[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2023143499A1 - 低能耗制备复合集流体的方法 - Google Patents

低能耗制备复合集流体的方法 Download PDF

Info

Publication number
WO2023143499A1
WO2023143499A1 PCT/CN2023/073530 CN2023073530W WO2023143499A1 WO 2023143499 A1 WO2023143499 A1 WO 2023143499A1 CN 2023073530 W CN2023073530 W CN 2023073530W WO 2023143499 A1 WO2023143499 A1 WO 2023143499A1
Authority
WO
WIPO (PCT)
Prior art keywords
copper
photosensitive material
containing photosensitive
current collector
parts
Prior art date
Application number
PCT/CN2023/073530
Other languages
English (en)
French (fr)
Inventor
朱中亚
卢建栋
李学法
张国平
Original Assignee
江阴纳力新材料科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江阴纳力新材料科技有限公司 filed Critical 江阴纳力新材料科技有限公司
Publication of WO2023143499A1 publication Critical patent/WO2023143499A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/18Pretreatment of the material to be coated
    • C23C18/20Pretreatment of the material to be coated of organic surfaces, e.g. resins
    • C23C18/2006Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30
    • C23C18/2026Pretreatment of the material to be coated of organic surfaces, e.g. resins by other methods than those of C23C18/22 - C23C18/30 by radiant energy
    • C23C18/204Radiation, e.g. UV, laser
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/32Phosphorus-containing compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/16Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by reduction or substitution, e.g. electroless plating
    • C23C18/31Coating with metals
    • C23C18/38Coating with copper
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/64Carriers or collectors
    • H01M4/66Selection of materials
    • H01M4/665Composites
    • H01M4/667Composites in the form of layers, e.g. coatings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the application relates to the technical field of new materials, in particular to a method for preparing composite current collectors with low energy consumption.
  • Composite current collector is a new type of current collector material, which is made of metal-plated on both sides of the polymer substrate layer, showing a "sandwich structure".
  • the preparation method of the composite current collector is mainly to deposit a metal layer with a certain thickness on the upper and lower surfaces of the polymer substrate by physical vapor deposition (PVD) in a vacuum state, so that it can reach a certain square resistance, so that it can be electroplated or The standard of electroless plating, and then electroplating or electroless plating the material after double-sided metal deposition to thicken the metal layer, so that the square resistance of the material can meet the standard required by the secondary battery.
  • PVD physical vapor deposition
  • vacuum physical vapor deposition requires high equipment and is accompanied by high temperature, and the polymer substrate is easily deformed, wrinkled, bubbled, perforated, and brittle at high temperature.
  • the above-mentioned problems cannot be completely avoided by cooling treatment. Therefore, the yield rate of composite current collectors prepared by physical atmosphere is low, usually lower than 50%.
  • the physical vapor deposition speed is slow and the production efficiency is low; and because the physical vapor deposition needs to vaporize the metal, the energy consumed is very high.
  • the cooling of the polymer substrate also requires high energy, forming energy mutual impact, It causes a lot of energy loss, which is not conducive to carbon peaking and carbon neutralization.
  • One aspect of the present application provides a method for preparing a composite current collector, which includes the following steps:
  • a composite current collector substrate is provided, the composite current collector substrate includes a core layer and surface layers arranged on both sides of the core layer, and the surface layer is treated with ultraviolet light to prepare an activated substrate; the activated substrate is subjected to Electroless copper plating;
  • the raw material of the core layer is the first polymer
  • the raw materials of the surface layer include: 85-95 parts of the second high molecular polymer, Copper-containing photosensitive material 10-20 parts.
  • the copper-containing photosensitive material includes a first copper-containing photosensitive material and a second copper-containing photosensitive material.
  • the first copper-containing photosensitive material is a copper-containing inorganic metal oxide
  • the second copper-containing photosensitive material can be selected from copper-containing inorganic metal oxides, copper-containing inorganic metal salts, and copper-containing organometallic complexes one or more.
  • the second copper-containing photosensitive material is copper-containing inorganic metal oxide
  • the second copper-containing photosensitive material may be the same as or different from the first copper-containing photosensitive material.
  • the copper-containing inorganic metal oxide comprises copper and at least one metal selected from the group consisting of cadmium, zinc, cobalt, magnesium, tin, titanium, iron, aluminum, nickel, gold, silver, palladium, manganese and chromium.
  • the first copper-containing photosensitive material further contains 5-10 parts by mass, and further contains 6-8 parts.
  • the second copper-containing photosensitive material further contains 5-10 parts by mass, and further contains 6-8 parts.
  • the mass ratio of the first copper-containing photosensitive material to the second copper-containing photosensitive material is 1:2 ⁇ 2:1.
  • the copper-containing inorganic metal oxide is copper dichromate, copper aluminate, copper manganate, copper ferrite, copper cobaltate, copper chrome black, copper iron manganate (CuFeMnO 4 ), cobalt acid One or more of one or more of iron copper (CuFeCoO 4 ), cobalt copper ferrite (CuCoFeO 4 ), and the like.
  • the copper-containing inorganic metal salt contains copper metal components, and the acid group can be hydrogen phosphate group, phosphate group or thiocyanate group. In some embodiments, the copper-containing inorganic metal salt is copper hydroxyphosphate.
  • the copper-containing organometallic complex is selected from copper-containing arene complexes, copper-containing alkenyl complexes, copper-containing metallocene complexes, copper-containing carbene complexes, and copper-containing carbene complexes. one or more of them.
  • the mass fraction of the copper-containing photosensitive material in the surface layer raw material ranges from 8% to 20%, that is, (mass fraction of the copper-containing photosensitive material/total mass fraction of the surface layer raw material) x 100%.
  • the raw materials of the surface layer also include 0.5-8 parts by mass of additives, and the additives are one of inorganic oxides, diphenyl diacetylhydrazone compounds, dispersants and organic chelating agents or more;
  • diphenyl diacetylhydrazone compound has the following structure:
  • Each occurrence of R is independently selected from -H, -D, -F, -Cl, -Br, substituted or unsubstituted C1-C6 alkyl, substituted or unsubstituted C1-C6 alkoxy or phenyl.
  • the substituents may be selected from one or more of halogen atoms, hydroxyl groups and carboxyl groups.
  • the raw material of the surface layer consists of the following materials: 85-95 parts of the second high molecular polymer, Copper-containing photosensitive material 10-20 parts, Auxiliary 0.5-8 parts,
  • the mass ratio of the first copper-containing photosensitive material to the second copper-containing photosensitive material is 1:2 ⁇ 2:1.
  • the raw materials of the surface layer include:
  • the inorganic oxide is one or more of copper oxide, aluminum oxide and silicon dioxide.
  • R is -H, methyl, methoxy, ethyl or ethoxy.
  • the dispersant is one or both of diethylacetamide and polyethylene glycol.
  • the organic chelating agent is salicylic acid Schiff base, 1-hydroxyethylidene-1,1-diphosphonic acid, aminotrimethylenephosphonic acid, and polyaminopolyether tetramethylene One or more of phosphonic acids.
  • the wavelength of the ultraviolet light treatment is 157nm-353nm, further 180nm-330nm, and further 200-300nm.
  • the time of the ultraviolet light treatment is 5 ms-100 ms, further 20 ms-80 ms, and further 30-60 ms.
  • the first polymer and/or the second polymer is polyethylene terephthalate, polyethylene, polypropylene, polyimide, polyether ether One or more of ketone and polymethyl methacrylate.
  • the thickness of the core layer is 1 ⁇ m ⁇ 2 ⁇ m.
  • the thickness of the surface layer is 0.5 ⁇ m ⁇ 4.5 ⁇ m, further 1 ⁇ m ⁇ 3 ⁇ m.
  • the composite current collector substrate has a thickness of 3 ⁇ m ⁇ 10 ⁇ m.
  • the electroless copper plating is alkaline electroless copper plating, and the thickness of the copper layer obtained by the electroless copper plating is 100nm-1000nm, further 200nm-900nm, and further 400nm-800nm.
  • the electroless copper plating solution can be selected from any suitable electroless copper plating solution, such as copper sulfate 10g/L ⁇ 15g/L, pyrrolidine dithiocarbamate Sodium 0.08g/L ⁇ 0.12g/L, Benzyltriphenylphosphine Bromide 0.16g/L ⁇ 0.24g/L, 2-(Hydroxymethyl)thiophene 0.24g/L ⁇ 0.36g/L, Potassium Sodium Tartrate 18g/L ⁇ 24g/L, EDTA 8g/L ⁇ 12g/L, ⁇ , ⁇ -bipyridine 0.008g/L ⁇ 0.012g/L, potassium ferrocyanide 0.02g/L ⁇ 0.03g/L and formaldehyde 2.5 g/L ⁇ 3.5g/L composition.
  • suitable electroless copper plating solution such as copper sulfate 10g/L ⁇ 15g/L, pyrrolidine dithiocarbamate Sodium 0.08g/L ⁇ 0.12g/L, Benz
  • the copper electroplating is acidic electrolytic copper plating, and the thickness of the copper layer obtained by the copper electroplating is 900nm-1100nm.
  • the electroplating copper solution can be selected from any suitable electroplating coating solution, such as copper sulfate coating solution, including 80ppm ⁇ 160ppm copper sulfate, 80ppm ⁇ 160ppm sulfuric acid, 50ppm ⁇ 70ppm hydrochloric acid, 1ppm ⁇ 5ppm sodium polydisulfide dipropane sulfonate, 10ppm ⁇ 200 ppm polyethylene glycol 8000.
  • the electroless copper plating or copper electroplating further includes electroplating a chromium layer of 1 nm to 2 nm.
  • the composite current collector substrate prepared by co-extruding a certain mass of copper-containing photosensitive material and high molecular polymer as the surface layer raw material of the composite current collector substrate and the core layer raw material, under the irradiation of ultraviolet light, part of the bivalent Copper ions are reduced to simple copper, and a nano-scale copper layer is grown; another part of the copper-containing photosensitive material is activated to form seed crystals with catalytic activity for electroless copper plating.
  • the synergistic effect of the nano-copper layer and the seed crystal can not only achieve the square resistance required by electroless plating or electroplating, but also because part of the seed crystal is located inside the substrate, and the other part slowly crystallizes and grows during the subsequent electroless copper plating, which can make the electroless plating
  • the bonding force between the copper layer and the base material is stronger, which effectively replaces the physical vapor deposition step of preparing the composite current collector in the traditional technology, effectively reduces energy consumption and production cost, and improves production efficiency.
  • the ultraviolet light treatment process will not cause macroscopic damage to the polymer material, thus will not affect its physical strength and performance, and thus effectively improve the product yield.
  • FIG. 1 is a schematic diagram of a cross-sectional structure of a composite current collector prepared in an embodiment of the present application.
  • first and second are used for descriptive purposes only, and cannot be interpreted as indicating or implying relative importance or implicitly specifying the quantity of indicated technical features.
  • the features defined as “first” and “second” may explicitly or implicitly include at least one of these features.
  • “multiple” means at least two, such as two, three, etc., unless otherwise specifically defined.
  • “several” means at least one, such as one, two, etc., unless otherwise specifically defined.
  • the above numerical range is considered continuous, and includes the minimum and maximum values of the range, as well as every value between such minimum and maximum values. Further, when a range refers to an integer, every integer between the minimum and maximum of the range is included. Furthermore, when multiple ranges are provided to describe a feature or characteristic, the ranges may be combined. In other words, unless otherwise indicated, all ranges disclosed herein are to be understood to encompass any and all subranges subsumed therein.
  • the percentage content involved in this application refers to mass percentage for solid-liquid mixing and solid-solid phase mixing, and refers to volume percentage for liquid-liquid phase mixing.
  • the percentage concentration involved in this application refers to the final concentration.
  • the final concentration refers to the proportion of the added component in the system after the component is added.
  • the temperature parameters in this application are allowed to be treated at a constant temperature, and also allowed to be treated within a certain temperature range.
  • the isothermal treatment allows the temperature to fluctuate within the precision of the instrument control.
  • One aspect of the present application provides a method for preparing a composite current collector, which includes the following steps:
  • the composite current collector base material includes a core layer and surface layers arranged on both sides of the core layer, and perform ultraviolet light treatment on the surface layer to prepare an activated base material; perform electroless copper plating on the activated base material;
  • the raw material of the core layer is the first polymer
  • the raw materials of the surface layer include: 85-95 parts of the second high molecular polymer, 5-10 parts of the first copper-containing photosensitive material, and 5-10 parts of the second copper-containing photosensitive material,
  • the first copper-containing photosensitive material is a copper-containing inorganic metal oxide
  • the second copper-containing photosensitive material is selected from copper-containing inorganic metal oxides, copper-containing inorganic metal salts, and copper-containing organometallic complexes,
  • the copper-containing inorganic metal oxide comprises copper and at least one metal selected from the group consisting of cadmium, zinc, cobalt, magnesium, tin, titanium, iron, aluminum, nickel, gold, silver, palladium, manganese and chromium.
  • Another aspect of the present invention provides a raw material for the surface layer of a composite current collector base material, which consists of the following materials: 85-95 parts of the second high molecular polymer, Copper-containing photosensitive material 10-20 parts, Auxiliary 0.5-8 parts,
  • the copper-containing photosensitive material comprises a first copper-containing photosensitive material and a second copper-containing photosensitive material
  • the first copper-containing photosensitive material is a copper-containing inorganic metal oxide
  • the second copper-containing photosensitive material is selected from copper-containing inorganic metal oxides, copper-containing inorganic metal salts, and copper-containing organometallic complexes,
  • the copper-containing inorganic metal oxide comprises copper and at least one metal selected from the group consisting of cadmium, zinc, cobalt, magnesium, tin, titanium, iron, aluminum, nickel, gold, silver, palladium, manganese and chromium.
  • the auxiliary agent contained in the surface layer raw material of the composite current collector substrate is one or more of inorganic oxides, diphenyl diacetylhydrazone compounds, dispersants, and organic chelating agents;
  • diphenyl diacetylhydrazone compound has the following structure:
  • R is independently selected from -H, -D, -F, -Cl, -Br, substituted or unsubstituted C1 ⁇ C6 alkyl, substituted or unsubstituted C1 ⁇ C6 alkoxy or substituted or unsubstituted Substituted phenyl,
  • the substituents include one or more selected from halogen atoms, hydroxyl groups, and carboxyl groups.
  • Lithium batteries mainly store energy in electrode materials. Therefore, the common way to increase energy density is to optimize and develop electrode materials, or directly increase the proportion of active materials in the battery. However, the change of these active components will have a great impact on the performance of the battery, so the operation is complicated and the research and development cost is high. In order to solve this problem, the researchers disassembled the structure of the entire battery, trying to find new ideas. It has been found that the traditional metal current collector accounts for 15% or more of the lithium battery.
  • the thus prepared Composite current collector is 80% lighter than the original pure metal current collector; and because the weight ratio of the current collector is reduced, the energy density of the battery can be increased by 8% to 26 % (specific data varies with different battery types).
  • Copper is a metal with good conductivity and low cost, so it is widely used as a conductive material. Naturally, it is also very suitable for the preparation of composite current collectors. However, the boiling point of elemental copper is as high as 2835K. If physical vapor deposition is used to prepare copper-containing composite current collectors, even if copper itself is very cheap, due to the high requirements for equipment and temperature of physical vapor deposition, the production cost will still remain high. Moreover, in addition to achieving a certain square resistance, copper plating on the polymer surface also requires catalytic active centers. In traditional technologies, noble metals such as silver or palladium are usually used as catalytic active metals, which further increases production costs.
  • the present application uses a certain mass portion of copper-containing photosensitive material (such as the combination of the first copper-containing photosensitive material copper dichromate CuCr 2 O 7 and the second copper-containing photosensitive material copper hydroxyphosphate Cu 2 (OH) PO 4 ) with high
  • the molecular polymer is used as the surface layer raw material of the composite current collector substrate, and the composite current collector substrate prepared by co-extruding with the core layer raw material, under the irradiation of ultraviolet light, the divalent copper ions in part of the copper-containing photosensitive material are reduced to copper
  • the nano-scale copper layer is grown; another part of the copper-containing photosensitive material is activated to form a seed crystal with electroless copper plating catalytic activity.
  • the synergistic effect of the layer and the seed crystal can not only achieve the square resistance required by electroless plating or electroplating, but also because part of the seed crystal is located inside the substrate, and the other part slowly crystallizes and grows during the subsequent electroless copper plating, which can make the copper layer of electroless plating
  • the combination with the substrate is stronger, which is a good replacement for the physical vapor deposition step in the preparation of the composite current collector in the traditional technology. It does not need to be deposited in a vacuum environment, and there is basically no hedging of cold and heat energy, which effectively reduces energy consumption and production costs.
  • the nano-scale copper layer and the seed crystal itself have electroless copper plating catalytic activity, so the noble metal catalysts such as silver or palladium used in the traditional technology can be saved, and the production cost is further reduced.
  • the ultraviolet light treatment process will not cause macroscopic damage to the polymer material, thus will not affect its physical strength and performance, and thus effectively improve the product yield.
  • the raw materials of the surface layer include: 88-92 parts of the second high molecular polymer, 6-8 parts of the first copper-containing photosensitive material, and 6-8 parts of the second copper-containing photosensitive material.
  • the raw materials of the surface layer include: 90 parts of the second high molecular polymer, 7 parts of the first copper-containing photosensitive material, and 7 parts of the second copper-containing photosensitive material.
  • copper-containing photosensitive materials such as copper hydroxyphosphate Cu 2 (OH) PO 4 and copper dichromate CuCr 2 O 7
  • this type of crystal can be used as the seed crystal of electroless copper plating, so that the surface of the polymer containing the seed crystal has an environment for electroless copper plating, which can replace the physical vapor phase before copper plating in traditional technology Steps for depositing a copper layer.
  • the amount of copper-containing photosensitive materials such as copper hydroxyphosphate and copper dichromate
  • the formed copper layer has a better bonding force with the polymer, and the crystal grains will not be too coarse due to the rapid growth of the nano-copper layer or the electroless copper layer, resulting in insufficient copper layer formation Dense, affecting its electrical conductivity and physical strength.
  • the raw materials of the surface layer also include 0.5-8 parts by mass of additives, and the additives are one or more of inorganic oxides, diphenyl diacetylhydrazone compounds, dispersants, and organic chelating agents;
  • diphenyl diacetylhydrazone compound has the following structure:
  • Each occurrence of R is independently selected from -H, -D, -F, -Cl, -Br, substituted or unsubstituted C1 ⁇ C6 alkyl, substituted or unsubstituted C1 ⁇ C6 alkoxy or phenyl,
  • the substituent may be selected from one or more of a halogen atom, a hydroxyl group and a carboxyl group.
  • the raw materials of the surface layer include:
  • the raw materials of the surface layer include:
  • the raw materials of the surface layer include:
  • the inorganic oxide is one or more of copper oxide, aluminum oxide, and silicon dioxide.
  • the addition of an appropriate amount of inorganic oxide can make the surface layer have certain micropores and appropriate roughness, thereby further improving the binding force between the plating layer and the polymer layer.
  • R in the structure of the diphenyl diacetylhydrazone compound, R is -H, methyl, methoxy, ethyl or ethoxy. Further, R is -H.
  • the diphenyl diacetylhydrazone compound has suitable steric hindrance, and can optimize the microstructure of copper-containing photosensitive materials (such as copper hydroxyphosphate and copper dichromate) to grow into a better crystal form.
  • the dispersant is diethylacetamide and/or polyethylene glycol. Further, the dispersant is diethylacetamide.
  • the organic chelating agent is a salicylic acid Schiff base, 1-hydroxyethylidene-1,1-diphosphonic acid (HEDP), aminotrimethylenephosphonic acid (ATMP), and polyaminopolyether groups One or more of tetramethylene phosphonic acid (PAPEMP).
  • the organic chelating agent is salicylic acid Schiff base.
  • the organic chelating agent can coordinate with copper, and can also provide certain steric hindrance, which can further optimize the microstructure of copper hydroxyphosphate and copper dichromate.
  • the wavelength of the ultraviolet light treatment is 157 nm to 353 nm, and the time of the ultraviolet light treatment is 5 ms to 100 ms.
  • the wavelength of ultraviolet light in the ultraviolet light treatment can be, for example, 160nm, 165nm, 170nm, 175nm, 180nm, 185nm, 190nm, 195nm, 200nm, 220nm, 240nm, 260nm, 280nm, 300nm, 320nm, 340nm or 350nm.
  • the time for ultraviolet light treatment may be, for example, 10ms, 20ms, 30ms, 40ms, 50ms, 60ms, 70ms, 80ms or 90ms.
  • the wavelength of the ultraviolet light is 180nm-190nm. Exposing the composite current collector substrate to ultraviolet light can reduce part of the divalent copper ions to copper simple substance, so that a nano-scale copper layer grows on the surface of the substrate.
  • the surface of the polymer film can reach
  • some copper-containing photosensitive materials such as copper hydroxyphosphate and copper dichromate
  • copper hydroxyphosphate and copper dichromate become seed crystals with a spinel structure, which can directly replace the physical vapor deposition and the addition of palladium or
  • the step of using precious metals such as silver as a catalyst effectively reduces the production cost and improves the yield rate.
  • Appropriate ultraviolet wavelengths have appropriate energy, and can control the speed of redox reaction of divalent copper and the speed of crystal growth within a suitable range.
  • the first high molecular polymer and/or the second high molecular polymer is polyethylene terephthalate, polyethylene, polypropylene, polyimide, polyether ether ketone, and polymethyl ether ketone.
  • methyl acrylate One or more of methyl acrylate.
  • the core layer and the surface layer of the present application can be prepared by co-extrusion, or can be prepared separately and then compounded; the preparation process can be various common film-making processes in the art, such as blown film-making process, salivation film-making process and One or more of the two-way stretching film-making process.
  • the polymer raw material when preparing the core layer and/or the surface polymer film, is a solution, and the intrinsic viscosity of the solution is 0.5dL/g-0.8dL/g.
  • the intrinsic viscosity may be 0.6dL, for example. /g or 0.7dL/g. Films made from polymer solutions within a certain intrinsic viscosity range are more suitable for the process of this application.
  • the core layer has a thickness of 1 ⁇ m to 2 ⁇ m.
  • the thickness of the core layer may be, for example, 1.2 ⁇ m, 1.4 ⁇ m, 1.6 ⁇ m or 1.8 ⁇ m.
  • the surface layer has a thickness of 0.5 ⁇ m to 4.5 ⁇ m.
  • the thickness of the surface layer may be, for example, 0.5 ⁇ m, 1.0 ⁇ m, 1.5 ⁇ m, 2.0 ⁇ m, 2.5 ⁇ m, 3.0 ⁇ m, 3.5 ⁇ m, 4.0 ⁇ m or 4.5 ⁇ m.
  • the thicknesses of the skin layers on both sides of the core layer may be the same or different.
  • the composite current collector substrate has a thickness of 3 ⁇ m ⁇ 10 ⁇ m.
  • the thickness of the composite current collector substrate may be, for example, 4 ⁇ m, 5 ⁇ m, 6 ⁇ m, 7 ⁇ m, 8 ⁇ m or 9 ⁇ m.
  • Limiting the thickness of the core layer and/or the base material of the composite current collector is especially suitable for the preparation process of the present application, so that the composite current collector has better electrical conductivity and higher bonding strength between layers.
  • the electroless copper plating is alkaline electroless copper plating, and the thickness of the copper layer obtained by the electroless copper plating is 100 nm ⁇ 1000 nm.
  • the activated substrate can be cleaned with deionized water to avoid the impact on the electroless copper plating.
  • the main purpose of electroless copper plating is to form a thickened copper layer so that the square resistance of the composite current collector can reach the standard required by the secondary battery. Any common alkaline electroless copper plating solution in the field can be used for copper plating.
  • the thickness of the electroless copper plating layer can be adjusted as required, for example, it can be 200nm, 300nm, 400nm, 500nm, 600nm, 700nm, 800nm or 900nm.
  • copper electroplating is also included after the electroless copper plating, the copper electroplating is acidic electrolytic copper plating, and the thickness of the copper layer obtained by the copper electroplating is 900nm-1100nm. It can be understood that before electroplating copper, the activated substrate after electroless copper plating can be cleaned with deionized water, so as to avoid affecting the electroplating copper. Copper electroplating is mainly to further thicken the copper layer to meet the use requirements of the secondary battery, and any common acidic electrolytic copper plating solution in this field can be used for copper plating.
  • the thickness of the electroplated copper layer can be adjusted according to needs, for example, it can be 910nm, 920nm, 930nm, 940nm, 950nm, 960nm, 970nm, 980nm, 990nm, 1000nm, 1010nm, 1020nm, 1030nm, 1040nm, 1050nm, 1060nm, 1070nm, 1080nm or 1090nm .
  • the composite current collector has the structure shown in FIG. 1, two surface layers 200 are respectively located on both sides of the core layer 100, and the side of the surface layer 200 away from the core layer 100 is provided with a copper plating layer 300 and a plating layer in sequence.
  • the copper layer 400 and the copper plating layer 300 are prepared by an electroless plating process, and the copper plating layer 400 is prepared by an electroplating process.
  • a chromium layer of 1 nm to 2 nm is electroplated. It can be understood that before electrochrome plating, the activated substrate after electroplating copper can be cleaned with deionized water, so as to avoid affecting the electrochrome plating. Chromium electroplating is mainly to form an anti-oxidation protective layer to improve the service life of the composite current collector. Trivalent chromium or hexavalent chromium solutions can be used for chromium plating.
  • the steps of copper electroplating and chromium electroplating may be included at the same time, or only any one of them may be included.
  • the structure of the composite current collector is: polymer film layer-electroless copper plating layer-electroplated copper layer-electrochrome plating layer; step, the structure of the composite current collector is: polymer film layer-electroless copper plating layer-electrochrome plating layer.
  • drying is carried out at 75° C. to 85° C. for 2 minutes to 5 minutes, and further, at 80° C. for 3 minutes.
  • the weight described in the description of the embodiments of the present application may be ⁇ g, mg, g, kg and other well-known mass units in the field of chemistry and chemical engineering.
  • Core material polyethylene terephthalate (intrinsic viscosity 0.6dL/g);
  • the activated polyethylene terephthalate substrate is cleaned with deionized water, it is placed in an alkaline electroless copper plating solution (copper sulfate-formaldehyde system) for electroless copper plating, so that the copper layer is thickened to 1000nm; , after cleaning with deionized water, place it in an acidic copper electroplating solution (sulfuric acid-copper sulfate-chloride ion system) for electroplating copper (current density 5A/dm 2 ), so that the copper layer is thickened to 1000nm; take it out, and use deionized After washing with water, place it in a trivalent chromium plating solution for electroplating (current density 30A/dm 2 ) to form a 2nm thick anti-oxidation chromium layer, and then dry it at 80°C for 3 minutes to obtain polyethylene terephthalate Ester-copper composite current collector.
  • an alkaline electroless copper plating solution copper sulfate
  • the formula of the surface layer raw materials is: 92 parts of polyethylene terephthalate, 6 parts of Cu 2 (OH)PO 4 , 6 parts of CuCr 2 O 7 , 1 part of di Aluminum, 1 part of diphenyl diacetylhydrazone compound (R is -H), 1 part of diethylacetamide, 1 part of salicyl Acid Schiff base.
  • the formula of the surface layer raw materials is: 85 parts of polyethylene terephthalate, 10 parts of Cu 2 (OH)PO 4 , 10 parts of CuCr 2 O 7 , 0.5 parts of dioxane Aluminum, 0.5 part of diphenyl diacetylhydrazone compound (R is -H), 0.5 part of diethylacetamide, 0.5 part of salicylic acid Schiff base.
  • Example 2 It is basically the same as Example 1, except that the formula of the surface layer raw materials is: 90 parts of polyethylene terephthalate, 7 parts of Cu 2 (OH)PO 4 , and 7 parts of CuCr 2 O 7 .
  • Example 2 It is basically the same as in Example 1, except that the polyethylene terephthalate in the core material and the surface material is replaced by polypropylene with an intrinsic viscosity of 0.5 dL/g.
  • Example 2 It is basically the same as in Example 1, except that the polyethylene terephthalate in the core layer raw material and the surface layer raw material is replaced by polyimide with an intrinsic viscosity of 0.8 dL/g.
  • Example 2 It is basically the same as Example 1, except that 7 parts of Cu 2 (OH)PO 4 and 7 parts of CuCr 2 O 7 in the surface layer raw materials are replaced by 14 parts of copper manganate.
  • Example 2 It is basically the same as Example 1, except that 7 parts of Cu 2 (OH)PO 4 and 7 parts of CuCr 2 O 7 in the surface layer raw materials are replaced by 14 parts of copper aluminate.
  • Example 2 It is basically the same as Example 1, except that 7 parts of Cu 2 (OH)PO 4 and 7 parts of CuCr 2 O 7 in the surface layer raw material are replaced by 14 parts of Cu 2 SO 4 .
  • Example 2 It is basically the same as Example 1, except that the wavelength of the ultraviolet light is 100nm.
  • Test method First, place the prepared composite current collector sample with a flat surface on the sample stage, then touch the probe of the four-probe square resistance meter (DMR-1C) to the sample, and the display of the four-probe square resistance meter The data of square resistance is read out on the panel.
  • DMR-1C four-probe square resistance meter
  • Test method Cut the composite current collector into a sample strip with a length of 15mm and a width of 200mm, and then clamp the sample strip in a tensile machine (Zwick ProLine) to start the test.
  • the test parameters are set as: tensile speed 50mm/min, clamping distance 100mm.
  • Each sample was tested 5 times in parallel, and the average value of the 5 test results was taken as the final test result.
  • each sample is divided into two sub-samples, MD (sampled along the longitudinal direction) and TD (sampled along the transverse direction).
  • the composite current collectors prepared in each embodiment of the present application have good electrical conductivity and elongation at break, so they can not only play the most basic conductive role, but also ensure safety.
  • it is not easy to break, and the yield rate has been significantly improved compared with the traditional technology; and the preparation method is simple, the energy consumption is low, and the cost can be greatly reduced compared with the traditional physical vapor deposition method.
  • Example 2 Compared with Example 1 of the optimal solution, the formulation of the surface material in Example 2 is not within the preferred range, and the amount of polymer used is slightly more, resulting in a slight increase in square resistance compared with Example 1; the amount of polymer used in Example 3 is slightly higher.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Metallurgy (AREA)
  • Mechanical Engineering (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Physics & Mathematics (AREA)
  • Toxicology (AREA)
  • Optics & Photonics (AREA)
  • Composite Materials (AREA)
  • Electrochemistry (AREA)
  • Cell Electrode Carriers And Collectors (AREA)

Abstract

本申请涉及新材料技术领域,特别是涉及低能耗制备复合集流体的方法。本申请通过将一定质量份的第一含铜光敏材料和第二含铜光敏材料与高分子聚合物作为复合集流体基材的表层原料,与芯层原料共挤制备的复合集流体基材,在紫外光的照射下,部分含铜光敏材料中的二价铜离子被还原成铜单质,生长出纳米级铜层;另一部分含铜光敏材料则被激活,形成具有化学镀铜催化活性的种晶。纳米铜层与种晶协同作用,能达到化学镀或电镀所需的方阻,替代了传统技术中制备复合集流体的物理气相沉积步骤,有效降低了能耗和生产成本,提高了生产效率。且紫外光处理不会造成高分子材料损伤,不会影响其物理强度和性能,因此,也提高了产品良率。

Description

低能耗制备复合集流体的方法
相关申请
本申请要求2022年01月27日申请的,申请号为2022101025354,名称为“低能耗制备复合集流体的方法”的中国专利申请的优先权,在此将其全文引入作为参考。
本申请要求2022年05月25日申请的,申请号为PCT/CN2022/094833,名称为“低能耗制备复合集流体的方法”的PCT国际申请的优先权,在此将其全文引入作为参考。
技术领域
本申请涉及新材料技术领域,特别是涉及低能耗制备复合集流体的方法。
背景技术
复合集流体是一种新型的集流体材料,由高分子基材层两面镀金属制成,呈“三明治结构”。目前,复合集流体的制备方法主要是在高分子基材的上下表面采用真空状态下物理气相沉积法(PVD)沉积一定厚度的金属层,以使其达到一定的方阻,从而达到可以电镀或化学镀的标准,然后把双面沉积金属后的材料进行电镀或化学镀使金属层加厚,使材料的方阻能达到二次电池需要的标准。
然而,真空物理气相沉积对设备要求高,并且伴随着高温,而高分子基材在高温下很容易变形、起皱、窜泡、穿孔、变脆等,即使在沉积过程中实时对高分子材料进行冷却处理,上述问题也不能完全避免,因此,采用物理气息制备的复合集流体产品良率较低,通常低于50%。此外,物理气相沉积速度慢,生产效率低下;而且由于物理气相沉积需要把金属气化,所耗费的能量很高,同时,高分子基材的冷却也需要很高的能量,形成能量互冲,造成很大的能量损失,不利于碳达峰、碳中和。
发明内容
基于此,有必要提供一种能耗低、成本低、生产效率高且良品率高的复合集流体的制备方法。
本申请的一个方面,提供了一种复合集流体的制备方法,其包括以下步骤:
提供复合集流体基材,所述复合集流体基材包括芯层和设置于所述芯层两侧的表层,对所述表层进行紫外光照处理,制备活化基材;将所述活化基材进行化学镀铜;
其中,所述芯层的原料为第一高分子聚合物,按质量份计,所述表层的原料包括:
第二高分子聚合物    85~95份、
含铜光敏材料        10~20份。
在一些实施方式中,所述含铜光敏材料包含第一含铜光敏材料和第二含铜光敏材料。其中第一含铜光敏材料为含铜的无机金属氧化物,其中第二含铜光敏材料可选自含铜的无机金属氧化物、含铜的无机金属盐以及含铜的有机金属配合物中的一种或多种。当第二含铜光敏材料为含铜的无机金属氧化物时,第二含铜光敏材料可与第一含铜光敏材料相同或不同。含铜的无机金属氧化物包含铜和至少一种金属选自镉、锌、钴、镁、锡、钛、铁、铝、镍、金、银、钯、锰和铬。在表层中,第一含铜光敏材料,按质量份计,进一步含5~10份,更进一步含6~8份。在表层中,第二含铜光敏材料,按质量份计,进一步含5~10份,更进一步含6~8份。在一些实施方式中,第一含铜光敏材料和第二含铜光敏材料的质量比为1:2~2:1。
在一些实施方式中,含铜的无机金属氧化物为重铬酸铜、铝酸铜、锰酸铜、铁酸铜、钴酸铜、铜铬黑、锰酸铁铜(CuFeMnO4)、钴酸铁铜(CuFeCoO4)、铁酸钴铜(CuCoFeO4)等中的一种或多种中的一种或多种。
在一些实施方式中,含铜的无机金属盐除含有铜金属成分以外,酸根可以为磷酸氢氧根、磷酸根或硫氰酸根。在一些实施方式中,含铜的无机金属盐为羟基磷酸铜。
在一些实施方式中,含铜的有机金属配合物为选自含铜芳烃配合物、含铜烯基配合物、含铜茂金属配合物、含铜卡宾络合物以及含铜卡拜络合物中一种或多种。
在一些实施方式中,含铜光敏材料在表层原料中的质量分数范围为8%~20%,即(含铜光敏材料的质量份数/表层原料的总质量份数)x 100%。
在一些实施方式中,所述表层的原料还包括0.5~8质量份的助剂,所述助剂为无机氧化物、二苯基二乙酰腙类化合物、分散剂以及有机螯合剂中的一种或多种;
其中,所述二苯基二乙酰腙类化合物具有如下结构:
R每次出现,独立地选自-H、-D、-F、-Cl、-Br、取代或非取代的C1~C6烷基、取代或非取代的C1~C6烷氧基或苯基。在一些实施方式中,取代基可选自卤原子、羟基和羧基中的一种或多种。
在一些实施方式中,表层的原料由以下材料组成:
第二高分子聚合物    85~95份,
含铜光敏材料        10~20份,
助剂                0.5-8份,
其中第一含铜光敏材料和第二含铜光敏材料的质量比为1:2~2:1。
在一些实施方式中,按质量份计,所述表层的原料包括:
在一些实施方式中,所述无机氧化物为氧化铜、三氧化二铝以及二氧化硅中的一种或多种。
在一些实施方式中,所述二苯基二乙酰腙类化合物的结构中,R为-H、甲基、甲氧基、乙基或乙氧基。
在一些实施方式中,所述分散剂为二乙基乙酰胺和聚乙二醇中的一种或两种。
在一些实施方式中,所述有机螯合剂为水杨酸席夫碱、1-羟基亚乙基-1,1-二膦酸、氨基三亚甲基膦酸以及多氨基多醚基四亚甲基膦酸中的一种或多种。
在一些实施方式中,所述紫外光照处理的波长为157nm~353nm,进一步为180nm~330nm,更进一步为200~300nm。
在一些实施方式中,所述紫外光照处理的时间为5ms~100ms,进一步为20ms~80ms,更进一步为30~60ms。
在一些实施方式中,所述第一高分子聚合物和/或所述第二高分子聚合物为聚对苯二甲酸乙二醇酯、聚乙烯、聚丙烯、聚酰亚胺、聚醚醚酮以及聚甲基丙烯酸甲酯中的一种或多种。
在一些实施方式中,所述芯层的厚度为1μm~2μm。
在一些实施方式中,所述表层的厚度为0.5μm~4.5μm,进一步为1μm~3μm。
在一些实施方式中,所述复合集流体基材的厚度为3μm~10μm。
在一些实施方式中,所述化学镀铜为碱性化学镀铜,所述化学镀铜获得的铜层厚度为100nm~1000nm,进一步为200nm~900nm,更进一步为400nm~800nm。
化学镀铜液可选自任意合适的化学镀铜液,如包含硫酸铜10g/L~15g/L、吡咯烷二硫代氨基甲酸 钠0.08g/L~0.12g/L、苄基三苯基溴化膦0.16g/L~0.24g/L、2-(羟甲基)噻吩0.24g/L~0.36g/L、酒石酸钾钠18g/L~24g/L、EDTA 8g/L~12g/L、α,α-联吡啶0.008g/L~0.012g/L、亚铁氰化钾0.02g/L~0.03g/L及甲醛2.5g/L~3.5g/L的组合物。
在一些实施方式中,所述化学镀铜后还包括电镀铜,所述电镀铜为酸性电解镀铜,所述电镀铜获得的铜层厚度为900nm~1100nm。电镀铜液可选自任意合适的电镀镀膜液,如硫酸铜镀膜液,包含80ppm~160ppm硫酸铜、80ppm~160ppm硫酸、50ppm~70ppm盐酸、1ppm~5ppm聚二硫二丙烷磺酸钠、10ppm~200ppm聚乙二醇8000。
在一些实施方式中,所述化学镀铜或电镀铜后还包括电镀1nm~2nm的铬层。
通过将一定质量份的含铜光敏材料与高分子聚合物共同作为复合集流体基材的表层原料,与芯层原料共挤制备的复合集流体基材,在紫外光的照射下,部分二价铜离子被还原成铜单质,生长出纳米级铜层;另一部分含铜光敏材料则被激活,形成具有化学镀铜催化活性的种晶。纳米铜层与种晶协同作用,不仅能达到化学镀或电镀所需的方阻,而且由于种晶一部分位于基材内部,另一部分在后续化学镀铜时慢慢结晶生长,能使得化学镀的铜层与基材的结合力更强,很好地替代了传统技术中制备复合集流体的物理气相沉积步骤,有效降低了能耗和生产成本,提高了生产效率。而且,紫外光处理过程不会造成高分子材料宏观的损伤,因而不会影响其物理强度和性能,因此,也有效提高了产品良率。
附图说明
图1为本申请一实施例制得的复合集流体的横截面结构示意图。
具体实施方式
为了便于理解本申请,下面将参照相关附图对本申请进行更全面的描述。附图中给出了本申请的较佳实施例。但是,本申请可以以许多不同的形式来实现,并不限于本文所描述的实施例。相反地,提供这些实施例的目的是使对本申请的公开内容的理解更加透彻全面。
此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括至少一个该特征。在申请的描述中,“多种”的含义是至少两种,例如两种,三种等,除非另有明确具体的限定。在本申请的描述中,“若干”的含义是至少一个,例如一个,两个等,除非另有明确具体的限定。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。本文所使用的术语“和/或”包括一个或多个相关的所列项目的任意的和所有的组合。
本申请中,以开放式描述的技术特征中,包括所列举特征组成的封闭式技术方案,也包括包含所列举特征的开放式技术方案。
本申请中,涉及到数值区间,如无特别说明,上述数值区间内视为连续,且包括该范围的最小值及最大值,以及这种最小值与最大值之间的每一个值。进一步地,当范围是指整数时,包括该范围的最小值与最大值之间的每一个整数。此外,当提供多个范围描述特征或特性时,可以合并该范围。换言之,除非另有指明,否则本文中所公开之所有范围应理解为包括其中所归入的任何及所有的子范围。
本申请中涉及的百分比含量,如无特别说明,对于固液混合和固相-固相混合均指质量百分比,对于液相-液相混合指体积百分比。
本申请中涉及的百分比浓度,如无特别说明,均指终浓度。所述终浓度,指添加成分在添加该成分后的体系中的占比。
本申请中的温度参数,如无特别限定,既允许为恒温处理,也允许在一定温度区间内进行处理。所述的恒温处理允许温度在仪器控制的精度范围内进行波动。
本申请的一个方面,提供了一种复合集流体的制备方法,其包括以下步骤:
提供复合集流体基材,复合集流体基材包括芯层和设置于芯层两侧的表层,对表层进行紫外光照处理,制备活化基材;将活化基材进行化学镀铜;
其中,芯层的原料为第一高分子聚合物,按质量份计,表层的原料包括:
第二高分子聚合物    85~95份、
第一含铜光敏材料    5~10份、以及
第二含铜光敏材料    5~10份,
其中第一含铜光敏材料为含铜的无机金属氧化物,
其中第二含铜光敏材料选自含铜的无机金属氧化物、含铜的无机金属盐、含铜的有机金属配合物,
所述含铜的无机金属氧化物包含铜和至少一种金属选自镉、锌、钴、镁、锡、钛、铁、铝、镍、金、银、钯、锰和铬。
本发明的另一个方面,提供一种复合集流体基材表层原料,由以下材料组成:
第二高分子聚合物    85~95份,
含铜光敏材料        10~20份,
助剂                0.5-8份,
所述含铜光敏材料包含第一含铜光敏材料和第二含铜光敏材料,
其中第一含铜光敏材料为含铜的无机金属氧化物,
其中第二含铜光敏材料选自含铜的无机金属氧化物、含铜的无机金属盐、含铜的有机金属配合物,
所述含铜的无机金属氧化物包含铜和至少一种金属选自镉、锌、钴、镁、锡、钛、铁、铝、镍、金、银、钯、锰和铬。
根据本申请的一种实施方式,复合集流体基材表层原料所含助剂为无机氧化物、二苯基二乙酰腙类化合物、分散剂以及有机螯合剂中的一种或多种;
其中,所述二苯基二乙酰腙类化合物具有如下结构:
R每次出现,独立地选自-H、-D、-F、-Cl、-Br、取代或非取代的C1~C6烷基、取代或非取代的C1~C6烷氧基或取代或非取代的苯基,
所述取代基包括选自卤原子,羟基,和羧基中的一种或多种。
从1990年代左右大规模商用开始,锂离子电池的比能量密度大约以每年3%的速度提升,在增加能量密度的同时,人们希望锂离子电池能够更轻、更安全。锂电池主要将能量存储在电极材料中,因此,提升能量密度的常用思路就是优化和开发电极材料,或者直接增加活性物质在电池中的比例。然而,这些活性成分的改变对电池性能会造成较大的影响,因此操作复杂、研发成本高。为了解决这一问题,研发人员把整个电池的结构进行拆分,试图寻找新的思路。人们发现,传统的金属集流体占锂电池比重可达15%甚至更高,它由金属箔膜组成,重量大,功能单一,主要作为电子的传导载体,是电池内唯一不影响锂离子传输的组成部分,具有很大的开发空间,因此,通过对集流体进行优化,可以让电池的能量密度再进一步提升。于是,“三明治”结构的复合集流体应运而生,其以轻质的聚合物材料作为支撑体,在聚合物两面复合高纯度的金属薄膜,由于有机聚合物大大轻于金属,这样制备出来的复合集流体,总体厚度不增加的情况下(9微米左右),比原来的纯金属集流体变轻了80%;而由于集流体的重量占比减轻,电池能量密度就能够提升8%~26%(具体数据依电池类型的不同而不同)。
铜是一种导电性较好且廉价的金属,因此被广泛用作导电材料,自然,也非常适用于制备复合集流体。然而,单质铜的沸点高达2835K,若采用物理气相沉积进行含铜复合集流体的制备,即使铜本身非常廉价,由于物理气相沉积对设备和温度的高要求,仍然会导致生产成本居高不下。而且,在聚合物表面镀铜除了需要达到一定的方阻之外,还需要催化活性中心,传统技术中通常采用银或钯等贵金属作为催化活性金属,进一步提高了生产成本。
本申请通过将一定质量份的含铜光敏材料(例如第一含铜光敏材料重铬酸铜CuCr2O7和第二含铜光敏材料羟基磷酸铜Cu2(OH)PO4的组合)与高分子聚合物共同作为复合集流体基材的表层原料,与芯层原料共挤制备的复合集流体基材,在紫外光的照射下,部分含铜光敏材料中的二价铜离子被还原成铜单质,生长出纳米级铜层;另一部分含铜光敏材料则被激活,形成具有化学镀铜催化活性的种晶。纳米铜 层与种晶协同作用,不仅能达到化学镀或电镀所需的方阻,而且由于种晶一部分位于基材内部,另一部分在后续化学镀铜时慢慢结晶生长,能使得化学镀的铜层与基材的结合力更强,很好地替代了传统技术中制备复合集流体的物理气相沉积步骤,无需在真空环境下进行沉积,基本没有冷热能量对冲,有效降低了能耗和生产成本,提高了生产效率;而且,该纳米级铜层和种晶本身具有化学镀铜催化活性,因此还能减省传统技术中采用的银或钯等贵金属催化剂,更进一步降低了生产成本。而且,紫外光处理过程不会造成高分子材料宏观的损伤,因而不会影响其物理强度和性能,因此,也有效提高了产品良率。
在一些实施方式中,按质量份计,表层的原料包括:
第二高分子聚合物    88~92份、
第一含铜光敏材料    6~8份、以及
第二含铜光敏材料    6~8份。
进一步地,按质量份计,表层的原料包括:
第二高分子聚合物    90份、
第一含铜光敏材料    7份、以及
第二含铜光敏材料    7份。
本申请的发明人通过大量研究发现,在紫外光照射下,含铜的光敏材料(如羟基磷酸铜Cu2(OH)PO4和重铬酸铜CuCr2O7)可以部分形成具有尖晶石结构的晶体,而这种晶型的晶体可以作为化学镀铜的种晶,使得包含该种晶的高分子聚合物表面具备化学镀铜的环境,从而可以替代传统技术中镀铜前的物理气相沉积铜层的步骤。表层原料中,含铜的光敏材料(如羟基磷酸铜和重铬酸铜)的用量对后续纳米铜层的形成和化学镀铜的品质具有直接影响,在合适的用量范围内,不仅具备足够的化学镀催化活性,形成的铜层与高分子聚合物之间具备更好的结合力,而且不会因为纳米铜层或化学镀铜层生长过快导致晶粒过于粗大,造成形成的铜层不够致密,影响其导电性能和物理强度。
在一些实施方式中,表层的原料还包括0.5~8质量份的助剂,助剂为无机氧化物、二苯基二乙酰腙类化合物、分散剂以及有机螯合剂中的一种或多种;
其中,所述二苯基二乙酰腙类化合物具有如下结构:
R每次出现,独立地选自-H、-D、-F、-Cl、-Br、取代或非取代的C1~C6烷基、取代或非取代的C1~C6烷氧基或苯基,取代基可选自卤原子、羟基和羧基中的一种或多种。
在一些实施方式中,按质量份计,表层的原料包括:
进一步地,按质量份计,表层的原料包括:
更进一步地,按质量份计,表层的原料包括:
在一些实施方式中,无机氧化物为氧化铜、三氧化二铝以及二氧化硅中的一种或多种。合适用量的无机氧化物的加入可以使得表层具有一定的微孔和合适的粗糙度,从而进一步提升镀层与聚合物层之间的结合力。
在一些实施方式中,二苯基二乙酰腙类化合物的结构中,R为-H、甲基、甲氧基、乙基或乙氧基。进一步地,R为-H。二苯基二乙酰腙类化合物具有合适的位阻,能够优化含铜光敏材料(如羟基磷酸铜和重铬酸铜)的微观结构,使之生长为更好的晶型。
在一些实施方式中,分散剂为二乙基乙酰胺和/或聚乙二醇。进一步地,分散剂为二乙基乙酰胺。
在一些实施方式中,有机螯合剂为水杨酸席夫碱、1-羟基亚乙基-1,1-二膦酸(HEDP)、氨基三亚甲基膦酸(ATMP)以及多氨基多醚基四亚甲基膦酸(PAPEMP)中的一种或多种。进一步地,有机螯合剂为水杨酸席夫碱。有机螯合剂能够与铜配位,且同样能够提供一定的位阻,能进一步优化羟基磷酸铜和重铬酸铜的微观结构。
在一些实施方式中,紫外光照处理的波长为157nm~353nm,紫外光照处理的时间为5ms~100ms。可选地,紫外光照处理中紫外光的波长例如可以是160nm、165nm、170nm、175nm、180nm、185nm、190nm、195nm、200nm、220nm、240nm、260nm、280nm、300nm、320nm、340nm或350nm。可选地,紫外光照处理的时间例如可以是10ms、20ms、30ms、40ms、50ms、60ms、70ms、80ms或90ms。进一步地,紫外光的波长为180nm~190nm。将复合集流体基材暴露在紫外光下进行处理,可以使得部分二价铜离子被还原成铜单质,从而使得基材表面生长出一层纳米级的铜层,如此,聚合物膜表面可以达到电镀或化学镀的方阻,同时,部分含铜光敏材料(如羟基磷酸铜和重铬酸铜)成为具有尖晶石结构的种晶,可以直接取代传统技术中采用物理气相沉积和添加钯或银等贵金属作为催化剂的步骤,有效降低了生产成本,提高了良品率。合适的紫外波长具备合适的能量,能控制二价铜的氧化还原反应的速度以及晶体生长的速度在合适范围内。
在一些实施方式中,第一高分子聚合物和/或第二高分子聚合物为聚对苯二甲酸乙二醇酯、聚乙烯、聚丙烯、聚酰亚胺、聚醚醚酮以及聚甲基丙烯酸甲酯中的一种或多种。可以理解,本申请的芯层和表层可以共挤制备,也可以分别制备后复合;制备工艺可以是本领域常见的各种制膜工艺,例如可以是吹塑制膜工艺、流涎制膜工艺以及双向拉伸制膜工艺中的一种或多种。
在一些实施方式中,制备芯层和/或表层聚合物膜时,聚合物原料为溶液,溶液的特性粘度为0.5dL/g~0.8dL/g,可选地,特性粘度例如可以是0.6dL/g或0.7dL/g。一定特性粘度范围内的聚合物溶液制得的膜更适用于本申请的工艺。
在一些实施方式中,芯层的厚度为1μm~2μm。可选地,芯层的厚度例如可以是1.2μm、1.4μm、1.6μm或1.8μm。
在一些实施方式中,表层的厚度为0.5μm~4.5μm。可选地,表层的厚度例如可以是0.5μm、1.0μm、1.5μm、2.0μm、2.5μm、3.0μm、3.5μm、4.0μm或4.5μm。在一些实施方式中,芯层两侧表层的厚度可以相同也可以不同。
在一些实施方式中,复合集流体基材的厚度为3μm~10μm。可选地,复合集流体基材的厚度例如可以是4μm、5μm、6μm、7μm、8μm或9μm。
限定芯层和/或复合集流体基材的厚度,能特别适用于本申请的制备工艺,使制得的复合集流体具备更好的导电性能,且各层之间具有更高的结合强度。
在一些实施方式中,化学镀铜为碱性化学镀铜,化学镀铜获得的铜层厚度为100nm~1000nm。可 以理解,在进行化学镀铜前,可以先采用去离子水对活化基材进行清洗,可避免对化学镀铜造成影响。化学镀铜主要是为了形成加厚的铜层,使复合集流体的方阻能达到二次电池所需的标准,可采用任何本领域常规通用的碱性化学镀铜溶液进行镀铜。化学镀铜层的厚度根据需要可以调整,例如可以是200nm、300nm、400nm、500nm、600nm、700nm、800nm或900nm。
在一些实施方式中,化学镀铜后还包括电镀铜,电镀铜为酸性电解镀铜,电镀铜获得的铜层厚度为900nm~1100nm。可以理解,在进行电镀铜前,可以先采用去离子水对化学镀铜后的活化基材进行清洗,可避免对电镀铜造成影响。电镀铜主要是为了进一步加厚铜层,以满足二次电池的使用需求,可采用任何本领域常规通用的酸性电解镀铜溶液进行镀铜。电镀铜层的厚度根据需要可以调整,例如可以是910nm、920nm、930nm、940nm、950nm、960nm、970nm、980nm、990nm、1000nm、1010nm、1020nm、1030nm、1040nm、1050nm、1060nm、1070nm、1080nm或1090nm。
在一个具体示例中,复合集流体具有图1所示的结构,两个表层200分别位于芯层100的两侧,表层200远离芯层100的一侧还有依次设置的镀铜层300和镀铜层400,镀铜层300由化学镀工艺制备,镀铜层400由电镀工艺制备。
在一些实施方式中,化学镀铜或电镀铜后还包括电镀1nm~2nm的铬层。可以理解,在进行电镀铬前,可以先采用去离子水对电镀铜后的活化基材进行清洗,可避免对电镀铬造成影响。电镀铬主要是为了形成防氧化保护层,以提高复合集流体的使用寿命,可采用三价铬或六价铬溶液进行镀铬。
可以理解,在复合集流体基材的制备工艺中,可以同时包括电镀铜和电镀铬的步骤,也可以仅包括其中任意一个。例如,同时包括电镀铜和电镀铬的步骤时,则复合集流体的结构为:聚合物膜层-化学镀铜层-电镀铜层-电镀铬层;若仅包括电镀铬层而不含电镀铜步骤,则复合集流体的结构为:聚合物膜层-化学镀铜层-电镀铬层。
在一些实施方式中,进行化学镀铜、电镀铜或者电镀铬后,在75℃~85℃条件下干燥2min~5min,进一步地,在80℃条件下干燥3min。
以下结合具体实施例和对比例对本申请做进一步详细的说明。以下具体实施例中未写明的实验参数,优先参考本申请文件中给出的指引,还可以参考本领域的实验手册或本领域已知的其它实验方法,或者参考厂商推荐的实验条件。可理解,以下实施例所用的仪器和原料较为具体,在其他具体实施例中,可不限于此;本申请说明书实施例中所提到的相关成分的重量不仅仅可以指代各组分的具体含量,也可以表示各组分间重量的比例关系,因此,只要是按照本申请实施例说明书相关组分的含量按比例放大或缩小均在本申请说明书实施例公开的范围之内。具体地,本申请实施例说明书中所述的重量可以是μg、mg、g、kg等化学化工领域公知的质量单位。
实施例1
芯层原料:聚对苯二甲酸乙二醇酯(特性粘度0.6dL/g);
表层原料:90份聚对苯二甲酸乙二醇酯(特性粘度0.6dL/g)、7份Cu2(OH)PO4、7份CuCr2O7、1份三氧化二铝、1份二苯基二乙酰腙类化合物(R为-H)、1份二乙基乙酰胺、1份水杨酸席夫碱;
根据各层厚度计算用量,将芯层原料和表层原料放入共挤设备中,制备总厚度为10μm的聚对苯二甲酸乙二醇酯基材(其中芯层厚度2μm),然后在180nm的紫外光下处理50ms,得到活化的聚对苯二甲酸乙二醇酯基材;
活化的聚对苯二甲酸乙二醇酯基材经去离子水清洗后,置于碱性化学镀铜溶液(硫酸铜-甲醛体系)中进行化学镀铜,使铜层加厚至1000nm;取出,用去离子水清洗后,置于酸性电镀铜溶液(硫酸-硫酸铜-氯离子体系)中进行电镀铜(电流密度5A/dm2),使铜层加厚至1000nm;取出,用去离子水清洗后,置于三价铬电镀液中进行电镀铬(电流密度30A/dm2),形成2nm厚的防氧化铬层,然后在80℃下干燥3min,得到聚对苯二甲酸乙二醇酯-铜复合集流体。
实施例2
与实施例1基本相同,区别在于,表层原料的配方为:92份聚对苯二甲酸乙二醇酯、6份Cu2(OH)PO4、6份CuCr2O7、1份三氧化二铝、1份二苯基二乙酰腙类化合物(R为-H)、1份二乙基乙酰胺、1份水杨 酸席夫碱。
实施例3
与实施例1基本相同,区别在于,表层原料的配方为:85份聚对苯二甲酸乙二醇酯、10份Cu2(OH)PO4、10份CuCr2O7、0.5份三氧化二铝、0.5份二苯基二乙酰腙类化合物(R为-H)、0.5份二乙基乙酰胺、0.5份水杨酸席夫碱。
实施例4
与实施例1基本相同,区别在于,表层原料的配方为:90份聚对苯二甲酸乙二醇酯、7份Cu2(OH)PO4、7份CuCr2O7
实施例5
与实施例1基本相同,区别在于,芯层原料和表层原料中的聚对苯二甲酸乙二醇酯均替换为特性粘度为0.5dL/g的聚丙烯。
实施例6
与实施例1基本相同,区别在于,芯层原料和表层原料中的聚对苯二甲酸乙二醇酯均替换为特性粘度为0.8分dL/g的聚酰亚胺。
实施例7
与实施例1基本相同,区别在于,表层原料中的7份Cu2(OH)PO4、7份CuCr2O7替换为14份锰酸铜。
实施例8
与实施例1基本相同,区别在于,表层原料中的7份Cu2(OH)PO4、7份CuCr2O7替换为14份铝酸铜。
对比例1
与实施例1基本相同,区别在于,表层原料中的7份Cu2(OH)PO4和7份CuCr2O7替换为14份Cu2SO4
对比例2
与实施例1基本相同,区别在于,紫外光的波长为100nm。
将各实施例和对比例中制得的复合集流体进行下列各项测试,所得结果列入表1中。
(1)方阻电阻测试
测试方法:首先,将制备的表面平整的复合集流体样品置于样品台上,然后,将四探针方阻仪(DMR-1C)的探针接触样品,在四探针方阻仪的显示面板上读出方阻的数据。
(2)断裂拉伸强度及断裂伸长率测试
测试方法:将复合集流体裁成长15mm、宽200mm的样品条,然后将样品条夹持于拉力机(Zwick ProLine)内,开始测试,测试参数设定为:拉伸速度50mm/min,夹距100mm。每个样品平行测试5次,取5次测试结果的平均值作为最终测试结果。此外,每个样品分为MD(沿纵向方向取样)和TD(沿横向方向取样)两个子样品。
表1

从表1可知,本申请各实施例制得的复合集流体均具备较好的导电性和断裂伸长率,因此不仅能起到最基本的导电作用,安全性也有保证,在受到外力冲击或挤压时,不易破裂,而且良品率较传统技术有了明显的提升;且制备方法简单,能耗低,较传统的物理气相沉积方法成本能大幅下降。
相较于最优方案实施例1,实施例2中表层原料的配方没有位于优选范围内,聚合物的用量稍多,导致方阻较实施例1有微弱上升;实施例3中聚合物用量稍少,导致断裂伸长率较实施例1有微弱下降;实施例4中不含助剂,芯层和表层之间的结合度有所下降,一体性不如实施例1,所以断裂伸长率也有微弱下降;对比例1采用硫酸铜代替羟基磷酸铜和重铬酸铜,由于不能形成种晶,仅有部分铜离子被还原后形成纳米铜层,不足以很好地化学镀铜,因此制得的复合集流体导电性非常差,芯层和表层之间的结合度也不太好,因此断裂伸长率也明显下降;对比例2中紫外光的波长过短,能量过高,导致纳米铜层生长过快,晶粒粗大,结构疏松,因此制得的复合集流体导电性也有明显下降,断裂伸长率也有一定程度的下降。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对发明专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请的保护范围应以所附权利要求为准,说明书及附图可以用于解释权利要求的内容。

Claims (17)

  1. 一种复合集流体的制备方法,包括以下步骤:
    提供复合集流体基材,所述复合集流体基材包括芯层和设置于所述芯层两侧的表层,对所述表层进行紫外光照处理,制备活化基材;将所述活化基材进行化学镀铜;
    其中,所述芯层的原料为第一高分子聚合物,按质量份计,所述表层的原料包括:
    第二高分子聚合物        85~95份,
    含铜光敏材料            10~20份,
    所述含铜光敏材料包含第一含铜光敏材料和第二含铜光敏材料,
    其中第一含铜光敏材料为含铜的无机金属氧化物,
    其中第二含铜光敏材料选自含铜的无机金属氧化物、含铜的无机金属盐以及含铜的有机金属配合物中的一种或多种,
    所述含铜的无机金属氧化物包含铜和至少一种金属选自镉、锌、钴、镁、锡、钛、铁、铝、镍、金、银、钯、锰和铬。
  2. 根据权利要求1所述的制备方法,其特征在于,所述表层的原料还包括0.5~8质量份的助剂,所述助剂为无机氧化物、二苯基二乙酰腙类化合物、分散剂以及有机螯合剂中的一种或多种;
    其中,所述二苯基二乙酰腙类化合物具有如下结构:
    R每次出现,独立地选自-H、-D、-F、-Cl、-Br、取代或非取代的C1~C6烷基、取代或非取代的C1~C6烷氧基或取代或非取代的苯基,
    所述取代基包括选自卤原子、羟基和羧基中的一种或多种。
  3. 根据权利要求1所述的制备方法,其特征在于,具有如下所示特征中的一项或多项:
    (1)所述含铜的无机金属盐除含有铜金属成分以外,酸根可以为磷酸氢氧根、磷酸根或硫氰酸根;
    (2)所述含铜的有机金属配合物为选自含铜芳烃配合物、含铜烯基配合物、含铜茂金属配合物、含铜卡宾络合物和含铜卡拜络合物中一种或多种。
  4. 根据权利要求2所述的制备方法,其特征在于,按质量份计,所述表层的原料由以下材料组成:
    第二高分子聚合物        85~95份,
    含铜光敏材料            10~20份,
    助剂                   0.5-8份,
    所述第一含铜光敏材料和第二含铜光敏材料的质量比为1:2~2:1。
  5. 根据权利要求2所述的制备方法,其特征在于,按质量份计,所述表层的原料由以下材料组成:
  6. 根据权利要求4所述的制备方法,其特征在于,所述第一含铜光敏材料为CuCr2O7,且所述第二含铜光敏材料为Cu2(OH)PO4
  7. 根据权利要求2所述的制备方法,其特征在于,具有如下所示特征中的一项或多项:
    (1)所述无机氧化物为氧化铜、三氧化二铝以及二氧化硅中的一种或多种;
    (2)所述二苯基二乙酰腙类化合物的结构中,R为-H、甲基、甲氧基、乙基或乙氧基;
    (3)所述分散剂为二乙基乙酰胺和聚乙二醇中的一种或两种;
    (4)所述有机螯合剂为水杨酸席夫碱、1-羟基亚乙基-1,1-二膦酸、氨基三亚甲基膦酸以及多氨基多醚基四亚甲基膦酸中的一种或多种。
  8. 根据权利要求1~7任一项所述的制备方法,其特征在于,所述紫外光照处理的波长为157nm~353nm,所述紫外光照处理的时间为5ms~100ms。
  9. 根据权利要求1~7任一项所述的制备方法,其特征在于,具有如下所示特征中的一项或多项:
    (1)所述第一高分子聚合物为聚对苯二甲酸乙二醇酯、聚乙烯、聚丙烯、聚酰亚胺、聚醚醚酮以及聚甲基丙烯酸甲酯中的一种或多种;
    (2)所述第二高分子聚合物为聚对苯二甲酸乙二醇酯、聚乙烯、聚丙烯、聚酰亚胺、聚醚醚酮以及聚甲基丙烯酸甲酯中的一种或多种。
  10. 根据权利要求1~7任一项所述的制备方法,其特征在于,具有如下所示特征中的一项或多项:
    (1)所述芯层的厚度为1μm~2μm;
    (2)所述复合集流体基材的厚度为3μm~10μm。
  11. 根据权利要求1~7任一项所述的制备方法,其特征在于,所述化学镀铜为碱性化学镀铜,所述化学镀铜获得的铜层厚度为100nm~1000nm。
  12. 根据权利要求1~7任一项所述的制备方法,其特征在于,所述化学镀铜后还包括电镀铜,所述电镀铜为酸性电解镀铜,所述电镀铜获得的铜层厚度为900nm~1100nm。
  13. 根据权利要求1~7任一项所述的制备方法,其特征在于,所述化学镀铜后还包括电镀1nm~2nm的铬层。
  14. 根据权利要求12所述的制备方法,其特征在于,所述电镀铜后还包括电镀1nm~2nm的铬层。
  15. 根据权利要求1~7任一项所述的制备方法,其特征在于,所述表层的厚度为0.5μm~4.5μm。
  16. 一种复合集流体基材表层原料,由以下材料组成:
    第二高分子聚合物        85~95份,
    含铜光敏材料            10~20份,
    助剂                   0.5-8份,
    所述含铜光敏材料包含第一含铜光敏材料和第二含铜光敏材料,
    其中第一含铜光敏材料为含铜的无机金属氧化物,
    其中第二含铜光敏材料选自含铜的无机金属氧化物、含铜的无机金属盐以及含铜的有机金属配合物中的一种或多种,
    所述含铜的无机金属氧化物包含铜和至少一种金属选自镉、锌、钴、镁、锡、钛、铁、铝、镍、金、银、钯、锰和铬。
  17. 根据权利要求16所述的复合集流体基材表层原料,其特征在于,所述助剂为无机氧化物、二苯基二乙酰腙类化合物、分散剂以及有机螯合剂中的一种或多种;
    其中,所述二苯基二乙酰腙类化合物具有如下结构:
    R每次出现,独立地选自-H、-D、-F、-Cl、-Br、取代或非取代的C1~C6烷基、取代或非取代的C1~C6烷氧基或取代或非取代的苯基,
    所述取代基包括选自卤原子、羟基和羧基中的一种或多种。
PCT/CN2023/073530 2022-01-27 2023-01-28 低能耗制备复合集流体的方法 WO2023143499A1 (zh)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN202210102535.4 2022-01-27
CN202210102535.4A CN114540802B (zh) 2022-01-27 2022-01-27 低能耗制备复合集流体的方法
PCT/CN2022/094833 WO2023142321A1 (zh) 2022-01-27 2022-05-25 低能耗制备复合集流体的方法
CNPCT/CN2022/094833 2022-05-25

Publications (1)

Publication Number Publication Date
WO2023143499A1 true WO2023143499A1 (zh) 2023-08-03

Family

ID=81673752

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2022/094833 WO2023142321A1 (zh) 2022-01-27 2022-05-25 低能耗制备复合集流体的方法
PCT/CN2023/073530 WO2023143499A1 (zh) 2022-01-27 2023-01-28 低能耗制备复合集流体的方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/094833 WO2023142321A1 (zh) 2022-01-27 2022-05-25 低能耗制备复合集流体的方法

Country Status (2)

Country Link
CN (1) CN114540802B (zh)
WO (2) WO2023142321A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023109955A1 (zh) * 2021-12-16 2023-06-22 江阴纳力新材料科技有限公司 镀膜方法、镀膜系统以及镀膜生产线
CN114540802B (zh) * 2022-01-27 2023-12-01 江阴纳力新材料科技有限公司 低能耗制备复合集流体的方法
CN114678534A (zh) * 2022-05-30 2022-06-28 合肥国轩高科动力能源有限公司 一种负极复合集流体的制备方法及其制得的产品
CN115425234A (zh) * 2022-08-29 2022-12-02 浙江柔震科技有限公司 复合集流体及其制备方法
CN116377436A (zh) * 2023-04-07 2023-07-04 广东捷盟智能装备有限公司 一种pet镀膜方法及兼容化学镀和电镀工艺的镀膜设备

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070246249A1 (en) * 2003-11-27 2007-10-25 Takeyoshi Kano Metal Pattern Forming Methd, Metal Pattern Obtained by the Same, Printed Wiring Board, Conductive Film Forming Method, and Conductive Film Obtained by the Same
KR20170098114A (ko) * 2016-02-19 2017-08-29 주식회사 엘지화학 레이저를 이용한 전도성 구리 박막 패턴의 제조방법
CN108832134A (zh) * 2018-06-28 2018-11-16 清陶(昆山)新能源材料研究院有限公司 一种柔性集流体及其制备方法以及在锂离子电池中的应用
CN110312751A (zh) * 2017-01-11 2019-10-08 沙特基础工业全球技术公司 具有高热稳定性和更宽的彩色空间的激光直接成型组合物
CN110943228A (zh) * 2019-05-31 2020-03-31 宁德时代新能源科技股份有限公司 负极集流体、负极极片及电化学装置
CN114540802A (zh) * 2022-01-27 2022-05-27 江阴纳力新材料科技有限公司 低能耗制备复合集流体的方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040253450A1 (en) * 2001-05-24 2004-12-16 Shipley Company, L.L.C. Formaldehyde-free electroless copper plating process and solution for use in the process
CN100402700C (zh) * 2002-11-20 2008-07-16 希普雷公司 无甲醛化学镀铜方法及该方法中使用的溶液
CN101654775B (zh) * 2008-08-21 2011-03-30 比亚迪股份有限公司 化学镀材料及其制备方法
CN102418091B (zh) * 2010-04-14 2014-02-12 比亚迪股份有限公司 塑料制品和塑料制品的制备方法
US10243207B2 (en) * 2011-07-26 2019-03-26 Oned Material Llc Nanostructured battery active materials and methods of producing same
JP2013096000A (ja) * 2011-11-04 2013-05-20 Kyoto Univ 銅メッキポリマー及びその製造方法
US20140296411A1 (en) * 2013-04-01 2014-10-02 Sabic Innovative Plastics Ip B.V. High modulus laser direct structuring composites
CN103476199B (zh) * 2013-09-27 2016-02-03 电子科技大学 基于铜自催化和化学镀铜的印制电路加成制备方法
JP6427001B2 (ja) * 2013-12-26 2018-11-21 東京インキ株式会社 レーザー記録用積層体、レーザー記録用積層体の製造方法および記録体
CN103741125B (zh) * 2014-01-27 2015-01-14 比亚迪股份有限公司 聚合物基材表面选择性金属化方法及由该方法得到的表面具有金属化图案的聚合物基材
CN106929836B (zh) * 2015-12-31 2019-05-17 比亚迪股份有限公司 无机粉体的表面处理方法和化学镀活化剂及聚合物制品和聚合物制品表面选择性金属化方法
CN106654285B (zh) * 2016-11-18 2021-03-05 浙江大学 一种用于锂电池的柔性集流体及其制备方法
CN110527990B (zh) * 2019-09-04 2022-05-24 中国科学院深圳先进技术研究院 一种改性剂、带有金属层的玻璃基底及其制备方法和应用
CN112011796A (zh) * 2020-08-04 2020-12-01 深圳市生利科技有限公司 一种塑料表面的电镀工艺
CN112928280B (zh) * 2021-03-10 2022-06-07 中国科学院金属研究所 一种金属锂负极用铜箔的图案化方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20070246249A1 (en) * 2003-11-27 2007-10-25 Takeyoshi Kano Metal Pattern Forming Methd, Metal Pattern Obtained by the Same, Printed Wiring Board, Conductive Film Forming Method, and Conductive Film Obtained by the Same
KR20170098114A (ko) * 2016-02-19 2017-08-29 주식회사 엘지화학 레이저를 이용한 전도성 구리 박막 패턴의 제조방법
CN110312751A (zh) * 2017-01-11 2019-10-08 沙特基础工业全球技术公司 具有高热稳定性和更宽的彩色空间的激光直接成型组合物
CN108832134A (zh) * 2018-06-28 2018-11-16 清陶(昆山)新能源材料研究院有限公司 一种柔性集流体及其制备方法以及在锂离子电池中的应用
CN110943228A (zh) * 2019-05-31 2020-03-31 宁德时代新能源科技股份有限公司 负极集流体、负极极片及电化学装置
CN114540802A (zh) * 2022-01-27 2022-05-27 江阴纳力新材料科技有限公司 低能耗制备复合集流体的方法

Also Published As

Publication number Publication date
WO2023142321A1 (zh) 2023-08-03
CN114540802B (zh) 2023-12-01
CN114540802A (zh) 2022-05-27

Similar Documents

Publication Publication Date Title
WO2023143499A1 (zh) 低能耗制备复合集流体的方法
Biswal et al. Role of additives in electrochemical deposition of ternary metal oxide microspheres for supercapacitor applications
TWI393287B (zh) A fiber electrode for a lithium secondary battery, a method for manufacturing the same, and a lithium secondary battery having a fiber electrode
Zheng et al. Ultrathin porous nickel–cobalt hydroxide nanosheets for high-performance supercapacitor electrodes
Xing et al. Aluminum impurity from current collectors reactivates degraded NCM cathode materials toward superior electrochemical performance
Foruzin et al. Fabrication of TiO 2@ ZnAl-layered double hydroxide based anode material for dye-sensitized solar cell
CN107381658A (zh) 一种超薄多孔二维层状过渡金属氧化物纳米片阵列材料的拓扑制备方法
Béléké et al. Durability of nickel–metal hydride (Ni–MH) battery cathode using nickel–aluminum layered double hydroxide/carbon (Ni–Al LDH/C) composite
CN112086607B (zh) 一种复合隔膜材料及其制备方法和应用
JP2013518372A5 (zh)
Béléké et al. Effects of the composition on the properties of nickel–aluminum layered double hydroxide/carbon (Ni–Al LDH/C) composite fabricated by liquid phase deposition (LPD)
Matsumoto et al. A new preparation method of lanthanum cobalt oxide, LaCoO3, perovskite using electrochemical oxidation
WO2006128333A1 (fr) Matiere d'electrode d'oxyde de metal composite de type spinelle et procede de fabrication
Zhang et al. Fabrication of iron-doped cobalt oxide nanocomposite films by electrodeposition and application as electrocatalyst for oxygen reduction reaction
Zhao et al. Recent progress of metal-organic frameworks based high performance batteries separators: A review
Liu et al. Temperature-controlled and shape-dependent ZnO/TiO2 heterojunction for photocathodic protection of nickel-coated magnesium alloys
CN115763828A (zh) 聚合物复合膜及其制备方法、复合集流体、极片、二次电池和用电装置
WO2023201844A1 (zh) 富电子负极集流体及其制备方法、电极极片和电池
CN117410437B (zh) 一种锑基电极及其制备方法和应用
Huang et al. Facile design and synthesis of nickel foam@ Mxene@ NiCo layered hydroxides core-sheath nanostructure for high mass-loading of supercapacitors
WO2023142320A1 (zh) 复合集流体的制备方法
CN103000971B (zh) 锂空气电池及其制作方法
Bi et al. Sulfhydryl‐functionalized COF‐based electrolyte strengthens chemical affinity toward polysulfides in quasi‐solid‐state Li‐S batteries
Hoogendoorn et al. Cellulose nanofibers (CNFs) in the recycling of nickel and cadmium battery metals using electrodeposition
JP2022056374A (ja) 高強度電解銅箔、それを含む電極、それを含む二次電池およびその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23746376

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE