[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2023151493A1 - 一种磁约束的核聚变反应容器 - Google Patents

一种磁约束的核聚变反应容器 Download PDF

Info

Publication number
WO2023151493A1
WO2023151493A1 PCT/CN2023/074079 CN2023074079W WO2023151493A1 WO 2023151493 A1 WO2023151493 A1 WO 2023151493A1 CN 2023074079 W CN2023074079 W CN 2023074079W WO 2023151493 A1 WO2023151493 A1 WO 2023151493A1
Authority
WO
WIPO (PCT)
Prior art keywords
reaction vessel
field coil
nuclear fusion
poloidal
field
Prior art date
Application number
PCT/CN2023/074079
Other languages
English (en)
French (fr)
Inventor
吴谞冠
Original Assignee
吴谞冠
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 吴谞冠 filed Critical 吴谞冠
Publication of WO2023151493A1 publication Critical patent/WO2023151493A1/zh

Links

Classifications

    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21BFUSION REACTORS
    • G21B1/00Thermonuclear fusion reactors
    • G21B1/05Thermonuclear fusion reactors with magnetic or electric plasma confinement
    • GPHYSICS
    • G21NUCLEAR PHYSICS; NUCLEAR ENGINEERING
    • G21BFUSION REACTORS
    • G21B1/00Thermonuclear fusion reactors
    • G21B1/11Details
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Definitions

  • the invention relates to the technical field of nuclear fusion reaction vessels, in particular to a magnetically confined nuclear fusion reaction vessel.
  • the reaction fuels for controlled nuclear fusion are mainly deuterium and tritium.
  • Deuterium is abundant in nature, and tritium can be synthesized through reactions.
  • the entire fusion deuterium-tritium reaction product is non-polluting and radioactive, and has extremely high reaction safety. Therefore, controllable nuclear fusion is considered to be the ultimate solution for future human energy development.
  • magnetic confinement fusion is the most promising way to realize the utilization of fusion energy.
  • the Tokamak device is the most widely studied fusion reaction device in the world at present, and the Tokamak device is a circular container that uses magnetic confinement to realize controlled nuclear fusion.
  • the Tokamak nuclear fusion device is surrounded by a circular field coil and a poloidal field coil outside the annular vacuum chamber. When energized, a spiral magnetic field will be generated inside to heat the plasma until fusion occurs. The device will generate plasma turbulence and start After running for a few seconds, it will shut down, nuclear fusion will stop, heat energy will be inexplicably consumed, and nuclear fusion cannot continue.
  • the stellarator nuclear fusion device intends to cancel the turbulent flow and guide the plasma in a smoother way.
  • the current M7T electromagnetic restraint device can achieve a running time of 100 seconds, but the plasma is still difficult to control, and turbulence will still occur in a cramped space.
  • the purpose of the present invention is to provide a magnetic confinement nuclear fusion reaction vessel to solve the problems raised in the above-mentioned background technology.
  • the present invention provides the following technical solutions:
  • a magnetically confined nuclear fusion reaction vessel comprising:
  • a reaction vessel the interior of the reaction vessel is hollow;
  • a field coil the field coil includes a hoop field coil and a poloidal field coil, the poloidal field coil is sheathed on the periphery of the reaction vessel along the axis direction of the reaction vessel, and the hoop field coil is arranged on the reaction vessel perpendicular to the axis direction of the reaction vessel
  • the toroidal field coils or poloidal field coils or both are distributed in a single funnel shape or a plurality of funnel shapes connected in series.
  • the reaction vessel is composed of at least two monomer reaction vessels connected in series and internally connected.
  • the monomer reaction vessel is funnel-shaped. The sides are equally spaced everywhere.
  • the hoop field coil and the poloidal field coil are fixed on the outer wall of the reaction vessel.
  • the side of the monomer reaction container is arc-shaped or straight-line.
  • the monomer reaction container is connected by one of neck-to-mouth connection, neck-to-neck connection, mouth-to-mouth connection, or a combination of both.
  • the multiple monomer reaction vessels in the reaction vessel are connected in a ring shape, an arc shape or a straight line shape.
  • the cross-section of the reaction vessel is circular.
  • the reaction vessel is in the shape of a ring, an arc or a straight line.
  • the interior of the reaction vessel is a vacuum chamber, and the interior is sealed.
  • the interior of the reaction vessel is not sealed in vacuum, and at least one end is open
  • the toroidal field coil or poloidal field coil of the present invention is in the form of a single funnel-shaped structure or a plurality of funnel-shaped structures connected in series, and can form a funnel-shaped toroidal or poloidal magnetic field.
  • the funnel-shaped magnetic field extends from the mouth to the neck Contraction, so the density of the hoop or poloidal magnetic field at the mouth is smaller than that of the neck, and the coil density continues to increase toward the neck. After electrification, the hoop or poloidal magnetic field from the mouth to the neck will continue to increase. Therefore, the magnetic confinement ability of the plasma is also continuously enhanced, the speed of the plasma is continuously accelerated toward the neck, the action space becomes narrower, and the pressure received is also continuously increased.
  • the charged particles have a higher chance to contact each other, and the neck is easier
  • the plasma at the mouth will accelerate through the neck in a spiral motion and reach the next funnel-shaped magnetic field.
  • the reciprocating cycle can continuously adjust the speed of the plasma. and density.
  • Fig. 1 is a schematic diagram of the overall structure of the present invention
  • Fig. 2 is a schematic diagram of the structure of a single reaction vessel in Example 1 of the present invention in which the neck and the mouth are connected;
  • Fig. 3 is a schematic structural view of a single reaction vessel in Example 1 of the present invention using neck-to-neck connections and mouth-to-mouth connections;
  • Fig. 4 is a structural schematic diagram of arc-shaped connection of reaction vessels in Example 1 of the present invention.
  • Fig. 5 is the schematic structural diagram of the circular connection of the reaction vessels in Example 1 of the present invention.
  • Figure 6 is a schematic structural view of the side of the monomer reaction vessel in Example 1 of the present invention in a linear shape
  • Fig. 7 is a schematic structural view of the side of the monomer reaction vessel in Example 1 of the present invention in an arc shape
  • Fig. 8 is a schematic structural diagram of a columnar reaction vessel in Example 2 of the present invention.
  • FIG. 9 is a schematic structural view of the circumferential field coil fixed on the side of the cylindrical reaction vessel in Embodiment 2 of the present invention.
  • reaction vessels 100 reaction vessels, 110 individual reaction vessels, 200 field coils, 210 toroidal field coils, and 220 polar field coils.
  • a magnetically confined nuclear fusion reaction vessel comprising a reaction vessel 100 and a field coil 200, wherein:
  • the reaction vessel 100 is composed of at least two monomer reaction vessels 110 connected in series and internally connected.
  • the monomer reaction vessels 110 are funnel-shaped.
  • the plurality of monomer reaction vessels 110 in the reaction vessel 100 are connected in a ring shape or in an arc or in a straight line.
  • the overall connection may be It can be linear or arc-shaped.
  • the monomer reaction vessel 110 at the head and the monomer reaction vessel 110 at the tail are connected end-to-end, and the reaction vessel 100 formed is generally ring-shaped.
  • the side of the monomer reaction container 110 is curved or straight, that is, the inner wall of the funnel-shaped monomer reaction container 110 may be straight or curved.
  • connection between multiple monomer reaction containers 110 may be one of neck-to-mouth connection, neck-to-neck connection, mouth-to-mouth connection, or a combination of both.
  • the larger cross-sectional area of the monomer reaction vessel 110 is the mouth, and the smaller one is the neck.
  • the interior of the reaction vessel 100 is a vacuum chamber, and the interior is sealed.
  • the treated high-temperature and high-pressure plasma is injected into the mouth of the monomer reaction vessel 110 at the end of the reaction vessel 100 through a plasma emitter.
  • the plasma progresses from the mouth to the neck, and the speed and density of the plasma increase, which better prevents plasma turbulence and enables nuclear fusion to occur more stably.
  • the interior of the reaction vessel 100 is not sealed in vacuum, and at least one end is open, which are respectively the openings of the mouth or neck of the monomer reaction vessel 110 at both ends.
  • the processed high temperature The high-pressure plasma is injected into the mouth of the monomer reaction vessel 110 at the end of the reaction vessel 100, and the plasma advances from the mouth to the neck, and the speed and density of the plasma increase to better prevent the turbulent flow of the plasma until It is ejected from the neck, and during this process, in the nuclear fusion reaction without neutrons in this embodiment, there are only ⁇ particles, and there are no electrons in the reactants. These particles move at high speed to generate a huge current, and the current can be directly introduced into the grid without heating. exchanger or steam turbine etc.
  • the field coil 200 includes a hoop field coil 210 and a poloidal field coil 220, the poloidal field coil 220 is sheathed on the periphery of the reaction vessel 100 along the axial direction of the reaction vessel 100, and the hoop field lines 210 are perpendicular to the reaction vessel 100
  • the axial direction of the poloidal field coil 220 is set on the periphery of the reaction vessel 100, and the poloidal field coil 220 is used to generate a poloidal magnetic field. shaped magnetic field.
  • the hoop field coil 210 or the poloidal field coil 220 is arranged on the periphery of the reaction vessel 100, and the distance between the hoop field coil 210 or the poloidal field coil 220 and the outer surface of the reaction vessel 100 is equal everywhere, where the distance is The shortest distance on the outer surface of 100, the combined form of the hoop field coil 210 and the poloidal field coil 220 includes three structural forms, the first structural form is that the shape of the poloidal field coil 22 is the same as that of the outside of the reaction vessel 100, The overall shape is the same as that of the reaction vessel 100, and the shape of the annular field coil 210 is the same everywhere.
  • the second structural form is that the poloidal field coil 22 is arranged parallel to the axis of the reaction vessel 100, and the annular field coil 210 is integrally connected to the outside of the reaction vessel 100.
  • the shapes are the same, and the third structural form is that both the annular field coil 210 and the poloidal field coil 220 have the same shape as the outside of the reaction vessel 100, that is, the curved surfaces formed by the two are parallel to the outer surface of the reaction vessel 100, and the circumferential direction
  • the distance between the field coil 210 or the poloidal field coil 220 and the outer surface of the reaction vessel 100 is not less than zero.
  • the hoop field coils 210 and poloidal field coils 220 are distributed in a net shape and fixed on the outer wall of the reaction vessel 100 .
  • the cross-sectional area of the monomer reaction vessel 110 is different from the mouth to the neck, so the density of the annular field coil 210 or poloidal field coil 220 at the mouth must be The density of the coil is smaller than that of the neck, and the density of the coil is continuously increased toward the neck.
  • the circular magnetic field or the polar magnetic field will continue to increase from the mouth to the neck, so the magnetic binding ability of the plasma is also continuously enhanced, and the closer to the neck
  • the speed of the plasma is constantly accelerating, the action space becomes narrow, and the pressure received is also increasing. The charged particles have a higher chance to contact each other, and the nuclear fusion reaction is more likely to occur in the neck.
  • the plasma in the mouth of the monomer reaction vessel 110 It will accelerate through the neck of the monomer reaction vessel 110 in a spiral motion and reach the next monomer reaction vessel 110. In this reciprocating cycle, the speed and density of the plasma can be continuously adjusted, and the electric plasma can be better prevented.
  • the turbulent flow of the slurry makes nuclear fusion more stable.
  • Embodiment 1 The difference between this embodiment and Embodiment 1 is that the cross-section of the reaction vessel 100 used in this embodiment is circular, and the shapes of the interfaces of the reaction vessel 100 are the same.
  • the reaction vessel 100 is in the shape of a ring or an arc or a line as a whole. When it is a ring, the head and the tail of the reaction vessel 100 are connected at the first place, so that the reaction vessel 100 is formed as a ring.
  • the hoop field coil 210 or the poloidal field coil 220 is arranged on the periphery of the reaction vessel 100 , and the hoop field coil 210 or the poloidal field coil 220 or both are distributed in a single funnel shape or a plurality of funnels in series.
  • the combined form of distribution of the hoop field coil 210 and the poloidal field coil 220 in this embodiment includes three structural forms.
  • the first structural form is that the shape of the poloidal field coil 22 is a single funnel or a plurality of funnels connected in series.
  • the shape of the annular field coil 210 is the same everywhere, at this time, the annular field coil 210 can be fixed on the outer wall of the reaction vessel 100 .
  • the second structure is that the poloidal field coil 22 is arranged parallel to the axis of the reaction vessel 100, and the annular field coil 210 is in the shape of a single funnel or multiple funnels connected in series. At this time, the poloidal field coil 22 can be fixed in the reaction.
  • the third structure of the outer wall of the container 100 is that the toroidal field coil 210 and the poloidal field coil 220 are connected in a mesh shape, and the whole formed by the two is in the shape of a single funnel or multiple funnels connected in series.
  • the distribution structure of the above-mentioned field coils 200 causes the coil density distribution of the hoop field coils 210 or poloidal field coils 220 to be uneven, and the coil density of the funnel-shaped hoop field coils 210 or poloidal field coils 220 is continuously toward the neck.
  • the annular magnetic field or polar magnetic field inside the reaction vessel 100 will continue to increase along the neck of the funnel-shaped magnetic field, so the magnetic binding ability of the plasma is also continuously enhanced.
  • the action space becomes narrower, and the pressure received continues to increase, the charged particles have a higher chance of contacting each other, and the neck is more likely to undergo nuclear fusion reactions, and the toroidal magnetic field in the shape of multiple funnels in series forms Or the reciprocating cycle in the polar magnetic field, thereby continuously adjusting the velocity and density of the plasma, can better prevent the turbulent flow of the plasma, and make nuclear fusion more stable.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • General Engineering & Computer Science (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Plasma Technology (AREA)

Abstract

一种磁约束的核聚变反应容器,包括反应容器(100),反应容器(100)内部中空;场线圈(200),场线圈包括环向场线圈(210)和极向场线圈(220),极向场线圈(220)沿着反应容器(100)的轴线方向套设在反应容器(100)外围,环向场线圈(210)垂直于反应容器(100)的轴线方向设置在反应容器(100)外围,环向场线圈(210)或极向场线圈(220)或二者均分布为单个漏斗状或多个漏斗状串联。因此口部的环向磁场或极向磁场密度要小于颈部的密度,线圈密度不断向颈部增强,通电后由口部向颈部的环向磁场或者极向磁场会不断加大,因而对电浆的磁束缚能力也不断增强。

Description

一种磁约束的核聚变反应容器 技术领域
本发明涉及核聚变反应容器技术领域,具体为一种磁约束的核聚变反应容器。
背景技术
可控核聚变的反应燃料主要是氘和氚,氘在自然界的储量丰富,而氚可以通过反应合成。整个聚变氘氚反应产物无污染无放射性,具有极高的反应安全性,因此可控核聚变被认为是未来人类能源发展的终极解决方案。在目前的研究中,磁约束核聚变是最有希望实现聚变能利用的途径。其中Tokamak(托克马克)装置是目前世界上研究最广泛的一种聚变反应装置,Tokamak装置是一种利用磁约束来实现受控核聚变的环性容器。
目前Tokamak核聚变装置,是在环形真空室外绕环向场线圈和极向场线圈,在通电时,内部会产生螺旋型磁场,加热等离子体到发生聚变,该装置会产生电浆乱流,启动后每运行几秒就停机,核融合会停止,热能量会莫名其妙的消耗掉,核融合无法继续进行,目前仿星器核聚变装置,拟将乱流相互抵消,以更流畅的方式引导电浆,目前的M7T电磁拘束装置能达到100秒的运行时间,但电浆依旧不好控制,仍旧会在局促的空间发生乱流。
发明内容
本发明的目的在于提供一种磁约束的核聚变反应容器,以解决上述背景技术中提出的问题。
为实现上述目的,本发明提供如下技术方案:
一种磁约束的核聚变反应容器,包括:
反应容器,所述反应容器内部中空;
场线圈,所述场线圈包括环向场线圈和极向场线圈,极向场线圈沿着反应容器的轴线方向套设在反应容器外围,环向场线圈垂直于反应容器的轴线方向设置在反应容器外围,环向场线圈或极向场线圈或二者均分布为单个漏斗状或多个漏斗状串联。
在其中一个实施例中,所述反应容器由至少两个单体反应容器串联且内部连通构成,单体反应容器呈漏斗状,环向场线圈或极向场线圈或二者均和反应容器外侧面的距离处处相等。
在其中一个实施例中,所述环向场线圈和极向场线圈固定在反应容器的外侧壁。
在其中一个实施例中,所述单体反应容器的侧面呈弧线形或直线型。
在其中一个实施例中,所述单体反应容器连接方式采用颈部与口部连接或颈部与颈部连接、口部与口部连接方式中的一种或二者的组合。
在其中一个实施例中,所述反应容器中多个单体反应容器连接呈环形或弧形或直线形。
在其中一个实施例中,所述反应容器的截面为圆环形。
在其中一个实施例中,所述反应容器呈环形或弧形或直线形。
在其中一个实施例中,所述反应容器的内部为真空室,且内部密封。
在其中一个实施例中,所述反应容器的内部不封闭真空,且至少有一端开口
与现有技术相比,本发明的有益效果是:
本发明的环向场线圈或极向场线圈为单个漏斗状结构或者多个漏斗状结构串联的形式,能够形成漏斗状的环向磁场或者极向磁场,漏斗状的磁场从口部向颈部收缩,因此口部的环向磁场或极向磁场密度要小于颈部的密度,线圈密度不断向颈部增强,通电后由口部向颈部的环向磁场或者极向磁场会不断加大,因而对电浆的磁束缚能力也不断增强,越往颈部电浆的速度不断加快、行动空间变得狭小,受到的压力也不断增加,电荷粒子有更高的机会相互接触,颈部更容易发生核聚变反应,在多个漏斗状的磁场内,口部的电浆会以螺旋形的运动方式加速通过颈部,到达下一个漏斗状磁场内,往复循环,能不断地调节电浆的速度和密度。
附图说明
图1为本发明整体结构示意图;
图2为本发明实施例1中单个反应容器采用颈部与口部连接方式的结构示意图;
图3为本发明实施例1中单个反应容器采用颈部与颈部连接、口部与口部连接方式的结构示意图;
图4为本发明实施例1中反应容器呈弧形连接的结构示意图;
图5为本发明实施例1中反应容器呈环形连接的结构示意图;
图6为本发明实施例1中单体反应容器的侧面呈直线型的结构示意图;
图7为本发明实施例1中单体反应容器的侧面呈弧线形的结构示意图;
图8为本发明实施例2中反应容器采用柱形的结构示意图;
图9为本发明实施例2中环向场线圈固定在柱形的反应容器侧面的结构示意图。
图中:100反应容器、110单体反应容器、200场线圈、210环向场线圈、220极向场线圈。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1:
请参阅图1至图7,本发明提供一种技术方案:
一种磁约束的核聚变反应容器,包括反应容器100和场线圈200,其中:
所述反应容器100由至少两个单体反应容器110串联且内部连通构成,单体反应容器110呈漏斗状。
可选的,所述反应容器100中多个单体反应容器110连接呈环形或弧形或直线形,呈弧形或直线形时多个单体反应容器110进行连接时,连接的整体可以是直线型,也可以是弧形,呈环形时,头部的单体反应容器110和尾部的单体反应容器110首尾连接,构成的反应容器100整体呈环形。
可选的,所述单体反应容器110的侧面呈弧线形或直线型,即漏斗形的单体反应容器110的内侧壁可以是直线型,也可以是弧形。
可选的,多个单体反应容器110之间的连接方式可以采用颈部与口部连接或颈部与颈部连接、口部与口部连接方式中的一种或二者的组合,所述单体反应容器110的截面积较大处为口部,较小处为颈部。
进一步的,所述反应容器100的内部为真空室,且内部密封,在使用时通过等离子体发射器将处理好的高温高压的电浆射入反应容器100端部的单体反应容器110的口部,电浆由口部向颈部递进,电浆的速度和密度递增,更好的防止电浆乱流,使得核融合能够更稳定的产生。
可选的,所述反应容器100的内部不封闭真空,且至少有一端开口,分别为两端的单体反应容器110的口部或颈部开口,此时通过等离子体发射器将处理好的高温高压的电浆射入反应容器100端部的单体反应容器110的口部,电浆由口部向颈部递进,电浆的速度和密度递增,更好的防止电浆乱流,直至从颈部射出,再此过程中,本实施例在无中子产生的核聚变反应中,只有α粒子,反应物中没有电子,这些粒子高速运动产生巨大电流,电流可以直接导入电网,无需热交换器或蒸汽轮机等。
所述场线圈200包括环向场线圈210和极向场线圈220,极向场线圈220沿着反应容器100的轴线方向套设在反应容器100外围,环向场线210圈垂直于反应容器100的轴线方向设置在反应容器100外围,极向场线圈220用于产生极向磁场,极向场线圈220可以为圆形结构,用于产生环向磁场,环向磁场和极向磁场组合形成螺旋形磁场。
环向场线圈210或极向场线圈220设置在反应容器100外围,环向场线圈210或极向场线圈220或二者均和反应容器100外侧面的距离处处相等,此处距离为反应容器100外侧面的最短距离,环向场线圈210和极向场线圈220的组合形式,包括三种结构形式,第一种结构形式为极向场线圈22的形状和反应容器100外侧的形状相同,整体也和反应容器100的形状相同,而环形场线圈210处处形状相同,第二种结构形式为极向场线圈22和反应容器100的轴线平行设置,而环形场线圈210整体和反应容器100外侧的形状相同,第三种结构形式为环向场线圈210和极向场线圈220均和反应容器100外侧的形状相同,即二者构成的曲面均相对于反应容器100的外侧面平行,环向场线圈210或极向场线圈220距离反应容器100的外侧面的距离不小于零。
进一步的,所述环向场线圈210和极向场线圈220呈网状分布,固定在反应容器100的外侧壁。
基于上述的结构,由于反应容器100的结构形式,单体反应容器110各处的截面积不同,从口部向颈部收缩,因此口部的环向场线圈210或极向场线圈220密度要小于颈部的密度,线圈密度不断向颈部增强,通电后由口部向颈部环向磁场或极向磁场会不断加大,因而对电浆的磁束缚能力也不断增强,越往颈部电浆的速度不断加快、行动空间变得狭小、受到的压力也不断增加,电荷粒子有更高的机会相互接触,颈部更容易发生核聚变反应,在单体反应容器110的口部电浆会以螺旋形的运动方式加速通过单体反应容器110的颈部,到达下一个单体反应容器110内,以此往复循环,能不断地调节电浆的速度和密度,能更好的防止电浆乱流,使得核融合能够更稳定的产生。
实施例2:
基于上述实施例1所述的技术方案,请参阅图8至图9。
本实施例与实施例1的区别在于,本实施所采用的反应容器100的截面为圆环形,反应容器100的各个界面形状相同。
可选的,所述反应容器100整体呈环形或弧形或直线形,呈环形时,反应容器100的头部和尾部首位连接,构成的反应容器100整体呈环形。
环向场线圈210或极向场线圈220设置在反应容器100外围,环向场线圈210或极向场线圈220或二者均分布为单个漏斗状或多个漏斗状串联。
本实施例环向场线圈210和极向场线圈220分布的组合形式,包括三种结构形式,第一种结构形式为极向场线圈22的形状呈单个漏斗状或者多个漏斗状串联的形状,而环形场线圈210处处形状相同,此时环形场线圈210可固定在反应容器100的外侧壁。
第二种结构形式为极向场线圈22和反应容器100的轴线平行设置,而环形场线圈210整体呈单个漏斗状或者多个漏斗状串联的形状,此时极向场线圈22可固定在反应容器100的外侧壁,第三种结构形式为环向场线圈210和极向场线圈220呈网状连接,二者构成的整体呈单个漏斗状或者多个漏斗状串联的形状。
上述的场线圈200的分布结构造成,环向场线圈210或极向场线圈220的线圈密度分布不均,构成的漏斗状的环向场线圈210或极向场线圈220的线圈密度不断向颈部增强,通电后由反应容器100内部的环向磁场或极向磁场会沿着漏斗状磁场的颈部不断加大,因而对电浆的磁束缚能力也不断增强,越往颈部电浆的速度不断加快、行动空间变得狭小、受到的压力也不断增加,电荷粒子有更高的机会相互接触,颈部更容易发生核聚变反应,并在构成的多个漏斗状串联形状的环向磁场或极向磁场内往复循环,从而不断地调节电浆的速度和密度,能更好的防止电浆乱流,使得核融合能够更稳定的产生。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。

Claims (10)

  1. 一种磁约束的核聚变反应容器,其特征在于,包括:
    反应容器,所述反应容器内部中空;
    场线圈,所述场线圈包括环向场线圈和极向场线圈,极向场线圈沿着反应容器的轴线方向套设在反应容器外围,环向场线圈垂直于反应容器的轴线方向设置在反应容器外围,环向场线圈或极向场线圈或二者均分布为单个漏斗状或多个漏斗状串联。
  2. 根据权利要求1所述的一种磁约束的核聚变反应容器,其特征在于:所述反应容器由至少两个单体反应容器串联且内部连通构成,单体反应容器呈漏斗状,环向场线圈或极向场线圈或二者均和反应容器外侧面的距离处处相等。
  3. 根据权利要求2所述的一种磁约束的核聚变反应容器,其特征在于:所述环向场线圈和极向场线圈固定在反应容器的外侧壁。
  4. 根据权利要求2所述的一种磁约束的核聚变反应容器,其特征在于:所述单体反应容器的侧面呈弧线形或直线型。
  5. 根据权利要求2所述的一种磁约束的核聚变反应容器,其特征在于:所述单体反应容器连接方式采用颈部与口部连接或颈部与颈部连接、口部与口部连接方式中的一种或二者的组合。
  6. 根据权利要求2所述的一种磁约束的核聚变反应容器,其特征在于:所述反应容器中多个单体反应容器连接呈环形或弧形或直线形。
  7. 根据权利要求1所述的一种磁约束的核聚变反应容器,其特征在于:所述反应容器的截面为圆环形。
  8. 根据权利要求7所述的一种磁约束的核聚变反应容器,其特征在于:所述反应容器呈环形或弧形或直线形。
  9. 根据权利要求2或7任一项所述的一种磁约束的核聚变反应容器,其特征在于:所述反应容器的内部为真空室,且内部密封。
  10. 根据权利要求2或7任一项所述的一种磁约束的核聚变反应容器,其特征在于:所述反应容器的内部不封闭真空,且至少有一端开口。
PCT/CN2023/074079 2022-02-13 2023-02-01 一种磁约束的核聚变反应容器 WO2023151493A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202210155480 2022-02-13
CN202210155480.3 2022-02-13
CN202211521346.7A CN115798740A (zh) 2022-02-13 2022-11-30 一种磁约束的核聚变反应容器
CN202211521346.7 2022-11-30

Publications (1)

Publication Number Publication Date
WO2023151493A1 true WO2023151493A1 (zh) 2023-08-17

Family

ID=85443841

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/074079 WO2023151493A1 (zh) 2022-02-13 2023-02-01 一种磁约束的核聚变反应容器

Country Status (2)

Country Link
CN (1) CN115798740A (zh)
WO (1) WO2023151493A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117438172A (zh) * 2023-12-22 2024-01-23 陕西星环聚能科技有限公司 一种环向场线圈及聚变装置

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115798740A (zh) * 2022-02-13 2023-03-14 吴谞冠 一种磁约束的核聚变反应容器

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203368890U (zh) * 2013-07-30 2013-12-25 哈尔滨工业大学 用具有零磁场区的磁场位形约束高温等离子体的装置
US20150216028A1 (en) * 2012-08-29 2015-07-30 General Fusion, Inc. Apparatus for accelerating and compressing plasma
CN106057252A (zh) * 2016-06-21 2016-10-26 哈尔滨工业大学 用于多极磁阱磁约束装置的等离子体环向力平衡控制方法
CN107301882A (zh) * 2017-06-12 2017-10-27 孙旭阳 一种哑铃状结构可控核聚变装置
CN112036025A (zh) * 2020-08-27 2020-12-04 西南交通大学 一种仿星器线圈结构的优化方法
CN112309588A (zh) * 2020-10-12 2021-02-02 中国科学院合肥物质科学研究院 一种适用于磁约束聚变装置的共振磁扰动线圈及实现方法
CN112786273A (zh) * 2020-12-31 2021-05-11 中国科学院合肥物质科学研究院 一种基于立方体永磁体块的仿星器磁体及其优化布置方法
CN113796162A (zh) * 2019-05-28 2021-12-14 通用融合公司 用于生成和加速磁化等离子体的系统和方法
CN115798740A (zh) * 2022-02-13 2023-03-14 吴谞冠 一种磁约束的核聚变反应容器

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150216028A1 (en) * 2012-08-29 2015-07-30 General Fusion, Inc. Apparatus for accelerating and compressing plasma
CN203368890U (zh) * 2013-07-30 2013-12-25 哈尔滨工业大学 用具有零磁场区的磁场位形约束高温等离子体的装置
CN106057252A (zh) * 2016-06-21 2016-10-26 哈尔滨工业大学 用于多极磁阱磁约束装置的等离子体环向力平衡控制方法
CN107301882A (zh) * 2017-06-12 2017-10-27 孙旭阳 一种哑铃状结构可控核聚变装置
CN113796162A (zh) * 2019-05-28 2021-12-14 通用融合公司 用于生成和加速磁化等离子体的系统和方法
CN112036025A (zh) * 2020-08-27 2020-12-04 西南交通大学 一种仿星器线圈结构的优化方法
CN112309588A (zh) * 2020-10-12 2021-02-02 中国科学院合肥物质科学研究院 一种适用于磁约束聚变装置的共振磁扰动线圈及实现方法
CN112786273A (zh) * 2020-12-31 2021-05-11 中国科学院合肥物质科学研究院 一种基于立方体永磁体块的仿星器磁体及其优化布置方法
CN115798740A (zh) * 2022-02-13 2023-03-14 吴谞冠 一种磁约束的核聚变反应容器

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN117438172A (zh) * 2023-12-22 2024-01-23 陕西星环聚能科技有限公司 一种环向场线圈及聚变装置
CN117438172B (zh) * 2023-12-22 2024-05-14 陕西星环聚能科技有限公司 一种环向场线圈及聚变装置

Also Published As

Publication number Publication date
CN115798740A (zh) 2023-03-14

Similar Documents

Publication Publication Date Title
WO2023151493A1 (zh) 一种磁约束的核聚变反应容器
US7002148B2 (en) Controlled fusion in a field reversed configuration and direct energy conversion
AU2006220546B2 (en) Plasma electric generation system
US10403405B2 (en) Inductive plasma source and plasma containment
US6888907B2 (en) Controlled fusion in a field reversed configuration and direct energy conversion
US9607719B2 (en) Vacuum chamber for plasma electric generation system
US6894446B2 (en) Controlled fusion in a field reversed configuration and direct energy conversion
JP2017223698A (ja) 小規模な非汚染物質排出核反応炉内の中性子を低減する方法、装置およびシステム
US20060076897A1 (en) Magnetic and electrostatic confinement of plasma with tuning of electrostatic field
TWI430285B (zh) 電漿電力產生系統
Strelkov Thermonuclear Power Engineering: 60 Years of Research. What Comes Next?
Gould Controlled Fusion--Clean, Unlimited Power Generation
Furth Generation and confinement of plasmas in tokamak systems

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23752273

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE