WO2023153083A1 - 情報処理装置、情報処理方法、情報処理プログラム及び移動装置 - Google Patents
情報処理装置、情報処理方法、情報処理プログラム及び移動装置 Download PDFInfo
- Publication number
- WO2023153083A1 WO2023153083A1 PCT/JP2022/046624 JP2022046624W WO2023153083A1 WO 2023153083 A1 WO2023153083 A1 WO 2023153083A1 JP 2022046624 W JP2022046624 W JP 2022046624W WO 2023153083 A1 WO2023153083 A1 WO 2023153083A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- path
- information processing
- end point
- vehicle
- generation unit
- Prior art date
Links
- 230000010365 information processing Effects 0.000 title claims abstract description 74
- 238000003672 processing method Methods 0.000 title claims abstract description 6
- 230000033001 locomotion Effects 0.000 claims description 62
- 238000001514 detection method Methods 0.000 claims description 20
- 230000007246 mechanism Effects 0.000 claims description 17
- 238000004891 communication Methods 0.000 description 71
- 238000000034 method Methods 0.000 description 27
- 238000012545 processing Methods 0.000 description 27
- 238000003384 imaging method Methods 0.000 description 10
- 230000000007 visual effect Effects 0.000 description 10
- 238000005259 measurement Methods 0.000 description 9
- 210000000988 bone and bone Anatomy 0.000 description 6
- 238000005516 engineering process Methods 0.000 description 6
- 230000009471 action Effects 0.000 description 5
- 230000004927 fusion Effects 0.000 description 5
- 230000001133 acceleration Effects 0.000 description 4
- 238000009825 accumulation Methods 0.000 description 4
- 230000010391 action planning Effects 0.000 description 4
- 230000008859 change Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000006870 function Effects 0.000 description 4
- 230000008569 process Effects 0.000 description 4
- 238000004458 analytical method Methods 0.000 description 3
- 238000004364 calculation method Methods 0.000 description 3
- 238000012986 modification Methods 0.000 description 3
- 230000004048 modification Effects 0.000 description 3
- 238000012544 monitoring process Methods 0.000 description 3
- 230000003287 optical effect Effects 0.000 description 2
- 230000002265 prevention Effects 0.000 description 2
- 241001465754 Metazoa Species 0.000 description 1
- 230000003044 adaptive effect Effects 0.000 description 1
- 230000036626 alertness Effects 0.000 description 1
- 230000003190 augmentative effect Effects 0.000 description 1
- 230000005540 biological transmission Effects 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000013500 data storage Methods 0.000 description 1
- 238000013135 deep learning Methods 0.000 description 1
- 238000007499 fusion processing Methods 0.000 description 1
- 210000001624 hip Anatomy 0.000 description 1
- 210000004394 hip joint Anatomy 0.000 description 1
- 238000009434 installation Methods 0.000 description 1
- 230000010354 integration Effects 0.000 description 1
- 210000002414 leg Anatomy 0.000 description 1
- 230000004807 localization Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000013507 mapping Methods 0.000 description 1
- 230000000116 mitigating effect Effects 0.000 description 1
- 238000010295 mobile communication Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 230000001172 regenerating effect Effects 0.000 description 1
- 230000011218 segmentation Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 230000015541 sensory perception of touch Effects 0.000 description 1
- 230000035939 shock Effects 0.000 description 1
- 210000000323 shoulder joint Anatomy 0.000 description 1
- 230000003068 static effect Effects 0.000 description 1
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05D—SYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
- G05D1/00—Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
- G05D1/02—Control of position or course in two dimensions
Definitions
- the present disclosure relates to a mobile device that follows a tracking target, an information processing device that controls the mobile device, an information processing method, and an information processing program.
- a moving device that tracks a moving target to be tracked is known.
- the orientation of the mobile robot and the orientation of the object to be followed are matched (paragraph 0033), and the relative positional relationship between the mobile robot and the object to be followed is maintained. , a natural follow-up motion is realized without useless turnaround movement or turning motion (paragraph 0026).
- the moving device makes a path to the tracked object in order to capture the tracked object in the center of the field of view. , and eventually the mobile device cannot follow the tracked target.
- An information processing device includes: an orientation determination unit that determines the orientation of the object to be tracked; a path generation unit that determines a direction of a path end point, which is an end point of a path along which the moving device follows the tracked object, based on the direction of the tracked object, and generates the path; Equipped with
- the moving device generates a path for the moving device based on the direction of the tracked target (that is, the direction in which the tracked target is about to move) rather than the direction in which the tracked target is currently moving.
- the mobile device keeps tracking the target to be tracked within the range of its field of vision, thereby continuing to track the target without losing it, and even if the mobile device loses the target to be tracked, it can quickly rediscover the target to be tracked. can.
- the path generation unit may determine the direction of the path end point so that the direction of the path end point matches the direction of the tracking target.
- the mobile device can generate a path that does not lose the follow target (the follow target is kept included in the field of view) rather than a path that traces the movement route of the follow target.
- the path generation unit may generate a curved path as the path when a difference between the moving direction of the moving device and the direction of the tracking target is greater than a threshold.
- the mobile device does not trace the movement path, and can continue to follow the mobile device in a large circle for the purpose of keeping the mobile device within the field of view. can.
- the information processing device further comprising a position estimating unit that determines the estimated position of the tracking target;
- the path generator may determine the position of the path end point based on the estimated position.
- the position of the path end point is determined at the estimated position, it is possible to generate a path that does not lose the tracking target (the tracking target continues to be included in the field of view).
- the position estimation unit detects the tracking target from an image captured by the mobile device,
- the path generator may determine the speed of the moving device based on the detection result of the tracking target.
- the path generation unit may increase the speed of the moving device according to the length of time the tracking target is lost.
- the path generation unit generating a Bezier curve leading to the path endpoint; dividing the Bezier curve at a plurality of dividing points; generating a plurality of sub-curve paths each consisting of two adjacent split points; A path including the plurality of sub-curve paths may be generated as the path.
- a Bezier curve is a curve connecting a start point and an end point, determined based on the position and direction of the start point and the position and direction of the end point.
- the path generation unit is configured to: The plurality of sub-curve paths may be generated.
- the mobile device will perform a movement similar to lateral movement (crab walking) while watching the target to be followed, making it difficult for the mobile device to lose the target to be followed and improving the continuity of tracking.
- the path generation unit may determine the Bezier curve as the path when the orientation and movement direction of the moving device are interlocked.
- the direction of the end of the path can be set as the direction of the target to be tracked.
- the path generation unit may determine the speed of the moving device that moves the plurality of sub-curved paths based on the difference between the orientation of the end point of each sub-curved path and the orientation of the tangent to the end point.
- the mobile device tends to lose the target to be followed.
- the mobile device since the mobile device determines the speed of the mobile device based on the likelihood of losing the target to be tracked, the mobile device can keep the target to be tracked in the range of its field of view, making it difficult to lose the target to be tracked. Continuity of follow-up can be improved.
- the path generation unit is configured to increase the speed of the moving device moving the plurality of sub-curved paths as the difference between the direction of the end point of each sub-curved path and the direction of the tangent to the end point increases.
- a speed of the mobile device may be determined.
- the moving device can quickly move to the vicinity of the corner and perform a turning motion, so that the moving device can keep the target to be tracked within the range of the field of view, and the target to be tracked is less likely to be lost, thereby improving the continuity of tracking. can.
- the orientation determination unit may determine the orientation of the tracking target based on the image captured by the mobile device.
- the orientation determination unit can determine the orientation of the follow target based on the follow target bone calculated from the image.
- An information processing method includes: Determine the direction of the target to be followed, The path is generated by determining the direction of the path end point, which is the end point of the path along which the moving device follows the tracked object, based on the direction of the tracked object.
- An information processing program includes information processing equipment, an orientation determination unit that determines the orientation of the object to be tracked;
- the movement device operates as a path generation unit that determines the direction of the path end point, which is the end point of the path along which the tracking target is followed, based on the direction of the tracking target, and generates the path.
- a mobile device includes: a moving mechanism; an orientation determination unit that determines the orientation of the object to be tracked; a path generation unit that determines a direction of a path end point, which is an end point of a path that follows the object to be tracked, based on the direction of the object to be tracked, and generates the path; a follow-up control unit that controls the movement mechanism to move on the path; Equipped with
- FIG. 1 shows the configuration of a mobile device; 4 shows an operation flow of a mobile device; 4 shows the configuration of a position estimation unit; Indicates how bones are calculated.
- 4 shows the configuration of a spatial position estimating unit;
- Fig. 3 shows the flow of a curved path generation method when the orientation and direction of movement of the mobile device are uncoordinated;
- FIG. 4 schematically shows a curved path generation method when the orientation and movement direction of the mobile device are not linked.
- Fig. 3 shows the flow of a curved path generation method when the orientation and movement direction of a mobile device are interlocked; 4 schematically shows a curved path generation method when the orientation and movement direction of a mobile device are interlocked.
- 1 is a block diagram showing a configuration example of a vehicle control system;
- FIG. FIG. 4 is a diagram showing an example of a sensing area;
- FIG. 1 schematically shows the outline of this embodiment.
- a mobile device 1 follows a moving follow target 2 .
- the mobile device 1 is an automatic driving vehicle, an AGV (automated guided vehicle), a robot, a four-legged pet robot, a drone, or the like.
- the target 2 to be followed is a person, an animal, a vehicle, an AGV, a robot, a four-legged pet robot, a drone, and so on.
- the object to be tracked 2 may be any object as long as it moves while changing its direction (typically, it moves while facing the direction of movement).
- the object to be tracked 2 may or may not be a living thing.
- an example in which the object 2 to be tracked is a person (pedestrian) will be described.
- the wall 3 constitutes a corner 4 that is a right-angled (90 degree) turn.
- the object 2 to be followed starts moving (walking) from the front 5 of the corner 4 and moves to the back 6 of the corner 4.
- - ⁇ Since the object 2 to be tracked is a person, it can move from the front 5 to the back 6 in a substantially straight line through the edge of the corner 4 without turning the corner 4 at a right angle (arrow A).
- the follow target 2 moves from the back 6 of the corner 4 to the right 7 (arrow B).
- the mobile device 1 follows the tracking target 2 that moves in this way. Specifically, the mobile device 1 determines the estimated position 2A of the object 2 to be tracked, generates a path toward the estimated position 2A, and moves on the generated path. If the mobile device 1 moves so as to trace the movement path (arrow A) of the object 2 to be tracked, the mobile device 1 collides with the corner 4 and decelerates near the corner 4 to occlude the corner 4 (concealment). There is a risk that the tracked target 2 that has been moved cannot be captured within the field of view 8 and is lost (lost sight of it). As a result of the moving device 1 losing the tracked target 2 before the corner 4, the moving device 1 may eventually be unable to track the tracked target 2 moving further from the back 6 to the right 7 (arrow B). There is
- the mobile device 1 continues to track the tracked target 2 without losing it by keeping the tracked target 2 within the visual range. To promptly rediscover a follow-up object 2 even if the follow-up object 2 is lost. That is, in the present embodiment, the mobile device 1 does not lose the tracked object 2 (the tracked object 2 is kept included in the field of view) instead of tracing the movement path (arrow A) of the tracked object 2 ( We aim to generate arrow C). In this example, even if the object 2 to be tracked moves from the near side 5 through the edge of the corner 4 to the far side 6 in a substantially straight line (arrow A), the mobile device 1 traces the movement path (arrow A).
- the moving device 1 determines the path of the moving device 1 based on the direction of the tracked object 2 (that is, the direction in which the tracked object 2 is about to move) rather than the direction in which the tracked object 2 is currently moving. (Arrow C).
- FIG. 2 shows the configuration of the mobile device.
- the mobile device 1 has an information processing device 100 , a detection device group 200 , and a mobile mechanism 300 .
- the information processing apparatus 100 loads an information processing program recorded in the ROM into the RAM and executes the information processing program recorded in the ROM, so that the information processing apparatus 100 performs the self-position estimation unit 110, the position estimation unit 120, the orientation determination unit 130, the path generation unit 140, and the following control. Acts as part 150 .
- the detection device group 200 has an imaging device 210 and a distance measuring device 220 which are external sensors, and an internal sensor 230 .
- the imaging device 210 is, for example, an RGB camera or the like having an image sensor, and captures the environment to generate an image.
- the ranging device 220 has directivity and acquires external data used to estimate the position and orientation of the mobile device 1 . Specifically, the ranging device 220 measures the distance based on the signal received from the environment and acquires the distance data. More specifically, the distance measuring device 220 is a sensor (active sensor) that outputs signals such as electromagnetic waves, light, or sound to the environment and receives reflected waves. For example, the ranging device 220 is a ToF (Time of Flight) sensor, LiDAR, millimeter wave radar and/or ultrasonic sonar. For example, ranging device 220 generates ranging data such as point clouds, laser and/or depth images.
- ToF Time of Flight
- the internal world sensor 230 acquires internal world data used to estimate the position and orientation of the mobile device 1 . Specifically, the internal sensor 230 acquires data such as the angular velocity, acceleration and/or rotation angle of the motor of the mobile device 1 .
- the internal sensor 230 is, for example, an IMU (Inertial Measurement Unit) and/or a rotary angle encoder.
- the movement mechanism 300 includes a plurality of tires or a plurality of legs and an actuator or the like that drives them, and autonomously moves in the environment.
- the mobile device 1 may be a device that moves such that the orientation and the moving direction of the mobile device 1 are interlocked, such as a two-wheel drive vehicle.
- the moving device 1 may be a device that moves such that the orientation and moving direction of the moving device 1 are not interlocked, such as a pan head or a mecanum wheel.
- the mobile device 1 may be capable of selectively realizing both coordinated movement and non-coordinated movement in the orientation and movement direction of the mobile device 1 .
- FIG. 3 shows the operation flow of the mobile device.
- the self-position estimation unit 110 acquires internal world data such as the angular velocity, acceleration and/or rotation angle of the motor of the mobile device 1 from the internal sensor 230 (step S101).
- the self-position estimator 110 estimates the self-position, movement speed, movement direction and orientation (orientation) of the mobile device 1 based on the internal world data (step S102).
- the self-position estimation unit 110 acquires an image captured by the imaging device 210, which is an external sensor.
- the self-position estimation unit 110 acquires ranging data such as a point cloud, laser and/or depth image generated by the ranging device 220, which is an external sensor (step S103).
- the self-position estimation unit 110 generates a three-dimensional environment map based on the image acquired by the imaging device 210 and the distance measurement data generated by the distance measurement device 220, and reflects the self-position on the environment map (step S104).
- An environment map is, for example, an occupancy map.
- An occupancy grid map expresses the spatial distribution of objects existing in the environment with a three-dimensional positional relationship in which multiple voxels (cubes) are stacked. expressed in the color tone of
- the position estimation unit 120 detects the tracking target 2 from the image acquired by the imaging device 210, determines the estimated position 2A of the tracking target 2, and counts the time when the tracking target 2 is lost when the tracking target 2 is lost. (Step S105).
- the orientation determination unit 130 determines the orientation of the tracking target 2 based on the image acquired by the imaging device 210 (step S105).
- a specific example of how the position estimator 120 determines the estimated position 2A of the tracked object 2 is as follows.
- FIG. 4 shows the configuration of the position estimation unit.
- the position estimation unit 120 has a tracking target recognition unit 121 and a spatial position estimation unit 122 .
- the tracking target recognition unit 121 detects an ROI (Region of Interest), which is a region including the tracking target 2, from the image acquired by the imaging device 210, and identifies the bones of the tracking target 2 (each joint point).
- the orientation determination unit 130 determines the orientation of the object to be followed 2 based on the bones calculated by the object recognition unit 121.
- the orientation of the object to be followed 2 is the orientation of the body such as the shoulders and waist.
- Fig. 5 shows the bone calculation method.
- the tracking target recognition unit 121 detects the skeleton of the tracking target 2 by deep learning, obtains the normal vector of the left and right pair of shoulder and hip joints, calculates the average value, and detects the orientation of the tracking target 2 .
- FIG. 6 shows the configuration of the spatial position estimation unit.
- the spatial position estimator 122 has a current position calculator 122A and a motion model estimator 122B.
- the current position calculation unit 122A and the spatial position estimation unit 122 perform tracking based on the ranging data from the ranging device 220, the ROI and bones from the tracking target recognition unit 121, and the orientation of the tracking target 2 from the orientation determination unit 130.
- the observed position which is the current (per frame) spatial position of object 2, is calculated by sensor fusion.
- the motion model estimation unit 122B accumulates the observed positions for each frame from the current position calculation unit 122A, and estimates the motion model based on the accumulated observed positions.
- the motion model estimator 122B calculates the current position, predicted future position, direction, and motion state of the tracking target 2 using a Particle filter or a Kalman filter.
- the path generation unit 140 generates a path along which the mobile device 1 follows the tracking target 2 .
- a path consists of a path start point (the current position of the mobile device 1), a path end point (the destination point of the mobile device 1 and an estimated position 2A of the tracked object 2), a straight line or curve connecting these two points, and the end point (the mobile device 1 destination point) and a straight line or curve connecting the two points.
- the path generation unit 140 calculates the difference between the movement direction of the mobile device 1 (step S102) and the direction of the tracking target 2 (step S105) (step S106), and determines whether the difference is equal to or less than a threshold (step S106). step S107).
- step S107, YES the path generation unit 140 determines whether or not the mobile device 1 has finished moving on the previously generated curved path (step S108). If the moving device 1 has finished moving on the previously generated curved path (step S108, YES), the path generation unit 140 generates a straight path as a path for the moving device 1 to follow the tracking target 2 (step S110).
- the fact that the difference is larger than the threshold means that the movement direction of the mobile device 1 and the orientation of the tracked object 2 are significantly different.
- the path generating unit 140 causes the moving device 1 to follow the tracking target 2.
- a curved path is generated as the path (steps S110 to S112). A method of generating a curved path by the path generation unit 140 will be specifically described below.
- the path generation unit 140 performs the following operations when the orientation and movement direction of the mobile device 1 are not interlocked (can be independently controlled) (step S110, YES), and when the orientation and movement direction of the mobile device 1 are interlocked (cannot be independently controlled). and (step S110, NO), the curved paths are generated by different methods. That is, the path generation unit 140 varies the curved path generation method according to the control characteristics of the mobile device 1 . That is, the path generation unit 140 generates the control characteristics to generate different curved paths depending on the
- FIG. 7 shows the flow of the curved path generation method when the orientation and movement direction of the mobile device are not interlocked.
- FIG. 8 schematically shows a curved path generation method when the orientation and movement direction of the moving device are uncoordinated.
- the path generator 140 determines the position and orientation of the path start point 401 (the current point of the mobile device 1) and the position and orientation of the path end point 402 (the destination point of the mobile device 1).
- the position and orientation of the path start point 401 are the position of the current point of the mobile device 1 and the current orientation of the mobile device 1 .
- the position of the path end point 402 is the estimated position 2A of the tracking target 2 (step S105).
- the path generation unit 140 determines the direction of the path end point 402 based on the direction of the tracking target 2 (step S105).
- the path generation unit 140 determines the direction of the path end point 402 so that the direction of the path end point 402 matches the direction of the tracking target 2 .
- the path generation unit 140 generates a Bezier curve 400 from the path start point 401 to the path end point 402 based on the position and orientation of the path start point 401 and the path end point 402 (step S201).
- a Bezier curve is a curve connecting a start point and an end point determined based on the position and orientation of the start point and the position and orientation of the end point.
- the path generation unit 140 divides the generated Bezier curve 400 at a plurality of division points to generate a plurality of sub-curve paths each composed of two adjacent division points (step S202).
- the path generator 140 creates a first sub curve path 406 from the path start point 401 to the first division point 404 and a second sub curve path from the first division point 404 to the second division point 405.
- a curved path 407 and a third sub-curved path 408 from the second split point 405 to the path end point 402 are generated.
- the path generation unit 140 generates a plurality of sub-curve paths so that the direction of the end point of each sub-curve path matches the direction of the straight line connecting the end point of the sub-curve path and the estimated position 2A of the tracking target 2 (i.e., the path end point 402). Generate a sub-curved path.
- the path generation unit 140 changes the direction of the end point of each sub-curve path, generates a Bezier curve corresponding to each sub-curve path, and updates each sub-curve path.
- the path generation unit 140 does not change the position and orientation of the path start point 401 and the position of the first division point 404, and changes the orientation of the first division point 404 from the first division point 404. Change the orientation of line 410 to path end point 402 . Then, the path generation unit 140 generates a Bezier curve from the path start point 401 to the first dividing point 404 and defines the generated Bezier curve as a first sub-curve path 406 .
- the path generation unit 140 does not change the position of the first division point 404 and the position of the second division point 405, sets the orientation of the first division point 404 to the orientation after the change, and sets the orientation of the second division point 404 to The direction of point 405 is changed to the direction of straight line 411 from second dividing point 405 to path end point 402 . Then, the path generation unit 140 generates a Bezier curve from the first division point 404 to the second division point 405, and defines the generated Bezier curve as the second sub-curve path 407 (step S203).
- the path generation unit 140 generates a path including the updated first sub-curve path 406, the second sub-curve path 407, and the third sub-curve path 408 as a path for the mobile device 1 to follow the tracking target 2. Generate as As a result, the mobile device 1 performs a movement similar to lateral movement (crab walking) while watching the target 2 to be followed, so that the mobile device 1 is less likely to lose the target 2 to be followed and the continuity of tracking can be improved.
- the path generation unit 140 determines the speed of the mobile device 1 moving on the path (step S204).
- the path generator 140 determines the speed of the mobile device 1 based on the detection result of the tracking target 2 . For example, the path generation unit 140 increases the speed of the mobile device 1 according to the length of time the tracked object 2 is lost. Specifically, the path generation unit 140 increases the speed of the mobile device 1 so that the mobile device 1 rediscovers the tracked target 2 more quickly as the length of time during which the tracked target 2 is lost increases. Note that the path generation unit 140 determines a speed equal to or lower than a safe speed that can be controlled by the aircraft as the speed for accelerating the follow-up speed.
- the path generation unit 140 may determine the speed of the mobile device 1 according to the distance to the tracked object 2 and the like. For example, the longer the distance to the tracked object 2 is, the more difficult it is to lose the tracked object 2 by increasing the speed of the mobile device 1 .
- FIG. 9 shows the flow of the curved path generation method when the orientation and movement direction of the mobile device are interlocked.
- FIG. 10 schematically shows a curved path generation method when the orientation and movement direction of the mobile device are interlocked.
- the path generation unit 140 generates a Bezier curve 400 from the path start point 401 to the path end point 402 in the same manner as described above (step S201), and creates a plurality of sub-curve paths (from the path start point 401 to the first division point 404).
- a curved path 408) is generated (step S202).
- the path generation unit 140 When the orientation and movement direction of the mobile device 1 are not linked, the path generation unit 140 generates Bezier curves of a plurality of sub-curve paths, and connects the Bezier curves to update the path (step S203 and step S203). S204). On the other hand, when the orientation and movement direction of the mobile device 1 are interlocked, the path generation unit 140 determines the Bezier curve 400 (step S201) as the path.
- the path generation unit 140 calculates the direction of the tangent line at the end point of each sub-curve path.
- the path generation unit 140 determines the direction of the tangent line 409 to the first sub-curved path 406 at the first dividing point 404 that is the end point of the first sub-curved path 406 and the direction of the second sub-curved path 407 .
- the direction of the tangent line 403 to the second sub-curved path 407 of the second dividing point 405, which is the end point, is calculated.
- the path generation unit 140 calculates the difference between the direction of the end point of each sub-curve path and the direction of the tangent to the end point (step S205). In this example, the path generation unit 140 calculates the difference between the direction of the first dividing point 404 that is the end point of the first sub-curved path 406 and the direction of the tangent line 409 . The path generation unit 140 calculates the orientation of the second division point 405 that is the end point of the second sub-curved path 407 and the orientation of the tangent line 403 .
- the path generation unit 140 determines the speed of the mobile device 1 moving along a plurality of sub-curve paths based on the difference between the direction of the end point of each sub-curve path and the direction of the tangent to the end point (step S206). That is, the path generation unit 140 varies the speed of the moving device 1 on each sub-curved path according to the direction of the end point of each sub-curved path. Specifically, the path generation unit 140 is configured such that the greater the difference between the direction of the end point of each sub-curved path and the direction of the tangent line to the end point, the faster the speed of the mobile device 1 moving on a plurality of sub-curved paths. First, the speed of the mobile device 1 is determined.
- the moving device 1 can quickly reach the vicinity of the corner 4 and perform a turning motion, so that the moving device 1 can continue to capture the tracked object 2 within the range of the visual field 8, and the tracked object 2 is less likely to be lost. Continuity of follow-up can be improved.
- the path generation unit 140 determines the Bezier curve 400 as the path, and then calculates the velocities of the sub-curve paths 406, 407, and 408 included in the path. make different. In this case as well, the path generation unit 140 increases the speed of the mobile device 1 so that the mobile device 1 can quickly rediscover the tracked target 2 as the length of time during which the tracked target 2 is lost is increased (step S207). ).
- the follow-up control unit 150 controls the moving mechanism 300 so that the moving device 1 moves on the path determined by the path generating unit 140 at the speed determined by the path generating unit 140 (step S113).
- the mobile device 1 can keep the tracked object 2 within the range of the field of view 8, the tracked object 2 is less likely to be lost, and the tracking continuity can be improved.
- the moving device 1 can move the moving device 1 based on the direction of the tracked object 2 (that is, the direction in which the tracked object 2 is about to move) rather than the direction in which the tracked object 2 is currently moving. Generate a path (arrow C). As a result, the moving device 1 keeps capturing the tracked object 2 within the visual field range, thereby continuing to track the tracked object 2 without losing it. can be rediscovered in
- the mobile device 1 has the information processing device 100 , the detection device group 200 , and the mobile mechanism 300 .
- the mobile device 1 has a detection device group 200 and a moving mechanism 300, and the external information processing device 100 capable of wireless communication detects the mobile device 1 based on the detection result of the detection device group 200 of the mobile device 1.
- a path may be generated and the generated path may be supplied to the mobile device 1 .
- the mobile device 1 has a mobile mechanism 300, and the external information processing device 100 capable of wireless communication generates a path for the mobile device 1 based on the detection results of the external detection device group 200, and moves the generated path. It may be supplied to the device 1.
- FIG. 11 is a block diagram showing a configuration example of a vehicle control system 11, which is an example of a mobile device control system to which the present technology is applied.
- the vehicle control system 11 is provided in the vehicle 1 and performs processing related to driving support and automatic driving of the vehicle 1.
- the vehicle control system 11 includes a vehicle control ECU (Electronic Control Unit) 21, a communication unit 22, a map information storage unit 23, a position information acquisition unit 24, an external recognition sensor 25, an in-vehicle sensor 26, a vehicle sensor 27, a storage unit 28, a travel Assistance/automatic driving control unit 29 , DMS (Driver Monitoring System) 30 , HMI (Human Machine Interface) 31 , and vehicle control unit 32 .
- vehicle control ECU Electronic Control Unit
- communication unit 22 includes a vehicle control ECU (Electronic Control Unit) 21, a communication unit 22, a map information storage unit 23, a position information acquisition unit 24, an external recognition sensor 25, an in-vehicle sensor 26, a vehicle sensor 27, a storage unit 28, a travel Assistance/automatic driving control unit 29 , DMS (Driver Monitoring System) 30 , HMI (Human Machine Interface) 31 , and vehicle control unit 32 .
- HMI Human Machine Interface
- Vehicle control ECU 21, communication unit 22, map information storage unit 23, position information acquisition unit 24, external recognition sensor 25, in-vehicle sensor 26, vehicle sensor 27, storage unit 28, driving support/automatic driving control unit 29, driver monitoring system ( DMS) 30 , human machine interface (HMI) 31 , and vehicle control unit 32 are connected via a communication network 41 so as to be able to communicate with each other.
- the communication network 41 is, for example, a CAN (Controller Area Network), LIN (Local Interconnect Network), LAN (Local Area Network), FlexRay (registered trademark), Ethernet (registered trademark), and other digital two-way communication standards. It is composed of a communication network, a bus, and the like.
- the communication network 41 may be used properly depending on the type of data to be transmitted.
- CAN may be applied to data related to vehicle control
- Ethernet may be applied to large-capacity data.
- each part of the vehicle control system 11 performs wireless communication assuming relatively short-range communication such as near-field wireless communication (NFC (Near Field Communication)) or Bluetooth (registered trademark) without going through the communication network 41. may be connected directly using NFC (Near Field Communication)) or Bluetooth (registered trademark) without going through the communication network 41. may be connected directly using NFC (Near Field Communication)
- Bluetooth registered trademark
- the vehicle control ECU 21 is composed of various processors such as a CPU (Central Processing Unit) and an MPU (Micro Processing Unit).
- the vehicle control ECU 21 controls the functions of the entire vehicle control system 11 or a part thereof.
- the communication unit 22 communicates with various devices inside and outside the vehicle, other vehicles, servers, base stations, etc., and transmits and receives various data. At this time, the communication unit 22 can perform communication using a plurality of communication methods.
- the communication with the outside of the vehicle that can be performed by the communication unit 22 will be described schematically.
- the communication unit 22 is, for example, 5G (5th generation mobile communication system), LTE (Long Term Evolution), DSRC (Dedicated Short Range Communications), etc., via a base station or access point, on the external network communicates with a server (hereinafter referred to as an external server) located in the external network.
- the external network with which the communication unit 22 communicates is, for example, the Internet, a cloud network, or a provider's own network.
- the communication method that the communication unit 22 performs with the external network is not particularly limited as long as it is a wireless communication method that enables digital two-way communication at a communication speed of a predetermined value or more and a distance of a predetermined value or more.
- the communication unit 22 can communicate with a terminal located near the vehicle using P2P (Peer To Peer) technology.
- Terminals in the vicinity of one's own vehicle are, for example, terminals worn by pedestrians, bicycles, and other moving objects that move at relatively low speeds, terminals installed at fixed locations in stores, etc., or MTC (Machine Type Communication) terminal.
- the communication unit 22 can also perform V2X communication.
- V2X communication includes, for example, vehicle-to-vehicle communication with other vehicles, vehicle-to-infrastructure communication with roadside equipment, etc., and vehicle-to-home communication , and communication between the vehicle and others, such as vehicle-to-pedestrian communication with a terminal or the like possessed by a pedestrian.
- the communication unit 22 can receive from the outside a program for updating the software that controls the operation of the vehicle control system 11 (Over The Air).
- the communication unit 22 can also receive map information, traffic information, information around the vehicle 1, and the like from the outside.
- the communication unit 22 can transmit information about the vehicle 1, information about the surroundings of the vehicle 1, and the like to the outside.
- the information about the vehicle 1 that the communication unit 22 transmits to the outside includes, for example, data indicating the state of the vehicle 1, recognition results by the recognition unit 73, and the like.
- the communication unit 22 performs communication corresponding to a vehicle emergency call system such as e-call.
- the communication unit 22 receives electromagnetic waves transmitted by a road traffic information communication system (VICS (Vehicle Information and Communication System) (registered trademark)) such as radio wave beacons, optical beacons, and FM multiplex broadcasting.
- VICS Vehicle Information and Communication System
- radio wave beacons such as radio wave beacons, optical beacons, and FM multiplex broadcasting.
- the communication with the inside of the vehicle that can be performed by the communication unit 22 will be described schematically.
- the communication unit 22 can communicate with each device in the vehicle using, for example, wireless communication.
- the communication unit 22 performs wireless communication with devices in the vehicle using a communication method such as wireless LAN, Bluetooth, NFC, and WUSB (Wireless USB) that enables digital two-way communication at a communication speed higher than a predetermined value. can be done.
- the communication unit 22 can also communicate with each device in the vehicle using wired communication.
- the communication unit 22 can communicate with each device in the vehicle by wired communication via a cable connected to a connection terminal (not shown).
- the communication unit 22 performs digital two-way communication at a predetermined communication speed or higher by wired communication such as USB (Universal Serial Bus), HDMI (High-Definition Multimedia Interface) (registered trademark), and MHL (Mobile High-definition Link). can communicate with each device in the vehicle.
- wired communication such as USB (Universal Serial Bus), HDMI (High-Definition Multimedia Interface) (registered trademark), and MHL (Mobile High-definition Link).
- equipment in the vehicle refers to equipment that is not connected to the communication network 41 in the vehicle, for example.
- in-vehicle devices include mobile devices and wearable devices possessed by passengers such as drivers, information devices that are brought into the vehicle and temporarily installed, and the like.
- the map information accumulation unit 23 accumulates one or both of the map obtained from the outside and the map created by the vehicle 1. For example, the map information accumulation unit 23 accumulates a three-dimensional high-precision map, a global map covering a wide area, and the like, which is lower in accuracy than the high-precision map.
- High-precision maps are, for example, dynamic maps, point cloud maps, vector maps, etc.
- the dynamic map is, for example, a map consisting of four layers of dynamic information, quasi-dynamic information, quasi-static information, and static information, and is provided to the vehicle 1 from an external server or the like.
- a point cloud map is a map composed of a point cloud (point cloud data).
- a vector map is, for example, a map adapted to ADAS (Advanced Driver Assistance System) and AD (Autonomous Driving) by associating traffic information such as lane and traffic signal positions with a point cloud map.
- the point cloud map and the vector map may be provided from an external server or the like, and based on the sensing results of the camera 51, radar 52, LiDAR 53, etc., as a map for matching with a local map described later. It may be created by the vehicle 1 and stored in the map information storage unit 23 . Further, when a high-precision map is provided from an external server or the like, in order to reduce the communication capacity, map data of, for example, several hundred meters square, regarding the planned route that the vehicle 1 will travel from now on, is acquired from the external server or the like. .
- the position information acquisition unit 24 receives GNSS signals from GNSS (Global Navigation Satellite System) satellites and acquires position information of the vehicle 1 .
- the acquired position information is supplied to the driving support/automatic driving control unit 29 .
- the location information acquisition unit 24 is not limited to the method using GNSS signals, and may acquire location information using beacons, for example.
- the external recognition sensor 25 includes various sensors used for recognizing situations outside the vehicle 1 and supplies sensor data from each sensor to each part of the vehicle control system 11 .
- the type and number of sensors included in the external recognition sensor 25 are arbitrary.
- the external recognition sensor 25 includes a camera 51, a radar 52, a LiDAR (Light Detection and Ranging, Laser Imaging Detection and Ranging) 53, and an ultrasonic sensor 54.
- the configuration is not limited to this, and the external recognition sensor 25 may be configured to include one or more types of sensors among the camera 51, radar 52, LiDAR 53, and ultrasonic sensor .
- the numbers of cameras 51 , radars 52 , LiDARs 53 , and ultrasonic sensors 54 are not particularly limited as long as they are realistically installable in the vehicle 1 .
- the type of sensor provided in the external recognition sensor 25 is not limited to this example, and the external recognition sensor 25 may be provided with other types of sensors. An example of the sensing area of each sensor included in the external recognition sensor 25 will be described later.
- the imaging method of the camera 51 is not particularly limited.
- cameras of various types such as a ToF (Time Of Flight) camera, a stereo camera, a monocular camera, and an infrared camera, which are capable of distance measurement, can be applied to the camera 51 as necessary.
- the camera 51 is not limited to this, and may simply acquire a photographed image regardless of distance measurement.
- the external recognition sensor 25 can include an environment sensor for detecting the environment with respect to the vehicle 1.
- the environment sensor is a sensor for detecting the environment such as weather, weather, brightness, etc., and can include various sensors such as raindrop sensors, fog sensors, sunshine sensors, snow sensors, and illuminance sensors.
- the external recognition sensor 25 includes a microphone used for detecting the sound around the vehicle 1 and the position of the sound source.
- the in-vehicle sensor 26 includes various sensors for detecting information inside the vehicle, and supplies sensor data from each sensor to each part of the vehicle control system 11 .
- the types and number of various sensors included in the in-vehicle sensor 26 are not particularly limited as long as they are the types and number that can be realistically installed in the vehicle 1 .
- the in-vehicle sensor 26 can include one or more sensors among cameras, radars, seating sensors, steering wheel sensors, microphones, and biosensors.
- the camera provided in the in-vehicle sensor 26 for example, cameras of various shooting methods capable of distance measurement, such as a ToF camera, a stereo camera, a monocular camera, and an infrared camera, can be used.
- the camera included in the in-vehicle sensor 26 is not limited to this, and may simply acquire a photographed image regardless of distance measurement.
- the biosensors included in the in-vehicle sensor 26 are provided, for example, on a seat, a steering wheel, or the like, and detect various biometric information of a passenger such as a driver.
- the vehicle sensor 27 includes various sensors for detecting the state of the vehicle 1, and supplies sensor data from each sensor to each section of the vehicle control system 11.
- the types and number of various sensors included in the vehicle sensor 27 are not particularly limited as long as the types and number are practically installable in the vehicle 1 .
- the vehicle sensor 27 includes a speed sensor, an acceleration sensor, an angular velocity sensor (gyro sensor), and an inertial measurement unit (IMU (Inertial Measurement Unit)) integrating them.
- the vehicle sensor 27 includes a steering angle sensor that detects the steering angle of the steering wheel, a yaw rate sensor, an accelerator sensor that detects the amount of operation of the accelerator pedal, and a brake sensor that detects the amount of operation of the brake pedal.
- the vehicle sensor 27 includes a rotation sensor that detects the number of rotations of an engine or a motor, an air pressure sensor that detects tire air pressure, a slip rate sensor that detects a tire slip rate, and a wheel speed sensor that detects the rotational speed of a wheel.
- a sensor is provided.
- the vehicle sensor 27 includes a battery sensor that detects the remaining battery level and temperature, and an impact sensor that detects external impact.
- the storage unit 28 includes at least one of a nonvolatile storage medium and a volatile storage medium, and stores data and programs.
- the storage unit 28 is used as, for example, EEPROM (Electrically Erasable Programmable Read Only Memory) and RAM (Random Access Memory), and storage media include magnetic storage devices such as HDD (Hard Disc Drive), semiconductor storage devices, optical storage devices, And a magneto-optical storage device can be applied.
- the storage unit 28 stores various programs and data used by each unit of the vehicle control system 11 .
- the storage unit 28 includes an EDR (Event Data Recorder) and a DSSAD (Data Storage System for Automated Driving), and stores information of the vehicle 1 before and after an event such as an accident and information acquired by the in-vehicle sensor 26.
- EDR Event Data Recorder
- DSSAD Data Storage System for Automated Driving
- the driving support/automatic driving control unit 29 controls driving support and automatic driving of the vehicle 1 .
- the driving support/automatic driving control unit 29 includes an analysis unit 61 , an action planning unit 62 and an operation control unit 63 .
- the analysis unit 61 analyzes the vehicle 1 and its surroundings.
- the analysis unit 61 includes a self-position estimation unit 71 , a sensor fusion unit 72 and a recognition unit 73 .
- the self-position estimation unit 71 estimates the self-position of the vehicle 1 based on the sensor data from the external recognition sensor 25 and the high-precision map accumulated in the map information accumulation unit 23. For example, the self-position estimation unit 71 generates a local map based on sensor data from the external recognition sensor 25, and estimates the self-position of the vehicle 1 by matching the local map and the high-precision map.
- the position of the vehicle 1 is based on, for example, the center of the rear wheel versus axle.
- a local map is, for example, a three-dimensional high-precision map created using techniques such as SLAM (Simultaneous Localization and Mapping), an occupancy grid map, or the like.
- the three-dimensional high-precision map is, for example, the point cloud map described above.
- the occupancy grid map is a map that divides the three-dimensional or two-dimensional space around the vehicle 1 into grids (lattice) of a predetermined size and shows the occupancy state of objects in grid units.
- the occupancy state of an object is indicated, for example, by the presence or absence of the object and the existence probability.
- the local map is also used, for example, by the recognizing unit 73 for detection processing and recognition processing of the situation outside the vehicle 1 .
- the self-position estimation unit 71 may estimate the self-position of the vehicle 1 based on the position information acquired by the position information acquisition unit 24 and the sensor data from the vehicle sensor 27.
- the sensor fusion unit 72 combines a plurality of different types of sensor data (for example, image data supplied from the camera 51 and sensor data supplied from the radar 52) to perform sensor fusion processing to obtain new information.
- Methods for combining different types of sensor data include integration, fusion, federation, and the like.
- the recognition unit 73 executes a detection process for detecting the situation outside the vehicle 1 and a recognition process for recognizing the situation outside the vehicle 1 .
- the recognition unit 73 performs detection processing and recognition processing of the external situation of the vehicle 1 based on information from the external recognition sensor 25, information from the self-position estimation unit 71, information from the sensor fusion unit 72, and the like. .
- the recognition unit 73 performs detection processing and recognition processing of objects around the vehicle 1 .
- Object detection processing is, for example, processing for detecting the presence or absence, size, shape, position, movement, and the like of an object.
- Object recognition processing is, for example, processing for recognizing an attribute such as the type of an object or identifying a specific object.
- detection processing and recognition processing are not always clearly separated, and may overlap.
- the recognition unit 73 detects objects around the vehicle 1 by clustering the point cloud based on sensor data from the radar 52 or the LiDAR 53 or the like for each cluster of point groups. As a result, presence/absence, size, shape, and position of objects around the vehicle 1 are detected.
- the recognition unit 73 detects the movement of objects around the vehicle 1 by performing tracking that follows the movement of the masses of point groups classified by clustering. As a result, the speed and traveling direction (movement vector) of the object around the vehicle 1 are detected.
- the recognition unit 73 detects or recognizes vehicles, people, bicycles, obstacles, structures, roads, traffic lights, traffic signs, road markings, etc. based on image data supplied from the camera 51 . Further, the recognition unit 73 may recognize types of objects around the vehicle 1 by performing recognition processing such as semantic segmentation.
- the recognition unit 73 based on the map accumulated in the map information accumulation unit 23, the estimation result of the self-position by the self-position estimation unit 71, and the recognition result of the object around the vehicle 1 by the recognition unit 73, Recognition processing of traffic rules around the vehicle 1 can be performed. Through this processing, the recognition unit 73 can recognize the position and state of traffic lights, the content of traffic signs and road markings, the content of traffic restrictions, the lanes in which the vehicle can travel, and the like.
- the recognition unit 73 can perform recognition processing of the environment around the vehicle 1 .
- the surrounding environment to be recognized by the recognition unit 73 includes the weather, temperature, humidity, brightness, road surface conditions, and the like.
- the action plan section 62 creates an action plan for the vehicle 1.
- the action planning unit 62 creates an action plan by performing route planning and route following processing.
- global path planning is the process of planning a rough path from the start to the goal. This route planning is called trajectory planning, and in the planned route, trajectory generation (local path planning) that allows safe and smooth progress in the vicinity of the vehicle 1 in consideration of the motion characteristics of the vehicle 1 is performed. It also includes the processing to be performed.
- Route following is the process of planning actions to safely and accurately travel the route planned by route planning within the planned time.
- the action planning unit 62 can, for example, calculate the target speed and target angular speed of the vehicle 1 based on the result of this route following processing.
- the motion control unit 63 controls the motion of the vehicle 1 in order to implement the action plan created by the action planning unit 62.
- the operation control unit 63 controls a steering control unit 81, a brake control unit 82, and a drive control unit 83 included in the vehicle control unit 32, which will be described later, so that the vehicle 1 can control the trajectory calculated by the trajectory plan. Acceleration/deceleration control and direction control are performed so as to advance.
- the operation control unit 63 performs coordinated control aimed at realizing ADAS functions such as collision avoidance or shock mitigation, follow-up driving, vehicle speed maintenance driving, vehicle collision warning, and vehicle lane deviation warning.
- the operation control unit 63 performs cooperative control aimed at automatic driving in which the vehicle autonomously travels without depending on the operation of the driver.
- the DMS 30 performs driver authentication processing, driver state recognition processing, etc., based on sensor data from the in-vehicle sensor 26 and input data input to the HMI 31, which will be described later.
- the driver's state to be recognized includes, for example, physical condition, alertness, concentration, fatigue, gaze direction, drunkenness, driving operation, posture, and the like.
- the DMS 30 may perform authentication processing for passengers other than the driver and processing for recognizing the state of the passenger. Further, for example, the DMS 30 may perform recognition processing of the situation inside the vehicle based on the sensor data from the sensor 26 inside the vehicle. Conditions inside the vehicle to be recognized include temperature, humidity, brightness, smell, and the like, for example.
- the HMI 31 inputs various data, instructions, etc., and presents various data to the driver.
- the HMI 31 comprises an input device for human input of data.
- the HMI 31 generates an input signal based on data, instructions, etc. input from an input device, and supplies the input signal to each section of the vehicle control system 11 .
- the HMI 31 includes operators such as a touch panel, buttons, switches, and levers as input devices.
- the HMI 31 is not limited to this, and may further include an input device capable of inputting information by a method other than manual operation using voice, gestures, or the like.
- the HMI 31 may use, as an input device, a remote control device using infrared rays or radio waves, or an external connection device such as a mobile device or wearable device corresponding to the operation of the vehicle control system 11 .
- the presentation of data by HMI31 will be briefly explained.
- the HMI 31 generates visual information, auditory information, and tactile information for the passenger or outside the vehicle.
- the HMI 31 performs output control for controlling the output, output content, output timing, output method, and the like of each generated information.
- the HMI 31 generates and outputs visual information such as an operation screen, a status display of the vehicle 1, a warning display, an image such as a monitor image showing the situation around the vehicle 1, and information indicated by light.
- the HMI 31 also generates and outputs information indicated by sounds such as voice guidance, warning sounds, warning messages, etc., as auditory information.
- the HMI 31 generates and outputs, as tactile information, information given to the passenger's tactile sense by force, vibration, movement, or the like.
- a display device that presents visual information by displaying an image by itself or a projector device that presents visual information by projecting an image can be applied.
- the display device displays visual information within the passenger's field of view, such as a head-up display, a transmissive display, and a wearable device with an AR (Augmented Reality) function. It may be a device.
- the HMI 31 can use a display device provided in the vehicle 1 such as a navigation device, an instrument panel, a CMS (Camera Monitoring System), an electronic mirror, a lamp, etc., as an output device for outputting visual information.
- Audio speakers, headphones, and earphones can be applied as output devices for the HMI 31 to output auditory information.
- a haptic element using haptic technology can be applied as an output device for the HMI 31 to output tactile information.
- a haptic element is provided at a portion of the vehicle 1 that is in contact with a passenger, such as a steering wheel or a seat.
- the vehicle control unit 32 controls each unit of the vehicle 1.
- the vehicle control section 32 includes a steering control section 81 , a brake control section 82 , a drive control section 83 , a body system control section 84 , a light control section 85 and a horn control section 86 .
- the steering control unit 81 detects and controls the state of the steering system of the vehicle 1 .
- the steering system includes, for example, a steering mechanism including a steering wheel, an electric power steering, and the like.
- the steering control unit 81 includes, for example, a steering ECU that controls the steering system, an actuator that drives the steering system, and the like.
- the brake control unit 82 detects and controls the state of the brake system of the vehicle 1 .
- the brake system includes, for example, a brake mechanism including a brake pedal, an ABS (Antilock Brake System), a regenerative brake mechanism, and the like.
- the brake control unit 82 includes, for example, a brake ECU that controls the brake system, an actuator that drives the brake system, and the like.
- the drive control unit 83 detects and controls the state of the drive system of the vehicle 1 .
- the drive system includes, for example, an accelerator pedal, a driving force generator for generating driving force such as an internal combustion engine or a driving motor, and a driving force transmission mechanism for transmitting the driving force to the wheels.
- the drive control unit 83 includes, for example, a drive ECU that controls the drive system, an actuator that drives the drive system, and the like.
- the body system control unit 84 detects and controls the state of the body system of the vehicle 1 .
- the body system includes, for example, a keyless entry system, smart key system, power window device, power seat, air conditioner, air bag, seat belt, shift lever, and the like.
- the body system control unit 84 includes, for example, a body system ECU that controls the body system, an actuator that drives the body system, and the like.
- the light control unit 85 detects and controls the states of various lights of the vehicle 1 .
- Lights to be controlled include, for example, headlights, backlights, fog lights, turn signals, brake lights, projections, bumper displays, and the like.
- the light control unit 85 includes a light ECU that controls the light, an actuator that drives the light, and the like.
- the horn control unit 86 detects and controls the state of the car horn of the vehicle 1 .
- the horn control unit 86 includes, for example, a horn ECU for controlling the car horn, an actuator for driving the car horn, and the like.
- FIG. 12 is a diagram showing an example of sensing areas by the camera 51, the radar 52, the LiDAR 53, the ultrasonic sensor 54, etc. of the external recognition sensor 25 in the previous figure.
- the vehicle 1 is schematically shown as viewed from above, the left end side is the front end (front) side of the vehicle 1, and the right end side is the rear end (rear) side of the vehicle 1.
- a sensing area 101F and a sensing area 101B are examples of sensing areas of the ultrasonic sensor 54.
- FIG. The sensing area 101 ⁇ /b>F covers the periphery of the front end of the vehicle 1 with a plurality of ultrasonic sensors 54 .
- the sensing area 101B covers the periphery of the rear end of the vehicle 1 with a plurality of ultrasonic sensors 54 .
- the sensing results in the sensing area 101F and the sensing area 101B are used, for example, for parking assistance of the vehicle 1 and the like.
- Sensing areas 102F to 102B show examples of sensing areas of the radar 52 for short or medium range.
- the sensing area 102F covers the front of the vehicle 1 to a position farther than the sensing area 101F.
- the sensing area 102B covers the rear of the vehicle 1 to a position farther than the sensing area 101B.
- the sensing area 102L covers the rear periphery of the left side surface of the vehicle 1 .
- the sensing area 102R covers the rear periphery of the right side surface of the vehicle 1 .
- the sensing result in the sensing area 102F is used, for example, to detect vehicles, pedestrians, etc. existing in front of the vehicle 1.
- the sensing result in the sensing area 102B is used, for example, for the rear collision prevention function of the vehicle 1 or the like.
- the sensing results in the sensing area 102L and the sensing area 102R are used, for example, to detect an object in a blind spot on the side of the vehicle 1, or the like.
- Sensing areas 103F to 103B show examples of sensing areas by the camera 51 .
- the sensing area 103F covers the front of the vehicle 1 to a position farther than the sensing area 102F.
- the sensing area 103B covers the rear of the vehicle 1 to a position farther than the sensing area 102B.
- the sensing area 103L covers the periphery of the left side surface of the vehicle 1 .
- the sensing area 103R covers the periphery of the right side surface of the vehicle 1 .
- the sensing results in the sensing area 103F can be used, for example, for recognition of traffic lights and traffic signs, lane departure prevention support systems, and automatic headlight control systems.
- a sensing result in the sensing area 103B can be used for parking assistance and a surround view system, for example.
- Sensing results in the sensing area 103L and the sensing area 103R can be used, for example, in a surround view system.
- the sensing area 104 shows an example of the sensing area of the LiDAR53.
- the sensing area 104 covers the front of the vehicle 1 to a position farther than the sensing area 103F.
- the sensing area 104 has a narrower lateral range than the sensing area 103F.
- the sensing results in the sensing area 104 are used, for example, to detect objects such as surrounding vehicles.
- a sensing area 105 is an example of a sensing area of the long-range radar 52 .
- the sensing area 105 covers the front of the vehicle 1 to a position farther than the sensing area 104 .
- the sensing area 105 has a narrower lateral range than the sensing area 104 .
- the sensing results in the sensing area 105 are used, for example, for ACC (Adaptive Cruise Control), emergency braking, and collision avoidance.
- ACC Adaptive Cruise Control
- emergency braking emergency braking
- collision avoidance collision avoidance
- the sensing regions of the cameras 51, the radar 52, the LiDAR 53, and the ultrasonic sensors 54 included in the external recognition sensor 25 may have various configurations other than those shown in FIG. Specifically, the ultrasonic sensor 54 may also sense the sides of the vehicle 1 , and the LiDAR 53 may sense the rear of the vehicle 1 . Moreover, the installation position of each sensor is not limited to each example mentioned above. Also, the number of each sensor may be one or plural.
- the present disclosure may have the following configurations.
- an orientation determination unit that determines the orientation of the object to be tracked
- a path generation unit that determines a direction of a path end point, which is an end point of a path along which the moving device follows the tracked object, based on the direction of the tracked object, and generates the path
- An information processing device comprising: (2) The information processing device according to (1) above, The information processing apparatus, wherein the path generation unit determines the direction of the path end point so that the direction of the path end point matches the direction of the tracking target.
- the information processing device according to any one of (1) to (3) above, further comprising a position estimating unit that determines the estimated position of the tracking target; The information processing device, wherein the path generation unit determines the position of the path end point based on the estimated position.
- the position estimation unit detects the tracking target from an image captured by the mobile device, The information processing device, wherein the path generation unit determines the speed of the moving device based on the detection result of the tracking target.
- the information processing device (7) The information processing device according to any one of (1) to (6) above, The path generation unit generating a Bezier curve leading to the path endpoint; dividing the Bezier curve at a plurality of dividing points; generating a plurality of sub-curve paths each consisting of two adjacent split points; An information processing device that generates a path including the plurality of sub-curve paths as the path.
- the information processing device is configured to: An information processing device that generates the plurality of sub-curve paths.
- the information processing device (9) The information processing device according to (6) or (7) above, The information processing apparatus, wherein the path generation unit determines the Bezier curve as the path when the orientation and movement direction of the mobile device are interlocked. (10) The information processing device according to (9) above, The information processing device, wherein the path generation unit determines a speed of the moving device that moves the plurality of sub-curve paths based on a difference between an end point of each sub-curve path and a tangent direction of the end point. (11) The information processing device according to (10) above, The path generation unit is configured to increase the speed of the moving device moving the plurality of sub-curved paths as the difference between the direction of the end point of each sub-curved path and the direction of the tangent to the end point increases.
- An information processor that determines the speed of a mobile device.
- (13) Determine the direction of the target to be followed, generating the path by determining the direction of the path end point, which is the end point of the path along which the moving device follows the tracked object, based on the direction of the tracked object; Information processing methods.
- An information processing program that causes a moving device to operate as a path generation unit that determines a direction of a path end point, which is an end point of a path that follows the tracked object, based on the direction of the tracked object and generates the path.
- a moving mechanism an orientation determination unit that determines the orientation of the object to be tracked; a path generation unit that determines a direction of a path end point, which is an end point of a path that follows the object to be tracked, based on the direction of the object to be tracked, and generates the path; a follow-up control unit that controls the movement mechanism to move on the path;
- a mobile device comprising: (16) information processing equipment, an orientation determination unit that determines the orientation of the object to be tracked; non-transitory information processing program for operating as a path generation unit that determines the direction of the path end point, which is the end point of the path in which the mobile device follows the tracked object, based on the direction of the tracked object, and generates the path.
- computer readable recording medium
Landscapes
- Engineering & Computer Science (AREA)
- Aviation & Aerospace Engineering (AREA)
- Radar, Positioning & Navigation (AREA)
- Remote Sensing (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)
- Image Analysis (AREA)
Abstract
【課題】移動装置が追従対象を適切に追従し続ける。 【解決手段】情報処理装置は、追従対象の向きを判断する向き判断部と、移動装置が前記追従対象を追従するパスの終点であるパス終点の向きを前記追従対象の向きに基づき決定して前記パスを生成するパス生成部と、を具備する。情報処理方法は、追従対象の向きを判断し、移動装置が前記追従対象を追従するパスの終点であるパス終点の向きを前記追従対象の向きに基づき決定して前記パスを生成する。
Description
本開示は、追従対象を追従する移動装置と、移動装置を制御する情報処理装置、情報処理方法及び情報処理プログラムと、に関する。
移動する追従対象を追従する移動装置が知られている。特許文献1によれば、移動ロボットの向きと追従対象(典型的には人。0021段落)の向きを一致させ(0033段落)、移動ロボットと追従対象との相対的な位置関係を維持して、無駄な回り込み移動や旋回動作を行わずに、自然な追従動作を実現する(0026段落)。
例えば、追従対象が角を曲がったとき、移動装置が追従対象を視野中心にとらえるために、移動装置が追従対象に対してパスを作ると、移動装置が追従対象をロストする、スタックする、角と衝突する、最終的に移動装置が追従対象を追従できなくなる等のおそれがある。
以上のような事情に鑑み、移動装置が追従対象を適切に追従し続けることが望ましい。
本開示の一形態に係る情報処理装置は、
追従対象の向きを判断する向き判断部と、
移動装置が前記追従対象を追従するパスの終点であるパス終点の向きを前記追従対象の向きに基づき決定して前記パスを生成するパス生成部と、
を具備する。
追従対象の向きを判断する向き判断部と、
移動装置が前記追従対象を追従するパスの終点であるパス終点の向きを前記追従対象の向きに基づき決定して前記パスを生成するパス生成部と、
を具備する。
本実施形態によれば、移動装置は、追従対象の現在移動中の方向ではなく、追従対象の向き(即ち、追従対象がこれから移動しようとする方向)に基づき、移動装置のパスを生成する。これにより移動装置が追従対象を視野範囲内にとらえ続けることで追従対象をロストせずに追従し続け、また、移動装置が仮に追従対象をロストしても追従対象を速やかに再発見することができる。
前記パス生成部は、前記パス終点の向きが前記追従対象の向きと一致する様に前記パス終点の向きを決定してもよい。
本実施形態によれば、移動装置は、追従対象の移動経路をトレースする様なパスではなく、追従対象をロストしない(追従対象が視野に含まれ続ける)パスを生成することを図れる。
前記パス生成部は、前記移動装置の移動方向と前記追従対象の向きとの差が閾値より大きい場合、前記パスとして曲線のパスを生成してもよい。
本実施形態によれば、仮に追従対象が略直線的に移動しても、移動装置は移動経路をトレースせずに、移動装置を視野内にとらえ続けることを目的として大回りに追従し続けることができる。
情報処理装置は、
前記追従対象の推定位置を判断する位置推定部をさらに具備し、
前記パス生成部は、前記推定位置に基づき前記パス終点の位置を決定してもよい。
前記追従対象の推定位置を判断する位置推定部をさらに具備し、
前記パス生成部は、前記推定位置に基づき前記パス終点の位置を決定してもよい。
本実施形態によれば、推定位置にパス終点の位置を決定するため、追従対象をロストしない(追従対象が視野に含まれ続ける)パスを生成することを図れる。
前記位置推定部は、前記移動装置が撮影した画像から前記追従対象を検出し、
前記パス生成部は、前記追従対象の検出結果に基づき、前記移動装置の速度を決定してもよい。
前記パス生成部は、前記追従対象の検出結果に基づき、前記移動装置の速度を決定してもよい。
前記パス生成部は、前記追従対象をロストした時間の長さに応じて、前記移動装置の速度を速くしてもよい。
これにより、追従対象をロストした時間の長さが長い程、移動装置の速度を速くすれば、移動装置が追従対象を早く再発見することを図れる。
前記パス生成部は、
前記パス終点に至るベジェ曲線を生成し、
前記ベジェ曲線を複数の分割点で分割し、
それぞれ隣り合う2個の分割点からなる複数のサブ曲線パスを生成し、
前記複数のサブ曲線パスを含むパスを、前記パスとして生成してもよい。
前記パス終点に至るベジェ曲線を生成し、
前記ベジェ曲線を複数の分割点で分割し、
それぞれ隣り合う2個の分割点からなる複数のサブ曲線パスを生成し、
前記複数のサブ曲線パスを含むパスを、前記パスとして生成してもよい。
ベジェ曲線とは、始点の位置及び向きと終点の位置及び向きとに基づき決定される、始点と終点とを結ぶ曲線である。ベジェ曲線を用いてパスを生成することで、パス終点の向きを追従対象の向きとすることが出来る。
前記パス生成部は、前記移動装置の向き及び移動方向が不連動である場合、それぞれのサブ曲線パスの終点の向きが、前記終点と前記推定位置とを結ぶ直線の向きと一致する様に、前記複数のサブ曲線パスを生成してもよい。
これにより、移動装置は、追従対象を注視しながら横移動(カニ歩き)に近い運動をすることになり、移動装置が追従対象をロストし難く、追従の連続性を向上できる。
前記パス生成部は、前記移動装置の向き及び移動方向が連動する場合、前記ベジェ曲線を前記パスとして決定してもよい。
ベジェ曲線をパスとすることで、パス終点の向きを追従対象の向きとすることが出来る。
前記パス生成部は、それぞれのサブ曲線パスの終点の向きと前記終点の接線の向きとの差に基づき、前記複数のサブ曲線パスを移動する前記移動装置の速度を決定してもよい。
これにより、移動装置の向きと追従対象の向きの差が大きいと、移動装置が追従対象をロストしやすい。本実施形態によれば、移動装置が追従対象をロストしやすさに基づき移動装置の速度を決定するので、移動装置が追従対象を視野範囲にとらえ続けることができ、追従対象をロストし難く、追従の連続性を向上できる。
前記パス生成部は、それぞれのサブ曲線パスの終点の向きと前記終点の接線の向きとの差が大きい程、前記複数のサブ曲線パスを移動する前記移動装置の速度が速くなるように、前記移動装置の速度を決定してもよい。
例えば、追従対象が曲がり角の手前付近にいるとき、向きの差が大きくなる。本実施形態によれば、曲がり角に至るサブ曲線パスでの速度を早くすることが出来る。このため、移動装置が早く曲がり角付近に行って、曲がる運動をすることができるので、移動装置が追従対象を視野範囲にとらえ続けることができ、追従対象をロストし難く、追従の連続性を向上できる。
前記向き判断部は、前記移動装置が撮影した画像に基づき前記追従対象の向きを判断してもよい。
例えば、向き判断部は、画像から算出された追従対象のボーンに基づき、追従対象の向きを判断することができる。
本開示の一形態に係る情報処理方法は、
追従対象の向きを判断し、
移動装置が前記追従対象を追従するパスの終点であるパス終点の向きを前記追従対象の向きに基づき決定して前記パスを生成する。
追従対象の向きを判断し、
移動装置が前記追従対象を追従するパスの終点であるパス終点の向きを前記追従対象の向きに基づき決定して前記パスを生成する。
本開示の一形態に係る情報処理プログラムは、
情報処理装置を、
追従対象の向きを判断する向き判断部と、
移動装置が前記追従対象を追従するパスの終点であるパス終点の向きを前記追従対象の向きに基づき決定して前記パスを生成するパス生成部
として動作させる。
情報処理装置を、
追従対象の向きを判断する向き判断部と、
移動装置が前記追従対象を追従するパスの終点であるパス終点の向きを前記追従対象の向きに基づき決定して前記パスを生成するパス生成部
として動作させる。
本開示の一形態に係る移動装置は、
移動機構と、
追従対象の向きを判断する向き判断部と、
前記追従対象を追従するパスの終点であるパス終点の向きを前記追従対象の向きに基づき決定して前記パスを生成するパス生成部と、
前記パス上を移動する様に前記移動機構を制御する追従制御部と、
を具備する。
移動機構と、
追従対象の向きを判断する向き判断部と、
前記追従対象を追従するパスの終点であるパス終点の向きを前記追従対象の向きに基づき決定して前記パスを生成するパス生成部と、
前記パス上を移動する様に前記移動機構を制御する追従制御部と、
を具備する。
以下、図面を参照しながら、本開示の実施形態を説明する。
1.本実施形態の概要
図1は、本実施形態の概要を模式的に示す。
本開示の一実施形態に係る移動装置1は、移動する追従対象2を追従する。移動装置1は、自動運転車両、AGV(無人搬送車)、ロボット、ペット型4脚ロボット、ドローン等である。
追従対象2は、人、動物、車両、AGV、ロボット、ペット型4脚ロボット、ドローン等である。追従対象2は、向きを変えながら移動する(典型的には、移動方向を向いた状態で移動する)物であれば、如何なる物でもよい。追従対象2は、生物でもよいし生物でなくてもよい。本実施形態では、追従対象2が人(歩行者)である例を説明する。
例えば、追従対象2が移動する環境には、壁3があり、壁3は右方向への直角(90度)の曲がり角である角4を構成する。追従対象2は、角4の手前5から移動(歩行)を始め、角4の奥6へと移動する。追従対象2は、人であるから、角4を直角には曲がらずに、手前5から角4の際(きわ)を通って略直線的に奥6へと移動することができる(矢印A)。その後、追従対象2は、角4の奥6からさらに右7へと移動する(矢印B)。
この様に移動する追従対象2を移動装置1が追従する。具体的には、移動装置1は追従対象2の推定位置2Aを判断し、推定位置2Aに向かうパスを生成し、生成したパス上を移動する。仮に、追従対象2の移動経路(矢印A)をトレースする様に移動装置1が移動すると、移動装置1は、角4に衝突する、角4付近で減速することで角4にオクルージョン(隠蔽)された追従対象2を視野8内にとらえることが出来ずロストする(見失う)、等のおそれがある。角4の手前で移動装置1が追従対象2をロストした結果、最終的に、奥6からさらに右7へと移動(矢印B)する追従対象2を、移動装置1が追従できなくなる等のおそれがある。
以上のような事情に鑑み、本実施形態では、移動装置1が追従対象2を視野範囲内にとらえ続けることで追従対象2をロストせずに追従し続け、また、移動装置1が仮に追従対象2をロストしても追従対象2を速やかに再発見することを図る。即ち、本実施形態では、移動装置1は、追従対象2の移動経路(矢印A)をトレースする様なパスではなく、追従対象2をロストしない(追従対象2が視野に含まれ続ける)パス(矢印C)を生成することを図る。本例では、追従対象2が手前5から角4の際(きわ)を通って略直線的に奥6へと移動(矢印A)しても、移動装置1は移動経路(矢印A)をトレースせずに、移動装置1を視野内にとらえ続けることを目的として大回りに追従し続ける(矢印C)。それを実現するため、移動装置1は、追従対象2の現在移動中の方向ではなく、追従対象2の向き(即ち、追従対象2がこれから移動しようとする方向)に基づき、移動装置1のパス(矢印C)を生成する。
2.移動装置の構成
図2は、移動装置の構成を示す。
移動装置1は、情報処理装置100と、検出装置群200と、移動機構300と、を有する。
情報処理装置100は、CPUがROMに記録された情報処理プログラムをRAMにロードして実行することにより、自己位置推定部110、位置推定部120、向き判断部130、パス生成部140及び追従制御部150として動作する。
検出装置群200は、外界センサである撮像装置210及び測距装置220と、内界センサ230とを有する。
撮像装置210は、例えば、イメージセンサを有するRGBカメラ等であり環境を撮影して画像を生成する。
測距装置220は、指向性を有し、移動装置1の位置及び向きを推定するために用いられる外界データを取得する。具体的には、測距装置220は、環境から受信する信号に基づき距離を測定し、距離データを取得する。より具体的には、測距装置220は、環境に電磁波、光又は音等の信号を出力し、反射波を受信する方式のセンサ(アクティブセンサ)である。例えば、測距装置220は、ToF(Time of Flight)センサ、LiDAR、ミリ波レーダ及び/又は超音波ソナー等である。例えば、測距装置220は、点群、Laser及び/又は深度画像等の測距データを生成する。
内界センサ230は、移動装置1の位置及び向きを推定するために用いられる内界データを取得する。具体的には、内界センサ230は、移動装置1のモータの角速度、加速度及び/又は回転角等のデータを取得する。内界センサ230は、例えば、IMU(慣性計測装置、Inertial Measurement Unit)及び/又は回転角エンコーダ等である。
移動機構300は、複数のタイヤ又は複数の脚と、これらを駆動するアクチュエータ等とを含み、環境中を自律移動する。
移動装置1は、例えば二輪駆動車両の様に、移動装置1の向き及び移動方向が連動するように移動する装置でもよい。あるいは、移動装置1は、例えば雲台やメカナムホイールの様に、移動装置1の向き及び移動方向が不連動であるように移動する装置でもよい。さらに、移動装置1は、移動装置1の向き及び移動方向が連動する移動及び不連動である移動の両者を選択的に実現可能でもよい。
3.移動装置の動作フロー
図3は、移動装置の動作フローを示す。
自己位置推定部110は、内界センサ230から、移動装置1のモータの角速度、加速度及び/又は回転角等の内界データを取得する(ステップS101)。自己位置推定部110は、内界データに基づき移動装置1の自己位置、移動速度、移動方向及び向き(姿勢)等を推定する(ステップS102)。
自己位置推定部110は、外界センサである撮像装置210が撮影した画像を取得する。自己位置推定部110は、外界センサである測距装置220が生成した点群、Laser及び/又は深度画像等の測距データを取得する(ステップS103)。
自己位置推定部110は、撮像装置210が取得した画像及び測距装置220が生成した測距データに基づき、3次元の環境地図を生成し、環境地図に自己位置を反映する(ステップS104)。環境地図は、例えば、占有格子地図(Occupancy Map)である。占有格子地図は、環境に存在するオブジェクトの空間分布を、複数のボクセル(立方体)を積み重ねた3次元的な位置関係で表現し、各ボクセルにオブジェクトが存在する確率(占有確率)を、各ボクセルの色調で表現する。
位置推定部120は、撮像装置210が取得した画像から追従対象2を検出し、追従対象2の推定位置2Aを判断し、追従対象2をロストした場合は追従対象2をロストした時間をカウントする(ステップS105)。向き判断部130は、撮像装置210が取得した画像に基づき追従対象2の向きを判断する(ステップS105)。位置推定部120が追従対象2の推定位置2Aを判断する方法の一具体例は以下の通りである。
図4は、位置推定部の構成を示す。
位置推定部120は、追従対象認識部121及び空間位置推定部122を有する。追従対象認識部121は、撮像装置210が取得した画像から、追従対象2を含む領域であるROI(関心領域(Region of Interest、注目領域)を検出し、追従対象2のボーン(各関節点の座標)を算出する。向き判断部130は、追従対象認識部121が算出したボーンに基づき、追従対象2の向きを判断する。追従対象2の向きは、肩や腰等の胴体部分の向きを意味する
図5は、ボーンの算出方法を示す。
追従対象認識部121は、深層学習で追従対象2の骨格を検出し、肩と股関節の左右ペアの法線ベクトルを求め、平均値を算出し、追従対象2の向きを検出する。
図6は、空間位置推定部の構成を示す。
空間位置推定部122は、現在位置算出部122A及び運動モデル推定部122Bを有する。現在位置算出部122Aは、空間位置推定部122は、測距装置220からの測距データ、追従対象認識部121からのROI及びボーン、向き判断部130からの追従対象2の向きに基づき、追従対象2の現在の(フレーム毎の)空間位置である観測位置を、センサ融合(sensor fusion)により算出する。運動モデル推定部122Bは、現在位置算出部122Aからのフレーム毎の観測位置を蓄積し、蓄積した観測位置に基づき運動モデルを推定する。運動モデル推定部122Bは、Particle filterやKalman filterにより、追従対象2の現在位置、未来予測位置、方向、運動状態を算出する。
フローチャートを再び参照する。パス生成部140は、移動装置1が追従対象2を追従するパスを生成する。パスは、パス始点(移動装置1の現在地点)と、パス終点(移動装置1の目的地点であり、追従対象2の推定位置2A)と、この2点をつなぐ直線又は曲線と終点(移動装置1の目的地点)と、この2点をつなぐ直線又は曲線とを含む。まず、パス生成部140は、移動装置1の移動方向(ステップS102)と追従対象2の向き(ステップS105)との差を算出し(ステップS106)、差が閾値以下か否かを判断する(ステップS107)。
差が閾値以下であるとは、移動装置1の移動方向と追従対象2の向きとが同じ様な方向であることを意味する。この場合(ステップS107、YES)、パス生成部140は、直前に生成した曲線パス上を移動装置1が移動し終えたか否かを判断する(ステップS108)。直前に生成した曲線パス上を移動装置1が移動し終えていれば(ステップS108、YES)、パス生成部140は、移動装置1が追従対象2を追従するパスとして直線パスを生成する(ステップS110)。
一方、差が閾値より大きいとは、移動装置1の移動方向と追従対象2の向きとが大きく異なることを意味する。この場合(ステップS107、NO)及び直前に生成した曲線パス上を移動装置1が移動し終えていない場合(ステップS108、NO)、パス生成部140は、移動装置1が追従対象2を追従するパスとして曲線パスを生成する(ステップS110乃至ステップS112)。以下、パス生成部140が曲線パスを生成する方法を具体的に説明する。
パス生成部140は、移動装置1の向き及び移動方向が不連動である(独立制御できる)場合と(ステップS110、YES)、移動装置1の向き及び移動方向が連動する(独立制御できない)場合とで(ステップS110、NO)、異なる方法で曲線パスを生成する。即ち、パス生成部140は、移動装置1の制御特性に応じて曲線パスの生成方法を異ならせる。即ち、パス生成部140は、パス始点の位置(移動装置1の現在地点の位置)とパス終点の位置(追従対象2の推定位置)が同じであるにも拘らず、移動装置1の制御特性に応じて、異なる曲線パスを生成する。
図7は、移動装置の向き及び移動方向が不連動である場合の曲線パス生成方法のフローを示す。図8は、移動装置の向き及び移動方向が不連動である場合の曲線パス生成方法を模式的に示す。
まず、移動装置1の向き及び移動方向が不連動である場合の曲線パス生成方法(ステップS111)を説明する。パス生成部140は、パス始点401(移動装置1の現在地点)の位置及び向きと、パス終点402(移動装置1の目的地点)の位置及び向きを決定する。パス始点401の位置及び向きは、移動装置1の現在地点の位置と、移動装置1の現在の向きである。パス終点402の位置は、追従対象2の推定位置2A(ステップS105)である。パス生成部140は、パス終点402の向きを追従対象2の向き(ステップS105)に基づき決定する。具体的には、パス生成部140は、パス終点402の向きが追従対象2の向きと一致する様に、パス終点402の向きを決定する。パス生成部140は、パス始点401の位置及び向きと、パス終点402の位置及び向きとに基づき、パス始点401からパス終点402に至るベジェ曲線400を生成する(ステップS201)。ベジェ曲線とは、始点の位置及び向きと終点の位置及び向きとに基づき決定される、始点と終点とを結ぶ曲線である。
パス生成部140は、生成したベジェ曲線400を複数の分割点で分割することで、それぞれ隣り合う2個の分割点からなる複数のサブ曲線パスを生成する(ステップS202)。本例では、パス生成部140は、パス始点401から第1の分割点404に至る第1のサブ曲線パス406と、第1の分割点404から第2の分割点405に至る第2のサブ曲線パス407と、第2の分割点405からパス終点402に至る第3のサブ曲線パス408とを生成する。
パス生成部140は、それぞれのサブ曲線パスの終点の向きが、サブ曲線パスの終点と追従対象2の推定位置2A(即ちパス終点402)とを結ぶ直線の向きと一致する様に、複数のサブ曲線パスを生成する。言い換えれば、パス生成部140は、それぞれのサブ曲線パスの終点の向きを変更した上で、それぞれのサブ曲線パスに対応するベジェ曲線を生成し、それぞれのサブ曲線パスを更新する。
本例では、パス生成部140は、パス始点401の位置及び向きと第1の分割点404の位置とを変更せず、且つ、第1の分割点404の向きを第1の分割点404からパス終点402に至る直線410の向きに変更する。その上で、パス生成部140は、パス始点401から第1の分割点404に至るベジェ曲線を生成し、生成したベジェ曲線を第1のサブ曲線パス406とする。パス生成部140は、第1の分割点404の位置及び第2の分割点405の位置を変更せず、第1の分割点404の向きを上記変更後の向きとし、且つ、第2の分割点405の向きを第2の分割点405からパス終点402に至る直線411の向きに変更する。その上で、パス生成部140は、第1の分割点404から第2の分割点405に至るベジェ曲線を生成し、生成したベジェ曲線を第2のサブ曲線パス407とする(ステップS203)。パス生成部140は、更新後の第1のサブ曲線パス406及び第2のサブ曲線パス407と、第3のサブ曲線パス408とを含むパスを、移動装置1が追従対象2を追従するパスとして生成する。これにより、移動装置1は、追従対象2を注視しながら横移動(カニ歩き)に近い運動をすることになり、移動装置1が追従対象2をロストし難く、追従の連続性を向上できる。
さらに、パス生成部140は、パス上を移動する移動装置1の速度を決定する(ステップS204)。パス生成部140は、追従対象2の検出結果に基づき、移動装置1の速度を決定する。例えば、パス生成部140は、追従対象2をロストした時間の長さに応じて、移動装置1の速度を速くする。具体的には、パス生成部140は、追従対象2をロストした時間の長さが長い程、移動装置1が追従対象2を早く再発見するために、移動装置1の速度を速くする。なお、パス生成部140は、追従速度を加速する場合の速度として、機体が制御できる安全速度以下の速度を決定する。また、パス生成部140は、追従対象2までの距離等に応じて移動装置1の速度を決定すればよい。例えば、追従対象2までの距離が遠いほど、移動装置1の速度を速くすることで、追従対象2をロストし難い。
図9は、移動装置の向き及び移動方向が連動する場合の曲線パス生成方法のフローを示す。図10は、移動装置の向き及び移動方向が連動する場合の曲線パス生成方法を模式的に示す。
次に、移動装置1の向き及び移動方向が連動する場合の曲線パス生成方法(ステップS112)を説明する。パス生成部140は、上記と同様の方法で、パス始点401からパス終点402に至るベジェ曲線400を生成し(ステップS201)、複数のサブ曲線パス(パス始点401から第1の分割点404に至る第1のサブ曲線パス406と、第1の分割点404から第2の分割点405に至る第2のサブ曲線パス407と、第2の分割点405からパス終点402に至る第3のサブ曲線パス408)を生成する(ステップS202)。
移動装置1の向き及び移動方向が不連動である場合は、パス生成部140は、複数のサブ曲線パスのベジェ曲線を生成し、このベジェ曲線をつなげることでパスを更新した(ステップS203及びステップS204)。一方、移動装置1の向き及び移動方向が連動する場合は、パス生成部140は、ベジェ曲線400(ステップS201)をパスとして決定する。
パス生成部140は、それぞれのサブ曲線パスの終点の接線の向きを算出する。本例では、パス生成部140は、第1のサブ曲線パス406の終点である第1の分割点404の第1のサブ曲線パス406に対する接線409の向きと、第2のサブ曲線パス407の終点である第2の分割点405の第2のサブ曲線パス407に対する接線403の向きとを算出する。
パス生成部140は、それぞれのサブ曲線パスの終点の向きと終点の接線の向きとの差を算出する(ステップS205)。本例では、パス生成部140は、第1のサブ曲線パス406の終点である第1の分割点404の向きと、接線409の向きとの差を算出する。パス生成部140は、第2のサブ曲線パス407の終点である第2の分割点405の向きと、接線403の向きとを算出する。
パス生成部140は、それぞれのサブ曲線パスの終点の向きと終点の接線の向きとの差に基づき、複数のサブ曲線パスを移動する移動装置1の速度を決定する(ステップS206)。即ち、パス生成部140は、それぞれのサブ曲線パスの終点の向きに応じて、それぞれのサブ曲線パス上での移動装置1の速度を異ならせる。具体的には、パス生成部140は、それぞれのサブ曲線パスの終点の向きと終点の接線の向きとの差が大きい程、複数のサブ曲線パスを移動する移動装置1の速度が速くなるように、移動装置1の速度を決定する。追従対象2が角4の手前付近にいるとき、向きの差が大きくなる。これにより、角4に至るサブ曲線パスでの速度を早くすることが出来る。このため、移動装置1が早く角4付近に行って、曲がる運動をすることができるので、移動装置1が追従対象2を視野8範囲にとらえ続けることができ、追従対象2をロストし難く、追従の連続性を向上できる。
この様に、パス生成部140は、移動装置1の向き及び移動方向が連動する場合は、ベジェ曲線400をパスとして決定した上で、パスに含まれるサブ曲線パス406、407、408の速度を異ならせる。この場合も、パス生成部140は、追従対象2をロストした時間の長さが長い程、移動装置1が追従対象2を早く再発見するために、移動装置1の速度を速くする(ステップS207)。
追従制御部150は、パス生成部140が決定したパス上をパス生成部140が決定した速度で移動装置1が移動する様に、移動機構300を制御する(ステップS113)。これにより、移動装置1が追従対象2を視野8範囲にとらえ続けることができ、追従対象2をロストし難く、追従の連続性を向上できる。
4.結語
本実施形態によれば、移動装置1は、追従対象2の現在移動中の方向ではなく、追従対象2の向き(即ち、追従対象2がこれから移動しようとする方向)に基づき、移動装置1のパス(矢印C)を生成する。これにより移動装置1が追従対象2を視野範囲内にとらえ続けることで追従対象2をロストせずに追従し続け、また、移動装置1が仮に追従対象2をロストしても追従対象2を速やかに再発見することができる。
5.変形例
上記実施形態では、移動装置1は、情報処理装置100と、検出装置群200と、移動機構300と、を有する。これに代えて、移動装置1は検出装置群200及び移動機構300を有し、無線通信可能な外部の情報処理装置100が、移動装置1の検出装置群200の検出結果に基づき移動装置1のパスを生成し、生成したパスを移動装置1に供給してもよい。あるいは、移動装置1は移動機構300を有し、無線通信可能な外部の情報処理装置100が、外部の検出装置群200の検出結果に基づき移動装置1のパスを生成し、生成したパスを移動装置1に供給してもよい。
6.移動装置が自動運転車両である場合の構成例
移動装置1が自動運転車両である場合の構成例を説明する。
図11は、本技術が適用される移動装置制御システムの一例である車両制御システム11の構成例を示すブロック図である。
車両制御システム11は、車両1に設けられ、車両1の走行支援及び自動運転に関わる処理を行う。
車両制御システム11は、車両制御ECU(Electronic Control Unit)21、通信部22、地図情報蓄積部23、位置情報取得部24、外部認識センサ25、車内センサ26、車両センサ27、記憶部28、走行支援・自動運転制御部29、DMS(Driver Monitoring System)30、HMI(Human Machine Interface)31、及び、車両制御部32を備える。
車両制御ECU21、通信部22、地図情報蓄積部23、位置情報取得部24、外部認識センサ25、車内センサ26、車両センサ27、記憶部28、走行支援・自動運転制御部29、ドライバモニタリングシステム(DMS)30、ヒューマンマシーンインタフェース(HMI)31、及び、車両制御部32は、通信ネットワーク41を介して相互に通信可能に接続されている。通信ネットワーク41は、例えば、CAN(Controller Area Network)、LIN(Local Interconnect Network)、LAN(Local Area Network)、FlexRay(登録商標)、イーサネット(登録商標)といったディジタル双方向通信の規格に準拠した車載通信ネットワークやバス等により構成される。通信ネットワーク41は、伝送されるデータの種類によって使い分けられてもよい。例えば、車両制御に関するデータに対してCANが適用され、大容量データに対してイーサネットが適用されるようにしてもよい。なお、車両制御システム11の各部は、通信ネットワーク41を介さずに、例えば近距離無線通信(NFC(Near Field Communication))やBluetooth(登録商標)といった比較的近距離での通信を想定した無線通信を用いて直接的に接続される場合もある。
なお、以下、車両制御システム11の各部が、通信ネットワーク41を介して通信を行う場合、通信ネットワーク41の記載を省略するものとする。例えば、車両制御ECU21と通信部22が通信ネットワーク41を介して通信を行う場合、単に車両制御ECU21と通信部22とが通信を行うと記載する。
車両制御ECU21は、例えば、CPU(Central Processing Unit)、MPU(Micro Processing Unit)といった各種のプロセッサにより構成される。車両制御ECU21は、車両制御システム11全体又は一部の機能の制御を行う。
通信部22は、車内及び車外の様々な機器、他の車両、サーバ、基地局等と通信を行い、各種のデータの送受信を行う。このとき、通信部22は、複数の通信方式を用いて通信を行うことができる。
通信部22が実行可能な車外との通信について、概略的に説明する。通信部22は、例えば、5G(第5世代移動通信システム)、LTE(Long Term Evolution)、DSRC(Dedicated Short Range Communications)等の無線通信方式により、基地局又はアクセスポイントを介して、外部ネットワーク上に存在するサーバ(以下、外部のサーバと呼ぶ)等と通信を行う。通信部22が通信を行う外部ネットワークは、例えば、インターネット、クラウドネットワーク、又は、事業者固有のネットワーク等である。通信部22が外部ネットワークに対して行う通信方式は、所定以上の通信速度、且つ、所定以上の距離間でディジタル双方向通信が可能な無線通信方式であれば、特に限定されない。
また例えば、通信部22は、P2P(Peer To Peer)技術を用いて、自車の近傍に存在する端末と通信を行うことができる。自車の近傍に存在する端末は、例えば、歩行者や自転車等の比較的低速で移動する移動体が装着する端末、店舗等に位置が固定されて設置される端末、又は、MTC(Machine Type Communication)端末である。さらに、通信部22は、V2X通信を行うこともできる。V2X通信とは、例えば、他の車両との間の車車間(Vehicle to Vehicle)通信、路側器等との間の路車間(Vehicle to Infrastructure)通信、家との間(Vehicle to Home)の通信、及び、歩行者が所持する端末等との間の歩車間(Vehicle to Pedestrian)通信等の、自車と他との通信をいう。
通信部22は、例えば、車両制御システム11の動作を制御するソフトウエアを更新するためのプログラムを外部から受信することができる(Over The Air)。通信部22は、さらに、地図情報、交通情報、車両1の周囲の情報等を外部から受信することができる。また例えば、通信部22は、車両1に関する情報や、車両1の周囲の情報等を外部に送信することができる。通信部22が外部に送信する車両1に関する情報としては、例えば、車両1の状態を示すデータ、認識部73による認識結果等がある。さらに例えば、通信部22は、eコール等の車両緊急通報システムに対応した通信を行う。
例えば、通信部22は、電波ビーコン、光ビーコン、FM多重放送等の道路交通情報通信システム(VICS(Vehicle Information and Communication System)(登録商標))により送信される電磁波を受信する。
通信部22が実行可能な車内との通信について、概略的に説明する。通信部22は、例えば無線通信を用いて、車内の各機器と通信を行うことができる。通信部22は、例えば、無線LAN、Bluetooth、NFC、WUSB(Wireless USB)といった、無線通信により所定以上の通信速度でディジタル双方向通信が可能な通信方式により、車内の機器と無線通信を行うことができる。これに限らず、通信部22は、有線通信を用いて車内の各機器と通信を行うこともできる。例えば、通信部22は、図示しない接続端子に接続されるケーブルを介した有線通信により、車内の各機器と通信を行うことができる。通信部22は、例えば、USB(Universal Serial Bus)、HDMI(High-Definition Multimedia Interface)(登録商標)、MHL(Mobile High-definition Link)といった、有線通信により所定以上の通信速度でディジタル双方向通信が可能な通信方式により、車内の各機器と通信を行うことができる。
ここで、車内の機器とは、例えば、車内において通信ネットワーク41に接続されていない機器を指す。車内の機器としては、例えば、運転者等の搭乗者が所持するモバイル機器やウェアラブル機器、車内に持ち込まれ一時的に設置される情報機器等が想定される。
地図情報蓄積部23は、外部から取得した地図及び車両1で作成した地図の一方又は両方を蓄積する。例えば、地図情報蓄積部23は、3次元の高精度地図、高精度地図より精度が低く、広いエリアをカバーするグローバルマップ等を蓄積する。
高精度地図は、例えば、ダイナミックマップ、ポイントクラウドマップ、ベクターマップ等である。ダイナミックマップは、例えば、動的情報、準動的情報、準静的情報、静的情報の4層からなる地図であり、外部のサーバ等から車両1に提供される。ポイントクラウドマップは、ポイントクラウド(点群データ)により構成される地図である。ベクターマップは、例えば、車線や信号機の位置といった交通情報等をポイントクラウドマップに対応付け、ADAS(Advanced Driver Assistance System)やAD(Autonomous Driving)に適合させた地図である。
ポイントクラウドマップ及びベクターマップは、例えば、外部のサーバ等から提供されてもよいし、カメラ51、レーダ52、LiDAR53等によるセンシング結果に基づいて、後述するローカルマップとのマッチングを行うための地図として車両1で作成され、地図情報蓄積部23に蓄積されてもよい。また、外部のサーバ等から高精度地図が提供される場合、通信容量を削減するため、車両1がこれから走行する計画経路に関する、例えば数百メートル四方の地図データが外部のサーバ等から取得される。
位置情報取得部24は、GNSS(Global Navigation Satellite System)衛星からGNSS信号を受信し、車両1の位置情報を取得する。取得した位置情報は、走行支援・自動運転制御部29に供給される。なお、位置情報取得部24は、GNSS信号を用いた方式に限定されず、例えば、ビーコンを用いて位置情報を取得してもよい。
外部認識センサ25は、車両1の外部の状況の認識に用いられる各種のセンサを備え、各センサからのセンサデータを車両制御システム11の各部に供給する。外部認識センサ25が備えるセンサの種類や数は任意である。
例えば、外部認識センサ25は、カメラ51、レーダ52、LiDAR(Light Detection and Ranging、Laser Imaging Detection and Ranging)53、及び、超音波センサ54を備える。これに限らず、外部認識センサ25は、カメラ51、レーダ52、LiDAR53、及び、超音波センサ54のうち1種類以上のセンサを備える構成でもよい。カメラ51、レーダ52、LiDAR53、及び、超音波センサ54の数は、現実的に車両1に設置可能な数であれば特に限定されない。また、外部認識センサ25が備えるセンサの種類は、この例に限定されず、外部認識センサ25は、他の種類のセンサを備えてもよい。外部認識センサ25が備える各センサのセンシング領域の例は、後述する。
なお、カメラ51の撮影方式は、特に限定されない。例えば、測距が可能な撮影方式であるToF(Time Of Flight)カメラ、ステレオカメラ、単眼カメラ、赤外線カメラといった各種の撮影方式のカメラを、必要に応じてカメラ51に適用することができる。これに限らず、カメラ51は、測距に関わらずに、単に撮影画像を取得するためのものであってもよい。
また、例えば、外部認識センサ25は、車両1に対する環境を検出するための環境センサを備えることができる。環境センサは、天候、気象、明るさ等の環境を検出するためのセンサであって、例えば、雨滴センサ、霧センサ、日照センサ、雪センサ、照度センサ等の各種センサを含むことができる。
さらに、例えば、外部認識センサ25は、車両1の周囲の音や音源の位置の検出等に用いられるマイクロフォンを備える。
車内センサ26は、車内の情報を検出するための各種のセンサを備え、各センサからのセンサデータを車両制御システム11の各部に供給する。車内センサ26が備える各種センサの種類や数は、現実的に車両1に設置可能な種類や数であれば特に限定されない。
例えば、車内センサ26は、カメラ、レーダ、着座センサ、ステアリングホイールセンサ、マイクロフォン、生体センサのうち1種類以上のセンサを備えることができる。車内センサ26が備えるカメラとしては、例えば、ToFカメラ、ステレオカメラ、単眼カメラ、赤外線カメラといった、測距可能な各種の撮影方式のカメラを用いることができる。これに限らず、車内センサ26が備えるカメラは、測距に関わらずに、単に撮影画像を取得するためのものであってもよい。車内センサ26が備える生体センサは、例えば、シートやステアリングホイール等に設けられ、運転者等の搭乗者の各種の生体情報を検出する。
車両センサ27は、車両1の状態を検出するための各種のセンサを備え、各センサからのセンサデータを車両制御システム11の各部に供給する。車両センサ27が備える各種センサの種類や数は、現実的に車両1に設置可能な種類や数であれば特に限定されない。
例えば、車両センサ27は、速度センサ、加速度センサ、角速度センサ(ジャイロセンサ)、及び、それらを統合した慣性計測装置(IMU(Inertial Measurement Unit))を備える。例えば、車両センサ27は、ステアリングホイールの操舵角を検出する操舵角センサ、ヨーレートセンサ、アクセルペダルの操作量を検出するアクセルセンサ、及び、ブレーキペダルの操作量を検出するブレーキセンサを備える。例えば、車両センサ27は、エンジンやモータの回転数を検出する回転センサ、タイヤの空気圧を検出する空気圧センサ、タイヤのスリップ率を検出するスリップ率センサ、及び、車輪の回転速度を検出する車輪速センサを備える。例えば、車両センサ27は、バッテリの残量及び温度を検出するバッテリセンサ、並びに、外部からの衝撃を検出する衝撃センサを備える。
記憶部28は、不揮発性の記憶媒体及び揮発性の記憶媒体のうち少なくとも一方を含み、データやプログラムを記憶する。記憶部28は、例えばEEPROM(Electrically Erasable Programmable Read Only Memory)及びRAM(Random Access Memory)として用いられ、記憶媒体としては、HDD(Hard Disc Drive)といった磁気記憶デバイス、半導体記憶デバイス、光記憶デバイス、及び、光磁気記憶デバイスを適用することができる。記憶部28は、車両制御システム11の各部が用いる各種プログラムやデータを記憶する。例えば、記憶部28は、EDR(Event Data Recorder)やDSSAD(Data Storage System for Automated Driving)を備え、事故等のイベントの前後の車両1の情報や車内センサ26によって取得された情報を記憶する。
走行支援・自動運転制御部29は、車両1の走行支援及び自動運転の制御を行う。例えば、走行支援・自動運転制御部29は、分析部61、行動計画部62、及び、動作制御部63を備える。
分析部61は、車両1及び周囲の状況の分析処理を行う。分析部61は、自己位置推定部71、センサフュージョン部72、及び、認識部73を備える。
自己位置推定部71は、外部認識センサ25からのセンサデータ、及び、地図情報蓄積部23に蓄積されている高精度地図に基づいて、車両1の自己位置を推定する。例えば、自己位置推定部71は、外部認識センサ25からのセンサデータに基づいてローカルマップを生成し、ローカルマップと高精度地図とのマッチングを行うことにより、車両1の自己位置を推定する。車両1の位置は、例えば、後輪対車軸の中心が基準とされる。
ローカルマップは、例えば、SLAM(Simultaneous Localization and Mapping)等の技術を用いて作成される3次元の高精度地図、占有格子地図(Occupancy Grid Map)等である。3次元の高精度地図は、例えば、上述したポイントクラウドマップ等である。占有格子地図は、車両1の周囲の3次元又は2次元の空間を所定の大きさのグリッド(格子)に分割し、グリッド単位で物体の占有状態を示す地図である。物体の占有状態は、例えば、物体の有無や存在確率により示される。ローカルマップは、例えば、認識部73による車両1の外部の状況の検出処理及び認識処理にも用いられる。
なお、自己位置推定部71は、位置情報取得部24により取得される位置情報、及び、車両センサ27からのセンサデータに基づいて、車両1の自己位置を推定してもよい。
センサフュージョン部72は、複数の異なる種類のセンサデータ(例えば、カメラ51から供給される画像データ、及び、レーダ52から供給されるセンサデータ)を組み合わせて、新たな情報を得るセンサフュージョン処理を行う。異なる種類のセンサデータを組合せる方法としては、統合、融合、連合等がある。
認識部73は、車両1の外部の状況の検出を行う検出処理、及び、車両1の外部の状況の認識を行う認識処理を実行する。
例えば、認識部73は、外部認識センサ25からの情報、自己位置推定部71からの情報、センサフュージョン部72からの情報等に基づいて、車両1の外部の状況の検出処理及び認識処理を行う。
具体的には、例えば、認識部73は、車両1の周囲の物体の検出処理及び認識処理等を行う。物体の検出処理とは、例えば、物体の有無、大きさ、形、位置、動き等を検出する処理である。物体の認識処理とは、例えば、物体の種類等の属性を認識したり、特定の物体を識別したりする処理である。ただし、検出処理と認識処理とは、必ずしも明確に分かれるものではなく、重複する場合がある。
例えば、認識部73は、レーダ52又はLiDAR53等によるセンサデータに基づくポイントクラウドを点群の塊毎に分類するクラスタリングを行うことにより、車両1の周囲の物体を検出する。これにより、車両1の周囲の物体の有無、大きさ、形状、位置が検出される。
例えば、認識部73は、クラスタリングにより分類された点群の塊の動きを追従するトラッキングを行うことにより、車両1の周囲の物体の動きを検出する。これにより、車両1の周囲の物体の速度及び進行方向(移動ベクトル)が検出される。
例えば、認識部73は、カメラ51から供給される画像データに基づいて、車両、人、自転車、障害物、構造物、道路、信号機、交通標識、道路標示等を検出又は認識する。また、認識部73は、セマンティックセグメンテーション等の認識処理を行うことにより、車両1の周囲の物体の種類を認識してもよい。
例えば、認識部73は、地図情報蓄積部23に蓄積されている地図、自己位置推定部71による自己位置の推定結果、及び、認識部73による車両1の周囲の物体の認識結果に基づいて、車両1の周囲の交通ルールの認識処理を行うことができる。認識部73は、この処理により、信号機の位置及び状態、交通標識及び道路標示の内容、交通規制の内容、並びに、走行可能な車線等を認識することができる。
例えば、認識部73は、車両1の周囲の環境の認識処理を行うことができる。認識部73が認識対象とする周囲の環境としては、天候、気温、湿度、明るさ、及び、路面の状態等が想定される。
行動計画部62は、車両1の行動計画を作成する。例えば、行動計画部62は、経路計画、経路追従の処理を行うことにより、行動計画を作成する。
なお、経路計画(Global path planning)とは、スタートからゴールまでの大まかな経路を計画する処理である。この経路計画には、軌道計画と言われ、計画した経路において、車両1の運動特性を考慮して、車両1の近傍で安全かつ滑らかに進行することが可能な軌道生成(Local path planning)を行う処理も含まれる。
経路追従とは、経路計画により計画された経路を計画された時間内で安全かつ正確に走行するための動作を計画する処理である。行動計画部62は、例えば、この経路追従の処理の結果に基づき、車両1の目標速度と目標角速度を計算することができる。
動作制御部63は、行動計画部62により作成された行動計画を実現するために、車両1の動作を制御する。
例えば、動作制御部63は、後述する車両制御部32に含まれる、ステアリング制御部81、ブレーキ制御部82、及び、駆動制御部83を制御して、軌道計画により計算された軌道を車両1が進行するように、加減速制御及び方向制御を行う。例えば、動作制御部63は、衝突回避又は衝撃緩和、追従走行、車速維持走行、自車の衝突警告、自車のレーン逸脱警告等のADASの機能実現を目的とした協調制御を行う。例えば、動作制御部63は、運転者の操作によらずに自律的に走行する自動運転等を目的とした協調制御を行う。
DMS30は、車内センサ26からのセンサデータ、及び、後述するHMI31に入力される入力データ等に基づいて、運転者の認証処理、及び、運転者の状態の認識処理等を行う。認識対象となる運転者の状態としては、例えば、体調、覚醒度、集中度、疲労度、視線方向、酩酊度、運転操作、姿勢等が想定される。
なお、DMS30が、運転者以外の搭乗者の認証処理、及び、当該搭乗者の状態の認識処理を行うようにしてもよい。また、例えば、DMS30が、車内センサ26からのセンサデータに基づいて、車内の状況の認識処理を行うようにしてもよい。認識対象となる車内の状況としては、例えば、気温、湿度、明るさ、臭い等が想定される。
HMI31は、各種のデータや指示等の入力と、各種のデータの運転者等への提示を行う。
HMI31によるデータの入力について、概略的に説明する。HMI31は、人がデータを入力するための入力デバイスを備える。HMI31は、入力デバイスにより入力されたデータや指示等に基づいて入力信号を生成し、車両制御システム11の各部に供給する。HMI31は、入力デバイスとして、例えばタッチパネル、ボタン、スイッチ、及び、レバーといった操作子を備える。これに限らず、HMI31は、音声やジェスチャ等により手動操作以外の方法で情報を入力可能な入力デバイスをさらに備えてもよい。さらに、HMI31は、例えば、赤外線又は電波を利用したリモートコントロール装置や、車両制御システム11の操作に対応したモバイル機器又はウェアラブル機器等の外部接続機器を入力デバイスとして用いてもよい。
HMI31によるデータの提示について、概略的に説明する。HMI31は、搭乗者又は車外に対する視覚情報、聴覚情報、及び、触覚情報の生成を行う。また、HMI31は、生成された各情報の出力、出力内容、出力タイミング及び出力方法等を制御する出力制御を行う。HMI31は、視覚情報として、例えば、操作画面、車両1の状態表示、警告表示、車両1の周囲の状況を示すモニタ画像等の画像や光により示される情報を生成及び出力する。また、HMI31は、聴覚情報として、例えば、音声ガイダンス、警告音、警告メッセージ等の音により示される情報を生成及び出力する。さらに、HMI31は、触覚情報として、例えば、力、振動、動き等により搭乗者の触覚に与えられる情報を生成及び出力する。
HMI31が視覚情報を出力する出力デバイスとしては、例えば、自身が画像を表示することで視覚情報を提示する表示装置や、画像を投影することで視覚情報を提示するプロジェクタ装置を適用することができる。なお、表示装置は、通常のディスプレイを有する表示装置以外にも、例えば、ヘッドアップディスプレイ、透過型ディスプレイ、AR(Augmented Reality)機能を備えるウエアラブルデバイスといった、搭乗者の視界内に視覚情報を表示する装置であってもよい。また、HMI31は、車両1に設けられるナビゲーション装置、インストルメントパネル、CMS(Camera Monitoring System)、電子ミラー、ランプ等が有する表示デバイスを、視覚情報を出力する出力デバイスとして用いることも可能である。
HMI31が聴覚情報を出力する出力デバイスとしては、例えば、オーディオスピーカ、ヘッドホン、イヤホンを適用することができる。
HMI31が触覚情報を出力する出力デバイスとしては、例えば、ハプティクス技術を用いたハプティクス素子を適用することができる。ハプティクス素子は、例えば、ステアリングホイール、シートといった、車両1の搭乗者が接触する部分に設けられる。
車両制御部32は、車両1の各部の制御を行う。車両制御部32は、ステアリング制御部81、ブレーキ制御部82、駆動制御部83、ボディ系制御部84、ライト制御部85、及び、ホーン制御部86を備える。
ステアリング制御部81は、車両1のステアリングシステムの状態の検出及び制御等を行う。ステアリングシステムは、例えば、ステアリングホイール等を備えるステアリング機構、電動パワーステアリング等を備える。ステアリング制御部81は、例えば、ステアリングシステムの制御を行うステアリングECU、ステアリングシステムの駆動を行うアクチュエータ等を備える。
ブレーキ制御部82は、車両1のブレーキシステムの状態の検出及び制御等を行う。ブレーキシステムは、例えば、ブレーキペダル等を含むブレーキ機構、ABS(Antilock Brake System)、回生ブレーキ機構等を備える。ブレーキ制御部82は、例えば、ブレーキシステムの制御を行うブレーキECU、ブレーキシステムの駆動を行うアクチュエータ等を備える。
駆動制御部83は、車両1の駆動システムの状態の検出及び制御等を行う。駆動システムは、例えば、アクセルペダル、内燃機関又は駆動用モータ等の駆動力を発生させるための駆動力発生装置、駆動力を車輪に伝達するための駆動力伝達機構等を備える。駆動制御部83は、例えば、駆動システムの制御を行う駆動ECU、駆動システムの駆動を行うアクチュエータ等を備える。
ボディ系制御部84は、車両1のボディ系システムの状態の検出及び制御等を行う。ボディ系システムは、例えば、キーレスエントリシステム、スマートキーシステム、パワーウインドウ装置、パワーシート、空調装置、エアバッグ、シートベルト、シフトレバー等を備える。ボディ系制御部84は、例えば、ボディ系システムの制御を行うボディ系ECU、ボディ系システムの駆動を行うアクチュエータ等を備える。
ライト制御部85は、車両1の各種のライトの状態の検出及び制御等を行う。制御対象となるライトとしては、例えば、ヘッドライト、バックライト、フォグライト、ターンシグナル、ブレーキライト、プロジェクション、バンパーの表示等が想定される。ライト制御部85は、ライトの制御を行うライトECU、ライトの駆動を行うアクチュエータ等を備える。
ホーン制御部86は、車両1のカーホーンの状態の検出及び制御等を行う。ホーン制御部86は、例えば、カーホーンの制御を行うホーンECU、カーホーンの駆動を行うアクチュエータ等を備える。
図12は、前図の外部認識センサ25のカメラ51、レーダ52、LiDAR53、及び、超音波センサ54等によるセンシング領域の例を示す図である。なお、同図において、車両1を上面から見た様子が模式的に示され、左端側が車両1の前端(フロント)側であり、右端側が車両1の後端(リア)側となっている。
センシング領域101F及びセンシング領域101Bは、超音波センサ54のセンシング領域の例を示している。センシング領域101Fは、複数の超音波センサ54によって車両1の前端周辺をカバーしている。センシング領域101Bは、複数の超音波センサ54によって車両1の後端周辺をカバーしている。
センシング領域101F及びセンシング領域101Bにおけるセンシング結果は、例えば、車両1の駐車支援等に用いられる。
センシング領域102F乃至センシング領域102Bは、短距離又は中距離用のレーダ52のセンシング領域の例を示している。センシング領域102Fは、車両1の前方において、センシング領域101Fより遠い位置までカバーしている。センシング領域102Bは、車両1の後方において、センシング領域101Bより遠い位置までカバーしている。センシング領域102Lは、車両1の左側面の後方の周辺をカバーしている。センシング領域102Rは、車両1の右側面の後方の周辺をカバーしている。
センシング領域102Fにおけるセンシング結果は、例えば、車両1の前方に存在する車両や歩行者等の検出等に用いられる。センシング領域102Bにおけるセンシング結果は、例えば、車両1の後方の衝突防止機能等に用いられる。センシング領域102L及びセンシング領域102Rにおけるセンシング結果は、例えば、車両1の側方の死角における物体の検出等に用いられる。
センシング領域103F乃至センシング領域103Bは、カメラ51によるセンシング領域の例を示している。センシング領域103Fは、車両1の前方において、センシング領域102Fより遠い位置までカバーしている。センシング領域103Bは、車両1の後方において、センシング領域102Bより遠い位置までカバーしている。センシング領域103Lは、車両1の左側面の周辺をカバーしている。センシング領域103Rは、車両1の右側面の周辺をカバーしている。
センシング領域103Fにおけるセンシング結果は、例えば、信号機や交通標識の認識、車線逸脱防止支援システム、自動ヘッドライト制御システムに用いることができる。センシング領域103Bにおけるセンシング結果は、例えば、駐車支援、及び、サラウンドビューシステムに用いることができる。センシング領域103L及びセンシング領域103Rにおけるセンシング結果は、例えば、サラウンドビューシステムに用いることができる。
センシング領域104は、LiDAR53のセンシング領域の例を示している。センシング領域104は、車両1の前方において、センシング領域103Fより遠い位置までカバーしている。一方、センシング領域104は、センシング領域103Fより左右方向の範囲が狭くなっている。
センシング領域104におけるセンシング結果は、例えば、周辺車両等の物体検出に用いられる。
センシング領域105は、長距離用のレーダ52のセンシング領域の例を示している。
センシング領域105は、車両1の前方において、センシング領域104より遠い位置までカバーしている。一方、センシング領域105は、センシング領域104より左右方向の範囲が狭くなっている。
センシング領域105は、車両1の前方において、センシング領域104より遠い位置までカバーしている。一方、センシング領域105は、センシング領域104より左右方向の範囲が狭くなっている。
センシング領域105におけるセンシング結果は、例えば、ACC(Adaptive Cruise Control)、緊急ブレーキ、衝突回避等に用いられる。
なお、外部認識センサ25が含むカメラ51、レーダ52、LiDAR53、及び、超音波センサ54の各センサのセンシング領域は、図2以外に各種の構成をとってもよい。具体的には、超音波センサ54が車両1の側方もセンシングするようにしてもよいし、LiDAR53が車両1の後方をセンシングするようにしてもよい。また、各センサの設置位置は、上述した各例に限定されない。また、各センサの数は、1つでもよいし、複数であってもよい。
本開示は、以下の各構成を有してもよい。
(1)
追従対象の向きを判断する向き判断部と、
移動装置が前記追従対象を追従するパスの終点であるパス終点の向きを前記追従対象の向きに基づき決定して前記パスを生成するパス生成部と、
を具備する情報処理装置。
(2)
上記(1)に記載の情報処理装置であって、
前記パス生成部は、前記パス終点の向きが前記追従対象の向きと一致する様に前記パス終点の向きを決定する
情報処理装置。
(3)
上記(1)又は(2)に記載の情報処理装置であって、
前記パス生成部は、前記移動装置の移動方向と前記追従対象の向きとの差が閾値より大きい場合、前記パスとして曲線のパスを生成する
情報処理装置。
(4)
上記(1)乃至(3)の何れか一項に記載の情報処理装置であって、
前記追従対象の推定位置を判断する位置推定部をさらに具備し、
前記パス生成部は、前記推定位置に基づき前記パス終点の位置を決定する
情報処理装置。
(5)
上記(4)に記載の情報処理装置であって、
前記位置推定部は、前記移動装置が撮影した画像から前記追従対象を検出し、
前記パス生成部は、前記追従対象の検出結果に基づき、前記移動装置の速度を決定する
情報処理装置。
(6)
上記(5)に記載の情報処理装置であって、
前記パス生成部は、前記追従対象をロストした時間の長さに応じて、前記移動装置の速度を速くする
情報処理装置。
(7)
上記(1)乃至(6)の何れか一項に記載の情報処理装置であって、
前記パス生成部は、
前記パス終点に至るベジェ曲線を生成し、
前記ベジェ曲線を複数の分割点で分割し、
それぞれ隣り合う2個の分割点からなる複数のサブ曲線パスを生成し、
前記複数のサブ曲線パスを含むパスを、前記パスとして生成する
情報処理装置。
(8)
上記(7)に記載の情報処理装置であって、
前記パス生成部は、前記移動装置の向き及び移動方向が不連動である場合、それぞれのサブ曲線パスの終点の向きが、前記終点と前記推定位置とを結ぶ直線の向きと一致する様に、前記複数のサブ曲線パスを生成する
情報処理装置。
(9)
上記(6)又は(7)に記載の情報処理装置であって、
前記パス生成部は、前記移動装置の向き及び移動方向が連動する場合、前記ベジェ曲線を前記パスとして決定する
情報処理装置。
(10)
上記(9)に記載の情報処理装置であって、
前記パス生成部は、それぞれのサブ曲線パスの終点の向きと前記終点の接線の向きとの差に基づき、前記複数のサブ曲線パスを移動する前記移動装置の速度を決定する
情報処理装置。
(11)
上記(10)に記載の情報処理装置であって、
前記パス生成部は、それぞれのサブ曲線パスの終点の向きと前記終点の接線の向きとの差が大きい程、前記複数のサブ曲線パスを移動する前記移動装置の速度が速くなるように、前記移動装置の速度を決定する
情報処理装置。
(12)
上記(1)乃至(11)の何れか一項に記載の情報処理装置であって、
前記向き判断部は、前記移動装置が撮影した画像に基づき前記追従対象の向きを判断する
情報処理装置。
(13)
追従対象の向きを判断し、
移動装置が前記追従対象を追従するパスの終点であるパス終点の向きを前記追従対象の向きに基づき決定して前記パスを生成する、
情報処理方法。
(14)
情報処理装置を、
追従対象の向きを判断する向き判断部と、
移動装置が前記追従対象を追従するパスの終点であるパス終点の向きを前記追従対象の向きに基づき決定して前記パスを生成するパス生成部
として動作させる情報処理プログラム。
(15)
移動機構と、
追従対象の向きを判断する向き判断部と、
前記追従対象を追従するパスの終点であるパス終点の向きを前記追従対象の向きに基づき決定して前記パスを生成するパス生成部と、
前記パス上を移動する様に前記移動機構を制御する追従制御部と、
を具備する移動装置。
(16)
情報処理装置を、
追従対象の向きを判断する向き判断部と、
移動装置が前記追従対象を追従するパスの終点であるパス終点の向きを前記追従対象の向きに基づき決定して前記パスを生成するパス生成部
として動作させる情報処理プログラム
を記録した非一過性のコンピュータ読み取り可能な記録媒体。
追従対象の向きを判断する向き判断部と、
移動装置が前記追従対象を追従するパスの終点であるパス終点の向きを前記追従対象の向きに基づき決定して前記パスを生成するパス生成部と、
を具備する情報処理装置。
(2)
上記(1)に記載の情報処理装置であって、
前記パス生成部は、前記パス終点の向きが前記追従対象の向きと一致する様に前記パス終点の向きを決定する
情報処理装置。
(3)
上記(1)又は(2)に記載の情報処理装置であって、
前記パス生成部は、前記移動装置の移動方向と前記追従対象の向きとの差が閾値より大きい場合、前記パスとして曲線のパスを生成する
情報処理装置。
(4)
上記(1)乃至(3)の何れか一項に記載の情報処理装置であって、
前記追従対象の推定位置を判断する位置推定部をさらに具備し、
前記パス生成部は、前記推定位置に基づき前記パス終点の位置を決定する
情報処理装置。
(5)
上記(4)に記載の情報処理装置であって、
前記位置推定部は、前記移動装置が撮影した画像から前記追従対象を検出し、
前記パス生成部は、前記追従対象の検出結果に基づき、前記移動装置の速度を決定する
情報処理装置。
(6)
上記(5)に記載の情報処理装置であって、
前記パス生成部は、前記追従対象をロストした時間の長さに応じて、前記移動装置の速度を速くする
情報処理装置。
(7)
上記(1)乃至(6)の何れか一項に記載の情報処理装置であって、
前記パス生成部は、
前記パス終点に至るベジェ曲線を生成し、
前記ベジェ曲線を複数の分割点で分割し、
それぞれ隣り合う2個の分割点からなる複数のサブ曲線パスを生成し、
前記複数のサブ曲線パスを含むパスを、前記パスとして生成する
情報処理装置。
(8)
上記(7)に記載の情報処理装置であって、
前記パス生成部は、前記移動装置の向き及び移動方向が不連動である場合、それぞれのサブ曲線パスの終点の向きが、前記終点と前記推定位置とを結ぶ直線の向きと一致する様に、前記複数のサブ曲線パスを生成する
情報処理装置。
(9)
上記(6)又は(7)に記載の情報処理装置であって、
前記パス生成部は、前記移動装置の向き及び移動方向が連動する場合、前記ベジェ曲線を前記パスとして決定する
情報処理装置。
(10)
上記(9)に記載の情報処理装置であって、
前記パス生成部は、それぞれのサブ曲線パスの終点の向きと前記終点の接線の向きとの差に基づき、前記複数のサブ曲線パスを移動する前記移動装置の速度を決定する
情報処理装置。
(11)
上記(10)に記載の情報処理装置であって、
前記パス生成部は、それぞれのサブ曲線パスの終点の向きと前記終点の接線の向きとの差が大きい程、前記複数のサブ曲線パスを移動する前記移動装置の速度が速くなるように、前記移動装置の速度を決定する
情報処理装置。
(12)
上記(1)乃至(11)の何れか一項に記載の情報処理装置であって、
前記向き判断部は、前記移動装置が撮影した画像に基づき前記追従対象の向きを判断する
情報処理装置。
(13)
追従対象の向きを判断し、
移動装置が前記追従対象を追従するパスの終点であるパス終点の向きを前記追従対象の向きに基づき決定して前記パスを生成する、
情報処理方法。
(14)
情報処理装置を、
追従対象の向きを判断する向き判断部と、
移動装置が前記追従対象を追従するパスの終点であるパス終点の向きを前記追従対象の向きに基づき決定して前記パスを生成するパス生成部
として動作させる情報処理プログラム。
(15)
移動機構と、
追従対象の向きを判断する向き判断部と、
前記追従対象を追従するパスの終点であるパス終点の向きを前記追従対象の向きに基づき決定して前記パスを生成するパス生成部と、
前記パス上を移動する様に前記移動機構を制御する追従制御部と、
を具備する移動装置。
(16)
情報処理装置を、
追従対象の向きを判断する向き判断部と、
移動装置が前記追従対象を追従するパスの終点であるパス終点の向きを前記追従対象の向きに基づき決定して前記パスを生成するパス生成部
として動作させる情報処理プログラム
を記録した非一過性のコンピュータ読み取り可能な記録媒体。
本技術の各実施形態及び各変形例について上に説明したが、本技術は上述の実施形態にのみ限定されるものではなく、本技術の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。
1 移動装置
100 情報処理装置
110 自己位置推定部
120 位置推定部
121 追従対象認識部
122 空間位置推定部
122A 現在位置算出部
122B 運動モデル推定部
130 向き判断部
140 パス生成部
150 追従制御部
2 追従対象
200 検出装置群
210 撮像装置
220 測距装置
230 内界センサ
300 移動機構
100 情報処理装置
110 自己位置推定部
120 位置推定部
121 追従対象認識部
122 空間位置推定部
122A 現在位置算出部
122B 運動モデル推定部
130 向き判断部
140 パス生成部
150 追従制御部
2 追従対象
200 検出装置群
210 撮像装置
220 測距装置
230 内界センサ
300 移動機構
Claims (15)
- 追従対象の向きを判断する向き判断部と、
移動装置が前記追従対象を追従するパスの終点であるパス終点の向きを前記追従対象の向きに基づき決定して前記パスを生成するパス生成部と、
を具備する情報処理装置。 - 請求項1に記載の情報処理装置であって、
前記パス生成部は、前記パス終点の向きが前記追従対象の向きと一致する様に前記パス終点の向きを決定する
情報処理装置。 - 請求項1に記載の情報処理装置であって、
前記パス生成部は、前記移動装置の移動方向と前記追従対象の向きとの差が閾値より大きい場合、前記パスとして曲線のパスを生成する
情報処理装置。 - 請求項1に記載の情報処理装置であって、
前記追従対象の推定位置を判断する位置推定部をさらに具備し、
前記パス生成部は、前記推定位置に基づき前記パス終点の位置を決定する
情報処理装置。 - 請求項4に記載の情報処理装置であって、
前記位置推定部は、前記移動装置が撮影した画像から前記追従対象を検出し、
前記パス生成部は、前記追従対象の検出結果に基づき、前記移動装置の速度を決定する
情報処理装置。 - 請求項5に記載の情報処理装置であって、
前記パス生成部は、前記追従対象をロストした時間の長さに応じて、前記移動装置の速度を速くする
情報処理装置。 - 請求項1に記載の情報処理装置であって、
前記パス生成部は、
前記パス終点に至るベジェ曲線を生成し、
前記ベジェ曲線を複数の分割点で分割し、
それぞれ隣り合う2個の分割点からなる複数のサブ曲線パスを生成し、
前記複数のサブ曲線パスを含むパスを、前記パスとして生成する
情報処理装置。 - 請求項7に記載の情報処理装置であって、
前記パス生成部は、前記移動装置の向き及び移動方向が不連動である場合、それぞれのサブ曲線パスの終点の向きが、前記終点と前記推定位置とを結ぶ直線の向きと一致する様に、前記複数のサブ曲線パスを生成する
情報処理装置。 - 請求項6に記載の情報処理装置であって、
前記パス生成部は、前記移動装置の向き及び移動方向が連動する場合、前記ベジェ曲線を前記パスとして決定する
情報処理装置。 - 請求項9に記載の情報処理装置であって、
前記パス生成部は、それぞれのサブ曲線パスの終点の向きと前記終点の接線の向きとの差に基づき、前記複数のサブ曲線パスを移動する前記移動装置の速度を決定する
情報処理装置。 - 請求項10に記載の情報処理装置であって、
前記パス生成部は、それぞれのサブ曲線パスの終点の向きと前記終点の接線の向きとの差が大きい程、前記複数のサブ曲線パスを移動する前記移動装置の速度が速くなるように、前記移動装置の速度を決定する
情報処理装置。 - 請求項1に記載の情報処理装置であって、
前記向き判断部は、前記移動装置が撮影した画像に基づき前記追従対象の向きを判断する
情報処理装置。 - 追従対象の向きを判断し、
移動装置が前記追従対象を追従するパスの終点であるパス終点の向きを前記追従対象の向きに基づき決定して前記パスを生成する、
情報処理方法。 - 情報処理装置を、
追従対象の向きを判断する向き判断部と、
移動装置が前記追従対象を追従するパスの終点であるパス終点の向きを前記追従対象の向きに基づき決定して前記パスを生成するパス生成部
として動作させる情報処理プログラム。 - 移動機構と、
追従対象の向きを判断する向き判断部と、
前記追従対象を追従するパスの終点であるパス終点の向きを前記追従対象の向きに基づき決定して前記パスを生成するパス生成部と、
前記パス上を移動する様に前記移動機構を制御する追従制御部と、
を具備する移動装置。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202280088118.7A CN118525258A (zh) | 2022-02-08 | 2022-12-19 | 信息处理装置、信息处理方法、信息处理程序和移动装置 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022-017816 | 2022-02-08 | ||
JP2022017816 | 2022-02-08 |
Publications (2)
Publication Number | Publication Date |
---|---|
WO2023153083A1 true WO2023153083A1 (ja) | 2023-08-17 |
WO2023153083A9 WO2023153083A9 (ja) | 2024-06-27 |
Family
ID=87564206
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/046624 WO2023153083A1 (ja) | 2022-02-08 | 2022-12-19 | 情報処理装置、情報処理方法、情報処理プログラム及び移動装置 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN118525258A (ja) |
WO (1) | WO2023153083A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117687047A (zh) * | 2024-01-31 | 2024-03-12 | 中寰星网数字科技(大连)有限公司 | 基于边缘计算的人工智能gnss高精度位移处理方法 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20180181137A1 (en) * | 2016-12-23 | 2018-06-28 | Korea Institute Of Science And Technology | Moving and searching method of mobile robot for following human |
WO2019069626A1 (ja) * | 2017-10-06 | 2019-04-11 | 株式会社豊田自動織機 | 移動車両 |
WO2021246170A1 (ja) * | 2020-06-03 | 2021-12-09 | ソニーグループ株式会社 | 情報処理装置、情報処理システム、および方法、並びにプログラム |
WO2021246169A1 (ja) * | 2020-06-01 | 2021-12-09 | ソニーグループ株式会社 | 情報処理装置、情報処理システム、および方法、並びにプログラム |
-
2022
- 2022-12-19 CN CN202280088118.7A patent/CN118525258A/zh active Pending
- 2022-12-19 WO PCT/JP2022/046624 patent/WO2023153083A1/ja active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20180181137A1 (en) * | 2016-12-23 | 2018-06-28 | Korea Institute Of Science And Technology | Moving and searching method of mobile robot for following human |
WO2019069626A1 (ja) * | 2017-10-06 | 2019-04-11 | 株式会社豊田自動織機 | 移動車両 |
WO2021246169A1 (ja) * | 2020-06-01 | 2021-12-09 | ソニーグループ株式会社 | 情報処理装置、情報処理システム、および方法、並びにプログラム |
WO2021246170A1 (ja) * | 2020-06-03 | 2021-12-09 | ソニーグループ株式会社 | 情報処理装置、情報処理システム、および方法、並びにプログラム |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117687047A (zh) * | 2024-01-31 | 2024-03-12 | 中寰星网数字科技(大连)有限公司 | 基于边缘计算的人工智能gnss高精度位移处理方法 |
Also Published As
Publication number | Publication date |
---|---|
WO2023153083A9 (ja) | 2024-06-27 |
CN118525258A (zh) | 2024-08-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US20200409387A1 (en) | Image processing apparatus, image processing method, and program | |
WO2021241189A1 (ja) | 情報処理装置、情報処理方法、およびプログラム | |
US20230289980A1 (en) | Learning model generation method, information processing device, and information processing system | |
US20220383749A1 (en) | Signal processing device, signal processing method, program, and mobile device | |
US20240054793A1 (en) | Information processing device, information processing method, and program | |
WO2022158185A1 (ja) | 情報処理装置、情報処理方法、プログラムおよび移動装置 | |
WO2023153083A1 (ja) | 情報処理装置、情報処理方法、情報処理プログラム及び移動装置 | |
US20230206596A1 (en) | Information processing device, information processing method, and program | |
US20230245423A1 (en) | Information processing apparatus, information processing method, and program | |
WO2024009829A1 (ja) | 情報処理装置、情報処理方法および車両制御システム | |
WO2023063145A1 (ja) | 情報処理装置、情報処理方法および情報処理プログラム | |
WO2023053498A1 (ja) | 情報処理装置、情報処理方法、記録媒体、および車載システム | |
WO2023149089A1 (ja) | 学習装置、学習方法及び学習プログラム | |
WO2023145460A1 (ja) | 振動検出システムおよび振動検出方法 | |
US20240375613A1 (en) | Information processing device, information processing method, recording medium, and in-vehicle system | |
WO2024024471A1 (ja) | 情報処理装置、情報処理方法、及び、情報処理システム | |
WO2023054090A1 (ja) | 認識処理装置、認識処理方法、および認識処理システム | |
WO2023074419A1 (ja) | 情報処理装置、情報処理方法、及び、情報処理システム | |
US20230267746A1 (en) | Information processing device, information processing method, and program | |
WO2023162497A1 (ja) | 画像処理装置、画像処理方法及び画像処理プログラム | |
US20240290204A1 (en) | Information processing device, information processing method, and program | |
US20240271956A1 (en) | Information processing apparatus, information processing method, and computer program | |
WO2023032276A1 (ja) | 情報処理装置、情報処理方法、及び、移動装置 | |
WO2023079881A1 (ja) | 情報処理装置、情報処理方法およびプログラム | |
WO2023145529A1 (ja) | 情報処理装置、情報処理方法および情報処理プログラム |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22926097 Country of ref document: EP Kind code of ref document: A1 |
|
WWE | Wipo information: entry into national phase |
Ref document number: 202280088118.7 Country of ref document: CN |
|
NENP | Non-entry into the national phase |
Ref country code: DE |