[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2023149503A1 - 樹脂組成物、成形体、ペレット、および、レーザー溶着体 - Google Patents

樹脂組成物、成形体、ペレット、および、レーザー溶着体 Download PDF

Info

Publication number
WO2023149503A1
WO2023149503A1 PCT/JP2023/003391 JP2023003391W WO2023149503A1 WO 2023149503 A1 WO2023149503 A1 WO 2023149503A1 JP 2023003391 W JP2023003391 W JP 2023003391W WO 2023149503 A1 WO2023149503 A1 WO 2023149503A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin
mass
resin composition
parts
laser
Prior art date
Application number
PCT/JP2023/003391
Other languages
English (en)
French (fr)
Inventor
秀太 井関
Original Assignee
三菱ケミカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2022049134A external-priority patent/JP2023114411A/ja
Priority claimed from JP2022049135A external-priority patent/JP2023114412A/ja
Application filed by 三菱ケミカル株式会社 filed Critical 三菱ケミカル株式会社
Priority to CN202380019872.XA priority Critical patent/CN118632898A/zh
Publication of WO2023149503A1 publication Critical patent/WO2023149503A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/32Bonding taking account of the properties of the material involved
    • B23K26/324Bonding taking account of the properties of the material involved involving non-metallic parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/50Working by transmitting the laser beam through or within the workpiece
    • B23K26/57Working by transmitting the laser beam through or within the workpiece the laser beam entering a face of the workpiece from which it is transmitted through the workpiece material to work on a different workpiece face, e.g. for effecting removal, fusion splicing, modifying or reforming
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C65/00Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor
    • B29C65/02Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure
    • B29C65/14Joining or sealing of preformed parts, e.g. welding of plastics materials; Apparatus therefor by heating, with or without pressure using wave energy, i.e. electromagnetic radiation, or particle radiation
    • B29C65/16Laser beams
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/08Metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/40Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/14Glass
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/62Plastics recycling; Rubber recycling

Definitions

  • the present invention relates to resin compositions, molded articles, pellets, and laser-welded articles.
  • it relates to a resin composition used for producing molded articles that can be laser-marked.
  • the present invention relates to a resin composition that can be used as a laser-transmissive resin member during laser welding and can be laser-marked.
  • Thermoplastic polyester resins such as polybutylene terephthalate resin and polycarbonate resins are excellent in mechanical strength, heat resistance, moldability, and recyclability. widely used in
  • Patent Document 1 a laser-transmitting resin member (hereinafter sometimes referred to as “transmitting resin member”) made of a material that transmits laser light and a laser-absorbing resin member (hereinafter referred to as "absorbing resin member”) made of a material that absorbs laser light. ), and a laser beam is irradiated from the transmissive resin member side to generate heat at the interface with the absorbing resin member for welding.
  • a resin composition that is applied to a molded article for such use is required to have a performance (laser weldability) that enables welding by irradiation with a laser beam.
  • the transmissive resin member and the absorbing resin member are preferably colored in the same color.
  • the absorbing resin member and the transmissive resin member may be colored black.
  • the transmissive resin member is colored with a pigment having a high absorptivity of laser light, like the absorptive resin member, the laser light will not be transmitted, making laser welding impossible.
  • the transmissive resin member uses a dye that inhibits the transmission of laser light as little as possible.
  • marking cannot be performed if the laser beam is transmitted. Therefore, there is a demand for a resin composition that permits laser marking while transmitting laser light to some extent. Furthermore, in recent years, from the viewpoint of environmental load, the use of recycled resins is being demanded.
  • the present invention aims to solve such problems. That is, the first object of the present invention is to provide a resin composition having excellent laser marking properties.
  • a second object of the present invention is to provide a resin composition that can be used as a laser-transmissive resin member during laser welding and that can be laser-marked.
  • the third object of the present invention is to provide a resin composition that is environmentally friendly and that can be laser-welded and/or laser-marked.
  • a further object of the present invention is to provide a molded article, a pellet, and a laser-welded article using the resin composition.
  • the present inventors conducted studies and found that the above-mentioned problems were solved by using a polyester resin and a polycarbonate resin as thermoplastic resins, and further by using a polycarbonate resin containing a small amount of aluminum element. I found what I can do. Specifically, the above problems have been solved by the following means. ⁇ 1> A polyester resin and a polycarbonate resin are included, and the mass ratio of the polyester resin and the polycarbonate resin is 10/90 to 90/10 in a total of 100 parts by mass of the polyester resin and the polycarbonate resin, and the aluminum contained in the polycarbonate resin. A resin composition having an element content of 0.50 to 1000.00 ppm by mass with respect to 100 parts by mass of a polycarbonate resin.
  • ⁇ 2> It contains a polyester resin and a polycarbonate resin, and the mass ratio of the polyester resin and the polycarbonate resin in a total of 100 parts by mass of the polyester resin and the polycarbonate resin is 10/90 to 90/10, and the polycarbonate resin is a recycled product. and wherein the polycarbonate resin has a molecular weight distribution (Mw/Mn) of 2.8 or more.
  • Mw/Mn molecular weight distribution
  • ⁇ 5> The resin composition according to any one of ⁇ 1> to ⁇ 4>, wherein the polycarbonate resin contains a recycled product and has a molecular weight distribution (Mw/Mn) of 2.8 or more.
  • Mw/Mn molecular weight distribution
  • ⁇ 6> The resin composition according to ⁇ 5>, wherein the polycarbonate resin has a viscosity-average molecular weight Mv of 20,000 or more.
  • recycled products account for 50 parts by mass or more in 100 parts by mass of the polycarbonate resin.
  • ⁇ 8> Any one of ⁇ 1> to ⁇ 7>, wherein the mass ratio of the polyester resin and the polycarbonate resin is 50/50 to 90/10 with respect to the total 100 parts by mass of the polyester resin and the polycarbonate resin.
  • Resin composition. ⁇ 9> The resin composition according to any one of ⁇ 1> to ⁇ 8>, further comprising an inorganic filler.
  • the inorganic filler contains glass fibers and/or glass flakes.
  • ⁇ 11> The resin composition according to any one of ⁇ 1> to ⁇ 10>, further comprising a phosphorus stabilizer.
  • ⁇ 12> The resin composition according to any one of ⁇ 1> to ⁇ 11>, which has a light transmittance of 20.0% or more at a wavelength of 1064 nm when molded to a thickness of 1.5 mm.
  • ⁇ 13> The resin composition according to any one of ⁇ 1> to ⁇ 12>, which is for laser marking.
  • ⁇ 14> The resin composition according to any one of ⁇ 1> to ⁇ 13>, which is used for a resin member that transmits laser light for laser welding.
  • the polyester resin contains a polybutylene terephthalate resin
  • the polycarbonate resin contains a recycled product, In 100 parts by mass of the polycarbonate resin, recycled products account for 50 parts by mass or more,
  • the mass ratio of the polyester resin and the polycarbonate resin to the total 100 parts by mass of the polyester resin and the polycarbonate resin is 50/50 to 90/10
  • the inorganic filler comprises glass fibers and/or glass flakes
  • a phosphorus stabilizer Light transmittance at a wavelength of 1064 nm when molded to a thickness of 1.5 mm is 20.0% or more, for laser marking
  • the resin composition according to any one of ⁇ 1> to ⁇ 14>, which is used for a resin member that transmits laser light for laser welding.
  • ⁇ 16> Recycled products account for 50 parts by mass or more in 100 parts by mass of the polycarbonate resin, and the polycarbonate resin has a viscosity average molecular weight Mv of 20,000 or more
  • the polyester resin contains polybutylene terephthalate resin, Furthermore, containing an inorganic filler, Furthermore, containing a phosphorus stabilizer, for laser marking, and
  • ⁇ 17> A molded article formed from the resin composition according to any one of ⁇ 1> to ⁇ 16>.
  • ⁇ 18> A pellet of the resin composition according to any one of ⁇ 1> to ⁇ 16>.
  • ⁇ 19> A compact formed from the pellets according to ⁇ 18>.
  • ⁇ 20> The molded article according to ⁇ 17> or ⁇ 19>, which is for laser marking.
  • ⁇ 21> A laser-welded body comprising the molded body according to ⁇ 17> or ⁇ 19>.
  • a polyester resin and a polycarbonate resin are included, and the mass ratio of the polyester resin and the polycarbonate resin is 10/90 to 90/10 in a total of 100 parts by mass of the polyester resin and the polycarbonate resin, and is included in the polycarbonate resin.
  • the resin composition has an aluminum element content of 0.50 to 1000.00 ppm by mass with respect to 100 parts by mass of the polycarbonate resin.
  • ⁇ 1-2> The resin composition according to ⁇ 1-1>, wherein the polyester resin contains a polybutylene terephthalate resin.
  • ⁇ 1-3> The resin composition according to ⁇ 1-1> or ⁇ 1-2>, wherein the polycarbonate resin contains a recycled product.
  • ⁇ 1-4> The resin composition according to ⁇ 1-3>, wherein the recycled product accounts for 50 parts by mass or more in 100 parts by mass of the polycarbonate resin.
  • ⁇ 1-5> Any of ⁇ 1-1> to ⁇ 1-4>, wherein the mass ratio of the polyester resin and the polycarbonate resin is 50/50 to 90/10 with respect to the total 100 parts by mass of the polyester resin and the polycarbonate resin. 1.
  • the resin composition according to claim 1. ⁇ 1-6> The resin composition according to any one of ⁇ 1-1> to ⁇ 1-5>, further comprising an inorganic filler.
  • ⁇ 1-7> The resin composition according to ⁇ 1-6>, wherein the inorganic filler contains glass fibers and/or glass flakes.
  • ⁇ 1-8> The resin composition according to any one of ⁇ 1-1> to ⁇ 1-7>, further comprising a phosphorus stabilizer.
  • ⁇ 1-9> Any one of ⁇ 1-1> to ⁇ 1-8>, wherein the light transmittance at a wavelength of 1064 nm when molded to a thickness of 1.5 mm is 20.0% or more.
  • Resin composition. ⁇ 1-10> The resin composition according to any one of ⁇ 1-1> to ⁇ 1-9>, which is for laser marking.
  • ⁇ 1-11> The resin composition according to any one of ⁇ 1-1> to ⁇ 1-10>, which is used for a resin member transmitting laser light for laser welding.
  • ⁇ 1-12> A molded article formed from the resin composition according to any one of ⁇ 1-1> to ⁇ 1-11>.
  • ⁇ 1-13> The molded article according to ⁇ 1-12>, which is for laser marking.
  • ⁇ 1-14> A laser-welded body comprising the molded body according to ⁇ 1-12> or ⁇ 1-13>.
  • ⁇ 2-1> including polyester resin and polycarbonate resin,
  • the mass ratio of the polyester resin and the polycarbonate resin in a total of 100 parts by mass of the polyester resin and the polycarbonate resin is 10/90 to 90/10,
  • the polycarbonate resin contains a recycled product,
  • the polycarbonate resin has a molecular weight distribution (Mw/Mn) of 2.8 or more.
  • ⁇ 2-2> The resin composition according to ⁇ 2-1>, wherein recycled products account for 50 parts by mass or more in 100 parts by mass of the polycarbonate resin.
  • ⁇ 2-3> The resin composition according to ⁇ 2-1> or ⁇ 2-2>, wherein the polycarbonate resin has a viscosity-average molecular weight Mv of 20,000 or more.
  • ⁇ 2-4> The resin composition according to any one of ⁇ 2-1> to ⁇ 2-3>, wherein the polyester resin contains a polybutylene terephthalate resin.
  • ⁇ 2-5> The resin composition according to any one of ⁇ 2-1> to ⁇ 2-4>, further comprising an inorganic filler.
  • ⁇ 2-6> The resin composition according to any one of ⁇ 2-1> to ⁇ 2-5>, further comprising a phosphorus-based stabilizer.
  • ⁇ 2-7> The resin composition according to any one of ⁇ 2-1> to ⁇ 2-6>, which is for laser marking.
  • ⁇ 2-8> The resin composition according to any one of ⁇ 2-1> to ⁇ 2-7>, which is used for a resin member transmitting laser light for laser welding.
  • ⁇ 2-9> A molded article formed from the resin composition according to any one of ⁇ 2-1> to ⁇ 2-8>.
  • ⁇ 2-10> The molded article according to ⁇ 2-9>, which is for laser marking.
  • ⁇ 2-11> A laser-welded article comprising the molded article according to ⁇ 2-9> or ⁇ 2-10>.
  • ADVANTAGE OF THE INVENTION it became possible to provide the resin composition excellent in laser marking property. Further, according to the present invention, it has become possible to provide a resin composition that can be used as a laser-transmitting resin member during laser welding and can be laser-marked. Furthermore, it has become possible to provide a resin composition that is environmentally friendly and that can be laser-welded and/or laser-marked. Further, according to the present invention, it has become possible to provide molded articles, pellets, and laser-welded articles using the resin composition.
  • FIG. 2 is a schematic diagram showing a test piece (transmissive resin member I) for measuring laser welding strength in Examples.
  • FIG. 2 is a schematic diagram showing a test piece (absorbing resin member II) for measuring laser welding strength in Examples.
  • 1 is a schematic diagram showing a test piece (combination of transmitting resin member I and absorbing resin member II) for measuring laser welding strength in Examples.
  • FIG. It is a schematic diagram showing a method of measuring the laser welding strength of the example. It is a photograph after laser printing of Example 2-1 and Comparative Examples 2-1 and 2-2.
  • the resin composition of the first embodiment of the present embodiment contains a polyester resin and a polycarbonate resin, and the mass ratio of the polyester resin and the polycarbonate resin in 100 parts by mass of the polyester resin and the polycarbonate resin is 10/90 to 90. /10, and the content of the aluminum element contained in the polycarbonate resin is 0.50 to 1000.00 ppm by mass with respect to 100 parts by mass of the polycarbonate resin.
  • the resin composition excellent in laser marking property is obtained.
  • a resin composition that can be used as a laser-transmitting resin member during laser welding and that can be laser-marked can be obtained.
  • laser marking is possible when the polycarbonate resin contains the aluminum element, carbonization of the resin component on the surface of the molded article proceeds easily, and the carbonization proceeds neatly on the surface of the molded article.
  • This embodiment is advantageous in that laser welding can be performed without blending a laser marking agent such as carbon black. That is, since the laser marking agent absorbs the laser beam irradiated during laser welding, it may be difficult to use a conventional resin composition containing a laser marking agent as a laser-transmitting resin member for laser welding. However, in this embodiment, since laser marking can be performed without using a laser marking agent, the resin composition can be used as a laser-transmissive resin member during laser welding and can be laser-marked.
  • the resin composition of the second embodiment of the present embodiment contains a polyester resin and a polycarbonate resin, and the mass ratio of the polyester resin and the polycarbonate resin in a total of 100 parts by mass of the polyester resin and the polycarbonate resin is 10/90 to 90. /10, the polycarbonate resin includes a recycled product, and the molecular weight distribution (Mw/Mn) of the polycarbonate resin is 2.8 or more.
  • the compatibility between the polycarbonate resin and the polyester resin is improved, and a resin composition having a high transmittance can be provided.
  • the laser transmittance is relatively improved by adopting the above structure, it can be suitably used as a laser-transmitting resin member at the time of laser welding.
  • the compatibility between the polycarbonate resin and the polyester resin is improved, so that a resin composition having improved laser welding strength during laser welding can be obtained.
  • the above performance is not hindered, so that a resin composition that is environmentally friendly while having the above performance can be obtained. Details of the present embodiment will be described below.
  • the resin composition of this embodiment contains a polyester resin.
  • the type of the polyester resin used in the present embodiment is not particularly limited as long as it is a thermoplastic polyester resin.
  • Polybutylene terephthalate resin and polyethylene terephthalate resin are exemplified, and polybutylene terephthalate resin is preferred.
  • Polybutylene terephthalate resin is a resin obtained by polycondensation of terephthalic acid as the main acid component and 1,4-butanediol as the main diol component. That the main component of the acid component is terephthalic acid means that 50% by mass or more of the acid component is terephthalic acid, preferably 60% by mass or more, more preferably 70% by mass or more, It may be 80% by mass or more, 90% by mass or more, or 95% by mass or more.
  • 1,4-butanediol which is the main component of the diol component, means that 50% by mass or more of the diol component is 1,4-butanediol, preferably 60% by mass or more, and 70% by mass. It is more preferably 80% by mass or more, 90% by mass or more, or 95% by mass or more.
  • Isophthalic acid and dimer acid are exemplified when the polybutylene terephthalate resin contains other acid components.
  • polyalkylene glycol such as polytetramethylene glycol (PTMG) is exemplified.
  • the proportion of the tetramethylene glycol component in the copolymer is preferably 3 to 40% by mass, more preferably 5 to 30% by mass. Preferably, 10 to 25% by mass is more preferable.
  • the ratio of the dimer acid component to the total carboxylic acid component is preferably 0.5 to 30 mol % as carboxylic acid group, 20 mol % is more preferred, and 3 to 15 mol % is even more preferred.
  • Such a copolymerization ratio tends to provide an excellent balance of laser weldability, long-term heat resistance, and toughness, which is preferable.
  • the ratio of the isophthalic acid component to the total carboxylic acid component is preferably 1 to 30 mol %, more preferably 1 to 20 mol, in terms of carboxylic acid groups. %, more preferably 3 to 15 mol %.
  • Such a copolymerization ratio tends to provide an excellent balance of laser weldability, heat resistance, injection moldability and toughness, which is preferable.
  • the polybutylene terephthalate resin used in the present embodiment is a resin (polybutylene terephthalate homopolymer) in which 90% by mass or more of the acid component is terephthalic acid and 90% by mass or more of the diol component is 1,4-butanediol, or , copolymerized polybutylene terephthalate resin obtained by copolymerizing polytetramethylene glycol, and isophthalic acid copolymerized polybutylene terephthalate resin are preferred.
  • the polybutylene terephthalate resin preferably has an intrinsic viscosity of 0.5 to 2 dL/g. From the standpoint of moldability and mechanical properties, those having an intrinsic viscosity in the range of 0.6 to 1.5 dL/g are more preferred. By using those having an intrinsic viscosity of 0.5 dL/g or more, the mechanical strength of the resulting molded article tends to be further improved. Further, by using a polybutylene terephthalate resin having an intrinsic viscosity of 2 dL/g or less, there is a tendency that the fluidity of the polybutylene terephthalate resin is improved, the moldability is improved, and the laser weldability is further improved.
  • the intrinsic viscosity is a value measured at 30° C. in a 1:1 (mass ratio) mixed solvent of tetrachloroethane and phenol. When two or more polybutylene terephthalate resins are included, the intrinsic viscosity is the intrinsic viscosity of the mixture.
  • the amount of terminal carboxyl groups in the polybutylene terephthalate resin may be selected and determined as appropriate, but is usually 60 eq/ton or less, preferably 50 eq/ton or less, and more preferably 30 eq/ton or less. .
  • the amount of terminal carboxyl groups may be selected and determined as appropriate, but is usually 60 eq/ton or less, preferably 50 eq/ton or less, and more preferably 30 eq/ton or less. .
  • the amount of terminal carboxyl groups is usually 60 eq/ton or less, preferably 50 eq/ton or less, and more preferably 30 eq/ton or less.
  • the terminal carboxy group content of the polybutylene terephthalate resin is obtained by dissolving 0.5 g of the polybutylene terephthalate resin in 25 mL of benzyl alcohol and titrating with a 0.01 mol/L benzyl alcohol solution of sodium hydroxide. is the value
  • Examples of the method for adjusting the amount of terminal carboxyl groups include any conventionally known method, such as a method of adjusting polymerization conditions such as a raw material charge ratio during polymerization, polymerization temperature, and a decompression method, and a method of reacting a terminal blocking agent. be done.
  • the polyethylene terephthalate resin used in the present embodiment is a resin obtained by polycondensation of terephthalic acid as the main acid component and ethylene glycol as the main diol component.
  • That the main component of the acid component is terephthalic acid means that 50% by mass or more of the acid component is terephthalic acid, preferably 60% by mass or more, more preferably 70% by mass or more, It may be 80% by mass or more, 90% by mass or more, or 95% by mass or more.
  • the expression that the main component of the diol component is ethylene glycol means that 50% by mass or more of the diol component is ethylene glycol, preferably 60% by mass or more, more preferably 70% by mass or more. It may be 80% by mass or more, 90% by mass or more, or 95% by mass or more.
  • the polyethylene terephthalate resin contains other acid components, phthalic acid, isophthalic acid, naphthalenedicarboxylic acid, 4,4'-diphenylsulfonedicarboxylic acid, 4,4'-biphenyldicarboxylic acid, 1,4-cyclohexanedicarboxylic acid, 1 ,3-phenylenedioxydiacetic acid and structural isomers thereof, dicarboxylic acids such as malonic acid, succinic acid and adipic acid and derivatives thereof, oxy acids such as p-hydroxybenzoic acid and glycolic acid and derivatives thereof.
  • dicarboxylic acids such as malonic acid, succinic acid and adipic acid and derivatives thereof
  • oxy acids such as p-hydroxybenzoic acid and glycolic acid and derivatives thereof.
  • polyethylene terephthalate resin contains other acid components, other diol components such as 1,2-propanediol, 1,3-propanediol, 1,4-butanediol, pentamethylene glycol, hexamethylene glycol, neo Aliphatic glycols such as pentyl glycol, alicyclic glycols such as cyclohexanedimethanol, aromatic dihydroxy compound derivatives such as bisphenol A and bisphenol S, and the like.
  • diol components such as 1,2-propanediol, 1,3-propanediol, 1,4-butanediol, pentamethylene glycol, hexamethylene glycol, neo Aliphatic glycols such as pentyl glycol, alicyclic glycols such as cyclohexanedimethanol, aromatic dihydroxy compound derivatives such as bisphenol A and bisphenol S, and the like.
  • the polyethylene terephthalate resin has a branching component, for example, a trifunctional acid such as tricarballylic acid, trimellitic acid, trimellitic acid, or a tetrafunctional acid such as pyromellitic acid, or an acid capable of forming an ester such as glycerin, trimethylolpropane, penta 1.0 mol % or less, preferably 0.5 mol % or less, more preferably 0.3 mol % or less of an alcohol having a trifunctional or tetrafunctional ester-forming ability such as erythritol is copolymerized.
  • a branching component for example, a trifunctional acid such as tricarballylic acid, trimellitic acid, trimellitic acid, or a tetrafunctional acid such as pyromellitic acid, or an acid capable of forming an ester such as glycerin, trimethylolpropane, penta 1.0 mol % or less, preferably 0.5 mol
  • the intrinsic viscosity of the polyethylene terephthalate resin is preferably 0.3 to 1.5 dL/g, more preferably 0.3 to 1.2 dL/g, still more preferably 0.4 to 0.8 dL/g. be.
  • the intrinsic viscosity of polyethylene terephthalate resin is a value measured at 30° C. in a 1:1 (mass ratio) mixed solvent of tetrachloroethane and phenol.
  • the terminal carboxy group concentration of the polyethylene terephthalate resin is preferably 3 to 60 eq/ton, more preferably 5 to 50 eq/ton, still more preferably 8 to 40 eq/ton.
  • the terminal carboxy group concentration is preferably 3 to 60 eq/ton, more preferably 5 to 50 eq/ton, still more preferably 8 to 40 eq/ton.
  • the terminal carboxy group concentration of the polyethylene terephthalate resin is obtained by dissolving 0.5 g of polyethylene terephthalate resin in 25 mL of benzyl alcohol and titrating with a 0.01 mol/L benzyl alcohol solution of sodium hydroxide. value.
  • the resin composition of this embodiment contains a polycarbonate resin.
  • Polycarbonate resins are optionally branched homopolymers or copolymers obtained by reacting a dihydroxy compound or a small amount of a polyhydroxy compound with phosgene or a carbonic acid diester.
  • the method for producing the polycarbonate resin is not particularly limited, and one produced by a conventionally known phosgene method (interfacial polymerization method) or melt method (ester exchange method) can be used, and the melt method is preferred.
  • the polycarbonate resin obtained by a melting method, the polycarbonate resin has a branched structure, and the effects of the present invention tend to be exhibited more effectively.
  • bisphenol 2,2-bis(4-hydroxyphenyl)propane
  • tetramethylbisphenol A bis(4-hydroxyphenyl)- p-diisopropylbenzene
  • hydroquinone resorcinol
  • 4,4-dihydroxydiphenyl and the like bisphenol A is even more preferred.
  • a compound in which one or more tetraalkylphosphonium sulfonates are bonded to the above aromatic dihydroxy compound can also be used.
  • an aromatic polycarbonate resin (bisphenol A type polycarbonate resin) derived from 2,2-bis(4-hydroxyphenyl)propane, or 2,2-bis(4-hydroxyphenyl) Aromatic polycarbonate copolymers derived from propane and other aromatic dihydroxy compounds are preferred.
  • it may be a copolymer mainly composed of an aromatic polycarbonate resin, such as a copolymer with a polymer or oligomer having a siloxane structure.
  • two or more of the above polycarbonate resins may be mixed and used.
  • a polycarbonate resin in which 90% by mass or more of the dihydroxy compound as a raw material monomer is 2,2-bis(4-hydroxyphenyl)propane is preferable, and 95% by mass or more is 2,2-bis(4-hydroxy A polycarbonate resin that is phenyl)propane is more preferred.
  • Monohydric aromatic hydroxy compounds may be used to control the molecular weight of polycarbonate resins, such as m- and p-methylphenol, m- and p-propylphenol, p-tert-butylphenol, p-long chain Alkyl-substituted phenols and the like can be mentioned.
  • the polycarbonate resin used in the present embodiment preferably has an aluminum element content of 0.50 to 1000.00 ppm by mass with respect to 100 parts by mass of the polycarbonate resin. By making it more than the said lower limit, there exists a tendency for laser marking property to improve more. By making the amount equal to or less than the upper limit, the long-term stability of the resin tends to be improved.
  • the content of the aluminum element is more preferably 1.00 mass ppm or more, more preferably 1.20 mass ppm or more, and 2.00 mass ppm or more with respect to 100 mass parts of the polycarbonate resin. more preferably 3.00 mass ppm or more, and even more preferably 6.00 mass ppm or more.
  • the content of the aluminum element is more preferably 500.00 mass ppm or less, more preferably 300.00 mass ppm or less, and 100.00 mass ppm or less with respect to 100 parts by mass of the polycarbonate resin. 10. is more preferably 50.00 mass ppm or less, even more preferably 30.00 mass ppm or less, even more preferably 15.00 mass ppm or less; 00 ppm by mass or less is particularly preferred.
  • the polycarbonate resin preferably contains calcium element in a proportion of 0.15 to 30.00 ppm by mass with respect to 100 parts by mass of the polycarbonate resin.
  • the content of the calcium element is more preferably 0.50 mass ppm or more, more preferably 1.50 mass ppm or more, and 2.00 mass ppm or more with respect to 100 mass parts of the polycarbonate resin. more preferably 3.50 mass ppm or more, and even more preferably 4.00 mass ppm or more.
  • the content of the calcium element is more preferably 30.00 mass ppm or less, more preferably 25.00 mass ppm or less, and 20.0 mass ppm or less with respect to 100 parts by mass of the polycarbonate resin. is more preferably 17.0 ppm by mass or less.
  • the polycarbonate resin preferably contains 0.01 to 1.00 ppm by mass of strontium element with respect to 100 parts by mass of the polycarbonate resin. More preferably, the content of the strontium element is 0.02 ppm by mass or more with respect to 100 parts by mass of the polycarbonate resin. By making it more than the said lower limit, there exists a tendency for laser marking property to improve more.
  • the content of the strontium element is more preferably 0.50 mass ppm or less, more preferably 0.10 mass ppm or less, and 0.09 mass ppm or less with respect to 100 mass parts of the polycarbonate resin. is more preferable, and 0.08 ppm by mass or less is even more preferable. When the content is equal to or less than the above upper limit, the long-term stability of the resin tends to be improved.
  • the polycarbonate resin preferably contains barium element at a rate of 0.09 to 10.00 ppm by mass with respect to 100 parts by mass of the polycarbonate resin.
  • the content of the barium element is more preferably 0.10 mass ppm or more, more preferably 0.13 mass ppm or more, and 0.15 mass ppm or more with respect to 100 parts by mass of the polycarbonate resin. more preferably 0.18 mass ppm or more, and even more preferably 0.20 mass ppm or more.
  • the content of the barium element is more preferably 7.00 mass ppm or less, more preferably 3.00 mass ppm or less, and 1.50 mass ppm or less with respect to 100 parts by mass of the polycarbonate resin. is more preferable, and it is even more preferable that it is 1.00 ppm by mass or less.
  • the content is equal to or less than the above upper limit, the long-term stability of the resin tends to be improved.
  • the polycarbonate resin contains magnesium element in a proportion of 0.08 to 20.00 ppm by mass with respect to 100 parts by mass of the polycarbonate resin.
  • the content of the magnesium element is more preferably 0.10 mass ppm or more, more preferably 0.15 mass ppm or more, and 0.50 mass ppm or more with respect to 100 mass parts of the polycarbonate resin. more preferably 0.70 mass ppm or more, and even more preferably 1.00 mass ppm or more.
  • the content of the magnesium element is more preferably 30.00 mass ppm or less, more preferably 20.00 mass ppm or less, and 10.00 mass ppm or less with respect to 100 parts by mass of the polycarbonate resin. is more preferable, and it is even more preferable that it is 8.00 mass ppm or less.
  • the content is equal to or less than the above upper limit, the long-term stability of the resin tends to be improved.
  • the polycarbonate resin preferably contains zinc element in a proportion of 0.05 to 10.00 ppm by mass with respect to 100 parts by mass of the polycarbonate resin.
  • the zinc element content is more preferably 0.08 ppm by mass or more, and even more preferably 0.10 ppm by mass or more, relative to 100 parts by mass of the polycarbonate resin. By making it more than the said lower limit, there exists a tendency for laser marking property to improve more.
  • the content of the zinc element is more preferably 7.00 mass ppm or less, more preferably 3.00 mass ppm or less, and 2.00 mass ppm or less with respect to 100 parts by mass of the polycarbonate resin. is more preferable, and it is even more preferable that it is 1.00 ppm by mass or less. When the content is equal to or less than the above upper limit, the long-term stability of the resin tends to be improved.
  • the polycarbonate resin preferably contains iron elements in a proportion of 0.35 to 50.0 ppm by mass with respect to 100 parts by mass of the polycarbonate resin.
  • the content of the iron element is more preferably 0.80 mass ppm or more, more preferably 1.00 mass ppm or more, and 2.00 mass ppm or more with respect to 100 mass parts of the polycarbonate resin. more preferably 3.00 mass ppm or more, and even more preferably 5.00 mass ppm or more.
  • the content of the iron element is more preferably 35.00 mass ppm or less, more preferably 20.00 mass ppm or less, and 15.00 mass ppm or less with respect to 100 parts by mass of the polycarbonate resin. is more preferably 10.00 ppm by mass or less.
  • the content is equal to or less than the above upper limit, the long-term stability of the resin tends to be improved.
  • the polycarbonate resin preferably contains manganese element at a ratio of 0.07 to 10.00 ppm by mass with respect to 100 parts by mass of the polycarbonate resin. More preferably, the manganese element content is 0.08 ppm by mass or more relative to 100 parts by mass of the polycarbonate resin. By making it more than the said lower limit, there exists a tendency for laser marking property to improve more.
  • the content of the manganese element is more preferably 7.00 mass ppm or less, more preferably 3.00 mass ppm or less, and 1.00 mass ppm or less with respect to 100 parts by mass of the polycarbonate resin. more preferably 0.50 ppm by mass or less, and even more preferably 0.20 ppm by mass or less. When the content is equal to or less than the above upper limit, the long-term stability of the resin tends to be improved.
  • the polycarbonate resin preferably contains at least the aluminum element and the iron element, respectively, within the above ranges.
  • the metal element does not necessarily exist as a single element in the polycarbonate resin, and may be included as part of the compound.
  • the measured value of ⁇ measurement of the amount of metal element> described in Examples described later is used as the amount of the metal element.
  • the molecular weight distribution (Mw/Mn) of the polycarbonate resin used in this embodiment is preferably 2.8 or more. Such a configuration tends to further improve the laser transmittance and laser marking visibility of the resulting molded product. Also, laser welding strength tends to improve.
  • the molecular weight distribution (Mw/Mn) of the polycarbonate resin is preferably 2.9 or more, more preferably 3.0 or more, and even more preferably 3.1 or more. .
  • the molecular weight distribution (Mw/Mn) of the polycarbonate resin is preferably 5.0 or less, more preferably 4.0 or less, even more preferably 3.7 or less, and 3.5 It is more preferably 3.3 or less, and even more preferably 3.3 or less. By setting it as the said range, there exists a tendency for the effect of this embodiment to be exhibited more effectively.
  • the viscosity average molecular weight (Mv) of the polycarbonate resin is preferably 5,000 or more, more preferably 10,000 or more, still more preferably 13,000 or more, and 20,000 or more. is more preferably 21,000 or more, 22,000 or more, 23,000 or more, 25,000 or more, or 26,000 or more. By using those having a viscosity average molecular weight of 5,000 or more, particularly 20,000 or more, the mechanical strength of the obtained resin composition tends to be further improved. Also, the viscosity average molecular weight (Mv) of the polycarbonate resin is preferably 60,000 or less, more preferably 40,000 or less, and even more preferably 30,000 or less. By using those having a molecular weight of 60,000 or less, the fluidity of the resin composition tends to be improved and the moldability tends to be improved. When two or more polycarbonate resins are included, the mixture preferably satisfies the above range.
  • the melt volume rate (MVR) at a measurement temperature of 300°C and a measurement load of 1.20 kgf is preferably 1 cm 3 /10 min or more, more preferably 2 cm 3 /10 min or more. More preferably, it is 3 cm 3 /10 minutes or more, and even more preferably 4 cm 3 /10 minutes or more.
  • the upper limit of the MVR is preferably 13 cm 3 /10 min or less, more preferably 12 cm 3 /10 min or less, even more preferably 11 cm 3 /10 min or less, and 10 cm 3 /10 min. Minutes or less is more preferable, and 9 cm 3 /10 minutes or less is even more preferable.
  • the mechanical strength tends to be improved by making it equal to or less than the above upper limit.
  • the polycarbonate resin used in this embodiment may be a virgin product or a recycled product, but it preferably contains a recycled product.
  • Recycled polycarbonate resins include those obtained by material recycling, in which collected used polycarbonate resin molded bodies are pulverized, washed with alkali, and reused as fibers, etc., those obtained by chemical recycling (chemical decomposition method), and mechanically recycled polycarbonate resins. Examples thereof include those obtained by recycling.
  • Chemical recycling involves chemically decomposing the collected used polycarbonate resin moldings to return them to the raw material level to resynthesize the polycarbonate resin.
  • mechanical recycling is a method that makes it possible to remove stains from polycarbonate resin moldings more reliably than material recycling by performing more rigorous alkali washing in the material recycling described above or vacuum drying at high temperatures.
  • a used polycarbonate resin molded article is pulverized, washed, and then pelletized by an extruder to obtain a recycled polycarbonate resin after removing foreign substances.
  • Recycled products usually have a higher content of metallic elements than virgin products. Therefore, it is easy to apply to the resin composition of this embodiment. However, some recycled products do not have a high content of metal elements. Further, it goes without saying that the resin composition of the present embodiment may be adjusted by adding a predetermined metal element to a virgin product or a recycled product having a low metal element content.
  • the content of recycled products is preferably 50 parts by mass or more, more preferably 60 parts by mass or more, based on 100 parts by mass of the polycarbonate resin. It is more preferably 70 parts by mass or more, even more preferably 80 parts by mass or more, and even more preferably 90 parts by mass or more. Recyclability improves by setting it as more than the said lower limit.
  • the upper limit of the content of the recycled product may be 100 parts by mass with respect to 100 parts by mass of the polycarbonate resin.
  • the mass ratio of the polyester resin and the polycarbonate resin in a total of 100 parts by mass of the polyester resin and the polycarbonate resin is 10/90 to 90/10, and 20/80 to 90/10. preferably 30/70 to 90/10, more preferably 40/60 to 90/10, even more preferably 50/50 to 90/10, and 50/50 80/20 is even more preferred, 50/50 to 75/35 is even more preferred, 55/45 to 75/35 is even more preferred, and 55/45 to 70/30 is even more preferred.
  • the total of the polyester resin and the polycarbonate resin preferably accounts for 80% by mass or more of the resin components contained in the resin composition, more preferably 85% by mass or more, and 90% by mass. % or more, more preferably 95 mass % or more, and even more preferably 98 mass % or more. Furthermore, in the resin composition of the present embodiment, the total of the polyester resin and the polycarbonate resin preferably accounts for 55% by mass or more of the resin composition, more preferably 60% by mass or more, and 65% by mass or more. More preferably, it accounts for 68% by mass or more.
  • the total amount of the polyester resin and the polycarbonate resin in the resin composition is preferably 80% by mass or less, more preferably 75% by mass or less.
  • the resin composition of the present embodiment may contain only one kind of each of the polyester resin and the polycarbonate resin, or may contain two or more kinds thereof. When two or more types are included, the total amount is preferably within the above range.
  • the resin composition of the present embodiment further contains an inorganic filler.
  • Inorganic fillers preferably fibrous or scaly inorganic fillers, more preferably glass fibers and/or glass flakes, improve the mechanical strength, heat resistance, and durability of the laser welded product. tend to improve.
  • the inorganic filler that can be contained in the resin composition of the present embodiment has the effect of improving the mechanical properties of the resin composition obtained by being blended in the resin, and is a commonly used inorganic filler for plastics.
  • a commonly used inorganic filler for plastics can be used.
  • fibrous inorganic fillers such as glass fiber, carbon fiber, basalt fiber, wollastonite and potassium titanate fiber can be used.
  • Granular or amorphous fillers such as calcium carbonate, titanium oxide, feldspar minerals, clay, organic clay, and glass beads; plate-like fillers such as talc; scaly fillers such as glass flakes, mica, and graphite.
  • Inorganic fillers can also be used.
  • glass fiber and/or glass flakes it is preferable to contain glass fiber and/or glass flakes, and it is particularly preferable to use glass fiber.
  • glass fiber either a round cross-sectional shape or an irregular cross-sectional shape can be used.
  • the inorganic filler is more preferably surface-treated with a surface-treating agent such as a coupling agent.
  • a glass fiber to which a surface treatment agent is adhered is preferable because it is excellent in durability, wet heat resistance, hydrolysis resistance, and heat shock resistance.
  • any conventionally known surface treatment agent can be used.
  • silane coupling agents such as aminosilane-based, epoxysilane-based, allylsilane-based, and vinylsilane-based agents are preferred.
  • aminosilane-based surface treatment agents are preferred, and specifically, ⁇ -aminopropyltriethoxysilane, ⁇ -aminopropyltrimethoxysilane and ⁇ -(2-aminoethyl)aminopropyltrimethoxysilane are preferred. Examples include:
  • the glass fiber in the present embodiment means a fibrous glass material, more specifically, a chopped shape obtained by bundling 1,000 to 10,000 glass fibers and cutting them to a predetermined length. preferable.
  • the glass fiber in the present embodiment preferably has a number average fiber length of 0.5 to 10 mm, more preferably 1 to 5 mm. By using glass fibers having such a number average fiber length, the mechanical strength can be further improved.
  • the number average fiber length is obtained by randomly extracting the glass fibers whose fiber length is to be measured from the image obtained by observation with an optical microscope, measuring the long side, and calculating the number average fiber length from the obtained measured value. calculate.
  • the magnification of observation is 20 times, and the number of lines to be measured is 1,000 or more. It roughly corresponds to the cut length.
  • the cross-section of the glass fiber may be circular, elliptical, oval, rectangular, semicircular on both short sides of a rectangle, cocoon-shaped, etc., but circular is preferred.
  • the circle here is intended to include what is usually called a circle in the technical field of the present embodiment in addition to the geometric meaning of the circle.
  • the lower limit of the number average fiber diameter of the glass fibers is preferably 4.0 ⁇ m or more, more preferably 4.5 ⁇ m or more, and even more preferably 5.0 ⁇ m or more.
  • the upper limit of the number average fiber diameter of the glass fibers is preferably 15.0 ⁇ m or less, more preferably 14.0 ⁇ m or less.
  • Glass fibers are commonly supplied E glass (Electrical glass), C glass (Chemical glass), A glass (Alkali glass), S glass (High strength glass), D glass, R glass and alkali resistant glass. Fibers obtained by melt-spinning glass are used, but there is no particular limitation as long as they can be made into glass fibers. In this embodiment, it is preferable to include E-glass.
  • the glass fibers used in this embodiment are treated with a surface treatment agent such as a silane coupling agent such as ⁇ -methacryloxypropyltrimethoxysilane, ⁇ -glycidoxypropyltrimethoxysilane, ⁇ -aminopropyltriethoxysilane. It is preferably treated.
  • the adhesion amount of the surface treatment agent is preferably 0.01 to 1 mass % of the glass fiber.
  • lubricants such as fatty acid amide compounds, silicone oils, antistatic agents such as quaternary ammonium salts, resins having film-forming properties such as epoxy resins and urethane resins, resins having film-forming properties and heat It is also possible to use those surface-treated with a mixture of stabilizers, flame retardants, and the like.
  • Glass fiber is available as a commercial product.
  • Commercially available products include T-286H, T-756H, T-127, T-289H manufactured by Nippon Electric Glass Co., Ltd., DEFT2A manufactured by Owens Corning, HP3540 manufactured by PPG, and CSG3PA820 manufactured by Nittobo. are mentioned.
  • the content of the inorganic filler (preferably glass fiber) in the resin composition of the present embodiment is preferably 10 parts by mass or more with respect to 100 parts by mass of the thermoplastic resin (the total of the polyester resin and the polycarbonate resin). It is more preferably 15 parts by mass or more, still more preferably 20 parts by mass or more, still more preferably 25 parts by mass or more, and even more preferably 30 parts by mass or more.
  • the content is at least the above lower limit, the strength of the base material of the laser-welded body tends to increase, and the heat resistance of the laser-welded body tends to increase.
  • the upper limit of the content of the inorganic filler is preferably 70 parts by mass or less, more preferably 60 parts by mass or less, and 50 parts by mass or less with respect to 100 parts by mass of the thermoplastic resin. is more preferred. By making it equal to or less than the above upper limit, there is a tendency for the welding strength at the interface to increase.
  • the content of the inorganic filler (preferably glass fiber) in the resin composition of the present embodiment is preferably 20% by mass or more, more preferably 25% by mass or more.
  • the content of the inorganic filler (preferably glass fiber) is preferably 45% by mass or less, more preferably 40% by mass or less, and more preferably 35% by mass or less. % by mass or less is more preferable.
  • the resin composition of the present embodiment may contain only one type of inorganic filler (preferably glass fiber), or may contain two or more types. When two or more types are included, the total amount is preferably within the above range.
  • the resin composition of the present embodiment preferably contains a stabilizer, and the stabilizer is preferably a phosphorus-based stabilizer or a phenol-based stabilizer, and more preferably a phosphorus-based stabilizer.
  • the stabilizer is preferably a phosphorus-based stabilizer or a phenol-based stabilizer, and more preferably a phosphorus-based stabilizer.
  • any known phosphorus stabilizer can be used.
  • Specific examples include phosphorus oxo acids such as phosphoric acid, phosphonic acid, phosphorous acid, phosphinic acid, and polyphosphoric acid; acid pyrophosphate metal salts such as sodium acid pyrophosphate, potassium acid pyrophosphate, and calcium acid pyrophosphate; phosphoric acid; phosphates of group 1 or group 2 metals such as potassium, sodium phosphate, cesium phosphate, zinc phosphate; Especially preferred.
  • Examples of phenol-based stabilizers include hindered phenol-based antioxidants. These details can be referred to paragraphs 0105 to 0111 of WO2020/013127, the contents of which are incorporated herein.
  • the content of the stabilizer is usually 0.001 parts by mass or more, preferably 0.01 parts by mass or more, and usually 2 parts by mass or less, preferably It is 1.0 parts by mass or less.
  • the content of the stabilizer is usually 0.001 parts by mass or more, preferably 0.01 parts by mass or more, and usually 2 parts by mass or less, preferably It is 1.0 parts by mass or less.
  • the resin composition of this embodiment may contain a release agent.
  • the release agent include montan acid ester wax, polyolefin wax, higher fatty acids, ester compounds, ethylene bis stearamide, etc. At least one selected from montan acid ester wax, polyolefin wax and ethylene bis stearamide is used. preferable.
  • the release agent specifically, the description of paragraphs 0063 to 0077 of JP-A-2018-070722 and the description of paragraphs 0090-0098 of JP-A-2019-123809 can be referred to, and the contents of these are described in the present specification. incorporated into the book.
  • the content thereof is preferably 0.01 parts by mass or more, and 0.08 parts by mass with respect to the total 100 parts by mass of the polyester resin and the polycarbonate resin. It is more preferable to be above.
  • the upper limit of the content of the release agent is preferably 5.0 parts by mass or less, more preferably 1.0 parts by mass or less, with respect to a total of 100 parts by mass of the polyester resin and the polycarbonate resin. preferable.
  • the resin composition of the present embodiment may contain only one release agent, or may contain two or more release agents. When two or more types are included, the total amount is preferably within the above range.
  • the resin composition of this embodiment may contain a coloring agent (dye and/or pigment). By including a coloring agent, the design of the resulting molded article can be enhanced.
  • the colorant may be either a dye or a pigment, but a dye is preferred.
  • the dye used in this embodiment is preferably a black dye and/or a black dye composition.
  • a black dye composition means a dye composition that exhibits a black color by combining two or more kinds of chromatic dyes such as red, blue and green.
  • a first embodiment of the black dye composition is a form containing a green dye and a red dye.
  • a second embodiment of the black dye composition is a form containing a red dye, a blue dye and a yellow dye.
  • the colorant preferably dye
  • the colorant is a light-transmitting pigment.
  • the light-transmitting dye includes, for example, polybutylene terephthalate resin (eg, Novaduran (registered trademark) 5008), glass fiber (eg, manufactured by Nippon Electric Glass Co., Ltd., trade name: T-127) 30% by mass, and a dye ( A dye considered to be a light-transmitting dye) 0.2% by mass is blended so that the total is 100% by mass, and the light transmittance measured by the method described in paragraph 0105 of WO 2021/225154 is 20.0. % or more.
  • light-transmitting dyes include phthalocyanine, aniline black, phthalocyanine, porphyrin, perinone, quaterrylene, azo, azomethine, anthraquinone, pyrazolone, squaric acid derivative, perylene, chromium complex, and immonium.
  • Anthraquinone and perinone are preferred, and anthraquinone and perinone are more preferred.
  • the light transmittance at a wavelength of 1064 nm is 20.0% or more.
  • a wavelength of 1064 nm is an example of the wavelength of a laser used for laser welding, and a laser transmittance of 20% or more at this wavelength means that laser welding can be performed satisfactorily.
  • Light-transmitting dyes include Colorants Plast Yellow 8000, Plast Red M 8315, and Plast Red 8370 manufactured by Arimoto Kagaku Co., Ltd., and Colorants Macrolex Yellow 3G and Macrolex manufactured by LANXESS. Examples thereof include Red EG, Macrolex Green 5B, KP Plastic HK, KP Plastic Red HG, KP Plastic Red H2G, KP Plastic Blue R, KP Plastic Blue GR, and KP Plastic Green G manufactured by Kiwa Kagaku Kogyo Co., Ltd.
  • dyes described in Japanese Patent No. 4157300 and dyes described in Japanese Patent No. 4040460 can also be employed, the contents of which are incorporated herein.
  • Pigments used in the present embodiment include inorganic pigments (carbon black (e.g., acetylene black, lamp black, thermal black, furnace black, channel black, ketjen black, etc.) and other black pigments, iron oxide red and other red pigments, molybdate orange pigments such as oranges, white pigments such as titanium oxide), organic pigments (yellow pigments, orange pigments, red pigments, blue pigments, green pigments, etc.), and the like. Black pigments are preferred, and carbon black is more preferred.
  • the resin composition of the present embodiment contains a pigment, it is preferably used in masterbatch form with a thermoplastic resin (preferably a polyester resin, more preferably a polybutylene terephthalate resin).
  • the pigment concentration in the masterbatch is preferably 1 to 50% by mass.
  • the content thereof is preferably 0.01 parts by mass or more, and 0.05 parts by mass or more with respect to a total of 100 parts by mass of the polyester resin and the polycarbonate resin. and more preferably 0.1 parts by mass or more. By making it more than the said lower limit, the coloring effect is exhibited more effectively.
  • the upper limit of the content of the colorant is preferably 4 parts by mass or less, more preferably 3 parts by mass or less, and 2 parts by mass with respect to a total of 100 parts by mass of the polyester resin and the polycarbonate resin. It is more preferably 1 part by mass or less, and even more preferably 1 part by mass or less.
  • the resin composition of the present embodiment may contain only one colorant, or may contain two or more colorants. When two or more types are included, the total amount is preferably within the above range.
  • the resin composition of the present embodiment can be configured to substantially contain no pigment.
  • substantially containing no pigment means that the content is, for example, less than 0.1 parts by mass, and is 0.01 parts by mass or less with respect to a total of 100 parts by mass of the polyester resin and the polycarbonate resin. is preferably 0.001 parts by mass or less, more preferably 0.0001 parts by mass or less, and even more preferably 0.00001 parts by mass.
  • the resin composition of the present embodiment can be configured so as not to substantially contain carbon black.
  • Substantially free of carbon black means that the content is, for example, less than 0.1 parts by mass with respect to a total of 100 parts by mass of the polyester resin and the polycarbonate resin, and 0.01 parts by mass or less.
  • the resin composition of the present embodiment can be configured so as not to substantially contain a laser marking agent.
  • substantially free of laser marking agent means that the content is, for example, less than 0.1 parts by mass, and 0.01 parts by mass or less, with respect to a total of 100 parts by mass of the polyester resin and the polycarbonate resin. is preferably 0.001 parts by mass or less, more preferably 0.0001 parts by mass or less, and even more preferably 0.00001 parts by mass.
  • the resin composition of the present embodiment may optionally contain other components in addition to those mentioned above, as long as the desired physical properties are not significantly impaired.
  • other components include various resin additives.
  • 1 type may be contained and 2 or more types may contain other components by arbitrary combinations and a ratio.
  • Specific examples of resin additives include reactive compounds, nucleating agents, flame retardants, flame retardant aids, fillers, antistatic agents, antifog agents, fluidity improvers, plasticizers, dispersants, and antibacterial agents. etc.
  • the total of polyester resin, polycarbonate resin and inorganic filler preferably glass fiber
  • the total of polyester resin, polycarbonate resin and inorganic filler preferably accounts for 95% by mass or more of the resin composition, more preferably 98% by mass or more. preferable.
  • the resin composition of the present embodiment can be produced by a conventional method for preparing resin compositions. Generally, each component and optional additives are thoroughly mixed together and then melt-kneaded in a single-screw or twin-screw extruder.
  • the resin composition of the present embodiment can also be prepared by not premixing the respective components or premixing only a part of them, supplying the components to an extruder using a feeder, and melt-kneading them. Some components such as a colorant may be melt-kneaded with a thermoplastic resin to prepare a masterbatch, and then the remaining components may be blended and melt-kneaded.
  • melt-kneading can be appropriately selected from the range of 220 to 300°C. If the temperature is too high, decomposition gas is likely to be generated, which may cause opacification. Therefore, it is desirable to select a screw structure in consideration of shear heat generation and the like. In order to suppress decomposition during kneading and subsequent molding, it is desirable to use antioxidants and heat stabilizers.
  • the resin composition of this embodiment is molded according to a known method. That is, the molded article of this embodiment is formed from the resin composition or pellets of this embodiment.
  • the method for producing the molded article is not particularly limited, and any molding method generally employed for polyester resin compositions can be employed. Examples include injection molding, ultra-high speed injection molding, injection compression molding, two-color molding, hollow molding such as gas assist, molding using heat insulating molds, and rapid heating molds.
  • injection molding method foam molding (including supercritical fluid), insert molding, IMC (in-mold coating molding) molding method, extrusion molding method, sheet molding method, thermoforming method, rotational molding method, laminate molding method, press molding method, A blow molding method and the like can be mentioned, and injection molding is particularly preferable. Details of injection molding can be referred to paragraphs 0113 to 0116 of Japanese Patent No. 6183822, the contents of which are incorporated herein.
  • a molded article formed from the resin composition of the present embodiment can be a resin composition capable of laser marking. That is, the resin composition, pellet, or molded article of the present embodiment is preferably used for laser marking. Letters, signs, bar codes, QR codes (registered trademarks), drawings, patterns, etc. can be applied to molded articles by laser marking. Known methods can be widely adopted for the laser marking method. A laser beam of 500 nm or more is more preferable as the laser beam used in the laser marking method. Further, the upper limit of the laser oscillation wavelength is more preferably 1200 nm or less.
  • laser markers with wavelengths of 1,064 nm, 1090 nm, 1060 nm, and the like are used in applications for colored printing on molded articles.
  • a crystal such as neodymium-modified yttrium-aluminum-garnet (YAG) or neodymium-modified yttrium-vanadium tetroxide (Nd:YVO 4 ) is given high-output light to generate a laser, which is further amplified by reciprocating reflection of a mirror,
  • YAG neodymium-modified yttrium-aluminum-garnet
  • Nd:YVO 4 neodymium-modified yttrium-vanadium tetroxide
  • a laser marker that uses a Q-switch device to generate a pulsed laser can also be used.
  • a laser marker that uses multiple laser diodes (LD) at low output in a fiber injected with ytterbium, which is becoming mainstream in recent years, to generate and amplify laser light. can be done.
  • a green laser marker with a wavelength of 532 nm can also be used.
  • the laser beam may be single mode or multimode, and in addition to narrow beam diameters of 20 to 40 ⁇ m, wide beam diameters of 80 to 100 ⁇ m can also be used.
  • a single mode with a beam diameter of 20 to 40 ⁇ m is preferable because marking can be performed with good contrast.
  • the resin composition of the present embodiment can be used as a kit for laser welding in combination with a light-absorbing resin composition. That is, the resin composition of the present embodiment serves as a light-transmitting resin composition, and a molded article formed from such a light-transmitting resin composition is used as a resin member that transmits laser light during laser welding. can be used.
  • the transmissive resin member can be used as a laser-welded body by laser welding with a molded body (a resin member that absorbs laser light during laser welding) formed from a light-absorbing resin composition.
  • the light-absorbing resin composition contains a thermoplastic resin and a light-absorbing pigment (for example, carbon black). Furthermore, it may contain an inorganic filler. Since the resin composition of the present embodiment can be laser-marked when formed into a molded article, it can be laser-marked and is preferably used as a resin composition for transparent resin members in laser welding.
  • the laser light source used for laser welding can be determined according to the light absorption wavelength of the light-absorbing dye, and a laser with a wavelength in the range of 800 to 1100 nm is preferable.
  • Examples of the type of laser light to be irradiated include solid lasers, fiber lasers, semiconductor lasers, gas lasers, liquid lasers, and the like.
  • YAG (yttrium aluminum garnet crystal) laser (wavelength 1064 nm, 1070 nm), LD (laser diode) laser (wavelength 808 nm, 840 nm, 940 nm, 980 nm), etc. can be preferably used.
  • laser beams with wavelengths of 940 nm, 980 nm and 1070 nm are preferable.
  • the resin composition or molded article of the present embodiment can be used in various applications, specifically, various storage containers, electrical and electronic equipment parts, office automation (OA) equipment parts, home appliance parts, mechanical mechanism parts, vehicle mechanisms. It can be applied to parts and the like.
  • vehicle hollow parts various tanks, intake manifold parts, camera housings
  • vehicle electrical components various control units, ignition coil parts, etc.
  • motor parts etc. It can be suitably used for sensor parts, connector parts, switch parts, breaker parts, relay parts, coil parts, transformer parts, lamp parts and the like.
  • the laser-welded body of this embodiment is preferably used for vehicle-mounted camera parts, sensor case parts, motor parts, and electronic control parts. More specifically, in-vehicle camera parts and in-vehicle camera modules including in-vehicle camera parts, millimeter wave radar housings, ECU case housings, sensor case housings such as sonar sensors, motor parts such as electric parking brakes, etc. Suitable for enclosures.
  • PBT is an abbreviation for polybutylene terephthalate resin.
  • the amounts of metal elements in 100 parts by mass of various polycarbonate resins in Table 1 are shown below.
  • the unit of metal element is mass ppm. “ ⁇ ” means less than detection limit.
  • the cylinder temperature was set to 240° C., and the resin composition melted and kneaded under the conditions of a discharge rate of 40 kg/h and a screw rotation speed of 200 rpm was rapidly cooled in a water tank and pelletized using a pelletizer to obtain a resin composition. of pellets were obtained.
  • ⁇ Laser marking visibility> After drying the pellets obtained above at 120 ° C. for 5 hours, a plate-shaped molded body of 60 mm square and 1.5 mm thick was molded using an injection molding machine ("NEX80" manufactured by Nissei Plastic Industry Co., Ltd.) at a cylinder temperature of 260 ° C. and a mold temperature of 80°C. Using a laser marking device (“LP-Z130” manufactured by Panasonic Devices SUNX Co., Ltd.) on the surface of the obtained plate molding, laser marking is performed under the conditions of a scan speed of 200 mm / s, a printing pulse period of 50 ⁇ s, and a line width of 0.1 mm. was performed, and the visibility of the laser-marked portion was visually evaluated as follows.
  • Example 1-1 Photographs of Example 1-1 and Comparative Examples 1-1 to 1-3 after laser printing are shown in FIG.
  • Example 1-1 the boundary between the printed portion and the non-printed portion was clear, there was no bleeding, and clear laser printing was performed.
  • Comparative Examples 1-1 to 1-3 there was much blurring, it was difficult to determine the boundary between the printed portion and the non-printed portion, and the accuracy of the laser printability was inferior.
  • ⁇ Light transmittance> After drying the pellets obtained above at 120 ° C. for 5 hours, a plate-shaped molded body of 60 mm square and 1.5 mm thick was molded using an injection molding machine ("NEX80" manufactured by Nissei Plastic Industry Co., Ltd.) at a cylinder temperature of 260 ° C. and a mold temperature of 80°C. The obtained plate was measured for 1064 nm light transmittance (unit: %) at a point 45 mm from the gate and at the center of the width of the test plate using an ultraviolet-visible spectrophotometer. As a UV-visible spectrophotometer, an integrating sphere-equipped "UV-3100PC" manufactured by Shimadzu Corporation was used.
  • the molded articles formed from the resin composition of the present embodiment were excellent in laser printability (Examples 1-1 to 1-5). Furthermore, the molded article was excellent in mechanical strength. Further, it was found that the resin composition of the present embodiment has a high laser transmittance and can be laser welded. Further, in the resin composition of the present embodiment, even if a coloring agent is not blended (Examples 1-1, 1-4, 1-5) or a dye (Example 1-2) is blended, laser marking Therefore, laser marking is possible, and it can be used as a resin composition for a transparent resin member in laser welding.
  • a first member shown in Table 4 was selected, and as shown in FIG. A lid-shaped transmissive resin member I is superimposed on the resin member II, a laser light source is arranged vertically above the brim, which is the overlapped portion of the transmissive resin member I and the absorbing resin member II, and a glass plate is used to form the transmissive resin member I. and the overlapping portion of the absorbing resin member II from both sides in the thickness direction while applying a pressing force (pressing force at welding) of 4.92 N / mm in the inner direction, under the conditions shown in Table 4, laser welding by irradiating. got a body
  • the portion indicated by symbol X in FIG. 4 is the portion irradiated with the laser.
  • the welding equipment is as follows.
  • Laser device YLR-300-AC-Y14 manufactured by IPG Wavelength: 1070nm Collimator: 7.5mm
  • Laser type Fiber laser Intensity (output): 100W
  • Galvanometer scanner Fiber Elephants 21 manufactured by ARGES Aperture: 21mm
  • Laser irradiation speed 900mm/s
  • Laser irradiation circumference As shown in Table 4 or Table 5, welding part circumference: 137 mm
  • the position of the laser scanner was adjusted by defocusing the laser light so that the diameter of the spot irradiated onto the welding surface was 1 mm.
  • measuring jigs 25 and 26 are inserted from the upper and lower surfaces of the box body composed of the transmissive resin member I and the absorbent resin member II produced above, respectively, and jigs 23 and 24 housed inside. and pulled up and down (pulling speed: 5 mm/min), and the strength (welding strength, unit: N) at which the transmissive resin member I and the absorbent resin member II separate was measured.
  • a 100 kN Tensilon universal testing machine manufactured by ORIENTEC was used as an apparatus. The results are shown in Table 4 below.
  • the laser welded body obtained using the resin composition of the present invention had high laser welding strength (Example 1-1).
  • the laser welded body obtained using the resin composition of the comparative example had low laser welding strength.
  • the cylinder temperature was set to 240° C., and the resin composition melted and kneaded under the conditions of a discharge rate of 40 kg/h and a screw rotation speed of 200 rpm was rapidly cooled in a water tank and pelletized using a pelletizer to obtain a resin composition. of pellets were obtained.
  • Example 1-1 The light transmittance, laser print visibility, tensile strength and tensile modulus were measured in the same manner as in Example 1-1. Further, photographs of Example 2-1 and Comparative Examples 2-1 and 2-2 after laser printing are shown in FIG. In Example 1-1, the boundary between the printed portion and the non-printed portion was clear, there was no bleeding, and clear laser printing was performed. On the other hand, in Comparative Examples 1-1 and 1-2, there was much blurring, it was difficult to discriminate the boundary between the printed portion and the non-printed portion, and the accuracy of the laser printability was inferior.
  • the resin composition of the present invention had a high laser transmittance. Therefore, it turned out that it is suitable for laser welding. Furthermore, preliminary tests by the inventors revealed that the laser welding strength was also high.
  • the resin composition of the present invention does not adversely affect various performances even when the recycled polycarbonate resin is used, and is environmentally friendly.
  • the resin composition of the present embodiment had high laser print visibility. That is, it had excellent laser marking properties. Furthermore, since the resin composition of the present embodiment has high laser transmittance and excellent laser marking properties, it is suitably used as a resin composition capable of laser welding and/or laser marking.
  • the laser welded body obtained using the resin composition of the present invention had high laser welding strength (Example 2-1). On the other hand, the laser welded body obtained using the resin composition of the comparative example had low laser welding strength (Comparative Example 2-2).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Optics & Photonics (AREA)
  • Organic Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Medicinal Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Plasma & Fusion (AREA)
  • Electromagnetism (AREA)
  • Toxicology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Thermal Transfer Or Thermal Recording In General (AREA)

Abstract

レーザーマーキング性に優れた樹脂組成物の提供。レーザー溶着時においてレーザー透過樹脂部材として用いられ、レーザーマーキング可能な樹脂組成物の提供。樹脂組成物を用いた成形体、ペレット、および、レーザー溶着体の提供。ポリエステル樹脂とポリカーボネート樹脂を含み、ポリエステル樹脂とポリカーボネート樹脂の合計100質量部における、ポリエステル樹脂とポリカーボネート樹脂の質量比が、10/90~90/10であり、ポリカーボネート樹脂に含まれるアルミニウム元素の含有量が、ポリカーボネート樹脂100質量部に対し、0.50~1000.00質量ppmである、樹脂組成物。

Description

樹脂組成物、成形体、ペレット、および、レーザー溶着体
 本発明は、樹脂組成物、成形体、ペレット、および、レーザー溶着体に関する。
 特に、レーザーマーキングが可能な成形体の製造に用いられる樹脂組成物に関する。
 さらには、レーザー溶着時においてレーザー透過樹脂部材として用いられ、レーザーマーキング可能な樹脂組成物に関する。
 ポリブチレンテレフタレート樹脂を始めとする熱可塑性ポリエステル樹脂やポリカーボネート樹脂は、機械的強度等に優れており、また、優れた耐熱性、成形性、リサイクル性を有していることから、各種の機器部品に広く用いられている。
 一方、近年、熱可塑性樹脂から形成された樹脂部材について、生産性効率化のため溶着加工を行う例が増加してきており、なかでも電子部品への影響が少ないレーザー溶着が多用されてきている(例えば、特許文献1)。
 レーザー溶着は、レーザー光透過性の材料からなるレーザー透過樹脂部材(以下、「透過樹脂部材」ということがある)と、レーザー光吸収性の材料からなるレーザー吸収樹脂部材(以下、「吸収樹脂部材」ということがある)を重ねて、透過樹脂部材側からレーザー光を照射し、吸収樹脂部材との界面を発熱させて溶着する技術である。そして、そのような用途の成形体に適用される樹脂組成物としては、レーザー光の照射によって溶着することが可能な性能(レーザー溶着性)を有することが要求される。
 一方、成形体において、完成時の意匠性、情報の表示や組立時の部品識別性等の点で、成形体表面に製品情報等の印字、描画を施す場合も多い。そして、それらが長期間にわたって視認性を維持することが求められる場合は、信頼性の観点からレーザーマーキングが用いられることがある。
 さらに、近年、レーザー溶着時においてレーザー透過樹脂部材として用いることができる樹脂組成物であって、レーザーマーキング可能な樹脂組成物も検討されている(特許文献2)。
特許第6183822号公報 特開2020-50822号公報
 上述の通り、レーザーマーキングできる樹脂の需要は高まっており、かかる樹脂の用途拡大に伴い、新たなレーザーマーキング性に優れた樹脂組成物が求められている。
 また、上述の通り、レーザーマーキング性に優れた樹脂組成物についても、レーザー溶着が可能であることが求められる。ここで、レーザー溶着体の意匠性の面から、透過樹脂部材と吸収樹脂部材とは同系色に着色されていることが好ましく、例えば、吸収樹脂部材および透過樹脂部材を黒色に着色することがある。
 ここで、透過樹脂部材について、吸収樹脂部材と同様に、レーザー光の吸収率の高い顔料で着色してしまうと、レーザー光が透過しなくなってしまいレーザー溶着が不可能となってしまうことから、透過樹脂部材は、レーザー光の透過をできるだけ阻害しない色素が用いられている。
 一方で、透過樹脂部材にレーザーマーキングを施す場合、レーザー光が透過してしまうとマーキングできない。そこで、レーザー光をある程度透過させつつ、レーザーマーキングも可能な樹脂組成物が求められる。
 さらに、近年、環境負荷の観点から、リサイクル樹脂を用いることが求められつつある。
 以上の状況に基づき、本発明は、かかる課題を解決することを目的とする。
 すなわち、本発明の第一の課題は、レーザーマーキング性に優れた樹脂組成物の提供である。
 また、本発明の第二の課題は、レーザー溶着時においてレーザー透過樹脂部材として用いられ、レーザーマーキング可能な樹脂組成物の提供である。
 さらに、本発明の第三の課題は、環境負荷に対応した樹脂組成物であって、レーザー溶着および/またはレーザーマーキングが可能な樹脂組成物の提供である。
 さらに、本発明では、前記樹脂組成物を用いた成形体、ペレット、および、レーザー溶着体を提供することを目的とする。
 上記課題のもと、本発明者が検討を行った結果、熱可塑性樹脂として、ポリエステル樹脂とポリカーボネート樹脂を用い、さらに、ポリカーボネート樹脂としてアルミニウム元素を少量含むものを用いることにより、上記課題を解決しうることを見出した。
 具体的には、下記手段により、上記課題は解決された。
<1>ポリエステル樹脂とポリカーボネート樹脂を含み、ポリエステル樹脂とポリカーボネート樹脂の合計100質量部における、ポリエステル樹脂とポリカーボネート樹脂の質量比が、10/90~90/10であり、前記ポリカーボネート樹脂に含まれるアルミニウム元素の含有量が、ポリカーボネート樹脂100質量部に対し、0.50~1000.00質量ppmである、樹脂組成物。
<2>ポリエステル樹脂とポリカーボネート樹脂を含み、ポリエステル樹脂とポリカーボネート樹脂の合計100質量部における、ポリエステル樹脂とポリカーボネート樹脂の質量比が、10/90~90/10であり、前記ポリカーボネート樹脂がリサイクル品を含み、前記ポリカーボネート樹脂の分子量分布(Mw/Mn)が2.8以上である、樹脂組成物。
<3>前記ポリエステル樹脂が、ポリブチレンテレフタレート樹脂を含む、<1>または<2>に記載の樹脂組成物。
<4>前記ポリカーボネート樹脂が、リサイクル品を含む、<1>~<3>のいずれか1つに記載の樹脂組成物。
<5>前記ポリカーボネート樹脂がリサイクル品を含み、前記ポリカーボネート樹脂の分子量分布(Mw/Mn)が2.8以上である、<1>~<4>のいずれか1つに記載の樹脂組成物。
<6>前記ポリカーボネート樹脂の粘度平均分子量Mvが20,000以上である、<5>に記載の樹脂組成物。
<7>前記ポリカーボネート樹脂100質量部中、リサイクル品が50質量部以上を占める、<1>~<6>のいずれか1つに記載の樹脂組成物。
<8>ポリエステル樹脂とポリカーボネート樹脂の合計100質量部に対する、ポリエステル樹脂とポリカーボネート樹脂の質量比が、50/50~90/10である、<1>~<7>のいずれか1つに記載の樹脂組成物。
<9>さらに、無機充填剤を含む、<1>~<8>のいずれか1つに記載の樹脂組成物。
<10>前記無機充填剤が、ガラス繊維および/またはガラスフレークを含む、<9>に記載の樹脂組成物。
<11>さらに、リン系安定剤を含む、<1>~<10>のいずれか1つに記載の樹脂組成物。
<12>1.5mmの厚さに成形したときの波長1064nmにおける光線透過率が20.0%以上である、<1>~<11>のいずれか1つに記載の樹脂組成物。
<13>レーザーマーキング用である、<1>~<12>のいずれか1つに記載の樹脂組成物。
<14>レーザー溶着のレーザー光に対する透過樹脂部材に用いる、<1>~<13>のいずれか1つに記載の樹脂組成物。
<15>前記ポリエステル樹脂が、ポリブチレンテレフタレート樹脂を含み、
前記ポリカーボネート樹脂が、リサイクル品を含み、
前記ポリカーボネート樹脂100質量部中、リサイクル品が50質量部以上を占め、
ポリエステル樹脂とポリカーボネート樹脂の合計100質量部に対する、ポリエステル樹脂とポリカーボネート樹脂の質量比が、50/50~90/10であり、
さらに、無機充填剤を含み、
前記無機充填剤が、ガラス繊維および/またはガラスフレークを含み、
さらに、リン系安定剤を含み、
1.5mmの厚さに成形したときの波長1064nmにおける光線透過率が20.0%以上であり、
レーザーマーキング用であり、かつ、
レーザー溶着のレーザー光に対する透過樹脂部材に用いる、<1>~<14>のいずれか1つに記載の樹脂組成物。
<16>前記ポリカーボネート樹脂100質量部中、リサイクル品が50質量部以上を占め、前記ポリカーボネート樹脂の粘度平均分子量Mvが20,000以上であり、
前記ポリエステル樹脂が、ポリブチレンテレフタレート樹脂を含み、
さらに、無機充填剤を含み、
さらに、リン系安定剤を含み、
レーザーマーキング用であり、かつ、
レーザー溶着のレーザー光に対する透過樹脂部材に用いる、<1>~<15>のいずれか1つに記載の樹脂組成物。
<17><1>~<16>のいずれか1つに記載の樹脂組成物から形成された成形体。
<18><1>~<16>のいずれか1つに記載の樹脂組成物のペレット。
<19><18>に記載のペレットから形成された成形体。
<20>レーザーマーキング用である、<17>または<19>に記載の成形体。
<21><17>または<19>に記載の成形体を含む、レーザー溶着体。
<1-1>ポリエステル樹脂とポリカーボネート樹脂を含み、ポリエステル樹脂とポリカーボネート樹脂の合計100質量部における、ポリエステル樹脂とポリカーボネート樹脂の質量比が、10/90~90/10であり、前記ポリカーボネート樹脂に含まれるアルミニウム元素の含有量が、ポリカーボネート樹脂100質量部に対し、0.50~1000.00質量ppmである、樹脂組成物。
<1-2>前記ポリエステル樹脂が、ポリブチレンテレフタレート樹脂を含む、<1-1>に記載の樹脂組成物。
<1-3>前記ポリカーボネート樹脂が、リサイクル品を含む、<1-1>または<1-2>に記載の樹脂組成物。
<1-4>前記ポリカーボネート樹脂100質量部中、リサイクル品が50質量部以上を占める、<1-3>に記載の樹脂組成物。
<1-5>ポリエステル樹脂とポリカーボネート樹脂の合計100質量部に対する、ポリエステル樹脂とポリカーボネート樹脂の質量比が、50/50~90/10である、<1-1>~<1-4>のいずれか1つに記載の樹脂組成物。
<1-6>さらに、無機充填剤を含む、<1-1>~<1-5>のいずれか1つに記載の樹脂組成物。
<1-7>前記無機充填剤が、ガラス繊維および/またはガラスフレークを含む、<1-6>に記載の樹脂組成物。
<1-8>さらに、リン系安定剤を含む、<1-1>~<1-7>のいずれか1つに記載の樹脂組成物。
<1-9>1.5mmの厚さに成形したときの波長1064nmにおける光線透過率が20.0%以上である、<1-1>~<1-8>のいずれか1つに記載の樹脂組成物。
<1-10>レーザーマーキング用である、<1-1>~<1-9>のいずれか1つに記載の樹脂組成物。
<1-11>レーザー溶着のレーザー光に対する透過樹脂部材に用いる、<1-1>~<1-10>のいずれか1つに記載の樹脂組成物。
<1-12><1-1>~<1-11>のいずれか1つに記載の樹脂組成物から形成された成形体。
<1-13>レーザーマーキング用である、<1-12>に記載の成形体。
<1-14><1-12>または<1-13>に記載の成形体を含む、レーザー溶着体。
<2-1>ポリエステル樹脂とポリカーボネート樹脂を含み、
ポリエステル樹脂とポリカーボネート樹脂の合計100質量部における、ポリエステル樹脂とポリカーボネート樹脂の質量比が、10/90~90/10であり、
前記ポリカーボネート樹脂がリサイクル品を含み、
前記ポリカーボネート樹脂の分子量分布(Mw/Mn)が2.8以上である、
樹脂組成物。
<2-2>前記ポリカーボネート樹脂100質量部中、リサイクル品が50質量部以上を占める、<2-1>に記載の樹脂組成物。
<2-3>前記ポリカーボネート樹脂の粘度平均分子量Mvが20,000以上である、<2-1>または<2-2>に記載の樹脂組成物。
<2-4>前記ポリエステル樹脂が、ポリブチレンテレフタレート樹脂を含む、<2-1>~<2-3>のいずれか1つに記載の樹脂組成物。
<2-5>さらに、無機充填剤を含む、<2-1>~<2-4>のいずれか1つに記載の樹脂組成物。
<2-6>さらに、リン系安定剤を含む、<2-1>~<2-5>のいずれか1つに記載の樹脂組成物。
<2-7>レーザーマーキング用である、<2-1>~<2-6>のいずれか1つに記載の樹脂組成物。
<2-8>レーザー溶着のレーザー光に対する透過樹脂部材に用いる、<2-1>~<2-7>のいずれか1つに記載の樹脂組成物。
<2-9><2-1>~<2-8>のいずれか1つに記載の樹脂組成物から形成された成形体。
<2-10>レーザーマーキング用である、<2-9>に記載の成形体。
<2-11><2-9>または<2-10>に記載の成形体を含む、レーザー溶着体。
 本発明により、レーザーマーキング性に優れた樹脂組成物を提供可能になった。
 また、本発明により、レーザー溶着時においてレーザー透過樹脂部材として用いられ、レーザーマーキング可能な樹脂組成物を提供可能になった。
 さらに、環境負荷に対応した樹脂組成物であって、レーザー溶着および/またはレーザーマーキングが可能な樹脂組成物を提供可能になった。
 また、本発明により、前記樹脂組成物を用いた成形体、ペレット、および、レーザー溶着体を提供可能になった。
実施例1-1と比較例1-1~1-3のレーザー印字後の写真である。 実施例のレーザー溶着強度を測定するための試験片(透過樹脂部材I)を示す概略図である。 実施例のレーザー溶着強度を測定するための試験片(吸収樹脂部材II)を示す概略図である。 実施例のレーザー溶着強度を測定するための試験片(透過樹脂部材Iと吸収樹脂部材IIの組み合わせ)を示す概略図である。 実施例のレーザー溶着強度の測定方法を示す概略図である。 実施例2-1と比較例2-1、2-2のレーザー印字後の写真である。
 以下、本発明を実施するための形態(以下、単に「本実施形態」という)について詳細に説明する。なお、以下の本実施形態は、本発明を説明するための例示であり、本発明は本実施形態のみに限定されない。
 なお、本明細書において「~」とはその前後に記載される数値を下限値および上限値として含む意味で使用される。
 本明細書において、各種物性値および特性値は、特に述べない限り、23℃におけるものとする。
 本明細書で示す規格で説明される測定方法等が年度によって異なる場合、特に述べない限り、2022年1月1日時点における規格に基づくものとする。
 本実施形態の第一の実施形態の樹脂組成物は、ポリエステル樹脂とポリカーボネート樹脂を含み、ポリエステル樹脂とポリカーボネート樹脂の合計100質量部における、ポリエステル樹脂とポリカーボネート樹脂の質量比が、10/90~90/10であり、前記ポリカーボネート樹脂に含まれるアルミニウム元素の含有量が、ポリカーボネート樹脂100質量部に対し、0.50~1000.00質量ppmであることを特徴とする。
 このような構成とすることにより、レーザーマーキング性に優れた樹脂組成物が得られる。さらに、レーザー溶着時においてレーザー透過樹脂部材として用いられ、レーザーマーキング可能な樹脂組成物が得られる。
 レーザーマーキングが可能になる理由は、ポリカーボネート樹脂がアルミニウム元素を含むと、成形体表面における樹脂成分の炭化が進行しやすく、成形体の表面における炭化が綺麗に進行するためと推測される。
 本実施形態では、カーボンブラック等のレーザーマーキング剤を配合しなくてもレーザー溶着できる点で有益である。すなわち、レーザーマーキング剤は、レーザー溶着の際に照射されるレーザーを吸収してしまうため、従来のレーザーマーキング剤を含む樹脂組成物は、レーザー溶着におけるレーザー透過樹脂部材として用いにくい場合もある。しかしながら、本実施形態においては、レーザーマーキング剤を用いなくてもレーザーマーキングできるため、レーザー溶着時においてレーザー透過樹脂部材として用いられ、レーザーマーキング可能な樹脂組成物とすることができる。
 本実施形態の第二の実施形態の樹脂組成物は、ポリエステル樹脂とポリカーボネート樹脂を含み、ポリエステル樹脂とポリカーボネート樹脂の合計100質量部における、ポリエステル樹脂とポリカーボネート樹脂の質量比が、10/90~90/10であり、前記ポリカーボネート樹脂がリサイクル品を含み、前記ポリカーボネート樹脂の分子量分布(Mw/Mn)が2.8以上であることを特徴とする。
 上記構成とすることにより、環境負荷に対応した樹脂組成物であって、レーザー溶着および/またはレーザーマーキングが可能な樹脂組成物が提供可能になる。
 特に、上記構成とすることにより、ポリカーボネート樹脂とポリエステル樹脂の相溶性が向上し、透過率が高い樹脂組成物が提供可能になる。また、上記構成とすることにより、レーザー透過率が相対的に向上することから、レーザー溶着時においてレーザー透過樹脂部材として好適に用いられる。さらに、上記構成とすることにより、ポリカーボネート樹脂とポリエステル樹脂の相溶性が向上することから、レーザー溶着の際のレーザー溶着強度が向上した樹脂組成物とすることができる。
 特に、本実施形態では、リサイクルポリカーボネート樹脂を用いても上記性能を阻害しないため、上記のような性能を持たせつつ、環境負荷に対応した樹脂組成物が得られる。
 以下、本実施形態の詳細を説明する。
<ポリエステル樹脂>
 本実施形態の樹脂組成物は、ポリエステル樹脂を含む。
 本実施形態で用いられるポリエステル樹脂は、熱可塑性ポリエステル樹脂である限り、その種類について特に定めるものではないが、ポリブチレンテレフタレート樹脂およびポリエチレンテレフタレート樹脂が例示され、ポリブチレンテレフタレート樹脂が好ましい。
<<ポリブチレンテレフタレート樹脂>>
 ポリブチレンテレフタレート樹脂は、酸成分の主成分としてテレフタル酸を、ジオール成分の主成分として1,4-ブタンジオールを重縮合させて得られる樹脂である。酸成分の主成分がテレフタル酸であるとは、酸成分の50質量%以上がテレフタル酸であることをいい、60質量%以上であることが好ましく、70質量%以上であることがより好ましく、80質量%以上、90質量%以上、95質量%以上であってもよい。ジオール成分の主成分であるが1,4-ブタンジオールとは、ジオール成分の50質量%以上が1,4-ブタンジオールであることをいい、60質量%以上であることが好ましく、70質量%以上であることがより好ましく、80質量%以上、90質量%以上、95質量%以上であってもよい。
 ポリブチレンテレフタレート樹脂が、他の酸成分を含む場合、イソフタル酸、ダイマー酸が例示される。また、ポリブチレンテレフタレート樹脂が他のジオール成分を含む場合、ポリテトラメチレングリコール(PTMG)等のポリアルキレングリコール等が例示される。
 ポリブチレンテレフタレート樹脂として、ポリテトラメチレングリコールを共重合したものを用いる場合は、共重合体中のテトラメチレングリコール成分の割合は3~40質量%であることが好ましく、5~30質量%がより好ましく、10~25質量%がさらに好ましい。このような共重合割合とすることにより、レーザー溶着性と耐熱性とのバランスにより優れる傾向となり好ましい。
 ポリブチレンテレフタレート樹脂として、ダイマー酸共重合ポリブチレンテレフタレートを用いる場合は、全カルボン酸成分に占めるダイマー酸成分の割合は、カルボン酸基として0.5~30モル%であることが好ましく、1~20モル%がより好ましく、3~15モル%がさらに好ましい。このような共重合割合とすることにより、レーザー溶着性、長期耐熱性および靭性のバランスに優れる傾向となり好ましい。
 ポリブチレンテレフタレート樹脂として、イソフタル酸共重合ポリブチレンテレフタレートを用いる場合は、全カルボン酸成分に占めるイソフタル酸成分の割合は、カルボン酸基として1~30モル%であることが好ましく、1~20モル%がより好ましく、3~15モル%がさらに好ましい。このような共重合割合とすることにより、レーザー溶着性、耐熱性、射出成形性および靭性のバランスに優れる傾向となり好ましい。
 本実施形態で用いるポリブチレンテレフタレート樹脂は、酸成分の90質量%以上がテレフタル酸であり、ジオール成分の90質量%以上が1,4-ブタンジオールである樹脂(ポリブチレンテレフタレートホモポリマー)、または、ポリテトラメチレングリコールを共重合した共重合ポリブチレンテレフタレート樹脂、イソフタル酸共重合ポリブチレンテレフタレート樹脂が好ましい。
 ポリブチレンテレフタレート樹脂の固有粘度は、0.5~2dL/gであるものが好ましい。成形性および機械的特性の点からして、0.6~1.5dL/gの範囲の固有粘度を有するものがより好ましい。固有粘度が0.5dL/g以上のものを用いることにより、得られる成形体の機械的強度がより向上する傾向にある。また、固有粘度が2dL/g以下のものを用いることにより、ポリブチレンテレフタレート樹脂の流動性が向上し、成形性が向上し、レーザー溶着性がより向上する傾向にある。
 なお、固有粘度は、テトラクロロエタンとフェノールとの1:1(質量比)の混合溶媒中、30℃で測定される値である。
 ポリブチレンテレフタレート樹脂を2種以上含む場合、固有粘度は混合物の固有粘度とする。
 ポリブチレンテレフタレート樹脂の末端カルボキシ基量は、適宜選択して決定すればよいが、通常、60eq/ton以下であり、50eq/ton以下であることが好ましく、30eq/ton以下であることがさらに好ましい。末端カルボキシ基量を50eq/ton以下とすることにより、ポリブチレンテレフタレート樹脂の溶融成形時のガスの発生をより効果的に抑制できる。また、末端カルボキシ基量の下限値は特に定めるものではないが、通常、5eq/tonである。
 ポリブチレンテレフタレート樹脂を2種以上含む場合、末端カルボキシ基量は混合物の末端カルボキシ基量とする。
 なお、ポリブチレンテレフタレート樹脂の末端カルボキシ基量は、ベンジルアルコール25mLにポリブチレンテレフタレート樹脂0.5gを溶解し、水酸化ナトリウムの0.01モル/Lベンジルアルコール溶液を用いて滴定することにより、求められる値である。末端カルボキシ基量を調整する方法としては、重合時の原料仕込み比、重合温度、減圧方法などの重合条件を調整する方法や、末端封鎖剤を反応させる方法等、従来公知の任意の方法が挙げられる。
<<ポリエチレンテレフタレート樹脂>>
 本実施形態で用いられるポリエチレンテレフタレート樹脂は、酸成分の主成分としてテレフタル酸を、ジオール成分の主成分としてエチレングリコールを重縮合させて得られる樹脂である。酸成分の主成分がテレフタル酸であるとは、酸成分の50質量%以上がテレフタル酸であることをいい、60質量%以上であることが好ましく、70質量%以上であることがより好ましく、80質量%以上、90質量%以上、95質量%以上であってもよい。ジオール成分の主成分がエチレングリコールであるとは、ジオール成分の50質量%以上がエチレングリコールであることをいい、60質量%以上であることが好ましく、70質量%以上であることがより好ましく、80質量%以上、90質量%以上、95質量%以上であってもよい。
 ポリエチレンテレフタレート樹脂が他の酸成分を含む場合、フタル酸、イソフタル酸、ナフタレンジカルボン酸、4,4’-ジフェニルスルホンジカルボン酸、4,4’-ビフェニルジカルボン酸、1,4-シクロヘキサンジカルボン酸、1,3-フェニレンジオキシジ酢酸およびこれらの構造異性体、マロン酸、コハク酸、アジピン酸等のジカルボン酸およびその誘導体、p-ヒドロキシ安息香酸、グリコール酸等のオキシ酸またはその誘導体が挙げられる。
 また、ポリエチレンテレフタレート樹脂が他の酸成分を含む場合、他のジオール成分として、1,2-プロパンジオール、1,3-プロパンジオール、1,4-ブタンジオール、ペンタメチレングリコール、ヘキサメチレングリコール、ネオペンチルグリコール等の脂肪族グリコール、シクロヘキサンジメタノール等の脂環式グリコール、ビスフェノールA、ビスフェノールS等の芳香族ジヒドロキシ化合物誘導体等が挙げられる。
 さらに、ポリエチレンテレフタレート樹脂は、分岐成分、例えばトリカルバリル酸、トリメリシン酸、トリメリット酸等の如き三官能、もしくはピロメリット酸の如き四官能のエステル形成能を有する酸またはグリセリン、トリメチロールプロパン、ペンタエリトリット等の如き三官能もしくは四官能のエステル形成能を有するアルコールを1.0モル%以下、好ましくは0.5モル%以下、さらに好ましくは0.3モル%以下を共重合せしめたものであってもよい。
 ポリエチレンテレフタレート樹脂の極限粘度は、好ましくは0.3~1.5dL/gであり、より好ましくは0.3~1.2dL/gであり、さらに好ましくは0.4~0.8dL/gである。
 なお、ポリエチレンテレフタレート樹脂の固有粘度は、テトラクロロエタンとフェノールとの1:1(質量比)の混合溶媒中、30℃で測定する値である。
 また、ポリエチレンテレフタレート樹脂の末端カルボキシ基の濃度は、好ましくは3~60eq/tonであり、より好ましくは5~50eq/tonであり、さらに好ましくは8~40eq/tonである。末端カルボキシ基濃度を60eq/ton以下とすることで、樹脂材料の溶融成形時にガスが発生しにくくなり、得られる成形体の機械的特性が向上する傾向にあり、逆に末端カルボキシ基濃度を3eq/ton以上とすることで、得られる成形体の耐熱性、滞留熱安定性や色相が向上する傾向にあり、好ましい。
 なお、ポリエチレンテレフタレート樹脂の末端カルボキシ基濃度は、ベンジルアルコール25mLにポリエチレンテレフタレート樹脂0.5gを溶解し、水酸化ナトリウムの0.01モル/Lベンジルアルコール溶液を使用して滴定することにより、求められる値である。
<ポリカーボネート樹脂>
 本実施形態の樹脂組成物は、ポリカーボネート樹脂を含む。
 ポリカーボネート樹脂は、ジヒドロキシ化合物またはこれと少量のポリヒドロキシ化合物を、ホスゲンまたは炭酸ジエステルと反応させることによって得られる、分岐していてもよい単独重合体または共重合体である。ポリカーボネート樹脂の製造方法は、特に限定されるものではなく、従来公知のホスゲン法(界面重合法)や溶融法(エステル交換法)により製造したものを使用することができ、溶融法が好ましい。溶融法で得られたポリカーボネート樹脂を用いることにより、ポリカーボネート樹脂が分岐構造を有するものとなり、本発明の効果がより効果的に発揮される傾向にある。
 原料のジヒドロキシ化合物としては、芳香族ジヒドロキシ化合物が好ましく、ビスフェノールがより好ましく、2,2-ビス(4-ヒドロキシフェニル)プロパン(=ビスフェノールA)、テトラメチルビスフェノールA、ビス(4-ヒドロキシフェニル)-p-ジイソプロピルベンゼン、ハイドロキノン、レゾルシノール、4,4-ジヒドロキシジフェニル等がさらに好ましく、ビスフェノールAが一層好ましい。また、上記の芳香族ジヒドロキシ化合物にスルホン酸テトラアルキルホスホニウムが1個以上結合した化合物を使用することもできる。
 ポリカーボネート樹脂としては、上述した中でも、2,2-ビス(4-ヒドロキシフェニル)プロパンから誘導される芳香族ポリカーボネート樹脂(ビスフェノールA型ポリカーボネート樹脂)、または、2,2-ビス(4-ヒドロキシフェニル)プロパンと他の芳香族ジヒドロキシ化合物とから誘導される芳香族ポリカーボネート共重合体が好ましい。また、シロキサン構造を有するポリマーまたはオリゴマーとの共重合体等の、芳香族ポリカーボネート樹脂を主体とする共重合体であってもよい。さらには、上述したポリカーボネート樹脂の2種以上を混合して用いてもよい。
 本実施形態では、原料モノマーであるジヒドロキシ化合物の90質量%以上が2,2-ビス(4-ヒドロキシフェニル)プロパンであるポリカーボネート樹脂が好ましく、95質量%以上が2,2-ビス(4-ヒドロキシフェニル)プロパンであるポリカーボネート樹脂がより好ましい。
 ポリカーボネート樹脂の分子量を調節するには、一価の芳香族ヒドロキシ化合物を用いればよく、例えば、m-およびp-メチルフェノール、m-およびp-プロピルフェノール、p-tert-ブチルフェノール、p-長鎖アルキル置換フェノール等が挙げられる。
 本実施形態で用いるポリカーボネート樹脂は、アルミニウム元素の含有量が、ポリカーボネート樹脂100質量部に対し、0.50~1000.00質量ppmであることが好ましい。前記下限値以上とすることにより、レーザーマーキング性がより向上する傾向にある。前記上限値以下とすることにより、樹脂の長期安定性が向上する傾向にある。前記アルミニウム元素の含有量は、ポリカーボネート樹脂100質量部に対し、1.00質量ppm以上であることがより好ましく、1.20質量ppm以上であることがさらに好ましく、2.00質量ppm以上であることが一層好ましく、3.00質量ppm以上であることがより一層好ましく、6.00質量ppm以上であることがさらに一層好ましい。前記アルミニウム元素の含有量は、ポリカーボネート樹脂100質量部に対し、500.00質量ppm以下であることがより好ましく、300.00質量ppm以下であることがさらに好ましく、100.00質量ppm以下であることが一層好ましく、50.00質量ppm以下であることがより一層好ましく、30.00質量ppm以下であることがさらに一層好ましく、15.00質量ppm以下であることがよりさらに一層好ましく、10.00質量ppm以下であることが特に一層好ましい。
 本実施形態においては、ポリカーボネート樹脂がカルシウム元素をポリカーボネート樹脂100質量部に対し、0.15~30.00質量ppmの割合で含むことが好ましい。前記カルシウム元素の含有量は、ポリカーボネート樹脂100質量部に対し、0.50質量ppm以上であることがより好ましく、1.50質量ppm以上であることがさらに好ましく、2.00質量ppm以上であることが一層好ましく、3.50質量ppm以上であることがより一層好ましく、4.00質量ppm以上であることがさらに一層好ましい。前記下限値以上とすることにより、レーザーマーキング性がより向上する傾向にある。前記カルシウム元素の含有量は、ポリカーボネート樹脂100質量部に対し、30.00質量ppm以下であることがより好ましく、25.00質量ppm以下であることがさらに好ましく、20.0質量ppm以下であることが一層好ましく、17.0質量ppm以下であることがより一層好ましい。前記上限値以下とすることにより、樹脂の長期安定性が向上する傾向にある。
 本実施形態においては、ポリカーボネート樹脂がストロンチウム元素をポリカーボネート樹脂100質量部に対し、0.01~1.00質量ppmの割合で含むことが好ましい。前記ストロンチウム元素の含有量は、ポリカーボネート樹脂100質量部に対し、0.02質量ppm以上であることがより好ましい。前記下限値以上とすることにより、レーザーマーキング性がより向上する傾向にある。前記ストロンチウム元素の含有量は、ポリカーボネート樹脂100質量部に対し、0.50質量ppm以下であることがより好ましく、0.10質量ppm以下であることがさらに好ましく、0.09質量ppm以下であることが一層好ましく、0.08質量ppm以下であることがより一層好ましい。前記上限値以下とすることにより、樹脂の長期安定性が向上する傾向にある。
 本実施形態においては、ポリカーボネート樹脂がバリウム元素をポリカーボネート樹脂100質量部に対し、0.09~10.00質量ppmの割合で含むことが好ましい。前記バリウム元素の含有量は、ポリカーボネート樹脂100質量部に対し、0.10質量ppm以上であることがより好ましく、0.13質量ppm以上であることがさらに好ましく、0.15質量ppm以上であることが一層好ましく、0.18質量ppm以上であることがより一層好ましく、0.20質量ppm以上であることがさらに一層好ましい。前記下限値以上とすることにより、レーザーマーキング性がより向上する傾向にある。前記バリウム元素の含有量は、ポリカーボネート樹脂100質量部に対し、7.00質量ppm以下であることがより好ましく、3.00質量ppm以下であることがさらに好ましく、1.50質量ppm以下であることが一層好ましく、1.00質量ppm以下であることがより一層好ましい。前記上限値以下とすることにより、樹脂の長期安定性が向上する傾向にある。
 本実施形態においては、ポリカーボネート樹脂がマグネシウム元素をポリカーボネート樹脂100質量部に対し、0.08~20.00質量ppmの割合で含むことが好ましい。前記マグネシウム元素の含有量は、ポリカーボネート樹脂100質量部に対し、0.10質量ppm以上であることがより好ましく、0.15質量ppm以上であることがさらに好ましく、0.50質量ppm以上であることが一層好ましく、0.70質量ppm以上であることがより一層好ましく、1.00質量ppm以上であることがさらに一層好ましい。前記下限値以上とすることにより、レーザーマーキング性がより向上する傾向にある。前記マグネシウム元素の含有量は、ポリカーボネート樹脂100質量部に対し、30.00質量ppm以下であることがより好ましく、20.00質量ppm以下であることがさらに好ましく、10.00質量ppm以下であることが一層好ましく、8.00質量ppm以下であることがより一層好ましい。前記上限値以下とすることにより、樹脂の長期安定性が向上する傾向にある。
 本実施形態においては、ポリカーボネート樹脂が亜鉛元素をポリカーボネート樹脂100質量部に対し、0.05~10.00質量ppmの割合で含むことが好ましい。前記亜鉛元素の含有量は、ポリカーボネート樹脂100質量部に対し、0.08質量ppm以上であることがより好ましく、0.10質量ppm以上であることがさらに好ましい。前記下限値以上とすることにより、レーザーマーキング性がより向上する傾向にある。前記亜鉛元素の含有量は、ポリカーボネート樹脂100質量部に対し、7.00質量ppm以下であることがより好ましく、3.00質量ppm以下であることがさらに好ましく、2.00質量ppm以下であることが一層好ましく、1.00質量ppm以下であることがより一層好ましい。前記上限値以下とすることにより、樹脂の長期安定性が向上する傾向にある。
 本実施形態においては、ポリカーボネート樹脂が鉄元素をポリカーボネート樹脂100質量部に対し、0.35~50.0質量ppmの割合で含むことが好ましい。前記鉄元素の含有量は、ポリカーボネート樹脂100質量部に対し、0.80質量ppm以上であることがより好ましく、1.00質量ppm以上であることがさらに好ましく、2.00質量ppm以上であることが一層好ましく、3.00質量ppm以上であることがより一層好ましく、5.00質量ppm以上であることがさらに一層好ましい。前記下限値以上とすることにより、レーザーマーキング性がより向上する傾向にある。前記鉄元素の含有量は、ポリカーボネート樹脂100質量部に対し、35.00質量ppm以下であることがより好ましく、20.00質量ppm以下であることがさらに好ましく、15.00質量ppm以下であることが一層好ましく、10.00質量ppm以下であることがより一層好ましい。前記上限値以下とすることにより、樹脂の長期安定性が向上する傾向にある。
 本実施形態においては、ポリカーボネート樹脂がマンガン元素をポリカーボネート樹脂100質量部に対し、0.07~10.00質量ppmの割合で含むことが好ましい。前記マンガン元素の含有量は、ポリカーボネート樹脂100質量部に対し、0.08質量ppm以上であることがより好ましい。前記下限値以上とすることにより、レーザーマーキング性がより向上する傾向にある。前記マンガン元素の含有量は、ポリカーボネート樹脂100質量部に対し、7.00質量ppm以下であることがより好ましく、3.00質量ppm以下であることがさらに好ましく、1.00質量ppm以下であることが一層好ましく、0.50質量ppm以下であることがより一層好ましく、0.20質量ppm以下であることがさらに一層好ましい。前記上限値以下とすることにより、樹脂の長期安定性が向上する傾向にある。
 本実施形態では、ポリカーボネート樹脂が、少なくとも、アルミニウム元素と鉄元素を、それぞれ、上記範囲で含むことが好ましい。
 なお、上記金属元素は、ポリカーボネート樹脂の中で必ずしも元素単体として存在している必要はなく、化合物の一部として含まれていてもよい。本実施形態においては、後述する実施例で述べる<金属元素の量の測定>の測定値を前記金属元素の量とする。
 本実施形態で用いるポリカーボネート樹脂の分子量分布(Mw/Mn)は、2.8以上であることが好ましい。このような構成とすることにより、得られる成形品のレーザー透過率、レーザー印字視認性がより向上する傾向にある。また、レーザー溶着強度も向上する傾向にある。
 本実施形態においては、前記ポリカーボネート樹脂の分子量分布(Mw/Mn)は、2.9以上であることが好ましく、3.0以上であることがより好ましく、3.1以上であることがさらに好ましい。また、前記ポリカーボネート樹脂の分子量分布(Mw/Mn)は、5.0以下であることが好ましく、4.0以下であることがより好ましく、3.7以下であることがさらに好ましく、3.5以下であることが一層好ましく、3.3以下であることがより一層好ましい。前記範囲とすることにより、本実施形態の効果がより効果的に発揮される傾向にある。
 ポリカーボネート樹脂の粘度平均分子量(Mv)は、5,000以上であることが好ましく、10,000以上であることがより好ましく、13,000以上であることがさらに好ましく、20,000以上であることが一層好ましく、さらには、21,000以上、22,000以上、23,000以上、25,000以上、26,000以上であることが好ましい。粘度平均分子量が5,000以上、特に、20,000以上のものを用いることにより、得られる樹脂組成物の機械的強度がより向上する傾向にある。また、ポリカーボネート樹脂の粘度平均分子量(Mv)は、60,000以下であることが好ましく、40,000以下であることがより好ましく、30,000以下であることがさらに好ましい。60,000以下のものを用いることにより、樹脂組成物の流動性が向上し、成形性が向上する傾向にある。
 ポリカーボネート樹脂を2種以上含む場合、混合物が上記範囲を満たすことが好ましい。
 なお、本実施形態において、ポリカーボネート樹脂の粘度平均分子量(Mv)は、ウベローデ粘度計を用いて、20℃にて、ポリカーボネート樹脂のメチレンクロライド溶液の粘度を測定し固有粘度([η])を求め、次のSchnellの粘度式から算出される値を示す。
[η]=1.23×10-4Mv0.83
 ポリカーボネート樹脂のISO1133に準拠して、測定温度300℃、測定荷重1.20kgfでメルトボリュームレート(MVR)は、1cm/10分以上であることが好ましく、2cm/10分以上であることがより好ましく、3cm/10分以上であることがさらに好ましく、4cm/10分以上であることが一層好ましい。前記下限値以上とすることにより、射出成形時の樹脂の流動性が向上する傾向にある。また、前記MVRの上限は、13cm/10分以下であることが好ましく、12cm/10分以下であることがより好ましく、11cm/10分以下であることがさらに好ましく、10cm/10分以下であることが一層好ましく、9cm/10分以下であることがより一層好ましい。前記上限値以下とすることにより、機械的強度が向上する傾向にある。
 本実施形態で用いるポリカーボネート樹脂は、バージン品であっても、リサイクル品であってもよいが、リサイクル品を含むことが好ましい。
 リサイクルポリカーボネート樹脂としては、回収された使用済ポリカーボネート樹脂成形体を粉砕、アルカリ洗浄して繊維等に再利用するマテリアルリサイクルにより得られたもの、ケミカルリサイクル(化学分解法)より得られたものおよびメカニカルリサイクルにより得られたもの等が挙げられる。
 ケミカルリサイクルは、回収された使用済ポリカーボネート樹脂成形体を化学分解して、原料レベルに戻してポリカーボネート樹脂を再合成するものである。一方、メカニカルリサイクルは、上述したマテリアルリサイクルにおけるアルカリ洗浄をより厳密に行うこと、あるいは高温で真空乾燥すること等によって、マテリアルリサイクルよりもポリカーボネート樹脂成形体の汚れを確実に取り除くことを可能にした手法である。
 例えば、使用済ポリカーボネート樹脂成形体からは、異物が取り除かれた後に、粉砕・洗浄され、次に押出機によりペレット化することにより、リサイクルポリカーボネート樹脂が得られる。
 リサイクル品は、通常、バージン品よりも金属元素の含有量が高い。そのため、本実施形態の樹脂組成物に適用しやすい。ただし、リサイクル品であっても、金属元素の含有量が高くないものもある。
 また、本実施形態の樹脂組成物は、バージン品や金属元素の含有量が少ないリサイクル品に、所定の金属元素を配合して調整してもよいことは言うまでもない。
 本実施形態の樹脂組成物がリサイクル品を含む場合、リサイクル品の含有量は、前記ポリカーボネート樹脂100質量部中、50質量部以上であることが好ましく、60質量部以上であることがより好ましく、70質量部以上であることがさらに好ましく、80質量部以上であることが一層好ましく、90質量部以上であることがより一層好ましい。前記下限値以上とすることにより、リサイクル性が高まる。また、前記リサイクル品の含有量の上限値は、ポリカーボネート樹脂100質量部に対し、100質量部であってもよい。
<ポリエステル樹脂とポリカーボネート樹脂の質量比率>
 次に、本実施形態の樹脂組成物における、ポリエステル樹脂とポリカーボネート樹脂の比率について説明する。
 本実施形態の樹脂組成物においては、ポリエステル樹脂とポリカーボネート樹脂の合計100質量部における、ポリエステル樹脂とポリカーボネート樹脂の質量比が、10/90~90/10であり、20/80~90/10であることが好ましく、30/70~90/10であることがより好ましく、40/60~90/10であることがさらに好ましく、50/50~90/10であることが一層好ましく、50/50~80/20であることがより一層好ましく、50/50~75/35であることがさらに一層好ましく、55/45~75/35であることが特に一層好ましく、55/45~70/30であることがより特に一層好ましい。
 本実施形態の樹脂組成物は、ポリエステル樹脂とポリカーボネート樹脂の合計が、樹脂組成物に含まれる樹脂成分の80質量%以上を占めることが好ましく、85質量%以上を占めることがより好ましく、90質量%以上を占めることがさらに好ましく、95質量%以上を占めることが一層好ましく、98質量%以上を占めることがより一層好ましい。
 さらに、本実施形態の樹脂組成物は、ポリエステル樹脂とポリカーボネート樹脂の合計が、樹脂組成物の55質量%以上を占めることが好ましく、60質量%以上を占めることがさらに好ましく、65質量%以上を占めることが一層好ましく、68質量%以上を占めることがより一層好ましい。また、樹脂組成物中のポリエステル樹脂とポリカーボネート樹脂の合計量は、80質量%以下であることが好ましく、75質量%以下であることがより好ましい。
 本実施形態の樹脂組成物は、ポリエステル樹脂およびポリカーボネート樹脂をそれぞれ1種のみ含んでいてもよいし、2種以上含んでいてもよい。2種以上含む場合、合計量が上記範囲となることが好ましい。
<無機充填剤>
 本実施形態の樹脂組成物は、さらに、無機充填剤を含むことが好ましい。無機充填剤、好ましくは繊維状または鱗片状の無機充填剤、より好ましくはガラス繊維および/またはガラスフレークを含むことにより、機械的強度を向上させると共に、耐熱強度高くなり、レーザー溶着体の耐久性がより向上する傾向にある。
 本実施形態の樹脂組成物で用いる含有され得る無機充填剤としては、樹脂に配合することにより得られる樹脂組成物の機械的性質を向上させる効果を有するものであり、常用のプラスチック用無機充填剤を用いることができる。好ましくはガラス繊維、炭素繊維、玄武岩繊維、ウォラストナイト、チタン酸カリウム繊維等の繊維状の無機充填剤を用いることができる。また、炭酸カルシウム、酸化チタン、長石系鉱物、クレー、有機化クレー、ガラスビーズ等の粒状または無定形の充填剤;タルク等の板状の充填剤;ガラスフレーク、マイカ、グラファイト等の鱗片状の無機充填剤を用いることもできる。中でも、機械的強度、剛性および耐熱性の点から、ガラス繊維および/またはガラスフレークを含むことが好ましく、特にはガラス繊維を用いるのが好ましい。ガラス繊維としては、丸型断面形状または異型断面形状のいずれをも用いることができる。
 無機充填剤は、カップリング剤等の表面処理剤によって、表面処理されたものを用いることがより好ましい。表面処理剤が付着したガラス繊維は、耐久性、耐湿熱性、耐加水分解性、耐ヒートショック性に優れるので好ましい。
 表面処理剤としては、従来公知の任意のものを使用でき、具体的には、例えば、アミノシラン系、エポキシシラン系、アリルシラン系、ビニルシラン系等のシランカップリング剤が好ましく挙げられる。これらの中では、アミノシラン系表面処理剤が好ましく、具体的には例えば、γ-アミノプロピルトリエトキシシラン、γ-アミノプロピルトリメトキシシランおよびγ-(2-アミノエチル)アミノプロピルトリメトキシシランが好ましい例として挙げられる。
 また、その他の表面処理剤として、ノボラック型等のエポキシ樹脂系表面処理剤、ビスフェノールA型のエポキシ樹脂系表面処理剤等も好ましく挙げられ、特にノボラック型エポキシ樹脂系表面処理剤による処理が好ましい。
 シラン系表面処理剤とエポキシ樹脂系表面処理剤は、それぞれ単独で用いても複数種で用いてもよく、両者を併用することも好ましい。本実施形態におけるガラス繊維とは、繊維状のガラス材料を意味し、より具体的には、1,000~10,000本のガラス繊維を集束し、所定の長さにカットされたチョップド形状が好ましい。
 本実施形態におけるガラス繊維は、数平均繊維長が0.5~10mmのものが好ましく、1~5mmのものがより好ましい。このような数平均繊維長のガラス繊維を用いることにより、機械的強度をより向上させることができる。数平均繊維長は光学顕微鏡の観察で得られる画像に対して、繊維長を測定する対象のガラス繊維をランダムに抽出してその長辺を測定し、得られた測定値から数平均繊維長を算出する。観察の倍率は20倍とし、測定本数は1,000本以上として行う。概ね、カット長に相当する。
 また、ガラス繊維の断面は、円形、楕円形、長円形、長方形、長方形の両短辺に半円を合わせた形状、まゆ型等いずれの形状であってもよいが、円形が好ましい。ここでの円形は、幾何学的な意味での円形に加え、本実施形態の技術分野において通常円形と称されるものを含む趣旨である。
 ガラス繊維の数平均繊維径は、下限が、4.0μm以上であることが好ましく、4.5μm以上であることがより好ましく、5.0μm以上であることがさらに好ましい。ガラス繊維の数平均繊維径の上限は、15.0μm以下であることが好ましく、14.0μm以下であることがより好ましい。このような範囲の数平均繊維径を有するガラス繊維を用いることにより、より機械的強度に優れた成形体が得られる傾向にある。なお、ガラス繊維の数平均繊維径は、電子顕微鏡の観察で得られる画像に対して、繊維径を測定する対象のガラス繊維をランダムに抽出し、中央部に近いところで繊維径を測定し、得られた測定値から算出する。観察の倍率は1,000倍とし、測定本数は1,000本以上として行う。円形以外の断面を有するガラス繊維の数平均繊維径は、断面の面積と同じ面積の円に換算したときの数平均繊維径とする。
 ガラス繊維は、一般的に供給されるEガラス(Electrical glass)、Cガラス(Chemical glass)、Aガラス(Alkali glass)、Sガラス(High strength glass)、Dガラス、Rガラスおよび耐アルカリガラス等のガラスを溶融紡糸して得られる繊維が用いられるが、ガラス繊維にできるものであれば使用可能であり、特に限定されない。本実施形態では、Eガラスを含むことが好ましい。
 本実施形態で用いるガラス繊維は、例えば、γ-メタクリルオキシプロピルトリメトキシシラン、γ-グリシドキシプロピルトリメトキシシラン、γ-アミノプロピルトリエトキシシラン等のシランカップリング剤等の表面処理剤で表面処理されていることが好ましい。表面処理剤の付着量は、ガラス繊維の0.01~1質量%であることが好ましい。さらに必要に応じて、脂肪酸アミド化合物、シリコーンオイル等の潤滑剤、第4級アンモニウム塩等の帯電防止剤、エポキシ樹脂、ウレタン樹脂等の被膜形成能を有する樹脂、被膜形成能を有する樹脂と熱安定剤、難燃剤等の混合物で表面処理されたものを用いることもできる。
 ガラス繊維は市販品として入手できる。市販品としては、例えば、日本電気硝子社製、T-286H、T-756H、T-127、T-289H、オーウェンスコーニング社製、DEFT2A、PPG社製、HP3540、日東紡社製、CSG3PA820等が挙げられる。
 本実施形態の樹脂組成物における無機充填剤(好ましくはガラス繊維)の含有量は、熱可塑性樹脂(ポリエステル樹脂およびポリカーボネート樹脂の合計)100質量部に対し、10質量部以上であることが好ましく、15質量部以上であることがより好ましく、20質量部以上であることがさらに好ましく、25質量部以上であることが一層好ましく、30質量部以上であることがより一層好ましい。前記下限値以上とすることにより、レーザー溶着体の母材強度が高くなり、また、レーザー溶着体の耐熱性が高くなる傾向にある。また、前記無機充填剤の含有量の上限値は、熱可塑性樹脂100質量部に対し、70質量部以下であることが好ましく、60質量部以下であることがより好ましく、50質量部以下であることがさらに好ましい。前記上限値以下とすることにより、界面部分の溶着強度が高くなる傾向にある。
 また、本実施形態の樹脂組成物における無機充填剤(好ましくはガラス繊維)の含有量は、樹脂組成物の20質量%以上であることが好ましく、25質量%以上であることがより好ましい。また、前記無機充填剤(好ましくはガラス繊維)の含有量は、45質量%以下であることが好ましく、40質量%以下であることがより好ましく、35質量%以下であることがより好ましく、32質量%以下であることがさらに好ましい。
 本実施形態の樹脂組成物は、無機充填剤(好ましくはガラス繊維)を1種のみ含んでいてもよいし、2種以上含んでいてもよい。2種以上含む場合、合計量が上記範囲となることが好ましい。
<安定剤>
 本実施形態の樹脂組成物は、安定剤を含有することが好ましく、安定剤としてはリン系安定剤やフェノール系安定剤が好ましく、リン系安定剤がより好ましい。リン系安定剤を含むことにより、加工時および高温環境下での樹脂の劣化を抑制することができる。
 リン系安定剤としては、公知の任意のものを使用できる。具体例を挙げると、リン酸、ホスホン酸、亜燐酸、ホスフィン酸、ポリリン酸などのリンのオキソ酸;酸性ピロリン酸ナトリウム、酸性ピロリン酸カリウム、酸性ピロリン酸カルシウムなどの酸性ピロリン酸金属塩;リン酸カリウム、リン酸ナトリウム、リン酸セシウム、リン酸亜鉛など第1族または第2族金属のリン酸塩;有機ホスフェート化合物、有機ホスファイト化合物、有機ホスホナイト化合物などが挙げられるが、有機ホスファイト化合物が特に好ましい。
 フェノール系安定剤としては、例えばヒンダードフェノール系酸化防止剤が挙げられる。
 これらの詳細は、国際公開第2020/013127号の段落0105~0111の記載を参酌でき、この内容は本明細書に組み込まれる。
 安定剤の含有量は、ポリエステル樹脂とポリカーボネート樹脂の合計100質量部に対して、通常0.001質量部以上、好ましくは0.01質量部以上であり、また、通常2質量部以下、好ましくは1.0質量部以下である。安定剤の含有量を前記範囲の下限値以上とすることで、安定剤としての効果をより効果的に得ることができる。また、安定剤の含有量を前記範囲の上限値以下にすることにより、効果が頭打ちになることなく、経済的である。
 本実施形態の樹脂組成物は、安定剤を1種のみ含んでいてもよいし、2種以上含んでいてもよい。2種以上含む場合、合計量が上記範囲となることが好ましい。
<離型剤>
 本実施形態の樹脂組成物は、離型剤を含んでいてもよい。離型剤としては、モンタン酸エステルワックス、ポリオレフィンワックス、高級脂肪酸、エステル化合物、エチレンビスステアロアマイドなどが例示され、モンタン酸エステルワックス、ポリオレフィンワックスおよびエチレンビスステアロアマイドから選ばれる少なくとも1種が好ましい。
 離型剤としては、具体的には、特開2018-070722号公報の段落0063~0077の記載、特開2019-123809号公報の段落0090~0098の記載を参酌でき、これらの内容は本明細書に組み込まれる。
 本実施形態の樹脂組成物が離型剤を含む場合、その含有量は、ポリエステル樹脂とポリカーボネート樹脂の合計100質量部に対し、0.01質量部以上であることが好ましく、0.08質量部以上であることがより好ましい。また、前記離型剤の含有量の上限値は、ポリエステル樹脂とポリカーボネート樹脂の合計100質量部に対し、5.0質量部以下であることが好ましく、1.0質量部以下であることがより好ましい。
 本実施形態の樹脂組成物は、離型剤を1種のみ含んでいてもよいし、2種以上含んでいてもよい。2種以上含む場合、合計量が上記範囲となることが好ましい。
<着色剤>
 本実施形態の樹脂組成物は、着色剤(染料および/または顔料)を含んでいてもよい。着色剤を含むことにより、得られる成形体の意匠性を高めることができる。着色剤としては、染料であっても、顔料であってもよいが、染料が好ましい。
 本実施形態で用いる染料は、黒色染料および/または黒色染料組成物であることが好ましい。黒色染料組成物とは、赤、青、緑等の有彩色染料が2種以上組み合わさって、黒色を呈する染料組成物を意味する。黒色染料組成物の第一の実施形態は、緑色染料と赤色染料を含む形態である。黒色染料組成物の第二の実施形態は、赤色染料と青色染料と黄色染料を含む形態である。
 本実施形態の樹脂組成物をレーザー溶着用の光透過性樹脂組成物に用いる場合、着色剤(好ましくは染料)は光透過性色素である。光透過性色素とは、例えば、ポリブチレンテレフタレート樹脂(例えば、ノバデュラン(登録商標)5008)と、ガラス繊維(例えば、日本電気硝子社製、商品名:T-127)30質量%と、色素(光透過性色素と思われる色素)0.2質量%を合計100質量%となるように配合し、国際公開第2021/225154号の段落0105に記載の方法で測定した光線透過率が20.0%以上となる色素をいう。光透過性色素の具体例としては、フタロシアニン、アニリンブラック、フタロシアニン、ポルフィリン、ペリノン、クオテリレン、アゾ、アゾメチン、アントラキノン、ピラゾロン、スクエア酸誘導体、ペリレン、クロム錯体、およびインモニウム等が挙げられ、アゾメチン、アントラキノン、ペリノンが好ましく、その中でもアントラキノン、ペリノンがより好ましい。
 さらに、本実施形態における光透過性色素を配合することにより、例えば、本実施形態の樹脂組成物を1.5mmの厚さに成形したときの波長1064nmにおける光線透過率が20.0%以上、さらには40.0%以上とすることができ、特には50.0%以上、60.0%以上とすることもできる。上限としては100%が理想であるが、90%以下であってもよい。
 また、波長1064nmは、レーザー溶着に用いられるレーザーの波長の例であり、かかる波長におけるレーザー透過率が20%以上であることは、レーザー溶着を良好に行うことができることを意味する。
 光透過性染料の市販品としては、有本化学社製の着色剤であるPlast Yellow 8000、Plast Red M 8315、Plast Red 8370、Oil Green 5602、LANXESS社製の着色剤であるMacrolex Yellow 3G、Macrolex Red EG、Macrolex Green 5B、紀和化学工業社製のKP Plast HK、KP Plast Red HG、KP Plast Red H2G、KP Plast Blue R、KP Plast Blue GR、KP Plast Green G等が例示される。
 また、特許第4157300号公報に記載の色素、特許第4040460号公報に記載の色素も採用することができ、これらの内容は本明細書に組み込まれる。
 本実施形態で用いる顔料は無機顔料(カーボンブラック(例えば、アセチレンブラック、ランプブラック、サーマルブラック、ファーネスブラック、チャンネルブラック、ケッチェンブラックなど)などの黒色顔料、酸化鉄赤などの赤色顔料、モリブデートオレンジなどの橙色顔料、酸化チタンなどの白色顔料)、有機顔料(黄色顔料、橙色顔料、赤色顔料、青色顔料、緑色顔料など)などが挙げられ、黒色顔料が好ましく、カーボンブラックがより好ましい。
 本実施形態の樹脂組成物が顔料を含む場合、熱可塑性樹脂(好ましくはポリエステル樹脂、より好ましくはポリブチレンテレフタレート樹脂)でマスターバッチ化して用いることが好ましい。マスターバッチにおける顔料の濃度は、1~50質量%が好ましい。
 本実施形態の樹脂組成物が着色剤を含む場合、その含有量は、ポリエステル樹脂とポリカーボネート樹脂の合計100質量部に対し、0.01質量部以上であることが好ましく、0.05質量部以上であることがより好ましく、0.1質量部以上であることがさらに好ましい。前記下限値以上とすることにより、着色効果がより効果的に発揮される。また、前記着色剤の含有量の上限値は、ポリエステル樹脂とポリカーボネート樹脂の合計100質量部に対し、4質量部以下であることが好ましく、3質量部以下であることがより好ましく、2質量部以下であることがさらに好ましく、1質量部以下であることが一層好ましい。前記上限値以下とすることにより、得られる成形体の機械的強度がより向上する傾向にある。
 本実施形態の樹脂組成物は、着色剤を1種のみ含んでいてもよいし、2種以上含んでいてもよい。2種以上含む場合、合計量が上記範囲となることが好ましい。
 また、本実施形態の樹脂組成物は、顔料を実質的に含まない構成とすることができる。顔料を実質的に含まないとは、その含有量が、ポリエステル樹脂とポリカーボネート樹脂の合計100質量部に対し、例えば、0.1質量部未満であることをいい、0.01質量部以下であることが好ましく、0.001質量部以下であることがより好ましく、0.0001質量部以下であることがさらに好ましく、0.00001質量部であることが一層好ましい。
 また、本実施形態の樹脂組成物は、カーボンブラックを実質的に含まない構成とすることができる。カーボンブラックを実質的に含まないとは、その含有量が、ポリエステル樹脂とポリカーボネート樹脂の合計100質量部に対し、例えば、0.1質量部未満であることをいい、0.01質量部以下であることが好ましく、0.001質量部以下であることがより好ましく、0.0001質量部以下であることがさらに好ましく、0.00001質量部であることが一層好ましい。
 また、本実施形態の樹脂組成物は、レーザーマーキング剤を実質的に含まない構成とすることができる。レーザーマーキング剤を実質的に含まないとは、その含有量が、ポリエステル樹脂とポリカーボネート樹脂の合計100質量部に対し、例えば、0.1質量部未満であることをいい、0.01質量部以下であることが好ましく、0.001質量部以下であることがより好ましく、0.0001質量部以下であることがさらに好ましく、0.00001質量部であることが一層好ましい。
<他の成分>
 本実施形態の樹脂組成物は、所望の諸物性を著しく損なわない限り、必要に応じて、上記したもの以外に他の成分を含有していてもよい。他成分の例を挙げると、各種樹脂添加剤などが挙げられる。なお、その他の成分は、1種が含有されていてもよく、2種以上が任意の組み合わせおよび比率で含有されていてもよい。
 樹脂添加剤としては、具体的には、反応性化合物、核剤、難燃剤、難燃助剤、充填剤、帯電防止剤、防曇剤、流動性改良剤、可塑剤、分散剤、抗菌剤などが挙げられる。
 本実施形態の樹脂組成物は、ポリエステル樹脂とポリカーボネート樹脂と無機充填剤(好ましくはガラス繊維)の合計が樹脂組成物の95質量%以上を占めることが好ましく、98質量%以上を占めることがより好ましい。
<樹脂組成物の製造方法>
 本実施形態の樹脂組成物は、樹脂組成物の調製の常法によって製造できる。通常は各成分および所望により添加される種々の添加剤を一緒にしてよく混合し、次いで一軸または二軸押出機で溶融混練する。また、各成分を予め混合することなく、ないしはその一部のみを予め混合し、フィーダーを用いて押出機に供給して溶融混練し、本実施形態の樹脂組成物を調製することもできる。着色剤等の一部の成分を熱可塑性樹脂と溶融混練してマスターバッチを調製し、次いでこれに残りの成分を配合して溶融混練してもよい。
 なお、無機充填剤を用いる場合には、押出機のシリンダー途中のサイドフィーダーから供給することも好ましい。
 溶融混練に際しての加熱温度は、通常220~300℃の範囲から適宜選ぶことができる。温度が高すぎると分解ガスが発生しやすく、不透明化の原因になる場合がある。それ故、剪断発熱等に考慮したスクリュー構成の選定が望ましい。混練り時や、後行程の成形時の分解を抑制する為、酸化防止剤や熱安定剤の使用が望ましい。
<成形体および成形体の製造方法>
 本形態の樹脂組成物は、公知の方法に従って成形される。すなわち、本実施形態の成形体は、本実施形態の樹脂組成物ないしペレットから形成される。
 成形体の製造方法は、特に限定されず、ポリエステル樹脂組成物について一般に採用されている成形法を任意に採用できる。その例を挙げると、射出成形法、超高速射出成形法、射出圧縮成形法、二色成形法、ガスアシスト等の中空成形法、断熱金型を使用した成形法、急速加熱金型を使用した成形法、発泡成形(超臨界流体も含む)、インサート成形、IMC(インモールドコーティング成形)成形法、押出成形法、シート成形法、熱成形法、回転成形法、積層成形法、プレス成形法、ブロー成形法等が挙げられ、中でも射出成形が好ましい。
 射出成形の詳細は、特許第6183822号公報の段落0113~0116の記載を参酌でき、これらの内容は本明細書に組み込まれる。
<レーザーマーキング方法>
 本実施形態の樹脂組成物から形成された成形体は、レーザーマーキングが可能な樹脂組成物とすることができる。すなわち、本実施形態の樹脂組成物、ペレット、ないし成形体は、レーザーマーキング用として好ましく用いられる。
 レーザーマーキングにより、成形体に文字、標識、バーコード、QRコード(登録商標)、図、パターン等が施すことができる。レーザーマーキングの方法は、公知の方法を広く採用できる。
 レーザーマーキング方法で用いるレーザー光としては、500nm以上のものがより好ましい。また、前記レーザー発振波長の上限値は、1200nm以下のものがより好ましい。
 具体的には、成形体への発色印字をするアプリケーションでは、1,064nmや1090nm、1060nmなどの波長のレーザーマーカーが使用されている。ネオジウム変性イットリウム-アルミニウム-ガーネット(YAG)、またはネオジウム変性イットリウム-四酸化バナジウム(Nd:YVO)等の結晶に高出力の光を与えてレーザーを発生させ、さらにミラーの往復反射で増幅させ、Qスイッチ機器によりパルスレーザにする方式のレーザーマーカーを用いることもできる。また、近年の主流となりつつあるファイバー方式(イッテルビウム)が注入されたファイバーに複数のレーザーダイオード(LD)を低出力で使用し、レーザー光を発生・増幅させる方式のもの)のレーザーマーカーも用いることができる。また、波長532nmのグリーンレーザーマーカーも用いることができる。
 なお、レーザーマーカーとしては、レーザービームはシングルモードでもマルチモードでもよく、またビーム径が20~40μmのように絞ったもののほか、ビーム径が80~100μmのように広いものについても用いることができるが、シングルモードで、ビーム径が20~40μmの方が、良好なコントラストでマーキングを行えることから好ましい。
<レーザー溶着>
 本実施形態の樹脂組成物は、光吸収性樹脂組成物と組みわせて、レーザー溶着用のキットとして用いることができる。すなわち、本実施形態の樹脂組成物は、光透過性樹脂組成物としての役割を果たし、かかる光透過性樹脂組成物から形成された成形体は、レーザー溶着の際のレーザー光に対する透過樹脂部材として用いることができる。そして、前記透過樹脂部材は、光吸収性樹脂組成物から形成された成形体(レーザー溶着の際のレーザー光に対する吸収樹脂部材)とレーザー溶着することによってレーザー溶着体として用いることができる。ここで、光吸収性樹脂組成物は、熱可塑性樹脂と光吸収性色素(例えば、カーボンブラック)とを含む。さらに、無機充填剤を含んでいてもよい。
 本実施形態の樹脂組成物は、成形体としたとき、レーザーマーキングが可能であることから、レーザーマーキングが可能であり、かつ、レーザー溶着における透過樹脂部材用の樹脂組成物として好ましく用いられる。
 レーザー溶着の方法および光吸収性樹脂組成物の詳細は、国際公開第2021/225154号の段落0083~0092の記載を参酌でき、これらの内容は本明細書に組み込まれる。
 なお、レーザー溶着に用いるレーザー光源としては、光吸収性色素の光の吸収波長に応じて定めることができ、波長800~1100nmの範囲のレーザーが好ましい。照射するレーザー光の種類としては、例えば固体レーザー、ファイバーレーザー、半導体レーザー、気体レーザー、液体レーザー等を挙げることができる。例えばYAG(イットリウム・アルミニウム・ガーネット結晶)レーザー(波長1064nm、1070nm)、LD(レーザーダイオード)レーザー(波長808nm、840nm、940nm、980nm)等を好ましく用いることができる。中でも、波長940nm、980nm、1070nmのレーザー光が好ましい。
<用途>
 本実施形態の樹脂組成物ないし成形体は、種々の用途、具体的には、各種保存容器、電気・電子機器部品、オフィスオートメート(OA)機器部品、家電機器部品、機械機構部品、車両機構部品などに適用できる。特に、食品用容器、薬品用容器、油脂製品容器、車両用中空部品(各種タンク、インテークマニホールド部品、カメラ筐体)、車両用電装部品(各種コントロールユニット、イグニッションコイル部品など)、モーター部品、各種センサー部品、コネクター部品、スイッチ部品、ブレーカー部品、リレー部品、コイル部品、トランス部品、ランプ部品などに好適に用いることができる。
 特に、本実施形態のレーザー溶着体は、車載カメラ部品、センサーケース部品、モーター部品、電子制御部品に好ましく用いられる。より具体的には、車載カメラ部品および車載カメラ部品を含む車載カメラモジュール、ミリ波レーダーの筐体、ECUケースの筐体、ソナーセンサー等のセンサーケースの筐体、電動パーキングブレーキ等のモーター部品の筐体に適している。
 以下に実施例を挙げて本発明をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り、適宜、変更することができる。従って、本発明の範囲は以下に示す具体例に限定されるものではない。
 実施例で用いた測定機器等が廃番等により入手困難な場合、他の同等の性能を有する機器を用いて測定することができる。
1.原料
 以下の原料を用いた。PBTはポリブチレンテレフタレート樹脂の略称である。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
<重量平均分子量(Mw)および数平均分子量(Mn)の測定>
 分子量はHLC-8320GPC/EcoSEC(TOSOH社製)を用いて測定した。測定条件は以下の通りである。
カラム:Shodex KF-G + KF-805L×3 + KF-800D
検出器:UV検出器 254nm
カラム温度:40℃
溶離液:テトラヒドロフラン(THF)
 上記表1における各種ポリカーボネート樹脂100質量部中の金属元素の量を以下に示す。金属元素の単位は、質量ppmである。
Figure JPOXMLDOC01-appb-T000003
「<」は検出限界未満であることをいう。
<金属元素の量の測定>
 ポリカーボネート樹脂中の金属元素の定性/半定量分析は、ICP発光分析法によって行った。この場合、前処理として試料200mgを秤量し、ケルダール湿式分解(硫酸/硝酸、硫酸/過酸化水素)を行い、50mLに定容し、続いて、ICP発光分析を酸濃度マッチング一点検量法にて行った。単位は、質量ppmにて示した。
 ICP発光分析は、Thrmo Fisher Scientific社製「iCAP76000uo」を用い、axial/radial測光にて行った。
2.実施例1-1~1-5、比較例1-1~1-4
<コンパウンド>
 表1-1および表1-2に示す各成分を表3-1または表3-2に示す割合(質量部)にて、ガラス繊維以外の成分をタンブラーミキサーで均一に混合した。得られた混合物を、二軸押出機(日本製鋼所社製「TEX30α」)にメインフィード口より供給した。第一混練部のシリンダー設定温度260℃に設定し、ガラス繊維はサイドフィーダーより供給した。ガラス繊維添加以降のシリンダー温度は240℃に設定し、吐出40kg/h、スクリュー回転数200rpmの条件で溶融混練した樹脂組成物を、水槽にて急冷し、ペレタイザーを用いてペレット化し、樹脂組成物のペレットを得た。
<レーザー印字視認性>
 上記で得られたペレットを120℃で5時間乾燥したのち60mm四方の1.5mm厚みのプレート状成形体を、射出成形機(日精樹脂工業社製「NEX80」)を用いて、シリンダー温度260℃、金型温度80℃の条件で射出成形した。得られたプレート成形体の表面にレーザーマーキング装置(パナソニックデバイスSUNX社製「LP-Z130」)を用いて、スキャンスピード200mm/s、印字パルス周期50μs、線幅0.1mmの条件で、レーザーマーキングを行い、レーザーマーキング部分の視認性を目視判定で以下の通り評価した。測定は、5人の専門家が行い、多数決で判断した。
A:印字部分と非印字部分の境界が明瞭で滲みがない。
B:滲みが多く、印字部分と非印字部分の境界が判別しづらい。
 また、実施例1-1と比較例1-1~1-3のレーザー印字後の写真を図1に示した。実施例1-1では、印字部分と非印字部分の境界が明瞭で滲みがなく、クリアにレーザー印字がされていた。これに対し、比較例1-1~1-3は、滲みが多く、印字部分と非印字部分の境界が判別しづらく、レーザー印字性の精度が劣ることが分かる。
<引張強さおよび引張弾性率>
 上記で得られた樹脂ペレットを120℃で5時間乾燥したのちISO多目的試験片(厚さ4mm)を、射出成形機(日本製鋼所社製「J85AD」)を用いて、シリンダー温度250℃、金型温度80℃の条件で射出成形した。
 成形した多目的ISO多目的試験片を用い、ISO527-1およびISO527-2に準拠し、引張強さ(単位:MPa)および引張弾性率(単位:MPa)を測定した。
<光線透過率>
 上記で得られたペレットを120℃で5時間乾燥したのち60mm四方の1.5mm厚みのプレート状成形体を、射出成形機(日精樹脂工業社製「NEX80」)を用いて、シリンダー温度260℃、金型温度80℃の条件で射出成形した。得られたプレートを、紫外可視分光光度計を用いて、ゲートから45mmの地点、かつ、試験プレート幅の中心部での、1064nmの光線透過率(単位:%)を測定した。
 紫外可視分光光度計は、島津製作所社製「UV-3100PC」積分球付きを用いた。
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
 上記結果から明らかなとおり、本実施形態の樹脂組成物から形成された成形体は、レーザー印字性に優れていた(実施例1-1~1-5)。さらに、前記成形体は機械的強度にも優れていた。また、本実施形態の樹脂組成物は、レーザー透過率が高くレーザー溶着が可能であることが分かった。
 また、本実施形態の樹脂組成物においては、着色剤を配合しない場合(実施例1-1、1-4、1-5)や染料(実施例1-2)を配合しても、レーザーマーキングができるため、レーザーマーキングが可能であり、かつ、レーザー溶着における透過樹脂部材用の樹脂組成物として用いることができる。
レーザー溶着
<第1の部材の成形>
 上記樹脂ペレットを120℃で5時間乾燥した後、射出成形機(日本製鋼所社製「J55」)を用いて、シリンダー温度260℃、金型温度60℃で成形して、図2に示すような、厚さ1.5mmの成形体(透過樹脂部材I)を作製した。
<第2の部材の成形>
 三菱エンジニアリングプラスチックス社製PBT樹脂(NOVADURAN 5010G30X4/BK2)を120℃で5時間乾燥した後、射出成形機(日本製鋼所社製「J55」)を用いて、シリンダー温度260℃、金型温度80℃で成形して、図3に示すような成形体(吸収樹脂部材II)を作製した。
 表4に示した第1の部材を選択し、図4に示すように、それぞれ穴21、22をあけて、溶着力測定用の冶具23、24を内部に入れた状態で、箱状の吸収樹脂部材IIに蓋状の透過樹脂部材Iを重ね、透過樹脂部材Iおよび吸収樹脂部材IIの重なり部分である鍔部の垂直上方位置にレーザー光源を配置し、ガラス板を用いて透過樹脂部材Iおよび吸収樹脂部材IIの重なり部分に厚み方向両側から内側方向に4.92N/mmの押し力(溶着時押力)を掛けつつ、表4に記載の条件にて、レーザーを照射してレーザー溶着体を得た。図4における符号Xの部分がレーザーを照射した部分である。
 溶着装置は以下の通りである。
<ガルバノスキャナ式レーザー溶着>
レーザー装置:IPG社製 YLR-300-AC-Y14
波長:1070nm
コリメータ:7.5mm
レーザータイプ:ファイバー
レーザー強度(出力):100W
ガルバノスキャナ:ARGES社製 Fiber Elephants21
アパーチャー:21mm
レーザー照射速度:900mm/s
レーザー照射周数:表4または表5に示す通り
溶着部円周 :137mm
 溶着面に照射されるスポット径が直径1mmになるように、レーザー光をデフォーカスしてレーザースキャナの位置調整をした。
<レーザー溶着強度>
 図5に示すように、上記で作製した透過樹脂部材Iおよび吸収樹脂部材IIからなる箱体の上面および下面からそれぞれに測定用冶具25、26を挿入して、内部に収納した冶具23、24とそれぞれ結合させ、上下に引っ張って(引張速度:5mm/min)、透過樹脂部材Iおよび吸収樹脂部材IIが離れる強度(溶着強度、単位:N)を測定した。
 尚、装置はORIENTEC社製100kNテンシロンの万能型試験機を使用した。
 結果を下記表4に示した。
Figure JPOXMLDOC01-appb-T000006
 本発明の樹脂組成物を用いて得られたレーザー溶着体は、レーザー溶着強度が高かった(実施例1-1)。これに対し、比較例の樹脂組成物を用いて得られたレーザー溶着体は、レーザー溶着強度が低かった。
3.実施例2-1~2-2、比較例2-1~2-3
<コンパウンド>
 表1-1および表1-2に示す各成分を表5に示す割合(質量部)ガラス繊維以外の成分をタンブラーミキサーで均一に混合した。得られた混合物を、二軸押出機(日本製鋼所社製「TEX30α」)にメインフィード口より供給した。第一混練部のシリンダー設定温度260℃に設定し、ガラス繊維はサイドフィーダーより供給した。ガラス繊維添加以降のシリンダー温度は240℃に設定し、吐出40kg/h、スクリュー回転数200rpmの条件で溶融混練した樹脂組成物を、水槽にて急冷し、ペレタイザーを用いてペレット化し、樹脂組成物のペレットを得た。
<環境負荷>
 以下の通り評価した。
A:リサイクルポリカーボネート樹脂を用いても、他の性能に悪影響の無い場合(他の性能を向上させた場合を含む)
B:上記Aそれ以外(バージンポリカーボネート樹脂のみを用いた場合、リサイクルポリカーボネート樹脂を用いたところ、他の性能に悪影響を与えた場合等)
 実施例1-1と同様にして、光線透過率、レーザー印字視認性、引張強さおよび引張弾性率を測定した。また、実施例2-1と比較例2-1、2-2のレーザー印字後の写真を図6に示した。実施例1-1では、印字部分と非印字部分の境界が明瞭で滲みがなく、クリアにレーザー印字がされていた。これに対し、比較例1-1、1-2は、滲みが多く、印字部分と非印字部分の境界が判別しづらく、レーザー印字性の精度が劣ることが分かる。
Figure JPOXMLDOC01-appb-T000007
 本発明の樹脂組成物は、レーザー透過率が高かった。そのため、レーザー溶着に適していることが分かった。さらに、発明者の予備試験により、レーザー溶着強度も高いことが分かった。
 本発明の樹脂組成物は、リサイクルポリカーボネート樹脂を用いても各種性能に悪影響を与えず、環境負荷に対応したものであった。
 本実施形態の樹脂組成物は、レーザー印字視認性が高かった。すなわち、優れたレーザーマーキング性を有していた。
 さらに、本実施形態の樹脂組成物は、レーザー透過率が高く、かつ、レーザーマーキング性に優れているので、レーザー溶着および/またはレーザーマーキングが可能な樹脂組成物として好適に用いられる。
レーザー溶着
 実施例1-1と同様にして、レーザー溶着強度を測定した。結果を表6に示す。
Figure JPOXMLDOC01-appb-T000008
 本発明の樹脂組成物を用いて得られたレーザー溶着体は、レーザー溶着強度が高かった(実施例2-1)。これに対し、比較例の樹脂組成物を用いて得られたレーザー溶着体は、レーザー溶着強度が低かった(比較例2-2)。

Claims (21)

  1. ポリエステル樹脂とポリカーボネート樹脂を含み、
    ポリエステル樹脂とポリカーボネート樹脂の合計100質量部における、ポリエステル樹脂とポリカーボネート樹脂の質量比が、10/90~90/10であり、
    前記ポリカーボネート樹脂に含まれるアルミニウム元素の含有量が、ポリカーボネート樹脂100質量部に対し、0.50~1000.00質量ppmである、樹脂組成物。
  2. ポリエステル樹脂とポリカーボネート樹脂を含み、
    ポリエステル樹脂とポリカーボネート樹脂の合計100質量部における、ポリエステル樹脂とポリカーボネート樹脂の質量比が、10/90~90/10であり、
    前記ポリカーボネート樹脂がリサイクル品を含み、
    前記ポリカーボネート樹脂の分子量分布(Mw/Mn)が2.8以上である、
    樹脂組成物。
  3. 前記ポリエステル樹脂が、ポリブチレンテレフタレート樹脂を含む、請求項1または2に記載の樹脂組成物。
  4. 前記ポリカーボネート樹脂が、リサイクル品を含む、請求項1または2に記載の樹脂組成物。
  5. 前記ポリカーボネート樹脂がリサイクル品を含み、前記ポリカーボネート樹脂の分子量分布(Mw/Mn)が2.8以上である、請求項1に記載の樹脂組成物。
  6. 前記ポリカーボネート樹脂の粘度平均分子量Mvが20,000以上である、請求項2または5に記載の樹脂組成物。
  7. 前記ポリカーボネート樹脂100質量部中、リサイクル品が50質量部以上を占める、請求項4に記載の樹脂組成物。
  8. ポリエステル樹脂とポリカーボネート樹脂の合計100質量部に対する、ポリエステル樹脂とポリカーボネート樹脂の質量比が、50/50~90/10である、請求項1または2に記載の樹脂組成物。
  9. さらに、無機充填剤を含む、請求項1または2に記載の樹脂組成物。
  10. 前記無機充填剤が、ガラス繊維および/またはガラスフレークを含む、請求項9に記載の樹脂組成物。
  11. さらに、リン系安定剤を含む、請求項1または2に記載の樹脂組成物。
  12. 1.5mmの厚さに成形したときの波長1064nmにおける光線透過率が20.0%以上である、請求項1または2に記載の樹脂組成物。
  13. レーザーマーキング用である、請求項1または2に記載の樹脂組成物。
  14. レーザー溶着のレーザー光に対する透過樹脂部材に用いる、請求項1または2に記載の樹脂組成物。
  15. 前記ポリエステル樹脂が、ポリブチレンテレフタレート樹脂を含み、
    前記ポリカーボネート樹脂が、リサイクル品を含み、
    前記ポリカーボネート樹脂100質量部中、リサイクル品が50質量部以上を占め、
    ポリエステル樹脂とポリカーボネート樹脂の合計100質量部に対する、ポリエステル樹脂とポリカーボネート樹脂の質量比が、50/50~90/10であり、
    さらに、無機充填剤を含み、
    前記無機充填剤が、ガラス繊維および/またはガラスフレークを含み、
    さらに、リン系安定剤を含み、
    1.5mmの厚さに成形したときの波長1064nmにおける光線透過率が20.0%以上であり、
    レーザーマーキング用であり、かつ、
    レーザー溶着のレーザー光に対する透過樹脂部材に用いる、請求項1に記載の樹脂組成物。
  16. 前記ポリカーボネート樹脂100質量部中、リサイクル品が50質量部以上を占め、前記ポリカーボネート樹脂の粘度平均分子量Mvが20,000以上であり、
    前記ポリエステル樹脂が、ポリブチレンテレフタレート樹脂を含み、
    さらに、無機充填剤を含み、
    さらに、リン系安定剤を含み、
    レーザーマーキング用であり、かつ、
    レーザー溶着のレーザー光に対する透過樹脂部材に用いる、請求項2に記載の樹脂組成物。
  17. 請求項1、2、15または16に記載の樹脂組成物から形成された成形体。
  18. 請求項1、2、15または16に記載の樹脂組成物のペレット。
  19. 請求項18に記載のペレットから形成された成形体。
  20. レーザーマーキング用である、請求項17に記載の成形体。
  21. 請求項17に記載の成形体を含む、レーザー溶着体。
PCT/JP2023/003391 2022-02-04 2023-02-02 樹脂組成物、成形体、ペレット、および、レーザー溶着体 WO2023149503A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202380019872.XA CN118632898A (zh) 2022-02-04 2023-02-02 树脂组合物、成型体、粒料和激光焊接体

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2022-016433 2022-02-04
JP2022-016435 2022-02-04
JP2022016435 2022-02-04
JP2022016433 2022-02-04
JP2022049134A JP2023114411A (ja) 2022-02-04 2022-03-24 樹脂組成物、成形体、および、レーザー溶着体
JP2022-049135 2022-03-24
JP2022049135A JP2023114412A (ja) 2022-02-04 2022-03-24 樹脂組成物、成形体、および、レーザー溶着体
JP2022-049134 2022-03-24

Publications (1)

Publication Number Publication Date
WO2023149503A1 true WO2023149503A1 (ja) 2023-08-10

Family

ID=87552554

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/003391 WO2023149503A1 (ja) 2022-02-04 2023-02-02 樹脂組成物、成形体、ペレット、および、レーザー溶着体

Country Status (2)

Country Link
TW (1) TW202344610A (ja)
WO (1) WO2023149503A1 (ja)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07722A (ja) 1993-06-11 1995-01-06 Mitaka Kogyosho:Kk 回転式真空濾過機
JP4040460B2 (ja) 2000-11-13 2008-01-30 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー レーザー溶接用の着色熱可塑性樹脂組成物、そのための着色剤としての特定の中性アントラキノン染料、およびそれから成形される製品
JP4157300B2 (ja) 1999-12-14 2008-10-01 ランクセス・ドイチュランド・ゲーエムベーハー レーザー透過溶接が可能な熱可塑性成形用組成物
JP2010513609A (ja) * 2006-12-22 2010-04-30 エッカルト ゲゼルシャフト ミット ベシュレンクテル ハフツング レーザーマーキングまたはレーザー溶着化剤としての球体金属粒子の使用、ならびにレーザーマーク可能および/またはレーザー溶着可能なプラスチック
JP2017141339A (ja) * 2016-02-09 2017-08-17 三菱エンジニアリングプラスチックス株式会社 再生ポリカーボネート樹脂組成物の製造方法
JP6183822B1 (ja) 2016-02-25 2017-08-23 三菱エンジニアリングプラスチックス株式会社 レーザー溶着用樹脂組成物及びその溶着体
JP2018002996A (ja) * 2016-06-28 2018-01-11 富士ゼロックス株式会社 樹脂組成物及び樹脂成形体
JP2019123809A (ja) 2018-01-17 2019-07-25 三菱エンジニアリングプラスチックス株式会社 ポリカーボネート樹脂組成物及び成形品
WO2020013127A1 (ja) 2018-07-11 2020-01-16 三菱エンジニアリングプラスチックス株式会社 熱可塑性樹脂組成物および成形品
JP2021155510A (ja) * 2020-03-25 2021-10-07 富士フイルムビジネスイノベーション株式会社 樹脂組成物及び樹脂成形体
WO2021225154A1 (ja) 2020-05-07 2021-11-11 三菱エンジニアリングプラスチックス株式会社 樹脂組成物、成形品、キット、車載カメラ部品、車載カメラモジュール、および、成形品の製造方法

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07722A (ja) 1993-06-11 1995-01-06 Mitaka Kogyosho:Kk 回転式真空濾過機
JP4157300B2 (ja) 1999-12-14 2008-10-01 ランクセス・ドイチュランド・ゲーエムベーハー レーザー透過溶接が可能な熱可塑性成形用組成物
JP4040460B2 (ja) 2000-11-13 2008-01-30 イー・アイ・デュポン・ドウ・ヌムール・アンド・カンパニー レーザー溶接用の着色熱可塑性樹脂組成物、そのための着色剤としての特定の中性アントラキノン染料、およびそれから成形される製品
JP2010513609A (ja) * 2006-12-22 2010-04-30 エッカルト ゲゼルシャフト ミット ベシュレンクテル ハフツング レーザーマーキングまたはレーザー溶着化剤としての球体金属粒子の使用、ならびにレーザーマーク可能および/またはレーザー溶着可能なプラスチック
JP2017141339A (ja) * 2016-02-09 2017-08-17 三菱エンジニアリングプラスチックス株式会社 再生ポリカーボネート樹脂組成物の製造方法
JP6183822B1 (ja) 2016-02-25 2017-08-23 三菱エンジニアリングプラスチックス株式会社 レーザー溶着用樹脂組成物及びその溶着体
JP2018002996A (ja) * 2016-06-28 2018-01-11 富士ゼロックス株式会社 樹脂組成物及び樹脂成形体
JP2019123809A (ja) 2018-01-17 2019-07-25 三菱エンジニアリングプラスチックス株式会社 ポリカーボネート樹脂組成物及び成形品
WO2020013127A1 (ja) 2018-07-11 2020-01-16 三菱エンジニアリングプラスチックス株式会社 熱可塑性樹脂組成物および成形品
JP2021155510A (ja) * 2020-03-25 2021-10-07 富士フイルムビジネスイノベーション株式会社 樹脂組成物及び樹脂成形体
WO2021225154A1 (ja) 2020-05-07 2021-11-11 三菱エンジニアリングプラスチックス株式会社 樹脂組成物、成形品、キット、車載カメラ部品、車載カメラモジュール、および、成形品の製造方法

Also Published As

Publication number Publication date
TW202344610A (zh) 2023-11-16

Similar Documents

Publication Publication Date Title
JP5245265B2 (ja) レーザー溶着用ポリエステル樹脂組成物および複合成形体
WO2021225154A1 (ja) 樹脂組成物、成形品、キット、車載カメラ部品、車載カメラモジュール、および、成形品の製造方法
JP7532753B2 (ja) レーザー溶着用ポリブチレンテレフタレート樹脂組成物
US20050119377A1 (en) Colored resin composition for laser welding and composite molding product using the same
JPWO2019088058A1 (ja) レーザー溶着体の製造方法
JP7096264B2 (ja) レーザー溶着体
CN114829498B (zh) 激光熔接用成型品、激光熔接用成型品的激光透射率的偏差抑制剂
JP4720149B2 (ja) レーザ溶着用着色樹脂組成物およびそれを用いた複合成形体
JP2008133341A (ja) 黒色のレーザー溶着用ポリエステル樹脂組成物およびこれを用いた成形品
CN115427515B (zh) 振镜式激光焊接用树脂组合物、成型品、振镜式激光焊接用套组、车载照相机部件、车载照相机模块、紫外线暴露体和成型品的制造方法
US20240010819A1 (en) Resin composition, molded article, and applications thereof
JP7122490B1 (ja) 樹脂組成物、成形品、樹脂組成物の使用、キット、レーザー溶着品、および、レーザー溶着品の製造方法
WO2023149503A1 (ja) 樹脂組成物、成形体、ペレット、および、レーザー溶着体
JP2010070626A (ja) ポリエステル樹脂組成物および複合成形体
JP2007246716A (ja) レーザー溶着用ポリエステル樹脂組成物およびこれを用いた成形品
JP2023114412A (ja) 樹脂組成物、成形体、および、レーザー溶着体
JP2023114411A (ja) 樹脂組成物、成形体、および、レーザー溶着体
US20210170696A1 (en) Laser-weldable and laser-markable molded article
JP2019081364A (ja) レーザー溶着体
CN118632898A (zh) 树脂组合物、成型体、粒料和激光焊接体
JP2008189764A (ja) 黒色のレーザー溶着用ポリエステル樹脂組成物およびこれを用いた成形品
JP2024145412A (ja) 樹脂組成物、ペレット、成形品、樹脂組成物の製造方法、キット、レーザー溶着品、および、レーザー溶着品の製造方法
JP7487583B2 (ja) 樹脂組成物、成形体、レーザー溶着用キット、車載カメラモジュール、および、成形体の製造方法
JP2019081363A (ja) レーザー溶着体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23749819

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202380019872.X

Country of ref document: CN

WWE Wipo information: entry into national phase

Ref document number: 2023749819

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2023749819

Country of ref document: EP

Effective date: 20240904