沿って設けられている。導電性プラグ50の上面には、図4に示すように、貫通穴52を中心として放射状に複数(ここでは3本)のスリット溝54が設けられている。導電性プラグ50の上面の高さは、小突起21bの上面の高さと一致している。導電性プラグ50の下面は、絶縁管60の内部(セラミックプレート20の下面の高さ以下)に位置している。
The conductive plug 50 is a plug that allows the gas supplied to the gas hole 34 to flow to the wafer mounting surface 21 , and is arranged in the plug insertion hole 24 . The upper portion of the conductive plug 50 is a cylindrical large-diameter portion 50a, and the lower portion of the conductive plug 50 is a cylindrical small-diameter portion 50b. That is, the conductive plug 50 is a stepped columnar member. The stepped portion 50c of the conductive plug 50 is adhered to the stepped portion 24c of the plug insertion hole 24 with an adhesive. The adhesive may be a resin (organic) adhesive or an inorganic adhesive. Alternatively or additionally, the outer peripheral surface of the large-diameter portion 50a of the conductive plug 50 and the inner peripheral surface of the large-diameter portion 24a of the plug insertion hole 24 may be bonded together, or the conductive plug 50 may be thin. The outer peripheral surface of the diameter portion 50b and the inner peripheral surface of the small diameter portion 24b of the plug insertion hole 24 may be adhered. The material of the conductive plug 50 is not particularly limited as long as it is an electrically conductive material, and may be, for example, metal or conductive ceramic. When the wafer W is a silicon wafer, the conductive plug 50 made of Si is preferable, and the conductive plug 50 made of SiC ceramic is preferable if the usage period (life) is to be extended. Conductive plug 50 has a through hole 52 . The through hole 52 vertically penetrates the conductive plug 50 . The through hole 52 is provided along the central axis in this embodiment. As shown in FIG. 4, a plurality of (here, three) slit grooves 54 are formed radially around the through hole 52 on the upper surface of the conductive plug 50 . The height of the top surface of the conductive plug 50 matches the height of the top surface of the small projection 21b. The lower surface of the conductive plug 50 is located inside the insulating tube 60 (below the height of the lower surface of the ceramic plate 20).
絶縁管60は、緻密質セラミック(例えば緻密質アルミナなど)で形成された平面視円形の管である。絶縁管60の外周面は、金属接合層40の丸穴42の内周面及び冷却プレート30のガス穴34の内周面と図示しない接着層を介して接着されている。接着層は、有機接着層(樹脂接着層)でもよいし無機接着層でもよい。なお、接着層は、更に絶縁管60の上面とセラミックプレート20の下面との間に設けられていてもよい。絶縁管60の内部は、導電性プラグ50の貫通穴52に連通している。そのため、絶縁管60の内部にガスが導入されると、そのガスは導電性プラグ50の貫通穴52及びスリット溝54を通過してウエハWの裏面に供給される。
The insulating tube 60 is a circular tube in plan view made of dense ceramic (for example, dense alumina). The outer peripheral surface of the insulating tube 60 is adhered to the inner peripheral surface of the circular hole 42 of the metal bonding layer 40 and the inner peripheral surface of the gas hole 34 of the cooling plate 30 via adhesive layers (not shown). The adhesive layer may be an organic adhesive layer (resin adhesive layer) or an inorganic adhesive layer. Note that the adhesive layer may be further provided between the upper surface of the insulating tube 60 and the lower surface of the ceramic plate 20 . The inside of the insulating tube 60 communicates with the through hole 52 of the conductive plug 50 . Therefore, when gas is introduced into the insulating tube 60 , the gas is supplied to the rear surface of the wafer W through the through hole 52 and the slit groove 54 of the conductive plug 50 .
次に、こうして構成された半導体製造装置用部材10の使用例について説明する。まず、図示しないチャンバー内に半導体製造装置用部材10を設置した状態で、ウエハWをウエハ載置面21に載置する。そして、チャンバー内を真空ポンプにより減圧して所定の真空度になるように調整し、セラミックプレート20の電極22に直流電圧をかけて静電吸着力を発生させ、ウエハWをウエハ載置面21(具体的にはシールバンド21aの上面や円形小突起21bの上面)に吸着固定する。次に、チャンバー内を所定圧力(例えば数10~数100Pa)の反応ガス雰囲気とし、この状態で、チャンバー内の天井部分に設けた図示しない上部電極と半導体製造装置用部材10の冷却プレート30との間に高周波電圧を印加させてプラズマを発生させる。ウエハWの表面は、発生したプラズマによって処理される。冷却プレート30の冷媒流路32には、冷媒が循環される。ガス穴34には、図示しないガスボンベからバックサイドガスが導入される。バックサイドガスとしては、熱伝導ガス(例えばヘリウム等)を用いる。バックサイドガスは、絶縁管60及び導電性プラグ50を通って、ウエハWの裏面とウエハ載置面21の基準面21cとの間の空間に供給され封入される。このバックサイドガスの存在により、ウエハWとセラミックプレート20との熱伝導が効率よく行われる。
Next, a usage example of the semiconductor manufacturing apparatus member 10 configured in this manner will be described. First, the wafer W is mounted on the wafer mounting surface 21 while the semiconductor manufacturing apparatus member 10 is installed in a chamber (not shown). Then, the inside of the chamber is decompressed by a vacuum pump and adjusted to a predetermined degree of vacuum. (Specifically, the upper surface of the seal band 21a and the upper surface of the circular small protrusion 21b) are fixed by suction. Next, the inside of the chamber is set to a reaction gas atmosphere of a predetermined pressure (for example, several tens to several hundred Pa), and in this state, an upper electrode (not shown) provided on the ceiling portion of the chamber and the cooling plate 30 of the semiconductor manufacturing apparatus member 10 are connected. A high-frequency voltage is applied between and plasma is generated. The surface of wafer W is processed by the generated plasma. A coolant is circulated through the coolant channels 32 of the cooling plate 30 . A backside gas is introduced into the gas hole 34 from a gas cylinder (not shown). A heat-conducting gas (for example, helium) is used as the backside gas. The backside gas is supplied to the space between the back surface of the wafer W and the reference surface 21c of the wafer mounting surface 21 through the insulating tube 60 and the conductive plug 50 and sealed therein. Due to the presence of this backside gas, heat conduction between the wafer W and the ceramic plate 20 is efficiently performed.
次に、半導体製造装置用部材10の製造例について図5及び図6に基づいて説明する。図5及び図6は半導体製造装置用部材10の製造工程図である。まず、セラミックプレート20、冷却プレート30及び金属接合材90を準備する(図5A)。セラミックプレート20は、電極22及びプラグ挿入穴24を備えている。この段階では、セラミックプレート20の上面はフラットな面であり、シールバンド21aや円形小突起21bは設けられていない。プラグ挿入穴24は、太径部24a、細径部24b及び段差部50cを有している。冷却プレート30は、冷媒流路32を内蔵し、ガス穴34を備えている。金属接合材90は、最終的に丸穴42になる丸穴92を備えている。
Next, an example of manufacturing the member 10 for semiconductor manufacturing equipment will be described with reference to FIGS. 5 and 6. FIG. 5 and 6 are manufacturing process diagrams of the member 10 for semiconductor manufacturing equipment. First, the ceramic plate 20, the cooling plate 30 and the metal bonding material 90 are prepared (Fig. 5A). The ceramic plate 20 has electrodes 22 and plug insertion holes 24 . At this stage, the upper surface of the ceramic plate 20 is a flat surface, and the seal band 21a and the small circular projections 21b are not provided. The plug insertion hole 24 has a large diameter portion 24a, a small diameter portion 24b and a stepped portion 50c. The cooling plate 30 contains coolant channels 32 and includes gas holes 34 . The metal joint 90 has a round hole 92 that will eventually become the round hole 42 .
そして、セラミックプレート20の下面と冷却プレート30の上面とをTCBによって接合して接合体94を得る(図5B)。TCBは、例えば以下のように行われる。まず、セラミックプレート20の下面と冷却プレート30の上面との間に金属接合材90を挟み込んで積層体とする。このとき、セラミックプレート20のプラグ挿入穴24と金属接合材90の丸穴92と冷却プレート30のガス穴34とが同軸になるように積層する。そして、金属接合材90の固相線温度以下(例えば、固相線温度から20℃引いた温度以上固相線温度以下)の温度で積層体を加圧して接合し、その後室温に戻す。これにより、金属接合材90は金属接合層40になり、丸穴92は丸穴42になり、セラミックプレート20と冷却プレート30とを金属接合層40で接合した接合体94が得られる。このときの金属接合材90としては、Al-Mg系接合材やAl-Si-Mg系接合材を使用することができる。例えば、Al-Si-Mg系接合材を用いてTCBを行う場合、真空雰囲気下で加熱した状態で積層体を加圧する。金属接合材90は、厚みが100μm前後のものを用いるのが好ましい。
Then, the lower surface of the ceramic plate 20 and the upper surface of the cooling plate 30 are joined by TCB to obtain a joined body 94 (Fig. 5B). TCB is performed, for example, as follows. First, a metal bonding material 90 is sandwiched between the lower surface of the ceramic plate 20 and the upper surface of the cooling plate 30 to form a laminate. At this time, the layers are stacked so that the plug insertion hole 24 of the ceramic plate 20, the round hole 92 of the metal joint material 90, and the gas hole 34 of the cooling plate 30 are coaxial. Then, the laminated body is pressurized and bonded at a temperature below the solidus temperature of the metal bonding material 90 (for example, the temperature obtained by subtracting 20° C. from the solidus temperature and below the solidus temperature), and then returned to room temperature. As a result, the metal bonding material 90 becomes the metal bonding layer 40 , the round hole 92 becomes the round hole 42 , and a bonded body 94 in which the ceramic plate 20 and the cooling plate 30 are bonded by the metal bonding layer 40 is obtained. As the metal bonding material 90 at this time, an Al--Mg based bonding material or an Al--Si--Mg based bonding material can be used. For example, when TCB is performed using an Al-Si-Mg-based bonding material, the laminated body is pressed while being heated in a vacuum atmosphere. The metal bonding material 90 preferably has a thickness of about 100 μm.
続いて、絶縁管60を用意し、金属接合層40の丸穴42の内周面及び冷却プレート30のガス穴34の内周面に接着剤を塗布したあと、そこに絶縁管60を挿入し、絶縁管60を丸穴42及びガス穴34に接着固定する(図5C)。接着剤は、樹脂(有機)接着剤でもよいし、無機接着剤でもよい。その後、セラミックプレート20の上面(ウエハ載置面21)をブラスト加工することにより、シールバンド21a、円形小突起21b及び基準面21c(図2参照)を形成する。
Subsequently, an insulating tube 60 is prepared, and an adhesive is applied to the inner peripheral surface of the circular hole 42 of the metal bonding layer 40 and the inner peripheral surface of the gas hole 34 of the cooling plate 30, and then the insulating tube 60 is inserted. , the insulating tube 60 is glued to the round hole 42 and the gas hole 34 (FIG. 5C). The adhesive may be a resin (organic) adhesive or an inorganic adhesive. After that, the upper surface (wafer mounting surface 21) of the ceramic plate 20 is blasted to form a seal band 21a, a small circular projection 21b and a reference surface 21c (see FIG. 2).
続いて、導電性プラグ50を用意し、段差部24cに接着剤を塗布したあと、細径部50bをプラグ挿入穴24の上部開口から差し込み、導電性プラグ50の段差部50cとプラグ挿入穴24の段差部24cとを接着固定する(図6A及び図6B)。導電性プラグ50の寸法は、導電性プラグ50の段差部50cとプラグ挿入穴24の段差部24cとが一致したときに、導電性プラグ50の上面の高さが円形小突起21bの上面の高さと一致する(図3参照)と共に導電性プラグ50の下面が絶縁管60の内部(セラミックプレート20の下面の高さ以下)に位置するように設計されている。接着剤は、樹脂(有機)接着剤でもよいし、無機接着剤でもよい。以上のようにして、半導体製造装置用部材10が得られる(図6B)。
Subsequently, after preparing the conductive plug 50 and applying an adhesive to the stepped portion 24c, the small diameter portion 50b is inserted from the upper opening of the plug insertion hole 24, and the stepped portion 50c of the conductive plug 50 and the plug insertion hole 24 are separated. is fixed to the stepped portion 24c (FIGS. 6A and 6B). The dimension of the conductive plug 50 is such that when the stepped portion 50c of the conductive plug 50 and the stepped portion 24c of the plug insertion hole 24 are aligned, the height of the top surface of the conductive plug 50 is equal to the height of the top surface of the small circular projection 21b. (see FIG. 3), and the lower surface of the conductive plug 50 is designed to be located inside the insulating tube 60 (below the height of the lower surface of the ceramic plate 20). The adhesive may be a resin (organic) adhesive or an inorganic adhesive. As described above, the member 10 for semiconductor manufacturing equipment is obtained (FIG. 6B).
以上詳述した半導体製造装置用部材10は、導電性プラグ50を備える。導電性プラグ50は、ウエハ載置面21に載置されるウエハWと導通可能なようにプラグ挿入穴24に配置され、下面がセラミックプレート20の下面の高さ以下に位置し、ガス穴34に供給されたガスがウエハ載置面21へ流通するのを許容する。そのため、冷却プレート30を利用してウエハ載置面21に載置されるウエハWの上部にプラズマを発生させる際、導電性プラグ50はセラミックプレート20のプラグ挿入穴24内の電位勾配が生じるのを防止する役割を果たす。これにより、導電性プラグ50の内部(つまり貫通穴52やスリット溝54)でのプラズマの生成が抑制される。その結果、ウエハWの裏面が意図せずにエッチングされてしまうのを抑制することができる。なお、導電性プラグ50の下面は、導電性部材の上面(上述した実施形態では金属接合層40の上面)の高さ以下に位置することが好ましい。
The semiconductor manufacturing apparatus member 10 detailed above includes a conductive plug 50 . The conductive plug 50 is arranged in the plug insertion hole 24 so as to be electrically conductive with the wafer W mounted on the wafer mounting surface 21 , the lower surface is positioned below the height of the lower surface of the ceramic plate 20 , and the gas hole 34 allows the gas supplied to to flow to the wafer mounting surface 21 . Therefore, when the cooling plate 30 is used to generate plasma above the wafer W mounted on the wafer mounting surface 21 , the conductive plug 50 does not generate a potential gradient within the plug insertion hole 24 of the ceramic plate 20 . play a role in preventing This suppresses the generation of plasma inside the conductive plug 50 (that is, the through hole 52 and the slit groove 54). As a result, it is possible to prevent the back surface of the wafer W from being unintentionally etched. The lower surface of the conductive plug 50 is preferably positioned below the height of the upper surface of the conductive member (the upper surface of the metal bonding layer 40 in the above-described embodiment).
また、半導体製造装置用部材10では、導電性プラグ50の材料は、Si又はSiCセラミックであってもよい。ウエハWとしてシリコンウエハを用いる場合には、Si製の導電性プラグ50を用いることが同じ組成のため好ましい。また、SiCセラミック製の導電性プラグ50であれば、使用期間(寿命)を長くすることができるため好ましい。
Further, in the semiconductor manufacturing apparatus member 10, the material of the conductive plug 50 may be Si or SiC ceramic. When a silicon wafer is used as the wafer W, it is preferable to use the conductive plug 50 made of Si because of the same composition. Further, the conductive plug 50 made of SiC ceramic is preferable because it can extend the period of use (life).
更に、半導体製造装置用部材10では、丸穴42及びガス穴34の内周面には、セラミックプレート20の下面と当接するように絶縁管60が配置されている。そのため、ウエハWと冷却プレート30との間の沿面距離が長くなる。したがって、ウエハWと冷却プレート30との間で沿面放電(火花放電)が起きるのを抑制することができる。
Furthermore, in the semiconductor manufacturing apparatus member 10 , an insulating tube 60 is arranged on the inner peripheral surfaces of the round holes 42 and the gas holes 34 so as to abut on the lower surface of the ceramic plate 20 . Therefore, the creeping distance between the wafer W and the cooling plate 30 is increased. Therefore, occurrence of creeping discharge (spark discharge) between wafer W and cooling plate 30 can be suppressed.
更にまた、半導体製造装置用部材10では、ウエハ載置面21は、ウエハWを支持する多数の小突起21bを有しており、導電性プラグ50は、ウエハWと小突起21bとウエハ載置面21のうち小突起21bの設けられていない基準面21cとで囲まれた領域にガスを供給する。これにより、ウエハWとセラミックプレート20との接触面積が小さくなるため、パーティクルが発生しにくい。また、ガスとしてヘリウムガスのような熱伝導ガスを用いれば、ウエハWとセラミックプレート20との熱伝導が良好になる。
Furthermore, in the semiconductor manufacturing apparatus member 10, the wafer mounting surface 21 has a large number of small projections 21b for supporting the wafer W, and the conductive plug 50 is formed by the wafer W, the small projections 21b, and the wafer mounting surface. Gas is supplied to a region of the surface 21 surrounded by the reference surface 21c on which the small protrusions 21b are not provided. As a result, the contact area between the wafer W and the ceramic plate 20 is reduced, so particles are less likely to be generated. Also, if a heat-conducting gas such as helium gas is used as the gas, heat conduction between the wafer W and the ceramic plate 20 is improved.
そして、小突起21bを備えた半導体製造装置用部材10では、導電性プラグ50の上面は、小突起21bの上面と同じ高さにある。そのため、導電性プラグ50はウエハ載置面21に載置されるウエハWと直接接触する。
In the semiconductor manufacturing apparatus member 10 having the small protrusions 21b, the upper surface of the conductive plug 50 is at the same height as the upper surface of the small protrusions 21b. Therefore, the conductive plug 50 is in direct contact with the wafer W mounted on the wafer mounting surface 21 .
なお、本発明は上述した実施形態に何ら限定されることはなく、本発明の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。
It goes without saying that the present invention is by no means limited to the above-described embodiments, and can be implemented in various forms as long as they fall within the technical scope of the present invention.
上述した実施形態では、導電性プラグ50の上面の高さは、小突起21bの上面の高さと一致するものとしたが、これに限定されない。例えば、図7に示すように、ウエハ載置面21の全面に導電膜23を形成し、導電性プラグ50の上面を、小突起21bの上面に形成された導電膜23よりも低くなるようにしてもよい。導電性プラグ50は、導電膜23に接続されている。導電膜23は、導電性材料で形成されていればよく、例えばTiやTiNで形成されていてもよい。こうすれば、導電性プラグ50はウエハ載置面21に載置されるウエハWと導電膜23を介して間接的に接触する。また、導電性プラグ50の上面を小突起21bの上面と同じ高さにする場合には、導電性プラグ50の上面に高い位置精度が要求されるが、ここでは導電性プラグ50の上面は小突起21bの上面を覆う導電膜23よりも低い位置にあるため、そのような高い位置精度は要求されない。なお、導電膜23のうち小突起21bの上面を覆う部分が本発明の導電性被膜に相当する。また、上述した実施形態では、導電性プラグ50の上面にスリット溝54を形成したが、図7では、スリット溝54を省略して貫通穴52のみとすることができる。
In the above-described embodiment, the height of the top surface of the conductive plug 50 is the same as the height of the top surface of the small protrusion 21b, but the present invention is not limited to this. For example, as shown in FIG. 7, the conductive film 23 is formed on the entire wafer mounting surface 21, and the top surface of the conductive plug 50 is made lower than the conductive film 23 formed on the top surface of the small protrusion 21b. may A conductive plug 50 is connected to the conductive film 23 . The conductive film 23 may be made of any conductive material, such as Ti or TiN. In this way, the conductive plug 50 is in indirect contact with the wafer W mounted on the wafer mounting surface 21 via the conductive film 23 . Further, when the top surface of the conductive plug 50 is made to be the same height as the top surface of the small projection 21b, high positional accuracy is required for the top surface of the conductive plug 50. Such high positional accuracy is not required because it is positioned lower than the conductive film 23 covering the upper surface of the projection 21b. A portion of the conductive film 23 covering the upper surfaces of the small projections 21b corresponds to the conductive film of the present invention. Also, in the above-described embodiment, the slit groove 54 is formed on the upper surface of the conductive plug 50, but in FIG.
図7において、導電性プラグ50を用いる代わりに、図8に示す導電膜123を用いてもよい。図8では、上述した実施形態と同じ構成については同じ符号を付した。図8では、セラミックプレート20を上下方向に貫通する穴をセラミックプレート貫通穴124と称する。導電膜123は、ウエハ載置面21の全面及びセラミックプレート貫通穴124の内周面を被覆する。導電膜124は、小突起21bの上面も被覆しているため、ウエハ載置面21の小突起21bに載置されるウエハWと導通する。導電膜123の下端は、セラミックプレート20の下面の高さ以下に位置している。なお、導電膜123の下端は、導電性基材の上面(金属接合層40の上面)の高さ以下に位置していることが好ましい。導電膜123は、筒状に形成されているため、連通穴34に供給されたガスがウエハ載置面21へ流通するのを許容する。図8では、導電性基材(金属接合層40及び冷却プレート30)を利用してウエハ載置面21に載置されるウエハWの上部にプラズマを発生させる際、導電膜123はセラミックプレート貫通穴124内の電位勾配が生じるのを防止する役割を果たす。これにより、セラミックプレート貫通穴124の内部でのプラズマの生成が抑制される。その結果、ウエハWの裏面が意図せずにエッチングされてしまうのを抑制することができる。導電膜123は、例えば溶射やメッキなどで作製することができる。なお、図8ではセラミックプレート貫通穴124を段付き穴としたが、特に段付き穴に限定されるものではなく、例えばストレート形状の穴としてもよい。
In FIG. 7, instead of using the conductive plug 50, the conductive film 123 shown in FIG. 8 may be used. In FIG. 8, the same symbols are attached to the same configurations as in the above-described embodiment. In FIG. 8, a hole penetrating vertically through the ceramic plate 20 is referred to as a ceramic plate through-hole 124 . The conductive film 123 covers the entire surface of the wafer mounting surface 21 and the inner peripheral surface of the ceramic plate through hole 124 . Since the conductive film 124 also covers the upper surface of the small projections 21 b , it is electrically connected to the wafer W placed on the small projections 21 b of the wafer mounting surface 21 . The lower end of the conductive film 123 is located below the height of the lower surface of the ceramic plate 20 . The lower end of the conductive film 123 is preferably positioned below the height of the upper surface of the conductive substrate (the upper surface of the metal bonding layer 40). Since the conductive film 123 is cylindrical, it allows the gas supplied to the communication hole 34 to flow to the wafer mounting surface 21 . In FIG. 8, when plasma is generated above the wafer W mounted on the wafer mounting surface 21 using the conductive base material (the metal bonding layer 40 and the cooling plate 30), the conductive film 123 passes through the ceramic plate. It serves to prevent potential gradients within the hole 124 from occurring. This suppresses the generation of plasma inside the ceramic plate through hole 124 . As a result, it is possible to prevent the back surface of the wafer W from being unintentionally etched. The conductive film 123 can be produced by, for example, thermal spraying or plating. Although the ceramic plate through hole 124 is a stepped hole in FIG. 8, it is not limited to a stepped hole, and may be a straight hole, for example.
上述した実施形態では、導電性プラグ50は、プラグ挿入穴24に接着固定されるものとしたが、これに限定されない。例えば、図9に示すように、導電性プラグ50は、プラグ挿入穴24に螺合していてもよい。プラグ挿入穴24は、図9に示すように、内周面に雌ネジ部を有する。導電性プラグ50は、図9に示すように、外周面に雄ネジ部を有する。導電性プラグ50の外周面に形成された雄ネジ部は、プラグ挿入穴24の内周面に形成された雌ネジ部に螺合する。この場合、導電性プラグ50の上面の高さが、小突起21bの上面の高さと一致するように、プラグ挿入穴24の雌ネジ部に導電性プラグ50の雄ネジ部を螺合させればよい。こうすれば、導電性プラグ50をプラグ挿入穴24に接着固定する場合に比べて、導電性プラグの交換作業をスムーズに行うことができる。また、半導体製造装置用部材10を繰り返し使用すると、導電性プラグ50が消耗して、導電性プラグ50の上面の高さが小突起21bの上面よりも低くなる場合がある。このような場合、導電性プラグ50の雄ネジ部をプラグ挿入穴24の雌ネジ部に対して回転させることで、導電性プラグ50の上面の高さが小突起21bの上面の高さと一致するように容易に調整することができる。
In the embodiment described above, the conductive plug 50 is adhesively fixed to the plug insertion hole 24, but is not limited to this. For example, as shown in FIG. 9, a conductive plug 50 may be threaded into plug insertion hole 24 . As shown in FIG. 9, the plug insertion hole 24 has a female screw portion on its inner peripheral surface. The conductive plug 50, as shown in FIG. 9, has a male screw portion on its outer peripheral surface. A male threaded portion formed on the outer peripheral surface of the conductive plug 50 is screwed into a female threaded portion formed on the inner peripheral surface of the plug insertion hole 24 . In this case, the male threaded portion of the conductive plug 50 can be screwed into the female threaded portion of the plug insertion hole 24 so that the height of the top surface of the conductive plug 50 matches the height of the top surface of the small projection 21b. good. This makes it possible to replace the conductive plug more smoothly than when the conductive plug 50 is adhesively fixed to the plug insertion hole 24 . Moreover, repeated use of the member 10 for a semiconductor manufacturing apparatus may cause the conductive plug 50 to wear out and the height of the top surface of the conductive plug 50 to become lower than the top surface of the small projection 21b. In such a case, by rotating the male threaded portion of the conductive plug 50 with respect to the female threaded portion of the plug insertion hole 24, the height of the top surface of the conductive plug 50 will match the height of the top surface of the small projection 21b. can be adjusted easily.
上述した実施形態では、導電性プラグ50は、貫通穴52を有するものとしたが、これに限定されない。例えば、図10及び図11に示すように、導電性プラグ50は、貫通穴52に代えて、ガス通路53を有していてもよい。ガス通路53は、導電性プラグ50の外周面に沿って1つ以上(ここでは4つ)形成されている。ガス通路53は、細径部50bの外周面の下端から段差部50cを通り、太径部50aの外周面の上端に至るように形成された溝である。導電性プラグ50の上面には、図11に示すようにスリット溝が形成されていなくてもよいし、図12に示すようにスリット溝55が形成されていてもよい。また、導電性プラグ50は、ガス通路53に加えて、上述した実施形態の貫通穴52やスリット溝54を有していてもよい。
Although the conductive plug 50 has the through hole 52 in the above-described embodiment, it is not limited to this. For example, as shown in FIGS. 10 and 11, the conductive plug 50 may have gas passages 53 instead of the through holes 52 . One or more (here, four) gas passages 53 are formed along the outer peripheral surface of the conductive plug 50 . The gas passage 53 is a groove formed so as to extend from the lower end of the outer peripheral surface of the small diameter portion 50b through the stepped portion 50c to the upper end of the outer peripheral surface of the large diameter portion 50a. The upper surface of the conductive plug 50 may not have a slit groove as shown in FIG. 11, or may have a slit groove 55 as shown in FIG. In addition to the gas passage 53, the conductive plug 50 may have the through hole 52 and the slit groove 54 of the embodiment described above.
上述した実施形態の導電性プラグ50の代わりに、図13に示す導電性プラグ150~650を用いてもよい。なお、図13では、図3と同じ構成要素については同じ符号を付し、説明を省略した。これらの導電性プラグ150~650を用いる場合には、セラミックプレート20に設けるプラグ挿入穴24もそれぞれに合った形状に変更する。図13Aの導電性プラグ150は、上底が下底よりも大きい逆円錐台形状である。図13Bの導電性プラグ250は、下底が上底よりも大きい円錐台形状である。図13Cの導電性プラグ350は、逆円錐台の下面に円柱を連結した形状である。図13Dの導電性プラグ450は、円錐台の上面に円柱を連結した形状である。図13Eの導電性プラグ550は、大径の円柱の上面に小径の円柱を連結した形状である。図13Fの導電性プラグ650は、円柱形状である。このうち、導電性プラグ250,450,550は、上から下に向かって拡径する拡径部Eを有する。そのため、導電性プラグ250,450,550の下から上へ流通するガスの圧力が導電性プラグ250,450,550に加わったとしても、拡径部Eがプラグ挿入穴24の内周面に突き当たるため、導電性プラグ250,450,550が浮き上がるのを抑制することができる。なお、これらの導電性プラグ150~550の外周面に雄ネジ部を設け、プラグ挿入穴24の雌ネジ部と螺合するようにしてもよい。また、導電性プラグ150~650は、貫通穴52に代えて又は加えてガス通路53(図10及び図11)を有していてもよい。その場合、導電性プラグ150~650は、上面にスリット溝55(図12)が形成されていてもよい。
The conductive plugs 150 to 650 shown in FIG. 13 may be used instead of the conductive plug 50 of the embodiment described above. In addition, in FIG. 13, the same components as those in FIG. 3 are denoted by the same reference numerals, and description thereof is omitted. When using these conductive plugs 150 to 650, the shape of the plug insertion hole 24 provided in the ceramic plate 20 is also changed to suit each of them. The conductive plug 150 of FIG. 13A has an inverted truncated cone shape with the upper base larger than the lower base. The conductive plug 250 of FIG. 13B has a frusto-conical shape with a lower base that is larger than an upper base. The conductive plug 350 of FIG. 13C has a shape in which a column is connected to the bottom surface of an inverted truncated cone. The conductive plug 450 of FIG. 13D has a shape in which a cylinder is connected to the upper surface of a truncated cone. The conductive plug 550 of FIG. 13E has a shape in which a small-diameter cylinder is connected to the upper surface of a large-diameter cylinder. The conductive plug 650 of FIG. 13F is cylindrical in shape. Among them, the conductive plugs 250, 450, and 550 have a diameter-enlarged portion E that expands from top to bottom. Therefore, even if the pressure of the gas flowing upward from the bottom of the conductive plugs 250 , 450 , 550 is applied to the conductive plugs 250 , 450 , 550 , the enlarged diameter portion E abuts the inner peripheral surface of the plug insertion hole 24 . Therefore, the floating of the conductive plugs 250, 450, 550 can be suppressed. A male threaded portion may be provided on the outer peripheral surface of these conductive plugs 150 to 550 so as to be screwed with the female threaded portion of the plug insertion hole 24 . Also, the conductive plugs 150-650 may have gas passages 53 (FIGS. 10 and 11) instead of or in addition to the through holes 52. FIG. In that case, the conductive plugs 150 to 650 may have slit grooves 55 (FIG. 12) formed on their upper surfaces.
上述した実施形態では、絶縁管60を用いたが、絶縁管60の代わりに図14に示すガス通路162を内蔵する絶縁プラグ160を用いてもよい。絶縁プラグ160は、緻密質セラミックからなる円柱体の内部に螺旋状のガス通路162を設けたものである。ガス通路162の上端は円柱体の上面に開口し、ガス通路162の下端は円柱体の下面に開口している。絶縁プラグ160を用いた場合には、絶縁管60に比べてウエハWと冷却プレート30との沿面距離がより長くなるため、導電性プラグ50内での火花放電をより抑制することができる。
Although the insulating tube 60 is used in the above-described embodiment, an insulating plug 160 incorporating a gas passage 162 shown in FIG. 14 may be used instead of the insulating tube 60 . The insulating plug 160 is formed by providing a spiral gas passage 162 inside a cylindrical body made of dense ceramic. The upper end of the gas passage 162 opens to the upper surface of the cylinder, and the lower end of the gas passage 162 opens to the lower surface of the cylinder. When the insulating plug 160 is used, the creepage distance between the wafer W and the cooling plate 30 is longer than when the insulating tube 60 is used, so spark discharge in the conductive plug 50 can be further suppressed.
上述した実施形態では、絶縁管60を設けたが、絶縁管60を省略してもよい。また、冷却プレート30にガス穴34を設ける代わりに、ガスチャネル構造を設けてもよい。ガスチャネル構造として、冷却プレート30の内部に設けられ平面視で冷却プレート30と同心円のリング部と、冷却プレート30の裏面からリング部へガスを導入する導入部と、リング部から各導電性プラグ50へガスを分配する分配部(上述したガス穴34に相当)とを備える構造を採用してもよい。導入部の数は、分配部の数よりも少なく、例えば1本としてもよい。
Although the insulating tube 60 is provided in the above-described embodiment, the insulating tube 60 may be omitted. Also, instead of providing the gas holes 34 in the cooling plate 30, a gas channel structure may be provided. As a gas channel structure, a ring portion provided inside the cooling plate 30 and concentric with the cooling plate 30 in plan view, an introduction portion for introducing gas from the back surface of the cooling plate 30 to the ring portion, and each conductive plug from the ring portion. A structure including a distribution portion (corresponding to the gas hole 34 described above) for distributing gas to 50 may be employed. The number of introduction parts may be less than the number of distribution parts, for example one.
上述した実施形態において、セラミックプレート20に内蔵される電極22として、静電電極を例示したが、特にこれに限定されない。例えば、電極22に代えて又は加えて、セラミックプレート20にヒータ電極(抵抗発熱体)を内蔵してもよいし、RF電極を内蔵してもよい。
In the above-described embodiment, the electrostatic electrode was exemplified as the electrode 22 embedded in the ceramic plate 20, but it is not particularly limited to this. For example, instead of or in addition to the electrodes 22, the ceramic plate 20 may incorporate a heater electrode (resistance heating element) or may incorporate an RF electrode.
上述した実施形態では、セラミックプレート20と冷却プレート30とを金属接合層40で接合したが、金属接合層40の代わりに樹脂接着層を用いてもよい。その場合、冷却プレート30が本発明の導電性基材に相当する。
In the above-described embodiment, the ceramic plate 20 and the cooling plate 30 are bonded with the metal bonding layer 40, but instead of the metal bonding layer 40, a resin bonding layer may be used. In that case, the cooling plate 30 corresponds to the conductive substrate of the present invention.
本出願は、2022年2月9日に出願された日本国特許出願第2022-18429号を優先権主張の基礎としており、引用によりその内容の全てが本明細書に含まれる。
This application claims priority from Japanese Patent Application No. 2022-18429 filed on February 9, 2022, the entire contents of which are incorporated herein by reference.
本発明は、例えばウエハをプラズマ処理する装置に利用可能である。
The present invention can be used, for example, in an apparatus that plasma-processes wafers.
10 半導体製造装置用部材、20 セラミックプレート、21 ウエハ載置面、21a シールバンド、21b 小突起、21c 基準面、22 電極、23 導電性被膜、24 プラグ挿入穴、24a 太径部、24b 細径部、24c 段差部、30 冷却プレート、32 冷媒流路、34 ガス穴、40 金属接合層、42 丸穴、50,150,250,350,450,550,650 導電性プラグ、50a 太径部、50b 細径部、50c 段差部、52 貫通穴、53 ガス通路、54,55 スリット溝、60 絶縁管、90 金属接合材、92 丸穴、94 接合体、160 絶縁プラグ、162 ガス通路、E 拡径部、W ウエハ。
10 Member for semiconductor manufacturing equipment, 20 Ceramic plate, 21 Wafer mounting surface, 21a Seal band, 21b Small protrusion, 21c Reference surface, 22 Electrode, 23 Conductive coating, 24 Plug insertion hole, 24a Large diameter portion, 24b Small diameter part, 24c stepped part, 30 cooling plate, 32 refrigerant channel, 34 gas hole, 40 metal bonding layer, 42 round hole, 50, 150, 250, 350, 450, 550, 650 conductive plug, 50a large diameter part, 50b small diameter portion, 50c stepped portion, 52 through hole, 53 gas passage, 54, 55 slit groove, 60 insulating tube, 90 metal joint material, 92 round hole, 94 joint, 160 insulating plug, 162 gas passage, E expansion Radial part, W Wafer.
Claims (9)
- 上面にウエハ載置面を有するセラミックプレートと、
前記セラミックプレートを上下方向に貫通するプラグ挿入穴と、
前記セラミックプレートの下面に設けられた導電性基材と、
前記導電性基材に設けられ、前記プラグ挿入穴に連通する連通穴と、
前記ウエハ載置面に載置されるウエハと導通可能なように前記プラグ挿入穴に配置され、下面が前記セラミックプレートの下面の高さ以下に位置し、前記連通穴に供給されたガスが前記ウエハ載置面へ流通するのを許容する導電性プラグと、
を備えた半導体製造装置用部材。 a ceramic plate having a wafer mounting surface on its upper surface;
a plug insertion hole vertically penetrating the ceramic plate;
a conductive substrate provided on the lower surface of the ceramic plate;
a communication hole provided in the conductive base material and communicating with the plug insertion hole;
It is arranged in the plug insertion hole so as to be electrically conductive with the wafer mounted on the wafer mounting surface, the bottom surface is positioned below the height of the bottom surface of the ceramic plate, and the gas supplied to the communication hole is supplied to the a conductive plug allowing communication to the wafer mounting surface;
A member for semiconductor manufacturing equipment. - 前記導電性プラグの材料は、Si又はSiCである、
請求項1に記載の半導体製造装置用部材。 The material of the conductive plug is Si or SiC,
The member for semiconductor manufacturing equipment according to claim 1 . - 前記連通穴の内周面には、前記セラミックプレートの下面と当接するように絶縁管が配置されている、
請求項1又は2に記載の半導体製造装置用部材。 An insulating tube is arranged on the inner peripheral surface of the communication hole so as to contact the lower surface of the ceramic plate,
3. The member for a semiconductor manufacturing apparatus according to claim 1. - 前記ウエハ載置面は、前記ウエハを支持する多数の小突起を有し、
前記導電性プラグは、前記ウエハと前記小突起と前記ウエハ載置面のうち前記小突起の設けられていない基準面とで囲まれた領域に前記ガスを供給する、
請求項1又は2に記載の半導体製造装置用部材。 The wafer mounting surface has a large number of small projections for supporting the wafer,
The conductive plug supplies the gas to a region surrounded by the wafer, the small projections, and a reference surface on which the small projections are not provided among the wafer mounting surface.
3. The member for a semiconductor manufacturing apparatus according to claim 1. - 前記導電性プラグの上面は、前記小突起の上面と同じ高さにある、
請求項4に記載の半導体製造装置用部材。 the top surface of the conductive plug is at the same height as the top surface of the small projection;
The member for semiconductor manufacturing equipment according to claim 4 . - 前記小突起の上面は、前記ウエハと接触する導電性被膜を有し、
前記導電性プラグの上面は、前記導電性被膜よりも低い位置にあり、
前記導電性プラグは、前記導電性被膜に接続されている、
請求項4に記載の半導体製造装置用部材。 an upper surface of the small projection has a conductive coating in contact with the wafer;
the top surface of the conductive plug is at a position lower than the conductive coating;
the conductive plug is connected to the conductive coating;
The member for semiconductor manufacturing equipment according to claim 4 . - 前記プラグ挿入穴は、内周面に雌ネジ部を有し、
前記導電性プラグは、前記雌ネジ部に螺合する雄ネジ部を外周面に有する、
請求項1又は2に記載の半導体製造装置用部材。 The plug insertion hole has a female screw portion on its inner peripheral surface,
The conductive plug has a male threaded portion on its outer peripheral surface that is screwed into the female threaded portion,
3. The member for a semiconductor manufacturing apparatus according to claim 1. - 前記導電性プラグは、上から下に向かって拡径する拡径部を有し、
前記プラグ挿入穴は、前記拡径部と当接可能な形状となっている、
請求項1又は2に記載の半導体製造装置用部材。 The conductive plug has an enlarged diameter portion that expands from top to bottom,
The plug insertion hole has a shape capable of coming into contact with the enlarged diameter portion,
3. The member for a semiconductor manufacturing apparatus according to claim 1. - 上面にウエハ載置面を有するセラミックプレートと、
前記セラミックプレートを上下方向に貫通するセラミックプレート貫通穴と、
前記セラミックプレートの下面に設けられた導電性基材と、
前記導電性基材に設けられ、前記セラミックプレート貫通穴に連通する連通穴と、
前記セラミックプレート貫通穴の内周面を被覆し、前記ウエハ載置面に載置されるウエハと導通可能なように設けられ、下端が前記セラミックプレートの下面の高さ以下に位置し、前記連通穴に供給されたガスが前記ウエハ載置面へ流通するのを許容する導電膜と、
を備えた半導体製造装置用部材。 a ceramic plate having a wafer mounting surface on its upper surface;
a ceramic plate through-hole vertically penetrating the ceramic plate;
a conductive substrate provided on the lower surface of the ceramic plate;
a communication hole provided in the conductive substrate and communicating with the ceramic plate through-hole;
It covers the inner peripheral surface of the ceramic plate through-hole, is provided so as to be electrically connected to the wafer mounted on the wafer mounting surface, has a lower end positioned below the height of the lower surface of the ceramic plate, and communicates with the wafer. a conductive film that allows the gas supplied to the hole to flow to the wafer mounting surface;
A member for semiconductor manufacturing equipment.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023503422A JP7483121B2 (en) | 2022-02-09 | 2022-10-07 | Semiconductor manufacturing equipment parts |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022018429 | 2022-02-09 | ||
JP2022-018429 | 2022-02-09 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023153021A1 true WO2023153021A1 (en) | 2023-08-17 |
Family
ID=87564010
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/037638 WO2023153021A1 (en) | 2022-02-09 | 2022-10-07 | Member for semiconductor manufacturing device |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7483121B2 (en) |
WO (1) | WO2023153021A1 (en) |
Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006344766A (en) * | 2005-06-09 | 2006-12-21 | Matsushita Electric Ind Co Ltd | Plasma treatment apparatus |
JP2011061040A (en) * | 2009-09-10 | 2011-03-24 | Tokyo Electron Ltd | Stage structure and processing apparatus |
JP2016072348A (en) * | 2014-09-29 | 2016-05-09 | 京セラ株式会社 | Sample holder |
JP2016513947A (en) * | 2013-03-15 | 2016-05-16 | アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated | Method and apparatus for repair and refurbishment of an electrostatic chuck |
JP2018093173A (en) * | 2016-12-05 | 2018-06-14 | 東京エレクトロン株式会社 | Plasma processing device |
JP2019149422A (en) * | 2018-02-26 | 2019-09-05 | 東京エレクトロン株式会社 | Plasma processing apparatus and mounting table manufacturing method |
WO2019244631A1 (en) * | 2018-06-19 | 2019-12-26 | 東京エレクトロン株式会社 | Stage and substrate processing apparatus |
JP2021141277A (en) * | 2020-03-09 | 2021-09-16 | 東京エレクトロン株式会社 | Mounting table and plasma processing device |
WO2021241645A1 (en) * | 2020-05-28 | 2021-12-02 | 京セラ株式会社 | Air-permeable plug, substrate support assembly, and shower plate |
JP2022507729A (en) * | 2018-11-19 | 2022-01-18 | インテグリス・インコーポレーテッド | Electrostatic chuck with charge dissipation coating |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7269759B2 (en) | 2019-03-12 | 2023-05-09 | 新光電気工業株式会社 | Substrate fixing device |
-
2022
- 2022-10-07 JP JP2023503422A patent/JP7483121B2/en active Active
- 2022-10-07 WO PCT/JP2022/037638 patent/WO2023153021A1/en active Application Filing
Patent Citations (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2006344766A (en) * | 2005-06-09 | 2006-12-21 | Matsushita Electric Ind Co Ltd | Plasma treatment apparatus |
JP2011061040A (en) * | 2009-09-10 | 2011-03-24 | Tokyo Electron Ltd | Stage structure and processing apparatus |
JP2016513947A (en) * | 2013-03-15 | 2016-05-16 | アプライド マテリアルズ インコーポレイテッドApplied Materials,Incorporated | Method and apparatus for repair and refurbishment of an electrostatic chuck |
JP2016072348A (en) * | 2014-09-29 | 2016-05-09 | 京セラ株式会社 | Sample holder |
JP2018093173A (en) * | 2016-12-05 | 2018-06-14 | 東京エレクトロン株式会社 | Plasma processing device |
JP2019149422A (en) * | 2018-02-26 | 2019-09-05 | 東京エレクトロン株式会社 | Plasma processing apparatus and mounting table manufacturing method |
WO2019244631A1 (en) * | 2018-06-19 | 2019-12-26 | 東京エレクトロン株式会社 | Stage and substrate processing apparatus |
JP2022507729A (en) * | 2018-11-19 | 2022-01-18 | インテグリス・インコーポレーテッド | Electrostatic chuck with charge dissipation coating |
JP2021141277A (en) * | 2020-03-09 | 2021-09-16 | 東京エレクトロン株式会社 | Mounting table and plasma processing device |
WO2021241645A1 (en) * | 2020-05-28 | 2021-12-02 | 京セラ株式会社 | Air-permeable plug, substrate support assembly, and shower plate |
Also Published As
Publication number | Publication date |
---|---|
JP7483121B2 (en) | 2024-05-14 |
JPWO2023153021A1 (en) | 2023-08-17 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
TWI847343B (en) | Member for semiconductor manufacturing apparatus | |
WO2023153021A1 (en) | Member for semiconductor manufacturing device | |
JP2022167481A (en) | Electrostatic adsorption member and substrate fixing device | |
TW202314928A (en) | Wafer placement table | |
JP7569342B2 (en) | Semiconductor manufacturing equipment parts | |
WO2024047858A1 (en) | Wafer placement table | |
WO2024047857A1 (en) | Wafer placement table | |
WO2024121910A1 (en) | Member for semiconductor manufacturing apparatus | |
US20230238258A1 (en) | Wafer placement table, and member for semiconductor manufacturing apparatus, using the same | |
JP7554220B2 (en) | Semiconductor manufacturing equipment parts | |
US20230343564A1 (en) | Wafer placement table | |
JP7514817B2 (en) | Semiconductor manufacturing equipment parts | |
TWI856498B (en) | Member for semiconductor manufacturing apparatus | |
US20240055240A1 (en) | Member for semiconductor manufacturing apparatus | |
WO2023063016A1 (en) | Wafer placement stage | |
US20230343565A1 (en) | Wafer placement table | |
JP2023092822A (en) | Member for semiconductor manufacturing device | |
KR20240003433A (en) | wafer placement table |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
WWE | Wipo information: entry into national phase |
Ref document number: 2023503422 Country of ref document: JP |
|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22926038 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |