WO2023144953A1 - 圧縮機及び冷凍サイクル装置 - Google Patents
圧縮機及び冷凍サイクル装置 Download PDFInfo
- Publication number
- WO2023144953A1 WO2023144953A1 PCT/JP2022/003014 JP2022003014W WO2023144953A1 WO 2023144953 A1 WO2023144953 A1 WO 2023144953A1 JP 2022003014 W JP2022003014 W JP 2022003014W WO 2023144953 A1 WO2023144953 A1 WO 2023144953A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- refrigerant
- compressor
- injection pipe
- stator
- pipe
- Prior art date
Links
- 238000005057 refrigeration Methods 0.000 title claims description 53
- 239000003507 refrigerant Substances 0.000 claims abstract description 294
- 230000006835 compression Effects 0.000 claims abstract description 81
- 238000007906 compression Methods 0.000 claims abstract description 81
- 238000002347 injection Methods 0.000 claims description 100
- 239000007924 injection Substances 0.000 claims description 100
- 239000002826 coolant Substances 0.000 claims description 40
- 239000010721 machine oil Substances 0.000 claims description 23
- 230000002093 peripheral effect Effects 0.000 claims description 22
- 238000001514 detection method Methods 0.000 claims description 21
- 238000004804 winding Methods 0.000 claims description 9
- 239000007788 liquid Substances 0.000 description 36
- 239000003921 oil Substances 0.000 description 29
- 238000001816 cooling Methods 0.000 description 14
- 238000010586 diagram Methods 0.000 description 11
- 230000006870 function Effects 0.000 description 6
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- 238000003780 insertion Methods 0.000 description 3
- 230000037431 insertion Effects 0.000 description 3
- 230000000149 penetrating effect Effects 0.000 description 3
- 239000010726 refrigerant oil Substances 0.000 description 3
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 210000000078 claw Anatomy 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 238000000034 method Methods 0.000 description 2
- 238000003466 welding Methods 0.000 description 2
- 230000006399 behavior Effects 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 230000005347 demagnetization Effects 0.000 description 1
- NBVXSUQYWXRMNV-UHFFFAOYSA-N fluoromethane Chemical compound FC NBVXSUQYWXRMNV-UHFFFAOYSA-N 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 230000004941 influx Effects 0.000 description 1
- 239000010687 lubricating oil Substances 0.000 description 1
- 230000010349 pulsation Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 238000011144 upstream manufacturing Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C18/00—Rotary-piston pumps specially adapted for elastic fluids
- F04C18/02—Rotary-piston pumps specially adapted for elastic fluids of arcuate-engagement type, i.e. with circular translatory movement of co-operating members, each member having the same number of teeth or tooth-equivalents
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C29/00—Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F04—POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
- F04C—ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; ROTARY-PISTON, OR OSCILLATING-PISTON, POSITIVE-DISPLACEMENT PUMPS
- F04C29/00—Component parts, details or accessories of pumps or pumping installations, not provided for in groups F04C18/00 - F04C28/00
- F04C29/04—Heating; Cooling; Heat insulation
-
- H—ELECTRICITY
- H02—GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
- H02K—DYNAMO-ELECTRIC MACHINES
- H02K9/00—Arrangements for cooling or ventilating
- H02K9/19—Arrangements for cooling or ventilating for machines with closed casing and closed-circuit cooling using a liquid cooling medium, e.g. oil
Definitions
- the present disclosure relates to a compressor that compresses refrigerant, and a refrigeration cycle device that includes the compressor.
- a refrigeration cycle device used in a refrigeration system, an air conditioner, etc. is equipped with a compressor that compresses a refrigerant.
- Compressors equipped with various types of compression units, such as scroll compressors, rotary compressors, and vane compressors, are known as compressors used in refrigeration cycle apparatuses.
- a compressor used in a refrigeration cycle apparatus includes an electric motor unit, a drive shaft rotated by the power of the electric motor unit, and a compression unit that compresses a refrigerant by the power of the electric motor unit transmitted by the drive shaft.
- a compressor used in a refrigeration cycle apparatus includes a container that accommodates an electric motor unit, a drive shaft, and a compression unit inside.
- the container is provided with a suction pipe for supplying refrigerant to be compressed in the compression unit inside the container. That is, the compressor has a configuration in which the refrigerant supplied from the suction pipe to the inside of the container is compressed by the compression unit.
- refrigerating machine oil which serves as lubricating oil, is stored in the lower portion of the container. The refrigerating machine oil stored in the lower portion of the container is supplied to sliding portions of the compressor, such as between the drive shaft and bearings that rotatably support the drive shaft.
- Patent Literature 1 discloses a scroll compressor.
- the scroll compressor described in Patent Document 1 allows part of the refrigerant supplied from the suction pipe into the container to flow to the electric motor unit side to cool the stator of the electric motor unit.
- the scroll compressor described in Patent Document 1 attempts to expand the operable range of the compressor by cooling the stator of the electric motor unit.
- the scroll compressor described in Patent Document 1 uses part of the refrigerant supplied from the suction pipe into the container to cool the stator of the electric motor unit. Therefore, when the refrigeration cycle device is in an operating state with a small refrigerant circulation amount, the scroll compressor described in Patent Document 1 cannot flow sufficient refrigerant to the electric motor unit. Therefore, when the refrigeration cycle device is in an operating state with a small refrigerant circulation amount, the scroll compressor described in Patent Document 1 cannot sufficiently cool the stator of the electric motor unit.
- the scroll compressor described in Patent Document 1 is sufficiently cooled to cool the electric motor unit.
- the present disclosure has been made to solve the above-described problems, and a primary object thereof is to obtain a compressor capable of expanding the operable range compared to conventional compressors.
- a second object of the present disclosure is to obtain a refrigeration cycle apparatus including such a compressor.
- a compressor includes an electric motor unit having a rotor and a stator, a drive shaft fixed to the rotor and rotated by power of the electric motor unit, and the electric motor connected to the drive shaft and transmitted by the drive shaft.
- a compression unit that compresses a refrigerant by the power of an electric motor unit; a container that accommodates the electric motor unit, the drive shaft, and the compression unit therein and stores refrigerating machine oil at the bottom;
- Refrigerant flow path section including a suction pipe for supplying refrigerant compressed by the compression unit, a plurality of flow path sections penetrating the stator, and a pipe connecting at least two of the flow path sections. and a supply pipe that is connected to the refrigerant flow path and supplies the refrigerant from the outside of the container to the refrigerant flow path.
- a refrigeration cycle device includes a compressor according to the present disclosure, a radiator in which refrigerant compressed by the compressor releases heat, a first expansion section that expands the refrigerant flowing out from the radiator, an evaporator in which the refrigerant flowing out from the first expansion part evaporates; and an injection pipe in which the refrigerant flowing out from the radiator flows in from one end and the other end is connected to the supply pipe of the compressor. and a second expansion section that expands the refrigerant flowing through the injection pipe, and a control device that controls the flow rate of the refrigerant flowing from the injection pipe to the supply pipe and the compressor.
- the stator of the electric motor unit is cooled by the refrigerant supplied from the supply pipe to the refrigerant flow path. That is, the compressor according to the present disclosure uses a refrigerant different from the refrigerant supplied from the suction pipe into the container as the refrigerant for cooling the stator of the electric motor unit. Therefore, the compressor according to the present disclosure can cool the stator of the electric motor unit regardless of the amount of refrigerant supplied from the suction pipe into the container, that is, regardless of the amount of refrigerant circulating through the refrigeration cycle device. can.
- the compressor according to the present disclosure can prevent the stator of the electric motor unit from being sufficiently cooled, and can also prevent the refrigerating machine oil stored in the bottom of the container from being diluted with the refrigerant. Therefore, the compressor according to the present disclosure can expand the operable range as compared with the conventional compressor.
- FIG. 1 is a circuit diagram showing a refrigeration cycle device according to an embodiment;
- FIG. It is a longitudinal section showing a compressor concerning an embodiment.
- FIG. 4 is a diagram for explaining a refrigerant flow path portion and a supply pipe according to the embodiment, and is a vertical cross-sectional view showing the vicinity of the electric motor unit of the compressor according to the embodiment;
- FIG. 3 is a diagram for explaining a refrigerant flow path portion and a supply pipe according to the embodiment, and is a side view showing the electric motor unit of the compressor according to the embodiment;
- FIG. FIG. 4 is a diagram for explaining a refrigerant flow path portion and a supply pipe according to the embodiment, and is a plan view showing the stator of the electric motor unit of the compressor according to the embodiment;
- FIG. 10 is a diagram for explaining a refrigerant flow path portion and a supply pipe in another example of the compressor according to the embodiment, and is a plan view showing the stator of the electric motor unit of the compressor; It is a figure for demonstrating another example of the compressor which concerns on embodiment, and is a longitudinal cross-sectional view which shows the motor unit vicinity of the said compressor. It is a figure for demonstrating another example of the compressor which concerns on embodiment, and is a longitudinal cross-sectional view which shows the motor unit vicinity of the said compressor.
- FIG. 1 is a circuit diagram showing a refrigeration cycle apparatus according to an embodiment.
- the refrigeration cycle device 1 includes a compressor 100 that compresses refrigerant, a radiator that releases heat from the refrigerant compressed by the compressor 100, a first expansion section 300 that expands the refrigerant flowing out from the radiator, and a first expansion section. and an evaporator in which the refrigerant flowing out from 300 evaporates.
- the refrigeration cycle device 1 also includes an injection pipe 800 and a second expansion section 600 .
- the injection pipe 800 has one end into which the refrigerant that has flowed out from the radiator flows, and the other end is connected to the later-described supply pipe 52 of the compressor 100 .
- the second expansion section 600 is provided in the injection pipe 800 and expands the refrigerant flowing through the injection pipe 800 .
- the refrigeration cycle device 1 also includes a control device 70 .
- Control device 70 controls the flow rate of refrigerant flowing from injection pipe 800 to supply pipe 52 .
- the control device 70 controls the compressor 100 .
- the compressor 100 includes an electric motor unit 30 having a stator 31 and a rotor 32 as described below.
- the control device 70 controls the rotation speed of the rotor 32 of the electric motor unit 30 .
- the control device 70 is composed of dedicated hardware or a CPU (Central Processing Unit) that executes programs stored in memory. Note that the CPU is also called a central processing unit, a processing unit, an arithmetic unit, a microprocessor, a microcomputer, or a processor.
- CPU Central Processing Unit
- control device 70 When the control device 70 is dedicated hardware, the control device 70 may be, for example, a single circuit, a composite circuit, an ASIC (Application Specific Integrated Circuit), an FPGA (Field-Programmable Gate Array), or a combination thereof. Applicable. Each functional unit implemented by the control device 70 may be implemented by separate hardware, or each functional unit may be implemented by one piece of hardware.
- ASIC Application Specific Integrated Circuit
- FPGA Field-Programmable Gate Array
- each function executed by the control device 70 is implemented by software, firmware, or a combination of software and firmware.
- Software and firmware are written as programs and stored in memory.
- the CPU implements each function of the control device 70 by reading and executing programs stored in the memory.
- the memory is, for example, non-volatile or volatile semiconductor memory such as RAM, ROM, flash memory, EPROM or EEPROM.
- control device 70 may be realized by dedicated hardware, and part of them may be realized by software or firmware.
- the refrigeration cycle device 1 is used for various purposes such as refrigeration equipment and air conditioners.
- FIG. 1 shows an example using a refrigeration cycle device 1 according to an embodiment as an air conditioner capable of cooling operation. Therefore, as shown in FIG. 1, the refrigeration cycle device 1 includes an outdoor unit 1a and an indoor unit 1b.
- the outdoor unit 1 a is provided with, for example, a compressor 100 , an outdoor heat exchanger 200 , an outdoor fan 201 , a first expansion section 300 , an injection pipe 800 and a second expansion section 600 .
- the indoor unit 1b is provided with an indoor heat exchanger 400 and an indoor fan 401, for example.
- the refrigeration cycle device 1 uses, for example, a fluorocarbon-based refrigerant such as R32 as a refrigerant.
- natural refrigerants such as a carbon dioxide, may be used for the refrigerating-cycle apparatus 1 as a refrigerant
- a refrigerant circuit 500 is configured by connecting the compressor 100, the outdoor heat exchanger 200, the first expansion section 300, and the indoor heat exchanger 400 by refrigerant piping.
- the compressor 100 sucks a low-temperature, low-pressure refrigerant, compresses the sucked-in refrigerant, and discharges it as a high-temperature, high-pressure gaseous refrigerant.
- Compressor 100 can be a compressor with various types of compression units, such as scroll compressors, rotary compressors, and vane compressors. As will be described later, a scroll compressor is used as the compressor 100 in this embodiment.
- the outdoor heat exchanger 200 functions as a radiator, into which the high-temperature and high-pressure gaseous refrigerant discharged from the compressor 100 flows. That is, the high-temperature and high-pressure gaseous refrigerant flowing inside the outdoor heat exchanger 200 is condensed while radiating heat to a medium having a lower temperature than the refrigerant, and becomes a high-pressure liquid refrigerant.
- the outdoor heat exchanger 200 is an air-cooled heat exchanger. Therefore, the high-temperature and high-pressure gaseous refrigerant flowing inside the outdoor heat exchanger 200 is condensed while radiating heat to the outdoor air supplied to the outdoor heat exchanger 200 from the outdoor fan 201, and becomes a high-pressure liquid refrigerant.
- the radiator may be referred to as a condenser.
- the first expansion section 300 is a pressure reducing valve or an expansion valve that reduces the pressure of the high-pressure liquid refrigerant flowing out of the outdoor heat exchanger 200 to expand it.
- the first expansion section 300 is, for example, an expander, a thermal automatic expansion valve, or a linear electronic expansion valve whose opening is adjusted.
- the first expansion portion 300 is controllable, such as when the opening degree of the first expansion portion 300 is controllable, the first expansion portion 300 is controlled by the control device 70 .
- the indoor heat exchanger 400 functions as an evaporator, into which the low-temperature, low-pressure gas-liquid two-phase refrigerant flowing out from the first expansion section 300 flows.
- the low-temperature, low-pressure gas-liquid two-phase refrigerant flowing inside the indoor heat exchanger 400 evaporates while absorbing heat from a medium having a higher temperature than the refrigerant, and becomes a low-pressure gaseous refrigerant.
- the indoor heat exchanger 400 is an air-cooled heat exchanger. Therefore, the low-temperature, low-pressure gas-liquid two-phase refrigerant flowing inside the indoor heat exchanger 400 evaporates while absorbing heat from the indoor air supplied from the indoor fan 401 to the indoor heat exchanger 400, and becomes a low-pressure gas. refrigerant.
- the injection pipe 800 has one end into which the refrigerant that has flowed out from the radiator flows, and the other end is connected to the later-described supply pipe 52 of the compressor 100 .
- one end of injection pipe 800 is connected to refrigerant pipe 501 connecting outdoor heat exchanger 200 functioning as a radiator and first expansion section 300 . That is, the high-pressure liquid refrigerant flowing out of the outdoor heat exchanger 200 flows into the injection pipe 800 .
- the injection pipe 800 is provided with the second expansion portion 600 .
- the second expansion section 600 is a pressure reducing valve or an expansion valve that decompresses and expands the high-pressure liquid refrigerant flowing through the injection pipe 800 .
- the second expansion section 600 is, for example, an expansion machine, a thermal automatic expansion valve, or a linear electronic expansion valve whose opening is adjusted.
- the opening degree of the second inflation portion 600 is controllable, the second inflation portion 600 is controlled by the control device 70 . That is, the liquid refrigerant or gas-liquid two-phase refrigerant decompressed by the second expansion section 600 flows through the injection pipe 800 into the later-described supply pipe 52 of the compressor 100 .
- the compressor 100 supplies the refrigerant depressurized by the second expansion section 600 flowing through the injection pipe 800 to the compression chamber 11, and therefore corresponds to the compressor-side injection pipe.
- An injection pipe 49 is provided. Therefore, in the present embodiment, the other end of injection pipe 800 on the side of compressor 100 is branched into two.
- a first branch portion which is one of the branch portions, is connected to the supply pipe 52 of the compressor 100 .
- a second branch portion which is the other of the branch portions, is connected to the injection pipe 49 of the compressor 100 .
- an on-off valve 54 is provided at the first branch portion, which is one of the branch portions.
- An on-off valve 55 is provided at the second branch portion, which is the other of the branch portions.
- the on-off valve 54 and the on-off valve 55 may be valves that can only be opened and closed, or may be flow control valves that can change the degree of opening in an open state to a plurality of degrees of opening.
- the control device 70 controls the flow rate of refrigerant flowing from the injection pipe 800 into the supply pipe 52 of the compressor 100 by controlling the opening/closing state of the on-off valve 54 . Further, the control device 70 controls the flow rate of refrigerant flowing from the injection pipe 800 into the injection pipe 49 of the compressor 100 by controlling the open/close state of the on-off valve 55 .
- the control device 70 may control the opening degree of the second expansion section 600 together with the opening/closing state of the on-off valve 54 to control the flow rate of the refrigerant flowing from the injection pipe 800 into the supply pipe 52 of the compressor 100 .
- the control device 70 controls the opening degree of the second expansion section 600 to compress the refrigerant from the injection pipe 800.
- the flow rate of refrigerant entering the supply line 52 of the machine 100 may be controlled.
- even when the injection pipe 800 is connected only to the supply pipe 52 of the compressor 100 it is not necessary to provide the on-off valve 54 and the on-off valve 55 in the injection pipe 800 .
- injection pipe 800 is provided with heat exchanger 700 at a position on the downstream side of second expansion section 600 in the flow direction of the refrigerant.
- the heat exchanger 700 exchanges heat between the refrigerant decompressed by the second expansion section 600 flowing through the heat exchanger 700 and a medium having a higher temperature than the refrigerant.
- the heat exchanger 700 is, for example, an air-cooled heat exchanger that exchanges heat between the refrigerant decompressed by the second expansion section 600 flowing through the heat exchanger 700 and the outdoor air.
- the heat exchanger 700 may be a double-tube heat exchanger.
- the refrigerant flowing into the heat exchanger 700 from the second expansion section 600 and the high-pressure liquid or gas-liquid two-phase state flowing into the heat exchanger 700 from the outdoor heat exchanger 200 are mixed.
- Heat is exchanged with the refrigerant. That is, the heat exchanger 700 exchanges heat between the refrigerant flowing between the outdoor heat exchanger 200 and the first expansion section 300 in the refrigerant circuit 500 and the refrigerant flowing downstream of the second expansion section 600 in the injection pipe 800.
- It may be a supercooler that allows Note that the heat exchanger 700 may be omitted from the injection pipe 800 .
- FIG. 2 is a vertical cross-sectional view showing the compressor according to the embodiment.
- the compressor 100 is a hermetic scroll compressor.
- the compressor 100 includes an electric motor unit 30 , a drive shaft 33 , a scroll-type compression unit 10 , a container 40 and a suction pipe 44 .
- the compressor 100 includes a frame 46, a subframe 47, a discharge pipe 45, a boss portion 27, an Oldham ring 22a, a sleeve 34, a discharge valve 5, a valve guard 6, a discharge muffler 7, an oil pump 51 , an oil drain pipe 50, an injection pipe 49, and the like.
- the container 40 is a closed container that constitutes the outer shell of the compressor 100 .
- the container 40 has a cylindrical shape. Inside the container 40, the electric motor unit 30, the drive shaft 33, the compression unit 10, and the like are accommodated. In the container 40, the compression unit 10 is arranged above and the electric motor unit 30 is arranged below.
- the container 40 has a bottom portion 43 , a body portion 42 and a lid portion 41 .
- the bottom portion 43 constitutes the bottom portion of the container 40 and is a dish-shaped member in which the oil reservoir 2 that stores the refrigerator oil is formed. That is, the container 40 has a structure in which the refrigerating machine oil is stored in the bottom.
- the trunk portion 42 is a cylindrical member extending upward from the bottom portion 43 .
- a suction pipe 44 is provided in the body portion 42 .
- the lid portion 41 is a dome-shaped member provided on the upper portion of the body portion 42 .
- a discharge pipe 45 is provided in the lid portion 41 .
- the suction pipe 44 supplies refrigerant compressed by the compression unit 10 to the inside of the container 40 .
- the suction pipe 44 is connected to the indoor heat exchanger 400 by refrigerant piping. That is, the low-pressure gaseous refrigerant that has flowed out of the indoor heat exchanger 400 is supplied to the inside of the container 40 via the suction pipe 44 . Further, in this embodiment, the suction pipe 44 communicates with the low-pressure space 8 inside the container 40 . Refrigerant compressed in the compression unit 10 is supplied to the low-pressure space 8 . In this embodiment, the space formed between the electric motor unit 30 and the compression unit 10 serves as the low-pressure space 8. As shown in FIG.
- the discharge pipe 45 guides the high-temperature and high-pressure gaseous refrigerant compressed by the compression unit 10 to the outside of the container 40 .
- the discharge pipe 45 communicates with the high pressure space 9 inside the container 40 .
- the high-pressure space 9 is a space in which the high-temperature and high-pressure gaseous refrigerant compressed by the compression unit 10 is stored. In this embodiment, a high pressure space 9 is formed above the compression unit 10 .
- the discharge pipe 45 is connected to the outdoor heat exchanger 200 by refrigerant piping. That is, the high-temperature and high-pressure gaseous refrigerant compressed by the compression unit 10 flows into the outdoor heat exchanger 200 via the discharge pipe 45 .
- the frame 46 is fixed to the inner peripheral portion of the body portion 42 of the container 40 by shrink fitting, welding, or the like.
- the frame 46 holds the compression unit 10 from below.
- the frame 46 also includes a main bearing 46a, and rotatably supports the drive shaft 33 via the main bearing 46a.
- the frame 46 is arranged above the electric motor unit 30 and positioned between the electric motor unit 30 and the compression unit 10 .
- a plurality of suction ports 36 communicating with the low pressure space 8 are formed in the frame 46 . Refrigerant in the low pressure space 8 flows into the compression unit 10 through the plurality of suction ports 36 .
- the space between the frame 46 and the electric motor unit 30 serves as the low pressure space 8 .
- a space is formed above the frame 46 so as to be positioned on the outer peripheral side of the first spiral tooth 24 and the second spiral tooth 26 of the compression unit 10 .
- the plurality of suction ports 36 are through holes that communicate between the space above the frame 46 located on the outer peripheral side of the first spiral tooth 24 and the second spiral tooth 26 and the low pressure space 8 located below the frame 46. It has become.
- the subframe 47 is arranged at a position below the electric motor unit 30 inside the container 40 .
- the subframe 47 is fixed to the inner peripheral portion of the body portion 42 of the container 40 by shrink fitting, welding, or the like.
- the sub-frame 47 also includes a sub-bearing 48 which is, for example, a ball bearing, and rotatably supports the drive shaft 33 via the sub-bearing 48 .
- a hole 47 a is formed in the sub-frame 47 . Refrigerant oil flowing down toward the oil sump 2 passes through the hole 47a.
- the frame 46 and the sub-frame 47 are fixed inside the container 40 so as to face each other with the electric motor unit 30 interposed therebetween.
- the drive shaft 33 is fixed to a later-described rotor 32 of the electric motor unit 30 and is rotated by the power of the electric motor unit 30 .
- the drive shaft 33 is connected to the compression unit 10 and transmits power of the electric motor unit 30 to the compression unit 10 .
- the drive shaft 33 is a rod-shaped crankshaft that extends vertically in the center of the container 40 .
- the drive shaft 33 has a main shaft portion 33b, a sub shaft portion 33c, and an eccentric shaft portion 33a.
- the main shaft portion 33b is rotatably supported by a main bearing 46a of the frame 46.
- a sleeve 34 is provided between the main bearing 46a and the main shaft portion 33b.
- the sleeve 34 absorbs the tilted state between the frame 46 and the drive shaft 33 .
- the secondary shaft portion 33c is provided at the end of the main shaft portion 33b opposite to the compression unit 10 . That is, the secondary shaft portion 33c is provided at the lower end portion of the main shaft portion 33b. Further, the axis of the secondary shaft portion 33c is arranged coaxially with the axis of the main shaft portion 33b.
- the sub-shaft portion 33c is rotatably supported by a sub-bearing 48 of the sub-frame 47.
- the eccentric shaft portion 33a is provided at the end portion of the main shaft portion 33b on the compression unit 10 side. That is, the eccentric shaft portion 33a is provided at the upper end portion of the main shaft portion 33b.
- the axis of the eccentric shaft portion 33a is arranged eccentrically with respect to the axis of the main shaft portion 33b.
- the eccentric shaft portion 33a is rotatably accommodated in the swing bearing 27a.
- the outer peripheral portion of the eccentric shaft portion 33a is in close contact with the inner peripheral portion of the swing bearing 27a via the refrigerator oil.
- an oil passage 33d is formed through which refrigerating machine oil passes.
- the compression unit 10 is connected to the drive shaft 33 and compresses the refrigerant supplied from the suction pipe 44 to the low pressure space 8 with the power of the electric motor unit 30 transmitted by the drive shaft 33 .
- the compression unit 10 then discharges the gaseous refrigerant, which has been compressed to a high temperature and high pressure, to the high pressure space 9 .
- This compression unit 10 has a fixed scroll 21 and an orbiting scroll 22 .
- the fixed scroll 21 is fixed to the frame 46 above the orbiting scroll 22 .
- the fixed scroll 21 has a first base plate 23 and first spiral teeth 24 .
- the first base plate 23 is a plate-like member and constitutes the upper surface portion of the compression unit 10 .
- the first spiral tooth 24 is a spiral protrusion extending downward from the lower surface of the first base plate 23 .
- a discharge port 3 is formed in the center of the first base plate 23 of the fixed scroll 21, and is a space through which compressed and high-pressure refrigerant is discharged.
- the orbiting scroll 22 has a second base plate 25 and second spiral teeth 26 .
- the second base plate 25 is a plate-like member that is movably arranged above the frame 46 .
- the second spiral tooth 26 is a spiral protrusion extending upward from the upper surface of the second base plate 25 .
- the fixed scroll 21 and the orbiting scroll 22 are provided in the container 40 with the first spiral tooth 24 and the second spiral tooth 26 meshing with each other.
- the first spiral tooth 24 and the second spiral tooth 26 are formed following an involute curve.
- a plurality of compression chambers 11 are formed between the second spiral tooth 26 and the second spiral tooth 26 .
- the boss portion 27 is provided at the center of the surface of the second base plate 25 of the orbiting scroll 22 opposite to the surface on which the second spiral teeth 26 are formed, and has a hollow cylindrical shape.
- a rocking bearing 27 a is provided on the inner peripheral side of the boss portion 27 .
- the swing bearing 27a covers the outer peripheral portion of the eccentric shaft portion 33a and supports the eccentric shaft portion 33a rotatably.
- the axis of the eccentric shaft portion 33a is eccentric with respect to the axis of the main shaft portion 33b. Therefore, when the drive shaft 33 rotates around the axis of the main shaft portion 33b, the orbiting scroll 22 rotates eccentrically.
- the Oldham ring 22a is provided on the surface of the second base plate 25 of the orbiting scroll 22 opposite to the surface on which the second spiral teeth 26 are formed.
- the Oldham ring 22a prevents the orbiting scroll 22 from rotating on its axis during the eccentric orbiting motion, and allows the orbiting scroll 22 to revolve.
- the upper and lower surfaces of the Oldham ring 22a are provided with claws (not shown) protruding perpendicularly to each other. The claws of the Oldham ring 22a are inserted into Oldham grooves (not shown) formed in the orbiting scroll 22 and the frame 46. As shown in FIG.
- the discharge valve 5 is a plate spring member that covers the discharge port 3 and prevents the refrigerant from flowing backward.
- the refrigerant When the refrigerant is compressed to a predetermined pressure in the compression chamber 11 , the refrigerant lifts the discharge valve 5 against the elastic force of the discharge valve 5 . Then, the compressed refrigerant is discharged from the discharge port 3 into the high-pressure space 9 and discharged outside the compressor 100 through the discharge pipe 45 .
- the valve guard 6 regulates the movable range of the discharge valve 5 .
- the discharge muffler 7 covers the discharge valve 5 and suppresses pulsation of the refrigerant discharged from the discharge port 3 .
- the oil pump 51 is housed in the bottom portion 43 of the container 40 and sucks up the refrigerator oil from the oil sump 2 .
- the oil pump 51 is attached to the lower portion of the drive shaft 33 .
- the oil pump 51 sucks up the refrigerating machine oil stored in the oil sump 2 into the oil passage 33 d formed inside the drive shaft 33 .
- the refrigerator oil sucked into the oil passage 33d is supplied to sliding portions of the compressor 100 such as the sub-bearing 48, the main bearing 46a and the rocking bearing 27a through the oil passage 33d.
- the oil drain pipe 50 is a pipe that connects the space between the frame 46 and the orbiting scroll 22 and the space between the frame 46 and the subframe 47 .
- the oil drain pipe 50 drains excess refrigerating machine oil out of the refrigerating machine oil circulating in the space between the frame 46 and the orbiting scroll 22 to the space between the frame 46 and the subframe 47 .
- Refrigerant oil that has flowed out into the space between the frame 46 and the subframe 47 passes through the hole 47a of the subframe 47 and returns to the oil reservoir 2 .
- the electric motor unit 30 is provided in the low pressure space 8 inside the container 40 .
- the electric motor unit 30 drives the orbiting scroll 22 of the compression unit 10 . That is, the electric motor unit 30 compresses the refrigerant in the compression unit 10 by rotationally driving the orbiting scroll 22 via the drive shaft 33 .
- the electric motor unit 30 has a rotor 32 and a stator 31 .
- the stator 31 also includes a winding portion 31a through which current flows.
- the rotor 32 is provided on the inner peripheral side of the stator 31 . Also, the rotor 32 is held with a small gap from the stator 31 .
- the rotor 32 is rotationally driven by energizing the winding portion 31 a of the stator 31 . That is, the drive shaft 33 fixed to the rotor 32 rotates together with the rotor 32 by energizing the winding portion 31 a of the stator 31 .
- the injection pipe 49 is provided in the lid portion 41 of the container 40, for example. As described above, the injection pipe 49 supplies the compression chamber 11 with the refrigerant depressurized by the second expansion section 600 flowing through the injection pipe 800 . That is, the injection pipe 49 is connected to the injection pipe 800 and supplies the refrigerant flowing from the injection pipe 800 to the compression unit 10 . In the present embodiment, the refrigerant that flows through the injection pipe 800 and is decompressed by the second expansion section 600 is supplied to the compression chamber 11 as follows. Specifically, the first base plate 23 of the fixed scroll 21 is formed with an injection pipe insertion port 28 that communicates with the space located on the outer peripheral side of the first spiral tooth 24 and the second spiral tooth 26 of the compression unit 10 . .
- An injection pipe 49 is connected to the injection pipe insertion port 28 .
- the refrigerant decompressed by the second expansion section 600 flowing through the injection pipe 800 passes through the injection pipe 49 and enters the space located on the outer peripheral side of the first spiral tooth 24 and the second spiral tooth 26 of the compression unit 10. influx.
- This refrigerant is sucked into the compression chamber 11 when the compression chamber 11 communicates with the space located on the outer peripheral side of the first spiral tooth 24 and the second spiral tooth 26 of the compression unit 10 .
- the low-pressure gaseous refrigerant that has flowed out of the indoor heat exchanger 400 is sucked into the low-pressure space 8 of the container 40 through the suction pipe 44 . Also, the low-pressure gaseous refrigerant sucked into the low-pressure space 8 passes through the intake port 36 of the frame 46 and flows into the space located on the outer peripheral side of the first spiral tooth 24 and the second spiral tooth 26 of the compression unit 10. do. Then, the low-pressure gaseous refrigerant that has flowed into the space is taken into the compression chamber 11 among the plurality of compression chambers 11 that communicates with the space.
- the compression chamber 11 which has taken in the low-pressure gaseous refrigerant, reduces its own volume and expands from the outer peripheral side of the first spiral tooth 24 and the second spiral tooth 26 to the first spiral tooth. It moves toward the center of the spiral tooth 24 and the second spiral tooth 26 .
- the low-pressure gaseous refrigerant in the compression chamber 11 is compressed into a high-temperature, high-pressure gaseous refrigerant.
- the compressed high-temperature and high-pressure gaseous refrigerant deforms the discharge valve 5. It flows out into the high pressure space 9 .
- the high-temperature and high-pressure gaseous refrigerant that has flowed out to the high-pressure space 9 passes through the discharge muffler 7 and is discharged from the discharge pipe 45 to the outside of the container 40 .
- the high-temperature and high-pressure gaseous refrigerant discharged from the discharge pipe 45 flows into the outdoor heat exchanger 200 .
- part of the refrigerant sucked into the low-pressure space 8 from the suction pipe 44 passes through the suction port 36 of the frame 46 and enters the space located on the outer peripheral side of the first spiral tooth 24 and the second spiral tooth 26. It enters and is sucked into the compression unit 10 .
- the refrigerant that has not flowed into the space located on the outer peripheral side of the first spiral tooth 24 and the second spiral tooth 26 cools the electric motor unit 30 and the oil pool 2 .
- the space located on the outer peripheral side of the first spiral tooth 24 and the second spiral tooth 26 passes through the injection pipe 49, A liquid refrigerant or a gas-liquid two-phase refrigerant that has been decompressed by the second expansion section 600 flowing through the injection pipe 800 also flows. That is, the liquid refrigerant decompressed by the second expansion section 600 flowing through the injection pipe 800 is also sucked into the compression chamber 11 of the compression unit 10 . As a result, the liquid refrigerant cools the gaseous refrigerant in the compression chamber 11 during compression. Therefore, the temperature of the refrigerant sucked into the compression chamber 11 of the compression unit 10 is lowered. Therefore, since the thermal expansion of the fixed scroll 21 and the orbiting scroll 22 can be suppressed, the behavior of the compression unit 10 can be stabilized.
- the refrigerant sucked into the compressor 100 is compressed by the compressor 100 and discharged in a high-temperature and high-pressure gas state.
- the high-temperature and high-pressure gaseous refrigerant discharged from the compressor 100 flows into the outdoor heat exchanger 200 acting as a radiator.
- the high-temperature and high-pressure gaseous refrigerant that has flowed into the outdoor heat exchanger 200 condenses while dissipating heat to the outdoor air sent by the outdoor fan 201, and becomes a high-pressure liquid refrigerant.
- This high-pressure liquid refrigerant flows out from the outdoor heat exchanger 200 and flows into the first expansion section 300 .
- the high-pressure liquid refrigerant that has flowed into the first expansion section 300 is expanded and decompressed to become a low-temperature, low-pressure gas-liquid two-phase refrigerant.
- This low-temperature, low-pressure gas-liquid two-phase refrigerant flows out from the first expansion section 300 and flows into the indoor heat exchanger 400 that functions as an evaporator.
- the low-temperature, low-pressure gas-liquid two-phase refrigerant that has flowed into the indoor heat exchanger 400 evaporates while absorbing heat from the indoor air sent by the indoor fan 401 to become a low-pressure gaseous refrigerant. At this time, the indoor air is cooled, and cooling is performed in the room.
- This low-pressure gaseous refrigerant flows out of the indoor heat exchanger 400 and is sucked into the compressor 100 .
- the refrigerant discharged from the discharge pipe 45 becomes hot.
- Such a phenomenon occurs in high compression ratio operation in which the difference between the pressure of the refrigerant on the high pressure side and the pressure of the refrigerant on the low pressure side in the refrigeration cycle device 1 increases.
- the liquid refrigerant decompressed by the second expansion section 600 flowing through the injection pipe 800 is sucked into the compression chamber 11 via the injection pipe 49. be.
- the liquid refrigerant cools the gaseous refrigerant in the compression chamber 11 during compression. Therefore, in compressor 100 according to the present embodiment, the temperature of the refrigerant discharged from discharge pipe 45 can be lowered.
- the operating range of the compressor is limited based on the temperature of the stator of the electric motor unit. That is, the compressor cannot be operated when the temperature of the stator of the electric motor unit exceeds a preset upper limit value.
- the refrigeration cycle apparatus 1 according to the present embodiment is also configured to stop the operation of the compressor 100 when the temperature of the stator 31 of the electric motor unit 30 becomes equal to or higher than the specified temperature.
- the specified temperature is set to 120° C., for example.
- stator 31 of electric motor unit 30 is cooled using part of the refrigerant sucked into low-pressure space 8 from suction pipe 44 as described above.
- the refrigerating cycle device 1 when the refrigerating cycle device 1 is in an operating state with a small refrigerant circulation amount, in order to cool the electric motor unit 30, a sufficient amount of refrigerant for cooling the electric motor unit 30 is supplied from the suction pipe 44 to the container. It is also conceivable to feed 40 low-pressure spaces 8 .
- the refrigeration cycle device 1 when the refrigeration cycle device 1 is in an operating state with a small refrigerant circulation amount, the flow rate of the refrigerant sucked from the low-pressure space 8 into the compression unit 10 is small. As a result, part of the refrigerant in the low-pressure space 8 settles in the container 40 as liquid refrigerant, and the refrigerating machine oil stored in the oil reservoir 2 of the container 40 is diluted by the liquid refrigerant.
- the diluted refrigerating machine oil stored in the oil reservoir 2 of the container 40 is supplied to the sliding portion of the compressor 100 . Excessive wear etc. may occur in the sliding part of For this reason, the method of cooling the stator 31 of the electric motor unit 30 using only the refrigerant supplied from the suction pipe 44 into the container 40 cannot actually sufficiently expand the operable range of the compressor 100 .
- the compressor 100 includes the refrigerant flow path portion 60 and the supply pipe 52 as a structure for cooling the stator 31 of the electric motor unit 30.
- FIG. 3 is a diagram for explaining the refrigerant flow path portion and the supply pipe according to the embodiment, and is a longitudinal sectional view showing the vicinity of the electric motor unit of the compressor according to the embodiment.
- FIG. 4 is a diagram for explaining a refrigerant flow path portion and a supply pipe according to the embodiment, and is a side view showing the electric motor unit of the compressor according to the embodiment.
- FIG. 5 is a diagram for explaining a refrigerant flow path portion and a supply pipe according to the embodiment, and is a plan view showing the stator of the electric motor unit of the compressor according to the embodiment.
- the black-tipped arrow shown in FIG. 5 indicates the flow direction of the coolant.
- the compressor 100 includes a supply pipe 52 and a refrigerant channel portion 60.
- the supply pipe 52 is connected to the coolant channel portion 60 and supplies the coolant outside the container 40 to the coolant channel portion 60 .
- the supply pipe 52 is provided, for example, in the body portion 42 of the container 40 .
- the coolant channel portion 60 cools the stator 31 of the electric motor unit 30 with coolant supplied from the supply pipe 52 .
- supply pipe 52 is connected to injection pipe 800 in the present embodiment. Therefore, the liquid state refrigerant or the gas-liquid two-phase state refrigerant decompressed by the second expansion portion 600 is supplied to the refrigerant flow path portion 60 .
- the coolant channel portion 60 includes a plurality of channel portions 61 penetrating the stator 31 of the electric motor unit 30 and a pipe 62 connecting at least two of the channel portions 61 .
- the flow path portion 61 is a real portion forming the outer peripheral portion of the through hole formed in the stator 31 .
- each flow path portion 61 penetrates stator 31 along rotation axis O of rotor 32 in the present embodiment.
- the arrangement position of each of the flow passages 61 is also not particularly limited, but in the present embodiment, each of the flow passages 61 is arranged on a virtual circle centered on the rotation axis O of the rotor 32 while being spaced apart. ing.
- channel portion 61 the pipe 62 connects the ends of the adjacent channel portions 61 .
- connection point between the supply pipe 52 and the refrigerant channel portion 60 is not particularly limited, but in the present embodiment, the supply pipe 52 is connected to one end portion of the channel portion 61 . That is, the end portion of the channel portion 61 to which the supply pipe 52 is connected serves as the coolant inlet 60 a of the coolant channel portion 60 .
- an outlet pipe 63 is connected to the end of one flow path portion 61 . This outlet pipe 63 serves as a coolant outlet 60 b of the coolant channel portion 60 .
- the liquid refrigerant or the gas-liquid two-phase refrigerant pressure-reduced by the second expansion section 600 is supplied from the inlet 60 a to the refrigerant passage section 60 through the injection pipe 800 and the It is supplied via the supply pipe 52 .
- the coolant that has flowed into the coolant channel portion 60 flows from the inlet 60a toward the outlet 60b. At this time, the coolant flowing through the flow path portion 61 of the coolant flow path portion 60 cools the stator 31 of the electric motor unit 30 .
- the refrigerant discharged from the compressor 100 may pass through the refrigerant circuit 500 and the injection pipe 800 and flow from the supply pipe 52 into the refrigerant flow path portion 60 .
- the refrigerating machine oil that has flowed into the refrigerant flow path portion 60 in this way also contributes to the cooling of the stator 31 .
- the refrigerating machine oil that has flowed out of the refrigerant flow path portion 60 is returned to the oil reservoir 2 .
- provision of the supply pipe 52 and the refrigerant flow path portion 60 improves the effect of returning the refrigerating machine oil that has flowed out of the compressor 100 back to the compressor 100 .
- the refrigerant oil may not flow into the refrigerant passage portion 60 by providing an oil separator downstream of the second expansion portion 600 in the injection pipe 800 .
- the compressor 100 according to the present embodiment uses a refrigerant different from the refrigerant supplied from the suction pipe 44 into the container 40 as a refrigerant for cooling the stator 31 of the electric motor unit 30 . Therefore, compressor 100 according to the present embodiment operates stator 31 regardless of the amount of refrigerant supplied from suction pipe 44 into container 40, that is, regardless of the amount of refrigerant circulating in refrigeration cycle device 1. Allow to cool. Further, the liquid refrigerant or gas-liquid two-phase refrigerant flowing through the refrigerant flow path portion 60 evaporates when the stator 31 is cooled. Therefore, the gaseous refrigerant flows out from the outlet 60 b of the refrigerant flow path portion 60 .
- the compressor 100 can expand the operable range as compared with the conventional one.
- the outflow port 60b of the coolant channel portion 60 is preferably provided below the stator 31. If the liquid refrigerant flows out from the outflow port 60b of the refrigerant flow path portion 60, the outflow port 60b is provided in the lower portion of the stator 31, so that the outflow port 60b is provided in the upper portion of the stator 31. This is because the suction of the liquid refrigerant flowing out of the outflow port 60b into the compression chamber 11 can be suppressed. That is, it is possible to suppress excessive supply of the liquid refrigerant depressurized by the second expansion section 600 flowing through the injection pipe 800 to the compression chamber 11 .
- the outflow port 60b is provided in the lower portion of the stator 31, so that the outflow port 60b is provided in the upper portion of the stator 31. This is because the suction of the refrigerating machine oil flowing out of the outflow port 60b into the compression chamber 11 can be suppressed. This is because the amount of refrigerating machine oil discharged from the compressor 100 can be suppressed.
- the flow rate of refrigerant flowing from the injection pipe 800 to the supply pipe 52 is controlled by the control device 70 of the refrigeration cycle device 1 .
- the control device 70 controls the flow rate of refrigerant flowing from the injection pipe 800 to the supply pipe 52 as follows.
- the rotation speed of the rotor 32 of the electric motor unit 30 of the compressor 100 is low. That is, the state in which the rotational speed of the rotor 32 is low is a state in which the temperature of the stator 31 tends to increase. Note that the low rotation speed is, for example, 5 rps to 30 rps. Therefore, for example, the control device 70 causes the refrigerant to flow from the injection pipe 800 into the supply pipe 52 when the rotation speed of the rotor 32 is equal to or less than the specified rotation speed.
- the stator 31 can be cooled by the coolant flowing through the coolant flow path portion 60 under conditions where the temperature of the stator 31 tends to rise. Therefore, the compressor 100 can expand the operable range as compared with the conventional one.
- the specified rotation speed is set to 30 rps.
- the refrigeration cycle device 1 is operated under various operating conditions, and the temperature of the stator 31 is measured. Then, an operating condition of the refrigeration cycle apparatus 1 that makes the temperature of the stator 31 equal to or higher than the specified temperature is obtained in advance. For example, an operating condition of the refrigeration cycle apparatus 1 that makes the motor temperature 120° C. or higher is obtained in advance. Then, for example, when the operating conditions of the refrigeration cycle device 1 are the specified operating conditions, the control device 70 causes the refrigerant to flow from the injection pipe 800 into the supply pipe 52 . As a result, the stator 31 can be cooled by the coolant flowing through the coolant flow path portion 60 under conditions where the temperature of the stator 31 tends to rise. Therefore, the compressor 100 can expand the operable range as compared with the conventional one.
- the electric motor unit 30 has the effect of suppressing the demagnetization of the permanent magnet of the rotor 32 as the temperature becomes lower. Therefore, the control device 70 may cause the refrigerant to always flow from the injection pipe 800 into the supply pipe 52 while the compressor 100 is being driven. That is, the control device 70 may cause the refrigerant to flow from the injection pipe 800 into the supply pipe 52 at all times while the rotor 32 of the electric motor unit 30 is rotating.
- the refrigerant decompressed by the second expansion section 600 flowing through the injection pipe 800 is supplied to the supply pipe 52, and is supplied to the injection pipe 49 of the compressor 100. is also supplied. Therefore, when the refrigerant is always flowed from the injection pipe 800 to the supply pipe 52 while the compressor 100 is being driven, the on-off valve 54 provided at the first branch of the injection pipe 800 is used to adjust the flow rate.
- the control device 70 may control the degree of opening of the on-off valve 54, which is the flow control valve, in the open state as follows.
- the control device 70 reduces the degree of opening of the on-off valve 54, which is the flow control valve, in the open state compared to when the on-off valve 55 is not open. good too.
- the control device 70 reduces the degree of opening of the on-off valve 54, which is the flow control valve, in the open state compared to when the on-off valve 55 is not open. good too.
- the amount of refrigerant supplied from the injection pipe 800 to the supply pipe 52 is lower than when the refrigerant is not supplied from the injection pipe 800 to the injection pipe 49.
- Flow rate decreases. Therefore, it is possible to prevent a shortage of the refrigerant supplied from the injection pipe 800 to the injection pipe 49 .
- compressor 100 described above is an example of the compressor 100 including the supply pipe 52 and the refrigerant flow path portion 60 .
- Compressor 100 may be configured as follows, for example.
- FIG. 6 is a diagram for explaining a refrigerant channel portion and a supply pipe in another example of the compressor according to the embodiment, and is a plan view showing the stator of the electric motor unit of the compressor. 6 indicates the direction of flow of the coolant.
- the compressor 100 described with reference to FIGS. 1 to 5 has one refrigerant flow path section 60 .
- the compressor 100 may include a plurality of refrigerant passage portions 60 as shown in FIG. 6 .
- FIG. 6 illustrates a case where the compressor 100 includes three refrigerant flow path portions 60 .
- each of the refrigerant passage portions 60 is centered on the rotation axis O of the rotor 32. , are arranged in different angular ranges.
- the stator 31 is a clock whose hour hand rotates around the rotation axis O of the rotor 32
- the arrangement position of each coolant channel portion 60 will be described.
- one of the three coolant channel portions 60 is provided in the angular range from 10 o'clock to 2 o'clock.
- One of the remaining two coolant channel portions 60 is provided in the angular range from 2 o'clock to 5 o'clock.
- the remaining one coolant channel portion 60 is provided in the angular range from 6 o'clock to 10 o'clock.
- the temperature of the coolant flowing through the coolant channel portion 60 rises as it cools the stator 31 .
- the length of the refrigerant flow path portion 60 is long, so the stator 31 may have a large temperature difference depending on the location. Specifically, the temperature of the portion of the stator 31 that is cooled at the downstream side of the coolant flow in the coolant flow path portion 60 and the temperature of the stator 31 that is cooled at the upstream side of the coolant flow in the coolant flow channel portion 60 The difference from the temperature of the portion of the stator 31 where the temperature is high may become large.
- the compressor 100 when the compressor 100 includes a plurality of refrigerant flow path sections 60, the length of each refrigerant flow path section 60 can be made shorter than when only one refrigerant flow path section 60 is provided. Therefore, when the compressor 100 includes a plurality of refrigerant flow path portions 60, the temperature difference depending on the location of the stator 31 can be suppressed compared to when only one refrigerant flow path portion 60 is provided. In other words, when the compressor 100 includes a plurality of refrigerant flow path portions 60, the cooling performance of the stator 31 can be improved compared to when only one refrigerant flow path portion 60 is provided. Therefore, when the compressor 100 includes a plurality of refrigerant flow path sections 60, the operable range of the compressor 100 can be further expanded compared to when only one refrigerant flow path section 60 is provided.
- FIGS. 7 and 8 are diagrams for explaining another example of the compressor according to the embodiment, and are longitudinal sectional views showing the vicinity of the electric motor unit of the compressor.
- the compressor 100 may include a temperature detection device 80 that measures the temperature of the stator 31.
- FIG. 7 and 8 are diagrams for explaining another example of the compressor according to the embodiment, and are longitudinal sectional views showing the vicinity of the electric motor unit of the compressor.
- the compressor 100 may include a temperature detection device 80 that measures the temperature of the stator 31.
- the temperature detection device 80 When directly detecting the temperature of the stator 31, the temperature detection device 80 is attached to the stator 31 as shown in FIG. At this time, among the stators 31, the winding portions 31a of the stator 31 tend to have the highest temperature. Therefore, when directly detecting the temperature of the stator 31 , the temperature detection device 80 is preferably attached to the winding portion 31 a of the stator 31 .
- the temperature detection device 80 for directly detecting the temperature of the stator 31 is not particularly limited, for example, a thermocouple can be used as the temperature detection device 80 .
- the wiring connected to the temperature detecting device 80 must be pulled out of the container 40 . Although there is no particular limitation on the location where the wiring connected to the temperature detection device 80 is led out, the wiring is led out of the container 40 from the bottom portion 43 of the container 40 in the present embodiment.
- the temperature detection device 80 for indirectly detecting the temperature of the stator 31 is not particularly limited, for example, a thermistor can be used as the temperature detection device 80 .
- the thermistor is attached to the outer peripheral surface of the container 40 via, for example, a thermistor holder. In other words, the thermistor holder is attached to the outer peripheral surface of the container 40, and the thermistor is attached to the thermistor holder.
- the control device 70 causes the refrigerant to flow from the injection pipe 800 into the supply pipe 52, for example, when the temperature detected by the temperature detection device 80 is equal to or higher than a specified temperature. .
- the stator 31 can be cooled by the coolant flowing through the coolant channel portion 60 before the temperature of the stator 31 reaches the upper limit. Therefore, the compressor 100 can expand the operable range as compared with the conventional one.
- the control device 70 may always cause the refrigerant to flow from the injection pipe 800 to the supply pipe 52 while the compressor 100 is being driven.
- the control device 70 may control the flow rate of the refrigerant supplied from the injection pipe 800 to the supply pipe 52 based on the temperature detected by the temperature detection device 80 as follows. . Specifically, when the temperature detected by the temperature detection device 80 is equal to or higher than the specified temperature, the control device 70 controls the amount of fuel supplied from the injection pipe 800 to be lower than when the temperature detected by the temperature detection device 80 is lower than the specified temperature. The flow rate of the refrigerant flowing into the pipe 52 may be increased. As a result, the temperature rise of the stator 31 can be further suppressed in the configuration in which the refrigerant always flows from the injection pipe 800 into the supply pipe 52 while the compressor 100 is being driven.
- the compressor 100 includes the electric motor unit 30, the drive shaft 33, the compression unit 10, the container 40, and the suction pipe 44.
- the electric motor unit 30 has a rotor 32 and a stator 31 .
- the drive shaft 33 is fixed to the rotor 32 and rotated by the power of the electric motor unit 30 .
- the compression unit 10 is connected to the drive shaft 33 and compresses the refrigerant with the power of the electric motor unit 30 transmitted by the drive shaft 33 .
- the container 40 accommodates the electric motor unit 30, the drive shaft 33, and the compression unit 10 therein, and the refrigerating machine oil is stored in the bottom portion 43 thereof.
- the suction pipe 44 is provided in the container 40 and supplies the refrigerant compressed by the compression unit 10 to the inside of the container 40 .
- the compressor 100 according to the present embodiment includes the refrigerant flow path portion 60 and the supply pipe 52 .
- the coolant channel portion 60 includes a plurality of channel portions 61 penetrating the stator 31 and a pipe 62 connecting at least two of the channel portions 61 .
- the supply pipe 52 is connected to the coolant channel portion 60 and supplies the coolant outside the container 40 to the coolant channel portion 60 .
- the compressor 100 according to the present embodiment uses a refrigerant different from the refrigerant supplied from the suction pipe 44 into the container 40 as a refrigerant for cooling the stator 31 of the electric motor unit 30 . Therefore, compressor 100 according to the present embodiment operates stator 31 regardless of the amount of refrigerant supplied from suction pipe 44 into container 40, that is, regardless of the amount of refrigerant circulating in refrigeration cycle device 1. Allow to cool. Therefore, compressor 100 according to the present embodiment can expand the operable range as described above.
- the compressor 100 according to the present embodiment is a compressor provided with the scroll-type compression unit 10 .
- the compressor according to the present disclosure may be a compressor provided with a compression unit other than the scroll type.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Applications Or Details Of Rotary Compressors (AREA)
Abstract
本開示に係る圧縮機は、ロータ及びステータを有する電動機ユニットと、前記ロータに固定され、前記電動機ユニットの動力によって回転する駆動軸と、前記駆動軸に接続され、前記駆動軸によって伝達された前記電動機ユニットの動力で冷媒を圧縮する圧縮ユニットと、前記電動機ユニット、前記駆動軸及び前記圧縮ユニットを内部に収容し、底部に冷凍機油が貯留される容器と、前記容器に設けられ、前記容器の内部に前記圧縮ユニットで圧縮される冷媒を供給する吸入管と、前記ステータを貫通する複数の流路部、及び前記流路部のうちの少なくとも2つを接続する配管を備えた冷媒流路部と、前記冷媒流路部と接続され、前記容器の外部の冷媒を前記冷媒流路部に供給する供給配管と、を備えている。
Description
本開示は、冷媒を圧縮する圧縮機、及び該圧縮機を備えた冷凍サイクル装置に関する。
従来、冷凍装置及び空気調和装置等に用いられる冷凍サイクル装置は、冷媒を圧縮する圧縮機を備えている。冷凍サイクル装置に用いられる圧縮機としては、スクロール圧縮機、ロータリ圧縮機及びベーン圧縮機等、種々の型式の圧縮ユニットを備えた圧縮機が知られている。冷凍サイクル装置に用いられる圧縮機は、電動機ユニットと、電動機ユニットの動力によって回転する駆動軸と、駆動軸によって伝達された電動機ユニットの動力で冷媒を圧縮する圧縮ユニットとを備えている。また、冷凍サイクル装置に用いられる圧縮機は、電動機ユニット、駆動軸及び圧縮ユニットを内部に収容する容器を備えている。この容器には、該容器の内部に圧縮ユニットで圧縮される冷媒を供給する吸入管が設けられている。すなわち、圧縮機は、吸入管から容器の内部に供給された冷媒を、圧縮ユニットで圧縮する構成となっている。また、この容器の下部には、潤滑油となる冷凍機油が貯留される。容器の下部に貯留された冷凍機油は、駆動軸と該駆動軸を回転自在に支持する軸受との間等、圧縮機の摺動部分に供給される。
圧縮機は、電動機ユニットのステータの温度に基づいて、運転範囲に制限が設けられている。すなわち、圧縮機は、電動機ユニットのステータの温度が予め設定された上限値以上となる場合、運転ができないようになっている。そこで、従来の圧縮機には、電動機ユニットのステータの冷却を図ったものが提案されている(例えば、特許文献1参照)。具体的には、特許文献1には、スクロール圧縮機が開示されている。特許文献1に記載のスクロール圧縮機は、吸入管から容器内に供給された冷媒の一部を電動機ユニット側へ流し、電動機ユニットのステータの冷却を図っている。そして、特許文献1に記載のスクロール圧縮機は、電動機ユニットのステータを冷却することにより、圧縮機の運転可能な範囲の拡大を図っている。
上述のように、特許文献1に記載のスクロール圧縮機は、吸入管から容器内に供給された冷媒の一部を用いて、電動機ユニットのステータの冷却を図っている。このため、冷凍サイクル装置が冷媒循環量の少ない運転状態になっていると、特許文献1に記載のスクロール圧縮機は、電動機ユニットに十分な冷媒を流すことができない。したがって、冷凍サイクル装置が冷媒循環量の少ない運転状態になっていると、特許文献1に記載のスクロール圧縮機は、電動機ユニットのステータを十分に冷却することができない。ここで、冷凍サイクル装置が冷媒循環量の少ない運転状態になっている際、電動機ユニットを冷却するために、特許文献1に記載のスクロール圧縮機に対して、電動機ユニットが冷却されるのに十分な量の冷媒を吸入管から容器内に供給することも考えられる。しかしながら、このような構成にした場合、容器の底部に貯留されている冷凍機油が冷媒で希釈されてしまい、圧縮機の摺動部分に過度な摩耗等が発生する可能性がある。このように、従来の圧縮機は、実際には、圧縮機の運転可能な範囲を十分に拡大できないという課題があった。
本開示は、上述の課題を解決するためになされたもので、運転可能な範囲を従来よりも拡大できる圧縮機を得ることを第1の目的とする。また、本開示は、このような圧縮機を備えた冷凍サイクル装置を得ることを第2の目的とする。
本開示に係る圧縮機は、ロータ及びステータを有する電動機ユニットと、前記ロータに固定され、前記電動機ユニットの動力によって回転する駆動軸と、前記駆動軸に接続され、前記駆動軸によって伝達された前記電動機ユニットの動力で冷媒を圧縮する圧縮ユニットと、前記電動機ユニット、前記駆動軸及び前記圧縮ユニットを内部に収容し、底部に冷凍機油が貯留される容器と、前記容器に設けられ、前記容器の内部に前記圧縮ユニットで圧縮される冷媒を供給する吸入管と、前記ステータを貫通する複数の流路部、及び前記流路部のうちの少なくとも2つを接続する配管を備えた冷媒流路部と、前記冷媒流路部と接続され、前記容器の外部の冷媒を前記冷媒流路部に供給する供給配管と、を備えている。
また、本開示に係る冷凍サイクル装置は、本開示に係る圧縮機と、前記圧縮機で圧縮された冷媒が放熱する放熱器と、前記放熱器から流出した冷媒を膨張させる第1膨張部と、前記第1膨張部から流出した冷媒が蒸発する蒸発器と、前記放熱器から流出した冷媒が一方の端部から流入し、他方の端部が前記圧縮機の前記供給配管に接続されたインジェクション配管と、前記インジェクション配管を流れる冷媒を膨張させる第2膨張部と、前記インジェクション配管から前記供給配管へ流入する冷媒の流量、及び前記圧縮機を制御する制御装置と、を備えている。
本開示に係る圧縮機は、供給配管から冷媒流路部に供給された冷媒で、電動機ユニットのステータが冷却されることとなる。すなわち、本開示に係る圧縮機は、吸入管から容器内へ供給される冷媒とは別の冷媒を、電動機ユニットのステータを冷却する冷媒として用いている。このため、本開示に係る圧縮機は、吸入管から容器内へ供給される冷媒の量にかかわらず、すなわち冷凍サイクル装置を循環する冷媒の量にかかわらず、電動機ユニットのステータを冷却することができる。したがって、本開示に係る圧縮機は、電動機ユニットのステータが十分に冷却されないことを抑制でき、容器の底部に貯留されている冷凍機油が冷媒で希釈されてしまうことも抑制できる。このため、本開示に係る圧縮機は、運転可能な範囲を従来よりも拡大できる。
以下の実施の形態において、本開示に係る圧縮機の一例及び本開示に係る冷凍サイクル装置の一例について、図面を参照しながら説明する。なお、本開示に係る圧縮機及び冷凍サイクル装置は、以下に説明する実施の形態によって限定されるものではない。また、図1を含め、以下の図面では、各構成部材の大きさの関係が、本開示に係る圧縮機及び冷凍サイクル装置を実際に製作したものとは異なる場合がある。また、以下の説明において、本開示に係る圧縮機及び冷凍サイクル装置の理解を容易にするために、方向を表す用語を適宜用いる。しかしながら、方向を表す用語は本開示に係る圧縮機及び冷凍サイクル装置を説明するためのものであって、方向を表す用語は本開示に係る圧縮機及び冷凍サイクル装置を限定するものではない。方向を表す用語としては、例えば、「上」、「下」、「右」、「左」、「前」又は「後」等が挙げられる。
実施の形態.
図1は、実施の形態に係る冷凍サイクル装置を示す回路図である。
冷凍サイクル装置1は、冷媒を圧縮する圧縮機100と、圧縮機100で圧縮された冷媒が放熱する放熱器と、放熱器から流出した冷媒を膨張させる第1膨張部300と、第1膨張部300から流出した冷媒が蒸発する蒸発器とを備えている。また、冷凍サイクル装置1は、インジェクション配管800、第2膨張部600を備えている。インジェクション配管800は、放熱器から流出した冷媒が一方の端部から流入し、他方の端部が圧縮機100の後述する供給配管52に接続されている。第2膨張部600は、インジェクション配管800に設けられ、インジェクション配管800を流れる冷媒を膨張させるものである。
図1は、実施の形態に係る冷凍サイクル装置を示す回路図である。
冷凍サイクル装置1は、冷媒を圧縮する圧縮機100と、圧縮機100で圧縮された冷媒が放熱する放熱器と、放熱器から流出した冷媒を膨張させる第1膨張部300と、第1膨張部300から流出した冷媒が蒸発する蒸発器とを備えている。また、冷凍サイクル装置1は、インジェクション配管800、第2膨張部600を備えている。インジェクション配管800は、放熱器から流出した冷媒が一方の端部から流入し、他方の端部が圧縮機100の後述する供給配管52に接続されている。第2膨張部600は、インジェクション配管800に設けられ、インジェクション配管800を流れる冷媒を膨張させるものである。
また、冷凍サイクル装置1は、制御装置70を備えている。制御装置70は、インジェクション配管800から供給配管52へ流入する冷媒の流量を制御する。また、制御装置70は、圧縮機100を制御する。詳しくは、圧縮機100は、後述のように、ステータ31及びロータ32を有する電動機ユニット30を備えている。制御装置70は、電動機ユニット30のロータ32の回転数を制御する。制御装置70は、専用のハードウェア、又はメモリに格納されるプログラムを実行するCPU(Central Processing Unit)で構成されている。なお、CPUは、中央処理装置、処理装置、演算装置、マイクロプロセッサ、マイクロコンピュータ、又はプロセッサともいう。
制御装置70が専用のハードウェアである場合、制御装置70は、例えば、単一回路、複合回路、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)、又はこれらを組み合わせたものが該当する。制御装置70が実現する各機能部のそれぞれを、個別のハードウェアで実現してもよいし、各機能部を一つのハードウェアで実現してもよい。
制御装置70がCPUの場合、制御装置70が実行する各機能は、ソフトウェア、ファームウェア、又はソフトウェアとファームウェアとの組み合わせにより実現される。ソフトウェア及びファームウェアはプログラムとして記述され、メモリに格納される。CPUは、メモリに格納されたプログラムを読み出して実行することにより、制御装置70の各機能を実現する。ここで、メモリは、例えば、RAM、ROM、フラッシュメモリ、EPROM、又はEEPROM等の、不揮発性又は揮発性の半導体メモリである。
なお、制御装置70の機能の一部を専用のハードウェアで実現し、一部をソフトウェア又はファームウェアで実現するようにしてもよい。
冷凍サイクル装置1は、冷凍装置及び空気調和装置等、種々の用途に用いられる。図1では、冷房運転可能な空気調和装置として実施の形態に係る冷凍サイクル装置1を用いた例を示している。このため、図1に示すように、冷凍サイクル装置1は、室外機1aと、室内機1bとを備えている。室外機1aには、例えば、圧縮機100、室外熱交換器200、室外送風機201、第1膨張部300、インジェクション配管800及び第2膨張部600が設けられている。室内機1bには、例えば、室内熱交換器400及び室内送風機401が設けられている。冷凍サイクル装置1には、冷媒として、例えば、R32等のフルオロカーボン系冷媒が用いられる。また、冷凍サイクル装置1には、冷媒として、例えば、二酸化炭素等の自然冷媒が用いられてもよい。
圧縮機100、室外熱交換器200、第1膨張部300及び室内熱交換器400が冷媒配管により接続されて、冷媒回路500が構成されている。圧縮機100は、低温且つ低圧の状態の冷媒を吸入し、吸入した冷媒を圧縮して高温且つ高圧のガス状冷媒にして吐出する。圧縮機100としては、スクロール圧縮機、ロータリ圧縮機及びベーン圧縮機等、種々の型式の圧縮ユニットを備えた圧縮機を用いることができる。後述のように、本実施の形態では、圧縮機100としてスクロール圧縮機を用いている。
室外熱交換器200は、放熱器として機能するものであり、圧縮機100から吐出された高温且つ高圧のガス状冷媒が流入する。すなわち、室外熱交換器200の内部を流れる高温且つ高圧のガス状冷媒は、当該冷媒よりも低温の媒体に放熱しながら凝縮し、高圧の液状冷媒となる。なお、本実施の形態では、室外熱交換器200は、空冷式熱交換器となっている。このため、室外熱交換器200の内部を流れる高温且つ高圧のガス状冷媒は、室外送風機201から室外熱交換器200に供給された室外空気に放熱しながら凝縮し、高圧の液状冷媒となる。なお、二酸化炭素冷媒等、冷媒の種類によっては、放熱する際に凝縮しない冷媒も存在する。放熱する際に凝縮する冷媒が用いられる場合、放熱器は凝縮器と称される場合もある。
第1膨張部300は、室外熱交換器200から流出した高圧の液状冷媒を減圧して膨張させる減圧弁又は膨張弁である。第1膨張部300は、例えば、膨張機、温度式自動膨張弁、又は開度が調整されるリニア電子膨張弁である。なお、第1膨張部300の開度が制御可能な場合等、第1膨張部300が制御可能な場合、第1膨張部300は制御装置70によって制御される。室内熱交換器400は、蒸発器として機能するものであり、第1膨張部300から流出した低温且つ低圧の気液二相状態の冷媒が流入する。すなわち、室内熱交換器400の内部を流れる低温且つ低圧の気液二相状態の冷媒は、当該冷媒よりも高温の媒体から吸熱しながら蒸発し、低圧のガス状冷媒となる。なお、本実施の形態では、室内熱交換器400は、空冷式熱交換器となっている。このため、室内熱交換器400の内部を流れる低温且つ低圧の気液二相状態の冷媒は、室内送風機401から室内熱交換器400に供給された室内空気から吸熱しながら蒸発し、低圧のガス状冷媒となる。
インジェクション配管800は、上述のように、放熱器から流出した冷媒が一方の端部から流入し、他方の端部が圧縮機100の後述する供給配管52に接続されている。本実施の形態では、インジェクション配管800の一方の端部は、放熱器として機能する室外熱交換器200と第1膨張部300とを接続する冷媒配管501に接続されている。すなわち、インジェクション配管800には、室外熱交換器200から流出した高圧の液状冷媒が流入する。また、上述のように、インジェクション配管800には、第2膨張部600が設けられている。第2膨張部600は、インジェクション配管800を流れる高圧の液状冷媒を減圧して膨張させる減圧弁又は膨張弁である。第2膨張部600は、第1膨張部300と同様に、例えば、膨張機、温度式自動膨張弁、又は開度が調整されるリニア電子膨張弁である。なお、第2膨張部600の開度が制御可能な場合等、第2膨張部600が制御可能な場合、第2膨張部600は制御装置70によって制御される。すなわち、第2膨張部600によって減圧された液状冷媒又は気液二相状態の冷媒が、インジェクション配管800を通って、圧縮機100の後述する供給配管52に流入する。
なお、後述のように、本実施の形態に係る圧縮機100は、インジェクション配管800を流れる第2膨張部600によって減圧された冷媒を圧縮室11に供給するため、圧縮機側インジェクション配管に相当するインジェクション配管49を備えている。このため、本実施の形態では、インジェクション配管800の前記他方の端部となる圧縮機100側の端部は、2つに分岐している。そして、分岐部分の一方である第1分岐部が、圧縮機100の供給配管52に接続されている。また、分岐部分の他方である第2分岐部が、圧縮機100のインジェクション配管49に接続されている。このため、分岐部分の一方である第1分岐部には、開閉弁54が設けられている。また、分岐部分の他方である第2分岐部には、開閉弁55が設けられている。開閉弁54及び開閉弁55は、開閉のみが可能な弁であってもよいし、開状態の開度を複数の開度に変更可能な流量調整弁であってもよい。そして、制御装置70は、開閉弁54の開閉状態を制御することにより、インジェクション配管800から圧縮機100の供給配管52に流入する冷媒の流量を制御している。また、制御装置70は、開閉弁55の開閉状態を制御することにより、インジェクション配管800から圧縮機100のインジェクション配管49に流入する冷媒の流量を制御している。なお、制御装置70は、開閉弁54の開閉状態と共に第2膨張部600の開度を制御し、インジェクション配管800から圧縮機100の供給配管52に流入する冷媒の流量を制御してもよい。
ここで、圧縮機100の供給配管52及びインジェクション配管49への冷媒の供給タイミングが同じ場合には、制御装置70は、第2膨張部600の開度を制御することにより、インジェクション配管800から圧縮機100の供給配管52に流入する冷媒の流量を制御してもよい。この場合、開閉弁54及び開閉弁55をインジェクション配管800に設ける必要はない。また、インジェクション配管800が圧縮機100の供給配管52にのみ接続されている場合も、開閉弁54及び開閉弁55をインジェクション配管800に設ける必要はない。
また、本実施の形態では、インジェクション配管800には、冷媒の流れ方向において第2膨張部600の下流側となる位置に、熱交換器700が設けられている。熱交換器700は、該熱交換器700を流れる第2膨張部600によって減圧された冷媒と、該冷媒よりも高温の媒体とが熱交換するものである。熱交換器700は、例えば、該熱交換器700を流れる第2膨張部600によって減圧された冷媒と室外空気とが熱交換する空冷式熱交換器である。なお、熱交換器700は、二重管式の熱交換器であってもよい。この場合、例えば、熱交換器700では、第2膨張部600から熱交換器700に流入した冷媒と、室外熱交換器200から熱交換器700に流入した高圧の液状又は気液二相状態の冷媒とが熱交換することとなる。すなわち、熱交換器700は、冷媒回路500において室外熱交換器200と第1膨張部300との間を流れる冷媒と、インジェクション配管800において第2膨張部600の下流側を流れる冷媒とを熱交換させる、過冷却器であってもよい。なお、熱交換器700は、インジェクション配管800から省略されてもよい。
図2は、実施の形態に係る圧縮機を示す縦断面図である。
図2を用いて、本実施の形態に係る圧縮機100の構成について説明する。本実施の形態では、圧縮機100は、密閉型のスクロール圧縮機となっている。圧縮機100は、電動機ユニット30と、駆動軸33と、スクロール型の圧縮ユニット10と、容器40と、吸入管44とを備えている。また、本実施の形態では、圧縮機100は、フレーム46、サブフレーム47、吐出管45、ボス部27、オルダムリング22a、スリーブ34、吐出弁5、弁押さえ6、吐出マフラ7、油ポンプ51、排油パイプ50、及びインジェクション配管49等も備えている。
図2を用いて、本実施の形態に係る圧縮機100の構成について説明する。本実施の形態では、圧縮機100は、密閉型のスクロール圧縮機となっている。圧縮機100は、電動機ユニット30と、駆動軸33と、スクロール型の圧縮ユニット10と、容器40と、吸入管44とを備えている。また、本実施の形態では、圧縮機100は、フレーム46、サブフレーム47、吐出管45、ボス部27、オルダムリング22a、スリーブ34、吐出弁5、弁押さえ6、吐出マフラ7、油ポンプ51、排油パイプ50、及びインジェクション配管49等も備えている。
容器40は、圧縮機100の外殻を構成する密閉容器である。容器40は、円筒状をなしている。容器40の内部には、電動機ユニット30、駆動軸33、及び圧縮ユニット10等が収容されている。容器40内において、上方に圧縮ユニット10が配置され、下方に電動機ユニット30が配置されている。容器40は、底部43と、胴部42と、蓋部41とを有している。底部43は、容器40の底部を構成するものであり、冷凍機油を貯留する油溜まり2が形成された皿状の部材である。すなわち、容器40は、底部に冷凍機油が貯留される構成となっている。胴部42は、底部43から上方に延びる円筒状の部材である。胴部42には、吸入管44が設けられている。蓋部41は、胴部42の上部に設けられたドーム状の部材である。蓋部41には、吐出管45が設けられている。
吸入管44は、容器40の内部に、圧縮ユニット10で圧縮される冷媒を供給するものである。図1に示す冷凍サイクル装置1では、吸入管44は、室内熱交換器400と冷媒配管で接続されている。すなわち、室内熱交換器400から流出した低圧のガス状冷媒が、吸入管44を介して、容器40の内部に供給される。また、本実施の形態では、吸入管44は、容器40内の低圧空間8と連通している。そして、圧縮ユニット10で圧縮される冷媒は、該低圧空間8に供給される。なお、本実施の形態では、電動機ユニット30と圧縮ユニット10との間に形成された空間が、低圧空間8となっている。
吐出管45は、圧縮ユニット10によって圧縮された高温且つ高圧のガス状冷媒を、容器40の外部へ導くものである。吐出管45は、容器40内の高圧空間9に連通している。高圧空間9は、圧縮ユニット10によって圧縮された高温且つ高圧のガス状冷媒が貯留される空間である。本実施の形態では、圧縮ユニット10の上方に、高圧空間9が形成されている。図1に示す冷凍サイクル装置1では、吐出管45は、室外熱交換器200と冷媒配管で接続されている。すなわち、圧縮ユニット10によって圧縮された高温且つ高圧のガス状冷媒は、吐出管45を介して、室外熱交換器200へ流入する。
フレーム46は、焼嵌又は溶接等によって、容器40の胴部42の内周部に固定されている。フレーム46は、圧縮ユニット10を下方から保持するものである。また、フレーム46は、主軸受46aを備えており、主軸受46aを介して駆動軸33を回転自在に支持している。フレーム46は、電動機ユニット30の上方に配置されて、電動機ユニット30と圧縮ユニット10との間に位置している。フレーム46には、低圧空間8と連通する複数の吸入ポート36が形成されている。そして、低圧空間8の冷媒は、複数の吸入ポート36を通って、圧縮ユニット10に流入する。詳しくは、フレーム46と電動機ユニット30との間の空間が、低圧空間8となっている。また、フレーム46の上方には、圧縮ユニット10の第1渦巻歯24及び第2渦巻歯26の外周側に位置する空間が形成されている。そして、複数の吸入ポート36は、第1渦巻歯24及び第2渦巻歯26の外周側に位置するフレーム46の上方の空間と、フレーム46の下方に位置する低圧空間8とを連通する貫通孔となっている。
サブフレーム47は、容器40の内部における電動機ユニット30の下方となる位置に配置されている。サブフレーム47は、焼嵌又は溶接等によって容器40の胴部42の内周部に固定されている。また、サブフレーム47は、例えばボールベアリングである副軸受48を備えており、副軸受48を介して駆動軸33を回転自在に支持している。サブフレーム47には、穴47aが形成されている。油溜まり2に向かって流れ落ちる冷凍機油は、穴47aを通過する。フレーム46とサブフレーム47とは、電動機ユニット30を挟んで対向するように、容器40の内部に固定されている。
駆動軸33は、電動機ユニット30の後述するロータ32に固定され、電動機ユニット30の動力で回転する。そして、駆動軸33は、圧縮ユニット10と接続され、電動機ユニット30の動力を圧縮ユニット10に伝達する。駆動軸33は、容器40の中央において上下方向に延びる棒状のクランク軸である。この駆動軸33は、主軸部33bと、副軸部33cと、偏心軸部33aとを有している。
主軸部33bは、フレーム46の主軸受46aによって、回転自在に支持されている。なお、本実施の形態では、主軸受46aと主軸部33bとの間には、スリーブ34が設けられている。スリーブ34は、フレーム46と駆動軸33との傾斜状態を吸収するものである。副軸部33cは、主軸部33bにおける圧縮ユニット10とは反対側の端部に設けられている。すなわち、副軸部33cは、主軸部33bの下端部に設けられている。また、副軸部33cの軸心は、主軸部33bの軸心と同軸上に配置されている。副軸部33cは、サブフレーム47の副軸受48によって回転自在に支持されている。偏心軸部33aは、主軸部33bにおける圧縮ユニット10側の端部に設けられている。すなわち、偏心軸部33aは、主軸部33bの上端部に設けられている。また、偏心軸部33aの軸心は、主軸部33bの軸心に対して偏心して配置されている。偏心軸部33aは、揺動軸受27aに回転自在に収容されている。偏心軸部33aの外周部は、揺動軸受27aの内周部と冷凍機油を介して密着している。また、駆動軸33の内部には、冷凍機油が通る油通路33dが形成されている。
圧縮ユニット10は、駆動軸33に接続され、駆動軸33によって伝達された電動機ユニット30の動力で、吸入管44から低圧空間8へ供給された冷媒を圧縮するものである。そして、圧縮ユニット10は、圧縮して高温且つ高圧となったガス状冷媒を高圧空間9に排出する。この圧縮ユニット10は、固定スクロール21と揺動スクロール22とを有している。固定スクロール21は、揺動スクロール22の上方においてフレーム46に固定されている。固定スクロール21は、第1台板23と、第1渦巻歯24とを有している。第1台板23は、板状の部材であり、圧縮ユニット10の上面部を構成する。第1渦巻歯24は、第1台板23の下面から下方に延びる渦巻状突起である。また、固定スクロール21の第1台板23の中央部には、圧縮されて高圧となった冷媒が吐出される空間である吐出ポート3が形成されている。
揺動スクロール22は、第2台板25と、第2渦巻歯26とを有している。第2台板25は、フレーム46の上方に移動自在に配置される板状の部材である。第2渦巻歯26は、第2台板25の上面から上方に延びる渦巻状突起である。固定スクロール21及び揺動スクロール22は、第1渦巻歯24と第2渦巻歯26とが互いに噛み合った状態で、容器40内に設けられている。第1渦巻歯24及び第2渦巻歯26は、インボリュート曲線に倣って形成されており、第1渦巻歯24及び第2渦巻歯26が噛み合った状態で組み合わせられることにより、第1渦巻歯24と第2渦巻歯26との間に、複数の圧縮室11が形成される。
ボス部27は、揺動スクロール22の第2台板25における第2渦巻歯26の形成面とは逆の面の中心に設けられ、中空円筒状となっている。また、ボス部27の内周側には、揺動軸受27aが設けられている。揺動軸受27aは、偏心軸部33aの外周部を覆い、偏心軸部33aを回転自在に支持する。上述のように、偏心軸部33aの軸心は、主軸部33bの軸心に対して偏心している。このため、駆動軸33が主軸部33bの軸心を中心として回転すると、揺動スクロール22が偏心回転することとなる。
オルダムリング22aは、揺動スクロール22の第2台板25における第2渦巻歯26の形成面とは逆の面に設けられている。オルダムリング22aは、揺動スクロール22の偏心旋回運動中における自転運動を阻止し、揺動スクロール22の公転運動を可能とする。なお、オルダムリング22aの上面及び下面には、互いに直交するように突設された図示せぬ爪が設けられている。オルダムリング22aの爪は、揺動スクロール22及びフレーム46に形成された図示せぬオルダム溝に挿入されている。
吐出弁5は、吐出ポート3を覆い、冷媒の逆流を防止する板バネ製の部材である。圧縮室11内で冷媒が所定の圧力にまで圧縮されると、冷媒は、吐出弁5の弾性力に逆らって吐出弁5を持ち上げる。そして、圧縮された冷媒は、吐出ポート3から高圧空間9に吐出され、吐出管45を通って圧縮機100の外部に吐出される。弁押さえ6は、吐出弁5の可動範囲を規制するものである。吐出マフラ7は、吐出弁5を覆い、吐出ポート3から吐出される冷媒の脈動を抑制するものである。
油ポンプ51は、容器40の底部43に収容され、油溜まり2から冷凍機油を吸い上げる。油ポンプ51は、駆動軸33の下部に取り付けられている。油ポンプ51は、油溜まり2に貯留されている冷凍機油を駆動軸33の内部に形成された油通路33dに吸い上げる。油通路33dに吸い上げられた冷凍機油は、油通路33dを通って、副軸受48、主軸受46a及び揺動軸受27a等、圧縮機100の摺動部分に供給される。
排油パイプ50は、フレーム46と揺動スクロール22との間の空間と、フレーム46とサブフレーム47との間の空間と、を接続する管である。排油パイプ50は、フレーム46と揺動スクロール22との間の空間を流通する冷凍機油のうちの過剰な冷凍機油を、フレーム46とサブフレーム47との間の空間に流出させる。フレーム46とサブフレーム47との間の空間に流出した冷凍機油は、サブフレーム47の穴47aを通過して油溜まり2に戻る。
電動機ユニット30は、容器40の内部において、低圧空間8に設けられている。電動機ユニット30は、圧縮ユニット10の揺動スクロール22を駆動する。すなわち、電動機ユニット30は、駆動軸33を介して揺動スクロール22を回転駆動することによって、圧縮ユニット10において冷媒を圧縮する。電動機ユニット30は、ロータ32と、ステータ31とを有している。また、ステータ31は、電流が流される巻き線部31aを備えている。ロータ32は、ステータ31の内周側に設けられている。また、ロータ32は、ステータ31と僅かな隙間を隔てて保持されている。ロータ32は、ステータ31の巻き線部31aに通電されることによって回転駆動する。すなわち、ステータ31の巻き線部31aに通電されることによって、ロータ32に固定されている駆動軸33は、ロータ32と共に回転する。
インジェクション配管49は、例えば、容器40の蓋部41に設けられている。上述のように、インジェクション配管49は、インジェクション配管800を流れる第2膨張部600によって減圧された冷媒を圧縮室11に供給するものである。すなわち、インジェクション配管49は、インジェクション配管800に接続され、インジェクション配管800から流入する冷媒を圧縮ユニット10に供給するものである。本実施の形態では、以下のように、インジェクション配管800を流れる第2膨張部600によって減圧された冷媒が、圧縮室11に供給される。詳しくは、固定スクロール21の第1台板23には、圧縮ユニット10の第1渦巻歯24及び第2渦巻歯26の外周側に位置する空間に連通するインジェクション管挿入口28が形成されている。このインジェクション管挿入口28に、インジェクション配管49が接続されている。これにより、インジェクション配管800を流れる第2膨張部600によって減圧された冷媒は、インジェクション配管49を通って、圧縮ユニット10の第1渦巻歯24及び第2渦巻歯26の外周側に位置する空間に流入する。そして、この冷媒は、圧縮ユニット10の第1渦巻歯24及び第2渦巻歯26の外周側に位置する空間に圧縮室11が連通した際、圧縮室11に吸入される。
(圧縮機100の動作)
次に、図2を用いて、圧縮機100の動作について説明する。容器40に設けられた電源端子に通電されると、ステータ31の巻き線部31aに電流が流れて、ステータ31に磁界が発生する。ステータ31に発生する磁界によって、ロータ32が回転する。すなわち、ロータ32と共に、該ロータ32に固定されている駆動軸33が回転する。駆動軸33が回転することにより、主軸部33bに対して偏心軸部33aが偏心回転して、揺動スクロール22がオルダムリング22aにより自転を規制された状態で偏心旋回運動する。
次に、図2を用いて、圧縮機100の動作について説明する。容器40に設けられた電源端子に通電されると、ステータ31の巻き線部31aに電流が流れて、ステータ31に磁界が発生する。ステータ31に発生する磁界によって、ロータ32が回転する。すなわち、ロータ32と共に、該ロータ32に固定されている駆動軸33が回転する。駆動軸33が回転することにより、主軸部33bに対して偏心軸部33aが偏心回転して、揺動スクロール22がオルダムリング22aにより自転を規制された状態で偏心旋回運動する。
揺動スクロール22が偏心旋回運動を開始すると、室内熱交換器400から流出した低圧のガス状冷媒は、吸入管44から容器40の低圧空間8に吸入される。また、低圧空間8に吸入された低圧のガス状冷媒は、フレーム46の吸入ポート36を通って、圧縮ユニット10の第1渦巻歯24及び第2渦巻歯26の外周側に位置する空間に流入する。そして、当該空間に流入した低圧のガス状冷媒は、複数の圧縮室11のうちの当該空間に連通している圧縮室11に取り込まれる。低圧のガス状冷媒を取り込んだ圧縮室11は、揺動スクロール22の偏心旋回運動に伴って、自身の容積を減少させながら、第1渦巻歯24及び第2渦巻歯26の外周側から第1渦巻歯24及び第2渦巻歯26の中心側に移動する。これにより、圧縮室11内の低圧のガス状冷媒は、高温且つ高圧のガス状冷媒に圧縮されていく。第1渦巻歯24及び第2渦巻歯26の中心側に移動し、吐出ポート3と圧縮室11とが連通した際、圧縮された高温且つ高圧のガス状冷媒は、吐出弁5を変形させて高圧空間9に流出する。また、高圧空間9に流出した高温且つ高圧のガス状冷媒は、吐出マフラ7を通り、吐出管45から容器40外に吐出される。吐出管45から吐出された高温且つ高圧のガス状冷媒は、室外熱交換器200に流入する。
上記のように、吸入管44から低圧空間8に吸入された冷媒の一部は、フレーム46の吸入ポート36を通って第1渦巻歯24及び第2渦巻歯26の外周側に位置する空間に流入して、圧縮ユニット10に吸入される。一方、第1渦巻歯24及び第2渦巻歯26の外周側に位置する空間に流入しなかった冷媒は、電動機ユニット30と油溜まり2とを冷却する。また、上述のように、第1渦巻歯24及び第2渦巻歯26の外周側に位置する空間には、吸入管44から低圧空間8に吸入された冷媒に加え、インジェクション配管49を通って、インジェクション配管800を流れる第2膨張部600によって減圧された液状冷媒又は気液二相状態の冷媒も流入する。すなわち、圧縮ユニット10の圧縮室11には、インジェクション配管800を流れる第2膨張部600によって減圧された液状冷媒も吸入される。これにより、当該液状冷媒は、圧縮室11内において、圧縮途中のガス状態の冷媒を冷却する。このため、圧縮ユニット10の圧縮室11に吸入される冷媒の温度が低下する。したがって、固定スクロール21及び揺動スクロール22の熱膨張を抑制することができるため、圧縮ユニット10の挙動を安定させることができる。
(冷凍サイクル装置1の動作)
次に、図1を用いて、冷凍サイクル装置1の動作について説明する。圧縮機100に吸入された冷媒は、圧縮機100によって圧縮されて、高温且つ高圧のガス状態で吐出される。圧縮機100から吐出された高温且つ高圧のガス状冷媒は、放熱器として作用する室外熱交換器200に流入する。室外熱交換器200に流入した高温且つ高圧のガス状冷媒は、室外送風機201によって送られる室外空気に放熱しながら凝縮し、高圧の液状冷媒となる。この高圧の液状冷媒は、室外熱交換器200から流出して、第1膨張部300に流入する。第1膨張部300に流入した高圧の液状冷媒は、膨張及び減圧されて、低温且つ低圧の気液二相冷媒となる。この低温且つ低圧の気液二相冷媒は、第1膨張部300から流出して、蒸発器として作用する室内熱交換器400に流入する。室内熱交換器400に流入した低温且つ低圧の気液二相冷媒は、室内送風機401によって送られる室内空気から吸熱しながら蒸発し、低圧のガス状冷媒となる。このとき、室内空気が冷やされ、室内において冷房が実施される。この低圧のガス状冷媒は、室内熱交換器400から流出して、圧縮機100に吸入される。
次に、図1を用いて、冷凍サイクル装置1の動作について説明する。圧縮機100に吸入された冷媒は、圧縮機100によって圧縮されて、高温且つ高圧のガス状態で吐出される。圧縮機100から吐出された高温且つ高圧のガス状冷媒は、放熱器として作用する室外熱交換器200に流入する。室外熱交換器200に流入した高温且つ高圧のガス状冷媒は、室外送風機201によって送られる室外空気に放熱しながら凝縮し、高圧の液状冷媒となる。この高圧の液状冷媒は、室外熱交換器200から流出して、第1膨張部300に流入する。第1膨張部300に流入した高圧の液状冷媒は、膨張及び減圧されて、低温且つ低圧の気液二相冷媒となる。この低温且つ低圧の気液二相冷媒は、第1膨張部300から流出して、蒸発器として作用する室内熱交換器400に流入する。室内熱交換器400に流入した低温且つ低圧の気液二相冷媒は、室内送風機401によって送られる室内空気から吸熱しながら蒸発し、低圧のガス状冷媒となる。このとき、室内空気が冷やされ、室内において冷房が実施される。この低圧のガス状冷媒は、室内熱交換器400から流出して、圧縮機100に吸入される。
ところで、例えば、圧縮機100の吸入管44から吸入される冷媒の温度と、圧縮機100の吐出管45から吐出される冷媒の温度との差が大きい運転では、吐出管45から吐出される冷媒は高温となる。冷凍サイクル装置1において高圧側の冷媒の圧力と低圧側の冷媒の圧力との差が大きくなる高圧縮比運転において、このような現象が発生する。しかしながら、本実施の形態に係る圧縮機100においては、上述のように、インジェクション配管49を介して、インジェクション配管800を流れる第2膨張部600によって減圧された液状冷媒が、圧縮室11に吸入される。これにより、当該液状冷媒は、圧縮室11内において、圧縮途中のガス状態の冷媒を冷却する。したがって、本実施の形態に係る圧縮機100においては、吐出管45から吐出される冷媒の温度を低下させることができる。
(電動機ユニットの冷却構成)
ここで、従来、圧縮機は、電動機ユニットのステータの温度に基づいて、運転範囲に制限が設けられている。すなわち、圧縮機は、電動機ユニットのステータの温度が予め設定された上限値を超える場合、運転ができないようになっている。本実施の形態に係る冷凍サイクル装置1においても、電動機ユニット30のステータ31の温度が規定温度以上となる場合、圧縮機100の運転を停止する構成となっている。なお、本実施の形態では、規定温度を、例えば120℃としている。
ここで、従来、圧縮機は、電動機ユニットのステータの温度に基づいて、運転範囲に制限が設けられている。すなわち、圧縮機は、電動機ユニットのステータの温度が予め設定された上限値を超える場合、運転ができないようになっている。本実施の形態に係る冷凍サイクル装置1においても、電動機ユニット30のステータ31の温度が規定温度以上となる場合、圧縮機100の運転を停止する構成となっている。なお、本実施の形態では、規定温度を、例えば120℃としている。
このため、従来の圧縮機は、吸入管から容器内に供給された冷媒の一部を電動機ユニット側へ流し、電動機ユニットのステータを冷却している。そして、従来の圧縮機は、このように電動機ユニットのステータを冷却することにより、圧縮機の運転可能な範囲の拡大を図っている。本実施の形態に係る圧縮機100においても、上述のように、吸入管44から低圧空間8に吸入された冷媒の一部を用いて、電動機ユニット30のステータ31を冷却している。
しかしながら、吸入管から容器内に供給された冷媒のみで電動機ユニットのステータを冷却する方法では、実際には、圧縮機の運転可能な範囲を十分に拡大できない。以下、本実施の形態に係る圧縮機100を用いて、その理由について説明する。
冷凍サイクル装置1が冷媒循環量の少ない運転状態になっていると、圧縮機100が吸入管44から容器40の低圧空間8に吸入する冷媒の流量も少なくなる。この結果、電動機ユニット30に十分な冷媒を流すことができない。したがって、冷凍サイクル装置1が冷媒循環量の少ない運転状態になっていると、圧縮機100は、電動機ユニット30のステータ31を十分に冷却することができない。
ここで、冷凍サイクル装置1が冷媒循環量の少ない運転状態になっている際、電動機ユニット30を冷却するために、電動機ユニット30が冷却されるのに十分な量の冷媒を吸入管44から容器40の低圧空間8に供給することも考えられる。しかしながら、冷凍サイクル装置1が冷媒循環量の少ない運転状態になっている場合、低圧空間8から圧縮ユニット10に吸入される冷媒の流量は少なくなる。この結果、低圧空間8の冷媒の一部が液状冷媒として容器40内に寝込んでしまい、容器40の油溜まり2に貯留されている冷凍機油が当該液状冷媒によって希釈されてしまう。そして、容器40の油溜まり2に貯留されている冷凍機油が当該液状冷媒によって希釈されてしまうと、圧縮機100の摺動部分に当該希釈された冷凍機油が供給されることとなり、圧縮機100の摺動部分に過度な摩耗等が発生する可能性がある。このため、吸入管44から容器40内に供給された冷媒のみで電動機ユニット30のステータ31を冷却する方法では、実際には、圧縮機100の運転可能な範囲を十分に拡大できない。
そこで、本実施の形態に係る圧縮機100は、以下に示すように、電動機ユニット30のステータ31を冷却する構成として、冷媒流路部60及び供給配管52を備えている。
図3は、実施の形態に係る冷媒流路部及び供給配管を説明するための図であり、実施の形態に係る圧縮機の電動機ユニット近傍を示す縦断面図である。図4は、実施の形態に係る冷媒流路部及び供給配管を説明するための図であり、実施の形態に係る圧縮機の電動機ユニットを示す側面図である。図5は、実施の形態に係る冷媒流路部及び供給配管を説明するための図であり、実施の形態に係る圧縮機の電動機ユニットのステータを示す平面図である。なお、図5に示す先端黒塗りの矢印は、冷媒の流れ方向を示している。
図3~図5に示すように、本実施の形態に係る圧縮機100は、供給配管52と、冷媒流路部60とを備えている。供給配管52は、冷媒流路部60と接続され、容器40の外部の冷媒を冷媒流路部60に供給するものである。供給配管52は、例えば、容器40の胴部42に設けられている。そして、冷媒流路部60は、供給配管52から供給された冷媒で、電動機ユニット30のステータ31を冷却するものである。なお、上述のように、本実施の形態では、供給配管52は、インジェクション配管800と接続されている。このため、冷媒流路部60には、第2膨張部600によって減圧された液状冷媒又は気液二相状態の冷媒が供給される。
冷媒流路部60は、電動機ユニット30のステータ31を貫通する複数の流路部61と、流路部61のうちの少なくとも2つを接続する配管62とを備えている。流路部61は、ステータ31に形成された貫通孔の外周部を構成する実部部分である。流路部61がステータ31を貫通する方向は特に限定されないが、本実施の形態では、流路部61のそれぞれは、ロータ32の回転軸Oに沿って、ステータ31を貫通している。流路部61のそれぞれの配置位置も特に限定されないが、本実施の形態では、流路部61のそれぞれは、ロータ32の回転軸Oを中心とする仮想円上に、間隔を空けながら配置されている。また、配管62がどの流路部61を接続するのかについても特に限定されないが、本実施の形態では、配管62は、隣接する流路部61の端部同士を接続している。また、供給配管52と冷媒流路部60との接続箇所も特に限定されないが、本実施の形態では、供給配管52は、1つの流路部61の端部に接続されている。すなわち、供給配管52の接続されている流路部61の当該端部が、冷媒流路部60の冷媒の流入口60aとなっている。また、本実施の形態では、1つの流路部61の端部に、出口配管63が接続されている。この出口配管63が、冷媒流路部60の冷媒の流出口60bとなっている。
このように構成された圧縮機100においては、冷媒流路部60には、流入口60aから、第2膨張部600によって減圧された液状冷媒又は気液二相状態の冷媒が、インジェクション配管800及び供給配管52を介して供給される。冷媒流路部60に流入したこの冷媒は、流入口60aから流出口60bに向かって流れる。この際、冷媒流路部60の流路部61を流れる冷媒が、電動機ユニット30のステータ31を冷却する。
ここで、圧縮機100からは、圧縮された冷媒のみならず、冷凍機油も吐出される。このため、圧縮機100から吐出された冷媒が冷媒回路500及びインジェクション配管800を通り、供給配管52から冷媒流路部60に流入する場合もある。このように冷媒流路部60に流入した冷凍機油も、ステータ31の冷却に寄与する。また、冷媒流路部60から流出した冷凍機油は、油溜まり2に戻されることとなる。このため、供給配管52及び冷媒流路部60を備えることにより、圧縮機100の外部に流出した冷凍機油を圧縮機100に戻す効果が向上する。なお、インジェクション配管800における第2膨張部600の下流側に油分離器を設ける等により、冷媒流路部60に冷凍機油が流入しない構成としても勿論よい。
このように、本実施の形態に係る圧縮機100は、吸入管44から容器40内へ供給される冷媒とは別の冷媒を、電動機ユニット30のステータ31を冷却する冷媒として用いている。このため、本実施の形態に係る圧縮機100は、吸入管44から容器40内へ供給される冷媒の量にかかわらず、すなわち冷凍サイクル装置1を循環する冷媒の量にかかわらず、ステータ31を冷却することができる。また、冷媒流路部60を流れる液状冷媒又は気液二相状態の冷媒は、ステータ31を冷却する際に蒸発する。このため、冷媒流路部60の流出口60bからは、ガス状冷媒が流出する。このため、冷媒流路部60の流出口60bから流出したガス状冷媒は、容器40の上部へと流れていく。このため、容器40の油溜まり2に貯留されている冷凍機油が、冷媒流路部60から流出した冷媒によって希釈されてしまうことを抑制できる。したがって、本実施の形態に係る圧縮機100は、運転可能な範囲を従来よりも拡大できる。
ここで、図3に示すように、冷媒流路部60の流出口60bは、ステータ31の下部に設けられていることが好ましい。仮に、冷媒流路部60の流出口60bから液状冷媒が流出した場合、流出口60bがステータ31の下部に設けられていることにより、流出口60bがステータ31の上部に設けられている場合と比べ、流出口60bから流出した液状冷媒が圧縮室11に吸入されることを抑制できるからである。すなわち、インジェクション配管800を流れる第2膨張部600によって減圧された液状冷媒が、圧縮室11に過剰に供給されることを抑制できるからである。また、冷媒流路部60の流出口60bから冷凍機油が流出した場合、流出口60bがステータ31の下部に設けられていることにより、流出口60bがステータ31の上部に設けられている場合と比べ、流出口60bから流出した冷凍機油が圧縮室11に吸入されることを抑制できるからである。すなわち、圧縮機100から吐出される冷凍機油の量を抑制できるからである。
なお、インジェクション配管800から供給配管52へ流入する冷媒の流量は、すなわち冷媒流路部60を流れる冷媒の流量は、冷凍サイクル装置1の制御装置70によって制御される。制御装置70は、例えば、次のように、インジェクション配管800から供給配管52へ流入する冷媒の流量を制御する。
冷凍サイクル装置1が冷媒循環量の少ない運転状態になっている場合、圧縮機100は、電動機ユニット30のロータ32の回転数が低回転数となっている。すなわち、ロータ32の回転数が低回転数となっている状態は、ステータ31の温度が高くなりやすい状態である。なお、低回転数とは、例えば、5rps~30rpsである。このため、例えば、制御装置70は、ロータ32の回転数が規定回転数以下となっているとき、インジェクション配管800から供給配管52へ冷媒を流入させる。これにより、ステータ31の温度が高くなりやすい条件において、冷媒流路部60を流れる冷媒によってステータ31を冷却することができる。このため、圧縮機100は、運転可能な範囲を従来よりも拡大できる。なお、本実施の形態では、規定回転数を30rpsとしている。
また、例えば、冷凍サイクル装置1を様々な運転条件で運転し、ステータ31の温度を測定する。そして、ステータ31の温度が規定温度以上となる冷凍サイクル装置1の運転条件を事前に求める。例えば、モータ温度が120℃以上となる冷凍サイクル装置1の運転条件を事前に求める。そして、例えば、制御装置70は、冷凍サイクル装置1の運転条件が規定の運転条件となっているとき、インジェクション配管800から供給配管52へ冷媒を流入させる。これにより、ステータ31の温度が高くなりやすい条件において、冷媒流路部60を流れる冷媒によってステータ31を冷却することができる。このため、圧縮機100は、運転可能な範囲を従来よりも拡大できる。
なお、電動機ユニット30は、温度が低くなっているほど、ロータ32の永久磁石の減磁が抑制される等の効果がある。このため、制御装置70は、圧縮機100の駆動中、常時、インジェクション配管800から供給配管52へ冷媒を流入させてもよい。すなわち、制御装置70は、電動機ユニット30のロータ32が回転している間、常時、インジェクション配管800から供給配管52へ冷媒を流入させてもよい。
ここで、本実施の形態では、図1に示すように、インジェクション配管800を流れる第2膨張部600によって減圧された冷媒は、供給配管52に供給されるとともに、圧縮機100のインジェクション配管49にも供給される構成となっている。このため、圧縮機100の駆動中、常時、インジェクション配管800から供給配管52へ冷媒を流入させる構成とする際には、インジェクション配管800の第1分岐部に設けられている開閉弁54として流量調整弁が用いられている場合、制御装置70は、次のように、流量調整弁である開閉弁54の開状態の開度を制御してもよい。具体的には、制御装置70は、開閉弁55が開いている状態においては、開閉弁55が開いていない状態と比べ、流量調整弁である開閉弁54の開状態の開度を小さくしてもよい。これにより、インジェクション配管800からインジェクション配管49に冷媒が供給されているとき、インジェクション配管800からインジェクション配管49に冷媒が供給されていないときと比べ、インジェクション配管800から供給配管52に供給される冷媒の流量が減少する。このため、インジェクション配管800からインジェクション配管49に供給される冷媒の量が不足することを抑制できる。
なお、上述した圧縮機100は、供給配管52及び冷媒流路部60を備えた圧縮機100の一例である。圧縮機100は、例えば、次のように構成されていてもよい。
図6は、実施の形態に係る圧縮機の別の一例における冷媒流路部及び供給配管を説明するための図であり、当該圧縮機の電動機ユニットのステータを示す平面図である。なお、図6に示す先端黒塗りの矢印は、冷媒の流れ方向を示している。
図1~図5で説明した圧縮機100は、1つの冷媒流路部60を備えていた。これに限らず、図6に示すように、圧縮機100は、複数の冷媒流路部60を備えていてもよい。なお、図6は、圧縮機100が3つの冷媒流路部60を備えている場合を例示している。圧縮機100が複数の冷媒流路部60を備えている場合、ロータ32の回転軸Oの方向にステータ31を観察した際、冷媒流路部60のそれぞれは、ロータ32の回転軸Oを中心として、異なる角度範囲に配置されている。例えば、ロータ32の回転軸Oを回転中心として時針が回る時計にステータ31を見立てて、各冷媒流路部60の配置位置を説明する。図6に示すステータ31の場合、3つの冷媒流路部60のうちの1つは、10時から2時となる角度範囲に設けられている。残りの2つの冷媒流路部60のうちの1つは、2時から5時となる角度範囲に設けられている。また、残りの1つの冷媒流路部60は、6時から10時となる角度範囲に設けられている。
図1~図5で説明した圧縮機100は、1つの冷媒流路部60を備えていた。これに限らず、図6に示すように、圧縮機100は、複数の冷媒流路部60を備えていてもよい。なお、図6は、圧縮機100が3つの冷媒流路部60を備えている場合を例示している。圧縮機100が複数の冷媒流路部60を備えている場合、ロータ32の回転軸Oの方向にステータ31を観察した際、冷媒流路部60のそれぞれは、ロータ32の回転軸Oを中心として、異なる角度範囲に配置されている。例えば、ロータ32の回転軸Oを回転中心として時針が回る時計にステータ31を見立てて、各冷媒流路部60の配置位置を説明する。図6に示すステータ31の場合、3つの冷媒流路部60のうちの1つは、10時から2時となる角度範囲に設けられている。残りの2つの冷媒流路部60のうちの1つは、2時から5時となる角度範囲に設けられている。また、残りの1つの冷媒流路部60は、6時から10時となる角度範囲に設けられている。
冷媒流路部60を流れる冷媒は、ステータ31を冷却していくうちに、温度が上昇する。このため、圧縮機100が1つの冷媒流路部60のみを備えている場合、冷媒流路部60の長さが長くなるので、ステータ31は、場所による温度差が大きくなる場合がある。具体的には、冷媒流路部60における冷媒流れの下流側となる箇所で冷却されているステータ31の部分の温度と、冷媒流路部60における冷媒流れの上流側となる箇所で冷却されているステータ31の部分の温度との差が、大きくなる場合がある。一方、圧縮機100が複数の冷媒流路部60を備えている場合、各冷媒流路部60の長さを、1つの冷媒流路部60のみを備えている場合と比べて短くできる。このため、圧縮機100が複数の冷媒流路部60を備えている場合、1つの冷媒流路部60のみを備えている場合と比べて、ステータ31の場所による温度差を抑制できる。換言すると、圧縮機100が複数の冷媒流路部60を備えている場合、1つの冷媒流路部60のみを備えている場合と比べて、ステータ31の冷却能力を向上できる。したがって、圧縮機100が複数の冷媒流路部60を備えている場合、1つの冷媒流路部60のみを備えている場合と比べて、圧縮機100の運転可能な範囲をより拡大できる。
図7及び図8は、実施の形態に係る圧縮機の別の一例を説明するための図であり、当該圧縮機の電動機ユニット近傍を示す縦断面図である。
図7及び図8に示すように、圧縮機100は、ステータ31の温度を測定する温度検出装置80を備えていてもよい。
図7及び図8に示すように、圧縮機100は、ステータ31の温度を測定する温度検出装置80を備えていてもよい。
ステータ31の温度を直接検出する場合、図7に示すように、温度検出装置80は、ステータ31に取り付けられる。この際、ステータ31のなかで、ステータ31の巻き線部31aが、最も温度が高くなりやすい。このため、ステータ31の温度を直接検出する場合、温度検出装置80は、ステータ31の巻き線部31aに取り付けられているのが好ましい。ステータ31の温度を直接検出する場合の温度検出装置80は特に限定されないが、例えば、温度検出装置80として、熱電対を用いることができる。なお、ステータ31の温度を直接検出する場合、温度検出装置80に接続されている配線を容器40の外部へ引き出す必要がある。温度検出装置80に接続されている配線が引き出される箇所は特に限定されないが、本実施の形態では、容器40の底部43から当該配線を容器40の外部へ引き出している。
また、ステータ31の温度を間接的に検出する場合、例えば図8に示すように、温度検出装置80は、容器40の外周面におけるステータ31と容器40との固定箇所と対向する位置に取り付けられる。ステータ31が発する熱は、容器40の外周面におけるステータ31と容器40との固定箇所と対向する位置に伝わる。このため、図8に示すように温度検出装置80を設けることにより、ステータ31の温度を間接的に検出することができる。なお、ステータ31の温度を間接的に検出する場合の温度検出装置80は特に限定されないが、例えば、温度検出装置80として、サーミスタを用いることができる。また、温度検出装置80としてサーミスタを用いる場合、サーミスタは、例えばサーミスタホルダを介して、容器40の外周面に取り付けられる。換言すると、容器40の外周面にサーミスタホルダを取り付け、該サーミスタホルダにサーミスタが取り付けられる。
圧縮機100が温度検出装置80を備えている場合、制御装置70は、例えば、温度検出装置80の検出温度が規定温度以上となっているとき、インジェクション配管800から供給配管52へ冷媒を流入させる。これにより、ステータ31の温度が上限値となる前に、冷媒流路部60を流れる冷媒によってステータ31を冷却することができる。このため、圧縮機100は、運転可能な範囲を従来よりも拡大できる。
なお、上述のように、制御装置70は、圧縮機100の駆動中、常時、インジェクション配管800から供給配管52へ冷媒を流入させてもよい。このような構成とする場合には、制御装置70は、温度検出装置80の検出温度に基づいて、インジェクション配管800から供給配管52へ供給される冷媒の流量を次のように制御してもよい。詳しくは、制御装置70は、温度検出装置80の検出温度が規定温度以上となっているとき、温度検出装置80の検出温度が規定温度よりも低くなっているときと比べ、インジェクション配管800から供給配管52へ流入させる冷媒の流量を大きくしてもよい。これにより、圧縮機100の駆動中、常時、インジェクション配管800から供給配管52へ冷媒を流入させる構成において、ステータ31の温度上昇をより抑制できる。
以上、本実施の形態に係る圧縮機100は、電動機ユニット30と、駆動軸33と、圧縮ユニット10と、容器40と、吸入管44とを備えている。電動機ユニット30は、ロータ32及びステータ31を有している。駆動軸33は、ロータ32に固定され、電動機ユニット30の動力によって回転するものである。圧縮ユニット10は、駆動軸33に接続され、駆動軸33によって伝達された電動機ユニット30の動力で冷媒を圧縮するものである。容器40は、電動機ユニット30、駆動軸33及び圧縮ユニット10を内部に収容し、底部43に冷凍機油が貯留されるものである。吸入管44は、容器40に設けられ、容器40の内部に圧縮ユニット10で圧縮される冷媒を供給するものである。さらに、本実施の形態に係る圧縮機100は、冷媒流路部60と、供給配管52と、を備えている。冷媒流路部60は、ステータ31を貫通する複数の流路部61、及び流路部61のうちの少なくとも2つを接続する配管62を備えている。供給配管52は、冷媒流路部60と接続され、容器40の外部の冷媒を冷媒流路部60に供給するものである。
このように、本実施の形態に係る圧縮機100は、吸入管44から容器40内へ供給される冷媒とは別の冷媒を、電動機ユニット30のステータ31を冷却する冷媒として用いている。このため、本実施の形態に係る圧縮機100は、吸入管44から容器40内へ供給される冷媒の量にかかわらず、すなわち冷凍サイクル装置1を循環する冷媒の量にかかわらず、ステータ31を冷却することができる。このため、本実施の形態に係る圧縮機100は、上述のように、運転可能な範囲を従来よりも拡大できる。
なお、本実施の形態に係る圧縮機100は、スクロール型の圧縮ユニット10を備えた圧縮機となっていた。これに限らず、本開示に係る圧縮機は、スクロール型以外の圧縮ユニットを備えた圧縮機であってもよい。
1 冷凍サイクル装置、1a 室外機、1b 室内機、2 油溜まり、3 吐出ポート、5 吐出弁、6 弁押さえ、7 吐出マフラ、8 低圧空間、9 高圧空間、10 圧縮ユニット、11 圧縮室、21 固定スクロール、22 揺動スクロール、22a オルダムリング、23 第1台板、24 第1渦巻歯、25 第2台板、26 第2渦巻歯、27 ボス部、27a 揺動軸受、28 インジェクション管挿入口、30 電動機ユニット、31 ステータ、31a 巻き線部、32 ロータ、33 駆動軸、33a 偏心軸部、33b 主軸部、33c 副軸部、33d 油通路、34 スリーブ、36 吸入ポート、40 容器、41 蓋部、42 胴部、43 底部、44 吸入管、45 吐出管、46 フレーム、46a 主軸受、47 サブフレーム、47a 穴、48 副軸受、49 インジェクション配管、50 排油パイプ、51 油ポンプ、52 供給配管、54 開閉弁、55 開閉弁、60 冷媒流路部、60a 流入口、60b 流出口、61 流路部、62 配管、63 出口配管、70 制御装置、80 温度検出装置、100 圧縮機、200 室外熱交換器、201 室外送風機、300 第1膨張部、400 室内熱交換器、401 室内送風機、500 冷媒回路、501 冷媒配管、600 第2膨張部、700 熱交換器、800 インジェクション配管、O 回転軸。
Claims (12)
- ロータ及びステータを有する電動機ユニットと、
前記ロータに固定され、前記電動機ユニットの動力によって回転する駆動軸と、
前記駆動軸に接続され、前記駆動軸によって伝達された前記電動機ユニットの動力で冷媒を圧縮する圧縮ユニットと、
前記電動機ユニット、前記駆動軸及び前記圧縮ユニットを内部に収容し、底部に冷凍機油が貯留される容器と、
前記容器に設けられ、前記容器の内部に前記圧縮ユニットで圧縮される冷媒を供給する吸入管と、
前記ステータを貫通する複数の流路部、及び前記流路部のうちの少なくとも2つを接続する配管を備えた冷媒流路部と、
前記冷媒流路部と接続され、前記容器の外部の冷媒を前記冷媒流路部に供給する供給配管と、
を備えている圧縮機。 - 前記冷媒流路部を複数備え、
前記ロータの回転軸の方向に前記ステータを観察した際、
前記冷媒流路部のそれぞれは、前記ロータの前記回転軸を中心として、異なる角度範囲に配置されている
請求項1に記載の圧縮機。 - 前記ステータに取り付けられ、前記ステータの温度を検出する温度検出装置を備えている
請求項1又は請求項2に記載の圧縮機。 - 前記ステータは、電流が流される巻き線部を備え、
前記温度検出装置は、前記巻き線部に取り付けられている
請求項3に記載の圧縮機。 - 前記ステータは前記容器に固定されており、
前記容器の外周面における前記ステータと前記容器との固定箇所と対向する位置の温度を検出する温度検出装置を備えている
請求項1又は請求項2に記載の圧縮機。 - 請求項1又は請求項2に記載の圧縮機と、
前記圧縮機で圧縮された冷媒が放熱する放熱器と、
前記放熱器から流出した冷媒を膨張させる第1膨張部と、
前記第1膨張部から流出した冷媒が蒸発する蒸発器と、
前記放熱器から流出した冷媒が一方の端部から流入し、他方の端部が前記圧縮機の前記供給配管に接続されたインジェクション配管と、
前記インジェクション配管を流れる冷媒を膨張させる第2膨張部と、
前記インジェクション配管から前記供給配管へ流入する冷媒の流量、及び前記圧縮機を制御する制御装置と、
を備えた冷凍サイクル装置。 - 前記制御装置は、前記圧縮機の前記ロータの回転数が規定回転数以下となっているとき、前記インジェクション配管から前記供給配管へ冷媒を流入させる構成である
請求項6に記載の冷凍サイクル装置。 - 前記制御装置は、当該冷凍サイクル装置の運転条件が規定の運転条件となっているとき、前記インジェクション配管から前記供給配管へ冷媒を流入させる構成である
請求項6に記載の冷凍サイクル装置。 - 前記制御装置は、前記圧縮機の駆動中、常時、前記インジェクション配管から前記供給配管へ冷媒を流入させる構成である
請求項6に記載の冷凍サイクル装置。 - 請求項3~請求項5のいずれか一項に記載の圧縮機と、
前記圧縮機で圧縮された冷媒が放熱する放熱器と、
前記放熱器から流出した冷媒を膨張させる第1膨張部と、
前記第1膨張部から流出した冷媒が蒸発する蒸発器と、
前記放熱器から流出した冷媒が一方の端部から流入し、他方の端部が前記圧縮機の前記供給配管に接続されたインジェクション配管と、
前記インジェクション配管を流れる冷媒を膨張させる第2膨張部と、
前記インジェクション配管から前記供給配管へ流入する冷媒の流量、及び前記圧縮機を制御する制御装置と、
を備え、
前記制御装置は、前記温度検出装置の検出温度が規定温度以上となっているとき、前記インジェクション配管から前記供給配管へ冷媒を流入させる構成である
冷凍サイクル装置。 - 請求項3~請求項5のいずれか一項に記載の圧縮機と、
前記圧縮機で圧縮された冷媒が放熱する放熱器と、
前記放熱器から流出した冷媒を膨張させる膨張部と、
前記膨張部から流出した冷媒が蒸発する蒸発器と、
前記放熱器から流出した冷媒が一方の端部から流入し、他方の端部が前記圧縮機の前記供給配管に接続されたインジェクション配管と、
前記インジェクション配管を流れる冷媒を膨張させる第2膨張部と、
前記インジェクション配管から前記供給配管へ流入する冷媒の流量、及び前記圧縮機を制御する制御装置と、
を備え、
前記制御装置は、
前記圧縮機の駆動中、常時、前記インジェクション配管から前記供給配管へ冷媒を流入させる構成であり、
前記温度検出装置の検出温度が規定温度以上となっているとき、前記温度検出装置の検出温度が前記規定温度よりも低くなっているときと比べ、前記インジェクション配管から前記供給配管へ流入させる冷媒の流量を大きくする構成である
冷凍サイクル装置。 - 前記圧縮機は、前記インジェクション配管に接続され、前記インジェクション配管から流入する冷媒を前記圧縮ユニットに供給する圧縮機側インジェクション配管を備え、
前記インジェクション配管の前記他方の端部は、第1分岐部及び第2分岐部に分岐しており、
前記第1分岐部が前記供給配管に接続され、前記第2分岐部が前記圧縮機側インジェクション配管に接続されており、
前記第1分岐部に設けられ、開状態における開度を複数の開度に変更可能な流量調整弁と、
前記第2分岐部に設けられた開閉弁と、
を備え、
前記制御装置は、前記開閉弁が開いている状態においては、前記開閉弁が開いていない状態と比べ、前記流量調整弁の開状態の開度を小さくする構成である
請求項9又は請求項11に記載の冷凍サイクル装置。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2023576476A JPWO2023144953A1 (ja) | 2022-01-27 | 2022-01-27 | |
PCT/JP2022/003014 WO2023144953A1 (ja) | 2022-01-27 | 2022-01-27 | 圧縮機及び冷凍サイクル装置 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2022/003014 WO2023144953A1 (ja) | 2022-01-27 | 2022-01-27 | 圧縮機及び冷凍サイクル装置 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023144953A1 true WO2023144953A1 (ja) | 2023-08-03 |
Family
ID=87471293
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/003014 WO2023144953A1 (ja) | 2022-01-27 | 2022-01-27 | 圧縮機及び冷凍サイクル装置 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JPWO2023144953A1 (ja) |
WO (1) | WO2023144953A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117895703A (zh) * | 2024-03-15 | 2024-04-16 | 常州天安尼康达电器有限公司 | 一种具有智能化可调节式散热功能的交流电机 |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4718006U (ja) * | 1971-03-31 | 1972-10-31 | ||
JPS6240284U (ja) * | 1985-08-29 | 1987-03-10 | ||
JPH0370062U (ja) * | 1989-11-08 | 1991-07-12 | ||
JPH03119581U (ja) * | 1990-03-23 | 1991-12-10 | ||
JP2009284755A (ja) * | 2008-04-18 | 2009-12-03 | Abb Oy | 電気機械のための冷却要素 |
JP2013042588A (ja) * | 2011-08-12 | 2013-02-28 | Daikin Ind Ltd | 電動機 |
CN209134205U (zh) * | 2018-12-27 | 2019-07-19 | 珠海格力电器股份有限公司 | 压缩机电机及其电机冷却结构 |
-
2022
- 2022-01-27 WO PCT/JP2022/003014 patent/WO2023144953A1/ja unknown
- 2022-01-27 JP JP2023576476A patent/JPWO2023144953A1/ja active Pending
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4718006U (ja) * | 1971-03-31 | 1972-10-31 | ||
JPS6240284U (ja) * | 1985-08-29 | 1987-03-10 | ||
JPH0370062U (ja) * | 1989-11-08 | 1991-07-12 | ||
JPH03119581U (ja) * | 1990-03-23 | 1991-12-10 | ||
JP2009284755A (ja) * | 2008-04-18 | 2009-12-03 | Abb Oy | 電気機械のための冷却要素 |
JP2013042588A (ja) * | 2011-08-12 | 2013-02-28 | Daikin Ind Ltd | 電動機 |
CN209134205U (zh) * | 2018-12-27 | 2019-07-19 | 珠海格力电器股份有限公司 | 压缩机电机及其电机冷却结构 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN117895703A (zh) * | 2024-03-15 | 2024-04-16 | 常州天安尼康达电器有限公司 | 一种具有智能化可调节式散热功能的交流电机 |
CN117895703B (zh) * | 2024-03-15 | 2024-05-14 | 常州天安尼康达电器有限公司 | 一种具有智能化可调节式散热功能的交流电机 |
Also Published As
Publication number | Publication date |
---|---|
JPWO2023144953A1 (ja) | 2023-08-03 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2009127902A (ja) | 冷凍装置及び圧縮機 | |
JP5389173B2 (ja) | ヒートポンプ装置、インジェクション対応圧縮機及びインジェクション対応スクロール圧縮機の製造方法 | |
US20100143172A1 (en) | Multistage Compressor | |
JP5306478B2 (ja) | ヒートポンプ装置、二段圧縮機及びヒートポンプ装置の運転方法 | |
US8312732B2 (en) | Refrigerating apparatus | |
US20160258656A1 (en) | System Including High-Side and Low-Side Compressors | |
KR101738458B1 (ko) | 고압식 압축기 및 이를 구비한 냉동사이클 장치 | |
US20090071187A1 (en) | Refrigerating Apparatus | |
JP2008101559A (ja) | スクロール圧縮機およびそれを用いた冷凍サイクル | |
KR20060013221A (ko) | 로터리 압축기의 용량 가변 장치 및 이를 구비한 에어콘의운전 방법 | |
JP2005291207A (ja) | スクロール圧縮機の過熱防止装置 | |
JP4219198B2 (ja) | 冷媒サイクル装置 | |
WO2023144953A1 (ja) | 圧縮機及び冷凍サイクル装置 | |
JP2012172581A (ja) | スクロール圧縮機及びヒートポンプ装置 | |
US11885548B2 (en) | Refrigeration cycle apparatus that injects refrigerant into compressor during low load operation | |
JP4963971B2 (ja) | ヒートポンプ式設備機器 | |
JP4945306B2 (ja) | スクロール圧縮機及びそれを用いたヒートポンプ装置 | |
JP7194877B2 (ja) | 冷凍サイクル装置 | |
CN110520623B (zh) | 涡旋压缩机及其控制方法以及空调装置 | |
WO2021149180A1 (ja) | 圧縮機 | |
WO2022208573A1 (ja) | 圧縮機 | |
JP7401804B2 (ja) | 圧縮機および空気調和装置 | |
WO2022149225A1 (ja) | 圧縮機 | |
JP2013139904A (ja) | 冷凍装置 | |
JPWO2020255243A1 (ja) | 圧縮機 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22923819 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2023576476 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |