[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2023151462A1 - 通信方法及装置、存储介质 - Google Patents

通信方法及装置、存储介质 Download PDF

Info

Publication number
WO2023151462A1
WO2023151462A1 PCT/CN2023/072782 CN2023072782W WO2023151462A1 WO 2023151462 A1 WO2023151462 A1 WO 2023151462A1 CN 2023072782 W CN2023072782 W CN 2023072782W WO 2023151462 A1 WO2023151462 A1 WO 2023151462A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency point
priority
network slice
network
frequency
Prior art date
Application number
PCT/CN2023/072782
Other languages
English (en)
French (fr)
Inventor
孔令帅
杨帆
李娇娇
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202210952423.8A external-priority patent/CN116634456A/zh
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2023151462A1 publication Critical patent/WO2023151462A1/zh

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/02Arrangements for optimising operational condition
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W36/00Hand-off or reselection arrangements
    • H04W36/08Reselecting an access point

Definitions

  • the present application relates to the technical field of communication, and in particular to a communication method and device, and a storage medium.
  • the terminal When a terminal in a non-connected state (including an idle state (idle) and an inactive state (inactive)) resides in a cell, the terminal will perform a cell reselection process of a neighboring cell. The terminal evaluates whether to start the measurement and reselection of adjacent frequency points according to the cell reselection priority (also called frequency absolute priority) and the signal quality of the current serving cell.
  • the cell reselection priority also called frequency absolute priority
  • a network slice is a logical network that can provide specific network capabilities and network characteristics.
  • An endpoint can support or be configured with multiple network slices.
  • the priority of multiple network slices configured by the terminal may be different.
  • the same frequency point can support multiple network slices, and the same frequency point may be configured with different frequency priorities in different network slices.
  • the level of priority corresponding to the serving frequency point and the non-serving frequency point determines whether the non-serving frequency point can be measured.
  • the present application provides a communication method and device, and a storage medium, so as to accurately determine the priority relationship corresponding to a service frequency point and a non-service frequency point.
  • a communication method includes: the terminal acquires first information, and the first information includes at least one of the following information: the priority of network slices supported by service frequency points, the priority of network slices supported by non-service frequency points, the priority of the network slice or the first frequency point priority; and the terminal determines the second frequency point priority of the service frequency point and the third frequency point priority of the non-service frequency point according to the first information,
  • the second frequency point priority is the frequency point priority of the service frequency point based on network slicing
  • the third frequency point priority is the frequency point priority of the non-service frequency point based on network slicing.
  • the terminal can accurately determine the service frequency according to at least one of the priority of the network slice supported by the service frequency, the priority of the network slice supported by the non-service frequency, or the priority of the first frequency
  • the frequency point priority based on the network slice and the frequency point priority based on the network slice of the non-service frequency point can accurately determine the relationship between the corresponding priority of the service frequency point and the non-service frequency point.
  • the second frequency point priority is determined according to the first network slice
  • the third frequency point priority is determined according to the second network slice
  • the first network slice is the The network slice with the lowest priority among the at least one network slice supported by the service frequency point
  • the second network slice is the network slice with the highest priority among the at least one network slice supported by the non-service frequency point.
  • the method of determining the priority of the second frequency point and the priority of the third frequency point is different, that is, the priority of the service frequency point based on network slicing takes a smaller value, and the priority of the non-service frequency point based on network slicing Take a larger value, so as to determine the relative relationship between the priority of the service frequency point and the non-service frequency point based on network slicing.
  • This implementation method increases the probability that the terminal starts the measurement of the non-serving frequency points, and increases the chance that the terminal reselects to other neighboring cells.
  • the second frequency point priority is determined according to a third network slice
  • the third frequency point priority is determined according to a fourth network slice
  • the third network slice is The network slice with the highest priority among the at least one network slice supported by the service frequency point
  • the fourth network slice is the network slice with the highest priority among the at least one network slice supported by the non-service frequency point.
  • the method of determining the priority of the second frequency point and the priority of the third frequency point is the same, so that a unified rule of sorting can be realized. Furthermore, this implementation manner can also increase the probability that the terminal reselects to a cell that supports high-priority network slicing.
  • the second frequency point priority is determined according to the fifth network slice
  • the third frequency point priority is determined according to the sixth network slice
  • the fifth network slice is The network slice with the highest priority among the at least one network slice supported by the serving cell
  • the sixth network slice is the network slice with the highest priority among the at least one network slice supported by the non-serving frequency point.
  • the first information further includes network slice information supported by the serving cell.
  • the method further includes: at least one cell on a first frequency point meets a reselection condition, and the terminal starts a timer, and the first frequency point is a frequency point that does not support network slicing .
  • the terminal waits for a timer duration, so that the terminal tries to reselect to a cell on a frequency point that supports network slicing. Then, when the terminal enters the connected state, the network slicing service can be performed as soon as possible in the cell on the frequency point that supports network slicing, thereby improving communication efficiency.
  • the method further includes: the timer is running, there is at least one cell in the second frequency that satisfies the reselection condition, the terminal reselects to the first cell, and the first cell It is a cell on the second frequency point, and the second frequency point is a frequency point supporting network slicing.
  • the terminal waits for a timer duration.
  • the timer is running, if there is at least one cell on a frequency point that supports network slicing that meets the If the reselection condition is met, the terminal reselects to the cell on the frequency point. If the timer expires, reselect to a frequency that does not support network slicing. Therefore, the terminal can preferentially reselect to a cell on a frequency point that supports network slicing. Then, when the terminal enters the connected state, the network slicing service can be performed as soon as possible in the cell on the frequency point that supports network slicing, thereby improving communication efficiency.
  • the method further includes: when the timer expires, the terminal reselects to a second cell, where the second cell is a cell on the first frequency point.
  • the terminal determines the second frequency priority of the service frequency and the third frequency priority of the non-service frequency, including : The terminal determines the second frequency point priority or the order of the third frequency point priority of the third frequency point according to at least one of the following methods: according to the highest network slice priority supported by the third frequency point, determine The second frequency point priority or the third frequency point priority of the third frequency point; among multiple frequency points with the same highest network slice priority, according to the second highest priority supported by the third frequency point The priority of the network slice at the level is to determine the second frequency point priority or the third frequency point priority of the third frequency point; or, among multiple frequency points supporting the same at least one network slice, Determine the second frequency priority or the third frequency priority of the third frequency according to the frequency priority of the third frequency in the network slice with the highest priority supported; or, Among multiple frequency points that support at least one same network slice, determine the second frequency point priority or the third frequency point priority of the third frequency point according to the number of network slices supported by the third frequency point point priority; wherein
  • the frequency point priority of the third frequency point based on network slicing can be determined more reasonably and accurately, so as to reselect to Cells on better non-serving frequency points.
  • the non-serving frequency supports at least two network slices
  • the method further includes: the terminal supports the at least two network slices according to the at least two network slices supported by the cell on the non-serving frequency information to determine the evaluation criteria for reselection.
  • the non-serving frequency point supports at least two network slices
  • the reselection evaluation conditions can be determined according to the information of at least two network slices supported by the cell on the non-serving frequency point, which improves the reselection the accuracy of the assessment.
  • the terminal determines the reselection evaluation condition according to the information of at least two network slices supported by the cell on the non-serving frequency, including: the cell supporting the non-serving frequency The information of at least two network slices is different, and the terminal determines the corresponding reselection evaluation condition according to the frequency point priority relationship between the non-serving frequency point and the serving frequency point.
  • a communication method includes: the terminal acquires a first threshold and/or the duration of the timer; and the terminal determines that the Non-serving frequency points that do not support network slicing.
  • the terminal determines that the non-serving frequency points that do not support network slicing can be measured according to the first threshold and/or the timer, instead of being able to measure the non-serving frequency points that do not support network slicing at any time, so that The terminal can preferentially measure or reselect non-service frequency points that support network slicing.
  • the terminal enters the connected state, it can perform network slicing services as soon as possible in the cell on the frequency point that supports network slicing, thereby improving communication efficiency. Reduce the power consumption of the terminal.
  • the terminal determines that there is no non-serving frequency that supports network slicing that can be measured, it should also be able to measure the non-serving frequency that does not support network slicing, giving the opportunity to measure or reselect to a non-serving frequency that does not support network slicing.
  • the terminal determines that a non-serving frequency that does not support network slicing can be measured, including: the terminal determines according to any of the following conditions A non-serving frequency that does not support network slicing can be measured; wherein, any of the conditions includes: the signal quality of the serving cell is less than or equal to the first threshold; or the timer expires; or the signal quality of the serving cell greater than or equal to the first threshold, the timer expires.
  • the terminal determines, according to the first threshold and/or the timer, that it can measure non-serving frequency points that do not support network slicing. That is, the timing or conditions for the terminal to determine to be able to measure non-serving frequency points that do not support network slicing are specified. It is easy to understand that when the first threshold and/or timer conditions are met, the terminal can only measure frequency points that do not support network slicing, but the terminal needs to meet the corresponding neighbor cell measurement requirements when measuring frequency points that do not support network slicing. condition. Prior to measuring the non-serving frequency points that support network slicing before the opportunity or condition is met. It is easy to understand that, before the timing or condition is met, the terminal needs to meet the corresponding adjacent cell measurement condition for measuring the frequency points that support network slicing.
  • the method further includes: the terminal camps on the serving cell, or the signal quality of the serving cell is greater than or equal to the first threshold, and the terminal starts the timing device.
  • the method further includes: the terminal determines to measure non-serving frequency points that do not support network slicing according to a first rule, and the first rule is related to the non-serving frequency point and the serving frequency point The relationship of priority is related.
  • a communication device may implement the method in the first aspect above.
  • the communication device may be a chip or a terminal.
  • the above method can be realized by software, hardware, or by executing corresponding software by hardware.
  • the apparatus includes: a processing unit, and may further include a transceiver unit; wherein the processing unit is configured to acquire first information, and the first information includes at least one of the following information: service frequency point The priority of the supported network slice, the priority of the network slice supported by the non-service frequency point, or the priority of the first frequency point; and the processing unit is further configured to determine the priority of the service frequency point according to the first information
  • the second frequency point priority and the third frequency point priority of the non-service frequency point the second frequency point priority is the frequency point priority based on network slicing of the service frequency point, and the third frequency point priority
  • the point priority is the frequency point priority based on network slicing of the non-serving frequency point.
  • the second frequency point priority is determined according to the first network slice
  • the third frequency point priority is determined according to the second network slice
  • the first network slice is the service frequency point
  • the second network slice is the network slice with the highest priority among the at least one network slice supported by the non-serving frequency point.
  • the second frequency point priority is determined according to a third network slice
  • the third frequency point priority is determined according to a fourth network slice
  • the third network slice is the service frequency point
  • the fourth network slice is the network slice with the highest priority among the at least one network slice supported by the non-serving frequency point.
  • the second frequency point priority is determined according to the fifth network slice
  • the third frequency point priority is determined according to the sixth network slice
  • the fifth network slice is at least A network slice with the highest priority in a network slice
  • the sixth network slice is a network slice with the highest priority in at least one network slice supported by the non-serving frequency point.
  • the first information further includes network slice information supported by the serving cell.
  • the processing unit is further configured to start a timer when at least one cell on a first frequency point meets a reselection condition, and the first frequency point is a frequency point that does not support network slicing.
  • the processing unit is also used for running the timer.
  • the cell on the point, the second frequency point is a frequency point that supports network slicing.
  • the processing unit is further configured to reselect to a second cell when the timer expires, and the second cell is a cell on the first frequency point.
  • the processing unit is further configured to determine the second frequency priority of the third frequency or the ranking of the third frequency priority according to at least one of the following methods: according to the third frequency The highest network slicing priority supported by the point, determine the second frequency point priority or the third frequency point priority of the third frequency point; among multiple frequency points with the same highest network slicing priority, according to the The priority of the network slice with the second highest priority supported by the third frequency point, determine the second frequency point priority or the third frequency point priority of the third frequency point; or, support the same at least Among the multiple frequency points of a network slice, according to the frequency point priority of the third frequency point in the network slice with the highest priority supported, determine the second frequency point priority of the third frequency point or the The priority of the third frequency point; or, among multiple frequency points supporting at least one same network slice, determine the second frequency point of the third frequency point according to the number of network slices supported by the third frequency point Frequency point priority or the third frequency point priority; wherein, the third frequency point includes the service frequency point and the non-service frequency
  • the non-serving frequency supports at least two network slices
  • the processing unit is further configured to determine the reselection according to the information of the at least two network slices supported by the cell on the non-serving frequency Evaluation conditions.
  • the processing unit is further configured to have different information about at least two network slices supported by the cell on the non-serving frequency, according to the frequency priority relationship between the non-serving frequency and the serving frequency , to determine the corresponding reselection evaluation condition.
  • the communication device is configured to execute the method in the foregoing first aspect and various possible implementations thereof.
  • a communication device may implement the method in the second aspect above.
  • the communication device may be a chip or a terminal.
  • the above method can be realized by software, hardware, or by executing corresponding software by hardware.
  • the apparatus includes: a processing unit, which may further include a transceiver unit; wherein, the processing unit is configured to obtain the first threshold and/or the duration of the timer; and the processing unit is also configured to It is used to determine, according to the first threshold and/or the timer, that non-serving frequency points that do not support network slicing can be measured.
  • a processing unit which may further include a transceiver unit; wherein, the processing unit is configured to obtain the first threshold and/or the duration of the timer; and the processing unit is also configured to It is used to determine, according to the first threshold and/or the timer, that non-serving frequency points that do not support network slicing can be measured.
  • the processing unit is further configured to determine that a non-serving frequency that does not support network slicing can be measured according to any of the following conditions; wherein, any of the conditions includes: the signal quality of the serving cell is less than or equal to the The first threshold; or the timer expires; or the signal quality of the serving cell is greater than or equal to the first threshold, and the timer expires.
  • the processing unit is further configured to start the timer when the communication device resides in the serving cell, or the signal quality of the serving cell is greater than or equal to the first threshold.
  • the processing unit is further configured to determine a non-serving frequency that does not support network slicing for measurement according to a first rule, where the first rule is related to a priority relationship between the non-serving frequency and the serving frequency .
  • the communications device is configured to execute the method in the foregoing second aspect and various possible implementations thereof.
  • the communication device in the above third aspect or the fourth aspect includes a processor coupled to a memory; the processor is configured to support the device to perform corresponding functions in the above communication method.
  • the memory is used to couple with the processor, which holds the necessary computer programs (or computer-executable instructions) and/or data of the device.
  • the communication device may further include a communication interface for supporting communication between the device and other network elements, such as sending or receiving data and/or signals.
  • the communication interface may be a transceiver, a circuit, a bus, a module or other types of communication interfaces.
  • the memory can be located inside the communication device and integrated with the processor; it can also be located outside the communication device.
  • the communication device in the third or fourth aspect above includes a processor and a transceiver device, the processor is coupled to the transceiver device, and the processor is used to execute computer programs or instructions , to control the transceiver device to receive and send information; when the processor executes the computer program or instructions, the processor is also used to implement the above method through logic circuits or code instructions.
  • the transceiver device may be a transceiver, a transceiver circuit or an input-output interface, which is used to receive signals from other communication devices other than the communication device and transmit them to the processor or transmit signals from the processor to other communication devices other than the communication device.
  • the transceiver device is a transceiver circuit or an input/output interface.
  • the sending unit may be an output unit, such as an output circuit or a communication interface; the receiving unit may be an input unit, such as an input circuit or a communication interface.
  • the sending unit may be a transmitter or a transmitter; the receiving unit may be a receiver or a receiver.
  • a communication system in a fifth aspect, includes the communication device according to the third aspect, or includes the communication device according to the fourth aspect.
  • a computer-readable storage medium on which a computer program or instruction is stored, and when the program or instruction is executed by a processor, as in any one or any of the first aspect or the second aspect, To achieve said method is executed.
  • a computer program product which, when executed on a computing device, causes the method in any aspect or any implementation of the first aspect or the second aspect to be executed.
  • a circuit is provided, the circuit is coupled to a memory, and the circuit is used to execute the method shown in the first aspect or the second aspect or any possible implementation manner thereof.
  • the circuitry may include chip circuitry.
  • FIG. 1 is a schematic structural diagram of a communication system 1000 applied in an embodiment of the present application
  • FIG. 2 is a schematic diagram of an example frequency point priority based on network slicing
  • FIG. 3 is a schematic flowchart of a communication method provided in an embodiment of the present application.
  • FIG. 4 is a schematic diagram of another example of frequency point priority based on network slicing
  • FIG. 5 is a schematic flowchart of another communication method provided by the embodiment of the present application.
  • FIG. 6 is a schematic diagram of determining a non-serving frequency point that does not support network slicing
  • FIG. 7 is a schematic flowchart of another communication method provided by the embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a communication device provided by an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of another communication device provided by an embodiment of the present application.
  • FIG. 1 is a schematic structural diagram of a communication system 1000 applied in an embodiment of the present application.
  • the communication system 1000 includes a radio access network 100 and a core network 200 .
  • the communication system 1000 may also include the Internet 300 .
  • the radio access network 100 may include at least one radio access network device (such as 110a and 110b in FIG. 1 ), and may also include at least one terminal (such as 120a-120j in FIG. 1 ).
  • the terminal is connected to the wireless access network device in a wireless manner, and the wireless access network device is connected to the core network in a wireless or wired manner.
  • the core network equipment and the wireless access network equipment can be independent and different physical equipment, or the functions of the core network equipment and the logical functions of the wireless access network equipment can be integrated on the same physical equipment, or it can be a physical equipment It integrates some functions of core network equipment and some functions of wireless access network equipment. Terminals and wireless access network devices may be connected to each other in a wired or wireless manner.
  • FIG. 1 is only a schematic diagram.
  • the communication system may also include other network devices, such as wireless relay devices and wireless backhaul devices, which are not shown in FIG. 1 .
  • the radio access network equipment can be a base station (base station), an evolved base station (evolved NodeB, eNodeB), a transmission reception point (transmission reception point, TRP), and the next generation in the fifth generation (5th generation, 5G) mobile communication system
  • Base station (next generation NodeB, gNB), the next generation base station in the sixth generation (6th generation, 6G) mobile communication system, the base station in the future mobile communication system or the access node in the WiFi system, etc.; it can also complete the base station part
  • a functional module or unit for example, can be a centralized unit (central unit, CU) or a distributed unit (distributed unit, DU).
  • the radio access network device may be a macro base station (such as 110a in Figure 1), a micro base station or an indoor station (such as 110b in Figure 1), or a relay node or a donor node.
  • the embodiment of the present application does not limit the specific technology and specific equipment form adopted by the radio access network equipment.
  • a base station is used as an example of a radio access network device for description below.
  • a terminal may also be called terminal equipment, user equipment (user equipment, UE), mobile station, mobile terminal, and so on.
  • Terminals can be widely used in various scenarios, such as device-to-device (D2D), vehicle-to-everything (V2X) communication, machine-type communication (MTC), Internet of Things ( internet of things, IOT), virtual reality, augmented reality, industrial control, autonomous driving, telemedicine, smart grid, smart furniture, smart office, smart wearables, smart transportation, smart city, etc.
  • Terminals can be mobile phones, tablet computers, computers with wireless transceiver functions, wearable devices, vehicles, drones, helicopters, airplanes, ships, robots, robotic arms, smart home devices, etc.
  • the embodiment of the present application does not limit the specific technology and specific device form adopted by the terminal.
  • Base stations and terminals can be fixed or mobile. Base stations and terminals can be deployed on land, including indoors or outdoors, handheld or vehicle-mounted; they can also be deployed on water; they can also be deployed on aircraft, balloons and artificial satellites in the air. The embodiments of the present application do not limit the application scenarios of the base station and the terminal.
  • the helicopter or UAV 120i in FIG. base station for base station 110a, 120i is a terminal, that is, communication between 110a and 120i is performed through a wireless air interface protocol.
  • communication between 110a and 120i may also be performed through an interface protocol between base stations.
  • both the base station and the terminal can be collectively referred to as a communication device, 110a and 110b in FIG. 1 It may be referred to as a communication device having a base station function, and 120a-120j in FIG. 1 may be referred to as a communication device having a terminal function.
  • the communication between the base station and the terminal, between the base station and the base station, and between the terminal and the terminal can be carried out through the licensed spectrum, the communication can also be carried out through the unlicensed spectrum, and the communication can also be carried out through the licensed spectrum and the unlicensed spectrum at the same time; Communications may be performed on frequency spectrums below megahertz (gigahertz, GHz), or communications may be performed on frequency spectrums above 6 GHz, or communications may be performed using both frequency spectrums below 6 GHz and frequency spectrums above 6 GHz.
  • the embodiments of the present application do not limit the frequency spectrum resources used for wireless communication.
  • the functions of the terminal may be performed by modules in the terminal (such as a chip or a modem), or may be performed by a device including the terminal function.
  • the base station sends a downlink signal or downlink information to the terminal, and the downlink information is carried on the downlink channel;
  • the terminal sends an uplink signal or uplink information to the base station, and the uplink information is carried on the uplink channel.
  • the terminal needs to establish a wireless connection with the cell controlled by the base station.
  • the cell that has established a wireless connection with the terminal, or the cell where the terminal resides is called the serving cell of the terminal.
  • the serving cell When the terminal communicates with the serving cell, it will also be interfered by signals from neighboring cells.
  • Cell reselection priority may also be called frequency point priority, or frequency absolute priority.
  • the terminal can acquire the cell reselection priority from the system message or dedicated signaling (such as RRC release (release) message) of the current serving cell, or inherit the cell reselection priority from other systems. Taking the cell reselection priority inherited by the terminal from other systems as an example, the terminal reselects from the cell of the 4G system to the cell of the 5G system. When the cell of the 5G system is the serving cell, the cell reselection priority of the 4G system can still be used. class.
  • the cell reselection priority is divided according to the frequency point, that is, cells on the same frequency point have the same cell reselection priority, and the reselection priorities of cells on different frequency points may be the same or different. Therefore, the cell reselection priority can be understood as the frequency point priority.
  • the configuration of the cell reselection priority in the system information or dedicated signaling includes the cell reselection priority and the cell reselection sub-priority.
  • the terminal will add the cell reselection priority to the cell reselection sub-priority, and use the added priority as the final cell reselection priority of the configured frequency point to perform cell reselection.
  • a value range of a cell reselection priority parameter is 0-7, and a larger value of the parameter indicates a higher priority.
  • the value range of the cell reselection subpriority parameter is 0.2, 0.4, 0.6, 0.8, and a larger value of the parameter indicates a higher priority.
  • the sum of the cell reselection priority parameter and the cell reselection sub-priority parameter of a certain frequency point is the final cell reselection priority of the frequency point.
  • the signal quality of the cell may include the received power value (Srxlev) of the cell and the quality value (Squal) of the cell.
  • the signal quality of the cell is obtained through terminal measurement.
  • network slice priority and network slice group priority currently, the terminal can support or be configured (such as configured by a network device) multiple network slices or network slice groups, and a network slice group can include one or more network slices , network slicing can also be called slicing.
  • the network slice priorities of the network slices in the same network slice group can be the same. Take the network slice group as an example to describe, the network slice group priorities of multiple network slice groups may be different, for example: the terminal supports 3 network slice groups, namely network slice group 1, network slice group 2 and network slice group 3, The priority order of network slice groups from high to low is: network slice group 1 > network slice group 2 > network slice group 3.
  • the terminals may support different network slice groups on different frequency points, or the priorities of the network slice groups supported on different frequency points may also be different. Take the different priorities of network slicing groups supported on different frequencies as an example: terminal devices can support network slicing group 1, network slicing group 2, and network slicing group 3 on frequency F1. The lowest ranking is: network slice group 1>network slice group 2>network slice group 3; network slice group 1, network slice group 2, and network slice group 3 can also be supported on frequency F2. The order from high to low is: network slice group 3 > network slice group 2 > network slice group 1.
  • the network slice group priority configured by the network device to the terminal, and the frequency point priority of each network slice group corresponding to the frequency points are shown in Table 1, where the priority order of the network slice group is: network slice group Priority 1 > network slicing group priority 2 > network slicing group priority 3, frequency point priority order is: frequency point priority P4 > frequency point priority P3 > frequency point priority P2 > frequency point priority P1.
  • the cells supporting different network slices or network slice groups on the same frequency point may be the same or different.
  • the cells of frequency F1 supporting network slice group 1 and network slice group 3 are the cells in the cell ID list 1a (such as cell 1 and cell 2)
  • the cells of frequency point F1 supporting network slice group 2 are the cells in the cell ID list 1b cells (such as cell 1 and cell 3).
  • the cell list information in the network slice information is optional.
  • Table 1 is only an example, and the specific form of network switching information may be a table or other forms.
  • the number of slice groups included in the network slice information, and the frequency point information supported by each slice group, each The frequency point priority and cell list information corresponding to the supported frequency points are not limited in this application.
  • the same frequency point can support multiple different network slices, and slice priorities of different network slices can be different.
  • the same frequency point may be configured with different frequency point priorities in different network slices, and the frequency point priority based on network slices cannot be accurately determined. It can be seen from the above description of the cell reselection process that the priorities of the serving frequency point and the non-serving frequency point determine whether the non-serving frequency point can be measured.
  • a terminal is configured with three network slices: network slice 1, network slice 2, and network slice 3.
  • the terminal currently resides in cell 1, and the frequency of cell 1 is F1.
  • Cell 1 configures the priority of network slicing and frequency point priority for the terminal through system information (system information, SI) or dedicated signaling as follows:
  • Frequency 1 supports network slice 1 (frequency priority is 5), network slice 3 (frequency priority is 7);
  • Frequency 2 supports network slice 1 (frequency priority 7), network slice 2 (frequency priority 6);
  • Frequency 3 supports network slicing 1 (frequency priority is 6);
  • Frequency 4 supports network slice 2 (frequency priority is 7);
  • Frequency 5 supports network slice 3 (frequency priority is 4);
  • Frequency point 6 does not support network slicing (this frequency point can also be called a traditional frequency point), and the frequency point priority is 5;
  • Frequency point 7 does not support network slicing (this frequency point can also be called a traditional frequency point), and the frequency point priority is 3.
  • the current standards have agreed to use the following methods as the baseline for cell reselection based on network slices, based on The ordering rules for the priority of frequency points of network slicing are as follows:
  • the network slice-based frequency point priorities (or slice-specific priorities) arranged according to the baseline specified in the standard are shown in FIG. 2 .
  • F1, F2, and F3 support network slicing 1
  • F2 and F4 support network slicing 2
  • F1 and F5 support network slicing 3
  • F6 and F7 do not support network slicing.
  • the frequency point priority of the network slice corresponding to the frequency point is sorted, and the order from high to low is: F2, F3, F1; in multiple frequency points that support network slice 2 Among frequency points, the order from high to low is: F4, F2; among multiple frequency points that support network slice 3, the order from high to low is: F1, F5; The lower order is: F6, F7.
  • the terminal currently resides in cell 1, and the frequency of cell 1 is F1.
  • F2 and F1 support more than one network slice, they appear multiple times in the above network slice-based frequency point prioritization, and there are the following problems:
  • F2 at label 1 has a higher priority than service frequency F1 at label 2
  • F2 at label 3 is higher priority than service frequency F1 at label 2 as low priority. It is not possible to determine whether F2 is a high or low priority relative to F1 based on the baseline specified by the above criteria. Among them, the F2 at the label 1 and the F2 at the label 3 are the same frequency point, but they support different network slices, resulting in different priority ordering of the frequency points.
  • the present application provides a communication solution
  • the terminal passes at least one information of the priority of the network slice supported by the service frequency point, the priority of the network slice supported by the non-service frequency point, or the priority of the first frequency point , can accurately determine the frequency point priority of the service frequency point based on the network slice and the frequency point priority of the non-service frequency point based on the network slice, so that the priority corresponding to the service frequency point and the non-service frequency point can be accurately determined relation.
  • FIG. 3 it is a schematic flowchart of a communication method provided in the embodiment of the present application.
  • the method may include the following steps:
  • the terminal acquires first information.
  • the first information includes at least one of the following information: the priority of the network slice supported by the serving frequency point, the priority of the network slice supported by the non-serving frequency point, or the priority of the first frequency point.
  • the service frequency point refers to the frequency point where the cell where the terminal currently resides is located.
  • Non-service frequency points refer to frequency points other than service frequency points.
  • the terminal is in a non-connected state, that is, an idle state or an inactive state, and the terminal will monitor one or more adjacent cells on non-serving frequency points to determine whether to reselect to one of the adjacent cells, that is, the target cell.
  • each frequency point may include one or more cells.
  • the non-serving frequency and the serving frequency may be an inter-frequency (inter-frequency) frequency or an inter-radio access technology (radio access technology, RAT) frequency (inter-RAT frequency).
  • the neighboring cell may be located at an intra-frequency frequency point, an inter-frequency frequency point or an inter-RAT frequency point.
  • Endpoints can support or be configured with multiple network slices.
  • a terminal may support or be configured with a maximum of 8 network slices.
  • the priority of multiple network slices configured by the terminal may be different.
  • the terminal supports or is configured with 3 network switches
  • the slices are: Network Slice 1, Network Slice 2, and Network Slice 3. According to the priority of network slices, they are sorted from high to low: Network Slice 1>Network Slice 2>Network Slice 3.
  • the network slices supported on a frequency point may be the same or different, and each network slice has a corresponding network slice priority.
  • the terminal can obtain the priority of the network slice.
  • the terminal can acquire the priority of network slices from the non-access stratum (NAS); the terminal can also receive a system message or dedicated signaling sent by the network side, the system message or dedicated signaling includes Priority of network slices.
  • the priority of the network slice may include the priority of the network slice supported on the serving frequency point and the priority of the network slice supported on the non-serving frequency point.
  • the terminal may also acquire the priority of the first frequency point.
  • the first frequency point priority refers to the absolute frequency priority corresponding to the network slice on the frequency point.
  • the first frequency point priority includes the frequency absolute priority of the serving frequency point and the frequency absolute priority of the non-serving frequency point.
  • the terminal may store the first frequency point priority in advance; the terminal may also receive a system message or dedicated signaling sent by the network side, and the system message or dedicated signaling includes the first frequency point priority.
  • the information related to network slicing obtained by the terminal includes:
  • Frequency 1 supports network slice 1 (frequency priority is 5), network slice 3 (frequency priority is 7);
  • Frequency 2 supports network slice 1 (frequency priority 7), network slice 2 (frequency priority 6);
  • Frequency 3 supports network slicing 1 (frequency priority is 6);
  • Frequency 4 supports network slice 2 (frequency priority is 7);
  • Frequency 5 supports network slice 3 (frequency priority is 4);
  • Frequency point 6 does not support network slicing (frequency point priority is 5);
  • Frequency 7 Does not support network slicing (frequency priority is 3).
  • the first frequency point priority is the frequency point priority in brackets.
  • the network side sends the first information through a system message or dedicated signaling, and the first information includes at least one of the above information: the priority of the network slice supported by the service frequency point, the priority of the network slice supported by the non-service frequency point Or the priority of the first frequency point.
  • the network side can send the above at least one piece of information on an information element (information element, IE) in the system message or dedicated signaling; the network side can also send the above at least one information in multiple IEs of the system message or dedicated signaling One piece of information; the network side may also send the above at least two pieces of information in different system messages or dedicated signaling.
  • information element information element
  • the above-mentioned dedicated signaling may be radio resource control (radio resource control, RRC) signaling or media access control-control element (media access control-control element, MAC-CE), etc.
  • RRC radio resource control
  • MAC-CE media access control-control element
  • the terminal determines the second frequency point priority of the serving frequency point and the third frequency point priority of the non-serving frequency point according to the first information.
  • the terminal may determine the second frequency point priority of the serving frequency point and the third frequency point priority of the non-serving frequency point according to the first information.
  • the second frequency point priority is the frequency point priority of the service frequency point based on the network slicing
  • the third frequency point priority is the frequency point priority of the non-service frequency point based on the network slicing.
  • the service frequency point may support one or more network slices with different priorities, and the service frequency point may have different frequency point priorities corresponding to different network slices.
  • the second frequency point priority is based on the priority of the network slice and The priority determined by the frequency point priority corresponding to the service frequency point in the network slice.
  • non-serving frequency points may support one or more network slices with different priorities, and non-serving frequency points may have different frequency point priorities corresponding to different network slices.
  • the second frequency point priority is based on network The priority of the slice and the priority determined by the frequency priority of the non-service frequency point corresponding to the network slice.
  • the above-mentioned second frequency point priority is determined according to the first network slice
  • the third frequency point priority is determined according to the second network slice.
  • the first network slice is a network slice with the lowest priority among at least one network slice supported by the service frequency point.
  • the second frequency point priority may be expressed as a ranking of service frequency points corresponding to network slices with Min (priority of network slices supported by the service frequency point).
  • the second network slice is at least one network slice supported by a non-service frequency point
  • the third frequency point priority may be expressed as a ranking of non-serving frequency points corresponding to network slices with Max (priority of network slices supported by non-serving frequency points).
  • the service frequency is F1
  • the second frequency priority of F1 is determined according to network slice 3.
  • the priority of network slice 3 is the lowest, that is, the frequency priority of F1 It is the frequency point priority at the label 4.
  • F2 is a non-service frequency point
  • the priority of the second frequency point of F2 is determined according to network slice 1.
  • the priority of network slice 1 is the highest, that is, the frequency point priority of F2 is at the label 1 Frequency priority.
  • the F2 at the label 2 and the F1 at the label 4 are the same frequency point, but they support different network slices, resulting in different priority ordering of the frequency points.
  • the relationship between the priority levels corresponding to the service frequency point and the non-service frequency point determined according to this implementation method As follows: F2>F3>F4>F1>F5>F6>F7, that is, non-service frequency points F2, F3, and F4 are high-priority frequency points relative to service frequency point F1, and non-service frequency points F5, F6, and F7 are relative to service frequency points Frequency point F1 is of low priority.
  • the method of determining the priority of the second frequency point and the priority of the third frequency point is different, that is, the priority of the service frequency point based on network slicing takes a smaller value, and the priority of the non-service frequency point based on network slicing The level takes a larger value, so as to determine the relative relationship between the priority of the service frequency point and the non-service frequency point based on the network slice.
  • This implementation method increases the probability that the terminal starts the measurement of the non-serving frequency points, and increases the chance that the terminal reselects to other neighboring cells.
  • the above-mentioned second frequency point priority is determined according to the third network slice
  • the third frequency point priority is determined according to the fourth network slice.
  • the third network slice is a network slice with the highest priority among at least one network slice supported by the service frequency point.
  • the second frequency point priority may be expressed as a ranking of service frequency points corresponding to network slices with Max (priority of network slices supported by the service frequency point).
  • the fourth network slice is a network slice with the highest priority among at least one network slice supported by the non-service frequency point.
  • the third frequency point priority may be expressed as a ranking of non-serving frequency points corresponding to network slices with Max (priority of network slices supported by non-serving frequency points).
  • the service frequency is F1
  • the priority of the second frequency of F1 is determined according to network slice 1.
  • the priority of network slice 1 is the highest, that is, the frequency priority of F1 is the label 2The frequency point priority.
  • F2 is a non-service frequency point, then the priority of the second frequency point of F2 is determined according to network slice 1.
  • the priority of network slice 1 is the highest, that is, the frequency point priority of F2 is at the label 1 Frequency priority.
  • non-service frequency points F2 and F3 are high-priority frequency points relative to service frequency point F1
  • non-service frequency points F4, F5, F6, and F7 are relative to service frequency points Frequency point F1 is of low priority.
  • the method of determining the priority of the second frequency point and the priority of the third frequency point is the same, so that a unified rule of sorting can be realized. Further, this implementation manner can also increase the probability that the terminal reselects to a cell that supports high-priority network slicing.
  • the non-serving frequency point After determining the second frequency point priority of the serving frequency point and the third frequency point priority of the non-serving frequency point, it may be further determined whether the non-serving frequency point can be measured. Exemplarily, according to the priority relationship between the serving frequency point and the non-serving frequency point and the signal quality of the serving cell, it may be evaluated whether to start the measurement of the non-serving frequency point and the measurement of the neighboring cell on the serving frequency point (also called neighbor Area measurement conditions or starting conditions):
  • the non-serving frequency point is a high-priority frequency point relative to the serving frequency point, and the non-serving frequency point is measured unconditionally.
  • the priority of non-serving frequency points based on network slicing is equal to the priority of serving frequency points based on network slicing, or non-serving frequency points are low-priority frequency points relative to service frequency points, or adjacent cells are located at service frequency points on, then:
  • the adjacent cell is located on a non-serving frequency point, the non-serving frequency point and the serving frequency point are different frequency points or across RAT frequency points, and Srxlev>S nonIntraSearchP and Squal>S nonIntraSearchQ , then the measurement of the non-serving frequency point will not be started ; Otherwise start the measurement of the non-serving frequency point.
  • Srxlev and Squal are the signal quality of the serving cell obtained according to the measurement results of the serving cell
  • S IntraSearchP and S IntraSearchQ are the threshold values configured by the network to start co-frequency adjacent cell measurement
  • S nonIntraSearchP and S nonIntraSearchQ are the start-up values configured by the network Threshold value for inter-frequency adjacent cell measurement.
  • the terminal passes at least one of the priority of the network slice supported by the service frequency point, the priority of the network slice supported by the non-service frequency point, or the priority of the first frequency point,
  • the network slice-based frequency priority of service frequency points and the network slice-based frequency point priority of non-service frequency points can be accurately determined, so that the priority relationship between service frequency points and non-service frequency points can be accurately determined .
  • the first information further includes a list of cells supporting network slicing on frequency points.
  • the terminal may determine whether the cell in the cell list on the frequency point can be measured according to the first information.
  • the same frequency point may have different slice-based frequency point priority rankings due to different network slices it supports.
  • the list of cells supporting network slicing on the frequency point it is determined whether the cells in the cell list can be measured.
  • the network slicing information acquired by the terminal also includes a list of cell IDs, namely:
  • Frequency 1 supports network slice 1 (frequency priority is 5) (the cell list supporting network slice 1 includes cell 1 and cell 2), network slice 3 (frequency priority is 7) (supports network slice The cell list of 3 includes cell 1 and cell 3);
  • Frequency 2 supports network slice 1 (frequency priority is 7) (the list of cells supporting network slice 1 includes cell 4 and cell 5), network slice 2 (frequency priority is 6) (supports network slice The cell list of 2 includes cell 6);
  • Frequency 3 supports network slice 1 (frequency priority is 6) (the list of cells supporting network slice 1 includes cell 17);
  • Frequency 4 supports network slice 2 (frequency priority is 7) (the list of cells supporting slice 2 includes cell 8 and cell 9);
  • Frequency 5 supports network slice 3 (frequency priority is 4) (the list of cells supporting slice 3 includes cell 8 and cell 9);
  • Frequency point 6 does not support network slicing (frequency point priority is 5);
  • Frequency 7 Does not support network slicing (frequency priority is 3).
  • F2 is a high-priority frequency according to network slice 1, and the terminal measures unconditionally.
  • the cell measured by the terminal is a cell that supports network slice 1 4 and cell 5.
  • F2 is a low-priority frequency point according to network slice 2, and the terminal measures the cell 6 supporting network slice 2 only when the measurement conditions of the low-priority frequency point are met.
  • This implementation may not depend on the execution of S302. Through this implementation, it can be determined accurately according to the network slice supported by the cell whether the cell can be measured.
  • the terminal is configured with three network slices: network slice 1 , network slice 2 and network slice 3 .
  • the order of priority of these three network slices from high to low is: network slice 1>network slice 2>network slice 3.
  • F1, F2, F3, and F8 support network slicing 1;
  • F1, F4, F5, and F8 support network slicing 2;
  • F2, F4, F5, and F8 support network slicing 3;
  • F6 and F7 do not support network slicing.
  • the priority of frequency points based on network slices arranged according to the baseline or other rules specified in the existing standards is shown in Figure 4, that is, for the frequency points that support network slice 1, the priority of frequency points based on network slice 1 is from high to low For: F2>F1>F3>F8; for support The frequency points of network slice 2 are based on the frequency priority of network slice 2 from high to low: F4>F5>F3>F8; for the frequency points that support network slice 3, it is based on the frequency priority of network slice 3 From high to low: F5>F4>F2>F8; for frequencies that do not support network slicing, the traditional frequency priority from high to low is: F6>F7.
  • F1, F2, F4, F5, and F8 all support multiple network slices.
  • Figure 4 only sorts according to the priority and frequency point priority of the network slices configured in the network, and does not consider supporting multiple network slices. At the same time, it does not consider how to determine the frequency priority based on network slices when the frequency priorities of different frequency points in the same slice are the same. For example, suppose the absolute frequency priority of F2 in slice 1 is the same as the absolute frequency priority of F1. The level is the same, how to determine the frequency priority of the frequency point based on network slicing more reasonably and accurately.
  • the third frequency point may be a service frequency point or a non-service frequency point.
  • the third frequency point may support one or more network slices.
  • this embodiment of the present application also provides another implementation.
  • the network slice-based frequency point priority ranking of the third frequency point is determined according to at least one of the following methods:
  • the frequency point priority of the third frequency point based on network slicing is the above-mentioned second frequency point priority; if the third frequency point is a non-service frequency point, then the third frequency point The frequency point priority based on the network slicing of the point is the above-mentioned third frequency point priority.
  • the above sorting methods (a) to (d) can be used independently or in combination of two or more.
  • both F4 and F5 support network slice 2 and network slice 3, but in the network slice 2 with the highest priority supported, the frequency priority of F4 is higher on F5, therefore, F4's web-based The frequency priority of network slicing is higher than F5.
  • both F1 and F8 support network slice 1 and network slice 2, but F8 also supports network slice 3, that is, the number of network slices supported by F8 is more than that of F1. Then the priority of F8's frequency point based on network slicing is higher than that of F1.
  • the order of frequency point priority from high to low based on network slicing of the third frequency point is: F8>F1>F2>F3>F4>F5>F6> F7.
  • both frequency point 1 and frequency point 2 support network slicing 1
  • frequency point 1 and frequency point 2 correspond to the same frequency point priority of network slice 1, how to determine the frequency point priority of frequency point 1 and frequency point 2 based on the network slice, or frequency point 1 and frequency point 2
  • the priority relationship of network slices It may also be determined according to at least one of the foregoing manners or randomly determined by the terminal. For example, according to method (b), if the frequency points of different frequency points in the same network slice have the same priority, then the priority based on the network slice is determined according to the network slice with the second highest priority supported.
  • F1 also supports network slice 2 (second-highest priority slice), but F2 does not support network slice 2, then the priority of F1 based on network slice is higher than that of F2.
  • F1 also supports network slice 2 (second-highest priority slice), but F2 does not support network slice 2, then the priority of F1 based on network slice is higher than that of F2.
  • frequency points of different frequency points in the same network slice have the same priority, and the more network slices supported by a frequency point, the higher the priority of a frequency point based on network slices.
  • F1 supports more network slices than F2, and the network slice-based priority of F1 is higher than that of F2.
  • the terminal randomly determines the priority of the frequency points. For example, the terminal randomly determines that the network slice-based priority of F1 is higher than that of F2.
  • At least one method can be used independently or in combination.
  • the non-serving frequency point After determining the second frequency point priority of the serving frequency point and the third frequency point priority of the non-serving frequency point, it may be further determined whether the non-serving frequency point can be measured or the reselection evaluation condition of the frequency point can be determined. For details on whether to measure the non-serving frequency point, reference may be made to the description in the foregoing embodiments.
  • the frequency point priority of the third frequency point based on network slicing can be determined more reasonably and accurately, so as to reselect to a cell on a better non-serving frequency point.
  • the terminal When the terminal is in a non-connected state, it can monitor one or more non-serving frequency points.
  • the one or more non-serving frequency points may or may not support network slicing. For non-service frequency points that support network slicing and non-service frequency points that do not support network slicing, whether to determine whether these frequency points can be measured at the same time, there is currently no corresponding solution.
  • the embodiment of the present application also provides a communication solution.
  • the terminal determines that it can measure non-serving frequency points that do not support network slicing according to the first threshold and/or timer, instead of being able to measure frequency points that do not support network slicing at any time.
  • Supports non-serving frequency points of network slicing so that terminals can preferentially measure non-serving frequency points that support network slicing, improve the possibility of terminals reselecting to cells that support network slicing, and increase the terminal's enjoyment of network slicing priority resource configuration or priority
  • the probability of access improves the efficiency of communication.
  • FIG. 5 it is a schematic flowchart of another communication method provided in the embodiment of the present application.
  • the method may include the following steps:
  • the terminal obtains the first threshold and/or the duration of the timer.
  • the network can configure one or more non-serving frequency points for the terminal, and the terminal can select a suitable cell from these frequency points for cell reselection.
  • the one or more non-serving frequency points may or may not support network slicing.
  • the terminal can obtain the first threshold and/or the duration of the timer, and the following are two possible implementations:
  • the terminal may pre-store the first threshold and/or the duration of the timer, and then the terminal may acquire the pre-stored first threshold and/or the duration of the timer.
  • the first threshold and/or the duration of the timer may be pre-programmed in the terminal when the terminal leaves the factory.
  • the first threshold and/or the duration of the timer may be specified by the protocol.
  • the first threshold and/or the duration of the timer may also be configured by the network side.
  • the terminal may acquire the first threshold and/or the duration of the timer by receiving system information or dedicated signaling sent by the network side.
  • the system information or the dedicated signaling includes the first threshold and/or the duration of the timer.
  • the dedicated signaling may be RRC signaling or MAC-CE, etc.
  • the first threshold may be set according to experience, or customized, and so on.
  • the terminal determines, according to the first threshold and/or the timer, that a non-serving frequency point that does not support network slicing can be measured.
  • the terminal When the terminal monitors one or more non-serving frequency points, it expects to be able to preferentially measure or reselect the non-serving frequency points that support network slicing.
  • the network slicing service can be performed as soon as possible in the cell on the frequency point that supports network slicing, thereby improving communication efficiency.
  • whether non-serving frequency points support network slicing is dynamically configured on the network side. If the terminal determines that there are no non-serving frequencies that support network slicing that can be measured, it should also be able to measure non-serving frequencies that do not support network slicing to ensure that the terminal can camp on normally.
  • the terminal determines, according to the first threshold and/or the timer, that it can measure non-serving frequency points that do not support network slicing. That is, the timing or conditions for the terminal to determine to be able to measure non-serving frequency points that do not support network slicing are specified. It is easy to understand that when the first threshold and/or timer conditions are met, the terminal can only measure frequency points that do not support network slicing, but the terminal needs to meet the corresponding neighbor cell measurement requirements when measuring frequency points that do not support network slicing. condition. Prior to measuring the non-serving frequency points that support network slicing before the opportunity or condition is met. It is easy to understand that, before the timing or condition is met, the terminal needs to meet the corresponding adjacent cell measurement condition for measuring the frequency points that support network slicing.
  • the terminal may determine, according to the first threshold, that non-serving frequency points that do not support network slicing can be measured.
  • the signal quality of the serving cell is less than or equal to the first threshold, and the terminal may measure a non-serving frequency that does not support network slicing. That is, when the signal quality of the serving cell is poor, the terminal determines that it can measure a non-serving frequency that does not support network slicing. Assume that the terminal is configured with non-serving frequency points F1, F2, F3, and F4 to support network slicing, and non-serving frequency points F6 and F7 do not support network slicing. If the signal quality of the serving cell is less than or equal to the first threshold, the terminal may measure F6 and F7. It can also be understood that the signal quality of the serving cell is greater than the first threshold, and the terminal does not measure F6 and F7.
  • the timer is not configured or the duration of the timer is configured as infinite, which means that the terminal determines whether it can measure non-serving frequency points that do not support network slicing only depends on the signal quality of the serving cell. If the signal quality of the serving cell is good enough, it is determined that only non-serving frequency points that support network slicing can be measured; otherwise, it is additionally determined that non-serving frequency points that do not support network slicing can be measured.
  • the terminal may determine, according to the timer, that it can measure non-serving frequency points that do not support network slicing.
  • the terminal resides in the serving cell or the terminal starts a cell reselection process based on network slicing, and starts a timer.
  • the terminal determines that it can measure non-serving frequency points that do not support network slicing.
  • the terminal is configured with non-serving frequency points F1, F2, F3, and F4 to support network slicing, and non-serving frequency points F6 and F7 do not support network slicing.
  • the terminal resides in the serving cell or the terminal starts the cell reselection process based on network slicing, and starts the timer T1.
  • the terminal determines that F6 and F7 can be measured.
  • the terminal does not measure F6 and F7.
  • the terminal enters the connected state or the terminal finds a suitable cell for cell reselection, and the terminal stops the timer.
  • the first threshold is not configured or the first threshold is configured as infinitesimal, which means that the final
  • the terminal determines whether it can measure non-serving frequency points that do not support network slicing only depends on the timer.
  • the terminal resides in the serving cell or the terminal starts the cell reselection process based on network slicing, and starts the timer. Before the timer expires, it is determined that only non-serving frequencies that support network slicing can be measured; when the timer expires, it is additionally determined that non-serving frequencies that do not support network slicing can be measured.
  • the terminal may determine, according to the first threshold and the timer, that a non-serving frequency point that does not support network slicing can be measured.
  • the signal quality of the serving cell is greater than or equal to the first threshold, and the terminal starts the timer.
  • the terminal determines that it can measure non-serving frequency points that do not support network slicing.
  • the terminal is configured with non-serving frequency points F1, F2, F3, and F4 to support network slicing, and non-serving frequency points F6 and F7 do not support network slicing. As shown in FIG.
  • the signal quality of the serving cell is greater than or equal to the first threshold, and the terminal starts a timer T1.
  • the terminal determines that it can measure F1-F4; when the timer T1 expires, the terminal determines that it can measure F6-F7, and of course it can also measure F1-F4.
  • the signal quality of the serving cell is less than or equal to the first threshold, and the terminal may measure frequency points that do not support network slicing.
  • the terminal may measure frequencies F1-F4 that support network slicing, or measure frequencies F6-F7 that do not support network slicing.
  • the non-serving frequency point supporting network slicing can be measured. As shown in Fig. 6, all terminals can measure F1-F4.
  • the first rule is related to the priority relationship between the non-serving frequency point and the serving frequency point.
  • the first rule is related to the priority relationship between the non-serving frequency point and the serving frequency point.
  • the terminal determines that it can measure non-serving frequency points that do not support network slicing according to the first threshold and/or timer, instead of being able to measure frequency points that do not support network slicing at any time.
  • Non-serving frequency points so that the terminal can preferentially measure or reselect non-serving frequency points that support network slicing.
  • the terminal enters the connected state, it can perform network slicing services in the cell on the frequency point that supports network slicing as soon as possible, thereby improving The communication efficiency is improved, and the power consumption of the terminal can also be reduced.
  • the terminal determines that there is no non-serving frequency that supports network slicing that can be measured, it should also be able to measure the non-serving frequency that does not support network slicing, giving the opportunity to measure or reselect to a non-serving frequency that does not support network slicing.
  • the terminal starts the measurement of non-serving frequency points that support network slicing and non-serving frequency points that do not support network slicing, and the non-serving frequency points that do not support network slicing first meet the reselection conditions, if the reselection directly does not support network slicing In a cell on a non-serving frequency, the terminal cannot perform network slicing services after it enters the connected state. Therefore, currently there is no corresponding solution for re-evaluating the non-serving frequency points that support network slicing and the non-serving frequency points that do not support network slicing that are started to be measured.
  • FIG. 7 it is a schematic flowchart of another communication method provided in the embodiment of the present application.
  • the method may include the following steps:
  • the terminal acquires first information.
  • the first information includes at least one of the following information: the priority of the network slice supported by the serving frequency point, the priority of the network slice supported by the non-serving frequency point, or the priority of the first frequency point.
  • the terminal determines, according to the first information, the second frequency point priority of the serving frequency point and the third frequency point priority of the non-serving frequency point.
  • the second frequency point priority is the frequency point priority of the service frequency point based on the network slicing
  • the third frequency point priority is the frequency point priority of the non-service frequency point based on the network slicing.
  • the first frequency point is not Frequency points that support network slicing.
  • the terminal determines the non-serving frequency for starting measurement according to the determined second frequency priority of the serving frequency, the third frequency priority of the non-serving frequency, and the signal quality of the serving cell.
  • the non-serving frequency for starting measurement includes a non-serving frequency that does not support network slicing (for example, the first frequency) and a non-serving frequency that supports network slicing (for example, the second frequency).
  • the terminal obtains the signal quality of at least one cell on the first frequency point or at least one cell on the second frequency point, and performs reselection evaluation.
  • reselection conditions according to the relationship between service frequency points and non-service frequency points based on network slicing frequency point priorities, there are corresponding reselection conditions:
  • the frequency point priority of the non-serving frequency point based on network slicing is higher than that of the serving frequency point based on network slicing, then at least one cell on the non-serving frequency point is a high-priority neighbor cell relative to the serving cell . Then, as long as the signal quality of at least one cell on the non-serving frequency point is good enough, the signal quality of the serving cell can be reselected to one of the cells on the non-serving frequency point.
  • the network slice-based frequency point priority of the non-serving frequency point is equal to the network slice-based frequency point priority of the serving frequency point, then at least one cell on the non-serving frequency point is an equal-priority neighbor cell relative to the serving cell. Then compare the signal quality of at least one cell on the non-serving frequency point with the signal quality of the serving cell, and if the signal quality of at least one cell on the non-serving frequency point is higher than or equal to the signal quality of the serving cell, you can reselect to One of the cells on the non-serving frequency.
  • cell reselection may be performed according to a cell reselection criterion (R criterion).
  • the terminal calculates the R value of each cell (also called the cell signal quality Level), and select the appropriate cell according to the R value sorting rules.
  • the frequency point priority of the non-serving frequency point based on network slicing is lower than that of the serving frequency point based on network slicing, then at least one cell on the non-serving frequency point is a low-priority neighbor cell relative to the serving cell . Then, when the signal quality of at least one cell on the non-serving frequency point is good enough and the signal quality of the serving cell is bad enough, one of the cells on the non-serving frequency point can be reselected.
  • Thresh X, HighQ , Thresh X, HighP , Thresh X, LowQ , Thresh Serving, LowQ , Thresh X, LowP and Thresh Serving, LowP are the thresholds configured on the network side
  • Thresh Serving, LowQ , Thresh X, LowP and Thresh Serving, LowP are the thresholds configured on the network side
  • Treselection is the reselection evaluation configured on the network side timer.
  • At least one cell on the first frequency point may be the above-mentioned high-priority neighboring cell, equal-priority neighboring cell or low-priority neighboring cell, which is not limited in this application.
  • the terminal If at least one cell on the first frequency satisfies the reselection condition, the terminal starts a timer.
  • the first frequency point is a frequency point that does not support network slicing. That is, after the terminal starts the measurement of non-serving frequency points that support network slicing and/or non-serving frequency points that do not support network slicing, the frequency point that does not support network slicing first meets the reselection condition, and the terminal needs to wait for a timer duration.
  • step S704. The terminal determines whether the timer times out. If the timer runs, proceed to step S705; if the timer exceeds , proceed to step S706.
  • the terminal judges in real time whether the timer times out.
  • the timer runs, and there is at least one cell in the second frequency point that satisfies the reselection condition, and the terminal reselects to the first cell.
  • the first cell is a cell on the second frequency point
  • the second frequency point is a frequency point supporting network slicing.
  • the signal quality of at least one cell on the first frequency point and the second frequency point may change.
  • the terminal acquires the signal quality of at least one cell on the first frequency point and the second frequency point irregularly or periodically.
  • the timer is running, that is, before the timer expires, after obtaining the updated signal quality of at least one cell on the second frequency point, the terminal reselects at least one cell on the second frequency point according to the above reselection evaluation method Evaluate.
  • At least one cell on the second frequency point may be the above-mentioned high-priority neighboring cell, equal-priority neighboring cell or low-priority neighboring cell, which is not limited in this application.
  • the terminal reselects to the first cell.
  • the first cell is a cell on the second frequency point.
  • the first cell may be selected from the above at least one cell with reference to an existing manner.
  • the timer expires, and the terminal reselects to the second cell.
  • the second cell is a cell on the first frequency point.
  • the second cell may be a cell on a non-serving frequency point or a serving frequency point that does not support network slicing, or the second cell is a cell satisfying the reselection condition in S703. Whether or not a frequency supports network slicing is dynamically configured on the network side. When a terminal returns to the second cell, it is given the opportunity to reselect to a cell on a frequency that does not support network slicing, ensuring that the terminal can reselect to other cells normally.
  • the terminal evaluates whether at least one cell on the above-mentioned non-serving frequency points (including frequency points that support network slicing and frequency points that do not support network slicing) meets the reselection condition, according to the above-mentioned reselection evaluation process, if the non-serving frequency points
  • the service frequency point supports at least two network slices, and the frequency point priority of the non-service frequency point in one of the network slices may be different from the frequency point priority of the other network slice, so that at least one of the non-service frequency point
  • the cell may be a high-priority neighbor cell relative to the serving cell (it can be understood that the priority of the network slice based on the non-serving frequency point where the neighbor cell is located is higher than the service frequency point), or it may be a low-priority neighbor cell (which can be understood as the neighbor cell
  • the priority based on network slicing of the non-service frequency point is lower than that of the service frequency point), and it may also be an equal-
  • F2 supports both network slice 1 and network slice 2.
  • cells supporting network slice 1 on F2 are cell 1 and cell 2
  • cells supporting network slice 3 on F2 are cell 1 and cell 3 .
  • the priority of frequency points based on network slices of F2 is higher than that of F1, therefore, cell 1 and cell 2 that support network slice 1 are high-priority neighbor cells relative to serving cell 4; Cell 1 and cell 3 of network slice 3 are low-priority neighbor cells relative to serving cell 4 .
  • the terminal may determine the reselection evaluation condition according to the information of at least two network slices supported by the cell on the non-serving frequency point.
  • the information of at least two network slices supported by the cell on the non-serving frequency is different, and the terminal may determine the corresponding reselection evaluation condition according to the frequency priority relationship between the non-serving frequency and the serving frequency.
  • cell 1 For cell 1 that supports network slice 1 and network slice 3 at the same time, cell 1 is evaluated according to the reselection conditions corresponding to high-priority neighboring cells. If the reselection conditions are met, the terminal can be reselected to cell 1; The reselection condition corresponding to the priority neighbor cell evaluates cell 1, and if the reselection condition is met, the terminal can still reselect to cell 1. If the reselection condition is not satisfied, the terminal will not reselect to cell 1.
  • the terminal waits for a timer duration.
  • the timer is running, if the frequency point that supports network slicing If there is at least one cell that satisfies the reselection condition, the terminal reselects to the cell on the frequency point. If the timer expires, reselect to a frequency that does not support network slicing. Therefore, the terminal can preferentially reselect to a cell on a frequency point that supports network slicing. Then, when the terminal enters the connected state, the network slicing service can be performed as soon as possible in the cell on the frequency point that supports network slicing, thereby improving the communication efficiency;
  • the non-serving frequency point supports at least two network slices, and the reselection evaluation conditions can be determined according to the information of at least two network slices supported by the cell on the non-serving frequency point, which improves the accuracy of reselection evaluation .
  • the embodiment of the present application also provides a communication solution.
  • the terminal can perform a traditional cell reselection process.
  • the traditional cell reselection performed by the terminal can be understood as the terminal performing cell reselection without considering the network slice, or the terminal performing the cell reselection process with a cell reselection priority irrelevant to the network slice.
  • the terminal When the terminal acquires the network slice-based reselection priority in dedicated signaling (such as an RRC release message), considering that according to the prior art, when the dedicated reselection priority is configured in the dedicated signaling, the terminal will use The reselection priority configured in the dedicated signaling instead of the reselection priority configured in the system message, how should the terminal start the traditional cell reselection process at this time.
  • the network configures network slice-related priorities in dedicated signaling, and does not configure T320 or similar T320 timers (T320 or similar T320 timers can be used to control the effectiveness of dedicated cell reselection priorities), or T320 /Similar to the T320 timer, the duration is long (for example, 180 minutes).
  • the terminal cannot find a suitable cell through network slice-based cell reselection, and cannot perform traditional cell reselection, which will cause a long delay , when the signal quality of the serving cell deteriorates, the terminal may not be able to camp normally.
  • this embodiment provides an implementation manner, by designing a method for deleting the dedicated priority, so that the terminal can fall back from the network slice-based cell reselection to the traditional cell reselection in time.
  • the terminal When the terminal falls back from the network slice-based cell reselection to the traditional cell reselection, the terminal deletes the dedicated priority related to the network slice provided by the dedicated signaling.
  • the fallback of the terminal from network slice-based cell reselection to traditional cell reselection can be understood as the timeout of the slice-based cell reselection timer, or the failure of network slice-based cell reselection to trigger the fallback process. factor.
  • the terminal can perform the traditional cell reselection process based on the traditional frequency point priority configured in the dedicated signaling or the traditional frequency point priority configured in the system message.
  • the terminal should use the dedicated signaling to configure the traditional frequency point priority. If there is no traditional frequency point priority configured in dedicated signaling, the terminal uses the traditional frequency point priority configured in the system message.
  • the "delete dedicated priority" in this implementation manner may also be replaced by: the terminal maintains but does not enable the configuration of the dedicated priority.
  • different cells under the same frequency point may support different network slices or network slice groups.
  • cell (cell) 0 belongs to TA0, and cells 1, 2, and 3 belong to TA1.
  • the cells in one TA support the same network slice or network slice group.
  • TA0 supports network slice group B
  • TA1 supports network slice group A and network slice group B.
  • the slice priority of network slice group A is higher than the slice priority of network slice group B.
  • the terminal currently resides in cell 0, and the frequency point where cell 0 is located is frequency point F0, that is, the service frequency point of the terminal is F0.
  • Table 2 shows the network slicing groups supported by each cell at each frequency point and the corresponding cell reselection priority of the network slicing group at each frequency point.
  • This information can be included in system messages, such as SIB16; it can also be included in dedicated signaling, such as RRC release messages:
  • the cell 0 of the current service frequency F0 belongs to TA0
  • the cell 1 of the current service frequency F0 and the cells 2 and 3 of the frequency F1 belong to TA1
  • this situation belongs to the scenario where the frequency points cross TA.
  • cell 0 (the current serving cell) on frequency F0 only supports network slice group B
  • cell 1 on frequency F0 supports network slice group A and network slice group B. Therefore, how to determine the frequency point priority of the current service frequency point is a problem to be solved in this scenario.
  • both the service frequency point and the non-service frequency point determine the priority of the frequency point according to the network slice group with the highest priority supported by the frequency point, that is, the reselection priority of the frequency point is the highest priority network slice connection supported by the frequency point.
  • the terminal may not measure the signals of other cells on frequency F0 (such as cell 1) and cells on F1 Therefore, the terminal cannot reselect among cells 1 to 3, even if cells 1 to 3 support network slice group A and there are cells with better signal quality.
  • a certain threshold such as S IntraSearchP , S IntraSearchQ , S nonIntraSearchP or S nonIntraSearchQ
  • the service frequency point can determine the frequency point priority according to the slice with the highest priority supported by the current serving cell (that is, the second frequency point priority of the above service frequency point is determined according to the fifth network slice group Among them, the fifth network slice group is the network slice group with the highest priority of network slices in at least one network slice group supported by the serving cell), and the non-service frequency points are determined according to the slice with the highest priority supported by the frequency points.
  • point priority that is, the third frequency point priority of the above-mentioned non-service frequency point is determined according to the sixth network slice group, and the sixth network slice group is the network slice with the highest priority among at least one network slice group supported by the non-service frequency point network slice group).
  • the order of reselection priority of frequencies that support at least one network slice group is the highest priority NSAG supported by the serving cell of the serving frequency and the highest priority NSAG supported by the frequency of the non-serving frequency Order.
  • the serving frequency determines the reselection priority of the serving frequency according to the highest priority NSAG supported by the serving cell
  • the non-serving frequency determines the reselection priority of the non-serving frequency according to the highest priority NSAG supported by the frequency.
  • the order of the frequency points is the order of the cell reselection priority (that is, the first frequency point priority) of the frequency point corresponding to the highest priority NSAG
  • the sequence of the frequency points is the sequence of the frequency points corresponding to the highest cell reselection priority (that is, the highest first frequency point priority) of the highest priority NSAG.
  • the service frequency point F0 determines the frequency point priority according to the network slice group B, and the non-service frequency point determines the frequency point priority according to the network slice group A, so the frequency point priority is F1>F0.
  • the terminal can measure the cell on the frequency point F1.
  • the signal quality of the cell (cell 2 or cell 3) on frequency F1 meets the threshold (such as Thresh X, HighP )
  • the terminal can reselect to the cell on F1 frequency, that is, it can reselect to support network slice group A on the district.
  • Adopting this solution increases the chance and probability of the terminal reselecting to a cell that supports network slicing with a higher priority.
  • the network side may also indicate whether the frequency point priority of the service frequency point is determined according to the highest priority network slice supported by the current serving cell, or determined according to the highest priority network slice supported by the service frequency point. That is, the network sends indication information, and the indication information is used to instruct the terminal to determine the frequency point priority of the service frequency point. For example, the indication information instructs the terminal to determine the priority of the service frequency point according to the network slice with the highest priority supported by the serving cell or the network slice with the highest priority supported by the service frequency point. The terminal receives the indication information, and determines the priority of the service frequency point according to the indication information.
  • network slice groups A, B, and C are only examples, and the network slice group identifiers (identity, ID) between the network slice groups may be the same, but the associated TAs are different, that is, the network slice group ID is in the TA unique and valid.
  • Network slice groups with the same identifier of different TAs may contain the same or different slices.
  • the foregoing embodiment takes slices included in network slice groups with the same identifier in TA0 and TA1 as an example.
  • the network slice group with the highest priority supported by the frequency point, the network slice group with the lowest priority supported by the frequency point, or the network slice group with the highest priority supported by the serving cell are based on the non-access layer (non-access stratum, NAS) to determine the priority provided.
  • the network slice group used to determine the priority of the slice-based cell reselection of the frequency point is the network slice group with priority provided by the NAS.
  • the terminal includes hardware structures and/or software modules corresponding to each function.
  • the present application can be implemented in the form of hardware or a combination of hardware and computer software with reference to the units and method steps of the examples described in the embodiments disclosed in the present application. Whether a certain function is executed by hardware or computer software drives the hardware depends on the specific application scenario and design constraints of the technical solution.
  • FIG. 8 and FIG. 9 are schematic structural diagrams of possible communication devices provided by the embodiments of the present application. These communication devices can be used to realize the functions of the terminal in the foregoing method embodiments, and thus can also realize the beneficial effects of the foregoing method embodiments.
  • the communication device may be one of the terminals 120a-120j shown in FIG. 1, and may also be a module (such as a chip) applied to the terminal.
  • the communication device 800 includes a processing unit 810 and may further include a transceiver unit 820 (indicated by a dotted line in the figure).
  • the communication device 800 is configured to implement the functions of the terminal in the method embodiments shown in FIG. 3 , FIG. 5 or FIG. 7 above.
  • the processing unit 810 is configured to acquire first information, and the first information includes at least one of the following information: service frequency The priority of the network slice supported by the frequency point, the priority of the network slice supported by the non-service frequency point, or the priority of the first frequency point; and the processing unit 810 is further configured to determine the service frequency according to the first information
  • the second frequency point priority of the point and the third frequency point priority of the non-service frequency point the second frequency point priority is the frequency point priority of the service frequency point based on network slicing
  • the first The three-frequency point priority is the frequency point priority based on network slicing of the non-serving frequency points.
  • the second frequency point priority is determined according to the first network slice
  • the third frequency point priority is determined according to Determined by the second network slice
  • the first network slice is a network slice with the lowest network slice priority among at least one network slice supported by the service frequency point
  • the second network slice is supported by the non-service frequency point The network slice with the highest network slice priority among at least one network slice.
  • the second frequency point priority is determined according to a third network slice
  • the third frequency point priority is determined according to a fourth network slice
  • the third network slice is the service frequency point
  • the fourth network slice is the network slice with the highest priority among the at least one network slice supported by the non-serving frequency point.
  • the second frequency point priority is determined according to the fifth network slice
  • the third frequency point priority is determined according to the sixth network slice
  • the fifth network slice is at least A network slice with the highest priority in a network slice
  • the sixth network slice is a network slice with the highest priority in at least one network slice supported by the non-serving frequency point.
  • the first information further includes network slice information supported by the serving cell.
  • the processing unit 810 is further configured to start a timer when at least one cell on a first frequency point meets a reselection condition, and the first frequency point is a frequency point that does not support network slicing.
  • the processing unit 810 is also used to run the timer, there is at least one cell in the second frequency point that satisfies the reselection condition, and reselects to the first cell, and the first cell is the second cell.
  • a cell on a frequency point, the second frequency point is a frequency point supporting network slicing.
  • the processing unit 810 is further configured to reselect to a second cell when the timer expires, and the second cell is a cell on the first frequency point.
  • the processing unit 810 is further configured to determine the second frequency point priority of the third frequency point or the ranking of the third frequency point priority according to at least one of the following methods: according to the third frequency point priority The highest network slice priority supported by the frequency point determines the second frequency point priority or the third frequency point priority of the third frequency point; among multiple frequency points with the same highest network slice priority, according to The priority of the second highest priority network slice supported by the third frequency point determines the second frequency point priority or the third frequency point priority of the third frequency point; or, supports the same Among the multiple frequency points of at least one network slice, according to the frequency point priority of the third frequency point in the network slice with the highest priority supported, determine the second frequency point priority of the third frequency point or The priority of the third frequency point; or, among multiple frequency points supporting at least one same network slice, determine the first frequency point of the third frequency point according to the number of network slices supported by the third frequency point The second frequency point priority or the third frequency point priority; wherein, the third frequency point includes the service frequency point and the non-service frequency point.
  • the non-serving frequency point supports at least two network slices, and the processing unit 810 is further configured to determine the re- Select evaluation criteria.
  • the processing unit 810 is further configured to have different information about at least two network slices supported by the cell on the non-serving frequency, according to the frequency priority of the non-serving frequency and the serving frequency relationship to determine the corresponding reselection evaluation conditions.
  • the processing unit 810 is used to obtain the first threshold and/or the duration of the timer; Based on the first threshold and/or the timer, it is determined that a non-serving frequency point that does not support network slicing can be measured.
  • the processing unit 810 is further configured to determine that a non-serving frequency that does not support network slicing can be measured according to any of the following conditions; wherein, any of the conditions includes: the signal quality of the serving cell is less than or equal to the the first threshold; or the timer expires; or the signal quality of the serving cell is greater than or equal to the first threshold, the timer expires.
  • the processing unit 810 is further configured to start the timer when the communication device resides in the serving cell, or the signal quality of the serving cell is greater than or equal to the first threshold.
  • the processing unit 810 is further configured to determine a non-serving frequency that does not support network slicing for measurement according to a first rule, the relationship between the first rule and the priority of the non-serving frequency and the serving frequency relevant.
  • a communication device 900 includes a processor 910 and an interface circuit 920 .
  • the processor 910 and the interface circuit 920 are coupled to each other.
  • the interface circuit 920 may be a transceiver or an input-output interface.
  • the communication device 900 may further include a memory 930 for storing instructions executed by the processor 910 or storing input data required by the processor 910 to execute the instructions or storing data generated after the processor 910 executes the instructions.
  • the processor 910 is used to implement the functions of the processing unit 810
  • the interface circuit 920 is used to implement the functions of the transceiver unit 820 .
  • the terminal chip implements the functions of the terminal in the above method embodiment.
  • the terminal chip receives information from other modules in the terminal (such as radio frequency modules or antennas), and the information is sent to the terminal by the network side; or, the terminal chip sends information to other modules in the terminal (such as radio frequency modules or antennas), This information is sent by the terminal to the network side.
  • processor in the embodiments of the present application may be a central processing unit (central processing unit, CPU), and may also be other general processors, digital signal processors (digital signal processor, DSP), application specific integrated circuits (application specific integrated circuit, ASIC), field programmable gate array (field programmable gate array, FPGA) or other programmable logic devices, transistor logic devices, hardware components or any combination thereof.
  • CPU central processing unit
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • a general-purpose processor can be a microprocessor, or any conventional processor.
  • the method steps in the embodiments of the present application may be implemented by means of hardware, or may be implemented by means of a processor executing software instructions.
  • Software instructions can be composed of corresponding software modules, and software modules can be stored in random access memory, flash memory, read-only memory, programmable read-only memory, erasable programmable read-only memory, electrically erasable programmable read-only Memory, registers, hard disk, removable hard disk, CD-ROM or any other form of storage medium known in the art.
  • An exemplary storage medium is coupled to the processor such the processor can read information from, and write information to, the storage medium.
  • the storage medium may also be a component of the processor.
  • the processor and storage medium can be located in the ASIC.
  • the ASIC can be located in a network device or a terminal. Certainly, the processor and the storage medium may also exist in the network device or the terminal as discrete components.
  • all or part of them may be implemented by software, hardware, firmware or any combination thereof.
  • software When implemented using software, it may be implemented in whole or in part in the form of a computer program product.
  • the computer program product comprises one or more computer programs or instructions. When the computer program or instructions are loaded and executed on the computer, the processes or functions described in the embodiments of the present application are executed in whole or in part.
  • the computer may be a general purpose computer, a special purpose computer, a computer network, network equipment, user equipment, or other programmable devices.
  • the computer program or instructions may be stored in or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer program or instructions may be downloaded from a website, computer, A server or data center transmits to another website site, computer, server or data center by wired or wireless means.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server or a data center integrating one or more available media.
  • the available medium may be a magnetic medium, such as a floppy disk, a hard disk, or a magnetic tape; it may also be an optical medium, such as a digital video disk; or it may be a semiconductor medium, such as a solid state disk.
  • “at least one” means one or more, and “multiple” means two or more.
  • “And/or” describes the association relationship of associated objects, indicating that there can be three types of relationships, for example, A and/or B, which can mean: A exists alone, A and B exist at the same time, and B exists alone, where A, B can be singular or plural.
  • the character “/” generally indicates that the contextual objects are an “or” relationship; in the formulas of this application, the character “/” indicates that the contextual objects are a "division” Relationship.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种通信方法及装置、存储介质。该方法包括:终端获取第一信息,该第一信息包括以下至少一个信息:服务频点支持的网络切片的优先级、非服务频点支持的网络切片的优先级或第一频点优先级;以及终端根据第一信息,确定服务频点的第二频点优先级和非服务频点的第三频点优先级,第二频点优先级为服务频点的基于网络切片的频点优先级,第三频点优先级为非服务频点的基于网络切片的频点优先级。还公开了相应的装置及存储介质。采用本申请的方案,可以准确地确定服务频点和非服务频点对应的优先级的关系。

Description

通信方法及装置、存储介质
本申请要求于2022年02月14日提交中国国家知识产权局、申请号为202210134123.9、发明名称为“通信方法及装置、存储介质”的中国专利申请的优先权,以及于2022年08月09日提交中国国家知识产权局、申请号为202210952423.8、发明名称为“通信方法及装置、存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法及装置、存储介质。
背景技术
当非连接态(包括空闲态(idle)和非激活态(inactive))的终端驻留在小区时,终端会执行邻区(neighboring cell)的小区重选过程。终端根据小区重选优先级(又称频率绝对优先级)和当前服务小区的信号质量评估是否启动邻近频点的测量和重选。
目前,引入了网络切片(network slice)的概念。网络切片是一个可以提供特定网络能力和网络特征的逻辑网络。一个终端可以支持或被配置多个网络切片。终端被配置的多个网络切片的优先级可能不同。同一频点可以支持多个网络切片,在不同的网络切片中同一频点可能配置有不同的频率优先级。而服务频点和非服务频点对应的优先级的高低决定了该非服务频点是否可以测量。
对于同一频点支持多个网络切片的场景,对于如何准确地确定服务频点和非服务频点对应的优先级的关系,目前尚未有相应的解决方案。
发明内容
本申请提供一种通信方法及装置、存储介质,以准确地确定服务频点和非服务频点对应的优先级的关系。
第一方面,提供了一种通信方法,所述方法包括:终端获取第一信息,所述第一信息包括以下至少一个信息:服务频点支持的网络切片的优先级、非服务频点支持的网络切片的优先级或第一频点优先级;以及终端根据所述第一信息,确定所述服务频点的第二频点优先级和所述非服务频点的第三频点优先级,所述第二频点优先级为所述服务频点的基于网络切片的频点优先级,所述第三频点优先级为所述非服务频点的基于网络切片的频点优先级。
在该方面中,终端通过根据服务频点支持的网络切片的优先级、非服务频点支持的网络切片的优先级或第一频点优先级中的至少一个信息,可以准确地确定服务频点的基于网络切片的频点优先级和非服务频点的基于网络切片的频点优先级,从而可以准确地确定服务频点和非服务频点对应的优先级的关系。
在一种可能的实现中,所述第二频点优先级是根据第一网络切片确定的,所述第三频点优先级是根据第二网络切片确定的,所述第一网络切片是所述服务频点支持的至少一个网络切片中网络切片优先级最低的网络切片,所述第二网络切片是所述非服务频点支持的至少一个网络切片中网络切片优先级最高的网络切片。
在该实现中,确定第二频点优先级和第三频点优先级的方式不同,即服务频点的基于网络切片的优先级取较小值,非服务频点的基于网络切片的优先级取较大值,从而确定服务频点和非服务频点的基于网络切片的优先级的相对关系。本实现方式增加了终端启动非服务频点的测量的概率,增加了终端重选到其他邻区的机会。
在又一种可能的实现中,所述第二频点优先级是根据第三网络切片确定的,所述第三频点优先级是根据第四网络切片确定的,所述第三网络切片是所述服务频点支持的至少一个网络切片中网络切片优先级最高的网络切片,所述第四网络切片是所述非服务频点支持的至少一个网络切片中网络切片优先级最高的网络切片。
在该实现中,确定第二频点优先级和第三频点优先级的方式相同,这样可以实现统一规则的排序。进一步地,本实现方式还可以增加终端重选到支持高优先级网络切片的小区上的机率。
在又一种可能的实现中,所述第二频点优先级是根据第五网络切片确定的,所述第三频点优先级是根据第六网络切片确定的,所述第五网络切片是服务小区支持的至少一个网络切片中网络切片优先级最高的网络切片,所述第六网络切片是所述非服务频点支持的至少一个网络切片中网络切片优先级最高的网络切片。
在又一种可能的实现中,所述第一信息还包括所述服务小区支持的网络切片信息。
在又一种可能的实现中,所述方法还包括:第一频点上的至少一个小区满足重选条件,所述终端启动定时器,所述第一频点为不支持网络切片的频点。
在该实现中,在不支持网络切片的频点上的至少一个小区满足重选条件时,终端等待一个定时器的时长,以使终端尽量重选到支持网络切片的频点上的小区。则终端进入连接态时,可以尽快在该支持网络切片的频点上的小区进行网络切片业务,从而提高了通信的效率。
在又一种可能的实现中,所述方法还包括:所述定时器运行,第二频点中存在至少一个小区满足重选条件,所述终端重选到第一小区,所述第一小区为所述第二频点上的小区,所述第二频点为支持网络切片的频点。
在该实现中,在不支持网络切片的频点上的至少一个小区满足重选条件时,终端等待一个定时器的时长,在定时器运行时,如果支持网络切片的频点存在至少一个小区满足重选条件,则终端重选到该频点上的小区。定时器超时,则重选到不支持网络切片的频点。从而,终端可以优先重选到支持网络切片的频点上的小区。则终端进入连接态时,可以尽快在该支持网络切片的频点上的小区进行网络切片业务,从而提高了通信的效率。
在又一种可能的实现中,所述方法还包括:所述定时器超时,所述终端重选到第二小区,所述第二小区为所述第一频点上的小区。
在又一种可能的实现中,所述根据所述第一信息,所述终端确定所述服务频点的第二频点优先级和所述非服务频点的第三频点优先级,包括:根据以下至少一种方式终端确定第三频点的所述第二频点优先级或所述第三频点优先级的排序:根据所述第三频点支持的最高网络切片优先级,确定所述第三频点的所述第二频点优先级或所述第三频点优先级;最高网络切片优先级相同的多个频点中,根据所述第三频点支持的次高优先级的网络切片的优先级,确定所述第三频点的所述第二频点优先级或所述第三频点优先级;或,支持相同的至少一个网络切片的多个频点中,根据支持的最高优先级的网络切片中所述第三频点的频点优先级,确定所述第三频点的所述第二频点优先级或所述第三频点优先级;或,支持至少一个相同的网络切片的多个频点中,根据所述第三频点支持的网络切片的数量,确定所述第三频点的所述第二频点优先级或所述第三频点优先级;其中,所述第三频点包括所述服务频点、所述非服务频点。
在该实现中,使用上述排序方式,对于支持一个或多个网络切片的第三频点,可以更合理、更准确地确定第三频点的基于网络切片的频点优先级,从而重选到更优的非服务频点上的小区。
在又一种可能的实现中,所述非服务频点支持至少两个网络切片,所述方法还包括:所述终端根据所述非服务频点上的小区支持的所述至少两个网络切片的信息,确定重选评估条件。
在该实现中,在重选评估时,非服务频点支持至少两个网络切片,可以根据非服务频点上的小区支持的至少两个网络切片的信息,确定重选评估条件,提高了重选评估的准确性。
在又一种可能的实现中,所述终端根据所述非服务频点上的小区支持的至少两个网络切片的信息,确定重选评估条件,包括:所述非服务频点上的小区支持的至少两个网络切片的信息不同,所述终端根据所述非服务频点与服务频点的频点优先级的关系,确定对应的重选评估条件。
第二方面,提供了一种通信方法,所述方法包括:终端获取第一阈值和/或定时器的时长;以及所述终端根据所述第一阈值和/或所述定时器,确定能够测量不支持网络切片的非服务频点。
在该方面中,终端通过根据第一阈值和/或定时器,确定能够测量不支持网络切片的非服务频点,而不是在任何时候都能够测量不支持网络切片的非服务频点,从而使得终端可以优先测量或重选到支持网络切片的非服务频点,终端进入连接态时,可以尽快在该支持网络切片的频点上的小区进行网络切片业务,从而提高了通信的效率,也可以降低终端的功耗。如果终端确定没有能够测量的支持网络切片的非服务频点,则也应能够测量不支持网络切片的非服务频点,给予测量或重选到不支持网络切片的非服务频点的机会。
在一种可能的实现中,所述终端根据所述第一阈值和/或所述定时器,确定能够测量不支持网络切片的非服务频点,包括:所述终端根据如下任一条件,确定能够测量不支持网络切片的非服务频点;其中,所述任一条件包括:服务小区的信号质量小于或等于所述第一阈值;或所述定时器超时;或所述服务小区的信号质量大于或等于所述第一阈值,所述定时器超时。
在该实现中,终端根据第一阈值和/或定时器,确定能够测量不支持网络切片的非服务频点。即规定了终端确定能够测量不支持网络切片的非服务频点的时机或条件。容易理解的是,在满足第一阈值和/或定时器的条件时,终端仅是能够测量不支持网络切片的频点,但是终端测量不支持网络切片的频点还需要满足相应的邻区测量条件。在该时机或条件达成之前,优先测量支持网络切片的非服务频点。容易理解的是,在该时机或条件达成之前,终端测量支持网络切片的频点也需要满足相应的邻区测量条件。
在又一种可能的实现中,所述方法还包括:所述终端驻留在所述服务小区,或所述服务小区的信号质量大于或等于所述第一阈值,所述终端启动所述定时器。
在又一种可能的实现中,所述方法还包括:所述终端根据第一规则确定测量不支持网络切片的非服务频点,所述第一规则与所述非服务频点与服务频点的优先级的关系相关。
第三方面,提供了一种通信装置。所述通信装置可以实现上述第一方面中的方法。例如所述通信装置可以芯片或者终端。可以通过软件、硬件、或者通过硬件执行相应的软件实现上述方法。
在一种可能的实现中,所述装置包括:处理单元,还可以包括收发单元;其中,所述处理单元,用于获取第一信息,所述第一信息包括以下至少一个信息:服务频点支持的网络切片的优先级、非服务频点支持的网络切片的优先级或第一频点优先级;以及所述处理单元,还用于根据所述第一信息,确定所述服务频点的第二频点优先级和所述非服务频点的第三频点优先级,所述第二频点优先级为所述服务频点的基于网络切片的频点优先级,所述第三频点优先级为所述非服务频点的基于网络切片的频点优先级。
可选地,所述第二频点优先级是根据第一网络切片确定的,所述第三频点优先级是根据第二网络切片确定的,所述第一网络切片是所述服务频点支持的至少一个网络切片中网络切片优先级最低的网络切片,所述第二网络切片是所述非服务频点支持的至少一个网络切片中网络切片优先级最高的网络切片。
可选地,所述第二频点优先级是根据第三网络切片确定的,所述第三频点优先级是根据第四网络切片确定的,所述第三网络切片是所述服务频点支持的至少一个网络切片中网络切片优先级最高的网络切片,所述第四网络切片是所述非服务频点支持的至少一个网络切片中网络切片优先级最高的网络切片。
可选地,所述第二频点优先级是根据第五网络切片确定的,所述第三频点优先级是根据第六网络切片确定的,所述第五网络切片是服务小区支持的至少一个网络切片中网络切片优先级最高的网络切片,所述第六网络切片是所述非服务频点支持的至少一个网络切片中网络切片优先级最高的网络切片。
可选地,所述第一信息还包括所述服务小区支持的网络切片信息。
可选地,所述处理单元,还用于第一频点上的至少一个小区满足重选条件,启动定时器,所述第一频点为不支持网络切片的频点。
可选地,所述处理单元,还用于所述定时器运行,第二频点中存在至少一个小区满足重选条件,重选到第一小区,所述第一小区为所述第二频点上的小区,所述第二频点为支持网络切片的频点。
可选地,所述处理单元,还用于所述定时器超时,重选到第二小区,所述第二小区为所述第一频点上的小区。
可选地,所述处理单元,还用于根据以下至少一种方式确定第三频点的所述第二频点优先级或所述第三频点优先级的排序:根据所述第三频点支持的最高网络切片优先级,确定所述第三频点的所述第二频点优先级或所述第三频点优先级;最高网络切片优先级相同的多个频点中,根据所述第三频点支持的次高优先级的网络切片的优先级,确定所述第三频点的所述第二频点优先级或所述第三频点优先级;或,支持相同的至少一个网络切片的多个频点中,根据支持的最高优先级的网络切片中所述第三频点的频点优先级,确定所述第三频点的所述第二频点优先级或所述第三频点优先级;或,支持至少一个相同的网络切片的多个频点中,根据所述第三频点支持的网络切片的数量,确定所述第三频点的所述第二频点优先级或所述第三频点优先级;其中,所述第三频点包括所述服务频点、所述非服务频点。
可选地,所述非服务频点支持至少两个网络切片,所述处理单元,还用于根据所述非服务频点上的小区支持的所述至少两个网络切片的信息,确定重选评估条件。
可选地,所述处理单元,还用于所述非服务频点上的小区支持的至少两个网络切片的信息不同,根据所述非服务频点与服务频点的频点优先级的关系,确定对应的重选评估条件。
在另一种可能的实现方式中,该通信装置用于执行上述第一方面及其各种可能的实现中的方法。
第四方面,提供了一种通信装置。所述通信装置可以实现上述第二方面中的方法。例如所述通信装置可以芯片或者终端。可以通过软件、硬件、或者通过硬件执行相应的软件实现上述方法。
在一种可能的实现中,所述装置包括:处理单元,还可以包括收发单元;其中,所述处理单元,用于获取第一阈值和/或定时器的时长;以及所述处理单元,还用于根据所述第一阈值和/或所述定时器,确定能够测量不支持网络切片的非服务频点。
可选地,所述处理单元,还用于根据如下任一条件,确定能够测量不支持网络切片的非服务频点;其中,所述任一条件包括:服务小区的信号质量小于或等于所述第一阈值;或所述定时器超时;或所述服务小区的信号质量大于或等于所述第一阈值,所述定时器超时。
可选地,所述处理单元,还用于所述通信装置驻留在所述服务小区,或所述服务小区的信号质量大于或等于所述第一阈值,启动所述定时器。
可选地,所述处理单元,还用于根据第一规则确定测量不支持网络切片的非服务频点,所述第一规则与所述非服务频点与服务频点的优先级的关系相关。
在另一种可能的实现方式中,该通信装置用于执行上述第二方面及其各种可能的实现中的方法。
在又一种可能的实现方式中,上述第三方面或第四方面中的通信装置包括与存储器耦合的处理器;所述处理器被配置为支持所述装置执行上述通信方法中相应的功能。存储器用于与处理器耦合,其保存所述装置必要的计算机程序(或计算机可执行指令)和/或数据。可选的,所述通信装置还可以包括通信接口用于支持所述装置与其他网元之间的通信,例如数据和/或信号的发送或接收。示例性的,通信接口可以是收发器、电路、总线、模块或其它类型的通信接口。可选的,该存储器可以位于该通信装置内部,和处理器集成在一起;也可以位于该通信装置外部。
在又一种可能的实现方式中,上述第三方面或第四方面中的通信装置包括处理器和收发装置,所述处理器与所述收发装置耦合,所述处理器用于执行计算机程序或指令,以控制所述收发装置进行信息的接收和发送;当所述处理器执行所述计算机程序或指令时,所述处理器还用于通过逻辑电路或执行代码指令实现上述方法。其中,所述收发装置可以为收发器、收发电路或输入输出接口,用于接收来自所述通信装置之外的其它通信装置的信号并传输至所述处理器或将来自所述处理器的信号发送给所述通信装置之外的其它通信装置。当所述通信装置为芯片时,所述收发装置为收发电路或输入输出接口。
当上述第三方面或第四方面中的通信装置为芯片时,发送单元可以是输出单元,比如输出电路或者通信接口;接收单元可以是输入单元,比如输入电路或者通信接口。当所述通信装置为终端时,发送单元可以是发射器或发射机;接收单元可以是接收器或接收机。
第五方面,提供了一种通信系统,所述通信系统包括如第三方面所述的通信装置、或者包括如第四方面所述的通信装置。
第六方面,提供了一种计算机可读存储介质,其上存储有计算机程序或指令,该程序或指令被处理器执行时,如第一方面或第二方面中的任一方面或任一种实现所述的方法被执行。
第七方面,提供了一种计算机程序产品,当其在计算设备上执行时,使得如第一方面或第二方面中的任一方面或任一种实现所述的方法被执行。
第八方面,提供一种电路,该电路与存储器耦合,该电路被用于执行上述第一方面或第二方面或其任意一种可能的实施方式中所示的方法。该电路可包括芯片电路。
附图说明
图1为本申请的实施例应用的通信系统1000的架构示意图;
图2为示例的一种基于网络切片的频点优先级的示意图;
图3为本申请实施例提供的一种通信方法的流程示意图;
图4为示例的又一种基于网络切片的频点优先级的示意图;
图5为本申请实施例提供的又一种通信方法的流程示意图;
图6为确定能够测量不支持网络切片的非服务频点的示意图;
图7为本申请实施例提供的又一种通信方法的流程示意图;
图8为本申请实施例提供的一种通信装置的结构示意图;
图9为本申请实施例提供的又一种通信装置的结构示意图。
具体实施方式
下面结合本申请实施例中的附图对本申请实施例进行描述。
图1是本申请的实施例应用的通信系统1000的架构示意图。如图1所示,该通信系统1000包括无线接入网100和核心网200,可选的,通信系统1000还可以包括互联网300。其中,无线接入网100可以包括至少一个无线接入网设备(如图1中的110a和110b),还可以包括至少一个终端(如图1中的120a-120j)。终端通过无线的方式与无线接入网设备相连,无线接入网设备通过无线或有线方式与核心网连接。核心网设备与无线接入网设备可以是独立的不同的物理设备,也可以是将核心网设备的功能与无线接入网设备的逻辑功能集成在同一个物理设备上,还可以是一个物理设备上集成了部分核心网设备的功能和部分的无线接入网设备的功能。终端和终端之间以及无线接入网设备和无线接入网设备之间可以通过有线或无线的方式相互连接。图1只是示意图,该通信系统中还可以包括其它网络设备,如还可以包括无线中继设备和无线回传设备,在图1中未画出。
无线接入网设备可以是基站(base station)、演进型基站(evolved NodeB,eNodeB)、发送接收点(transmission reception point,TRP)、第五代(5th generation,5G)移动通信系统中的下一代基站(next generation NodeB,gNB)、第六代(6th generation,6G)移动通信系统中的下一代基站、未来移动通信系统中的基站或WiFi系统中的接入节点等;也可以是完成基站部分功能的模块或单元,例如,可以是集中式单元(central unit,CU),也可以是分布式单元(distributed unit,DU)。无线接入网设备可以是宏基站(如图1中的110a),也可以是微基站或室内站(如图1中的110b),还可以是中继节点或施主节点等。本申请的实施例对无线接入网设备所采用的具体技术和具体设备形态不做限定。为了便于描述,下文以基站作为无线接入网设备的例子进行描述。
终端也可以称为终端设备、用户设备(user equipment,UE)、移动台、移动终端等。终端可以广泛应用于各种场景,例如,设备到设备(device-to-device,D2D)、车物(vehicle to everything,V2X)通信、机器类通信(machine-type communication,MTC)、物联网(internet of things,IOT)、虚拟现实、增强现实、工业控制、自动驾驶、远程医疗、智能电网、智能家具、智能办公、智能穿戴、智能交通、智慧城市等。终端可以是手机、平板电脑、带无线收发功能的电脑、可穿戴设备、车辆、无人机、直升机、飞机、轮船、机器人、机械臂、智能家居设备等。本申请的实施例对终端所采用的具体技术和具体设备形态不做限定。
基站和终端可以是固定位置的,也可以是可移动的。基站和终端可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在空中的飞机、气球和人造卫星上。本申请的实施例对基站和终端的应用场景不做限定。
基站和终端的角色可以是相对的,例如,图1中的直升机或无人机120i可以被配置成移动基站,对于那些通过120i接入到无线接入网100的终端120j来说,终端120i是基站;但对于基站110a来说,120i是终端,即110a与120i之间是通过无线空口协议进行通信的。当然,110a与120i之间也可以是通过基站与基站之间的接口协议进行通信的,此时,相对于110a来说,120i也是基站。因此,基站和终端都可以统一称为通信装置,图1中的110a和110b 可以称为具有基站功能的通信装置,图1中的120a-120j可以称为具有终端功能的通信装置。
基站和终端之间、基站和基站之间、终端和终端之间可以通过授权频谱进行通信,也可以通过免授权频谱进行通信,也可以同时通过授权频谱和免授权频谱进行通信;可以通过6千兆赫(gigahertz,GHz)以下的频谱进行通信,也可以通过6GHz以上的频谱进行通信,还可以同时使用6GHz以下的频谱和6GHz以上的频谱进行通信。本申请的实施例对无线通信所使用的频谱资源不做限定。
在本申请的实施例中,终端的功能可以由终端中的模块(如芯片或调制解调器)来执行,也可以由包含有终端功能的装置来执行。
在本申请中,基站向终端发送下行信号或下行信息,下行信息承载在下行信道上;终端向基站发送上行信号或上行信息,上行信息承载在上行信道上。终端为了与基站进行通信,需要与基站控制的小区建立无线连接。与终端建立了无线连接的小区,或终端驻留的小区称为该终端的服务小区。当终端与该服务小区进行通信的时候,还会受到来自邻区的信号的干扰。
为了便于本领域技术人员理解,下面对本申请实施例中的部分用语进行解释说明。
1)、小区重选优先级:小区重选优先级也可以称为频点优先级,或频率绝对优先级。终端可以从当前服务小区的系统消息或专用信令(如RRC释放(release)消息)中获取小区重选优先级,或者从其它系统继承小区重选优先级。以终端从其他系统继承小区重选优先级为例,终端从4G系统的小区重选到了5G系统的小区,在5G系统的小区为服务小区的情况下,仍可使用4G系统的小区重选优先级。小区重选优先级根据频点进行划分,即同一频点上的小区拥有相同的小区重选优先级,不同频点上的小区的重选优先级可以相同,也可以不同。因此小区重选优先级可以理解为频点优先级。通常系统消息或专用信令中的小区重选优先级的配置,包含小区重选优先级和小区重选子优先级。终端会将小区重选优先级与小区重选子优先级相加,并以相加后的优先级作为所配频点最终的小区重选优先级进行小区重选。作为一种示例:小区重选优先级参数(cellreselectionpriority)的取值范围为0~7,该参数值越大表明优先级越高。小区重选子优先级参数(cellreselectionsubpriority)的取值范围为0.2、0.4、0.6、0.8,该参数值越大表明优先级越高。某一频点的小区重选优先级参数和小区重选子优先级参数的和,为该频点最终的小区重选优先级。
2)、小区的信号质量:小区的信号质量可以包括小区的接收功率值(Srxlev)和小区的质量值(Squal)。小区的信号质量通过终端测量得到。
3)、网络切片优先级和网络切片组优先级:目前,终端可以支持或被配置(如被网络设备配置)多个网络切片或网络切片组,一个网络切片组可以包括一个或多个网络切片,网络切片也可以称为切片。同一个网络切片组内的网络切片的网络切片优先级可以相同。以网络切片组为例进行描述,多个网络切片组的网络切片组优先级可能不同,例如:终端支持3个网络切片组,分别为网络切片组1、网络切片组2和网络切片组3,其中按照网络切片组优先级从高到低排序为:网络切片组1>网络切片组2>网络切片组3。在实际部署中,终端在不同的频点上支持的网络切片组可能不同,或不同的频点上支持的网络切片组的优先级也可能不同。以不同频点上支持的网络切片组优先级不同为例:终端设备可以在频点F1上支持网络切片组1、网络切片组2和网络切片组3,其中按照网络切片组优先级从高到低排序为:网络切片组1>网络切片组2>网络切片组3;可以在频点F2上也支持网络切片组1、网络切片组2和网络切片组3,其中按照网络切片组优先级从高到低排序为:网络切片组3>网络切片组2>网络切片组1。
因此从终端的角度,多个网络切片或网络切片组中,不仅存在网络切片或网络切片组优先级,每个网络切片或网络切片组对应的频点的频点优先级也可能不同。例如终端支持的网络切片组(allowed slice group)或被配置的网络切片组(configured slice group)中不仅存在网络切片组优先级,每个网络切片组对应的频点的频点优先级也可能不同。作为一种示例,网络设备配置给终端的网络切片组优先级,和每个网络切片组对应的频点的频点优先级如表1所示,其中网络切片组优先级排序为:网络切片组优先级1>网络切片组优先级2>网络切片组优先级3,频点优先级排序为:频点优先级P4>频点优先级P3>频点优先级P2>频点优先级P1。
表1
由表1可知,同一个频点上支持不同的网络切片或网络切片组的小区可以相同,也可以不同。例如频点F1支持网络切片组1和网络切片组3的小区为小区ID列表1a中的小区(例如小区1和小区2),而频点F1支持网络切片组2的小区为小区ID列表1b中的小区(例如小区1和小区3)。网络切片信息中的小区列表信息是可选配置的。需要说明的是,表1仅为举例,网络切换信息的具体体现形式可以为表格,或者其他形式,此外,网络切片信息包括的切片组个数、以及每个切片组支持的频点信息、每个支持的频点对应的频点优先级、小区列表信息在本申请中不做限制。
前文主要介绍了本申请实施例所涉及到的一些名词概念,下面介绍本申请实施例涉及的技术特征。以下描述以网络切片为例,可以替换为网络切片组。
如前文所述,同一频点可以支持多个不同的网络切片,不同的网络切片的切片优先级可以不同。在不同的网络切片中同一频点可能配置有不同的频点优先级,不能准确地确定基于网络切片的频点优先级。从上述小区重选过程的描述可以看出,服务频点和非服务频点的优先级的高低决定了该非服务频点是否可以测量。
例如,终端被配置了三个网络切片:网络切片1、网络切片2和网络切片3。终端当前驻留在小区1,小区1所在频点为F1。小区1通过系统消息(system information,SI)或专用信令给终端配置了网络切片的优先级和频点优先级如下:
频点1(F1):支持网络切片1(频点优先级为5)、网络切片3(频点优先级为7);
频点2(F2):支持网络切片1(频点优先级为7)、网络切片2(频点优先级为6);
频点3(F3):支持网络切片1(频点优先级为6);
频点4(F4):支持网络切片2(频点优先级为7);
频点5(F5):支持网络切片3(频点优先级为4);
频点6(F6):不支持网络切片(该频点也可以称为传统频点),频点优先级为5;
频点7(F7):不支持网络切片(该频点也可以称为传统频点),频点优先级为3。
目前标准已经同意使用以下方式作为基于网络切片的小区重选的基线(baseline),基于 网络切片的频点优先级的排序规则如下:
(1)首先排列支持最高优先级的网络切片的频点;
(2)在支持最高优先级网络切片的频点之后,再排列支持次高优先级的网络切片的频点;
(3)在支持次高优先级网络切片的频点之后,再排列支持第三优先级的网络切片的频点,依此类推,直到添加所有支持网络切片的频点;
(4)在所有支持网络切片的频点之后,再排列不支持网络切片的频点;
(5)可选的,在支持同一个网络切片的多个频点内,按照网络切片在该频点上对应的频点优先级排序;如果存在多个不支持网络切片的频点(或传统频点),则按照传统的频点优先级排序。
则在上述示例中,根据该标准规定的基线排列出的基于网络切片的频点优先级(或切片特定优先级)如图2所示。其中,F1、F2、F3支持网络切片1,F2、F4支持网络切片2,F1、F5支持网络切片3,F6、F7不支持网络切片。在支持网络切片1的多个频点中,按照网络切片在该频点上对应的频点优先级排序,其从高到低的顺序为:F2、F3、F1;在支持网络切片2的多个频点中,其从高到低的顺序为:F4、F2;在支持网络切片3的多个频点中,其从高到低的顺序为:F1、F5;传统频点的从高到低的顺序为:F6、F7。
终端当前驻留在小区1,小区1所在频点为F1。针对上述配置,F2和F1由于支持超过一个网络切片,因此在上述基于网络切片的频点优先级排序中出现多次,存在如下问题:
根据网络切片1的配置,标号①处的F2相对于标号②处的服务频点F1为高优先级,而根据网络切片2的配置,标号③处的F2相对于标号②处的服务频点F1为低优先级。根据上述标准规定的基线无法确认F2相对F1是高优先级还是低优先级。其中,标号①处的F2和标号③处的F2为同一频点,但是它们支持不同的网络切片,导致它们有不同的频点优先级的排序。
即对于同一频点支持多个网络切片的场景,服务频点和非服务频点对应的优先级的关系不明确。
有鉴于此,本申请提供了一种通信方案,终端通过根据服务频点支持的网络切片的优先级、非服务频点支持的网络切片的优先级或第一频点优先级中的至少一个信息,可以准确地确定服务频点的基于网络切片的频点优先级和非服务频点的基于网络切片的频点优先级,从而可以准确地确定服务频点和非服务频点对应的优先级的关系。
如图3所示,为本申请实施例提供的一种通信方法的流程示意图,该方法可以包括以下步骤:
S301.终端获取第一信息。该第一信息包括以下至少一个信息:服务频点支持的网络切片的优先级、非服务频点支持的网络切片的优先级或第一频点优先级。
在本实施例中,服务频点是指终端当前驻留的小区所在的频点。非服务频点是指除服务频点以外的频点。当前终端处于非连接态,即空闲态或非激活态,终端将监测一个或多个非服务频点上的邻区,以确定是否要重选到其中一个邻区,即目标小区。其中,每个频点可以包括一个或多个小区。
示例性地,非服务频点与服务频点可以是异频(inter-frequency)频点或跨无线接入技术(radio access technology,RAT)频点(inter-RAT frequency)。邻区可以位于同频(intra-frequency)频点、异频频点或跨RAT频点上。
终端可以支持或被配置多个网络切片。示例性地,终端可以支持或被配置最多8个网络切片。终端被配置的多个网络切片的优先级可能不同。例如,终端支持或被配置3个网络切 片,分别为:网络切片1、网络切片2和网络切片3,其中按照网络切片的优先级从高到低排序为:网络切片1>网络切片2>网络切片3。
一个频点(包括服务频点或非服务频点)上支持的网络切片可能相同或不同,每个网络切片具有相应的网络切片优先级。终端可以获取网络切片的优先级。示例性地,终端可以从非接入层(non-access stratum,NAS)获取网络切片的优先级;终端也可以接收网络侧发送的系统消息或专用信令,该系统消息或专用信令中包括网络切片的优先级。该网络切片的优先级可以包括服务频点上支持的网络切片的优先级和非服务频点上支持的网络切片的优先级。
另外,终端还可以获取第一频点优先级。该第一频点优先级指的是频点上网络切片对应的绝对频率优先级。第一频点优先级包括服务频点的频率绝对优先级和非服务频点的频率绝对优先级。终端可以预先存储该第一频点优先级;终端也可以接收网络侧发送的系统消息或专用信令,该系统消息或专用信令中包括该第一频点优先级。例如终端获取的网络切片相关的信息包括:
频点1(F1):支持网络切片1(频点优先级为5)、网络切片3(频点优先级为7);
频点2(F2):支持网络切片1(频点优先级为7)、网络切片2(频点优先级为6);
频点3(F3):支持网络切片1(频点优先级为6);
频点4(F4):支持网络切片2(频点优先级为7);
频点5(F5):支持网络切片3(频点优先级为4);
频点6(F6):不支持网络切片(频点优先级为5);
频点7(F7):不支持网络切片(频点优先级为3)。
其中第一频点优先级为括号中的频点优先级。
示例性地,网络侧通过系统消息或专用信令发送第一信息,该第一信息包括上述至少一个信息:服务频点支持的网络切片的优先级、非服务频点支持的网络切片的优先级或第一频点优先级。网络侧可以在系统消息或专有信令中的一个信元(information element,IE)上发送上述至少一个信息;网络侧也可以在系统消息或专有信令的多个IE中分别发送上述至少一个信息;网络侧还可以在不同的系统消息或专用信令中发送上述至少两个信息。
上述专有信令可以是无线资源控制(radio resource control,RRC)信令或媒体接入控制-控制元素(media access control-control element,MAC-CE)等。
S302.终端根据第一信息,确定服务频点的第二频点优先级和非服务频点的第三频点优先级。
终端获取了第一信息后,可以根据第一信息,确定服务频点的第二频点优先级和非服务频点的第三频点优先级。其中,第二频点优先级为服务频点的基于网络切片的频点优先级,第三频点优先级为非服务频点的基于网络切片的频点优先级。服务频点可能支持一个或多个不同的优先级的网络切片,且服务频点在不同的网络切片对应的频点优先级可能不同,该第二频点优先级是根据网络切片的优先级和服务频点在网络切片对应的频点优先级确定的优先级。同理,非服务频点可能支持一个或多个不同的优先级的网络切片,且非服务频点在不同的网络切片对应的频点优先级可能不同,该第二频点优先级是根据网络切片的优先级和非服务频点在网络切片对应的频点优先级确定的优先级。
在一个实现方式中,上述第二频点优先级是根据第一网络切片确定的,第三频点优先级是根据第二网络切片确定的。第一网络切片是服务频点支持的至少一个网络切片中网络切片优先级最低的网络切片。第二频点优先级可以表示为具有Min(服务频点支持的网络切片的优先级)的网络切片对应的服务频点的排序。第二网络切片是非服务频点支持的至少一个网络切 片中网络切片优先级最高的网络切片。第三频点优先级可以表示为具有Max(非服务频点支持的网络切片的优先级)的网络切片对应的非服务频点的排序。
例如图2的示例中服务频点为F1,则F1的第二频点优先级是根据网络切片3确定的,F1支持的网络切片中网络切片3的优先级最低,即F1的频点优先级为标号④处的频点优先级。F2为非服务频点,则F2的第二频点优先级是根据网络切片1确定的,F2支持的网络切片中网络切片1的优先级最高,即F2的频点优先级为标号①处的频点优先级。其中,标号②处的F2和标号④处的F1为同一频点,但是它们支持不同的网络切片,导致它们有不同的频点优先级的排序。例如在如图2所示的根据已有标准规定的基线排列出的基于网络切片的频点优先级的基础上,根据本实现方式确定的服务频点和非服务频点对应的优先级的关系如下:F2>F3>F4>F1>F5>F6>F7,即非服务频点F2、F3、F4相对服务频点F1为高优先级频点,非服务频点F5、F6、F7相对于服务频点F1为低优先级。
在本实现方式中,确定第二频点优先级和第三频点优先级的方式不同,即服务频点的基于网络切片的优先级取较小值,非服务频点的基于网络切片的优先级取较大值,从而确定服务频点和非服务频点的基于网络切片的优先级的相对关系。本实现方式增加了终端启动非服务频点的测量的概率,增加了终端重选到其他邻区的机会。
在另一个实现方式中,上述第二频点优先级是根据第三网络切片确定的,第三频点优先级是根据第四网络切片确定的。其中,第三网络切片是服务频点支持的至少一个网络切片中网络切片优先级最高的网络切片。第二频点优先级可以表示为具有Max(服务频点支持的网络切片的优先级)的网络切片对应的服务频点的排序。第四网络切片是非服务频点支持的至少一个网络切片中网络切片优先级最高的网络切片。第三频点优先级可以表示为具有Max(非服务频点支持的网络切片的优先级)的网络切片对应的非服务频点的排序。
例如上述举例中服务频点为F1,则F1的第二频点优先级是根据网络切片1确定的,F1支持的网络切片中网络切片1的优先级最高,即F1的频点优先级为标号②处的频点优先级。F2为非服务频点,则F2的第二频点优先级是根据网络切片1确定的,F2支持的网络切片中网络切片1的优先级最高,即F2的频点优先级为标号①处的频点优先级。例如在如图2所示的根据已有标准规定的基线排列出的基于网络切片的频点优先级的基础上,根据本实现方式确定的服务频点和非服务频点对应的优先级的关系如下:F2>F3>F1>F4>F5>F6>F7,即非服务频点F2、F3相对服务频点F1为高优先级频点,非服务频点F4、F5、F6、F7相对于服务频点F1为低优先级。
在本实现方式中,确定第二频点优先级和第三频点优先级的方式相同,这样可以实现统一规则的排序。进一步地,本实现方式还可以增加终端重选到支持高优先级网络切片的小区上的概率。
在确定了服务频点的第二频点优先级和非服务频点的第三频点优先级之后,可以进一步确定是否能够测量该非服务频点。示例性地,可以根据服务频点和非服务频点对应的优先级的关系以及服务小区的信号质量评估是否启动非服务频点的测量和服务频点上邻区的测量(也可以称为邻区测量条件或起测条件):
(1)非服务频点相对服务频点为高优先级频点,则无条件测量该非服务频点。
(2)非服务频点的基于网络切片的优先级与服务频点的基于网络切片的优先级相等,或者非服务频点相对服务频点为低优先级频点,或者邻区位于服务频点上,则:
a)若邻区位于服务频点上,Srxlev>SIntraSearchP并且Squal>SIntraSearchQ,则不启动该邻区的测量;否则启动该邻区的测量;
b)若邻区位于非服务频点上,非服务频点与服务频点为异频频点或跨RAT频点,Srxlev>SnonIntraSearchP并且Squal>SnonIntraSearchQ,则不启动该非服务频点的测量;否则启动该非服务频点的测量。
其中,Srxlev和Squal为根据服务小区的测量结果得到的服务小区的信号质量,SIntraSearchP和SIntraSearchQ为网络配置的启动同频邻区测量的门限值,SnonIntraSearchP和SnonIntraSearchQ为网络配置的启动异频邻区测量的门限值。
即若服务小区的信号质量足够好,则无需启动非服务频点的测量;若服务小区的信号值低于上述门限值,则启动非服务频点的测量。
根据本申请实施例提供的一种通信方法,终端通过根据服务频点支持的网络切片的优先级、非服务频点支持的网络切片的优先级或第一频点优先级中的至少一个信息,可以准确地确定服务频点的基于网络切片的频点优先级和非服务频点的基于网络切片的频点优先级,从而可以准确地确定服务频点和非服务频点对应的优先级的关系。
在另一种实现方式中,第一信息中还包括频点上支持网络切片的小区列表。终端可以根据第一信息确定能否测量频点上的小区列表中的小区。同一频点由于支持的网络切片不同,可能会有不同的基于切片的频点优先级的排序。根据该频点上支持网络切片的小区列表,确定能否测量小区列表中的小区。例如终端获取的网络切片信息中还包括小区ID列表,即:
频点1(F1):支持网络切片1(频点优先级为5)(支持网络切片1的小区列表包括小区1和小区2)、网络切片3(频点优先级为7)(支持网络切片3的小区列表包括小区1和小区3);
频点2(F2):支持网络切片1(频点优先级为7)(支持网络切片1的小区列表包括小区4和小区5)、网络切片2(频点优先级为6)(支持网络切片2的小区列表包括小区6);
频点3(F3):支持网络切片1(频点优先级为6)(支持网络切片1的小区列表包括小区17);
频点4(F4):支持网络切片2(频点优先级为7)(支持切片2的小区列表包括小区8和小区9);
频点5(F5):支持网络切片3(频点优先级为4)(支持切片3的小区列表包括小区8和小区9);
频点6(F6):不支持网络切片(频点优先级为5);
频点7(F7):不支持网络切片(频点优先级为3)。
服务频点为F1,则例如按照图2中的基于网络切片的优先级排序中,F2根据网络切片1为高优先频点,终端无条件测量,此时终端测量的小区为支持网络切片1的小区4和小区5。F2根据网络切片2则是低优先级频点,终端在满足低优先级频点的测量条件时才测量支持网络切片2的小区6。
本实现方式可以不依赖于S302的执行。通过本实现方式,可以准确地根据小区支持的网络切片确定能否测量小区。
如图4所示,为示例的又一种基于网络切片的频点优先级的排列示意图,终端被配置3个网络切片:网络切片1、网络切片2和网络切片3。这3个网络切片的优先级顺序从高到低为:网络切片1>网络切片2>网络切片3。其中,F1、F2、F3、F8支持网络切片1;F1、F4、F5、F8支持网络切片2;F2、F4、F5、F8支持网络切片3;F6、F7不支持网络切片。根据现有标准规定的基线或其他规则排列的基于网络切片的频点优先级如图4所示,即对于支持网络切片1的频点,其基于网络切片1的频点优先级从高到低为:F2>F1>F3>F8;对于支持 网络切片2的频点,其基于网络切片2的频点优先级从高到低为:F4>F5>F3>F8;对于支持网络切片3的频点,其基于网络切片3的频点优先级从高到低为:F5>F4>F2>F8;对于不支持网络切片的频点,其传统的频点优先级从高到低为:F6>F7。
在图4中,F1、F2、F4、F5、F8均支持多个网络切片,然而图4仅根据网络配置的网络切片的优先级和频点优先级进行排序,并未考虑支持多个网络切片的频点,同时没有考虑同一切片内不同频点的频点优先级相同时如何确定基于网络切片的频点优先级,比如假设切片1中F2的绝对频点优先级与F1的绝对频点优先级相同,如何更合理、更准确地确定该频点的基于网络切片的频点优先级。
以任一个频点(例如第三频点)为例,该第三频点可以是服务频点或非服务频点。该第三频点可能支持一个或多个网络切片。对于支持一个或多个网络切片的第三频点,如何更合理、更准确地确定第三频点的基于网络切片的频点优先级,本申请实施例还提供了又一种实现方式。
在该实现方式中,根据以下至少一种方式确定第三频点的基于网络切片的频点优先级的排序:
(a)根据第三频点支持的最高网络切片优先级,确定第三频点的基于网络切片的频点优先级;例如第三频点支持的最高网络切片的优先级越高,第三频点的基于网络切片的频点优先级越高。
(b)最高网络切片优先级相同的多个频点中,根据第三频点支持的次高优先级的网络切片的优先级,确定第三频点的基于网络切片的频点优先级;例如第三频点支持的次高网络切片的优先级越高,第三频点的基于网络切片的频点优先级越高。或,
(c)支持相同的至少一个网络切片的多个频点中,根据支持的最高优先级的网络切片中第三频点的频点优先级,确定第三频点的基于网络切片的频点优先级;例如支持的最高优先级的网络切片中第三频点的频点优先级越高,第三频点的基于网络切片的频点优先级越高。或,
(d)支持至少一个相同的网络切片的多个频点中,根据第三频点支持的网络切片的数量,确定第三频点的基于网络切片的频点优先级。例如第三频点支持的网络切片的数量越多,第三频点的基于网络切片的频点优先级越高。
可选的,第三频点为服务频点,则第三频点的基于网络切片的频点优先级即上述第二频点优先级;第三频点为非服务频点,则第三频点的基于网络切片的频点优先级即上述第三频点优先级。
上述排序方式(a)~排序方式(d)可以独立使用,也可以两个或两个以上结合使用。
仍以上述配置场景的示例为例,独立使用上述排序方式(a)时,以F3、F4为例,因为F3支持的最高优先级的网络切片为网络切片1,而F4支持的最高优先级的网络切片为网络切片为网络切片2,网络切片1的优先级高于网络切片2,则F3的基于网络切片的频点优先级高于F4。
独立使用上述排序方式(b)时,以F1、F2为例,因为F1和F2支持的最高优先级的网络切片均为网络切片1,但是F1支持的次高优先级的网络切片为网络切片2,F2支持的次高优先级的网络切片为网络切片3,而网络切片2的优先级高于网络切片3,因此,F1的基于网络切片的频点优先级高于F2。
独立使用上述排序方式(c)时,以F4、F5为例,F4、F5均支持网络切片2和网络切片3,但是在支持的最高优先级的网络切片2中,F4的频点优先级高于F5,因此,F4的基于网 络切片的频点优先级高于F5。
独立使用上述排序方式(d)时,以F1、F8为例,F1和F8均支持网络切片1和网络切片2,但F8还支持网络切片3,即F8支持的网络切片的数量比F1多,则F8的基于网络切片的频点优先级高于F1。
结合使用上述排序方式(a)~排序方式(d),第三频点的基于网络切片的频点优先级从高到低的顺序为:F8>F1>F2>F3>F4>F5>F6>F7。
还可以结合上述排序方式(a)和排序方式(b),或者结合排序方式(a)和排序方式(c),或者结合排序方式(a)和排序方式(d),或者结合排序方式(a)~排序方式(c),或者结合排序方式(b)和排序方式(c),或者结合排序方式(b)和排序方式(d),或者结合排序方式(c)和排序方式(d),等等,确定第三频点的基于网络切片的频点优先级。本申请对此不作限制。
在另一种实现方式中,如果同一网络切片内不同频点的频点优先级相同,例如根据标准已经同意的基于网络切片的优先级排序的基线,频点1和频点2均支持网络切片1,且频点1和频点2对应网络切片1的频点优先级相同,此时如何确定频点1和频点2的基于网络切片的频点优先级,或频点1和频点2的网络切片的优先级关系。也可以依照上述至少一种方式来确定或终端随机确定。例如依照方式(b),同一网络切片内不同频点的频点优先级相同,则按照支持的次高优先级的网络切片来确定基于网络切片的优先级。例如F1还支持网络切片2(次高优先级切片),但F2不支持网络切片2,则F1的基于网络切片的优先级高于F2。再例如依照方式(d),同一网络切片内不同频点的频点优先级相同,则频点支持的网络切片的数量越多,频点的基于网络切片的优先级越高。例如F1支持的网络切片的数量多于F2,则F1的基于网络切片的优先级高于F2。再例如如果同一网络切片内不同频点的频点优先级相同时,终端随机确定频点的优先级。例如终端随机确定F1的基于网络切片的优先级高于F2。
至少一种方式可以独立使用或结合使用。通过上述实现方式,可以在同一网络切片内不同频点的频点优先级相同时,确定基于网络切片的频点优先级的顺序。
在确定了服务频点的第二频点优先级和非服务频点的第三频点优先级之后,可以进一步确定是否能够测量该非服务频点或确定该频点的重选评估条件。具体是否测量该非服务频点可参考上述实施例中的描述。
在该实现方式中,使用上述排序方式,对于支持一个或多个网络切片的第三频点,可以更合理、更准确地确定第三频点的基于网络切片的频点优先级,从而重选到更优的非服务频点上的小区。
终端处于非连接态时,可对一个或多个非服务频点进行监测。该一个或多个非服务频点可能支持网络切片,也可能不支持网络切片。对于支持网络切片的非服务频点和不支持网络切片的非服务频点,是否确定能够同时测量这些频点,目前没有相应的解决方案。
针对上述问题,本申请实施例还提供了一种通信方案,终端通过根据第一阈值和/或定时器,确定能够测量不支持网络切片的非服务频点,而不是在任何时候都能够测量不支持网络切片的非服务频点,从而使得终端可以优先测量支持网络切片的非服务频点,提高终端重选到支持网络切片的小区的可能性,增加了终端享受到网络切片优先资源配置或优先接入的概率,提高了通信的效率。
如图5所示,为本申请实施例提供的又一种通信方法的流程示意图,该方法可以包括以下步骤:
S501.终端获取第一阈值和/或定时器的时长。
终端处于非连接态时,网络可以为终端配置一个或多个非服务频点,终端可以从这些频点中选择合适的小区进行小区重选。该一个或多个非服务频点可能支持网络切片,也可能不支持网络切片。
终端获取第一阈值和/或定时器的时长的实现方式有多种,如下为两种可能的实现:
在一个实现中,终端可以预先存储第一阈值和/或定时器的时长,则终端可以获取预先存储的第一阈值和/或定时器的时长。示例性,可以在终端出厂时预先在终端中烧录第一阈值和/或定时器的时长。第一阈值和/或定时器时长可以是协议规定的。
在另一个实现中,也可以由网络侧配置第一阈值和/或定时器的时长。终端可以通过接收网络侧发送的系统信息或专有信令,获取第一阈值和/或定时器的时长。其中,在该系统信息或专有信令中包括第一阈值和/或定时器的时长。该专有信令可以是RRC信令或MAC-CE等。
其中,第一阈值可以是根据经验设置的,或者自定义的,等等。
S502.终端根据第一阈值和/或定时器,确定能够测量不支持网络切片的非服务频点。
终端在监测一个或多个非服务频点时,期望能够优先测量或重选支持网络切片的非服务频点,这样,在终端处于非连接态时重选到该非服务频点后,再在终端进入连接态时,可以尽快在该支持网络切片的频点上的小区进行网络切片业务,从而可以提高通信的效率。然而,非服务频点是否支持网络切片,是网络侧动态配置的。如果终端确定没有能够测量的支持网络切片的非服务频点,也应能够测量不支持网络切片的非服务频点,保证终端可以正常驻留。
本实施例中,终端根据第一阈值和/或定时器,确定能够测量不支持网络切片的非服务频点。即规定了终端确定能够测量不支持网络切片的非服务频点的时机或条件。容易理解的是,在满足第一阈值和/或定时器的条件时,终端仅是能够测量不支持网络切片的频点,但是终端测量不支持网络切片的频点还需要满足相应的邻区测量条件。在该时机或条件达成之前,优先测量支持网络切片的非服务频点。容易理解的是,在该时机或条件达成之前,终端测量支持网络切片的频点也需要满足相应的邻区测量条件。
在一个实现方式中,终端可以根据第一阈值,确定能够测量不支持网络切片的非服务频点。示例性地,服务小区的信号质量小于或等于第一阈值,终端可以测量不支持网络切片的非服务频点。即服务小区的信号质量较差时,终端确定能够测量不支持网络切片的非服务频点。假设终端被配置非服务频点F1、F2、F3、F4支持网络切片,非服务频点F6、F7不支持网络切片。服务小区的信号质量小于或等于第一阈值,则终端可以测量F6、F7。也可以理解为,服务小区的信号质量大于第一阈值,终端不测量F6和F7。
在该实现方式中,也可以理解为定时器未配置或定时器的时长配置为无限长,意味着终端确定是否能够测量不支持网络切片的非服务频点仅取决于服务小区的信号质量。服务小区的信号质量足够好,则确定仅能够测量支持网络切片的非服务频点;否则,追加确定能够测量不支持网络切片的非服务频点。
在另一个实现方式中,终端可以根据定时器,确定能够测量不支持网络切片的非服务频点。示例性地,终端驻留在服务小区或终端开始基于网络切片的小区重选过程,启动定时器。定时器超时,终端确定能够测量不支持网络切片的非服务频点。假设终端被配置非服务频点F1、F2、F3、F4支持网络切片,非服务频点F6、F7不支持网络切片。终端驻留在服务小区或终端开始基于网络切片的小区重选过程,启动定时器T1。定时器T1超时,终端确定能够测量F6、F7。定时器超时之前,终端不测量F6和F7。
终端进入连接态或终端找到合适的小区进行小区重选,终端停止该定时器。
在该实现方式中,也可以理解为未配置第一阈值或第一阈值被配置为无穷小,意味着终 端确定是否能够测量不支持网络切片的非服务频点仅取决于定时器。终端驻留在服务小区或终端开始基于网络切片的小区重选过程,启动定时器。定时器超时前,则确定仅能够测量支持网络切片的非服务频点;定时器超时,则追加确定能够测量不支持网络切片的非服务频点。
在又一个实现方式中,终端可以根据第一阈值和定时器,确定能够测量不支持网络切片的非服务频点。示例性地,服务小区的信号质量大于或等于第一阈值,终端启动定时器。定时器超时,终端确定能够测量不支持网络切片的非服务频点。假设终端被配置非服务频点F1、F2、F3、F4支持网络切片,非服务频点F6、F7不支持网络切片。如图6所示的确定能够测量不支持网络切片的非服务频点的示意图,服务小区的信号质量大于或等于第一阈值,终端启动定时器T1。定时器T1超时前,终端确定能够测量F1~F4;定时器T1超时,终端确定能够测量F6~F7,当然也能够测量F1~F4。示例性的,服务小区的信号质量小于或等于第一阈值,终端可以测量不支持网络切片的频点。例如图6中,当服务小区的信号质量小于或等于第一阈值时,终端可以测量支持网络切片频点F1~F4,也可以测量不支持网络切片的F6~F7。
可以理解的是,在上述各个实现方式中,不论服务小区的信号质量的好坏,和/或,不论定时器是否超时,均能够测量支持网络切片的非服务频点。如图6中,终端均能够测量F1~F4。
在确定能够测量不支持网络切片的非服务频点后,是否要测量该非服务频点,则可以根据第一规则确定测量不支持网络切片的非服务频点。其中,该第一规则与非服务频点与服务频点的优先级的关系相关。示例性地,如前述实施例中的描述,首先确定服务频点和非服务频点对应的优先级的关系,然后根据服务频点和非服务频点对应的优先级的关系以及服务小区的信号质量评估是否启动非服务频点的测量。具体可参考前述实施例中的描述,在此不再赘述。
根据本申请实施例提供的一种通信方法,终端通过根据第一阈值和/或定时器,确定能够测量不支持网络切片的非服务频点,而不是在任何时候都能够测量不支持网络切片的非服务频点,从而使得终端可以优先测量或重选到支持网络切片的非服务频点,终端进入连接态时,可以尽快在该支持网络切片的频点上的小区进行网络切片业务,从而提高了通信的效率,也可以降低终端的功耗。如果终端确定没有能够测量的支持网络切片的非服务频点,则也应能够测量不支持网络切片的非服务频点,给予测量或重选到不支持网络切片的非服务频点的机会。
若终端启动了支持网络切片的非服务频点和不支持网络切片的非服务频点的测量,且不支持网络切片的非服务频点优先满足重选条件,如果直接重选到不支持网络切片的非服务频点上的一个小区,则终端进入连接态后,不能进行网络切片的业务。因此,目前对于被启动测量的支持网络切片的非服务频点和不支持网络切片的非服务频点进行重新评估,还没有相应的解决方案。
如图7所示,为本申请实施例提供的又一种通信方法的流程示意图,该方法可以包括以下步骤:
S701.终端获取第一信息。该第一信息包括以下至少一个信息:服务频点支持的网络切片的优先级、非服务频点支持的网络切片的优先级或第一频点优先级。
S702.终端根据第一信息,确定服务频点的第二频点优先级和非服务频点的第三频点优先级。其中,第二频点优先级为服务频点的基于网络切片的频点优先级,第三频点优先级为非服务频点的基于网络切片的频点优先级。
上述步骤S701、S702的具体实现可参考上述实施例的描述,在此不再赘述。
S703.第一频点上的至少一个小区满足重选条件,终端启动定时器。其中,第一频点为不 支持网络切片的频点。
终端根据确定的服务频点的第二频点优先级和非服务频点的第三频点优先级,以及服务小区的信号质量,确定了启动测量的非服务频点。该启动测量的非服务频点包括不支持网络切片的非服务频点(例如,第一频点)和支持网络切片的非服务频点(例如,第二频点)。
终端获取第一频点上的至少一个小区或第二频点上的至少一个小区的信号质量,进行重选评估。其中,根据服务频点和非服务频点的基于网络切片的频点优先级的关系,具有相应的重选条件:
(1)非服务频点的基于网络切片的频点优先级高于服务频点的基于网络切片的频点优先级,则非服务频点上的至少一个小区相对服务小区为高优先级邻区。则只要非服务频点上的至少一个小区的信号质量足够好,可以不考虑服务小区的信号质量,即可重选到非服务频点上的其中一个小区。示例性地:
(a)若threshServingLowQ存在,则Treselection内持续满足Squal>ThreshX,HighQ,Treselection超时后启动重选,否则不重选;
(b)若threshServingLowQ不存在则Treselection内持续满足Srxlev>ThreshX,HighP,Treselection超时后启动重选,否则不重选。
(2)非服务频点的基于网络切片的频点优先级等于服务频点的基于网络切片的频点优先级,则非服务频点上的至少一个小区相对服务小区为等优先级邻区。则将非服务频点上的至少一个小区的信号质量与服务小区的信号质量进行比较,非服务频点上的至少一个小区的信号质量高于或等于服务小区的信号质量,即可重选到非服务频点上的其中一个小区。
示例性地,可以根据小区重选准则(R准则)来进行小区重选。终端根据服务小区和候选邻区(满足小区选择准则即S准则)的参考信号接收功率(reference signal received power,RSRP)测量值等,计算每个小区的R取值(也可以称为小区信号质量等级),并根据R值排序规则选择合适的小区。
(3)非服务频点的基于网络切片的频点优先级低于服务频点的基于网络切片的频点优先级,则非服务频点上的至少一个小区相对服务小区为低优先级邻区。则当非服务频点上的至少一个小区的信号质量足够好,以及服务小区的信号质量足够差时,即可重选到非服务频点上的其中一个小区。示例性地:
a)若threshServingLowQ存在,则Treselection内持续满足服务小区Squal<ThreshServing,LowQ,邻区Squal>ThreshX,LowQ,Treselection超时后启动重选,否则不重选;
b)若threshServingLowQ不存在,则Treselection内持续满足Srxlev<ThreshServing, LowP,邻区Srxlev>ThreshX,LowP,Treselection超时后启动重选,否则不重选。
其中,ThreshX,HighQ、ThreshX,HighP、ThreshX,LowQ、ThreshServing,LowQ、ThreshX,LowP和ThreshServing,LowP均为网络侧配置的门限值,Treselection为网络侧配置的重选评估定时器。
该第一频点上的至少一个小区可以为上述高优先级邻区、等优先级邻区或低优先级邻区,本申请对此不作限制。
若第一频点上的至少一个小区满足重选条件,终端启动定时器。其中,第一频点为不支持网络切片的频点。即终端在启动了支持网络切片的非服务频点和/或不支持网络切片的非服务频点的测量后,不支持网络切片的频点优先满足重选条件,则终端需要等待一个定时器的时长。
S704.终端判断定时器是否超时。如果定时器运行,则进行到步骤S705;如果定时器超 时,则进行到步骤S706。
终端启动定时器后,实时地判断定时器是否超时。
S705.定时器运行,第二频点中存在至少一个小区满足重选条件,终端重选到第一小区。其中,第一小区为第二频点上的小区,第二频点为支持网络切片的频点。
在定时器运行期间,第一频点和第二频点上的至少一个小区的信号质量可能发生变化。终端不定时或周期性地获取第一频点和第二频点上的至少一个小区的信号质量。
定时器运行,即定时器未超时前,终端在获取到更新的第二频点上的至少一个小区的信号质量后,根据上述重选评估方法对第二频点上的至少一个小区进行重选评估。第二频点上的至少一个小区可以为上述高优先级邻区、等优先级邻区或低优先级邻区,本申请对此不作限制。
若第二频点中存在至少一个小区满足重选条件,则终端重选到第一小区。该第一小区为第二频点上的小区。示例性地,可以参考已有的方式从上述至少一个小区中选择第一小区。
S706.定时器超时,终端重选到第二小区。其中,第二小区为第一频点上的小区。
定时器超时,第二频点中仍不存在任一小区满足重选条件,则终端可以重选到第二小区。该第二小区可以是不支持网络切片的非服务频点或服务频点上的小区,或者第二小区为S703中满足重选条件的小区。频点是否支持网络切片是网络侧动态配置的,终端重新到第二小区,给予了重选到不支持网络切片的频点上的小区的机会,保证了终端可以正常重选到其他小区。
进一步地,终端在评估上述非服务频点(包括支持网络切片的频点和不支持网络切片的频点)上的至少一个小区是否满足重选条件时,根据上述重选评估过程,若该非服务频点支持至少两个网络切片,该非服务频点在其中一个网络切片的频点优先级与在另一个网络切片的频点优先级可能不同,则使得该非服务频点上的至少一个小区相对服务小区可能是高优先级邻区(可以理解为邻区所在非服务频点的基于网络切片的优先级高于服务频点),也可能是低优先级邻区(可以理解为邻区所在非服务频点的基于网络切片的优先级低于服务频点),还可能是等优先级邻区(可以理解为邻区所在非服务频点的基于网络切片的优先级等于服务频点,或邻区与服务小区所在频点一致)。
仍参考图4,假设终端当前驻留在F1上的小区4。F2满足测量条件,因此终端开始测量F2。F2同时支持网络切片1和网络切片2。示例性地,F2上支持网络切片1的小区是小区1和小区2,F2上支持网络切片3的小区是小区1和小区3。由于在支持网络切片1的频点中,F2的基于网络切片的频点优先级高于F1,因此,支持网络切片1的小区1和小区2相对服务小区4是高优先级邻区;而支持网络切片3的小区1和小区3相对服务小区4是低优先级邻区。对小区1进行重选评估时,究竟将小区1作为高优先级邻区,按照作为高优先级邻区的重选条件进行评估,还是将小区1作为低优先级邻区,按照作为低优先级邻区的重选条件进行评估,不能确定。
在本实施例中,终端可以根据非服务频点上的小区支持的至少两个网络切片的信息,确定重选评估条件。示例性地,非服务频点上的小区支持的至少两个网络切片的信息不同,终端可以根据非服务频点与服务频点的频点优先级的关系,确定对应的重选评估条件。
仍以图4为例,假设F2满足了基于网络切片1的高优先级测量条件,未满足基于网络切片3的低优先级测量条件,对于支持网络切片1的小区1和小区2,相对服务小区4均为高优先级邻区。则将小区1仅按照高优先级邻区对应的重选条件对小区1进行评估,若满足重选条件,则终端可以重选到小区1;否则不作为候选小区。将小区2按照高优先级邻区对应的重选条件对小区2进行评估,若满足重选条件,则终端可以重选到小区1。
假设F2同时满足基于网络切片1的高优先级起测条件和基于网络切片3的低优先级起测条件,对于仅支持网络切片1的小区2,按照高优先级邻区对应的重选条件对小区2进行评估,若满足重选条件,则终端可以重选到小区1。对于仅支持网络切片3的小区3,按照低优先级邻区对应的重选条件对小区3进行评估,若满足重选条件,则终端可以重选到小区1。对于同时支持网络切片1和网络切片3的小区1,先按照高优先级邻区对应的重选条件对小区1进行评估,若满足重选条件,则终端可以重选到小区1;否则按照低优先级邻区对应的重选条件对小区1进行评估,若满足重选条件,则终端仍可以重选到小区1。若不满足重选条件则终端不重选到小区1上。
根据本申请提供的一种通信方法,在不支持网络切片的频点上的至少一个小区满足重选条件时,终端等待一个定时器的时长,在定时器运行时,如果支持网络切片的频点存在至少一个小区满足重选条件,则终端重选到该频点上的小区。定时器超时,则重选到不支持网络切片的频点。从而,终端可以优先重选到支持网络切片的频点上的小区。则终端进入连接态时,可以尽快在该支持网络切片的频点上的小区进行网络切片业务,从而提高了通信的效率;
在重选评估时,非服务频点支持至少两个网络切片,可以根据非服务频点上的小区支持的至少两个网络切片的信息,确定重选评估条件,提高了重选评估的准确性。
本申请实施例还提供了一种通信方案,当终端基于网络切片的小区重选找不到合适的小区时,终端可以执行传统的小区重选过程。终端执行传统的小区重选可以理解为终端不考虑网络切片进行小区重选,或终端使用与网络切片无关的小区重选优先级进行小区重选过程。当终端在专用信令(例如RRC释放消息)中获取到基于网络切片的重选优先级时,考虑到按照现有技术,当专用信令中配置了专用重选优先级时,终端就会使用专用信令中配置的重选优先级,而不使用系统消息中配置的重选优先级,此时终端应如何开始执行传统的小区重选过程。例如,网络在专用信令中配置了网络切片相关的优先级,且没有配置T320或类似T320计时器(T320或类似T320计时器可以用于控制专用小区重选优先级的有效性),或T320/类似T320计时器的时长较长(例如180分钟),此时终端通过基于网络切片的小区重选找不到合适的小区,又不能进行传统的小区重选,则会造成很长的时延,在服务小区信号质量变差的情况下,还有可能造成终端不能正常驻留。
为了解决上述问题,本实施例提供一种实现方式,通过设计一种删除专用优先级的方法,使得终端可以及时从基于网络切片的小区重选回退到传统的小区重选。
终端从基于网络切片的小区重选回退到传统小区重选时,终端删除专用信令提供的网络切片相关的专用优先级。
可选的,终端从基于网络切片的小区重选回退到传统小区重选可以理解为基于切片相关的小区重选计时器超时,或基于网络切片的小区重选失败等触发该回退过程的因素。
终端删除专用信令提供的网络切片相关的专用优先级后,终端可以基于专用信令配置的传统频点优先级或系统消息中配置的传统频点优先级进行传统的小区重选过程。可选的,如果专用信令配置了传统频点优先级,终端应使用专用信令配置了传统频点优先级。如果没有专用信令配置的传统频点优先级,终端使用系统消息中配置的传统频点优先级。
该实现方式中的“删除专用优先级”也可以替换为:终端维护但并不使能该专用优先级的配置。
在一些场景中,例如跨跟踪区域(tracking area,TA)的场景,同一频点下的不同小区支持的网络切片或网络切片组可能不同。
例如以下场景:小区(cell)0属于TA0,小区1、小区2、小区3属于TA1。其中,同 一个TA内的小区支持的网络切片或网络切片组相同。例如,TA0支持网络切片组B,TA1支持网络切片组A和网络切片组B。
其中,网络切片组A的切片优先级大于网络切片组B的切片优先级。
终端当前驻留在小区0,小区0所在频点为频点F0,即终端的服务频点为F0。
频点上各小区支持网络切片组的情况,以及网络切片组在各频点上对应的小区重选优先级如下表2所示。该信息可以包含在系统消息中,例如SIB16;也可以包含在专用信令中,例如RRC释放消息:
表2
其中,当前服务频点F0的小区0属于TA0,当前服务频点F0的小区1以及频点F1上的小区2和小区3属于TA1,这种情况属于频点跨TA的场景。
由上表可知,频点F0上的小区0(当前服务小区)仅支持网络切片组B,频点F0上的小区1支持网络切片组A和网络切片组B。因此,如何确定当前服务频点的频点优先级,是本场景下要解决的问题。
若服务频点和非服务频点均根据频点支持的最高优先级的网络切片组确定频点优先级,即频点的重选优先级的顺序为频点支持的最高优先级的网络切片接入层组(network slice access stratum group,NSAG)的顺序,在一些场景下,例如上述跨TA场景下,由于服务频点F0和非服务频点F1均按照网络切片组A来确定频点优先级,且网络切片组A对应频点F0的小区重选优先级(7)高于网络切片组A对应的频点F1的小区重选优先级(3),因此频点优先级排序为F0>F1。此时若小区0的信号质量大于某阈值(例如SIntraSearchP、SIntraSearchQ、SnonIntraSearchP或SnonIntraSearchQ),则终端可以不测量频点F0上的其他小区(例如小区1)和F1上的小区的信号质量,因此终端也重选不到小区1~小区3中,即使小区1~小区3支持网络切片组A且存在信号质量较好的小区。
为了解决上述场景中存在的问题,服务频点可以根据当前服务小区支持的最高优先级的切片确定频点优先级(即上述服务频点的第二频点优先级是根据第五网络切片组确定的,其中,第五网络切片组是服务小区支持的至少一个网络切片组中网络切片优先级最高的网络切片组),而非服务频点则根据频点支持的最高优先级的切片来确定频点优先级(即上述非服务频点的第三频点优先级是根据第六网络切片组确定的,第六网络切片组是非服务频点支持的至少一个网络切片组中网络切片优先级最高的网络切片组)。也可以理解为:支持至少一个网络切片组的频点的重选优先级的顺序是对于服务频点的服务小区支持的最高优先级NSAG和对于非服务频点的频点支持的最高优先级NSAG的顺序。或者服务频点根据服务小区支持的最高优先级NSAG确定服务频点的重选优先级,非服务频点根据频点支持的最高优先级NSAG确定非服务频点的重选优先级。进一步地,支持的最高优先级NSAG相同的频点之间,频点的顺序是频点对应该最高优先级NSAG的小区重选优先级(即第一频点优先级)的顺序, 或者频点的顺序是频点对应该最高优先级NSAG的最高的小区重选优先级(即最高的第一频点优先级)的顺序。
则在上述场景下,服务频点F0按照网络切片组B来确定频点优先级,非服务频点按照网络切片组A来确定频点优先级,因此频点优先级排序为F1>F0。此时由于频点F1的频点优先级高于服务频点F0,所以终端可以测量频点F1上的小区。当频点F1上的小区(小区2或小区3)的信号质量满足阈值(例如ThreshX,HighP)时,终端可以重选到F1频点上的小区,即可以重选到支持网络切片组A的小区上。
采用该方案,增加了终端重选到支持更高优先级网络切片的小区上的机会和概率。
进一步地,网络侧还可以指示服务频点的频点优先级是根据当前服务小区支持的最高优先级的网络切片来确定,还是根据服务频点支持的最高优先级的网络切片来确定。即网络发送指示信息,该指示信息用于指示终端确定服务频点的频点优先级的方式。例如指示信息指示终端按照服务小区支持的最高优先级的网络切片或者按照服务频点支持的最高优先级的网络切片确定服务频点的优先级。终端接收该指示信息,并根据该指示信息确定服务频点的优先级。
需要注意的是,上述网络切片组A、B、C仅为示例,网络切片组之间的网络切片组标识(identity,ID)可能相同,但是所关联的TA不同,即网络切片组ID在TA内唯一、有效。不同TA的标识相同的网络切片组包含的切片可能相同,也可能不同。上述实施例是以TA0和TA1内标识相同的网络切片组包含的切片为例。
可以理解的是,频点支持的最高优先级的网络切片组,频点支持的最低优先级的网络切片组或服务小区支持的最高优先级的网络切片组是按照非接入层(non-access stratum,NAS)提供的优先级确定的。确定频点的基于切片的小区重选的优先级使用的网络切片组都是NAS提供了优先级的网络切片组。
示例性地,上述各个实施例可以独立实施,也可以结合起来实施,本申请对此不作限制。
可以理解的是,为了实现上述实施例中功能,终端包括了执行各个功能相应的硬件结构和/或软件模块。本领域技术人员应该很容易意识到,结合本申请中所公开的实施例描述的各示例的单元及方法步骤,本申请能够以硬件或硬件和计算机软件相结合的形式来实现。某个功能究竟以硬件还是计算机软件驱动硬件的方式来执行,取决于技术方案的特定应用场景和设计约束条件。
图8和图9为本申请的实施例提供的可能的通信装置的结构示意图。这些通信装置可以用于实现上述方法实施例中终端的功能,因此也能实现上述方法实施例所具备的有益效果。在本申请的实施例中,该通信装置可以是如图1所示的终端120a-120j中的一个,还可以是应用于终端的模块(如芯片)。
如图8所示,通信装置800包括处理单元810,还可以包括收发单元820(图中以虚线表示)。通信装置800用于实现上述图3、图5或图7中所示的方法实施例中终端的功能。
当通信装置800用于实现图3或图7所示的方法实施例中终端的功能时:所述处理单元810,用于获取第一信息,所述第一信息包括以下至少一个信息:服务频点支持的网络切片的优先级、非服务频点支持的网络切片的优先级或第一频点优先级;以及所述处理单元810,还用于根据所述第一信息,确定所述服务频点的第二频点优先级和所述非服务频点的第三频点优先级,所述第二频点优先级为所述服务频点的基于网络切片的频点优先级,所述第三频点优先级为所述非服务频点的基于网络切片的频点优先级。
可选地,所述第二频点优先级是根据第一网络切片确定的,所述第三频点优先级是根据 第二网络切片确定的,所述第一网络切片是所述服务频点支持的至少一个网络切片中网络切片优先级最低的网络切片,所述第二网络切片是所述非服务频点支持的至少一个网络切片中网络切片优先级最高的网络切片。
可选地,所述第二频点优先级是根据第三网络切片确定的,所述第三频点优先级是根据第四网络切片确定的,所述第三网络切片是所述服务频点支持的至少一个网络切片中网络切片优先级最高的网络切片,所述第四网络切片是所述非服务频点支持的至少一个网络切片中网络切片优先级最高的网络切片。
可选地,所述第二频点优先级是根据第五网络切片确定的,所述第三频点优先级是根据第六网络切片确定的,所述第五网络切片是服务小区支持的至少一个网络切片中网络切片优先级最高的网络切片,所述第六网络切片是所述非服务频点支持的至少一个网络切片中网络切片优先级最高的网络切片。
可选地,所述第一信息还包括所述服务小区支持的网络切片信息。
可选地,所述处理单元810,还用于第一频点上的至少一个小区满足重选条件,启动定时器,所述第一频点为不支持网络切片的频点。
可选地,所述处理单元810,还用于所述定时器运行,第二频点中存在至少一个小区满足重选条件,重选到第一小区,所述第一小区为所述第二频点上的小区,所述第二频点为支持网络切片的频点。
可选地,所述处理单元810,还用于所述定时器超时,重选到第二小区,所述第二小区为所述第一频点上的小区。
可选地,所述处理单元810,还用于根据以下至少一种方式确定第三频点的所述第二频点优先级或所述第三频点优先级的排序:根据所述第三频点支持的最高网络切片优先级,确定所述第三频点的所述第二频点优先级或所述第三频点优先级;最高网络切片优先级相同的多个频点中,根据所述第三频点支持的次高优先级的网络切片的优先级,确定所述第三频点的所述第二频点优先级或所述第三频点优先级;或,支持相同的至少一个网络切片的多个频点中,根据支持的最高优先级的网络切片中所述第三频点的频点优先级,确定所述第三频点的所述第二频点优先级或所述第三频点优先级;或,支持至少一个相同的网络切片的多个频点中,根据所述第三频点支持的网络切片的数量,确定所述第三频点的所述第二频点优先级或所述第三频点优先级;其中,所述第三频点包括所述服务频点、所述非服务频点。
可选地,所述非服务频点支持至少两个网络切片,所述处理单元810,还用于根据所述非服务频点上的小区支持的所述至少两个网络切片的信息,确定重选评估条件。
可选地,所述处理单元810,还用于所述非服务频点上的小区支持的至少两个网络切片的信息不同,根据所述非服务频点与服务频点的频点优先级的关系,确定对应的重选评估条件。
当通信装置800用于实现图5所示的方法实施例中终端的功能时:所述处理单元810,用于获取第一阈值和/或定时器的时长;以及所述处理单元810,还用于根据所述第一阈值和/或所述定时器,确定能够测量不支持网络切片的非服务频点。
可选地,所述处理单元810,还用于根据如下任一条件,确定能够测量不支持网络切片的非服务频点;其中,所述任一条件包括:服务小区的信号质量小于或等于所述第一阈值;或所述定时器超时;或所述服务小区的信号质量大于或等于所述第一阈值,所述定时器超时。
可选地,所述处理单元810,还用于所述通信装置驻留在所述服务小区,或所述服务小区的信号质量大于或等于所述第一阈值,启动所述定时器。
可选地,所述处理单元810,还用于根据第一规则确定测量不支持网络切片的非服务频点,所述第一规则与所述非服务频点与服务频点的优先级的关系相关。
有关上述处理单元810更详细的描述可以直接参考图3、图5或图7所示的方法实施例中相关描述直接得到,这里不加赘述。
如图9所示,通信装置900包括处理器910和接口电路920。处理器910和接口电路920之间相互耦合。可以理解的是,接口电路920可以为收发器或输入输出接口。可选的,通信装置900还可以包括存储器930,用于存储处理器910执行的指令或存储处理器910运行指令所需要的输入数据或存储处理器910运行指令后产生的数据。
当通信装置900用于实现图3、图5或图7所示的方法时,处理器910用于实现上述处理单元810的功能,接口电路920用于实现上述收发单元820的功能。
当上述通信装置为应用于终端的芯片时,该终端芯片实现上述方法实施例中终端的功能。该终端芯片从终端中的其它模块(如射频模块或天线)接收信息,该信息是网络侧发送给终端的;或者,该终端芯片向终端中的其它模块(如射频模块或天线)发送信息,该信息是终端发送给网络侧的。
可以理解的是,本申请的实施例中的处理器可以是中央处理单元(central processing unit,CPU),还可以是其它通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、现场可编程门阵列(field programmable gate array,FPGA)或者其它可编程逻辑器件、晶体管逻辑器件,硬件部件或者其任意组合。通用处理器可以是微处理器,也可以是任何常规的处理器。
本申请的实施例中的方法步骤可以通过硬件的方式来实现,也可以由处理器执行软件指令的方式来实现。软件指令可以由相应的软件模块组成,软件模块可以被存放于随机存取存储器、闪存、只读存储器、可编程只读存储器、可擦除可编程只读存储器、电可擦除可编程只读存储器、寄存器、硬盘、移动硬盘、CD-ROM或者本领域熟知的任何其它形式的存储介质中。一种示例性的存储介质耦合至处理器,从而使处理器能够从该存储介质读取信息,且可向该存储介质写入信息。当然,存储介质也可以是处理器的组成部分。处理器和存储介质可以位于ASIC中。另外,该ASIC可以位于网络设备或终端中。当然,处理器和存储介质也可以作为分立组件存在于网络设备或终端中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机程序或指令。在计算机上加载和执行所述计算机程序或指令时,全部或部分地执行本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、网络设备、用户设备或者其它可编程装置。所述计算机程序或指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机程序或指令可以从一个网站站点、计算机、服务器或数据中心通过有线或无线方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是集成一个或多个可用介质的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质,例如,软盘、硬盘、磁带;也可以是光介质,例如,数字视频光盘;还可以是半导体介质,例如,固态硬盘。
在本申请的各个实施例中,如果没有特殊说明以及逻辑冲突,不同的实施例之间的术语和/或描述具有一致性、且可以相互引用,不同的实施例中的技术特征根据其内在的逻辑关系可以组合形成新的实施例。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。在本申请的文字描述中,字符“/”,一般表示前后关联对象是一种“或”的关系;在本申请的公式中,字符“/”,表示前后关联对象是一种“相除”的关系。
可以理解的是,在本申请的实施例中涉及的各种数字编号仅为描述方便进行的区分,并不用来限制本申请的实施例的范围。上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定。

Claims (33)

  1. 一种通信方法,其特征在于,所述方法包括:
    获取第一信息,所述第一信息包括以下至少一个信息:服务频点支持的网络切片的优先级、非服务频点支持的网络切片的优先级或第一频点优先级;
    根据所述第一信息,确定所述服务频点的第二频点优先级和所述非服务频点的第三频点优先级,所述第二频点优先级为所述服务频点的基于网络切片的频点优先级,所述第三频点优先级为所述非服务频点的基于网络切片的频点优先级。
  2. 根据权利要求1所述的方法,其特征在于,所述第二频点优先级是根据第一网络切片确定的,所述第三频点优先级是根据第二网络切片确定的,所述第一网络切片是所述服务频点支持的至少一个网络切片中网络切片优先级最低的网络切片,所述第二网络切片是所述非服务频点支持的至少一个网络切片中网络切片优先级最高的网络切片。
  3. 根据权利要求1所述的方法,其特征在于,所述第二频点优先级是根据第三网络切片确定的,所述第三频点优先级是根据第四网络切片确定的,所述第三网络切片是所述服务频点支持的至少一个网络切片中网络切片优先级最高的网络切片,所述第四网络切片是所述非服务频点支持的至少一个网络切片中网络切片优先级最高的网络切片。
  4. 根据权利要求1所述的方法,其特征在于,所述第二频点优先级是根据第五网络切片确定的,所述第三频点优先级是根据第六网络切片确定的,所述第五网络切片是服务小区支持的至少一个网络切片中网络切片优先级最高的网络切片,所述第六网络切片是所述非服务频点支持的至少一个网络切片中网络切片优先级最高的网络切片。
  5. 根据权利要求4所述的方法,其特征在于,所述第一信息还包括所述服务小区支持的网络切片信息。
  6. 根据权利要求1-5中任一项所述的方法,其特征在于,所述方法还包括:
    第一频点上的至少一个小区满足重选条件,启动定时器,所述第一频点为不支持网络切片的频点。
  7. 根据权利要求6所述的方法,其特征在于,所述方法还包括:
    所述定时器运行,第二频点中存在至少一个小区满足重选条件,重选到第一小区,所述第一小区为所述第二频点上的小区,所述第二频点为支持网络切片的频点。
  8. 根据权利要求6或7所述的方法,其特征在于,所述方法还包括:
    所述定时器超时,重选到第二小区,所述第二小区为所述第一频点上的小区。
  9. 根据权利要求1-8中任一项所述的方法,其特征在于,所述根据所述第一信息,确定所述服务频点的第二频点优先级和所述非服务频点的第三频点优先级,包括:
    根据以下至少一种方式确定第三频点的所述第二频点优先级或所述第三频点优先级的排序:
    根据所述第三频点支持的最高网络切片优先级,确定所述第三频点的所述第二频点优先级或所述第三频点优先级;
    最高网络切片优先级相同的多个频点中,根据所述第三频点支持的次高优先级的网络切片的优先级,确定所述第三频点的所述第二频点优先级或所述第三频点优先级;或,
    支持相同的至少一个网络切片的多个频点中,根据支持的最高优先级的网络切片中所述第三频点的频点优先级,确定所述第三频点的所述第二频点优先级或所述第三频点优先级;或,
    支持至少一个相同的网络切片的多个频点中,根据所述第三频点支持的网络切片的数量,确定所述第三频点的所述第二频点优先级或所述第三频点优先级;
    其中,所述第三频点包括所述服务频点、所述非服务频点。
  10. 根据权利要求1-9中任一项所述的方法,其特征在于,所述非服务频点支持至少两个网络切片,所述方法还包括:
    根据所述非服务频点上的小区支持的所述至少两个网络切片的信息,确定重选评估条件。
  11. 根据权利要求10所述的方法,其特征在于,所述根据所述非服务频点上的小区支持的至少两个网络切片的信息,确定重选评估条件,包括:
    所述非服务频点上的小区支持的至少两个网络切片的信息不同,根据所述非服务频点与服务频点的频点优先级的关系,确定对应的重选评估条件。
  12. 一种通信方法,其特征在于,所述方法包括:
    获取第一阈值和/或定时器的时长;
    根据所述第一阈值和/或所述定时器,确定能够测量不支持网络切片的非服务频点。
  13. 根据权利要求12所述的方法,其特征在于,所述根据所述第一阈值和/或所述定时器,确定能够测量不支持网络切片的非服务频点,包括:
    根据如下任一条件,确定能够测量不支持网络切片的非服务频点;
    其中,所述任一条件包括:
    服务小区的信号质量小于或等于所述第一阈值;或
    所述定时器超时;或
    所述服务小区的信号质量大于或等于所述第一阈值,所述定时器超时。
  14. 根据权利要求13所述的方法,其特征在于,所述方法还包括:
    终端驻留在所述服务小区,或所述服务小区的信号质量大于或等于所述第一阈值,启动所述定时器。
  15. 根据权利要求12-14中任一项所述的方法,其特征在于,所述方法还包括:
    根据第一规则确定测量不支持网络切片的非服务频点,所述第一规则与所述非服务频点与服务频点的优先级的关系相关。
  16. 一种通信装置,其特征在于,所述装置包括:处理单元;其中,
    所述处理单元,用于获取第一信息,所述第一信息包括以下至少一个信息:服务频点支持的网络切片的优先级、非服务频点支持的网络切片的优先级或第一频点优先级;
    所述处理单元,还用于根据所述第一信息,确定所述服务频点的第二频点优先级和所述非服务频点的第三频点优先级,所述第二频点优先级为所述服务频点的基于网络切片的频点优先级,所述第三频点优先级为所述非服务频点的基于网络切片的频点优先级。
  17. 根据权利要求16所述的装置,其特征在于,所述第二频点优先级是根据第一网络切片确定的,所述第三频点优先级是根据第二网络切片确定的,所述第一网络切片是所述服务频点支持的至少一个网络切片中网络切片优先级最低的网络切片,所述第二网络切片是所述非服务频点支持的至少一个网络切片中网络切片优先级最高的网络切片。
  18. 根据权利要求16所述的装置,其特征在于,所述第二频点优先级是根据第三网络切片确定的,所述第三频点优先级是根据第四网络切片确定的,所述第三网络切片是所述服务频点支持的至少一个网络切片中网络切片优先级最高的网络切片,所述第四网络切片是所述非服务频点支持的至少一个网络切片中网络切片优先级最高的网络切片。
  19. 根据权利要求16所述的装置,其特征在于,所述第二频点优先级是根据第五网络切片确定的,所述第三频点优先级是根据第六网络切片确定的,所述第五网络切片是服务小区支持的至少一个网络切片中网络切片优先级最高的网络切片,所述第六网络切片是所述非服务频点支持的至少一个网络切片中网络切片优先级最高的网络切片。
  20. 根据权利要求19所述的装置,其特征在于,所述第一信息还包括所述服务小区支持的网络切片信息。
  21. 根据权利要求16-20中任一项所述的装置,其特征在于,所述处理单元,还用于第一频点上的至少一个小区满足重选条件,启动定时器,所述第一频点为不支持网络切片的频点。
  22. 根据权利要求21所述的装置,其特征在于,所述处理单元,还用于所述定时器运行,第二频点中存在至少一个小区满足重选条件,重选到第一小区,所述第一小区为所述第二频点上的小区,所述第二频点为支持网络切片的频点。
  23. 根据权利要求21或22所述的装置,其特征在于,所述处理单元,还用于所述定时器超时,重选到第二小区,所述第二小区为所述第一频点上的小区。
  24. 根据权利要求16-23中任一项所述的装置,其特征在于,所述处理单元,还用于根据以下至少一种方式确定第三频点的所述第二频点优先级或所述第三频点优先级的排序:
    根据所述第三频点支持的最高网络切片优先级,确定所述第三频点的所述第二频点优先级或所述第三频点优先级;
    最高网络切片优先级相同的多个频点中,根据所述第三频点支持的次高优先级的网络切片的优先级,确定所述第三频点的所述第二频点优先级或所述第三频点优先级;或,
    支持相同的至少一个网络切片的多个频点中,根据支持的最高优先级的网络切片中所述第三频点的频点优先级,确定所述第三频点的所述第二频点优先级或所述第三频点优先级;或,
    支持至少一个相同的网络切片的多个频点中,根据所述第三频点支持的网络切片的数量,确定所述第三频点的所述第二频点优先级或所述第三频点优先级;
    其中,所述第三频点包括所述服务频点、所述非服务频点。
  25. 根据权利要求16-24中任一项所述的装置,其特征在于,所述非服务频点支持至少两个网络切片,所述处理单元,还用于根据所述非服务频点上的小区支持的所述至少两个网络切片的信息,确定重选评估条件。
  26. 根据权利要求25所述的装置,其特征在于,所述处理单元,还用于所述非服务频点上的小区支持的至少两个网络切片的信息不同,根据所述非服务频点与服务频点的频点优先级的关系,确定对应的重选评估条件。
  27. 一种通信装置,其特征在于,所述装置包括:处理单元;其中;
    所述处理单元,用于获取第一阈值和/或定时器的时长;
    所述处理单元,还用于根据所述第一阈值和/或所述定时器,确定能够测量不支持网络切片的非服务频点。
  28. 根据权利要求27所述的装置,其特征在于,所述处理单元,还用于根据如下任一条件,确定能够测量不支持网络切片的非服务频点;
    其中,所述任一条件包括:
    服务小区的信号质量小于或等于所述第一阈值;或
    所述定时器超时;或
    所述服务小区的信号质量大于或等于所述第一阈值,所述定时器超时。
  29. 根据权利要求28所述的装置,其特征在于,所述处理单元,还用于所述通信装置驻留在所述服务小区,或所述服务小区的信号质量大于或等于所述第一阈值,启动所述定时器。
  30. 根据权利要求27-29中任一项所述的装置,其特征在于,所述处理单元,还用于根据第一规则确定测量不支持网络切片的非服务频点,所述第一规则与所述非服务频点与服务频点的优先级的关系相关。
  31. 一种通信装置,其特征在于,包括处理器和接口电路,所述接口电路用于接收来自所述通信装置之外的其它通信装置的信号并传输至所述处理器或将来自所述处理器的信号发送给所述通信装置之外的其它通信装置,所述处理器通过逻辑电路或执行代码指令用于实现如权利要求1-11中任一项所述的方法,或者实现如权利要求12-15中任一项所述的方法。
  32. 一种计算机可读存储介质,其特征在于,所述存储介质中存储有计算机程序或指令,当所述计算机程序或指令被通信装置执行时,实现如权利要求1-11中任一项所述的方法,或 者实现如权利要求12-15中任一项所述的方法。
  33. 一种计算机程序产品,其特征在于,当其在计算设备上执行时,使得如权利要求1-11中任一项所述的方法,或者如权利要求12-15中任一项所述的方法被执行。
PCT/CN2023/072782 2022-02-14 2023-01-18 通信方法及装置、存储介质 WO2023151462A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202210134123 2022-02-14
CN202210134123.9 2022-02-14
CN202210952423.8 2022-08-09
CN202210952423.8A CN116634456A (zh) 2022-02-14 2022-08-09 通信方法及装置、存储介质

Publications (1)

Publication Number Publication Date
WO2023151462A1 true WO2023151462A1 (zh) 2023-08-17

Family

ID=87563544

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/072782 WO2023151462A1 (zh) 2022-02-14 2023-01-18 通信方法及装置、存储介质

Country Status (1)

Country Link
WO (1) WO2023151462A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017140342A1 (en) * 2016-02-15 2017-08-24 Telefonaktiebolaget Lm Ericsson (Publ) Radio network node, wireless device and methods performed therein
CN111386727A (zh) * 2020-01-20 2020-07-07 北京小米移动软件有限公司 小区重选、信息传输方法及装置、通信设备及存储介质
CN113950108A (zh) * 2020-07-15 2022-01-18 大唐移动通信设备有限公司 一种小区重选方法、装置、终端及网络节点
WO2022011642A1 (zh) * 2020-07-16 2022-01-20 Oppo广东移动通信有限公司 小区重选的方法、终端设备和网络设备

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017140342A1 (en) * 2016-02-15 2017-08-24 Telefonaktiebolaget Lm Ericsson (Publ) Radio network node, wireless device and methods performed therein
CN111386727A (zh) * 2020-01-20 2020-07-07 北京小米移动软件有限公司 小区重选、信息传输方法及装置、通信设备及存储介质
CN113950108A (zh) * 2020-07-15 2022-01-18 大唐移动通信设备有限公司 一种小区重选方法、装置、终端及网络节点
WO2022011642A1 (zh) * 2020-07-16 2022-01-20 Oppo广东移动通信有限公司 小区重选的方法、终端设备和网络设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
QUALCOMM INCORPORATED: "Slice specific cell reselection", 3GPP DRAFT; R2-2102696, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. E-Conference; 20210412 - 20210420, 2 April 2021 (2021-04-02), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052174324 *

Similar Documents

Publication Publication Date Title
US10051538B2 (en) Method and a system for managing cell selection in a wireless network system
WO2021134496A1 (zh) 通信方法及装置
WO2022068797A1 (zh) 网络接入方法、网络接入装置、终端和网络侧设备
WO2022228559A1 (zh) 小区重选的方法、通信装置和计算机可读存储介质
WO2023004965A1 (zh) 邻区测量方法及装置
CN112544107A (zh) 无sib1的nr小区的cgi报告过程
WO2021016894A1 (zh) 重选小区的方法和无人机终端
CN113141641B (zh) 小区重选的方法及设备
CN114342469B (zh) 小区选择的方法与通信装置
CN116671184A (zh) 一种用于小区选择或重选的方法、终端设备和网络设备
WO2023151462A1 (zh) 通信方法及装置、存储介质
CN116017592A (zh) 一种小区重选方法及装置
CN111448823A (zh) 蜂窝网络中的网络报告
WO2022252184A1 (zh) 测量处理方法、装置及存储介质
WO2023000273A1 (zh) 网络接入方法、参数配置方法、装置、设备及存储介质
CN116634456A (zh) 通信方法及装置、存储介质
WO2022054267A1 (ja) 端末、基地局、通信方法及びプログラム
CN117121543A (zh) 切片信息的使用方法、装置、设备及存储介质
CN114258058A (zh) 测量方法、测量装置、终端及网络设备
US20240340760A1 (en) Communication method and device
WO2022266885A1 (zh) 测量放松方法、装置及存储介质
WO2024007878A1 (zh) 通信方法及装置
WO2023125143A1 (zh) 小区重选方法及相关装置
WO2023098616A1 (zh) 小区选择方法、小区重选方法及通信装置
CN117320096A (zh) 一种小区重选方法以及通信装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23752242

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE