[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2023143249A1 - 靶向malt1的蛋白降解化合物 - Google Patents

靶向malt1的蛋白降解化合物 Download PDF

Info

Publication number
WO2023143249A1
WO2023143249A1 PCT/CN2023/072620 CN2023072620W WO2023143249A1 WO 2023143249 A1 WO2023143249 A1 WO 2023143249A1 CN 2023072620 W CN2023072620 W CN 2023072620W WO 2023143249 A1 WO2023143249 A1 WO 2023143249A1
Authority
WO
WIPO (PCT)
Prior art keywords
compound
mmol
stirred
reaction solution
added
Prior art date
Application number
PCT/CN2023/072620
Other languages
English (en)
French (fr)
Inventor
覃华
孙大庆
付家胜
辛正远
陈昫
石谷沁
池波
冯昊
Original Assignee
上海齐鲁制药研究中心有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 上海齐鲁制药研究中心有限公司 filed Critical 上海齐鲁制药研究中心有限公司
Priority to CN202380015266.0A priority Critical patent/CN118525021A/zh
Publication of WO2023143249A1 publication Critical patent/WO2023143249A1/zh

Links

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/438The ring being spiro-condensed with carbocyclic or heterocyclic ring systems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/4412Non condensed pyridines; Hydrogenated derivatives thereof having oxo groups directly attached to the heterocyclic ring
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/4427Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems
    • A61K31/4436Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems containing a heterocyclic ring having sulfur as a ring hetero atom
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/4427Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems
    • A61K31/4439Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems containing a five-membered ring with nitrogen as a ring hetero atom, e.g. omeprazole
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/435Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with one nitrogen as the only ring hetero atom
    • A61K31/44Non condensed pyridines; Hydrogenated derivatives thereof
    • A61K31/4427Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems
    • A61K31/444Non condensed pyridines; Hydrogenated derivatives thereof containing further heterocyclic ring systems containing a six-membered ring with nitrogen as a ring heteroatom, e.g. amrinone
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K31/00Medicinal preparations containing organic active ingredients
    • A61K31/33Heterocyclic compounds
    • A61K31/395Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins
    • A61K31/495Heterocyclic compounds having nitrogen as a ring hetero atom, e.g. guanethidine or rifamycins having six-membered rings with two or more nitrogen atoms as the only ring heteroatoms, e.g. piperazine or tetrazines
    • A61K31/505Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim
    • A61K31/519Pyrimidines; Hydrogenated pyrimidines, e.g. trimethoprim ortho- or peri-condensed with heterocyclic rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/14Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D417/00Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00
    • C07D417/14Heterocyclic compounds containing two or more hetero rings, at least one ring having nitrogen and sulfur atoms as the only ring hetero atoms, not provided for by group C07D415/00 containing three or more hetero rings
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D471/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00
    • C07D471/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, at least one ring being a six-membered ring with one nitrogen atom, not provided for by groups C07D451/00 - C07D463/00 in which the condensed system contains two hetero rings
    • C07D471/10Spiro-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/04Ortho-condensed systems
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D487/00Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00
    • C07D487/02Heterocyclic compounds containing nitrogen atoms as the only ring hetero atoms in the condensed system, not provided for by groups C07D451/00 - C07D477/00 in which the condensed system contains two hetero rings
    • C07D487/10Spiro-condensed systems

Definitions

  • the present invention belongs to the field of medicinal chemistry, and in particular relates to a compound inhibiting and/or promoting MALT1 degradation by recruiting E3 ubiquitin ligase, a pharmaceutical composition containing the compound and a method for using the compound of the present invention to treat cell proliferation diseases, such as cancer.
  • DLBCL Diffuse large B-cell lymphoma
  • GCB germinal center B cells
  • ABSC activated B cells
  • MALT1 Mucosa-associated lymphoid tissue lymphoma translocator 1
  • ABC-DLBCL interleukin 2
  • IL-2 interleukin 2
  • T and B lymphocytes T and B lymphocytes.
  • CARD11 triple signaling adapter
  • MALT1 MALT1 and BCL10.
  • CBM complex that is associated with antigen-dependent activation of NF- ⁇ .
  • MALT1 also contains proteolytic activities that are constitutively activated in ABC-DLBCL.
  • MALT1 inhibitors are known to inhibit NF- ⁇ B target gene expression and ABC-DLBCL viability, making MALT1 inhibition an attractive therapeutic target for the treatment of ABC-DLBCL.
  • E3 ubiquitin ligase is combined with E2 ubiquitin ligase to promote the connection of ubiquitin to lysine on the target protein through isopeptide bonds. Ubiquitination of proteins usually leads to degradation of target proteins by the proteasome.
  • VHL The von Hippel-Lindau tumor suppressor
  • VHL includes the substrate recognition subunit/E3 ubiquitin ligase complex VCB, which includes elongins B and C, and complexes, including Cullin-2 and Rbx1.
  • the major substrate of VHL is hypoxia-inducible factor Ia (HIF-1a), a transcription factor that upregulates genes such as the pro-angiogenic growth factor VEGF and the erythrocyte-inducing cytokine erythropoietin in response to low oxygen levels.
  • VCB is a known target of cancer, chronic anemia and ischemia.
  • Cereblon (CRBN), another E3 ubiquitin ligase, forms E3 ubiquitin linkages with regulators of damaged DNA-binding protein 1 (DDB 1), cullin-4A (CUL4A) and cullins 1 (ROC 1) enzyme complex. This complex ubiquitinates many other proteins. Through mechanisms that have not been fully elucidated, cereblon ubiquitination of target proteins leads to increased levels of fibroblast growth factor 8 (FGF8) and fibroblast growth factor 10 (FGF10). FGF8 in turn regulates many developmental processes such as limb and auditory vesicle formation. In addition, studies have shown that small molecules that bind to and inhibit Cereblon (such as lenalidomide) have direct anti-tumor activity on DLBCL cells, preferably ABC-DLBCL cells.
  • DDB 1 DNA-binding protein 1
  • CUL4A cullin-4A
  • ROC 1 cullins 1
  • FGF8 fibroblast growth factor 8
  • FGF10 fibro
  • Protein degradation targeting chimera is a technology that uses the ubiquitin-proteasome system to target specific proteins and induce their degradation in cells.
  • the ubiquitin-proteasome system is the main pathway for intracellular protein degradation. Its normal physiological function is mainly responsible for removing denatured, mutated or harmful proteins in cells. The degradation of more than 80% of proteins in cells depends on the ubiquitin-proteasome system.
  • PROTAC is a bifunctional small molecule triplet compound, which can be divided into three parts: target protein small molecule inhibitor, Linker (linker), and E3 ubiquitin ligase ligand.
  • the target protein (Protein of Interest, POI) ligand in its structure can specifically bind to the corresponding target protein, and the other end can recruit E3 ligase to form a POI-Linker-E3ligase ternary complex Object, in which E3 ligase can mediate ubiquitin-conjugating enzyme E2 to ubiquitination of POI.
  • POIs labeled with ubiquitin are recognized and degraded by the proteasome.
  • the present invention describes bifunctional or proteolysis-targeting chimeric compounds (PROTAC) compounds that act as MALT1 inhibitors targeting ubiquitination and / or degradants.
  • PROTAC proteolysis-targeting chimeric compounds
  • the invention provides a novel bifunctional compound that can be used to inhibit and/or degrade MALT1, a pharmaceutical composition containing the compound, a preparation method and an application for treating cancer.
  • the compound is a triplet compound comprising a small molecule ligand of the target protein, a linker and a ligand of E3 ubiquitin ligase, as shown in the following formula,
  • the small-molecule ligand of the target protein can specifically bind the target protein, and is connected to the linker through a covalent bond in the triplet compound;
  • the linker is the connecting group between the small-molecule ligand of the target protein and the ligand of E3 ubiquitin ligase Group, one end binds to the small molecule ligand of the target protein, and the other end binds to the ligand of E3 ubiquitin ligase;
  • the ligand of E3 ubiquitin ligase can bind ubiquitin ligase, such as E3 ubiquitin ligase, and linker Covalently bound.
  • the present invention provides the compound shown in formula (I'):
  • TGL binds to a MALT1 target ligand
  • E is a degron that binds ubiquitin ligase, selected from
  • B 1 is a C 1-15 alkylene chain, wherein the hydrogen atoms in the C 1-15 alkylene chain are optionally substituted by 1-3 R a , and the carbon atoms in the C 1-15 alkylene chain are optionally is replaced by -NR b -, -O-, carbonyl;
  • R a is C 1-4 alkyl;
  • R b is H or C 1-4 alkyl;
  • B 1 is C 1-15 alkylene chain, wherein the hydrogen atoms in the C 1-15 alkylene chain are optionally replaced by 1-3 R a , and the carbon atoms in the C 1-15 alkylene chain are optionally replaced by -NR b -, -O-, replaced by carbonyl;
  • R a is C 1-4 alkyl;
  • R b is H or C 1-4 alkyl;
  • B2 is a chemical bond, optionally substituted following groups: C 3-6 cycloalkyl, 3-6 membered heterocycloalkyl, C 7-11 spirocycloalkyl, 7-11 membered spiroheterocycloalkyl ;
  • B 3 is a chemical bond, a C 1-4 alkylene chain in which carbon atoms are optionally replaced by -NR b -, -O-, carbonyl;
  • B4 is a chemical bond, optionally substituted following groups: C 3-6 cycloalkyl, 3-6 membered heterocycloalkyl, C 7-11 spirocycloalkyl, 7-11 membered spiroheterocycloalkyl;
  • B 5 is a chemical bond, a C 1-5 alkylene chain, the carbon atoms in the alkylene chain are optionally replaced by NR c , carbonyl or oxygen, and R c is H or C 1-4 alkyl;
  • n 1 , n 2 , n 3 , and n 4 are 0 or 1.
  • above-mentioned E is selected from
  • the above-mentioned L has the structure of formula (II'a).
  • the above-mentioned L has the structure of formula (II'b).
  • the above-mentioned L has the structure of formula (II'c).
  • the above-mentioned L has the structure of formula (II'd).
  • the above-mentioned L has the structure of formula (II'e).
  • the above-mentioned L has the structure of formula (II'f).
  • the above-mentioned B 2 , B 3 , B 4 , and B 5 are each independently a chemical bond.
  • the above-mentioned B 1 is a C 1-15 alkylene chain, hydrogen atoms in the C 1-15 alkylene chain are optionally substituted by 1-2 R a , and in the C 1-15 alkylene chain Optionally 2 to 4 carbon atoms are replaced by -NR b -, -O-, carbonyl, R a is C 1-4 alkyl; R b is H or C 1-4 alkyl.
  • the above-mentioned B 1 is a C 1-11 alkylene chain, and the hydrogen atoms in the C 1-11 alkylene chain are optionally replaced by 1-2 R a , and the carbon atoms are optionally replaced by -NR b -, -O-, carbonyl instead, R b is H or C 1-4 alkyl.
  • the above-mentioned B 1 is a C 1-11 alkylene chain, and the hydrogen atoms in the C 1-11 alkylene chain are optionally substituted by 1-2 R a , optionally 2 to 4 carbon atoms are replaced by -NR b -, -O-, carbonyl, R b is H or C 1-4 alkyl.
  • the above-mentioned B 1 is a C 1-6 alkylene chain, and the hydrogen atoms in the C 1-6 alkylene chain are optionally replaced by 1-2 R a , and the carbon atoms are optionally replaced by -NR b -, -O-, -C(O)- instead, R b is H or C 1-4 alkyl.
  • the above B 1 is a C 7-11 alkylene chain, the hydrogen atoms in the C 7-11 alkylene chain are optionally replaced by 1-2 R a , and the carbon atoms are optionally replaced by -NR b -, -O-, carbonyl instead, R b is H or C 1-4 alkyl;
  • the above B 1 is a C 1-6 alkylene chain, and the hydrogen atoms in the C 1-6 alkylene chain are optionally substituted by 1-2 R a , optionally 2 to 4 Carbon atoms are optionally replaced by -NR b -, -O-, carbonyl, R b is H or C 1-4 alkyl.
  • the above-mentioned B 1 is a C 7-11 alkylene chain, and the hydrogen atom in the C 7-11 alkylene chain is optionally substituted by 1-2 R a , optionally 1-2 carbon Atoms are replaced by -NR b -, -O-, carbonyl, R b is H or C 1-4 alkyl.
  • the above-mentioned B 1 is a C 7-11 alkylene chain, and the hydrogen atoms in the C 7-11 alkylene chain are optionally substituted by 1-2 R a , optionally 3 to 5 carbon Atoms are replaced by -NR b -, -O-, carbonyl, R b is H or C 1-4 alkyl.
  • R a is methyl
  • R b is hydrogen or methyl
  • above-mentioned B 1 is selected from
  • the above-mentioned B is selected from C 3-6 cycloalkyl, 4-6 membered heterocycloalkyl, wherein the heterocycloalkyl contains 1-2 N heteroatoms, and the cycloalkane A group, a heterocycloalkyl group are optionally substituted by a C 1-4 alkyl group.
  • the above-mentioned B2 is selected from C 7-11 spirocycloalkyl and 9-11 membered spiroheterocycloalkyl, wherein the spiroheterocycloalkyl contains 1-2 N heteroatoms.
  • the above-mentioned B2 is selected from C 9-11 spirocycloalkyl and 7-11 membered spiroheterocycloalkyl, wherein the spiroheterocycloalkyl contains 1-2 N heteroatoms.
  • the above-mentioned B2 is selected from 7-11 membered spiroheterocycloalkyl, wherein the spiroheterocycloalkyl contains 1-2 N heteroatoms.
  • the above-mentioned B 3 is a C 1-4 alkylene chain whose carbon atoms are optionally replaced by -NR b -, -O-, carbonyl; preferably -CH 2 -, -CH 2 - N(CH 3 )-, -CO-.
  • the above-mentioned B 3 is selected from -N(CH 3 )-, -(CH 2 ) 2 -.
  • the above-mentioned B 4 is the following groups optionally substituted: C 3-6 cycloalkyl, 3-6 membered heterocycloalkyl, C 7-11 spirocycloalkyl, 7-11 membered spiroheterocycloalkyl.
  • the above-mentioned B is selected from C 3-6 cycloalkyl, 4-6 membered heterocycloalkyl, wherein the heterocycloalkyl contains 1-2 N heteroatoms, and the cycloalkane A group, a heterocycloalkyl group are optionally substituted by a C 1-4 alkyl group.
  • the above-mentioned B 4 is selected from C 7-11 spirocycloalkyl and 9-11 membered spiroheterocycloalkyl, wherein the spiroheterocycloalkyl contains 1-2 N heteroatoms.
  • the above-mentioned B 4 is selected from 7-11 membered spiroheterocycloalkyl, wherein the spiroheterocycloalkyl contains 1-2 N heteroatoms.
  • the above-mentioned B 4 is selected from C 9-11 spirocycloalkyl and 7-11 membered spiroheterocycloalkyl, wherein the spiroheterocycloalkyl contains 1-2 N heteroatoms.
  • the above-mentioned B 5 is a C 1-5 alkylene chain, carbon atoms are optionally replaced by NR c , carbonyl or oxygen, and R c is H or C 1-4 alkyl.
  • R c is hydrogen
  • the above-mentioned R c is -CH 3 .
  • above-mentioned B 5 is selected from
  • above-mentioned B 5 is selected from
  • the above-mentioned L is a C 1-11 alkylene chain, wherein the hydrogen atoms in the C 1-11 alkylene chain are optionally substituted by 1-3 R a , C 1- 11
  • the carbon atoms in the alkylene chain are optionally replaced by -NR b -, -O-, carbonyl;
  • R a is C 1-4 alkyl;
  • R b is H or C 1-4 alkyl.
  • the above-mentioned L is a combination of a C 1-7 alkylene chain and a C 6-9 cycloalkane, wherein the hydrogen atoms in the C 1-7 alkylene chain are optionally replaced by 1- 3 R a are substituted, and the carbon atoms in the C 1-7 alkylene chain are optionally replaced by -NR b -, -O-, carbonyl; R a is C 1-4 alkyl; R b is H or C 1-4 alkyl.
  • the above-mentioned L is a combination of a C 1-7 alkylene chain and a 4-9 membered heterocycloalkane, wherein the hydrogen atoms in the C 1-7 alkylene chain are optionally replaced by 1 -3 R a substitutions, the carbon atoms in the C 1-7 alkylene chain are optionally replaced by -NR b -, -O-, carbonyl; R a is C 1-4 alkyl; R b is H Or C 1-4 alkyl.
  • the above-mentioned L is selected from
  • the above-mentioned L is selected from
  • the above-mentioned L is selected from
  • the present invention also provides the following compound or its isomer or pharmaceutically acceptable salt, which is selected from,
  • the present invention also provides the preparation method of compound:
  • R a is hydrogen or C 5-6 nitrogen-containing heteroaryl
  • R b is halogen or halogenated C 1-4 alkyl
  • L' is a straight alkane or a combination of straight alkane and heterocycloalkyl, wherein The carbon atoms in the alkane are optionally substituted by heteroatoms, and L' is optionally substituted by C 1-4 alkyl
  • Y is selected from structures that are bound to CRBN, VHL or the like.
  • PG is a protecting group for hydroxyl, which can be optionally substituted with the following groups: C 1-6 alkyl (such as methyl, ethyl, propyl, isopropyl, butyl and tert-butyl, etc.), phenyl , C 7-10 aralkyl (such as benzyl, etc.), C 1-6 alkylcarbonyl (such as acetyl and propionyl, etc.), formyl, phenoxycarbonyl, C 7-10 aralkyloxycarbonyl ( For example, benzyloxycarbonyl, etc.), tetrahydropyranyl, tetrahydrofuranyl, silyl and the like.
  • C 1-6 alkyl such as methyl, ethyl, propyl, isopropyl, butyl and tert-butyl, etc.
  • phenyl C 7-10 aralkyl
  • C 1-6 alkylcarbonyl such as
  • the substituent may be, for example, a halogen atom (such as fluorine, chlorine, bromine and iodine), C 1-6 alkyl, phenyl, C 7-11 aralkyl and nitro, etc., and the number of substituents may be 1-4 pieces.
  • a halogen atom such as fluorine, chlorine, bromine and iodine
  • Intermediate IN-1 is generated from compound A through deprotection reaction.
  • the specific deprotection conditions include hydrochloric acid (HCl)/methanol (MeOH) or dioxane (dioxane), H 2 /palladium on carbon (Pd-C), trifluoroacetic acid (TFA) and the like.
  • the product was obtained from IN-1 and compound B via known condensation conditions.
  • R a , R b , L', Y are as defined above; X is halogen;
  • the product is obtained by substitution reaction of compound C with compound B under basic conditions.
  • bases are inorganic bases such as sodium carbonate, sodium bicarbonate, potassium carbonate, potassium bicarbonate, sodium hydroxide, potassium hydroxide and thallium hydroxide, etc.; and organic bases such as triethylamine, diisopropyl Ethylamine and pyridine, etc.
  • R a , R b , L', Y are as defined above;
  • the product is produced by reacting compound D and compound B in the presence of base and further reduced.
  • base examples of “base” are inorganic bases such as sodium carbonate, sodium bicarbonate, potassium carbonate, potassium bicarbonate, sodium hydroxide, potassium hydroxide and thallium hydroxide, etc.; and organic bases such as triethylamine, diisopropyl Ethylamine and pyridine, etc.
  • the reaction solvent used in this reaction is, for example, N,N-dimethylformamide, N,N-dimethylacetamide, N-methylpyrrolidone, acetonitrile, DMSO, tetrahydrofuran, etc.; wherein, the reducing conditions are such as Pd/C, etc.
  • the present invention also provides a pharmaceutical composition, which contains a therapeutically effective amount of the compound shown in (I'), or its isomer or pharmaceutically acceptable salt thereof, and pharmaceutically acceptable carriers, diluents and excipients agent.
  • Pharmaceutical compositions can be formulated for specific routes of administration, such as oral, parenteral, rectal, and the like. Oral, e.g. tablets, capsules (including sustained-release or time-release formulations), pills, powders, granules, elixirs, tinctures, suspensions (including nanosuspensions, microsuspensions, spray-dried dispersions) , syrups and emulsions; sublingual administration; buccal administration; parenteral administration, e.g.
  • nasally including to the nasal mucosa, for example, by inhalation spray; topically, for example, in the form of a cream or ointment; or rectally, for example, in the form of suppositories.
  • inhalation spray e.g., sterile injectable aqueous or non-aqueous or suspensions
  • nasally including to the nasal mucosa, for example, by inhalation spray
  • topically for example, in the form of a cream or ointment
  • rectally for example, in the form of suppositories.
  • a pharmaceutical carrier selected on the basis of the chosen route of administration and standard pharmaceutical practice.
  • “Pharmaceutically acceptable carrier” refers to a medium generally acceptable in the art for delivering biologically active agents to animals, especially mammals, including, for example, adjuvants, excipients or excipients according to the mode of administration and the nature of the dosage form. Diluents, preservatives, fillers, flow regulators, disintegrants, wetting agents, emulsifiers, suspending agents, sweeteners, flavoring agents, fragrances, antibacterial agents, antifungal agents, lubricants agents and dispersants. Pharmaceutically acceptable carriers are formulated according to a number of factors that are within the purview of those of ordinary skill in the art.
  • compositions containing the agent include, but are not limited to: the type and nature of the active agent being formulated, the subject to whom the composition containing the agent is to be administered, the intended route of administration of the composition, and the intended therapeutic indication.
  • Pharmaceutically acceptable carriers include aqueous Both media and non-aqueous media and a variety of solid and semi-solid dosage forms. Such carriers include many different ingredients and additives in addition to the active agent, such additional ingredients being included in formulations for a variety of reasons (e.g., stabilizing the active agent, binders, etc.) are well known to those of ordinary skill in the art .
  • Dosage regimens for the compounds of the invention may of course vary according to known factors, such as the pharmacodynamic profile of the particular agent and its mode and route of administration, the species, age, sex, health, medical condition and weight of the recipient , nature and extent of symptoms, types of concurrent treatments, frequency of treatments, route of administration, patient's renal and hepatic function, and desired effects.
  • the therapeutically effective dose of the compound, pharmaceutical composition or combination thereof depends on the species, body weight, age and individual condition of the subject, the condition or disease being treated or its severity. A physician, clinician or veterinarian of ordinary skill can readily determine the effective amount of each active ingredient required to prevent, treat or inhibit the progression of a condition or disease.
  • the present invention also provides the use of the compound represented by (I'), or its isomer or pharmaceutically acceptable salt thereof, or the above-mentioned pharmaceutical composition in the preparation of a drug for the treatment of related diseases mediated by the MALT1 target.
  • the related disease mediated by the MALT1 target is a disease of abnormal cell proliferation; preferably, the disease of abnormal cell proliferation is cancer.
  • the present invention also provides the application of the compound shown in (I'), or its isomer or pharmaceutically acceptable salt thereof, or the above-mentioned pharmaceutical composition in the preparation of drugs for the treatment of abnormal cell proliferation diseases; preferably, the The abnormal proliferation of cells is cancer.
  • the above use wherein the cancer comprises bile duct, bone, bladder, central nervous system, breast, colorectal, stomach, head and neck, liver, lung, neurons, esophagus, ovary, pancreas, prostate , kidney, skin, testis, thyroid, uterus and vulva and other solid tumors.
  • the present invention also provides a method for treating cancer diseases, the method comprising administering to a subject a therapeutically effective amount of a compound represented by formula (I'), or an isomer thereof or a pharmaceutically acceptable salt thereof .
  • the present invention also provides a compound represented by formula (I'), which is used for treating cancer diseases.
  • the compound of the invention has remarkable protein degradation activity and cell proliferation inhibitory activity, and can be used for the treatment of cancer.
  • pharmaceutically acceptable means, within the scope of sound medical judgment, suitable for use in contact with human and animal tissues without undue toxicity, irritation, allergic reaction or other problems or complications, and with a reasonable benefit/risk ratio Comparable to those compounds, materials, compositions and/or dosage forms.
  • pharmaceutically acceptable salt refers to derivatives prepared from the compounds of the present invention with relatively non-toxic acids or bases. These salts can be prepared during compound synthesis, isolation, purification, or alone by reacting the free form of the purified compound with an appropriate acid or base.
  • the compound contains relatively acidic functional groups, it can react with alkali metal, alkaline earth metal hydroxide or organic amine to obtain base addition salts, including cations based on alkali metals and alkaline earth metals and non-toxic ammonium, quaternary ammonium and amine cations, Salts of amino acids and the like are also contemplated.
  • the compound contains a relatively basic functional group, it reacts with an organic acid or an inorganic acid to form an acid addition salt.
  • break position of each structural unit described in the present invention is only for the convenience of describing the content of the present invention, and it does not have a limiting effect on the synthesis method of the compound or the independent structure of each fragment.
  • the isomers mentioned in the present invention include geometric isomers and stereoisomers, such as cis-trans isomers, enantiomers, diastereoisomers, racemic mixtures and other mixtures thereof, all These mixtures are within the scope of the present invention.
  • enantiomer refers to stereoisomers that are mirror images of each other.
  • diastereomer refers to stereoisomers whose molecules have two or more chiral centers and which are in a non-mirror-image relationship.
  • cis-trans isomer refers to the configuration in which the double bond or the single bond of the ring carbon atom in the molecule cannot freely rotate.
  • keys with wedge-shaped solid lines and dotted wedge keys Indicates the absolute configuration of a stereocenter, with a straight solid-line bond and Straight dotted key Indicates the relative configuration of a stereocenter, such as a double straight solid-line bond or double straight dotted key Indicates a cis structure, a straight solid line bond and straight dashed key Indicates the trans structure.
  • keys with wedge-shaped solid lines and dotted wedge keys Indicates the absolute configuration of a stereocenter, with a straight solid-line bond and Straight dotted key Indicates the relative configuration of a stereocenter, such as a double straight solid-line bond or double straight dotted key Indicates a cis structure, a straight solid line bond and straight dashed key Indicates the trans structure.
  • Stereoisomers of the compounds of the present invention may be prepared by chiral synthesis or chiral reagents or other conventional techniques.
  • one enantiomer of a certain compound of the present invention can be prepared by asymmetric catalytic technology or chiral auxiliary derivatization technology.
  • a compound with a single stereo configuration can be obtained from a mixture by chiral resolution technology.
  • it can be directly prepared by using chiral starting materials.
  • the separation of optically pure compounds in the present invention is usually accomplished by using preparative chromatography, and a chiral chromatographic column is used to achieve the purpose of separating chiral compounds.
  • the absolute stereo configuration of the compound can be confirmed by conventional technical means in the art.
  • the single crystal X-ray diffraction method can also confirm the absolute configuration of the compound through the chiral structure of the raw material and the reaction mechanism of the asymmetric synthesis.
  • Compounds marked as "absolute configuration not determined” herein are usually resolved into single isomers by chiral preparative SFC from racemic compounds, which are then characterized and tested.
  • excipient generally refers to a carrier, diluent and/or medium required to formulate an effective pharmaceutical composition.
  • prophylactically or therapeutically effective amount refers to a sufficient amount of a compound of the invention, or a pharmaceutically acceptable salt thereof, to treat a disorder at a reasonable effect/risk ratio applicable to any medical treatment and/or prevention.
  • total daily dosage of the compound represented by formula (I') of the present invention or its pharmaceutically acceptable salt and composition must be determined by the attending physician within the scope of reliable medical judgment.
  • the particular therapeutically effective dosage level will depend on a number of factors, including the disorder being treated and the severity of the disorder; the activity of the particular compound employed; the particular composition employed; The age, weight, general health, sex and diet of the patient; the timing, route of administration, and rate of excretion of the specific compound employed; the duration of treatment; drugs used in combination or concomitantly with the specific compound employed; and Similar factors are well known in the medical arts. For example, it is practice in the art to start doses of the compound at levels lower than that required to obtain the desired therapeutic effect and to gradually increase the dosage until the desired effect is obtained.
  • the term “optionally substituted” means that the hydrogen atoms in a given group may or may not be substituted, and unless otherwise specified, the type and number of substituents are on a chemically realizable basis above can be arbitrary, for example, the term "optionally substituted by one or more R a " means that it can be substituted by one or more R a , or not substituted by R a .
  • alkyl means a straight-chain or branched saturated hydrocarbon group, including a C 1-6 alkyl group, a C 1-4 alkyl group, and the numerical value indicates the number of carbon atoms.
  • alkyl groups include, but are not limited to, methyl, ethyl, n-propyl, isopropyl, butyl, isobutyl, and the like.
  • hydrocarbylene chain refers to a group derived from a straight or branched chain hydrocarbon by removing a hydrogen atom, and the chain hydrocarbon includes alkanes, alkenes, and alkynes. Specific alkanyl examples include, but are not limited to: wait.
  • ring refers to saturated, partially saturated or unsaturated monocyclic rings and polycyclic rings
  • polycyclic rings includes spiro rings, fused rings or bridged rings.
  • Representative “ring” includes substituted or unsubstituted cycloalkyl, heterocycloalkyl, cycloalkenyl, heterocycloalkenyl, cycloalkynyl, heterocycloalkynyl, aryl or heteroaryl.
  • hetero refers to substituted or unsubstituted heteroatoms and oxidized forms of heteroatoms, said heteroatoms are generally selected from N, O, S, oxidized forms generally include NO, SO, S(O) 2 , nitrogen atoms can be is substituted, that is, NR (R is H or other substituents defined herein); the number of atoms on the ring is usually defined as the number of ring members, for example, "3-6 membered heterocycloalkyl” refers to 3-6 rings arranged around atoms, each ring optionally contains 1 to 3 heteroatoms, namely N, O, S, NO, SO, S(O) 2 or NR, and each ring is optionally replaced by R Substituted by a group, R is a group as defined herein.
  • cycloalkyl means a saturated monocyclic or polycyclic hydrocarbon group.
  • the cycloalkyl group is preferably a 3-6 membered monocycloalkyl group. Examples of these monocycloalkyl groups include, but are not limited to, cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl, and cyclooctyl.
  • heterocycloalkyl refers to a monoheterocycloalkyl group and a polyheterocycloalkyl group containing a certain number of heteroatoms in the ring, and the heteroatoms are generally selected from N, NR, O, S, NO, SO , S(O) 2 , preferably 1-2 N and/or NR and/or O.
  • the heterocycloalkyl group is preferably a 3-6 membered monoheterocycloalkyl group, more preferably a 5-6 membered monoheterocycloalkyl group.
  • Examples of these monoheterocycloalkyl groups include, but are not limited to, oxiranyl, tetrahydropyrrolyl , piperidinyl, piperazinyl, morpholinyl, tetrahydrofuranyl, tetrahydrothiophenyl, tetrahydropyranyl, 1,3-dioxolane, 1,4-dioxane, etc.
  • spirocycloalkyl means that two carbon rings share one carbon atom to form a spirocyclyl, and the spirocycloalkyl is preferably a 5-13 membered spiroheterocyclyl, a 6-12 membered spiroheterocyclyl, or 7-11 membered spiroheterocyclyl.
  • spirocycloalkyl include, but are not limited to
  • spiroheterocyclic group refers to a spirocyclic group in which one or more carbon atoms in the spirocyclic skeleton structure are replaced by heteroatoms, and the heteroatoms are selected from N, NR, O, S, 1-2 N, NR and/or O are preferred.
  • the spiroheterocyclyl is preferably a 5-13 membered spiroheterocyclyl, a 6-12 membered spiroheterocyclyl, or a 7-11 membered spiroheterocyclyl. Examples of spiroheterocyclyls include, but are not limited to
  • heteroaryl means a stable monocyclic or polycyclic aromatic hydrocarbon containing at least one heteroatom (N, O, S, NO, SO, S(O) 2 or NR) . Preference is given to 5- or 6-membered monocyclic heteroaryl groups.
  • the nitrogen-containing heteroaryl group means that the heteroaryl group contains at least one N heteroatom.
  • heteroaryl include, but are not limited to, pyrrolyl, pyrazolyl, imidazolyl, pyrazinyl, oxazolyl, isoxazolyl, thiazolyl, furyl, thienyl, pyridyl, pyrimidinyl.
  • a stable compound or stable structure is one that is sufficiently stable to undergo chemical reactions, be isolated to a useful degree of purity, and be formulated as an effective therapeutic drug.
  • the name of the title compound was converted from the compound structure by means of Chemdraw. If there is any inconsistency between the name of the compound and the structure of the compound, it can be determined by comprehensively related information and reaction routes; if it cannot be confirmed by other methods, the structural formula of the given compound shall prevail.
  • the compounds of the present invention can be prepared by a variety of synthetic methods well known to those skilled in the art, including the specific embodiments listed below, the embodiments formed by combining them with other chemical synthesis methods, and the methods well known to those skilled in the art Equivalent alternatives, preferred embodiments include but are not limited to the examples of the present invention.
  • the structure of the compound of the present invention is determined by nuclear magnetic resonance (NMR) or/and liquid chromatography-mass chromatography (LC-MS), or ultra-high performance liquid chromatography-mass chromatography (UPLC-MS). NMR chemical shifts ( ⁇ ) are given in parts per million (ppm).
  • the determination of NMR is to use Bruker Neo 400M or Bruker Ascend 400 nuclear magnetic instrument, and the determination solvent is deuterated dimethyl sulfoxide (DMSO-d 6 ), deuterated methanol (CD 3 OD) and deuterated chloroform (CDCl 3 ), heavy water (D 2 O), internal standard is tetramethylsilane (TMS).
  • Agilent 1260-6125B single quadrupole mass spectrometer is used for liquid chromatography-mass chromatography LC-MS, the column is Welch Biomate column (C18, 2.7um, 4.6*50mm) or waters H-Class SQD2, the column is Welch Ultimate column (XB- C18, 1.8um, 2.1*50mm), mass spectrometer (the ion source is electrospray ionization).
  • HPLC uses Waters e2695-2998 or Waters ARC and Agilent 1260 or Agilent Poroshell HPH high performance liquid chromatography.
  • Preparative HPLC uses Waters 2555-2489 (10 ⁇ m, ODS 250cm ⁇ 5cm) or GILSON Trilution LC, and the column is Welch XB-C18 column (5um, 21.2*150mm).
  • Chiral HPLC uses waters acquisition UPC2; the column is Daicel chiralpak AD-H (5um, 4.6*250mm), Daicel chiralpak OD-H (5um, 4.6*250mm), Daicel chiralpak IG-3 (3um, 4.6*150mm), Chiral Technologies Europe AD-3 (3um, 3.0*150mm) and Trefoil TM Technology Trefoil TM AMY1 (2.5um, 3.0*150mm).
  • Supercritical fluid chromatography uses waters SFC 80Q, and the column is Daicel Chiralcel OD/OJ/OZ (20x 250mm, 10um) or Daicel Chiralpak IC/IG/IH/AD/AS (20x 250mm, 10um).
  • Thin-layer chromatography silica gel plates use Yantai Jiangyou Silica Gel Development Co., Ltd. GF254 silica gel plates or Rushan Shangbang New Materials Co., Ltd. GF254 silica gel plates.
  • the specifications used by TLC are 0.15mm to 0.20mm, preparative 20x 20cm, column chromatography is general Use 200-300 mesh silica gel in Yucheng Chemical as the carrier.
  • the starting materials in the examples of the present invention are known and commercially available, or can be synthesized using or following methods known in the art.
  • Step B Compound INT-1-1 (1.6 g, 8.3 mmol) was dissolved in ethanol (15 ml), and after argon replacement, Pd/C (10%, 0.2 g) was added. The system was replaced with hydrogen and stirred at room temperature for three hours under a hydrogen balloon. The reaction solution was filtered, and the filtrate was concentrated under reduced pressure to obtain 0.9 g of compound INT-1-2. The crude product was directly used in the next reaction.
  • Step C Compound INT-1-2 (0.9 g, 8.2 mmol) was dissolved in THF (10 mL), and N,N'-carbonyldiimidazole (1.5 g, 9.0 mmol) was added at 0°C. The ice bath was removed, the temperature was raised to 28 degrees Celsius, and stirred under this condition for 3 hours. (reaction solution one);
  • Step D Compound INT-1-3 (0.5 g, 2.7 mmol) was dissolved in N,N-dimethylformamide dimethyl acetal (1.25 ml), and the system was heated at 120 degrees Celsius for 1 hour , and then cooled to 80 degrees Celsius.
  • Step E Compound INT-1-4 (600 mg, 1.93 mmol) was dissolved in trifluoroacetic acid (5 mL), and the solution was stirred at room temperature for 2 hours. After LCMS monitoring showed that the raw materials disappeared, the reaction solution was concentrated under reduced pressure, and the obtained crude product was purified by silica gel column chromatography to obtain 400 mg of intermediate INT-1.
  • Step A 5-chloro-3-nitropyridin-2-ol (1.7 g, 10.0 mmol), tert-butyl (2-hydroxyethyl) carbamate ( 1.6 g, 10.0 mmol), triphenylphosphine (5.2 g, 20.0 mmol) was dissolved in tetrahydrofuran (30 ml), and diethyl azodicarboxylate (3.5 g, 20.0 mmol) was added. After the dropwise addition was completed, the reaction system was stirred at room temperature for 18 hours. The reaction solution was quenched with water (50 mL), extracted with ethyl acetate (50 mL ⁇ 3).
  • Step C Intermediate INT-1 (45.0 mg, 0.2 mmol) was dissolved in 1,4-dioxane (2 mL). Diphenylphosphoryl azide (0.1 mL, 0.5 mmol) and triethylamine (0.1 mL, 0.7 mmol) were added. The system was stirred at room temperature for half an hour. Compound INT-2-2 (100.0 mg, 0.3 mmol) was added to the above reaction system. The reaction was heated to 100°C and stirred for 1 hour. The reaction solution was cooled to room temperature, quenched by adding water (10 mL), and extracted with ethyl acetate (10 mL ⁇ 3).
  • Step D Compound INT-2-3 (200.0 mg, 0.4 mmol) was dissolved in ethyl acetate (5 mL) and hydrochloric acid in dioxane (4 mol, 5 mL). The system was stirred at room temperature for 3 hours. The reaction solution was concentrated under reduced pressure to obtain (S)-1-(2-(2-aminoethoxy)-5-chloropyridin-3-yl)-3-(2-chloro-7-(1-methoxyethyl) base) pyrazolo[1,5-a]pyrimidin-6-yl)urea hydrochloride 120.0 mg intermediate INT-2.
  • the preparation method refers to the preparation example of intermediate INT-2, and finally the target product (S)-1-(2-(2-aminoethoxy)-5-(trifluoromethyl)pyridin-3-yl)-3- (2-Chloro-7-(1-methoxyethyl)pyrazolo[1,5-a]pyrimidin-6-yl)urea hydrochloride intermediate INT-3.
  • the preparation method refers to the preparation example of INT-2, and finally the target product intermediate INT-4 is obtained.
  • Step A Add 40 grams (0.2 moles) of (S)-1-(4-bromophenyl)ethan-1-amine to a mixed solution of ethyl acetate (400 milliliters) and water (400 milliliters), dicarbonate Di-tert-butyl ester (64 g, 0.3 mol), sodium bicarbonate (24 g, 0.4 mol) were added to the above mixture. The resulting mixture was stirred at 25 °C for 1 hour. LCMS monitoring showed disappearance of starting material (complete dissolution). 1 liter of water and 1 liter of ethyl acetate were added and the reaction mixture was vigorously stirred for 5 minutes.
  • Step B Dissolve compound INT-5-1 (5 g, 16 mmol), palladium acetate (35.8 mg, 0.16 mmol) in N,N-dimethylacetamide (80 ml), and add to the solution Potassium acetate (3.1 g, 32 mmol) and 4-methylthiazole (3.2 g, 32 mmol) were added.
  • the resulting reaction mixture was stirred at 90 °C for 16 hours. After LCMS monitoring showed that the starting material disappeared, the reaction solution was quenched with purified water (50 mL), and extracted with dichloromethane (50 mL ⁇ 3). The combined organic phases were dried over anhydrous sodium sulfate, filtered and concentrated. The resulting mixture was purified twice by silica gel column chromatography to obtain 2.5 g of compound INT-5-2.
  • Step C 20 mL of hydrochloric acid in 1,4-dioxane was added to a mixed solution of compound INT-5-2 (5.8 g, 18.2 mmol) and dichloromethane (40 mL). The reaction mixture was stirred at 25 °C for 1 hour. LCMS monitoring showed disappearance of starting material. The reaction solution was concentrated under reduced pressure, 7 g of compound INT-5-3 was obtained, which was directly used in the next step without purification. MS (ESI) M/Z: 219.3 [M+H] + .
  • Step D Compound N-BOC-trans-4-hydroxy-D-proline (4.2 g, 18.2 mmol), compound INT-5-3 (7 g), 2-(7-azabenzo Triazole)-N,N,N',N'-tetramethyluronium hexafluorophosphate (6.9 g, 18.2 mmol) and N,N-diisopropylethylethylamine (11.7 g, 90.7 mmol) was added to THF (100 mL), and stirred at 20°C for 18 hours. LCMS monitoring showed disappearance of starting material. The reaction solution was quenched with purified water (200 mL), extracted with ethyl acetate (100 mL ⁇ 3).
  • Step E A solution of hydrochloric acid in 1,4-dioxane (4M, 4 mL) and compound INT-5-4 (350 mg, 0.8 mmol) were added into dichloromethane (4 mL). The reaction mixture was stirred at 25 °C for 1 hour. LCMS monitoring showed disappearance of starting material. The reaction mixture was concentrated to remove the solvent to obtain 420 mg of INT-5-5.
  • Step F Mix (S)-2-((tert-butoxycarbonyl)amino)-3,3-dimethylbutanoic acid (293 mg, 1.3 mmol), compound INT-5-5 (420 mg, 1.3 mmol), 2-(7-azabenzotriazole)-N,N,N',N'-tetramethyluronium hexafluorophosphate (483 mg, 1.3 mmol) and, N-diiso Propylethylethylamine (818 mg, 6.3 mmol) was added separately to the THF (5 mL) solution, and stirred at 20°C for 18 hours. LCMS monitoring showed disappearance of starting material.
  • reaction solution was quenched with purified water (200 mL), and extracted with ethyl acetate (100 mL ⁇ 3). The combined organic phases were dried over anhydrous sodium sulfate, filtered and concentrated. The resulting mixture was purified by silica gel column chromatography to obtain 510 mg of compound INT-5-6.
  • Step G A solution of hydrochloric acid in 1,4-dioxane (4M, 2 mL) was added to a mixture of compound INT-5-6 (240 mg, 0.4 mmol) and dichloromethane (2 mL). The mixture was stirred at 25 °C for 1 h, LCMS monitoring showed disappearance of starting material. The mixture was stripped of the solvent to give 196 mg of intermediate INT-5.
  • the preparation method refers to the preparation example of intermediate INT-5, and finally the target product intermediate INT-6 is obtained.
  • Step A Intermediate INT-5 (390.0 mg, 0.9 mmol), 7-tert-butoxy-7-oxoheptanoic acid (190.0 mg, 0.9 mg), N,N-diisopropylethylamine (566.0 mg , 4.4 mmol) and 2-(7-azabenzotriazole)-N,N,N',N'-tetramethyluronium hexafluorophosphate (501.0 mg, 1.3 mmol) were dissolved in N, N-Dimethylformamide (150 mL). The reaction was stirred at room temperature for 2 hours.
  • reaction solution was quenched with water (10 mL), and extracted with ethyl acetate (10 mL ⁇ 3). The organic phases were combined, washed with water (10 mL ⁇ 3) and saturated brine (10 mL ⁇ 3), and dried over anhydrous sodium sulfate. Filter and concentrate under reduced pressure. The resulting mixture was purified by reverse phase column chromatography (mobile phase: 70% acetonitrile, 30% distilled water, distilled water containing 0.025% formic acid) to obtain 240.0 mg of compound 1-1.
  • Step B Compound 1-1 (240.0 mg, 0.4 mmol) was dissolved in dichloromethane (4 mL) and trifluoroacetic acid (2 mL). The reaction was stirred at room temperature for 2 hours. After LCMS monitoring showed that the raw materials disappeared, the reaction solution was concentrated under reduced pressure to obtain 200 mg of compound 1-2. This compound was used directly in the next step.
  • Step C Desalted intermediate INT-2 (95.0 mg, 0.2 mmol), compound 1-2 (120.0 mg, 0.2 mmol), N,N-diisopropylethylamine (0.16 mL, 1.0 mmol) and 2-(7-azabenzotriazole)-N,N,N',N'-tetramethyluronium hexafluorophosphate (82.0 mg, 0.2 mmol) dissolved in N,N-dimethyl Formamide (3 mL). The reaction was stirred at room temperature for 2 hours. After LCMS monitoring showed that the starting material disappeared, the reaction solution was quenched with water (10 mL), and extracted with ethyl acetate (10 mL ⁇ 3).
  • Step A The hydrochloride salt of intermediate INT-3 (80.0 mg, 0.2 mmol), compound 1-2 (102.3 mg, 0.2 mmol), N,N-diisopropylethylamine (112.6 mg, 0.9 mmol) and 2-(7-azabenzotriazole)-N,N,N',N'-tetramethyluronium hexafluorophosphate (99.5 mg, 0.3 mmol) dissolved in N,N- Dimethylformamide (5 mL). The reaction was stirred at room temperature for 2 hours. After LCMS monitoring showed that the starting material disappeared, the reaction solution was quenched with water (10 mL), and extracted with ethyl acetate (10 mL ⁇ 3).
  • Step A Add diethyl azodicarboxylate (2 g, 11.5 mmol) to a mixture of (5-chloro-3-nitro-2-hydroxy)pyridine (1 g, 5.7 mmol) at zero degrees Celsius , tert-butyl 2-hydroxyacetate (752 mg, 5.7 mmol) and triphenylphosphine (6.6 g, 25.3 mmol) in tetrahydrofuran (20 mL). Stirring at room temperature overnight, LCMS monitoring showed disappearance of starting material. The reaction solution was poured into water (50 mL), and extracted with ethyl acetate (100 mL ⁇ 3).
  • Step C Add diphenylphosphoryl azide (0.1 mL) and triethylamine (150 ⁇ L, 1.2 mmol) to 1,4-dioxan containing intermediate INT-1 (100 mg, 0.4 mmol) alkane (4 mL) solution.
  • the resulting yellow solution was stirred at room temperature for 30 minutes, 200 mg of compound 3-2 was added, and the mixture was heated under reflux for 1 hour.
  • LCMS monitoring showed disappearance of starting material.
  • the mixture was diluted with water (50 mL), extracted with ethyl acetate (30 mL ⁇ 3). The combined organic phases were washed with saturated sodium bicarbonate solution and brine, dried over anhydrous sodium sulfate, filtered and concentrated. The residue was purified by preparative HPLC to obtain 40 mg of compound 3-3.
  • Step D Trifluoroacetic acid (2 mL) was added to a solution of Intermediate 3-3 (200 mg, 0.4 mmol) in dichloromethane (5 mL) at 0 °C. The resulting yellow solution was stirred at room temperature for 2 hours. LCMS monitoring showed disappearance of starting material. Concentrate the mixture. 120 mg of compound 3-4 were obtained without purification.
  • Step E 7-((tert-butoxycarbonyl)amino)heptanoic acid (108 mg, 0.4 mmol), intermediate INT-5 (196 mg, 0.4 mmol), 2-(7-azabenzo Triazole)-N,N,N',N'-tetramethyluronium hexafluorophosphate (167.6 mg, 0.4 mmol) and N,N-diisopropylethylethylamine (172 mg, 1.3 mmol) were added to tetrahydrofuran (5 mL), and stirred at 20°C for 18 hours. LCMS monitoring showed disappearance of starting material.
  • Step F A solution of hydrochloric acid in 1,4-dioxane (4M, 4 mL) was added to a solution of compound 3-5 (192 mg, 0.3 mmol) in dichloromethane (4 mL). The mixture was stirred at 25 °C for 1 hour. LCMS monitoring showed disappearance of starting material. The reaction solution was spin-dried to obtain 187 mg of compound 3-6.
  • Step G Compound 3-6 (187 mg, 0.3 mmol), compound 3-4 (96 mg, 0.2 mmol), 2-(7-azabenzotriazole)-N,N,N' , N'-Tetramethyluronium hexafluorophosphate (79.8 mg, 210 micromol) and N,N-diisopropylethylethylamine (94.8 mg, 740 micromol) were dissolved in THF (10 mL) , and the resulting solution was stirred at 20 °C for 1 h. LCMS monitoring showed disappearance of starting material. The reaction solution was quenched with purified water (20 mL), and then extracted with ethyl acetate (15 mL ⁇ 3).
  • Step A intermediate INT-2 (95.0 mg, 0.2 mmol), compound 4-1 (120.0 mg, 0.2 mmol), N,N-diisopropylethylamine (0.2 mL, 1.0 mmol) and 2 -(7-Azabenzotriazole)-N,N,N',N'-tetramethyluronium hexafluorophosphate (82.0 mg, 0.2 mmol) dissolved in N,N-dimethylformamide (3 ml). The reaction was stirred at room temperature for 2 hours. After LCMS monitoring showed that the starting material disappeared, the reaction solution was quenched with water (10 mL), and extracted with ethyl acetate (10 mL ⁇ 3).
  • Embodiment 5 is a diagrammatic representation of Embodiment 5:
  • Step A Dissolve 7-bromoheptanoic acid (1.1 g, 5.3 mmol) in N,N-dimethylformamide (20 ml) at room temperature, add 2-(7 -Azabenzotriazole)-N,N,N',N'--Tetramethyluronium hexafluorophosphate (2.0 g, 5.3 mmol), after stirring for 10 minutes, add the intermediate INT-5 in sequence (2.0 g, 4.5 mmol) and N,N-diisopropylethylamine (2.2 ml, 12.9 mmol). The reaction solution was stirred for 30 minutes in an ice-water bath under the protection of argon. LC-MS showed complete reaction of starting material.
  • Step B Compound 5-1 (60 mg, 94.4 micromol), intermediate INT-2 hydrochloride (23 mg, 45.2 micromol), N,N-diisopropylethylamine (59 mg , 453.1 micromoles), potassium iodide (19 mg, 113.3 micromoles) and N,N-dimethylformamide (2 ml) were sequentially added to a one-necked flask. The reaction solution was heated to 70° C. and stirred for 4 hours. LC-MS showed product formation. Water (5 mL) was added to the cooled reaction solution and extracted with ethyl acetate (5 mL ⁇ 3).
  • Embodiment 6 is a diagrammatic representation of Embodiment 6
  • Step A Dissolve the desalted intermediate INT-4 (21 mg, 41 micromole) in N,N-dimethylformamide (2 ml) at room temperature, and add compound 5-1 (52 mg, 82 micromole), potassium iodide (21 mg, 124 micromole) and N,N-diisopropylethylamine (16 mg, 124 micromole), the reaction solution was heated to 70 degrees Celsius and stirred for 4 hours.
  • Embodiment 7 is a diagrammatic representation of Embodiment 7:
  • Step A 7-Hydroxyheptanoic acid (1.2 g, 7.9 mmol) was dissolved in DMSO (20 mL), and 2-iodobenzoic acid (3.3 g, 11.9 mmol) was added. The reaction was stirred at room temperature for 4 hours. After LCMS monitoring showed that the starting material disappeared, the reaction liquid was quenched by adding water (8 mL), filtered, and the filtrate was extracted with ethyl acetate (40 mL). The organic phase was washed with water (20 mL) and saturated brine (30 mL), and dried over anhydrous sodium sulfate. After filtration, the filtrate was concentrated under reduced pressure to obtain 1.0 g of compound 7-1.
  • Step B The desalted intermediate INT-2 (200.0 mg, 455.0 ⁇ mol) and compound 7-1 (85.0 mg, 0.6 mmol) were dissolved in 1,2-dichloroethane (5 mL). Acetic acid (1 drop), titanium tetraisopropoxide (258.0 mg, 0.9 mmol) and sodium triacetate borohydride (289.0 mg, 1.4 mmol) were added. The reaction system was reacted at 25 degrees Celsius for 6 hours.
  • reaction solution was quenched with water (10 mL), extracted with ethyl acetate (15 mL), and the organic phase was washed with saturated brine (15 mL), dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure.
  • the resulting mixture was purified by reverse phase column chromatography (mobile phase: 28% acetonitrile, 72% purified water, 0.025% formic acid in purified water) to obtain 80.0 mg of compound 7-2.
  • Step C In N,N-dimethylformamide (5 mL), add compound 7-2 (200.0 mg, 352.0 ⁇ mol), 2-(7-azabenzotriazole)-N,N , N',N'-tetramethylurea hexafluorophosphate (134.0 mg, 0.4 mmol), N,N-diisopropylethylamine (0.3 mL, 1.8 mmol) and the desalted intermediate INT-6 (151.0 mg, 0.4 mmol). The reaction was stirred at 25°C for 1.5 hours.
  • reaction solution was quenched with water (10 mL), extracted with ethyl acetate (20 mL), and the organic phase was washed with saturated brine (20 mL), dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure.
  • Embodiment 8 is a diagrammatic representation of Embodiment 8
  • Step A Compound 8-1 (96 mg, 511.0 micromole) was dissolved in N,N-dimethylformamide (2.0 mL), and 2-(7-azabenzotriazole) was added at zero degrees Celsius -N,N,N',N'-Tetramethyluronium hexafluorophosphate (212 mg, 557 micromol). The reaction solution was stirred at zero degrees Celsius for 10 minutes. The desalted intermediate INT-6 (200 mg, 465 ⁇ mol) and N,N-diisopropylethylamine (180 mg, 1.4 mmol) were added at zero degrees Celsius. The reaction was stirred at 0°C for 10 minutes. LC-MS showed complete reaction of starting material.
  • Step B Compound 8-2 (70 mg, 116 micromole) was dissolved in THF (7 mL) and water (1.4 mL), and lithium hydroxide monohydrate (49 mg, 1.2 mmol) was added in an ice-water bath . The reaction solution was slowly returned to room temperature and stirred overnight. LC-MS showed complete reaction of starting material.
  • Step C Compound 8-3 (40 mg, 70 micromole) was dissolved in N,N-dimethylformamide (2.0 mL) at zero degrees Celsius, and 2-(7-azabenzotriazole) was added -N,N,N',N'-Tetramethyluronium hexafluorophosphate (29 mg, 76.2 micromol). The reaction solution was stirred at zero degrees Celsius for 10 minutes, and intermediate INT-2 (30 mg, 63 micromoles) and N,N-diisopropylethylamine (25 mg, 190 micromoles) were added at zero degrees Celsius. The reaction solution was stirred at zero degrees Celsius for 10 minutes. LC-MS showed complete reaction of starting material.
  • Embodiment 9 is a diagrammatic representation of Embodiment 9:
  • Step A 8-Hydroxyoctanoic acid (1.0 g, 6.2 mmol) was dissolved in DMSO (20 mL), and 2-iodobenzoic acid (2.6 g, 9.4 mmol) was added. The reaction was stirred at room temperature for 4 hours. After LCMS monitoring showed that the starting material disappeared, the reaction solution was quenched with water (20 mL), filtered, and the filtrate was extracted with ethyl acetate (20 mL ⁇ 3). The organic phases were combined, dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure to obtain 0.7 g of compound 9-1.
  • Step B The intermediate INT-2 (120.0 mg, 252.0 ⁇ mol) was dissolved in N,N-dimethylformamide (1 mL) and THF (1 mL), and triethylamine (77.0 mg, 757.0 ⁇ mol) was added mol), the system was stirred at room temperature for half an hour. Compound 9-1 (40.0 mg, 252.0 micromole) and acetic acid (one drop) were added to the above reaction solution, and the stirring was continued for 1 hour. Sodium triacetate borohydride (107.0 mg, 504.0 micromole) was added to the reaction, and the reaction was stirred at room temperature for 12 hours.
  • Step C In N,N-dimethylformamide (2 mL), add compound 9-2 (40.0 mg, 69 ⁇ mol), the desalted intermediate INT-6 (48.0 mg, 0.1 mmol), 2 -(7-Azabenzotriazole)-N,N,N',N'-tetramethyluronium hexafluorophosphate (39.0 mg, 0.1 mmol) and N,N-diisopropylethylamine (0.05 mL, 0.3 mmol). The reaction system was stirred at 20°C for 18 hours.
  • reaction solution was poured into ice water (5 ml), extracted with ethyl acetate (10 ml ⁇ 3), the organic phases were combined, washed with brine (10 ml ⁇ 3), and dried over anhydrous sodium sulfate , concentrated under reduced pressure.
  • Step A Intermediate INT-4 (18 mg, hydrochloride, 35.3 micromole), compound 10-1 (44 mg, 70.7 micromole), N,N-diisopropylethylamine (44 mg , 339.3 ⁇ mol), potassium iodide (14 mg, 84.8 ⁇ mol) and N,N-dimethylformamide (1 ml) were added to a one-necked flask. The reaction solution was stirred at 70°C for 4 hours. LC-MS showed product formation. Water (10 mL) was added to the cooled reaction solution, followed by extraction with ethyl acetate (10 mL ⁇ 3).
  • Step A Compound 11-1 (80 mg, 128 micromole) was dissolved in N,N-dimethylformamide (2 ml) at room temperature, and intermediate INT-2 (31 mg, hydrochloride , 65 ⁇ mol) and potassium iodide (25 mg, 154 ⁇ mol). The reaction solution was heated to 70° C. and stirred for 4 hours. LC-MS showed the production of QL-MDC2026. Ethyl acetate (20 ml) was added to the cooled reaction solution, washed with water (5 ml ⁇ 6), dried over anhydrous sodium sulfate and filtered.
  • Step A Dissolve 5-chloropentanoic acid (152 mg, 1.1 mmol) in N,N-dimethylformamide (4 ml) at room temperature, add 2-(7 -Azabenzotriazole)-N,N,N',N'-tetramethyluronium hexafluorophosphate (706 mg, 1.9 mmol). After stirring in an ice-water bath for 30 minutes, intermediate INT-6 (400 mg, 0.9 mmol) and N,N-diisopropylethylamine (0.8 mL, 1.9 mmol) were sequentially added. The reaction solution was stirred at room temperature for 1 hour. LC-MS showed starting material was consumed.
  • Step B Compound 12-1 (110 mg, 0.20 mmol), desalted intermediate INT-2 (44 mg, 0.10 mmol), potassium iodide (40 mg, 0.24 mmol) and N,N-di Isopropylethylamine (129 mg, 1.0 mmol) was dispersed in N,N-dimethylformamide (1 mL), heated to 80°C under argon protection and stirred for 16 hours. LC-MS showed that most of the starting material was consumed and the product QL-MDC2018 was formed. Water (10 mL) was added to the cooled reaction solution, followed by extraction with ethyl acetate (5 mL ⁇ 3).
  • Step A compound 13-1 (60 mg, 0.1 mmol), compound rac-INT-2 (22 mg, 0.05 mmol), potassium iodide (20 mg, 0.1 mmol) and N,N-diiso Propylethylamine (64 mg, 0.5 mmol) was dispersed in N,N-dimethylformamide (1 mL), and the reaction solution was heated to 80°C under the protection of argon and stirred for 16 hours. LC-MS showed that most of the starting material was consumed and the product QL-MDC2019 was formed. Water (10 mL) was added to the cooled reaction solution, followed by extraction with ethyl acetate (5 mL ⁇ 3).
  • Step A compound 10-1 (60 mg, 0.1 mmol), compound rac-INT-2 (21 mg, 50 micromol), potassium iodide (19 mg, 0.1 mmol) and N,N-diiso Propylethylamine (62 mg, 0.5 mmol) was dispersed in N,N-dimethylformamide (1 mL), heated to 80°C under argon protection and stirred for 16 hours.
  • LC-MS showed that most of the starting material was consumed and the product QL-MDC2020 was formed. Water (10 mL) was added to the cooled reaction solution, followed by extraction with ethyl acetate (5 mL ⁇ 3).
  • Step A Intermediate INT-6 (100 mg, 0.2 mmol) and triethylamine (0.1 mL, 0.7 mmol) were dissolved in anhydrous dichloromethane (1 mL) at room temperature, protected by argon, in an ice-water bath And a solution of acryloyl chloride (21 mg, 0.23 mmol) in anhydrous dichloromethane (1 mL) was added with stirring. The reaction solution was stirred at room temperature under argon protection for 16 hours. LC-MS showed disappearance of starting material. Water (10 mL) was added to the reaction solution, followed by extraction with dichloromethane (10 mL ⁇ 3).
  • Step B Compound 15-1 (46 mg, 95 ⁇ mol), compound rac-INT-2 (33 mg, 76 ⁇ mol) and sodium carbonate (50 mg, 47 ⁇ mol) were dispersed in methanol (1 mL) at room temperature ), the reaction solution was heated to 65 degrees Celsius under the protection of argon and stirred for 48 hours. LC-MS showed disappearance of most starting material and formation of product. The cooled reaction solution was concentrated. Water (10 ml) was added to the resulting residue, followed by extraction with ethyl acetate (5 ml ⁇ 3). The combined organic phases were washed with brine (10 mL), dried over anhydrous sodium sulfate and filtered.
  • Step A Desalted intermediate INT-2 (100.0 mg, 0.2 mmol), 6-(methoxycarbonyl)spiro[3.3]heptane-2-carboxylic acid (42.0 mg, 0.2 mmol), HATU (80.0 mg, 0.2 mmol) and diisopropylethylamine (0.2 ml, 1.1 mmol) were dissolved in N,N-dimethylformamide (2 ml), and the reaction system was stirred at room temperature for 1.5 hours.
  • reaction solution was poured into ice water and extracted with dichloromethane (10 mL), washed with water (10 mL) and brine (10 mL), dried over anhydrous sodium sulfate, filtered and concentrated, and the crude product was washed over silica gel. Purified by column chromatography to obtain 60.0 mg of compound 16-1.
  • Step B Compound 16-1 (60.0 mg, 0.1 mmol) and lithium hydroxide monohydrate (6.1 mg, 0.1 mmol) were dissolved in THF/water (1 mL/1 mL) at 0°C. The resulting solution was stirred at zero degrees Celsius for 1.5 hours. After LCMS monitoring showed that the raw material disappeared, the pH of the solution was adjusted to 2-3 with 1 M aqueous hydrochloric acid, extracted with ethyl acetate (5 mL), washed with water (5 mL) and brine (5 mL), dried over anhydrous sodium sulfate, and filtered and concentrated, the crude product was directly used for the next step without further purification.
  • Step C compound 16-2 (50 mg, 82.6 micromol), intermediate INT-6 (42.0 mg, 0.09 mmol), HATU (80.0 mg, 0.2 mmol) and diisopropylethylamine (0.2 mL, 1.1 mmol) was dissolved in dichloromethane (2 mL), and the resulting solution was stirred at room temperature for 15 hours.
  • Embodiment 17 is a diagrammatic representation of Embodiment 17:
  • Step A Dissolve 2-fluoro-3-nitrobenzoic acid (20 g, 108 mmol) and methylamine hydrochloride (8.7 g, 129 mmol) in ethanol (200 ml), then add N,N- Diisopropylethylamine (70 g, 540 mmol). Stir overnight at room temperature. LCMS monitoring showed that the starting material disappeared, concentrated, added water (100 ml), adjusted the pH value to 3 with concentrated hydrochloric acid, filtered the yellow precipitate, and dried to obtain 10.5 g of compound 17-1.
  • Step B Compound 17-1 (11.6 g, 59 mmol) was dissolved in tert-butanol (200 mL), and N,N-diisopropylethylamine (15.3 g, 118.3 mmol) and phosphoric azide were added Diphenyl ester (17.9 g, 65.0 mmol). The reaction system was stirred overnight at 90°C. After LCMS monitoring showed that the starting material disappeared, the reaction solution was concentrated. The crude product was added with water (500 ml), crushed, filtered, the filter cake was washed with ethyl acetate (10 ml), and dried to obtain compound 17-2 (11.0 g, yellow solid, yield 95%).
  • Step D Compound 17-3 (140 mg, 460 ⁇ mol) was dissolved in THF (15 mL) and methanol (15 mL), and 5% Pd/C (40 mg, 50% H2O) was added. The hydrogenation reaction was carried out overnight at room temperature. Filtration, washing and concentration gave compound 17-4 (80 mg). The crude product was directly used in the next reaction without further reaction.
  • Step E Under nitrogen protection, slowly add oxalyl chloride (541 mg, 4.3 mmol) to a solution of anhydrous dimethyl sulfoxide (666 mg, 8.5 mmol) in dichloromethane (2 mL) at -78 °C dichloromethane solution (20 mL). After stirring at -78°C for half an hour, a solution of compound 17-5 (500 mg, 2.1 mmol) in dichloromethane (2 mL) was slowly added dropwise, and stirring was continued for 1 hour. Triethylamine (1293 mg, 12.8 mmol) was added slowly, and stirring was continued for 1 hour at constant temperature. Naturally raised to room temperature, concentrated.
  • Step F Compound 17-6 (81 mg, 340 ⁇ mol) and compound 17-4 (80 mg, 0.3 mmol) were dissolved in DMSO (4 mL) under nitrogen atmosphere, and acetic acid (0.2 mL) was added , react at 60°C for 1 hour, add sodium cyanoborohydride (27 mg, 430 micromole) in portions, and continue stirring at constant temperature overnight. Dilute with water (50 mL), extract with ethyl acetate (20 mL ⁇ 2), combine the organic phases, dry over anhydrous sodium sulfate, and concentrate. The crude product was separated by silica gel column chromatography to obtain 42 mg of compound 17-7.
  • Step G Compound 17-7 (42 mg, 85 ⁇ mol) was dissolved in dichloromethane (4 mL), and trifluoroacetic acid (1 mL) was added. After reacting at room temperature for 3 hours, the reaction solution was concentrated to obtain 40 mg of compound 17-8.
  • Step H under nitrogen protection, to compound 17-8 (40 mg, 0.09 mmol) and intermediate INT-2 hydrochloride (52 mg, 0.1 mmol) in dry N,N-dimethylformamide ( 4 ml) solution, add N, N-diisopropylethylamine (35 mg, 0.27 mmol), 2-(7-azabenzotriazole)-N, N, N', N' - Tetramethylurea hexafluorophosphate (53 mg, 140 micromol). After reacting at room temperature for 2 hours, water (50 mL) was added, extracted with ethyl acetate (20 mL ⁇ 2), dried over anhydrous sodium sulfate, filtered, and concentrated.
  • N, N-diisopropylethylamine 35 mg, 0.27 mmol
  • 2-(7-azabenzotriazole)-N, N, N', N' - Tetramethylurea hexafluorophosphate 53 mg, 140 micromol
  • Step A tert-butyl acrylate (tert-butyl acrylate, 3.3 g, 25.8 mmol) and piperidin-4-ylmethanol (2.0 g, 21.7 mmol) were dissolved in methanol (20 ml), and the reaction system was heated at room temperature Stirring was continued for 18 hours. After LCMS monitoring showed that the raw material disappeared, the reaction solution was concentrated under reduced pressure, and the resulting mixture was purified by reverse phase column chromatography (mobile phase: 50% acetonitrile, 50% distilled water, distilled water containing 0.01% ammonium bicarbonate) to obtain compound 18-1 (3.9 g , white solid, yield 92.0%).
  • Step B Dissolve oxalyl chloride (0.6 g, 4.5 mmol) in dichloromethane (3 mL) and dimethyl sulfoxide (0.7 mL, 9.1 mmol) (in 2 mL dichloromethane) was slowly added dropwise to the above solution. The system was stirred for 5 minutes. Compound 18-1 (1.0 g, 4.1 mmol) (dissolved in 2.5 mL of dichloromethane) was slowly added dropwise to the reaction solution. The reaction was stirred at -78°C for 15 minutes. Triethylamine (2 mL, 14.8 mmol) was slowly added dropwise to the reaction system, and the reaction solution was slowly raised to room temperature and stirred at room temperature for 45 minutes.
  • Step C Dissolve compound 18-2 (120.0 mg, 0.5 mmol), compound 18-3 (136.0 mg, 0.5 mmol), acetic acid (0.5 ml) and sodium cyanoborohydride (47.0 mg, 0.8 mmol) in dimethyl sulfoxide (5 mL).
  • the system was stirred at 60°C for 18 hours. After LCMS monitoring showed that the starting material disappeared, the reaction solution was quenched with ice water (50 mL), and extracted with dichloromethane (50 mL ⁇ 3). The organic phases were combined, washed successively with water (50 mL ⁇ 3) and saturated brine (50 mL ⁇ 3), and dried over anhydrous magnesium sulfate.
  • Step D Compound 18-4 (120.0 mg, 0.2 mmol) was dissolved in dichloromethane (4 mL) and trifluoroacetic acid (1 mL). The system was stirred at room temperature for 2 hours. After LCMS monitoring showed that the raw materials disappeared, the reaction solution was concentrated under reduced pressure. Compound 18-5 (100.0 mg) was obtained. This compound was used directly in the next step.
  • Step E Compound 18-5 (100.0 mg, 0.2 mmol), intermediate INT-2 (99.2 mg, 0.2 mg), N,N-diisopropylethylamine (145.4 mg, 1.1 mmol) and 2 -(7-Azabenzotriazole)-N,N,N',N'-tetramethyluronium hexafluorophosphate (128.5 mg, 0.3 mmol) dissolved in N,N-dimethylformamide (5 ml). The reaction was stirred at room temperature for 1 hour. After LCMS monitoring showed that the starting material disappeared, the reaction solution was quenched with water (50 mL), and extracted with ethyl acetate (50 mL ⁇ 3).
  • Step A Dissolve compound 19-1 (2.3 g, 8.3 mmol) in N-methylpyrrolidone (20 ml) at room temperature, then add 4-aminobutyraldehyde dimethyl acetal (1.0 g, 7.5 mmol) and N,N-diisopropylethylamine (5.2 mL, 30.0 mmol).
  • the reaction solution was buried in an oil bath preheated to 140°C, and stirred at 140°C for 30 minutes under the protection of argon. LC-MS showed that no starting material remained, and the main product was compound 19-2. Water (100 mL) was added to the cooled reaction solution, followed by extraction with ethyl acetate (100 mL, 50 mL).
  • Step C Compound 19-3 (15 mg, 44 ⁇ mol) and the desalted intermediate INT-2 (10 mg, 23 ⁇ mol) were dissolved in THF (2 ml) at room temperature, and tris was added under stirring at zero degrees Celsius. Sodium acetoxyborohydride (24.4 mg, 115 micromol). The reaction solution was stirred at room temperature for 2 hours. LC-MS showed that the main product was QL-MDC2040. The reaction solution was quenched with saturated aqueous sodium bicarbonate (20 mL), and the resulting mixture was extracted with ethyl acetate (20 mL ⁇ 3). The combined organic phases were washed with saturated brine (20 mL ⁇ 3), dried over anhydrous sodium sulfate and filtered.
  • Step A Compound 20-1 (18 mg, 47 ⁇ mol) and desalted intermediate INT-2 (20 mg, 45 ⁇ mol) were dissolved in THF (2 mL) at zero degrees Celsius with stirring Sodium triacetoxyborohydride (38 mg, 180 ⁇ mol) was added. The reaction was then stirred at room temperature for 2 hours. The reaction solution was quenched with saturated aqueous sodium bicarbonate (20 mL), and the resulting mixture was extracted with ethyl acetate (20 mL ⁇ 3). The combined organic phases were washed with saturated brine (50 mL ⁇ 3), dried over anhydrous sodium sulfate and filtered.
  • Step A Compound 21-1 (80 mg, 224 ⁇ mol) and the desalted intermediate INT-2 (30 mg, 68 ⁇ mol) were dissolved in THF (5 ml) at room temperature, and tris was added under stirring at zero degrees Celsius. Sodium acetoxyborohydride (72 mg, 341 micromol). The reaction was then stirred at room temperature for 2 hours. LC-MS showed that the main product was QL-MDC2042. Saturated aqueous sodium bicarbonate (20 mL) was added to the reaction solution, followed by extraction with ethyl acetate (20 mL ⁇ 3). The combined organic phases were washed with saturated brine (20 mL ⁇ 3), dried over anhydrous sodium sulfate and filtered.
  • Step A tert-butyl 7-aminoheptanoate (100.0 mg, 0.5 mmol), 2-(2,6-dioxopiperidin-3-yl)-4-fluoroisoindoline-1,3- Diketone (138.0 mg, 0.5 mmol), N,N-diisopropylethylamine (0.4 mL, 2.4 mmol) was dissolved in dimethylsulfoxide (2 mL). The reaction system was stirred at 90°C for 18 hours. After LCMS monitoring showed that the starting material disappeared, the reaction solution was cooled to room temperature, quenched with water (10 mL), and extracted with ethyl acetate (10 mL ⁇ 3).
  • Step B Compound 22-1 (100 mg, 0.2 mmol) was dissolved in dichloromethane (2 mL) and trifluoroacetic acid (1 mL). The reaction was stirred at room temperature for 2 hours. After LCMS monitoring showed that the raw materials disappeared, the reaction solution was concentrated under reduced pressure, and the resulting mixture was purified by silica gel column chromatography to obtain 50.0 mg of compound 22-2.
  • Step C intermediate INT-2 (77.0 mg, 0.2 mmol), compound 22-2 (65.0 mg, 0.2 mmol), N,N-diisopropylethylamine (103.2 mg, 0.8 mmol) and 2-(7-Azabenzotriazole)-N,N,N',N'-tetramethyluronium hexafluorophosphate (62.0 mg, 0.2 mmol) dissolved in N,N-dimethylformaldehyde Amide (3 mL). The reaction was stirred at room temperature for 2 hours.
  • reaction solution was quenched with water (10 ml), extracted with ethyl acetate (10 ml ⁇ 3) and the combined organic phase was washed with water (10 ml ⁇ 3) and saturated brine (10 ml ⁇ 3). Dry over anhydrous sodium sulfate. Filter and concentrate under reduced pressure.
  • Embodiment 23 is a diagrammatic representation of Embodiment 23.
  • Step A To stirred compound 23-1 (33 mg, 77 micromole) in N,N-dimethylformamide (1 mL) at zero degrees Celsius under argon atmosphere 2-(7-Azobenzotriazole)-N,N,N',N'-tetramethyluronium hexafluorophosphate (HATU, 40 mg, 0.1 mmol) was added to the solution. The reaction solution was stirred at zero degrees Celsius and under argon protection for 30 minutes. Compound rac-INT-4 (crude hydrochloride, 35.4 mg, 65.1 ⁇ mol) and N,N-diisopropylethylamine (27.1 mg, 0.2 mmol) were added.
  • HATU 2-(7-Azobenzotriazole)-N,N,N',N'-tetramethyluronium hexafluorophosphate
  • reaction solution was then stirred at room temperature under argon protection for 1 hour.
  • the reaction solution was diluted with water (50 mL) and extracted with ethyl acetate (50 mL ⁇ 3). The combined organic phases were washed with brine (50 mL), dried over anhydrous sodium sulfate and filtered.
  • Step A Dissolve compound 24-1 (45 mg, 92.5 micromole) in N,N-dimethylformamide (1 ml) at room temperature, add 2-(7- Azobenzotriazole)-N,N,N',N'-tetramethyluronium hexafluorophosphate (HATU, 47 mg, 123.3 ⁇ mol). under ice water bath After stirring for 30 minutes, compound rac-INT-4 (17 mg, 33.5 ⁇ mol) and N,N-diisopropylethylamine (DIPEA, 12 mg, 92.5 ⁇ mol) were added sequentially. The reaction solution was stirred in an ice-water bath and under the protection of argon for 1 hour. LC-MS showed disappearance of starting material.
  • HATU 2-(7- Azobenzotriazole)-N,N,N',N'-tetramethyluronium hexafluorophosphate
  • DIPEA N,N-diisopropylethylamine
  • Step A Dissolve compound 25-1 (23 mg, 50 micromol) and triethylamine (7 mg, 70 micromol) in dichloromethane (2 ml) at room temperature, add 2-( 7-azabenzotriazole)-N,N,N',N'-tetramethyluronium hexafluorophosphate (HATU, 19 mg, 50 ⁇ mol). The reaction was then stirred at room temperature for 0.5 hours. Compound rac-INT-4 (18 mg, crude hydrochloride, 30 ⁇ mol) was added under ice-water bath and stirring. The reaction solution was stirred at room temperature for 8 hours. LC-MS showed disappearance of starting material.
  • HATU 2-( 7-azabenzotriazole)-N,N,N',N'-tetramethyluronium hexafluorophosphate
  • Step A Compound 26-1 (1 g, 3.1 mmol) was dissolved in N,N-dimethylformamide (20 ml) at room temperature, and 7-octynol (586 mg, 4.6 mmol), cesium carbonate (2.02 g, 6.2 mmol), cuprous iodide (118 mg, 618.9 micromol) and bis(triphenyl phospho)palladium dichloride (217 mg, 309.5 micromole). The reaction solution was stirred at 80° C. for 2 hours under the protection of argon. LC-MS showed complete reaction of starting material. Water (200 mL) was added to the cooled reaction solution, followed by extraction with ethyl acetate (150 mL ⁇ 3).
  • Step B Compound 26-2 (100 mg, 271.4 ⁇ mol) was dissolved in ethyl acetate (25 mL) at room temperature, and Dess-Martin oxidant (158 mg, 372.6 ⁇ mol) was added at 0°C. The reaction solution was slowly returned to room temperature and stirred overnight. Saturated sodium bicarbonate (10 mL) and water (10 mL) were added to the reaction solution, followed by extraction with ethyl acetate (20 mL ⁇ 3). The combined organic phases were washed with brine (50 mL), dried over anhydrous sodium sulfate and filtered. The filtrate was concentrated, and the resulting residue was purified by preparative thin-layer chromatography to obtain 44 mg of compound 26-3.
  • Step C Dissolve compound 26-3 (44 mg, 120.1 ⁇ mol) and the desalted intermediate INT-2 (48 mg, 109.2 ⁇ mol) in THF (2 mL) at room temperature, and add triacetoxy sodium borohydride (69 mg, 327.5 micromol). The reaction solution was slowly returned to room temperature and stirred for 2 hours. LC-MS showed a small amount of starting material remaining and product formed. Saturated aqueous sodium chloride solution (2 mL) and saturated aqueous sodium bicarbonate solution (2 mL) were added to the reaction solution, followed by extraction with ethyl acetate (10 mL ⁇ 3).
  • Step A Dissolve compound 27-1 (25 mg, 77.1 ⁇ mol) and the desalted intermediate INT-2 (31 mg, 70.1 ⁇ mol) in THF (2 mL) at room temperature, and add triacetoxy Sodium borohydride (45 mg, 210.2 micromol). The reaction solution was slowly returned to room temperature and stirred for 2 hours. LC-MS showed a small amount of starting material remaining and product formed. Saturated aqueous sodium chloride solution (2 mL) and saturated aqueous sodium bicarbonate solution (2 mL) were added to the reaction solution, followed by extraction with ethyl acetate (10 mL ⁇ 3).
  • Embodiment 28 is a diagrammatic representation of Embodiment 28:
  • Step B Compound 28-2 (650 mg, 1.7 mmol) was dissolved in methanol (10 mL) at room temperature, and Pd/C (65 mg, 10%) was added. After the addition, the hydrogen gas was replaced three times, protected by a hydrogen balloon and stirred overnight at room temperature. LC-MS showed disappearance of starting material and compound 28-3 as main product. The reaction solution was filtered through celite, and the filter cake was washed with methanol. The combined filtrate was concentrated to obtain an oil, which was then separated by silica gel column chromatography to obtain 423 mg of compound 28-3.
  • Step C Disperse compound 28-4 (1.2 g, 6.5 mmol) in glacial acetic acid (25 ml) at room temperature, add 3-amino-piperidine-2,6-dione hydrochloride (1.1 g , 6.8 mmol) and potassium acetate (0.7 g, 7.2 mmol). The reaction was warmed to 90°C and stirred overnight. LC-MS showed disappearance of starting material. After cooling the reaction solution to room temperature, it was slowly added to water (500 ml), stirred for 2 hours, and then filtered. The filter cake was washed well with water, collected and dried to yield 1.7 g of compound 28-5.
  • Step D Dissolve compound 28-5 (273 mg, 0.9 mmol) in N-methylpyrrolidone (10 ml) at room temperature, add compound 28-3 (110 mg, 0.5 mmol) and N,N-di Isopropylethylamine (853 mg, 6.6 mmol).
  • the reaction solution was buried in an oil bath preheated to 140°C and stirred for 30 minutes. LC-MS showed that the starting material was consumed almost completely and the main product was compound 28-6.
  • the reaction solution was cooled to room temperature and extracted with ethyl acetate (20 mL ⁇ 2) after adding water. The combined organic phases were washed with saturated brine (30 mL ⁇ 10), dried over anhydrous sodium sulfate and filtered. The filtrate was concentrated, and the resulting residue was separated by preparative thin-layer chromatography to obtain 143 mg of compound 28-6.
  • Step E Compound 28-6 (75 mg, 0.2 mmol) was dissolved in acetone (10 mL) at room temperature, and dilute hydrochloric acid (1M, 10 mL, 10 mmol) was added. The reaction solution was stirred overnight at room temperature. LC-MS showed disappearance of starting material. Saturated aqueous sodium carbonate solution (20 mL) and ethyl acetate (20 mL) were carefully added to the reaction solution, and the organic phase was separated. The aqueous phase was further extracted with ethyl acetate (10 mL). The combined organic phases were washed with saturated brine (20 mL ⁇ 3), dried over anhydrous sodium sulfate and filtered. The filtrate was concentrated, and the resulting residue was purified by preparative thin-layer chromatography to obtain 54 mg of compound 28-7.
  • Step F Dissolve compound 28-7 (50 mg, 0.1 mmol) in tetrahydrofuran (10 ml) in an ice-water bath, add desalted intermediate INT-2 (61 mg, 0.1 mmol), and stir in an ice-water bath Sodium triacetoxyborohydride (112 mg, 0.5 mmol) and anhydrous sodium acetate (11 mg, 0.1 mmol) were added, and the reaction solution was warmed to room temperature and stirred for 5 hours. Saturated aqueous sodium bicarbonate solution was added to the reaction solution and extracted with ethyl acetate (20 mL ⁇ 3).
  • Step A 1-[1-(diphenylmethyl)azetidin-3-yl]pyrrolidin-3-alcohol 1-(diphenylmethyl)azetidin-3-yl Methanesulfonate (3.1 g, 9.8 mmol) was dissolved in acetonitrile (35 mL). 1,4-dioxa-8-azaspiro[4.5]decane (1.7 g, 12 mmol) and triethylamine (1.2 g, 12 mmol) were added to the above solution, and the resulting solution was heated to 90 for the night.
  • Step B Compound 29-1 (2.5 g, 6.8 mmol) was dissolved in dry dichloromethane (100 mL) under nitrogen, and chloroethyl 1-chloroformate (2.3 mL, 21 mmol). The mixture was stirred for 1.5 h, then methanol was added. Heat the solution to reflux 20 minutes, then the solvent was removed by evaporation. The residue was dissolved in acetone, and the filtered precipitate was recrystallized from isopropanol to obtain 1.2 g of compound 29-2.
  • Step C Compound 29-2 (0.5 g, 2.5 mmol) was dissolved in N-methylpyrrolidone (15 mL) under nitrogen protection. Compound 28-5 (722 mg, 2.5 mmol) and N,N-diisopropylethylamine (980 mg, 7.5 mmol) were added. The system was stirred at 140°C for 2 hours. After LCMS monitoring showed that the raw materials disappeared, the reaction solution was filtered, the filtrate was concentrated under reduced pressure, and the resulting mixture was separated by thin-layer chromatography to obtain 520 mg of compound 29-3.
  • Step D Compound 29-3 (520 mg, 1.1 mmol) was dissolved in THF (5 mL), water (5 mL) and hydrochloric acid solution (5 mL, 4M in 1,4-dioxane) , the reaction system was heated to 50 degrees and stirred for three hours. After LCMS monitoring showed that most of the raw materials disappeared, the reaction solution was adjusted to weak alkaline and the target components were collected by reverse phase purification and lyophilized to obtain 150 mg of compound 29-4.
  • Step E The desalted intermediate INT-2 (200 mg, 0.4 mmol) and compound 29-4 (200 mg, 0.4 mmol) were dissolved in 1,2-dichloroethane (6 mL) and methanol (1 ml), acetic acid (0.15 ml) and tetraisopropyl titanate (0.3 ml) were added to the above solution, then stirred at room temperature for 0.5 hours, then sodium triacetoxyborohydride (180.4 mg , 0.9 mmol).
  • Step B Compound 30-1 (1.0 g, 2.7 mmol) was dissolved in methanol (15 mL). Under the protection of nitrogen, palladium hydroxide/carbon (500.0 mg) was added, the reaction system was replaced with hydrogen, and stirred for 17 hours under the atmosphere of hydrogen balloon. After LCMS monitoring showed that the starting material disappeared, it was filtered and concentrated under reduced pressure. 450.0 mg of compound 30-2 was obtained. This compound was used directly in the next step.
  • Step C Compound 30-2 (330.0 mg, 1.4 mmol) was dissolved in N-methylpyrrolidone (15 mL) under nitrogen protection.
  • Compound 28-5 (403.0 mg, 1.4 mmol) and N,N-diisopropylethylamine (5.5 g, 55.0 mmol) were added.
  • the system was stirred at 140°C for 2 hours. After LCMS monitoring showed that the raw materials disappeared, the reaction solution was filtered, the filtrate was concentrated under reduced pressure, and the resulting mixture was separated by thin-layer chromatography to obtain 460 mg of compound 30-3.
  • Step D Compound 30-3 (120.0 mg, 0.2 mmol) was dissolved in dichloromethane (4 mL) and trifluoroacetic acid (4 mL). The system was stirred at room temperature for 4 hours. After LCMS monitoring showed that the raw materials disappeared, the reaction solution was filtered and concentrated under reduced pressure. 100 mg of compound 30-4 was obtained. This compound was used directly in the next step.
  • Step E In N,N-dimethylformamide (10 mL), add compound 30-4 (100.0 mg, 0.2 mmol), desalted intermediate INT-2 (97.0 mg, 0.2 mmol), 1 -Hydroxybenzotriazole (44.0 mg, 0.3 mmol), (1-ethyl-3(3-dimethylpropylamine) carbodiimide) (126.0 mg, 0.7 mmol) and triethylamine (3.1 g , 30.6 mmol). The reaction was stirred at room temperature for 17 hours. After LCMS monitoring showed that the raw materials disappeared, the reaction solution was concentrated under reduced pressure.
  • Step A In N,N-dimethylformamide (5 mL), add compound 31-4 (80.0 mg, 0.2 mmol), the desalted intermediate INT-3 (80.0 mg, 0.2 mmol), 1 -Hydroxybenzotriazole (34.0 mg, 0.3 mmol), (1-ethyl-3(3-dimethylpropylamine) carbodiimide) (97.0 mg, 0.5 mmol) and triethylamine (51.0 mg , 0.5 mmol). The reaction was stirred at room temperature for 17 hours. After LCMS monitoring showed that the raw materials disappeared, the reaction solution was concentrated under reduced pressure.
  • Step A Dissolve tert-butyl 4-oxocyclohexane-1-carboxylate (500.0 mg, 2.5 mmol) and benzyl piperazine-1-carboxylate (555.0 mg, 2.5 mmol) in methanol (5 mL), acetic acid (1 mL) and sodium cyanoborohydride (238.0 mg, 3.8 mmol) were added. The reaction was stirred at room temperature for 2 hours. After LCMS monitoring showed that the raw materials disappeared, the reaction solution was concentrated under reduced pressure, and the resulting mixture was purified by reverse-phase column chromatography to obtain 159.0 mg of compound 32-1.
  • Step B Compound 32-1 (1.0 g, 2.5 mmol) was dissolved in THF (5 mL) and methanol (0.5 mL). Under nitrogen protection, add Palladium/carbon (10%, 100.0 mg) was added, the reaction system was replaced with hydrogen, and stirred for 3 hours under a hydrogen balloon environment. After LCMS monitoring showed that the starting material disappeared, it was filtered and concentrated under reduced pressure. 750 mg of compound 32-2 were obtained. This compound was used directly in the next step.
  • Step C Compound 32-2 (455.6 mg, 1.7 mmol) was dissolved in N-methylpyrrolidone (5 mL) under nitrogen protection. Compound 28-5 (500.0 mg, 1.7 mmol) and N,N-diisopropylethylamine (657.5 mg, 5.1 mmol) were added. The system was stirred at 140°C for 2 hours.
  • reaction solution was quenched by adding water (15 ml), extracted with ethyl acetate (30 ml), the organic phase was washed with saturated brine (20 ml), dried over anhydrous magnesium sulfate, filtered, and the filtrate was decompressed After concentration, the resulting mixture was separated by silica gel column chromatography to obtain 323 mg of compound 32-3.
  • Step D Compound 32-3 (323.0 mg, 0.6 mmol) was dissolved in dichloromethane (5 mL) and trifluoroacetic acid (2 mL). The system was stirred at room temperature for 1 hour. After LCMS monitoring showed that the starting material disappeared, it was filtered and concentrated under reduced pressure. The resulting mixture was separated by high performance liquid chromatography to obtain 224.0 mg of Compound 32-4.
  • Step E In N,N-dimethylformamide (3 mL), add compound 32-4 (70.0 mg, 0.1 mmol), the desalted intermediate INT-2 (57.0 mg, 0.1 mmol), 1 -Hydroxybenzotriazole (23.0 mg, 0.2 mmol), (1-ethyl-3(3-dimethylpropylamine) carbodiimide) (31.0 mg, 0.2 mmol) and N,N-diiso Propylethylamine (56.0 mg, 0.4 mmol). The reaction was stirred at room temperature for 3 hours. After LCMS monitoring showed that the raw materials disappeared, the reaction solution was concentrated under reduced pressure.
  • Step A In N,N-dimethylformamide (3 mL), add compound 32-4 (70.0 mg, 0.1 mmol), the desalted intermediate INT-3 (61.0 mg, 0.1 mmol), 1 -Hydroxybenzotriazole (23.0 mg, 0.2 mmol), (1-ethyl-3(3-dimethylpropylamine) carbodiimide) (31.0 mg, 0.2 mmol) and N,N-diiso Propylethylamine (56.0 mg, 0.4 mmol). The reaction was stirred at room temperature for 3 hours.
  • reaction solution was quenched with water (50 mL), and extracted with ethyl acetate (50 mL ⁇ 3). The organic phases were combined, washed with saturated brine (50 mL ⁇ 3), dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure.
  • Step A In N,N-dimethylformamide (3 mL), add compound 31-4 (105.0 mg, 0.2 mmol), compound 34-1 (116.0 mg, 0.2 mmol), 2-(7 -Azabenzotriazole)-N,N,N',N'-tetramethyluronium hexafluorophosphate (135.8 mg, 0.4 mmol), N,N-diisopropylethylamine (153.6 mg , 1.2 mmol). The reaction was stirred at room temperature for 1 hour. After LCMS monitoring showed that the starting material disappeared, water (100 mL) was added to quench, and ethyl acetate (100 mL ⁇ 3) was extracted.
  • Step A Add cuprous iodide (12 mg, 0.06 mmol), triethylamine (120 mg, 1.20 mmol), 2-propyn-1-ol (68 mg, 1.20 mmol) and 1,1' - Bisdiphenylphosphinoferrocenepalladium dichloride (44 mg, 0.06 mmol) was added to a solution of compound 26-1 (200 mg, 0.60 mmol) in N,N-dimethylformamide (5 mL) middle. Under nitrogen protection, after stirring at 80°C for 16 hours.
  • Step B Dissolve compound 35-1 (90 mg, 0.3 mmol) in dimethyl sulfoxide (1 mL), add 2-iodobenzoic acid (530 mg, 1.9 mmol), and react overnight at room temperature. After LCMS monitoring showed disappearance of starting material, the reaction mixture was diluted with water, and the aqueous phase was extracted with ethyl acetate (20 mL ⁇ 2). The organic phases were combined, dried over anhydrous sodium sulfate, and concentrated. The obtained crude product was separated by silica gel column chromatography to obtain 60 mg of compound 35-2.
  • Step C Compound 35-2 (60 mg, 0.2 mmol), intermediate INT-2 (92 mg, 0.2 mmol), triethylamine (19 mg, 0.2 mmol) were dissolved in dichloromethane (10 mL ), the resulting solution was stirred at room temperature for 10 minutes, then acetic acid (0.5 mL) and sodium triacetoxyborohydride (110 mg, 0.57 mmol) were added. Stir overnight at room temperature. After LCMS monitoring showed that the starting material disappeared, saturated aqueous sodium bicarbonate solution (20 mL) was added and extracted with dichloromethane (10 mL ⁇ 2). The organic phases were combined, dried over anhydrous sodium sulfate, and concentrated.
  • Step A Compound 28-5 (500.0 mg, 1.7 mmol) and tert-butyl 2-(piperidin-4-yl)acetate (500.0 mg, 2.5 mmol) were dissolved in N-methylpyrrolidone (5 mL) , N,N-diisopropylethylamine (668.0 mg, 5.2 mmol) was added. The reaction system was stirred at 140°C for 1 hour. After LCMS monitoring showed that the raw materials disappeared, the reaction solution was cooled to room temperature, quenched by adding water (50 ml), extracted with ethyl acetate (80 ml), the organic phase was washed with saturated brine (80 ml), and dried over anhydrous magnesium sulfate.
  • N-methylpyrrolidone 5 mL
  • N,N-diisopropylethylamine 668.0 mg, 5.2 mmol
  • Step B Compound 36-1 (300.0 mg, 0.6 mmol) was dissolved in dichloromethane (10 mL), trifluoroacetic acid (5 mL) was added, and the reaction system was stirred at room temperature for 2 hours. After LCMS monitoring showed disappearance of starting material, it was concentrated under reduced pressure. The resulting mixture was purified by HPLC (mobile phase: 64% acetonitrile, 36% distilled water, distilled water containing 0.01% formic acid) to obtain 195.0 mg of compound 36-2.
  • HPLC mobile phase: 64% acetonitrile, 36% distilled water, distilled water containing 0.01% formic acid
  • Step C Compound 36-2 (70.0 mg, 0.2 mmol) and the desalted intermediate INT-3 (79.5 mg, 0.2 mmol) were dissolved in N,N-dimethyl in methyl formamide (5 mL). Add 2-(7azabenzotriazole)-N,N,N',N'-tetramethyluronium hexafluorophosphate (67. mg, 0.2 mmol) and N,N-diisopropyl Ethylamine (64.0 mg, 0.5 mmol). The system was stirred at room temperature for 2 hours.
  • reaction solution was quenched by adding water (15 ml), extracted with ethyl acetate (30 ml), the organic phase was washed with saturated brine (20 ml), dried over anhydrous magnesium sulfate, filtered, and the filtrate was decompressed concentrate.
  • Step A Compound 37-1 (50.0 mg, 0.1 mmol), the desalted intermediate INT-3 (60.0 mg, 0.1 mmol) were dissolved in methanol (4 mL). Acetic acid (0.01 mL) was added. The system was stirred at room temperature for 30 minutes. Sodium triacetoxyborohydride (20.0 mg, 0.4 mmol) was added to the above reaction solution. The reactant. The system was reacted at 25 degrees Celsius for 3 hours.
  • reaction solution was quenched with water (20 mL), and extracted with dichloromethane (20 mL ⁇ 3). Combine the organic phases with It was washed with water (20 mL ⁇ 3) and saturated brine (20 mL ⁇ 3), dried over anhydrous magnesium sulfate, filtered, and concentrated under reduced pressure.
  • Step A Compound 38-1 (0.7 g, 2.6 mmol) and 2-(bromomethyl)-1,3-dioxolane (0.5 g, 3.1 mmol) were dissolved in acetonitrile (15 mL) at room temperature )middle. Potassium carbonate (1.1 g, 8.0 mmol) was added. The system was raised to 90°C and reacted at this temperature for 16 hours. After LCMS monitoring showed that the raw materials disappeared, the reaction solution was cooled to room temperature, quenched by adding saturated aqueous sodium bicarbonate solution (50 mL), and extracted with ethyl acetate (50 mL ⁇ 2).
  • Step B Dissolve compound 38-2 (900.0 mg, 2.5 mmol) in methanol (5 mL) at room temperature, replace with nitrogen, and add palladium/carbon (90.0 mg, 10%). The system was replaced with hydrogen and stirred at room temperature for 16 hours under a balloon of hydrogen. After LCMS monitoring showed that the starting material disappeared, it was filtered, and the filtrate was concentrated under reduced pressure to obtain 500.0 mg of compound 38-3.
  • Step C Compound 38-3 (500.0 mg, 2.2 mmol) was dissolved in N-methylpyrrolidone (15 mL) under nitrogen protection. Compound 28-5 (650.0 mg, 2.2 mmol) and N,N-diisopropylethylamine (850.0 mg, 6.6 mmol) were added. The system was stirred at 120°C for 1 hour. After LCMS monitoring showed that the raw materials disappeared, the reaction solution was cooled to room temperature and separated by a reverse-phase column (mobile phase: 40% acetonitrile, 60% distilled water, containing 0.01% formic acid in distilled water) to obtain 500.0 mg of compound 38-4.
  • Step D Compound 38-4 (400.0 mg, 0.8 mmol) was dissolved in concentrated hydrochloric acid (20 mL). The system was stirred at 50°C for 3 hours. After LCMS monitoring showed that the raw material disappeared, the reaction solution was cooled to room temperature, quenched by adding saturated sodium bicarbonate solution (100 ml), extracted with ethyl acetate (100 ml), the organic phase was washed with saturated brine (50 ml), and anhydrous sulfuric acid Sodium dry.
  • Step E Dissolve compound 38-5 (130.0 mg, 0.3 mmol) and desalted intermediate INT-2 (150.0 mg, 0.3 mmol) in THF (8 mL), add acetic acid (0.25 mL) and tetraiso Titanium propoxide (243.0 mg, 0.9 mmol). The system was stirred at room temperature for 1 hour. Sodium triacetate borohydride (181.0 mg, 0.9 mmol) was added to the above reaction system. The reaction solution was stirred at room temperature for 5 hours.
  • Step A Compound 39-1 (50.0 mg, 0.1 mmol), desalted intermediate INT-3 (50.0 mg, 0.1 mmol), N,N-diisopropylethylamine (43.0 mg, 0.3 mmol ) and 2-(7-azabenzotriazole)-N,N,N',N'-tetramethyluronium hexafluorophosphate (41.8 mg, 0.1 mmol) were dissolved in dichloromethane (5 mL ). The reaction was stirred at room temperature for 4 hours.
  • reaction solution was diluted with ethyl acetate (20 mL), and the organic phase was washed with water (20 mL ⁇ 3) and saturated brine (20 mL ⁇ 3). The organic phases were combined, washed with water (10 mL ⁇ 3) and saturated brine (10 mL ⁇ 3), and dried over anhydrous sodium sulfate. Filter and concentrate under reduced pressure.
  • the preparation of compound 40-1 refers to the preparation scheme of intermediate INT-2.
  • Step A Compound 40-1 (400.0 mg, 0.7 mmol) was dissolved in THF (5 mL), and hydrogen fluoride in triethylamine (566.0 mg, 3.5 mmol) was added. The system was stirred at room temperature for 3 hours.
  • Step B Compound 40-2 (300.0 mg, 0.7 mmol) was dissolved in dimethyl sulfoxide (10 mL), and 2-iodobenzoic acid (369.0 mg, 1.3 mmol) was added. The reaction system was stirred at 28°C for 4 hours. After LCMS monitoring showed that the raw material disappeared, ethyl acetate (20 ml) was added to the reaction solution to dilute, followed by saturated sodium thiosulfate solution (20 ml ⁇ 3), sodium bicarbonate solution (20 ml ⁇ 3), water (20 ml ⁇ 3) and saturated brine (20 ml ⁇ 3), dried over anhydrous sodium sulfate. After filtration, the filtrate was concentrated under reduced pressure to obtain 260.0 mg of compound 40-3.
  • Step C Compound 40-4 (500.0 mg, 2.0 mmol) was dissolved in N-methylpyrrolidone (5 mL) under nitrogen protection. Compound 28-5 (573.8 mg, 2.0 mmol) and N,N-diisopropylethylamine (1 mL, 6.0 mmol) were added. The system was stirred at 130°C for 2 hours. After LCMS monitoring showed that the raw materials disappeared, the reaction solution was directly separated by a reverse-phase column (mobile phase: 50% acetonitrile, 50% distilled water, 0.01% formic acid in distilled water) to obtain 580.0 mg of compound 40-5.
  • Step D Compound 40-5 (480.0 mg, 0.9 mmol) was suspended in a solution of hydrochloric acid in dioxane (4 mol, 30 mL). The system was stirred at room temperature for 2 hours. After LCMS monitoring showed that the starting material disappeared, it was concentrated under reduced pressure to obtain 410.0 mg of the hydrochloride of compound 40-6.
  • Step E Dissolve the hydrochloride salt of compound 40-6 (235.0 mg, 0.5 mmol) and compound 40-3 (260.0 mg, 0.6 mmol) in methanol (30 ml), add acetic acid (62.5 mg, 1.0 mmol Moore). The system was stirred at room temperature for 1 hour. Sodium cyanoborohydride (98.0 mg, 1.6 mmol) was added to the above reaction system. The reaction was stirred at room temperature for 3 hours. After LCMS monitoring showed that the raw material disappeared, water (20 mL) was added to the reaction liquid to quench, and ethyl acetate (20 mL ⁇ 3) was extracted.
  • Step A Dissolve tert-butyl piperazine-1-carboxylate (1.9 g, 10.0 mmol) in N-methylpyrrolidone (30 mL), add N,N-diisopropylethylamine (4.9 mL, 28.1 mmol) and compound 41-1 (2.8 g, 10.0 mmol). The reaction system was stirred at 140°C for 1 hour. After LCMS monitoring showed that the starting material disappeared, the reaction solution was cooled to room temperature, quenched by adding water (50 mL), and extracted with ethyl acetate (50 mL ⁇ 3).
  • Step B Compound 41-2 (3.5 g, 7.9 mmol) was dissolved in ethyl acetate (15 mL), and a solution of hydrochloric acid in 1,4-dioxane (4 mol, 15 mL) was added. The system was stirred at room temperature for 3 hours. After LCMS monitoring showed that the raw materials disappeared, the reaction solution was concentrated under reduced pressure to obtain 2.6 g of the hydrochloride of compound 41-3.
  • Step C At room temperature, the hydrochloride salt of compound 41-3 (350.0 mg, 0.9 mmol) and tert-butyl 4-formylpiperidine-1-carboxylate (218.0 mg, 1.0 mmol) were dissolved in N, To N-dimethylformamide (5 mL) and tetrahydrofuran (5 mL), was added acetic acid (306.0 mg, 5.1 mmol). The system was stirred at room temperature for 0.5 hours. Sodium triacetate borohydride (649.0 mg, 3.1 mmol) was added to the above reaction system. The reaction was stirred at room temperature for 3 hours.
  • Step D Compound 41-4 (450.0 mg, 0.8 mmol) was dissolved in dichloromethane (10 mL). A solution of hydrochloric acid in dioxane (4 M, 3 mL) was added. The system was stirred at room temperature for 2 hours. After LCMS monitoring showed that the raw materials disappeared, the mixture was filtered, and the filter cake was washed with dichloromethane and dried to obtain 300.0 mg of the hydrochloride of compound 41-5.
  • Step E Dissolve the hydrochloride salt of compound 41-5 (50.0 mg, 0.1 mmol) and compound 41-6 (54.0 mg, 0.1 mmol) in methanol (2 ml) at room temperature, add acetic acid (0.1 ml ) and titanium tetraisopropoxide (0.2 ml). The system was stirred at room temperature for 1 hour. 2-picoline borane complex (37.0 mg, 0.3 mmol) was added to the above reaction system. The reaction was stirred at room temperature for 3 hours.
  • Step A Dissolve 1,4-dioxa-8-azaspiro[4.5]decane (5.0 g, 32.1 mmol), benzyl piperazine-1-carboxylate (7.1 g, 32.2 mmol) in To methanol (50 mL), acetic acid (1 drop) was added. The reaction was stirred at room temperature for 0.5 hours. Sodium cyanoborohydride (3.0 g, 48.0 mmol) was added to the above reaction solution. The reaction was stirred at room temperature for 2 hours. After LCMS monitoring showed that the starting material disappeared, the reaction solution was quenched with water (100 mL), and extracted with dichloromethane (100 mL ⁇ 3).
  • Step B Compound 42-1 (3.0 g, 8.3 mmol) was dissolved in dry THF (30 mL), replaced with nitrogen, and added into palladium on carbon (0.3 g, 10%). The reaction was stirred under a hydrogen balloon at room temperature for 6 hours. After LCMS monitoring showed that the starting material disappeared, it was filtered, and the filtrate was concentrated under reduced pressure to obtain 1.7 g of compound 42-2.
  • Step C Compound 42-2 (1.7 g, 7.6 mmol)) was dissolved in N-methylpyrrolidone (25 mL). Compound 28-5 (2.3 g, 7.6 mmol) and N,N-diisopropylethylamine (3.0 g, 23.1 mmol) were added. The reaction system was stirred at 120°C for 1 hour. After LCMS monitoring showed that the starting material disappeared, the reaction solution was quenched with water (100 mL), and extracted with ethyl acetate (100 mL ⁇ 3).
  • Step D Compound 42-3 (800.0 mg, 1.6 mmol) was dissolved in hydrochloric acid (2.4 mL) and ethyl acetate (12 mL). The reaction was stirred at room temperature for 1 hour. After LCMS monitoring showed that the starting material disappeared, the reaction solution was quenched with ice water (50 mL), and extracted with ethyl acetate (50 mL ⁇ 3). The organic phases were combined, washed with water (50 ml) and saturated brine (50 ml), dried over anhydrous sodium sulfate, filtered, and the filtrate was concentrated under reduced pressure to obtain 222.0 mg of compound 42-4.
  • Step E Compound 42-4 (150.0 mg, 0.3 mmol), intermediate INT-2 (144.6 mg, 0.3 mmol) and tetraisopropyl titanate (0.3 mL) were dissolved in 1,2-dichloroethane alkane (10 mL). Acetic acid (0.3 mL) and 1-boryl-2-methyl-1-pyridine (70.3 mg, 0.7 mmol) were added. The system was stirred at room temperature for 1 hour.
  • reaction solution was quenched with water (50 ml), extracted with dichloromethane (50 ml ⁇ 3), the organic phases were combined, and the organic phase was washed with saturated brine (50 ml), dried over anhydrous sodium sulfate, Filter and concentrate under reduced pressure.
  • the resulting mixture was purified by reverse phase (45% acetonitrile: 55% water: 0.025% formic acid) yielded 7.3 mg of compound 42-P1 (retention time 2.12 min) and 11.9 mg of compound 42-P2 (retention time 2.26 min).
  • Step A The desalted intermediate INT-3 (200.0 mg, 0.4 mmol) and compound 43-1 (201.0 mg, 0.4 mmol) were dissolved in 1,2-dichloroethane (10 mL) and methanol (1.5 ml). Acetic acid (0.1 mL) and titanium tetraisopropoxide (0.4 mL, 1.4 mmol) were added. The reaction system was reacted at 25 degrees Celsius for 0.5 hours. Sodium triacetate borohydride (180.4 mg, 0.9 mmol) was added to the above reaction system, and the reaction solution was reacted at 25 degrees Celsius for 2 hours.
  • Step A Compound 44-1 (100.0 mg, 0.2 mmol), the desalted intermediate INT-2 (92.0 mg, 0.2 mmol) and tetraisopropyl titanate (0.4 mL) were dissolved in 1,2-bis in ethyl chloride (5 mL). Acetic acid (0.02 mL) was added. The system was stirred at room temperature for 30 minutes. Sodium acetate borohydride (88.6 mg, 2.4 mmol) was added to the above reaction solution. The reaction system was reacted at 25 degrees Celsius for 2 hours.
  • reaction solution was quenched with water (10 mL), extracted with ethyl acetate (15 mL), and the organic phase was washed with saturated brine (15 mL), dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure.
  • Step A The starting material 4-bromo-3-methyl-1-((2-(trimethylsilyl)ethoxy)methyl)-1,3-dihydro-2H-benzo[d]imidazole -2-Kone (500 mg, 1.4 mmol), 1-tert-butoxycarbonylpiperazine (261 mg, 1.4 mmol), sodium tert-butoxide (400 mg, 4.2 mmol), 2-bicyclohexylphosphine- 2',6'-diisopropoxybiphenyl (65 mg, 140 micromol), tridibenzylideneacetone dipalladium (64 mg, 70 micromol), were added to a three-necked flask, and dioxane was added (10 mL), and replace nitrogen 3 times.
  • Step B Compound 45-1 (600 mg, 1.3 mmol) was dissolved in 1M tetrabutylammonium fluoride/THF (10.4 mL) at room temperature. The reaction solution was heated to reflux overnight. After LCMS monitoring showed disappearance of starting material, water (50 mL) was added to the reaction system to quench. The mixture was extracted with ethyl acetate (50 ml ⁇ 3), the organic phases were combined, washed with water (20 ml ⁇ 2) and saturated brine (20 ml), then dried over anhydrous sodium sulfate, filtered, and finally reduced pressure concentrate. The obtained residue was purified by silica gel column chromatography (eluent: petroleum ether/ethyl acetate) to obtain 330 mg of compound 45-2.
  • Step C Compound 45-2 (270 mg, 0.8 mmol) was dissolved in anhydrous tetrahydrofuran (10 mL), cooled to zero degrees Celsius under nitrogen protection, and potassium tert-butoxide (182 mg, 1.6 mmol) was added, And stirring for 5 minutes after the addition was complete, then dropwise added 1-(4-methoxybenzyl)-2,6-dioxopiperidine-3-trifluoromethylsulfonate (450 mg, 1.2 mmol) THF solution (2 ml) was stirred at this temperature for 30 minutes after the addition was complete. After LCMS monitoring showed disappearance of starting material, saturated aqueous ammonium chloride solution (10 mL) was added to quench the reaction.
  • Step D Compound 45-3 (160 mg, 0.3 mmol) was dissolved in TFA (10 mL) at room temperature under nitrogen protection. Subsequently, trifluoromethanesulfonic acid (480 mg, 3.2 mmol) was added thereto. The reaction solution was stirred overnight at 60°C. After LCMS monitoring showed that the raw materials disappeared, the reaction solution was concentrated to obtain 500 mg of compound 45-4. The compound was directly subjected to the next reaction without further purification.
  • Step E Compound 45-4 (500 mg) was dissolved in acetonitrile (10 mL). At zero degrees Celsius, triethylamine (324 mg, 3.2 mmol) was added thereto, followed by ethyl acrylate (205 mg, 1.6 mmol), and stirring was continued overnight at room temperature. After LCMS monitoring showed that the starting material disappeared, the reaction solution was concentrated. Water (40 mL) was added, extracted with ethyl acetate (20 mL ⁇ 3), and the combined organic phases were washed with saturated brine (10 mL), then dried over anhydrous sodium sulfate, filtered, and concentrated. The crude product was separated by silica gel column chromatography (dichloromethane/methanol) to obtain 140 mg of compound 45-5.
  • Step F Compound 45-5 (70 mg, 0.2 mmol) was dissolved in dichloromethane (4 mL). Trifluoroacetic acid (2 mL) was added thereto at zero degrees Celsius, and stirring was continued overnight at room temperature. After LCMS monitoring showed that the starting material disappeared, the reaction solution was concentrated. 80 mg of compound 45-6 were obtained.
  • Step G Compound 45-6 (80 mg, 0.2 mmol) and the desalted intermediate INT-2 (72 mg, 0.2 mmol) were dissolved in N,N-dimethylformamide (5 mL). At zero degrees Celsius, N, N-diisopropylethylamine (97 mg, 0.8 mmol) and 2-(7-azabenzotriazole)-N,N,N',N '-Tetramethyluronium hexafluorophosphate (95 mg, 0.3 mmol). After reacting at room temperature for 2 hours, water (50 mL) was added, extracted with ethyl acetate (20 mL ⁇ 2), dried over anhydrous sodium sulfate, filtered, and concentrated.
  • Step A 5-Bromo-3H-isobenzofuran-1-one (5.0 g, 23.5 mmol) and tert-butylpiperazine-1-carboxylate (4.8 g, 25.8 mmol) were dissolved in toluene ( 50 ml). Cesium carbonate (15.3 g, 46.9 mmol)), 2-dicyclohexylphosphino-2'-(N,N-dimethylamino)biphenyl (73.9 mg, 0.2 mmol) and palladium(II) acetate ( 0.1 g, 0.4 mmol). The reaction system was stirred at 100° C. for 16 hours under nitrogen protection.
  • Step B Compound 46-1 (4.7 g, 14.7 mmol) was dissolved in THF/methanol/water (1/1/1 by volume) (90 mL). Sodium hydroxide (2.2 g, 55.6 mmol) was added at zero degrees Celsius, and the mixture was stirred at room temperature overnight. After LCMS monitoring showed that the raw materials disappeared, the pH value of the reaction solution was adjusted to 4-5 with 2 moles of dilute hydrochloric acid. Extracted with ethyl acetate (100 mL x 4). The organic phases were combined, dried over anhydrous sodium sulfate, and concentrated under reduced pressure to obtain 3.2 g of compound 46-2. This compound was used directly in the next step.
  • Step C Compound 46-2 (3.2 g, 9.4 mmol) was dissolved in a solution of methanol (20 mL) and ethyl acetate (20 mL). At minus 10°C, (trimethylsilyl)diazomethane (2 moles, 20 ml) was added dropwise to the solution, and stirring was continued for 15 minutes after the addition was complete. After LCMS monitoring showed that the starting material disappeared, the reaction solution was quenched with water (50 mL), and extracted with ethyl acetate (100 mL ⁇ 3). The organic phase was dried over anhydrous sodium sulfate, filtered, and concentrated under reduced pressure to obtain 3.1 g of compound 46-3.
  • Step E Compound 46-4 (3.1 g, 7.4 mmol) was dissolved in N,N-dimethylformamide (30 mL), and 3-aminopiperidine-2,6-dione salt was added to the solution salt (2.5 g, 14.9 mmol) and N,N-diisopropylethylamine (3.8 g, 29.8 mmol), and the reaction was stirred overnight at 100°C. After LCMS monitoring showed that the raw materials disappeared, the reaction solution was poured into water (50 mL), filtered, the filter cake was washed with acetonitrile (100 mL), and 2.3 g of compound 46-5 was obtained after drying.
  • Step F Compound 46-5 (2.3 g, 5.4 mmol) was dissolved in 1,4-dioxane (30 ml), and a solution of hydrochloric acid in 1,4-dioxane (4 moles, 22.5 ml ), and the mixture was stirred at room temperature for 16 hours. After LCMS monitoring showed that the raw materials disappeared, the reaction solution was filtered, and the obtained solid was washed with ethyl acetate (20 mL ⁇ 2) and dichloromethane (20 mL ⁇ 2), and dried to obtain 2.0 g of compound 46-6.
  • Step G Compound 46-7 (100.0 mg, 0.2 mmol) was dissolved in THF (5 mL) and water (1 mL), and lithium hydroxide monohydrate (21.0 mg, 0.5 mmol) was added. The reaction system was stirred at zero degrees Celsius for 5 hours. After LCMS monitoring showed that the raw materials disappeared, the reaction solution was quenched with ice water (3 ml), and adjusted to a pH value of 2 with 1 molar hydrochloric acid. Extracted with ethyl acetate (6 mL ⁇ 3), combined organic phases, washed with saturated brine (6 mL ⁇ 3), dried over anhydrous sodium sulfate, filtered, and the filtrate was concentrated under reduced pressure to obtain 85.0 mg of compound 46-8. The crude product can be directly used in the next reaction.
  • Step H In N,N-dimethylformamide (5 mL), add compound 46-8 (85.0 mg, 0.1 mmol), compound 46-6 (109.0 mg, 0.3 mmol), 1-hydroxybenzene Triazole (30.0 mg, 0.2 mmol), (1-ethyl-3 (3-dimethylpropylamine) carbodiimide) (86.0 mg, 0.5 mmol) and triethylamine (45.0 mg, 0.5 mmol Moore). The reaction was stirred at room temperature for 17 hours. After LCMS monitoring showed that the raw materials disappeared, the reaction solution was concentrated under reduced pressure.
  • Step A Under nitrogen protection conditions, mix 1-bromo-4-nitrobenzene (500.0 mg, 2.5 mmol) and tert-butyl (4-(4,4,5,5-tetramethyl-1,3 ,2-Dioxybenzaldehyde-2-yl)cyclohex-3-en-1-yl)carbamate (803 mg, 2.5 mmol) dissolved in 1,4-dioxane (10 mL), Dichloro[1,1'-bis(diphenylphosphino)ferrocene]palladium (183.0 mg, 0.3 mmol) and aqueous potassium carbonate (2 mL, 10%) were added. The reaction system was stirred at 90°C for 1 hour.
  • Step B Compound 47-1 (560.0 mg, 1.8 mmol) was dissolved in THF (100 mL). The reaction system was replaced with nitrogen, palladium/carbon (56 mg, 10%) was added, the reaction system was replaced with hydrogen, and stirred at room temperature for 16 hours under a hydrogen balloon environment. After LCMS monitoring showed that the starting material disappeared, it was filtered, and the filtrate was concentrated under reduced pressure to obtain 450 mg of compound 47-2.
  • Step C In a 5 ml microwave tube, sequentially add compound 47-2 (450.0 mg, 1.6 mmol), 3-bromopiperidine-2,6-dione (703.0 mg, 3.7 mmol), N,N - Diisopropylethylamine (460.0 mg, 3.5 mmol) and 1,4-dioxane (1 mL). After sealing, the reaction solution was stirred at 80°C for 14 hours. After LCMS monitoring showed that the starting material disappeared, the reaction solution was cooled to room temperature, and ethyl acetate (50 mL) was added for dilution.
  • Step D Compound 47-3 (290.0 mg, 0.7 mmol) was dissolved in ethyl acetate (10 mL), and a solution of hydrochloric acid in 1,4-dioxane (4 mol, 10 mL) was added. The system was stirred at room temperature for 2 hours. After LCMS monitoring showed that the raw materials disappeared, the reaction solution was concentrated under reduced pressure to obtain 210.0 mg of compound 47-4.
  • Step E Under nitrogen protection, compound 47-4 (210.0 mg, 0.7 mmol) and compound 47-5 (329.0 mg, 0.7 mmol) were dissolved in methanol (20 ml), and acetic acid (0.2 ml, 0.1 millimoles) and tetraisopropyl titanate. The system was stirred at 50°C for 1 hour. The reaction solution was cooled to room temperature, and 2-picoline borane (112.0 mg, 1.1 mmol) was added. The reaction was stirred at room temperature for 16 hours.
  • Step A Dissolve 1-chloro-4-nitrobenzene (5.0 g, 31.8 mmol), methyl 2-cyanoacetate (7.9 g, 79.3 mmol), potassium carbonate (11.8 g, 85.5 mmol) in N,N-Dimethylformamide (25 ml).
  • the reaction system was stirred at 110°C for 1 hour. After LCMS monitoring showed that the starting material disappeared, the reaction solution was cooled to room temperature and quenched by adding water (50 mL). Add dilute sulfuric acid dropwise to adjust the pH of the solution to 2. After filtering, the filter cake was washed with water, and the filtrate was extracted with ethyl acetate (100 ml ⁇ 2).
  • Step B Compound 48-1 (0.5 g, 2.2 mmol) was dissolved in THF (10 mL). Methyl acrylate (190.0 mg, 2.2 mmol) and N-methylmorpholine (222.0 mg, 2.2 mmol) were added, and the reaction system was stirred at 60°C for 3 hours. After LCMS monitoring showed that the starting material disappeared, the reaction solution was cooled to room temperature, quenched with water (20 mL), and extracted with ethyl acetate (20 mL ⁇ 2).
  • Step C Compound 48-2 (700.0 mg, 2.3 mmol) was dissolved in acetic acid (10 mL). Concentrated sulfuric acid (800.0 mg, 8.2 mmol) was added. The system was stirred at 110°C for 2 hours. After LCMS monitoring showed that the raw materials disappeared, the reaction solution was cooled to room temperature, and 3 molar sodium hydroxide aqueous solution was slowly added to adjust the solution to weak acidity. Extracted with ethyl acetate (25 mL x 2).
  • Step D Compound 48-3 (400.0 mg, 1.7 mmol), ammonium chloride (130.0 mg, 2.5 mmol) and iron powder (400.0 mg, 7.1 mmol) were dissolved in ethanol (5 ml) and water (0.5 ml). The system was stirred at 100°C for 1 hour. After LCMS monitoring showed that the raw materials disappeared, the reaction solution was cooled to room temperature, filtered, and concentrated under reduced pressure. The residue was dissolved in ethyl acetate (50 mL), and the organic phase was washed with water (50 mL) and saturated brine (50 mL), and dried over anhydrous sodium sulfate. After filtration, the filtrate was concentrated under reduced pressure, and the resulting mixture was purified by silica gel column chromatography to obtain 300.0 mg of compound 48-4.
  • Step E (1R,4R)-4-(methoxycarbonyl)cyclohexane-1-carboxylic acid (393.0 mg, 2.1 mmol), desalted intermediate INT-3 (1.0 g, 2.1 mmol), N,N-Diisopropylethylamine (1.4 g, 10.6 mmol) and 2-(7-azabenzotriazole)-N,N,N',N'-tetramethyluronium hexafluorophosphate Esters (1.2 g, 3.2 mmol) was dissolved in N,N-dimethylformamide (10 mL). The reaction was stirred at room temperature for 1 hour.
  • reaction solution was quenched with water (100 mL), and extracted with ethyl acetate (100 mL ⁇ 3). The organic phases were combined, washed with saturated brine (100 mL ⁇ 3), and dried over anhydrous sodium sulfate. Filter and concentrate under reduced pressure. The resulting mixture was purified by high performance liquid chromatography to obtain 1.4 g of compound 48-5.
  • Step F Compound 48-5 (1.0 g, 1.6 mmol) was dissolved in THF (16 mL) at -78 °C under argon protection. Diisopropylaluminum hydride (2 molar tetrahydrofuran solution, 4.1 ml) was slowly added dropwise. After the addition was complete, the reaction system was slowly raised to room temperature and stirred for 2 hours. After LCMS monitoring showed that the starting material disappeared, the reaction solution was quenched with water (50 mL). After filtration, the filtrate was extracted with ethyl acetate (50 mL ⁇ 3).
  • Diisopropylaluminum hydride (2 molar tetrahydrofuran solution, 4.1 ml) was slowly added dropwise. After the addition was complete, the reaction system was slowly raised to room temperature and stirred for 2 hours. After LCMS monitoring showed that the starting material disappeared, the reaction solution was quenched with water (50 mL). After filtration, the filtrate was extracted with
  • Step G Compound 48-6 (350.0 mg, 0.6 mmol) was dissolved in dimethyl sulfoxide (5 mL), and 2-iodobenzoic acid (319.2 mg, 1.1 mmol) was added. The reaction system was stirred at 30°C for 2 hours. After LCMS monitoring showed that the starting material disappeared, water (50 mL) was added to the reaction solution to quench it. After filtration, the filtrate was extracted with ethyl acetate (50 mL ⁇ 3).
  • Step H Compound 48-7 (200.0 mg, 0.3 mmol), Compound 48-4 (66.0 mg, 0.3 mmol) were dissolved in methanol (8 mL) at room temperature. Acetic acid (39.2 mg, 0.7 mmol) was added. The reaction solution was stirred at 50°C for 1 hour. The borane complex of 2-picoline (70.0 mg, 0.7 mmol) was added to the above reaction solution. The system was stirred at room temperature for 1 hour. After LCMS monitoring showed that the raw materials disappeared, the reaction solution was poured into water (100 mL), and extracted with ethyl acetate (100 mL ⁇ 3).
  • Step A Under the condition of nitrogen protection, 4-bromo-3-methyl-1-((2-(trimethylsilyl)ethoxy)methyl)-1,3-dihydro-2H- Benzo[d]imidazol-2-one (2.0 g, 5.6 mmol), tert-butyl piperazine-1-carboxylate (1.3 g, 6.8 mmol), sodium tert-butoxide (808.0 mg, 8.4 mmol) , 2-bicyclohexylphosphino-2',6'-diisopropoxybiphenyl (20.0 mg, 0.04 mmol) and chloro(2-dicyclohexylphosphino-2',6'-di-isopropyl Oxy-1,1'-biphenyl)(2-amino-1,1'-biphenyl-2-yl)palladium(II) (32.0 mg, 0.04 mmol) was dissolved in toluene (20 mL).
  • Step B Compound 49-1 (2.2 g, 4.8 mmol) was dissolved in tetrabutylammonium fluoride in tetrahydrofuran (1 mol, 48 mL) under nitrogen protection. The reaction system was stirred at 80°C for 16 hours. After LCMS monitoring showed that the raw materials disappeared, the reaction solution was cooled to room temperature, quenched by adding saturated ammonium chloride solution (200 mL), and extracted with ethyl acetate (200 mL).
  • Step C Dissolve compound 49-2 (1.8 g, 5.4 mmol) in tetrahydrofuran (50 ml) under nitrogen protection at 0°C, slowly add potassium tert-butoxide (1 mol, 8 ml) dropwise, After the dropwise addition was complete, the system was stirred at 0°C for 1 hour.
  • 1-(4-Methoxybenzyl)-2,6-dioxopiperidin-3-yl trifluoromethanesulfonate (2.4 g, 6.3 mmol) and THF (50 mL) were mixed at 0 °C The mixed solution was slowly added dropwise to the above solution, and stirred at this temperature for 2 hours.
  • Step D Dissolve compound 49-3 (1.2 g, 2.1 mmol) in ethyl acetate (50 ml) at room temperature, add hydrochloric acid in 1,4-dioxane (4 mol, 5 ml), The system was stirred at room temperature for 2 hours. After LCMS monitoring showed that the raw material disappeared, ethyl acetate (100 ml) was added to the reaction solution for dilution, the organic phase was washed with water (100 ml ⁇ 3) and saturated brine (100 ml ⁇ 3), dried over anhydrous sodium sulfate, filtered, and the filtrate Concentrate under reduced pressure. The resulting mixture was purified by silica gel column chromatography to obtain 950 mg of Compound 49-4.
  • Step E Under nitrogen protection, compound 49-4 (200.0 mg, 0.4 mmol), tert-butyl 4-formylpiperidine-1-carboxylate (91.0 mg, 0.4 mmol), acetic acid (51.6 mg, 0.9 mmol) and titanium tetraisopropoxide (244.0 mg, 0.9 mmol) were dissolved in methanol (20 ml), and the system was stirred at 50°C for 0.5 hour. The reaction solution was cooled down to room temperature, borane complex of 2-picoline (70.0 mg, 0.5 mmol) was added, and the reaction solution was stirred at room temperature for 3 hours.
  • Step F Under nitrogen protection, compound 49-5 (130.0 mg, 0.2 mmol) was dissolved in trifluoroacetic acid (5 mL), and trifluoromethanesulfonic acid (0.5 mL) was added. The system was stirred at 60°C for 16 hours. After LCMS monitoring showed that the reaction of the raw materials was complete, the reaction solution was concentrated under reduced pressure. 360 mg of compound 49-6 were obtained.
  • Step G Under nitrogen protection, compound 49-6 (130.0 mg, 0.2 mmol) was dissolved in acetonitrile (5 ml), triethylamine (4.0 g, 4.0 mmol) and di-tert-butyl carbonate (65.4 mg, 0.3 mmol). The system was stirred at room temperature for 3 hours. LCMS monitoring showed that after the raw material had reacted completely, dichloromethane (50 ml) was added to the reaction solution for dilution, and the organic phase was washed with water (50 ml ⁇ 3) and saturated brine (50 ml ⁇ 3), dried over anhydrous magnesium sulfate, filtered, The filtrate was concentrated under reduced pressure. The resulting mixture was purified by silica gel column chromatography to obtain 77 mg of Compound 49-7.
  • Step H Under nitrogen protection, compound 49-7 (130.0 mg, 0.2 mmol) was dissolved in dichloromethane (10 mL), and trifluoroacetic acid (1 mL) was added. The system was stirred at room temperature for 3 hours. After LCMS monitoring showed that the reaction of the raw materials was complete, the reaction solution was concentrated under reduced pressure to obtain 60 mg of compound 49-8.
  • Step I Under nitrogen protection, compound 49-8 (60.0 mg, 0.1 mmol), compound 49-9 (64.0 mg, 0.1 mmol), acetic acid (17.0 mg, 0.3 mmol) and tetraisopropyl titanate
  • the ester (80.0 mg, 0.3 mmol) was dissolved in methanol (5 ml), and the system was stirred at 50°C for 0.5 hour.
  • the reaction solution was cooled down to room temperature, borane complex of 2-picoline (23.0 mg, 0.2 mmol) was added, and the reaction solution was stirred at room temperature for 16 hours.
  • Step A Under the condition of nitrogen protection, tert-butyl 2-amino-7-azaspiro[3.5]nonane-7-carboxylate (1.0g, 4.2 mmol), 4-bromo-3-methyl yl-1-((2-(trimethylsilyl)ethoxy)methyl)-1,3-dihydro-2H-benzo[d]imidazol-2-one (1.5g, 4.2mmol) , sodium tert-butoxide (599.0 mg, 6.2 mmol), 2-bicyclohexylphosphine-2',6'-diisopropoxybiphenyl (194.0 mg, 0.4 mmol) and chloro(2-dicyclohexyl Phosphino-2',6'-di-isopropoxy-1,1'-biphenyl)(2-amino-1,1'-biphenyl-2-yl)palladium(II) (323.0 mg, 0.4 mmol) was dissolved in to
  • Step B Under nitrogen protection, compound 50-1 (1.2 g, 2.3 mmol) was dissolved in THF (5 mL), and tetrabutylammonium fluoride in THF (1 mol, 23 mL) was added. The reaction system was stirred at 90°C for 16 hours. After LCMS monitoring showed that the raw materials disappeared, the reaction solution was cooled to room temperature, quenched by adding saturated ammonium chloride solution (200 mL), and extracted with ethyl acetate (200 mL).
  • Step C Dissolve compound 50-2 (800 mg, 2.1 mmol) in tetrahydrofuran (10 ml) under nitrogen protection at 0°C, slowly add potassium tert-butoxide (1 mol, 2.1 ml) dropwise , the dropwise addition was completed, and the system was stirred at 0° C. for 1 hour.
  • 1-(4-Methoxybenzyl)-2,6-dioxopiperidin-3-yl trifluoromethanesulfonate 1.6 g, 4.1 mmol
  • tetrahydrofuran 5 mL
  • Step D Under nitrogen protection, compound 50-3 (1.2 g, 1.8 mmol) was dissolved in trifluoroacetic acid (10 mL), and trifluoromethanesulfonic acid (1 mL) was added. The system was stirred at 60°C for 16 hours. After LCMS monitoring showed that the reaction of the raw materials was complete, the reaction solution was concentrated under reduced pressure. 746 mg of compound 50-4 were obtained.
  • Step E Under nitrogen protection, compound 50-4 (746.0 mg, 1.8 mmol) was dissolved in acetonitrile (5 ml), triethylamine (379.6 mg, 3.8 mmol) and di-tert-butyl carbonate (491.6 mg, 2.3 mmol). The system was stirred at room temperature for 3 hours. LCMS monitoring showed that after the raw material had reacted completely, dichloromethane (50 ml) was added to the reaction solution for dilution, and the organic phase was washed with water (50 ml ⁇ 3) and saturated brine (50 ml ⁇ 3), dried over anhydrous magnesium sulfate, filtered, The filtrate was concentrated under reduced pressure. The resulting mixture was purified by silica gel column chromatography to obtain 510 mg of Compound 50-5.
  • Step F Under nitrogen protection, compound 50-5 (510.0 mg, 1.0 mmol) was dissolved in dichloromethane (4 mL), and 1,4-dioxane hydrochloride (1 mL) was added. The system was stirred at room temperature for 2 hours. After LCMS monitoring showed that the reaction of the raw materials was complete, the reaction solution was concentrated under reduced pressure to obtain 400 mg of compound 50-6.
  • Step G Under nitrogen protection, compound 50-6 (120.0 mg, 0.3 mmol), (S)-1-(2-chloro-7-(1-methoxyethyl)pyrazol[1,5 -a]pyrimidin-6-yl)-3-(2-(2-oxyethoxy)-5-(trifluoromethyl)pyridin-3-yl)urea (compound 50-7, 142.7.0 mg, 0.3 mg mol), acetic acid (0.05 ml) and titanium tetraisopropoxide (0.1 ml) were dissolved in methanol (5 ml), and the system was stirred at 50° C. for 0.5 hour.
  • reaction solution was cooled down to room temperature, borane complex of 2-picoline (69.0 mg, 0.2 mmol) was added, and the reaction solution was stirred at room temperature for 2 hours.
  • dichloromethane 50 ml was added to the reaction solution for dilution, quenched with sodium sulfate decahydrate and stirred for 0.5 hours. After filtration, the filtrate was washed with water (50 mL ⁇ 3) and saturated brine (50 mL ⁇ 3), dried over anhydrous magnesium sulfate, filtered, and the filtrate was concentrated under reduced pressure.
  • Step A Dissolve 1-bromo-2-fluoro-4-nitrobenzene (1.0 g, 4.5 mmol) and tert-butyl piperazine-1-carboxylate (0.83 g, 4.5 mmol) in N,N- To dimethylformamide (20 ml), triethylamine (1.36 g, 13.5 mmol) was added. The system was stirred at 100°C for 16 hours. After LCMS monitoring showed that the starting material disappeared, the reaction solution was cooled to room temperature and extracted with ethyl acetate (50 mL ⁇ 3).
  • Step B Compound 51-1 (720.0 mg, 2.21 mmol) and ammonium chloride (120.0 mg, 2.6 mmol) were dissolved in ethanol (10 mL) and water (1 mL), and iron powder (1.0 g, 22.1 mmol). The system was warmed to 100°C and stirred at this temperature for 18 hours. After LCMS monitoring showed that the raw materials disappeared, the reaction solution was cooled to room temperature, filtered, and the filtrate was concentrated under reduced pressure.
  • Step C Under the condition of nitrogen protection, compound 51-2 (560.0 mg, 1.89 mmol), 3-bromopiperidine-2,6-dione (903.0 mg, 4.73 mmol) was dissolved in N,N- To dimethylformamide (10 mL), N,N-diisopropylethylamine (731.0 mg, 5.67 mmol) was added. The system was warmed to 80°C and stirred at this temperature for 16 hours. After LCMS monitoring showed that the starting material disappeared, the reaction solution was cooled to room temperature and extracted with ethyl acetate (50 mL ⁇ 3).
  • Step D Under nitrogen protection, compound 51-3 (100.0 mg, 0.246 mmol) was dissolved in dichloromethane (3 mL), and hydrochloric acid in 1,4-dioxane (1 mL) was added . The reaction was stirred at room temperature for 1 hour. After LCMS monitoring showed that the raw materials disappeared, dichloromethane (10 ml) was added to the reaction solution for dilution, and the reaction solution was concentrated under reduced pressure to obtain 80 mg of compound 51-4.
  • Step F Under nitrogen protection, compound 51-5 (110.0 mg, 0.218 mmol) was dissolved in dichloromethane (3 mL), and hydrochloric acid in 1,4-dioxane solution (1 mL) was added . The reaction was stirred at room temperature for 1 hour. After LCMS monitoring showed that the raw materials disappeared, dichloromethane (10 ml) was added to the reaction solution for dilution, and the reaction solution was concentrated under reduced pressure to obtain 60 mg of compound 51-6.
  • Step A 3-nitro-5-(trifluoromethyl)pyridin-2-alcohol (2.2g, 9.6 mmol), 4-(2-hydroxyethyl)piperidine were added at 0 degrees centigrade under nitrogen protection conditions Pyridine-1-carboxylic acid tert-butyl ester (2.0 g, 9.6 mmol), triphenylphosphine (5.0 g, 19.2 mmol) were dissolved in tetrahydrofuran (50 ml), and diethyl azodicarboxylate ( 3.5 g, 20.2 mmol). After the dropwise addition was completed, the reaction system was stirred at room temperature for 16 hours.
  • Step B Compound 52-1 (3.2 g, 7.64 mmol) and ammonium chloride (0.83 g, 15.28 mmol) were dissolved in ethanol (100 mL) and water (10 mL). Iron powder (4.29 g, 76.4 mmol) was added, and the reaction system was stirred at 85° C. for 3 hours. After LCMS monitoring showed that the starting material disappeared, the reaction solution was cooled to room temperature, diluted with water (50 mL), and extracted with ethyl acetate (100 mL ⁇ 3). The organic phases were combined, washed with saturated brine (100 mL ⁇ 3), and dried over anhydrous sodium sulfate. After filtration, the filtrate was concentrated under reduced pressure, and the resulting mixture was purified by silica gel column chromatography to obtain 2.8 g of compound 52-2.
  • Step C Compound 52-2 (1.62 g, 6.37 mmol) was dissolved in 1,4-dioxane (50 mL). Diphenylphosphoryl azide (2.48 g, 5.0 mmol) and triethylamine (3.1 mL, 22.2 mmol) were added. The system was stirred at room temperature for half an hour. tert-butyl 4-(2-(3-amino-5-(trifluoromethyl)pyridin-2-yl)oxy)ethyl)piperidine-1-carboxylate (2.8 g, 7.4 mmol) was added In the above reaction system. The reaction was heated to 100°C and stirred for 3 hours.
  • reaction solution was cooled to room temperature, quenched by adding saturated aqueous sodium bicarbonate solution (100 mL), and extracted with ethyl acetate (100 mL ⁇ 3). The organic phases were combined, washed with water (100 ml ⁇ 3) and saturated brine (100 ml ⁇ 3), dried over anhydrous sodium sulfate, filtered, the filtrate was concentrated under reduced pressure, and the resulting mixture was purified by silica gel column chromatography to obtain 1.95 g of compound 52- 3.
  • Step D Compound 52-3 (600.0 mg, 0.9 mmol) was dissolved in dichloromethane (10 mL), and hydrogen chloride in 1,4-dioxane (5 mL, 4 mol) was added to the above solution middle. The resulting reaction solution was stirred and reacted at room temperature for 4 hours. LCMS monitoring showed that the raw materials disappeared, and the reaction solution was concentrated to obtain 500 mg of compound 52-4.
  • Step E Dissolve piperidine-4-methanol (626.0 mg, 5.4 mmol) in N-methylpyrrolidone (15 mL), add N,N-diisopropylethylamine (1.8 mL, 10.9 mmol) and Compound 52-5 (1.0 g, 3.6 mmol). The reaction system was stirred at 140°C for 2 hours. After LCMS monitoring showed that the starting material disappeared, the reaction solution was cooled to room temperature, quenched by adding water (50 mL), and extracted with ethyl acetate (50 mL ⁇ 3).
  • Step F The compound starting material compound 52-6 (350.0 mg, 0.95 mmol) was dissolved in dimethyl sulfoxide (6 mL), and 2-iodobenzoic acid (530.0 mg, 1.9 mmol) was added in the above solution. The resulting reaction solution was stirred and reacted at room temperature for 16 hours. LCMS monitoring showed disappearance of starting material, quenched with water (30 mL), extracted with ethyl acetate (30 mL ⁇ 3).
  • Step G The compound starting material compound 52-4 (176.0 mg, 0.3 mmol) was dissolved in THF and N,N-dimethylformamide (4.0 mL/4.0 mL), and triethylamine (0.13 mL , 0.98 mmol) and stirred at room temperature for 30 minutes, then acetic acid (0.1 ml) and compound 52-7 (120 mg, 0.3 mmol) were added to the above solution and stirred at room temperature for 15 minutes, then triacetoxyboron Sodium hydride (138.0 mg, 0.7 mmol) was added to the above solution. The resulting reaction solution was stirred and reacted at room temperature for 3 hours. LCMS monitoring showed that the raw materials disappeared.
  • the reaction solution was added to a mixed solution of water and ethyl acetate and filtered.
  • the filtrate was separated to obtain an organic layer.
  • the organic layer was dried with anhydrous sodium sulfate. After filtration, the filtrate was concentrated, and the obtained crude product was purified by reverse phase.
  • Step A 5-Fluoroisobenzofuran-1,3-dione (1.0 g, 6.0 mmol) was dissolved in acetic acid (2 mL). 3-Aminopiperidine-2,6-dione (1.1 g, 6.6 mmol) and potassium acetate (1.8 g, 18.6 mmol) were added. The system was stirred at 90°C for 16 hours. LCMS monitoring showed that the starting material disappeared, and the reaction solution dropped to room temperature. At zero degrees Celsius, add water (20 ml) to quench, concentrate under reduced pressure to remove the supernatant, transfer the remaining crude product to a 250 ml single-necked bottle with methanol, and concentrate under reduced pressure. The resulting mixture is purified by silica gel column chromatography to obtain 700 mg Compound 53-1.
  • Step B Under nitrogen protection, compound 53-2 (1.0 g, 4.3 mmol) and tert-butyl 4-formylpiperidine-1-carboxylate (916.0 mg, 4.3 mmol) were dissolved in methanol (5 mL ), acetic acid (0.5 ml) was added, and the reaction solution was stirred at room temperature for 0.5 hours.
  • Sodium triacetoxyborohydride (1.4 g, 6.4 mmol) was added to the above reaction system, and the reaction solution was stirred at room temperature for 3 hours. After LCMS monitoring showed that the raw materials disappeared, dichloromethane and sodium sulfate decahydrate were added to the reaction solution, and stirring was continued for 0.5 hours.
  • Step C Compound 53-3 (1.2 g, 2.8 mmol) was dissolved in methanol (50 mL). After replacing the system with nitrogen, palladium/carbon (100 mg) was added to replace the reaction system with hydrogen, and the reaction solution was stirred at room temperature for 3 hours under a hydrogen balloon environment. After LCMS monitoring showed that the raw materials disappeared, the reaction solution was filtered through celite, and the filtrate was concentrated under reduced pressure to obtain 900 mg of compound 53-4. This compound was directly used in the next reaction.
  • Step D Dissolve compound 53-4 (240.0 mg, 0.8 mmol) and compound 53-1 (230.0 mg, 0.8 mmol) in N-methylpyrrolidone (10 ml) at room temperature, add N,N- Diisopropylethylamine (322.0 mg, 2.5 mmol), the system was heated to 140 degrees Celsius and stirred for 1 hour. After LCMS monitoring showed that the starting material disappeared, the reaction solution was cooled to room temperature, quenched by adding water (100 mL), and extracted with dichloromethane (50 mL ⁇ 3).
  • Step E Compound 53-5 (400.0 mg, 1.4 mmol) was dissolved in dichloromethane (5 mL), and hydrochloric acid in ethyl acetate (4 mol, 1 mL) was added. The reaction was stirred at room temperature for 1 hour. After LCMS detection showed that the reaction of the raw materials was complete, the reaction solution was concentrated under reduced pressure to obtain 300. mg of compound 53-6.
  • Step F Compound 53-6 (100.0 mg, 0.2 mmol) was dissolved in THF (5 mL) and N,N-dimethylformamide (5 mL) at room temperature, and triethylamine (0.5 mL) was added , and the system was stirred at room temperature for 0.5 h. Then acetic acid (0.5 ml), compound 53-7 (104.0 mg, 0.2 mmol) and sodium triacetoxyborohydride (55.8 mg, 0.3 mmol) were added to the above reaction system in turn, and the reaction solution was stirred at room temperature for 2 Hour.
  • Step A 4-Bromo-3-methyl-1-(2-(trimethylsilyl)ethoxy)methyl)-1,3-dihydro-2H-benzo[d]imidazole-2 - Ketone (1.5 g, 4.2 mmol) and tert-butyl (2-(piperidin-4-yl) ethyl) carbamate (1.2 g, 5.2 mmol), sodium tert-butoxide (1.0 g, 10.5 mmol), 2-bicyclohexylphosphine-2',6'-diisopropoxybiphenyl (98 mg, 0.2 mmol) was dissolved in 1,4-dioxane (20 mL) and replaced with nitrogen Three times, tris(dibenzylideneacetone)dipalladium (192 mg, 0.2 mmol) was added to the above solution.
  • the resulting reaction solution was stirred at 90° C. for 2 hours. LCMS monitoring showed that the raw material disappeared, the reaction solution was cooled and filtered, and the filtrate was spin-dried to obtain a crude product. The crude product was purified by normal phase to obtain 0.6 g of compound 54-1.
  • Step B Compound 54-1 (0.6 g, 1.2 mmol) was dissolved in tetrabutylammonium fluoride (11.9 ml, 1 molar solution in THF), and the resulting mixture was stirred at 80°C for 16 hours.
  • LCMS monitors the disappearance of raw materials, and the reaction solution is cooled and poured into a mixed solution of ethyl acetate and saturated ammonium chloride, the organic layer is washed with saturated ammonium chloride, washed with water, washed with brine, dried, filtered, and the filtrate is spin-dried to obtain 0.4 grams of compound 54-2.
  • Step C Compound 54-2 (470 mg, 1.3 mmol) was dissolved in tetrahydrofuran (15 ml), the reaction system was placed in an ice bath, potassium tert-butoxide (1.9 ml, 1.9 mmol) was added dropwise to In the above solution, the resulting mixture was stirred at zero for one hour, and then 1-(4-methoxybenzyl)-2,6-dioxopiperidin-3-yl-trifluoromethanesulfonate (506 mg, 2.5 mmol) was dissolved in tetrahydrofuran (10 ml), and added dropwise to the above solution, and the reaction system was slowly raised to room temperature and stirred for two hours.
  • LCMS detects that most of them are products, and there is also a small amount of raw materials.
  • the reaction solution is poured into a mixed solvent of water and ethyl acetate, separated, the organic layer is dried with anhydrous sodium sulfate, filtered, and spin-dried to obtain a crude product. Normal phase purification afforded 600 mg of compound 54-3.
  • Step D Compound 54-3 (0.6 g, 1.0 mmol) was dissolved in trifluoroacetic acid (7 ml), and trifluoromethanesulfonic acid (0.7 ml, 7.9 mmol) was added to the above solution, heated to 60 degrees Celsius overnight. LCMS showed that the raw materials disappeared, and the reaction solution was cooled to room temperature and spin-dried to obtain 380 mg of compound 54-4.
  • Step E Compound 54-4 (380 mg, crude product) was dissolved in acetonitrile (10 ml), triethylamine was added dropwise at zero temperature until the pH value of the reaction solution was 8-9, and di-tert-butyl carbonate ( 324 mg, 1.5 mmol) was added to the above solution, and the resulting mixture was stirred at room temperature for 2 hours. LCMS monitoring showed that the reaction was complete. The reaction solution was spin-dried, and then water and ethyl acetate were added. The ethyl acetate layer was washed with brine, dried over anhydrous sodium sulfate, filtered, and the filtrate was spin-dried to obtain 170 mg of compound 54-5. .
  • Step F Compound 54-5 (140 mg, 0.3 mmol) was dissolved in dichloromethane (5 mL), and hydrochloric acid in ethyl acetate (2 mL) was added to the above solution, and the resulting mixture was heated at room temperature Stirring was continued for 2 hours. LCMS showed that the starting material disappeared, and it was directly spin-dried to obtain 110 mg of compound 54-6.
  • Step G Compound 54-6 (110 mg, 0.3 mmol), Compound 54-7 (119 mg, 0.3 mmol), acetic acid (0.2 mL), and tetraisopropyl titanate (0.3 mL) were dissolved in methanol (5 ml), heated to 50 degrees Celsius and stirred for half an hour, then cooled to room temperature, and 2-picoline borane (60 mg, 0.6 mmol) was added to the above solution. The resulting reaction solution was stirred and reacted at room temperature for 3 hours.
  • Step A Compound 55-1 (60 mg, 0.09 mmol), pyridine (32 mg, 0.4 mmol) were dissolved in methanol (5 mL) at room temperature. The reaction solution was heated to 60°C and stirred for 10 minutes. The reaction solution was cooled to room temperature, and (S)-1-(2-chloro-7-(1-methoxyethyl)pyrazolo[1,5-a]pyrimidin-6-yl)-3-(2 -(2-Carbonylethoxy)-5-(trifluoromethyl)pyridin-3-yl)urea (32 mg, 0.07 mmol) and 2-picoline borane (58 mg, 0.5 mmol) were added into the reaction solution, replaced by nitrogen, and stirred at room temperature for 16 hours.
  • Step A Compound 55-1 (55 mg, 0.05 mmol) was dissolved in a mixed solution of trifluoroacetic acid (1 mL) and trifluoromethanesulfonic acid (0.1 mL) at room temperature. The reaction solution was heated to 70°C and stirred for 12 hours under nitrogen protection.
  • Step A Compound 57-1 (86 mg, 0.16 mmol) was dissolved in THF (2 mL) and N,N-dimethylformamide (2 mL) at room temperature. Subsequently, N,N-diisopropylethylamine (41 mg, 0.3 mmol) was added thereto, stirred at room temperature for 10 minutes, and then acetic acid (0.5 ml) and (S)-1-(2-chloro-7 -(1-methoxyethyl)pyrazolo[1,5-a]pyrimidin-6-yl)-3-(2-(2-oxoethoxy)-5-(trifluoromethyl) Pyridin-3-yl)urea (76 mg, 0.2 mmol), the reaction solution was stirred at room temperature for 1 hour, and then sodium triacetoxyborohydride (51 mg, 0.24 mmol) was added.
  • Step A Under nitrogen protection, compound 58-1 (100.0 mg, 0.2 mmol), 1-(2-chloro-7-(1-methoxyethyl)pyrazolo[1,5-a] pyrimidin-6-yl)-3-(2-oxoethoxy)-5-trifluoromethylpyridin-3-ylurea (107.7 mg, 0.2 mmol), acetic acid (27.9 mg, 0.5 mmol) and Tetraisopropyl titanate (64.8 mg, 0.2 mmol) was dissolved in methanol (5 ml), and the system was stirred at room temperature for 0.5 hour.
  • reaction solution was cooled down to room temperature, sodium triacetoxyborohydride (96.8 mg, 0.5 mmol) was added, and the reaction solution was stirred at room temperature for 2 hours.
  • dichloromethane 50 ml was added to the reaction solution for dilution, quenched with sodium sulfate decahydrate and stirred for 0.5 hours. After filtration, the filtrate was washed with water (50 mL ⁇ 3) and saturated brine (50 mL ⁇ 3), dried over anhydrous magnesium sulfate, filtered, and the filtrate was concentrated under reduced pressure.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Animal Behavior & Ethology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Pharmacology & Pharmacy (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • Medicinal Chemistry (AREA)
  • Epidemiology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)

Abstract

本发明公开了通过募集E3泛素连接酶抑制MALT1并促进其降解化合物,以及该化合物在制备治疗由MALT1靶点介导的相关疾病药物中的应用,具体公开了如式(Ⅰ')所示化合物及其药学上可接受的盐。

Description

靶向MALT1的蛋白降解化合物
本申请要求于2022年1月28日提交中国专利局、申请号为202210107957.0发明名称为“靶向MALT1的蛋白降解化合物”的中国专利申请、2022年11月11日提交中国专利局、申请号为202211410392.X发明名称为“靶向MALT1的蛋白降解化合物”的中国专利申请、2023年1月6日提交中国专利局、申请号为202310016529.1发明名称为“靶向MALT1的蛋白降解化合物”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明属于药物化学领域,具体涉及通过募集E3泛素连接酶抑制和/或促进MALT1降解的化合物,含有所述化合物的药物组合物以及利用本发明化合物治疗细胞增殖性疾病,例如癌症的方法。
背景技术
弥漫性大B细胞淋巴瘤(DLBCL)是B细胞的癌症,是成年人中最常见的非霍奇金淋巴瘤类型。DLBCL是一种侵袭性肿瘤,几乎可以出现在身体的任何部位。通常,DLBCL来自正常的B细胞,但它也可能代表其他类型的淋巴瘤或白血病的恶性转化,而潜在的免疫缺陷是重要的危险因素。DLBCL有两种主要的生物学上不同的分子亚型:生发中心B细胞(GCB)和活化B细胞(ABC)。粘膜相关淋巴组织淋巴瘤易位蛋白1(MALT1)是半胱天冬酶家族的一部分,并具有蛋白水解活性。它在转录因子NF-κB的激活,白介素2(IL-2)的产生以及T和B淋巴细胞的增殖中具有重要作用。几种已知的ABC-DLBCL细胞系的存活取决于三重信号转导适配器:CARD11,MALT1和BCL10。这些蛋白质形成了CBM复合物,与抗原依赖性有关激活NF-κΒ。除了在CBM复合物中充当支架蛋白外,MALT1还包含在ABC-DLBCL中被组成性激活的蛋白水解活性。已知MALT1抑制剂抑制NF-κB靶基因表达和ABC-DLBCL生存力,使得MALT1抑制成为用于治疗ABC-DLBCL的有吸引力的治疗靶标。
E3泛素连接酶是与E2泛素连接酶结合,促进泛素通过异肽键连接到目标蛋白上的赖氨酸上。蛋白质的泛素化通常导致蛋白酶体降解目标蛋白质。
von Hippel-Lindau肿瘤抑制物(VHL)是E3泛素连接酶。VHL包括底物识别亚基/E3泛素连接酶复合物VCB,其包括延伸蛋白B和C,以及复合物,包括Cullin-2和Rbx1。VHL的主要底物是低氧诱导因子Ia(HIF-1a),一种转录因子,可响应低氧水平上调基因,例如促血管生成生长因子VEGF和诱导红细胞的细胞因子促红细胞生成素。VCB是癌症,慢性贫血和局部缺血的已知靶标。
Cereblon(CRBN)是另一种E3泛素连接酶,它与受损的DNA结合蛋白1(DDB 1),Cullin-4A(CUL4A)和cullins 1(ROC 1)的调节剂一起形成E3泛素连接酶复合物。该复合物泛素化许多其他蛋白质。通过尚未完全阐明的机制,目标蛋白的Cereblon泛素化导致成纤维细胞生长因子8(FGF8)和成纤维细胞生长因子10(FGF10)的水平升高。FGF8依次调节许多发育过程,例如肢体和听觉囊泡的形成。另外,研究表明结合并抑制Cereblon的小分子(例如来那度胺)对DLBCL细胞,优选ABC-DLBCL细胞具有直接的抗肿瘤活性。
蛋白降解靶向嵌合体(Proteolysisi Targeting Chimera,PROTAC)是一种应用泛素-蛋白酶体系统靶向特定蛋白质并诱导其在细胞内降解的技术。泛素-蛋白酶体系统是细胞内蛋白质降解的主要途径,其正常生理功能主要负责清除细胞内变性、突变或有害蛋白质,细胞内80%以上蛋白质的降解都依赖于泛素-蛋白酶体系统。PROTAC是一种双功能的小分子三联体化合物,可以分为靶蛋白小分子抑制剂、Linker(接头)、E3泛素连接酶配体三部分。PROTAC分子进入细胞后,其结构中的目标蛋白(Protein of Interest,POI)配体可特异性地与相应的靶蛋白结合,而另一端可以募集E3连接酶从而形成POI-Linker-E3ligase三元复合物,其中E3连接酶可介导泛素结合酶E2对POI泛素化。被泛素标记的POI被蛋白酶体识别并降解。
本发明描述了双功能或蛋白水解靶向嵌合化合物(PROTAC)化合物,其可作为靶向泛素化的MALT1抑制和 /或降解剂。
发明内容
本发明提供了一种可以用于抑制和/或降解MALT1的新型双功能化合物,含有所述化合物的药物组合物、制备方法及其用于治疗癌症的用途。
该化合物为包含靶蛋白的小分子配体、接头与E3泛素连接酶的配体的三联体化合物,如下式所示,
其中,靶蛋白小分子配体可以特异性结合靶蛋白,在三联体化合物中通过共价键与接头相连接;接头为靶蛋白的小分子配体与E3泛素连接酶的配体的连接基团,一端与靶蛋白的小分子配体结合,另一端与E3泛素连接酶的配体结合;E3泛素连接酶的配体能够结合泛素连接酶,如E3泛素连接酶,与接头共价结合。
本发明提供了式(I’)所示的化合物:
或其异构体以及药学上可接受的盐,其中TGL结合MALT1靶标配体,
选自
其中E为结合泛素连接酶的降解决定子,选自
其中L为接头,具有式(Ⅱ’)所示结构
B1为C1-15亚烃基链,其中所述C1-15亚烃基链中的氢原子任选地被1-3个Ra取代,C1-15亚烃基链中的碳原子任选的被-NRb-、-O-、羰基所替代;Ra为C1-4烷基;Rb为H或者C1-4烷基;优选地,B1为C1-15亚烷基链,其中所述C1-15亚烷基链中的氢原子任选地被1-3个Ra取代,C1-15亚烷基链中的碳原子任选的被-NRb-、-O-、羰基所替代;Ra为C1-4烷基;Rb为H或者C1-4烷基;
B2为化学键、任选被取代的如下基团:C3-6的环烷基、3-6元杂环烷基、C7-11螺环烷基、7-11元螺杂环烷基;
B3为化学键、碳原子任选的被-NRb-、-O-、羰基所替代的C1-4亚烷基链;
B4为化学键、任选被取代的如下基团:C3-6环烷基、3-6元杂环烷基、C7-11螺环烷基、7-11元螺杂环烷基;
B5为化学键、C1-5亚烷基链,所述亚烷基链中碳原子任选的被NRc、羰基或氧所替代,Rc为H或C1-4烷基;
n1、n2、n3、n4为0或1。
在本发明的一些方案中,上述E选自
在本发明的一些方案中,上述L具有式(Ⅱ’a)结构。
在本发明的一些方案中,上述L具有式(Ⅱ’b)结构。
在本发明的一些方案中,上述L具有式(Ⅱ’c)结构。
在本发明的一些方案中,上述L具有式(Ⅱ’d)结构。
在本发明的一些方案中,上述L具有式(Ⅱ’e)结构。
在本发明的一些方案中,上述L具有式(Ⅱ’f)结构。
在本发明的一些方案中,上述B2、B3、B4、B5各自独立的为化学键。
在本发明的一些方案中,上述B1为C1-15亚烃基链,C1-15亚烃基链中氢原子任选地被1-2个Ra取代,C1-15亚烃基链中碳原子任选2~4个碳原子被-NRb-、-O-、羰基所替代,Ra为C1-4烷基;Rb为H或者C1-4烷基。
在本发明的一些方案中,上述B1为C1-11亚烷基链,C1-11亚烷基链中氢原子任选地被1-2个Ra取代,碳原子任选的被-NRb-、-O-、羰基所替代,Rb为H或者C1-4烷基。
在本发明的一些方案中,上述B1为C1-11亚烷基链,C1-11亚烷基链中氢原子任选地被1-2个Ra取代,任选2~4 个碳原子被-NRb-、-O-、羰基所替代,Rb为H或者C1-4烷基。
在本发明的一些方案中,上述B1为C1-6亚烷基链,C1-6亚烷基链中氢原子任选地被1-2个Ra取代,碳原子任选的被-NRb-、-O-、-C(O)-替代,Rb为H或者C1-4烷基。
在本发明的一些方案中,上述B1为C7-11亚烷基链,C7-11亚烷基链中氢原子任选地被1-2个Ra取代,碳原子任选的被-NRb-、-O-、羰基所替代,Rb为H或者C1-4烷基;
在本发明的一些方案中,上述B1为C1-6亚烷基链,C1-6亚烷基链中氢原子任选地被1-2个Ra取代,任选2~4个碳原子任选的被-NRb-、-O-、羰基所替代,Rb为H或者C1-4烷基。
在本发明的一些方案中,上述B1为C7-11亚烷基链,C7-11亚烷基链中氢原子任选地被1-2个Ra取代,任选1~2碳原子被-NRb-、-O-、羰基所替代,Rb为H或者C1-4烷基。
在本发明的一些方案中,上述B1为C7-11亚烷基链,C7-11亚烷基链中氢原子任选地被1-2个Ra取代,任选3~5碳原子被-NRb-、-O-、羰基所替代,Rb为H或者C1-4烷基。
在本发明的一些方案中,上述Ra为甲基。
在本发明的一些方案中,上述Rb为氢或甲基。
在本发明的一些方案中,上述B1选自
在本发明的一些方案中,上述B2选自C3-6的环烷基、4-6元杂环烷基,其中杂环烷基中含有1-2个N杂原子,所述环烷基、杂环烷基任选被C1-4烷基取代。
在本发明的一些方案中,上述B2选自C7-11螺环烷基、9-11元螺杂环烷基,其中螺杂环烷基中含有1-2个N杂原子。
在本发明的一些方案中,上述B2选自C9-11螺环烷基、7-11元螺杂环烷基,其中螺杂环烷基中含有1-2个N杂原子。
在本发明的一些方案中,上述B2选自7-11元螺杂环烷基,其中螺杂环烷基中含有1-2个N杂原子。
在本发明的一些方案中,上述B2
在本发明的一些方案中,上述B2
在本发明的一些方案中,上述B3为碳原子任选的被-NRb-、-O-、羰基所替代的C1-4亚烷基链;优选-CH2-、-CH2-N(CH3)-、-CO-。
在本发明的一些方案中,上述B3选自-N(CH3)-、-(CH2)2-。
在本发明的一些方案中,上述B4为任选被取代的如下基团:C3-6环烷基、3-6元杂环烷基、C7-11螺环烷基、7-11元螺杂环烷基。
在本发明的一些方案中,上述B4选自C3-6的环烷基、4-6元杂环烷基,其中杂环烷基中含有1-2个N杂原子,所述环烷基、杂环烷基任选被C1-4烷基取代。
在本发明的一些方案中,上述B4选自C7-11螺环烷基、9-11元螺杂环烷基,其中螺杂环烷基中含有1-2个N杂原子。
在本发明的一些方案中,上述B4选自7-11元螺杂环烷基,其中螺杂环烷基中含有1-2个N杂原子。
在本发明的一些方案中,上述B4选自C9-11螺环烷基、7-11元螺杂环烷基,其中螺杂环烷基中含有1-2个N杂原子。
在本发明的一些方案中,上述B4
在本发明的一些方案中,上述B4
在本发明的一些方案中,上述B5为C1-5亚烷基链,碳原子任选的被NRc、羰基或氧所替代,Rc为H或C1-4烷基。
在本发明的一些方案中,上述Rc为氢。
在本发明的一些方案中,上述Rc为-CH3
在本发明的一些方案中,上述B5选自
在本发明的一些方案中,上述B5选自
在本发明的一些方案中,上述L为C1-11亚烷基链,其中所述C1-11亚烷基链中的氢原子任选地被1-3个Ra取代,C1-11亚烷基链中的碳原子任选的被-NRb-、-O-、羰基所替代;Ra为C1-4烷基;Rb为H或者C1-4烷基。
在本发明的一些方案中,上述L为C1-7亚烷基链与C6-9环烷烃的组合,其中所述C1-7亚烷基链中的氢原子任选地被1-3个Ra取代,C1-7亚烷基链中的碳原子任选的被-NRb-、-O-、羰基所替代;Ra为C1-4烷基;Rb为H或者C1-4烷基。
在本发明的一些方案中,上述L为C1-7亚烷基链与4-9元杂环烷烃的组合,其中所述C1-7亚烷基链中的氢原子任选地被1-3个Ra取代,C1-7亚烷基链中的碳原子任选的被-NRb-、-O-、羰基所替代;Ra为C1-4烷基;Rb为H或者C1-4烷基。
在本发明的一些方案中,上述L选自
在本发明的一些方案中,上述L选自
在本发明的一些方案中,上述L选自
本发明还提供下述化合物或其异构体或药学上可接受的盐,其选自,












本发明还提供了化合物的制备方法:
方法一:
Ra为氢或C5-6含氮杂芳基;Rb为卤素或者卤代C1-4烷基;L’为直连烷烃或者为直连烷烃与杂环烷基的组合,其中所述烷烃中碳原子任选被杂原子取代,L’任选被C1-4烷基取代;Y选自结合至CRBN、VHL的结构或类似物。
PG为羟基的保护基团,可为任选取代的如下基团:C1-6烷基(例如甲基、乙基、丙基、异丙基、丁基和叔丁基等)、苯基、C7-10芳烷基(例如苄基等)、C1-6烷基羰基(例如乙酰基和丙酰基等)、甲酰基、苯氧基羰基、C7-10芳烷氧基羰基(例如苄氧基羰基等)、四氢吡喃基、四氢呋喃基和甲硅烷基等。所述取代基可为,例如卤原子(例如氟、氯、溴和碘)、C1-6烷基、苯基、C7-11芳烷基和硝基等,并且取代基的数目可为1-4个。
中间体IN-1由化合物A经脱保护反应生成。具体的脱保护条件包括,盐酸(HCl)/甲醇(MeOH)或二氧六环(dioxane)、H2/钯碳(Pd-C)、三氟乙酸(TFA)等。
产物由IN-1和化合物B经公知的缩合条件得到。
方法二:
Ra、Rb、L’、Y如上述定义;X为卤素;
产物由化合物C在碱性条件下,与化合物B经取代反应得到。其中“碱”的实例是无机碱,例如碳酸钠、碳酸氢钠、碳酸钾、碳酸氢钾、氢氧化钠、氢氧化钾和氢氧化铊等;以及有机碱,例如三乙胺、二异丙基乙基胺和吡啶等。
方法三:
Ra、Rb、L’、Y如上述定义;
产物由化合物D和化合物B在碱存在下反应,并进一步被还原生成。其中“碱”的实例是无机碱,例如碳酸钠、碳酸氢钠、碳酸钾、碳酸氢钾、氢氧化钠、氢氧化钾和氢氧化铊等;以及有机碱,例如三乙胺、二异丙基乙基胺和吡啶等。该反应使用的反应溶剂例如N,N-二甲基甲酰胺、N,N-二甲基乙酰胺、N-甲基吡咯烷酮、乙腈、DMSO、四氢呋喃等;其中,还原条件如Pd/C等。
本发明还提供一种药物组合物,其含有治疗有效量的(I’)所示化合物、或其异构体或其药学上可接受的盐和药学上可接受的载体、稀释剂和赋形剂。药物组合物能配制用于特定给药途径,如口服给药、胃肠外给药和直肠给药等。口服,例如片剂、胶囊剂(包括持续释放或定时释放处方)、丸剂、散剂、颗粒剂、酏剂、酊剂、混悬液(包括纳米混悬液、微米混悬液、喷雾干燥分散剂)、糖浆剂和乳剂;舌下给药;含服;胃肠外给药,例如通过皮下、静脉内、肌内或胸骨内的注射,或输注技术(例如作为无菌可注射水溶液或非水溶液或混悬液);经鼻,包括对鼻粘膜给药,例如通过吸入喷雾给药;局部给药,例如以乳膏或软膏的形式;或经直肠给药,例如以栓剂的形式给药。它们可单独给药,但通常会与根据所选择的给药途径和标准药学操作选择的药学载体一起给药。
“药学上可接受的载体”指本领域通常可接受的用于将生物活性药剂递送给动物、特别是哺乳动物的介质,根据给药方式和剂型的性质包括例如佐剂、赋形剂或赋形物,例如稀释剂、防腐剂、填充剂、流动调节剂、崩解剂、润湿剂、乳化剂、助悬剂、甜味剂、调味剂、芳香剂、抗菌剂、抗真菌剂、润滑剂和分散剂。药学上可接受的载体在本领域普通技术人员的眼界范围内根据大量因素配制。其包括但不限于:配制的活性药剂的类型和性质,要将含有该药剂的组合物给药的对象,组合物的预期给药途径,和目标治疗适应症。药学上可接受的载体包括含水 介质和非水介质这两者以及多种固体和半固体剂型。除了活性药剂以外,这样的载体包括许多不同的成分和添加剂,因多种原因(例如稳定活性药剂、粘合剂等)在处方中包括的这样的另外的成分对于本领域普通技术人员是众所周知的。
用于本发明化合物的给药方案当然可根据已知的因素改变,例如具体药剂的药效学特征及其给药的模式和途径,接受者的物种、年龄、性别、健康、医学状况和体重,症状的性质和程度,共存的治疗的种类,治疗的频率,给药的途径,患者的肾脏和肝脏的功能,和需要的效果。治疗有效剂量的化合物、药物组合物或其组合取决于对象种类、体重、年龄和个体情况、所治疗病症或疾病或其严重度。掌握普通技术的医生、临床医生或兽医能容易确定预防、治疗或抑制病症或疾病进展所需的各活性成分有效量。
本发明还提供(I’)所示化合物、或其异构体或其药学上可接受的盐或上述的药物组合物在制备治疗由MALT1靶点介导的相关疾病药物中的用途。
在本发明的一些方案中,所述MALT1靶点介导的相关疾病为细胞异常增殖性疾病;优选地,所述的细胞异常增殖性疾病为癌症。
本发明还提供(I’)所示化合物、或其异构体或其药学上可接受的盐或上述的药物组合物在制备治疗细胞异常增殖性疾病药物中的应用;优选地,所述的细胞异常增殖性疾病为癌症。
在本发明的一些方案中,上述的应用,其中癌症包括胆管、骨、膀胱、中枢神经系统、乳房、结直肠、胃、头和颈、肝、肺、神经元、食道、卵巢、胰腺、前列腺、肾脏、皮肤、睾丸、甲状腺、子宫和外阴的等实体肿瘤。
本发明还提供了一种治疗癌症性疾病的方法,所述方法包括向受试者施用治疗有效量的式(I’)所示的化合物、或其异构体或其药学上可接受的盐。
本发明还提供了一种式(I’)所示的化合物,所述化合物用于治疗癌症性疾病。
技术效果
本发明化合物有显著的蛋白降解活性、细胞增殖抑制活性,可用于癌症的治疗。
说明和定义
除非另有说明,本文所用的下列术语和短语旨在具有下列含义。一个特定的术语或短语在没有特别定义的情况下不应该被认为是不确定的或不清楚的,而应该按照普通的含义去理解。
术语“药学上可接受的”指在合理的医学判断范围内适合与人类和动物的组织接触使用而无过度的毒性、刺激、过敏反应或其它的问题或并发症,与合理的收益/风险比相当的那些化合物、材料、组合物和/或剂型。
术语“药学上可接受的盐”是指本发明化合物与相对无毒的酸或碱制备得到的衍生物。这些盐可以在化合物合成、分离、纯化期间就被制备,或者单独使用经过纯化的化合物的游离形式与适合的酸或碱反应。当化合物中含有相对酸性的官能团时,与碱金属、碱土金属氢氧化物或有机胺反应得到碱加成盐,包括基于碱金属与碱土金属的阳离子以及无毒的铵、季铵和胺阳离子,还涵盖氨基酸的盐等。当化合物中含有相对碱性的官能团时,与有机酸或无机酸反应得到酸加成盐。
本发明中所记载的各结构单元的断开位置仅是为了便于本发明内容的描述,其对于化合物的合成方法或者各片段独立存在的结构不具有限定作用。
本发明所述的异构体包括几何异构体以及立体异构体,例如顺反异构体、对映异构体、非对映异构体、及其外消旋混合物和其他混合物,所有这些混合物都属于本发明的范围之内。
术语“对映异构体”是指互为镜像关系的立体异构体。
术语“非对映异构体”是指分子具有两个或多个手性中心,并且分子间为非镜像的关系的立体异构体。
术语“顺反异构体”是指分子中双键或者成环碳原子单键不能自由旋转而存在的构型。
除非另有说明,用楔形实线键和楔形虚线键表示一个立体中心的绝对构型,用直形实线键和 直形虚线键表示立体中心的相对构型,如双直形实线键或双直形虚线键表示顺式结构,一直形实线键和一直形虚线键表示反式结构。例如代表羟基和酰胺基位于吡咯烷的同侧,代表羟基和酰胺基位于吡咯烷的两侧。
本发明化合物的立体异构体可以通过手性合成或手性试剂或者其它常规技术制备。例如本发明某化合物的一种对映体,可以通过不对称催化技术或者手性助剂衍生技术制备得到。或者通过手性拆分技术,从混合物中得到单一立体构型的化合物。或者用手性起始原料,直接制备得到。本发明中的光学纯化合物的分离通常是使用制备色谱完成的,采用手性色谱柱,达到分离手性化合物的目的。
化合物的绝对立体构型通过可以通过本领域常规技术手段予以确证。例如单晶X射线衍射法,也可以通过原料的手性结构以及不对称合成的反应机理来确证化合物的绝对构型。本文中标记为“绝对构型未测定”的化合物,通常是由消旋体化合物通过手性制备型SFC拆分为单一异构体,然后进行表征和测试。
术语“赋形剂”通常是指配制有效的药物组合物所需要载体、稀释剂和/或介质。
术语“有效预防或治疗量”是指本发明化合物或其药学上可接受的盐以适用于任何医学治疗和/或预防的合理效果/风险比治疗障碍的足够量的化合物。但应认识到,本发明式(I’)所示化合物或其药学上可接受的盐和组合物的总日用量须由主诊医师在可靠的医学判断范围内作出决定。对于任何具体的患者,具体的治疗有效剂量水平须根据多种因素而定,所述因素包括所治疗的障碍和该障碍的严重程度;所采用的具体化合物的活性;所采用的具体组合物;患者的年龄、体重、一般健康状况、性别和饮食;所采用的具体化合物的给药时间、给药途径和排泄率;治疗持续时间;与所采用的具体化合物组合使用或同时使用的药物;及医疗领域公知的类似因素。例如,本领域的做法是,化合物的剂量从低于为得到所需治疗效果而要求的水平开始,逐渐增加剂量,直到得到所需的效果。
除非特别说明,术语“任选被取代的”是指给定基团中的氢原子可以被取代,也可以不被取代,除非另有规定,取代基的种类和数目在化学上可以实现的基础上可以是任意的,例如,术语“可任选地被一个或多个Ra取代”是指可以被一个或多个Ra取代,也可以不被Ra取代。
当列出的取代基未指明该取代基通过哪个原子连接至具有给定结构式的化合物的其余部分上时,则该取代基可通过取代基中的任一可键合原子来连接。
除非另有规定,术语“烷基”表示直链或支链的饱和烃基,包括C1-6的烷基、C1-4的烷基,数值表示碳原子数目。烷基的实例包括,但不限于甲基、乙基、正丙基、异丙基、丁基、异丁基等。
除非另有规定,术语“亚烃基链”指直链或支链的链状烃去掉氢原子所衍生的基团,所述链烃包括烷烃、烯烃、炔烃。具体链烃基实例包括但不限于: 等。
除非另有规定,“环”是指饱和的、部分饱和的或不饱和的单环以及多环,“多环”包括螺环、并环或桥环。代表性的“环”包括被取代或未被取代的环烷基、杂环烷基、环烯基、杂环烯基、环炔基、杂环炔基、芳基或杂芳基。术语“杂”表示取代或未被取代的杂原子以及杂原子的氧化形式,所述杂原子一般选自N、O、S,氧化形式一般包括NO、SO、S(O)2,氮原子可以是取代的,即NR(R为H或者文中定义的其他取代基);环上原子的数目通常被定义为环的元数,例如,“3-6元杂环烷基”是指3-6个原子环绕排列而成的环,每个环任选地包含1~3个杂原子,即N、O、S、NO、SO、S(O)2或NR,每个环任选的被R基团所取代,R为文中所定义的基团。
除非另有规定,“环烷基”是指饱和的单环或多环烃基。环烷基优选3-6元单环烷基,这些单环烷基的实例包括但不限于,环丙基、环丁基、环戊基、环己基、环庚基、环辛基。
除非另有规定,“杂环烷基”是指环中包含一定数目杂原子的单杂环烷基以及多杂环烷基,所述杂原子一般选自N、NR、O、S、NO、SO、S(O)2,优选1-2个N和/或NR和/或O。杂环烷基优选3-6元单杂环烷基,更优选5-6元单杂环烷基,这些单杂环烷基的实例包括,但不限于环氧乙烷基、四氢吡咯基、哌啶基、哌嗪基、吗啉基、四氢呋喃基、四氢噻吩基、四氢吡喃基、1,3-二氧戊环、1,4-二氧六环等。
除非另有规定,“螺环烷基”是指两个碳环共有一个碳原子形成螺环基,螺环烷基优选5-13元螺杂环基、6-12元螺杂环基、或者7-11元螺杂环基。螺环烷基的实施列包括但不限于
除非另有规定,“螺杂环基”是指是指螺环骨架结构中的一个或多个碳原子被杂原子取代的螺环基,所述杂原子选自N、NR、O、S,优选1-2个N、NR和/或O。螺杂环基优选5-13元螺杂环基、6-12元螺杂环基、或者7-11元螺杂环基。螺杂环基的实施例包括但不限于
除非另有规定,术语“杂芳基”意指稳定的单环或者多环的芳族烃,其包含至少一个杂原子(N、O、S、NO、SO、S(O)2或NR)。优选5元或6元单环的杂芳基。所述含氮杂芳基是指杂芳基基团中至少含有一个N杂原子。杂芳基的实例包括但不限于吡咯基、吡唑基、咪唑基、吡嗪基、恶唑基、异恶唑基、噻唑基、呋喃基、噻吩基、吡啶基、嘧啶基。
本发明所述的取代基和/或变量的组合应在这些组合产生稳定化合物或可用的合成中间体时才允许。稳定化合物或稳定结构是指足够稳定以经受化学反应、以有用的纯度分离出、可以配制成有效治疗药物的化合物。
在本发明实施例中,标题化合物的命名是借助Chemdraw通过化合物结构转化过来的。若化合物名称与化合物结构存在不一致的情况,可通过综合相关信息和反应路线辅助确定;无法通过其他来确认的,以给出的化合物结构式为准。
本发明的化合物可以通过本领域技术人员所熟知的多种合成方法来制备,包括下面列举的具体实施方式、其与其他化学合成方法的结合所形成的实施方式以及本领域技术上人员所熟知的等同替换方式,优选的实施方式包括但不限于本发明的实施例。
具体实施方式
为使本发明的目的、技术方案、及优点更加清楚明白,以下举实施例,对本发明进一步详细说明。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员所获得的所有其他实施例,都属于本发明保护的范围。
本发明的化合物结构是通过核磁共振(NMR)或/和液质联用色谱(LC-MS),或超高效液质联用色谱(UPLC-MS)来确定的。NMR化学位移(δ)以百万分之一(ppm)的单位给出。NMR的测定是用Bruker Neo 400M或者Bruker Ascend 400核磁仪器,测定溶剂为氘代二甲基亚砜(DMSO-d6),氘代甲醇(CD3OD)和氘代氯仿(CDCl3),重水(D2O),内标为四甲基硅烷(TMS)。
液质联用色谱LC-MS的测定用Agilent 1260-6125B single quadrupole mass spectrometer,柱子为Welch Biomate column(C18,2.7um,4.6*50mm)或者waters H-Class SQD2,柱子为Welch Ultimate column(XB-C18,1.8um,2.1*50mm),质谱仪(离子源为电喷雾离子化)。
超高效液质联用色谱UPLC-MS的测定用Waters UPLC H-class SQD质谱仪(离子源为电喷雾离子化)。
HPLC的测定使用Waters e2695-2998或Waters ARC和Agilent 1260或Agilent Poroshell HPH高效液相色谱。
制备HPLC使用Waters 2555-2489(10μm,ODS 250cm×5cm)或GILSON Trilution LC,柱子为Welch XB-C18柱(5um,21.2*150mm)。
手性HPLC测定使用waters acquity UPC2;柱子为Daicel chiralpak AD-H(5um,4.6*250mm),Daicel chiralpak OD-H(5um,4.6*250mm),Daicel chiralpak IG-3(3um,4.6*150mm),Chiral Technologies Europe AD-3(3um,3.0*150mm)和Trefoil TM Technology Trefoil TM AMY1(2.5um,3.0*150mm)。
超临界流体色谱(SFC)使用waters SFC 80Q,柱子为Daicel Chiralcel OD/OJ/OZ(20x 250mm,10um)或Daicel Chiralpak IC/IG/IH/AD/AS(20x 250mm,10um)。
薄层层析硅胶板使用烟台江友硅胶开发有限公司GF254硅胶板或乳山市上邦新材料有限公司GF254硅胶板,TLC采用的规格是0.15mm~0.20mm,制备型20x 20cm,柱层析一般使用于成化工200~300目硅胶为载体。
本发明实施例中的起始原料是已知的并且可以在市场上买到,或者可以采用或按照本领域已知的方法来合成。
在无特殊说明的情况下,本发明的所有反应均在连续的磁力搅拌下,在干燥氮气或氩气气氛下进行,溶剂为干燥溶剂,反应温度单位为摄氏度。
下面通过实施例对本发明进行详细描述,但并不意味着对本发明任何不利限制。本发明的化合物可以通过本领域技术人员所熟知的多种合成方法来制备,包括下面列举的具体实施方式、其与其他化学合成方法的结合所形成的实施方式以及本领域技术上人员所熟知的等同替换方式,优选的实施方式包括但不限于本发明的实施例。对本领域的技术人员而言,在不脱离本发明精神和范围的情况下针对本发明具体实施方式进行各种变化和改进将是显而易见的。
中间体INT-1:(S)-2-氯-7-(1-甲氧基乙基)吡唑并[1,5-a]嘧啶-6-羧酸
反应流程:
实施例流程:
步骤A:将(S)-2-羟基丙酸苄酯(5.5克,30.5毫摩尔)溶于丙酮(30毫升)中,再陆续向该溶液中加入碘甲烷(43克,305毫摩尔)和氧化银(10.6克,45.75毫摩尔)。该反应体系在室温条件下继续搅拌过夜。LCMS监测显示原料消失后,向反应液中加乙酸乙酯(100毫升),过滤除去固体,有机相用饱和食盐水(100毫升×3),无水硫酸钠干燥,过滤,减压浓缩。所得混合物用硅胶柱层析纯化(洗脱剂:石油醚/乙酸乙酯=6/1)得到2.4克化合物INT-1-1。
步骤B:将化合物INT-1-1(1.6克,8.3毫摩尔)溶于乙醇(15毫升),氩气置换后,加入Pd/C(10%,0.2克)。该体系用氢气置换,并在氢气球的环境中室温搅拌三个小时。将反应液过滤,滤液减压浓缩,得到0.9克化合物INT-1-2。该粗品直接用于下一步反应。
步骤C:将化合物INT-1-2(0.9克,8.2毫摩尔)溶于四氢呋喃(10毫升),并在零摄氏度条件下加入N,N'-羰基二咪唑(1.5克,9.0毫摩尔)。撤去冰浴,将温度升至28摄氏度,并在该条件下搅拌3个小时。(反应液一);
将3-叔丁氧基-3-氧丙二酸(2.0克,12.2毫摩尔)溶于四氢呋喃(10毫升)。零摄氏度条件下慢慢加入异丙基氯化镁(12.2毫升,24.5毫摩尔)。撤去冰浴,将温度升至28摄氏度,并在该条件下搅拌3个小时。(反应液二)
零摄氏度条件下,将反应液二慢慢加入反应液一中,待滴加完毕,将反应体系升至28摄氏度,并在该温度下搅拌1小时。反应液用10%的柠檬酸淬灭,乙酸乙酯(25毫升×2)萃取。合并有机相,用饱和碳酸氢钠溶液(25毫升×2)洗涤,无水硫酸钠干燥,过滤,滤液减压蒸馏,所得粗品用硅胶柱层析纯化(洗脱剂:石油醚/乙酸乙酯=4/1)得到0.7克化合物INT-1-3。
MS(ESI)M/Z:225.3[M+Na]+
步骤D:将化合物INT-1-3(0.5克,2.7毫摩尔)溶于N,N-二甲基甲酰胺二甲基缩醛(1.25毫升),该体系在120摄氏度的条件下加热1小时,然后降温至80摄氏度。
将3-氯-lH-吡唑-5-胺(314.0毫克,2.7毫摩尔)溶于乙醇(5毫升),并将该溶液加入上述反应体系中,在80摄氏度条件下搅拌2个小时。LCMS监测显示原料消失后,将反应液减压浓缩,所得粗品用硅胶柱层析纯化得到0.7克化合物INT-1-4。
MS(ESI)M/Z:312.2[M+H]+
步骤E:将化合物INT-1-4(600毫克,1.93毫摩尔)溶于三氟乙酸(5毫升),该溶液在室温下下搅拌2小时。LCMS监测显示原料消失后,将反应液减压浓缩,所得粗品用硅胶柱层析纯化得到400毫克中间体INT-1。
MS(ESI)M/Z:256.3[M+H]+
1H NMR(400MHz,DMSO-d6)δ8.73(s,1H),7.03(s,1H),5.42-5.40(m,1H),3.16(s,3H),1.64(d,J=6.8Hz,3H).
中间体INT-2:(S)-1-(2-(2-氨基乙氧基)-5-氯吡啶-3-基)-3-(2-氯-7-(1-甲氧基乙基)吡唑并[1,5-a]嘧啶-6-基)脲盐酸盐
反应流程:
实施例流程:
步骤A:在零摄氏度和氮气保护条件下,将5-氯-3-硝基吡啶-2-醇(1.7克,10.0毫摩尔),叔丁基(2-羟乙基)氨基甲酸酯(1.6克,10.0毫摩尔),三苯基膦(5.2克,20.0毫摩尔)溶于四氢呋喃(30毫升),加入偶氮二甲酸二乙酯(3.5克,20.0毫摩尔)。滴加完毕,该反应体系在室温下搅拌18小时。反应液用水(50毫升)淬灭,乙酸乙酯(50毫升×3)萃取。合并有机相,有机相用饱和食盐水(50毫升×3)洗涤,无水硫酸钠干燥。过滤,滤液减压浓缩,所得混合物用硅胶柱层析纯化得到1.8克化合物INT-2-1。
MS(ESI)M/Z:340.1[M+Na]+
步骤B:将化合物INT-2-1(10.0克,31.5毫摩尔)和氯化铵(1.7克,31.5毫摩尔)溶于乙醇(120毫升)和水(12毫升)中。加入铁粉(17.7克,315.0毫摩尔),该反应体系在85摄氏度下搅拌3小时。反应液降至室温,加水(100毫升)稀释,乙酸乙酯(100毫升×3)萃取。合并有机相,有机相用饱和食盐水(100毫升×3)洗涤,无水硫酸钠干燥。过滤,滤液减压浓缩,所得混合物用硅胶柱层析纯化(洗脱剂:石油醚/乙酸乙酯=1/1)得到8.0化合物INT-2-2。
MS(ESI)M/Z:310.0[M+Na]+
步骤C:将中间体INT-1(45.0毫克,0.2毫摩尔)溶于1,4-二氧六环(2毫升)中。加入叠氮磷酸二苯酯(0.1毫升,0.5毫摩尔)和三乙胺(0.1毫升,0.7毫摩尔)。该体系在室温下搅拌半个小时。将化合物INT-2-2(100.0毫克,0.3毫摩尔)加入上述反应体系中。该反应液加热至100摄氏度并搅拌1小时。反应液降至室温,加入水(10毫升)淬灭,乙酸乙酯(10毫升×3)萃取。合并有机相,用饱和碳酸钠溶液(10毫升×3)和饱和食盐水(10毫升×3)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩,所得混合物用高效液相色谱分离得到48.0毫克化合物INT-2-3。
MS(ESI)M/Z:563.3[M+Na]+
步骤D:将化合物INT-2-3(200.0毫克,0.4毫摩尔)溶于乙酸乙酯(5毫升)和盐酸的二氧六环溶液(4摩尔,5毫升)中。该体系在室温搅拌3小时。反应液减压浓缩得到(S)-1-(2-(2-氨基乙氧基)-5-氯吡啶-3-基)-3-(2-氯-7-(1-甲氧基乙基)吡唑并[1,5-a]嘧啶-6-基)脲盐酸盐120.0毫克中间体INT-2。
MS(ESI)M/Z:440.3[M+H]+
1H NMR(400MHz,DMSO-d6)δ9.72(s,1H),9.60(s,1H),8.67(s,1H),8.52(d,J=2.3Hz,1H),8.38(br,2H),7.82(d,J=2.3Hz,1H),6.94(s,1H),5.35-5.33(m,1H),4.49-4.46(m,2H),3.33-3.31(m,2H),3.21(s,3H),1.62(d,J=6.7Hz,3H).
中间体INT-3:(S)-1-(2-(2-氨基乙氧基)-5-(三氟甲基)吡啶-3-基)-3-(2-氯-7-(1-甲氧基乙基)吡唑并[1,5-a]嘧啶-6-基)脲盐酸盐
制备方法参考中间体INT-2制备例,最后得到目标产物(S)-1-(2-(2-氨基乙氧基)-5-(三氟甲基)吡啶-3-基)-3-(2-氯-7-(1-甲氧基乙基)吡唑并[1,5-a]嘧啶-6-基)脲盐酸盐中间体INT-3。
MS(ESI)M/Z:474.1[M+H]+
1H NMR(400MHz,DMSO-d6)δ9.86(s,1H),9.64(s,1H),8.76(d,J=2.4Hz,1H),8.68(s,1H),8.40(br,2H),8.19(d,J=0.8Hz,1H),6.93(s,1H),5.36-5.34(m,1H),4.59-4.56(m,2H),3.39-3.35(m,2H),3.22(s,3H),1.63(d,J=6.8Hz,3H).
中间体INT-4:(S)-1-(2-(2-氨基乙氧基)-5-氯-6-(2H-1,2,3-三唑-2-基)吡啶-3-基)-3-(2-氯-7-(1-甲氧乙基)吡唑[1,5-a]嘧啶-6-基)尿盐酸盐
制备方法参考INT-2制备例,最后得到目标产物中间体INT-4。
1H NMR(400MHz,DMSO-d6)δ10.03(s,1H),9.71(s,1H),8.79(s,1H),8.71(s,1H),8.40(brs,2H),8.15(s,2H),6.96(s,1H),5.37(q,J=6.8Hz,1H),4.49(t,J=4.8Hz,2H),3.34-3.30(m,2H),3.25(s,3H),1.65(d,J=6.8Hz,3H).中间体INT-5:(2S,4R)-1-((S)-2-氨基-3,3-二甲基丁酰基)-4-羟基-N-((S)-1-(4-(4-甲基噻唑-5-基)苯基)乙基)吡咯烷-2-甲酰胺
反应流程:
实施例流程:
步骤A:将40克(0.2摩尔)(S)-1-(4-溴苯基)乙-1-胺加入乙酸乙酯(400毫升)和水(400毫升)的混合溶液中,将二碳酸二叔丁酯(64克,0.3摩尔)、碳酸氢钠(24克,0.4摩尔)加入上述混合物中。将所得混合物在25摄氏度搅拌1小时。LCMS监测显示原料消失(全溶解)。加入1升水和1升乙酸乙酯并将反应混合物剧烈搅拌5分钟。有机相分离后,水相再次用乙酸乙酯萃取。用水洗涤合并的有机萃取物并用硫酸钠干燥。过滤,浓缩得到55克化合物INT-5-1。
步骤B:将化合物INT-5-1(5克,16毫摩尔),醋酸钯(35.8毫克,0.16毫摩尔)溶在N,N-二甲基乙酰胺(80毫升)中,再向该溶液中加入醋酸钾(3.1克,32毫摩尔)和4-甲基噻唑(3.2克,32毫摩尔)。将得到的反应混合物在90摄氏度下搅拌16小时。LCMS监测显示原料消失后,反应液用纯净水(50毫升)淬灭,用二氯甲烷(50毫升×3)萃取。合并有机相并用无水硫酸钠干燥后过滤浓缩。所得混合物用硅胶柱层析纯化两次得到2.5克化合物INT-5-2。
步骤C:将20毫升盐酸的1,4-二氧六环溶液加入到化合物INT-5-2(5.8克,18.2毫摩尔)和二氯甲烷(40毫升)的混合溶液中。将反应混合物在25摄氏度下搅拌1小时。LCMS监测显示原料消失。将反应液减压浓缩, 得到7克化合物INT-5-3,无需纯化直接用于下一步。MS(ESI)M/Z:219.3[M+H]+
步骤D:将化合物N-BOC-反式-4-羟基-D-脯氨酸(4.2克,18.2毫摩尔)、化合物INT-5-3(7克)、2-(7-氮杂苯并三氮唑)-N,N,N',N'-四甲基脲六氟磷酸酯(6.9克,18.2毫摩尔)和N,N-二异丙基乙基乙基胺(11.7克,90.7毫摩尔)加入四氢呋喃(100毫升)中,并在20摄氏度搅拌18小时。LCMS监测显示原料消失。反应液用纯净水(200毫升)淬灭,用乙酸乙酯(100毫升×3)萃取。合并有机相并用无水硫酸钠干燥,过滤后浓缩。所得混合物用硅胶柱层析纯化得到6.8克化合物INT-5-4。MS(ESI)M/Z:432.1[M+H]+
步骤E:将盐酸的1,4-二氧六环溶液(4M,4毫升)与化合物INT-5-4(350毫克,0.8毫摩尔)加入二氯甲烷(4毫升)中。反应混合物在25摄氏度下搅拌1小时。LCMS监测显示原料消失。将反应混合物浓缩除去溶剂得到420毫克INT-5-5。
MS(ESI)M/Z:332.3[M+H]+
步骤F:将(S)-2-((叔丁氧基羰基)氨基)-3,3-二甲基丁酸(293毫克,1.3毫摩尔)、化合物INT-5-5(420毫克,1.3毫摩尔)、2-(7-氮杂苯并三氮唑)-N,N,N',N'-四甲基脲六氟磷酸酯(483毫克,1.3毫摩尔)和,N-二异丙基乙基乙基胺(818毫克,6.3毫摩尔)分别加入四氢呋喃(5毫升)溶液中,并在20摄氏度下搅拌18小时。LCMS监测显示原料消失。反应液用纯净水(200毫升)淬灭后,用乙酸乙酯(100毫升×3)萃取。合并有机相并用无水硫酸钠干燥后过滤浓缩。所得混合物用硅胶柱层析纯化得到510毫克化合物INT-5-6。
MS(ESI)M/Z:545.3[M+H]+
步骤G:将盐酸的1,4-二氧六环溶液(4M,2毫升)加入化合物INT-5-6(240毫克,0.4毫摩尔)和二氯甲烷(2毫升)的混合物中。将混合物在25摄氏度下搅拌1小时,LCMS监测显示原料消失。将混合物除去溶剂得到196毫克中间体INT-5。
MS(ESI)M/Z:445.1[M+H]+
1H NMR(400MHz,DMSO-d6)δ9.06(s,1H),8.58(d,J=7.8Hz,1H),8.12(s,3H),7.41(dd,J=25.7,8.3Hz,4H),4.97–4.87(m,2H),4.58–4.51(m,2H),4.31(s,1H),3.89(d,J=5.1Hz,1H),3.73(d,J=11.1Hz,1H),3.52–3.46(m,1H),2.46(s,3H),2.18–2.06(m,1H),1.82–1.70(m,1H),1.38(d,J=7.0Hz,3H),1.03(d,J=8.1Hz,9H).
中间体INT-6:(2S,4R)-1-((S)-2-氨基-3,3-二甲基丁酰)-4-羟基-N-(4-(4-甲基噻唑-5-基)苄基)吡咯烷-2-甲酰胺盐酸盐
制备方法参考中间体INT-5制备例,最后得到目标产物中间体INT-6。
MS(ESI)M/Z:431.3[M+H]+
1H NMR(400MHz,DMSO-d6)δ9.01(s,1H),8.74-8.71(t,J=6Hz,1H),8.09-8.08(m,2H),7.40(s,4H),4.57-4.52(t,J=8.4Hz,2H),4.51-4.38(m,2H),3.93-3.89(m,1H),3.76-3.73(m,1H),2.45(s,1H),2.15-2.08(m,1H),1.91(s,2H),1.03(s,9H).
实施例1:
N1-(2-((5-氯-3-(3-(2-氯-7-((S)-1-甲氧基乙基)吡唑[1,5-a]嘧啶-6-基)脲基)吡啶-2-基)氧基)乙基)-N7-((S)-1-((2S,4R)-4-羟基-2-((S)-1-(4-(4-甲基噻唑-5-基)苯基)乙基)氨甲酰)吡咯烷-1-基)-3,3-二甲基-1-氧丁烷-2-基)庚烷二胺
反应流程:
实施例流程:
步骤A:中间体INT-5(390.0毫克,0.9毫摩尔),7-叔丁氧基-7-氧庚酸(190.0毫克,0.9毫克),N,N-二异丙基乙胺(566.0毫克,4.4毫摩尔)和2-(7-氮杂苯并三氮唑)-N,N,N',N'-四甲基脲六氟磷酸酯(501.0毫克,1.3毫摩尔)溶于N,N-二甲基甲酰胺(150毫升)。该反应体系在室温下搅拌2小时。LCMS监测显示原料消失后,反应液用水(10毫升)淬灭,乙酸乙酯(10毫升×3)萃取。合并有机相,用水(10毫升×3)和饱和食盐水(10毫升×3)洗涤,无水硫酸钠干燥。过滤,减压浓缩。所得混合物用反相柱层析(流动相:70%乙腈,30%蒸馏水,蒸馏水含0.025%甲酸)纯化得到240.0毫克化合物1-1。
MS(ESI)M/Z:643.3[M+H]+
步骤B:将化合物1-1(240.0毫克,0.4毫摩尔)溶于二氯甲烷(4毫升)和三氟乙酸(2毫升)中。该反应体系在室温下搅拌2小时。LCMS监测显示原料消失后,反应液减压浓缩得到200毫克化合物1-2。该化合物直接用于下一步。
MS(ESI)M/Z:609.3[M+Na]+
步骤C:脱盐的中间体INT-2(95.0毫克,0.2毫摩尔),化合物1-2(120.0毫克,0.2毫摩尔),N,N-二异丙基乙胺(0.16毫升,1.0毫摩尔)和2-(7-氮杂苯并三氮唑)-N,N,N',N'-四甲基脲六氟磷酸酯(82.0毫克,0.2毫摩尔)溶于N,N-二甲基甲酰胺(3毫升)。该反应体系在室温下搅拌2小时。LCMS监测显示原料消失后,反应液用水(10毫升)淬灭,乙酸乙酯(10毫升×3)萃取。合并有机相,用水(10毫升×3)和饱和食盐水(10毫升×3)洗涤, 无水硫酸钠干燥。过滤,减压浓缩。所得混合物用高效液相色谱制备(流动相:80%乙腈,20%蒸馏水,蒸馏水含0.025%甲酸)得到41.3毫克N1-(2-((3-(2-氯-7-((S)-1-甲氧基乙基)吡唑[1,5-a]嘧啶-6-基)脲)-5-(三氟甲基)吡啶-2-基)氧基)乙基)-N7-((S)-1-((2S,4R)-4-羟基-2-((S)-1-(4-(4-甲基噻唑-5-基)苯基)乙基)氨甲酰)吡咯烷-1-基)-3,3-二甲基-1-氧代丁烷-2-基)庚烷二胺(化合物1)。
MS(ESI)M/Z:504.6[M/2+H]+
1H NMR(400MHz,DMSO-d6)δ9.11(s,1H),8.98(s,1H),8.89(s,1H),8.76(s,1H),8.45(d,J=1.6Hz,1H),8.35(d,J=6.4Hz,1H),8.00(t,J=4.4Hz,1H),7.81(d,J=1.6Hz,1H),7.76(d,J=6.8Hz,1H),7.44-7.32(m,4H),6.92(s,1H),5.41-5.36(m,1H),5.08(d,J=2.8Hz,1H),4.94-4.88(m,1H),4.50(d,J=7.2Hz,1H),4.43-4.40(m,3H),4.27(br,1H),3.63-3.56(m,2H),3.53-3.45(m,2H),3.27(s,3H),2.45(s,3H),2.25-2.19(m,1H),2.11-2.06(m,3H),2.03-1.98(m,1H),1.82-1.76(m,1H),1.59(d,J=5.6Hz,3H),1.52-1.40(m,5H),1.37(d,J=6.0Hz,3H),1.24-1.17(m,2H),0.91(s,9H).
实施例2:
N1-(2-((3-(2-氯-7-((S)-1-甲氧基乙基)吡唑[1,5-a]嘧啶-6-基)脲)-5-(三氟甲基)吡啶-2-基)氧基)乙基)-N7-((S)-1-((2S,4R)-4-羟基-2-((S)-1-(4-(4-甲基噻唑-5-基)苯基)乙基)氨甲酰)吡咯烷-1-基)-3,3-二甲基-1-氧代丁烷-2-基)庚烷二胺
反应流程:
实施例流程:
步骤A:将中间体INT-3的盐酸盐(80.0毫克,0.2毫摩尔),化合物1-2(102.3mg,0.2毫摩尔),N,N-二异丙基乙胺(112.6毫克,0.9毫摩尔)和2-(7-氮杂苯并三氮唑)-N,N,N',N'-四甲基脲六氟磷酸酯(99.5毫克,0.3毫摩尔)溶于N,N-二甲基甲酰胺(5毫升)。该反应体系在室温下搅拌2小时。LCMS监测显示原料消失后,反应液用水(10毫升)淬灭,乙酸乙酯(10毫升×3)萃取。合并有机相,用水(10毫升×3)和饱和食盐水(10毫升×3)洗涤,无水硫酸钠干燥。过滤,减压浓缩。所得混合物用高效液相色谱制备(流动相:80%乙腈,20%蒸馏水,蒸馏水含0.025%甲酸)得到135.0毫克N1-(2-((3-(2-氯-7-((S)-1-甲氧基乙基)吡唑[1,5-a]嘧啶-6-基)脲)-5-(三氟甲基)吡啶-2-基)氧基) 乙基)-N7-((S)-1-((2S,4R)-4-羟基-2-((S)-1-(4-(4-甲基噻唑-5-基)苯基)乙基)氨甲酰)吡咯烷-1-基)-3,3-二甲基-1-氧代丁烷-2-基)庚烷二胺(化合物2)。
MS(ESI)M/Z:1042.2[M+H]+
1H NMR(400MHz,DMSO-d6)δ9.24(s,1H),8.98(s,1H),8.92(s,1H),8.77(s,1H),8.69(d,J=2Hz,1H),8.35(d,J=8Hz,1H),8.18-8.17(m,1H),8.02(t,J=5.6Hz,1H),7.76(d,J=9.2Hz,1H),7.44-7.36(m,4H),6.93(s,1H),5.42-5.37(m,1H),5.08(d,J=3.2Hz,1H),4.95-4.87(m,1H),4.53-4.48(m,3H),4.43-4.39(t,J=8Hz,1H),4.27(br,1H),3.63-3.52(m,3H),3.27(s,3H),2.45(s,3H),2.24-2.18(m,1H),2.12-1.97(m,5H),1.82-1.75(m,1H),1.59(d,J=6.8Hz,3H),1.53-1.41(m,4H),1.37(d,J=6.8Hz,3H),1.25-1.17(m,2H),0.92(s,9H).
实施例3:
(2S,4R)-1-((S)-2-(7-(2-((5-氯-3-(3-(2-氯-7-((S)-1-甲氧基乙基))吡唑并[1,5-a]嘧啶-6-基)脲基)吡啶-2-基)氧基)乙酰胺基)庚酰胺基)-3,3-二甲基丁酰基)-4-羟基-N-((S)-1-(4-(4-甲基噻唑-5-基)苯基)乙基)吡咯烷-2-甲酰胺
反应流程:

实施例流程:
步骤A:在零摄氏度下将偶氮二甲酸二乙酯(2克,11.5毫摩尔)加到混有(5-氯-3-硝基-2-羟基)吡啶(1克,5.7毫摩尔)、2-羟基乙酸叔丁酯(752毫克,5.7毫摩尔)和三苯基磷(6.6克,25.3毫摩尔)的四氢呋喃溶液(20毫升)中。在室温搅拌过夜,LCMS监测显示原料消失。将反应液倒入水(50毫升)中,并用乙酸乙酯(100毫升×3)萃取。合并的有机相并用盐水洗涤,经无水硫酸钠干燥后,过滤并浓缩。所得混合物用硅胶柱层析纯化(洗脱剂:石油醚/乙酸乙酯=100/1)得到210毫克化合物3-1。
MS(ESI)M/Z:311.1[M+Na]+
步骤B:将铁粉(275毫克,4.9毫摩尔)加入混有化合物3-1(140毫克,0.5毫摩尔)的饱和氯化铵水溶液(0.2毫升)和乙醇(2毫升)的混合溶液中。混合物在回流下搅拌3小时。LCMS监测显示原料消失。将反应冷却至室温,滤液通过硅藻土并浓缩。所得混合物用硅胶柱层析纯化(洗脱剂:石油醚/乙酸乙酯=1/1)得到化合物70毫克3-2。
步骤C:将叠氮磷酸二苯酯(0.1毫升)和三乙胺(150微升,1.2毫摩尔)添加到含有中间体INT-1(100毫克,0.4毫摩尔)的1,4-二恶烷(4毫升)溶液中。将所得黄色溶液在室温搅拌30分钟,加入200毫克化合物3-2,并将混合物加热回流1小时。LCMS监测显示原料消失。冷却至室温后,混合物用水(50毫升)稀释,用乙酸乙酯(30毫升×3)萃取。合并的有机相用饱和碳酸氢钠溶液和盐水洗涤,经无水硫酸钠干燥,过滤并浓缩。残余物通过制备型HPLC纯化,得到40毫克化合物3-3。
MS(ESI)M/Z:511.0[M+H]+
步骤D:在零摄氏度下将三氟乙酸(2毫升)加入含中间体3-3(200毫克,0.4毫摩尔)的二氯甲烷(5毫升)溶液中。所得黄色溶液在室温下搅拌2小时。LCMS监测显示原料消失。浓缩混合物。无需纯化即可获得120毫克化合物3-4。
MS(ESI)M/Z:455.1[M+H]+
步骤E:将7-((叔丁氧基羰基)氨基)庚酸(108毫克,0.4毫摩尔)、中间体INT-5(196毫克,0.4毫摩尔)、2-(7-氮杂苯并三氮唑)-N,N,N',N'-四甲基脲六氟磷酸酯(167.6毫克,0.4毫摩尔)和N,N-二异丙基乙基乙基胺(172毫克,1.3毫摩尔)分别加入四氢呋喃(5毫升)中,并在20摄氏度下搅拌18小时。LCMS监测显示原料消失。反应液用纯净水(20毫升)淬灭后,用乙酸乙酯(20毫升×3)萃取。合并有机相并用无水硫酸钠干燥后过滤浓缩。所得混合物用反相硅胶柱层析纯化(洗脱剂:乙腈/水=1/1)得到192毫克化合物3-5。
MS(ESI)M/Z:672.3[M+H]+
步骤F:将盐酸的1,4-二氧六环溶液(4M,4毫升)加入到化合物3-5(192毫克,0.3毫摩尔)的二氯甲烷(4毫升)溶液中。将混合物在25摄氏度下搅拌1小时。LCMS监测显示原料消失。将反应液旋干得到187毫克化合物3-6。
MS(ESI)M/Z:573.0[M+H]+
步骤G:将化合物3-6(187毫克,0.3毫摩尔)、化合物3-4(96毫克,0.2毫摩尔)、2-(7-氮杂苯并三氮唑)-N,N,N',N'-四甲基脲六氟磷酸酯(79.8毫克,210微摩尔)和N,N-二异丙基乙基乙基胺(94.8毫克,740微摩尔)溶在四氢呋喃(10毫升)中,所得的溶液在20摄氏度下搅拌1小时。LCMS监测显示原料消失。反应液用纯净水(20毫升)淬灭后,用乙酸乙酯(15毫升×3)萃取。合并有机相并用无水硫酸钠干燥后过滤浓缩。所得混合物用硅胶柱层析纯化后再用反相柱层析纯化(洗脱剂:二氯甲烷/甲醇=4/1,水/乙腈=2/3)得到43毫克(2S,4R)-1-((S)-2-(7-(2-((5-氯-3-(3-(2-氯-7-((S)-1-甲氧基乙基)吡唑并[1,5-a]嘧啶-6-基)脲基)吡啶-2-基)氧基)乙酰氨基)庚酰氨基)-3,3-二甲基丁酰基)-4-羟基-N-((S)-1-(4-(4-甲基噻唑-5-基)苯基)乙基)吡咯烷-2-甲酰胺(化合物3)。
MS(ESI)M/Z:1010.2[M+H]+
1H NMR(500MHz,DMSO-d6)δ9.36(s,1H),8.98(s,1H),8.91(s,1H),8.78(s,1H),8.47(d,J=2.4Hz,1H),8.35(J=7.7Hz,1H),8.07–8.02(m,1H),7.78–7.75(m,2H),7.44–7.37(m,4H),6.92(s,1H),5.45–5.35(m,1H),4.97–4.87(m,1H),4.83(s,2H),4.5 1(J=9.3Hz,1H),4.44–4.39(m,1H),4.31–4.26(m,1H),3.64–3.55(m,2H),3.27(s,3H),3.12–3.04(m,2H),2.45(s,3H),2.28–2.20(m,1H),2.14–2.06(m,1H),2.04–1.97(m,1H),1.83–1.75(m,1H),1.58(d,J=6.7Hz,3H),1.52–1.38(m,4H),1.37(d,J=7.0Hz,3H),1.24(d,J=7.1Hz,5H),0.92(d,J=6.3Hz,9H).
实施例4:
N1-(2-((5-氯-3-(3-(2-氯-7-((S)-1-甲氧基乙基)吡唑[1,5-a]嘧啶-6-基)脲基)吡啶-2-基)氧基)乙基)-N6-((S)-1-((2S,4R)-4-羟基-2-((S)-1-(4-(4-甲基噻唑-5-基)苯基)乙基)氨甲酰)吡咯烷-1-基)-3,3-二甲基-1-氧丁烷-2-基)己二胺
反应流程:
实施例流程:
步骤A:中间体INT-2(95.0毫克,0.2毫摩尔),化合物4-1(120.0毫克,0.2毫摩尔),N,N-二异丙基乙胺(0.2mL,1.0毫摩尔)和2-(7-氮杂苯并三氮唑)-N,N,N',N'-四甲基脲六氟磷酸酯(82.0毫克,0.2毫摩尔)溶于N,N-二甲基甲酰胺(3毫升)。该反应体系在室温下搅拌2小时。LCMS监测显示原料消失后,反应液用水(10毫升)淬灭,乙酸乙酯(10毫升×3)萃取。合并有机相,用水(10毫升×3)和饱和食盐水(10毫升×3)洗涤,无水硫酸钠干燥。过滤,减压浓缩。所得混合物用薄层层析纯化得到70.0毫克N1-(2-((5-氯-3-(3-(2-氯-7-((S)-1-甲氧基乙基)吡唑[1,5-a]嘧啶-6-基)脲基)吡啶-2-基)氧基)乙基)-N6-((S)-1-((2S,4R)-4-羟基-2-((S)-1-(4-(4-甲基噻唑-5-基)苯基)乙基)氨甲酰)吡咯烷-1-基)-3,3-二甲基-1-氧丁烷-2-基)己二胺(化合物4)。
MS(ESI)M/Z:994.1[M+H]+
1H NMR(400MHz,DMSO-d6)δ9.11(s,1H),8.98(d,J=4.8Hz,1H),8.89(s,1H),8.76(d,J=4.8Hz,1H),8.45(d,J=3.2Hz,1H),8.35(d,J=6.4Hz,1H),8.03-8.00(t,J=4.4Hz,1H),7.81(d,J=2Hz,1H),7.76(d,J=7.6Hz,1H),7.44-7.36(m,4H),6.92(s,1H),5.39-5.36(m,1H),4.93-4.89(m,1H),4.50(d,J=7.6Hz,1H),4.43-4.39(m,3H),4.27(br,1H),3.60-3.56(m,2H),3.52-3.48(m,3H),3.26(s,3H),2.45(s,3H),2.24-2.22(m,1H),2.11-2.07(m,3H),2.00-1.98(m,1H),1.81-1.79(m,1H),1.58(d,J=5.2Hz,3H),1.49-1.43(m,4H),1.37(d,J=5.6Hz,3H),0.91(s,9H).
实施例5:
(2S,4R)-1-((S)-2-(7-((2-((5-氯-3-(3-(2-氯-7-((S)-1-甲氧基乙基)吡唑并[1,5-a]嘧啶-6-基)脲基)吡啶-2-基)氧基)乙基)氨基)庚酰胺基)-3,3-二甲基丁酰基)-4-羟基-N-((S)-1-(4-(4-甲基噻唑-5-基)苯基)乙基)吡咯烷-2-甲酰胺
反应流程:
实施例流程:
步骤A:室温下将7-溴庚酸(1.1克,5.3毫摩尔)溶解于N,N-二甲基甲酰胺(20毫升)中,在冰水浴和氩气保护下,加入2-(7-氮杂苯并三氮唑)-N,N,N',N'--四甲基脲六氟磷酸酯(2.0克,5.3毫摩尔),搅拌10分钟后,依次加入中间体INT-5(2.0克,4.5毫摩尔)和N,N-二异丙基乙胺(2.2毫升,12.9毫摩尔)。反应液在冰水浴并且氩气保护下搅拌30分钟。LC-MS显示原料反应完全。向反应液中加入水(50毫升)后用乙酸乙酯(50毫升×3)萃取,合并后的有机相经饱和食盐水洗涤,无水硫酸钠干燥并过滤,滤液浓缩,所得残渣经硅胶柱层析分离得到1.2克化合物5-1。
步骤B:室温下将化合物5-1(60毫克,94.4微摩尔),中间体INT-2的盐酸盐(23毫克,45.2微摩尔),N,N-二异丙基乙胺(59毫克,453.1微摩尔),碘化钾(19毫克,113.3微摩尔)和N,N-二甲基甲酰胺(2毫升)依次加入单口瓶中。反应液加热至70摄氏度搅拌4小时。LC-MS显示有产物生成。向冷却后的反应液中加水(5毫升)后用乙酸乙酯(5毫升×3)萃取,合并后的有机相经饱和食盐水(10毫升×3)洗涤,无水硫酸钠干燥并过滤。滤液浓缩,所得残渣经薄层制备色谱纯化(展开剂:二氯甲烷/乙酸乙酯),得到4.5毫克(2S,4R)-1-((S)-2-(7-((2-((5-氯-3-(3-(2-氯-7-((S)-1-甲氧基乙基)吡唑并[1,5-a]嘧啶-6-基)脲基)吡啶-2-基)氧基)乙基)氨基)庚酰胺基)-3,3-二甲基丁酰基)-4-羟基-N-((S)-1-(4-(4-甲基噻唑-5-基)苯基)乙基)吡咯烷-2-甲酰胺(化合物5)。
MS(ESI)M/Z:994.4[M+H]+;992.4[M-H]-
1H NMR(400MHz,CDCl3)δ9.49(s,1H),8.86(s,1H),8.73(s,1H),8.67(s,1H),8.65(d,J=2.4Hz,1H),7.64(d,J=2.4Hz,1H),7.35-7.32(m,4H),7.28-7.25(m,1H),6.64-6.61(m,2H),5.53(q,J=6.7Hz,1H),5.11-5.02(m,1H),4.70-4.57(m,3H),4.49-4.45(m,2H),3.98(d,J=11.6Hz,1H),3.50-3.43(m,2H),3.39(s,3H),3.38-3.26(m,1H),3.23-3.11(m,1H),3.06-2.93(m,1H),2.51(s,3H),2.37-2.16(m,4H),1.76-1.70(m,5H),1.66(d,J=6.8Hz,3H),1.46(d,J=6.8Hz,3H),1.41-1.32(m,4H),0.96(s,9H).
实施例6:
(2S,4R)-1-((S)-2-(7-((2-((5-氯-3-(3-(2-氯-7-((S)-1-甲氧基乙基)吡唑并[1,5-a]嘧啶-6-基)脲基)-6-(2H-1,2,3-三唑-2-基)吡啶-2-基)氧基)乙基)氨基)庚酰胺基)-3,3-二甲基丁酰基)-4-羟基-N-((S)-1-(4-(4-甲基噻唑-5-基)苯基)乙基)吡咯烷-2-甲酰胺
反应流程:
实施例流程:
步骤A:室温下将脱盐的中间体INT-4(21毫克,41微摩尔)溶解于N,N-二甲基甲酰胺(2毫升)中,搅拌下加入化合物5-1(52毫克,82微摩尔),碘化钾(21毫克,124微摩尔)和N,N-二异丙基乙胺(16毫克,124微摩尔),反应液加热至70摄氏度搅拌4小时。
LC-MS显示原料基本消耗完全。向冷却后的反应液中加入乙酸乙酯(20毫升),所得有机相经水洗(5毫升×3),无水硫酸钠干燥并过滤。滤液浓缩,所得粗品残渣经高效液相制备色谱分离,得到13毫克(2S,4R)-1-((S)-2-(7-((2-((5-氯-3-(3-(2-氯-7-((S)-1-甲氧基乙基)吡唑并[1,5-a]嘧啶-6-基)脲基)-6-(2H-1,2,3-三唑-2-基)吡啶-2-基)氧基)乙基)氨基)庚酰胺基)-3,3-二甲基丁酰基)-4-羟基-N-((S)-1-(4-(4-甲基噻唑-5-基)苯基)乙基)吡咯烷-2-甲酰胺(化合物6)。
MS(ESI)M/Z:1061.1[M+H]+
1H NMR(400MHz,CDCl3)δ9.87(brs,1H),9.27(s,1H),8.86(s,1H),8.67(s,1H),8.40(s,1H),7.89(s,2H),7.41-7.30(m,5H),6.65(s,1H),6.15(d,J=8.4Hz,1H),5.64(q,J=6.4Hz,1H),5.07(t,J=7.6Hz,1H),4.70(t,J=7.6Hz,1H),4.56-4.45(m,4H),4.09(d,J=11.6Hz,1H),3.60-3.57(m,1H),3.43(s,3H),3.07(s,2H),2.69(t,J=6.4Hz,2H),2.52(s,3H),2.25-2.20(m,2H),2.06-2.02(m,2H),1.64-1.54(m,5H),1.47(d,J=6.8Hz,3H),1.37-1.25(m,6H),1.03(s,9H).
实施例7:
(2S,4R)-1-((S)-2-(2-((5-氯-3-(3-(2-氯-7-((S)-1-甲氧基乙基)吡唑[1,5-a]嘧啶-6-基)脲基)吡啶-2-基)氧基)乙基)氨基)庚 胺基)-3,3-二甲基丁酰)-4-羟基-N-(4-(4-(4-甲基噻唑-5-基)苄基)吡咯烷-2-甲酰胺
反应流程:
实施例流程:
步骤A:将7-羟基庚酸(1.2克,7.9毫摩尔)溶于二甲基亚砜(20毫升),加入2-碘酰苯甲酸(3.3克,11.9毫摩尔)。该反应体系在室温下搅拌4小时。LCMS监测显示原料消失后,反应液中加入水(8毫升)淬灭,过滤,滤液用乙酸乙酯(40毫升)萃取。有机相用用水(20毫升)和饱和食盐水(30毫升)洗涤,无水硫酸钠干燥。过滤,滤液减压浓缩,得到1.0克化合物7-1。
步骤B:将脱盐的中间体INT-2(200.0毫克,455.0微摩尔)和化合物7-1(85.0毫克,0.6毫摩尔)溶于1,2-二氯乙烷(5毫升)中。加入醋酸(1滴),四异丙氧基钛(258.0毫克,0.9毫摩尔)和三醋酸硼氢化钠(289.0毫克,1.4毫摩尔)。该反应体系在25摄氏度反应6小时。LCMS监测显示原料消失后,反应液用水(10毫升)淬灭,乙酸乙酯(15毫升)萃取,有机相用饱和食盐水(15毫升)洗涤,无水硫酸钠干燥,过滤,减压浓缩。所得混合物用反相柱层析纯化(流动相:28%乙腈,72%纯净水,纯净水重中含0.025%甲酸)得到80.0毫克化合物7-2。
MS(ESI)M/Z:568.3[M+H]+
步骤C:在N,N-二甲基甲酰胺(5毫升)中,加入化合物7-2(200.0毫克,352.0微摩尔),2-(7-氮杂苯并三氮唑)-N,N,N',N'-四甲基脲六氟磷酸酯(134.0毫克,0.4毫摩尔),N,N-二异丙基乙胺(0.3毫升,1.8毫摩尔)和脱盐的中间体INT-6(151.0毫克,0.4毫摩尔)。该反应体系在25摄氏度下搅拌1.5小时。反应液用水(10毫升)淬灭,乙酸乙酯(20毫升)萃取,有机相用饱和食盐水(20毫升)洗涤,无水硫酸钠干燥,过滤,减压浓缩。所得混合物 用反相柱层析纯化(流动相:60%乙腈,40%纯净水,纯净水重中含0.025%甲酸)得到25.0毫克,(2S,4R)-1-((S)-2-(2-((5-氯-3-(3-(2-氯-7-((S)-1-甲氧基乙基)吡唑[1,5-a]嘧啶-6-基)脲基)吡啶-2-基)氧基)乙基)氨基)庚胺基)-3,3-二甲基丁酰)-4-羟基-N-(4-(4-(4-甲基噻唑-5-基)苄基)吡咯烷-2-甲酰胺(化合物7)。
MS(ESI)M/Z:491.0[M/2+H]+
1H NMR(400MHz,DMSO-d6)δ9.92(br,1H),8.98(s,1H),8.72(s,1H),8.57-8.54(m,1H),8.43(s,1H),7.84-7.89(m,2H),7.49-7.36(m,4H),6.92(s,1H),5.36-5.31(m,1H),5.13-5.08(m,1H),4.55(d,J=9.2Hz,1H),4.52-4.40(m,4H),4.34(s,1H),4.27-4.19(m,1H),3.65-3.61(m,2H),3.23(s,3H),3.03-2.92(m,2H),2.66-2.60(m,2H),2.44(s,3H),2.27-2.15(m,1H),2.11-2.01(m,2H),1.93–1.82(m,1H)1.59(d,J=5.2Hz,3H),1.49-1.32(m,4H),1.23-1.196(m,6H),0.92(s,9H).
实施例8:
N1-(2-((5-氯-3-(3-(2-氯-7-((S)-1-甲氧基乙基)吡唑并[1,5-a]嘧啶-6-基)脲基)吡啶-2-基)氧基)乙基)-N7-((S)-1-((2S,4R)-4-羟基-2-((4-(4-甲基噻唑-5-基)苄基)氨基甲酰基)吡咯烷-1-基)-3,3-二甲基-1-氧代丁-2-基)庚二胺
反应流程:
实施例流程:
步骤A:将化合物8-1(96毫克,511.0微摩尔)溶解于N,N-二甲基甲酰胺(2.0毫升)中,零摄氏度下加入2-(7-氮杂苯并三氮唑)-N,N,N',N'-四甲基脲六氟磷酸酯(212毫克,557微摩尔)。反应液在零摄氏度下搅拌10分钟。在零摄氏度下加入脱盐的中间体INT-6(200毫克,465微摩尔)和N,N-二异丙基乙胺(180毫克,1.4毫摩尔)。反应液在0摄氏度下搅拌10分钟。LC-MS显示原料反应完全。向反应液中加入水(40毫升)后用乙酸乙酯(30毫升×3)萃取。合并后的有机相经饱和食盐水(80毫升×6)洗涤,无水硫酸钠干燥并过滤。滤液浓缩,所得残渣经硅胶柱层析分离,得到168毫克化合物8-2。
步骤B:将化合物8-2(70毫克,116微摩尔)溶解于四氢呋喃(7毫升)和水(1.4毫升)中,在冰水浴下加入氢氧化锂一水合物(49毫克,1.2毫摩尔)。反应液缓慢恢复至室温并搅拌过夜。LC-MS显示原料反应完全。加入稀盐酸调节反应液的pH至至5–6,向反应液中加入水(10毫升)后用乙酸乙酯(10毫升×3)萃取,合并后的有机相经饱和食盐水(25毫升)洗涤,无水硫酸钠干燥并过滤,滤液浓缩,所得残渣经制备色谱纯化得到41毫克化合物8-3。
步骤C:零摄氏度下将化合物8-3(40毫克,70微摩尔)溶解于N,N-二甲基甲酰胺(2.0毫升)中,加入2-(7-氮杂苯并三氮唑)-N,N,N',N'-四甲基脲六氟磷酸酯(29毫克,76.2微摩尔)。反应液零摄氏度下搅拌10分钟,零摄氏度下加入中间体INT-2(30毫克,63微摩尔)和N,N-二异丙基乙胺(25毫克,190微摩尔)。反应液零摄氏度下搅拌10分钟。LC-MS显示原料反应完全。向反应液中加入水(10毫升)后用乙酸乙酯(15毫升×3)萃取。合并后的有机相经饱和食盐水(20毫升×5)洗涤,无水硫酸钠干燥并过滤。滤液浓缩,所得残渣经制备色谱纯化(洗脱剂:二氯甲烷/无水甲醇=10/1),得到27.6毫克N1-(2-((5-氯-3-(3-(2-氯-7-((S)-1-甲氧基乙基)吡唑并[1,5-a]嘧啶-6-基)脲基)吡啶-2-基)氧基)乙基)-N7-((S)-1-((2S,4R)-4-羟基-2-((4-(4-甲基噻唑-5-基)苄基)氨基甲酰基)吡咯烷-1-基)-3,3-二甲基-1-氧代丁-2-基)庚二胺(化合物8)。
MS(ESI)M/Z:994.3[M+H]+;992.3[M-H]-
1H NMR(400MHz,DMSO-d6)δ9.53(s,1H),9.35(s,1H),8.98(s,1H),8.71(s,1H),8.56(t,J=6.2Hz,1H),8.46(d,J=2.4Hz,1H),8.42(t,J=5.6Hz,1H),7.81(d,J=9.2Hz,1H),7.78(d,J=2.4Hz,1H),7.43-7.36(m,4H),6.92(s,1H),5.36(q,J=6.7Hz,1H),5.11(d,J=3.6Hz,1H),4.52(d,J=9.2Hz,1H),4.45-4.18(m,4H),3.68-3.59(m,2H),3.52-3.47(m,2H),3.22(s,3H),2.44(s,3H),2.25-1.84(m,6H),1.62(d,J=6.4Hz,3H),1.53-1.39(m,4H),1.27-1.14(m,4H),0.91(s,9H).
实施例9:
(2S,4R)-1-((S)-2-(8-((2-((5-氯-3-(3-(2-氯-7-((S)-1-甲氧基乙基)吡唑[1,5-a]嘧啶-6-基)脲基)吡啶-2-基)氧基)乙基)氨基)八胺基)-3,3-二甲基丁酰)-4-羟基-N-(4-(4-(4-(4-甲基噻唑-5-基)苄基)吡咯烷-2-甲酰胺
反应流程:
实施例流程:
步骤A:将8-羟基辛酸(1.0克,6.2毫摩尔)溶于二甲基亚砜(20毫升),加入2-碘酰苯甲酸(2.6克,9.4毫摩尔)。该反应体系在室温下搅拌4小时。LCMS监测显示原料消失后,反应液用水(20毫升)淬灭,过滤,滤液用乙酸乙酯(20毫升×3)萃取。合并有机相,用无水硫酸钠干燥,过滤,减压浓缩得到0.7克化合物9-1。
步骤B:将中间体INT-2(120.0毫克,252.0微摩尔)溶于N,N-二甲基甲酰胺(1毫升)和四氢呋喃(1毫升)中,加入三乙胺(77.0毫克,757.0微摩尔),该体系在室温搅拌半个小时。将化合物9-1(40.0毫克,252.0微摩尔)和醋酸(一滴)一起加入上述反应液中,继续搅拌1小时。再将三醋酸硼氢化钠(107.0毫克,504.0微摩尔)加入到反应液中,该反应在室温继续搅拌12小时。LCMS监测显示原料消失后,反应液用水(3毫升)淬灭,乙酸乙酯(20毫升×3)萃取。合并有机相,用盐水(20毫升×3)洗涤,无水硫酸钠干燥,过滤,减压浓缩。所得混合物用反相纯化(流动相:乙腈/水=1/1)得到40.0毫克化合物9-2。
MS(ESI)M/Z:582.2[M+H]+
步骤C:在N,N-二甲基甲酰胺(2毫升)中,加入化合物9-2(40.0毫克,69微摩尔),脱盐的中间体INT-6(48.0毫克,0.1毫摩尔),2-(7-氮杂苯并三氮唑)-N,N,N',N'-四甲基脲六氟磷酸酯(39.0毫克,0.1毫摩尔)和N,N-二异丙基乙胺(0.05毫升,0.3毫摩尔)。该反应体系在20摄氏度下搅拌18小时。LCMS监测显示原料消失后,将反应液倒入冰水(5毫升)中,乙酸乙酯(10毫升×3)萃取,合并有机相,用盐水(10毫升×3)洗涤,无水硫酸钠干燥,减压浓缩。所得混合物先后用高效液相色谱分离,薄层层析纯化,反相柱纯化得到15毫克(2S,4R)-1-((S)-2-(8-((2-((5-氯-3-(3-(2-氯-7-((S)-1-甲氧基乙基)吡唑[1,5-a]嘧啶-6-基)脲基)吡啶-2-基)氧基)乙基)氨基)八胺基)-3,3-二甲基丁酰)-4-羟基-N-(4-(4-(4-(4-甲基噻唑-5-基)苄基)吡咯烷-2-甲酰胺(化合物9)。
MS(ESI)M/Z:994.2[M+H]+
1H NMR(400MHz,DMSO-d6)δ9.58(s,1H),8.98(s,1H),8.62(s,1H),8.57(t,J=4.8Hz,1H),8.42(d,J=1.2Hz,1H),8.22(s,1H),7.84-7.79(m,2H),7.42-7.36(m,4H),6.91(s,1H),5.27-5.24(m,1H),5.16-5.08(m,1H),4.55-4.52(m,3H),4.45-4.39(m,2H),4.34(br,1H),4.23-4.18(m,1H),3.68-3.61(m,2H),3.17(s,3H),2.93-2.90(m,2H),2.46(s,3H),2.25-2.20(m,1H),2.11-2.01(m,2H),1.92-1.86(m,1H),1.61-1.39(m,8H),1.28-1.15(m,6H),0.92(s,9H).
实施例10:
(2S,4R)-1-((2S)-2-(7-((2-((3-(3-(2-氯-7-((S)-1-甲氧基乙基)吡唑并[1,5-a]嘧啶-6-基)脲基)-6-(2H-1,2,3-三唑-2-基)吡啶-2-基)氧基)乙基)氨基)庚酰胺基)-3,3-二甲基丁酰基)-4-羟基-N-(4-(4-甲基噻唑-5-基)苄基)吡咯烷-2-甲酰胺
反应流程:
实施例流程:
步骤A:室温下将中间体INT-4(18毫克,盐酸盐,35.3微摩尔),化合物10-1(44毫克,70.7微摩尔),N,N-二异丙基乙胺(44毫克,339.3微摩尔),碘化钾(14毫克,84.8微摩尔)和N,N-二甲基甲酰胺(1毫升)加入单口瓶中。反应液在70摄氏度下搅拌4小时。LC-MS显示有产物生成。向冷却后的反应液中加入水(10毫升)后用乙酸乙酯(10毫升×3)萃取。合并后的有机相经饱和食盐水(20毫升×6)洗涤,无水硫酸钠干燥并过滤。滤液浓缩,所得残渣经薄层制备色谱纯化,得到8.0毫克(2S,4R)-1-((2S)-2-(7-((2-((3-(3-(2-氯-7-((S)-1-甲氧基乙基)吡唑并[1,5-a]嘧啶-6-基)脲基)-6-(2H-1,2,3-三唑-2-基)吡啶-2-基)氧基)乙基)氨基)庚酰胺基)-3,3-二甲基丁酰基)-4-羟基-N-(4-(4-甲基噻唑-5-基)苄基)吡咯烷-2-甲酰胺(化合物10)。
MS(ESI)M/Z:1013.5[M+H]+;1011.5[M-H]-
1H NMR(400MHz,CDCl3)δ9.61(s,1H),8.93(s,1H),8.81-8.77(m,2H),8.64(s,1H),7.83(s,2H),7.65(d,J=8.4Hz,1H),7.44(t,J=6.4Hz,1H),7.30-7.25(m,5H),6.62(s,1H),6.43(d,J=8.4Hz,1H),5.53(q,J=6.4Hz,1H),4.87-4.57(m,4H),4.53-4.38(m,5H),4.03(d,J=11.2Hz,1H),3.62-3.44(m,2H),3.40(s,3H),3.40-3.37(m,1H),3.24-3.01(m,2H),2.48(s,3H),2.28-2.16(m,4H),1.43–1.38(m,2H),1.36-1.28(m,3H),1.11(s,3H),0.89(s,9H).
实施例11:
(2R,4S)-1-((S)-2-(7-((2-((5-氯-3-(3-(2-氯-7-((S)-1-甲氧基乙基)吡唑并[1,5-a]嘧啶-6-基)脲基)吡啶-2-基)氧基)乙基)氨基)庚酰胺基)-3,3-二甲基丁酰基)-4-羟基-N-(4-(4-甲基噻唑-5-基)苄基)吡咯烷-2-甲酰胺
反应流程:
实施例流程:
步骤A:室温下将化合物11-1(80毫克,128微摩尔)溶解于N,N-二甲基甲酰胺(2毫升)中,室温下加入中间体INT-2(31毫克,盐酸盐,65微摩尔)和碘化钾(25毫克,154微摩尔)。反应液加热至70摄氏度搅拌4小时。LC-MS显示有QL-MDC2026生成。向冷却后的反应液中加入乙酸乙酯(20毫升)后水洗(5毫升×6),无水硫酸钠干燥并过滤。滤液浓缩,所得残渣经高效液相制备色谱分离,得到3.1毫克(2R,4S)-1-((S)-2-(7-((2-((5-氯-3-(3-(2-氯-7-((S)-1-甲氧基乙基)吡唑并[1,5-a]嘧啶-6-基)脲基)吡啶-2-基)氧基)乙基)氨基)庚酰胺基)-3,3-二甲基丁酰基)-4-羟基-N-(4-(4-甲基噻唑-5-基)苄基)吡咯烷-2-甲酰胺(化合物11)。
MS(ESI)M/Z:980.2[M+H]+
1H NMR(400MHz,CDCl3)δ9.71(s,1H),8.93(s,1H),8.86(s,1H),8.68(s,1H),8.63(d,J=2.8Hz,1H),7.66(d,J=2.8Hz,1H),7.52(t,J=4.2Hz,1H),7.40-7.33(m,4H),7.18-7.11(m,1H),6.63(s,1H),5.54(q,J=6.7Hz,1H),4.68-4.51(m,5H),4.22-4.08(m,3H),3.70-3.66(m,1H),3.39-3.35(m,5H),3.14-3.08(m,1H),2.88-2.81(m,1H),2.53(s,3H),2.34-2.19(m,5H),1.77-1.72(m,2H),1.66(d,J=6.4Hz,3H),1.37-1.25(m,5H),1.01(s,9H).
实施例12:
(2S,4R)-1-((2S)-2-(5-((2-((5-氯-3-(3-(2-氯-7-(1-甲氧基乙基)吡唑并[1,5-a]嘧啶-6-基)脲基)吡啶-2-基)氧基)乙基)氨基)戊酰胺基)-3,3-二甲基丁酰基)-4-羟基-N-(4-(4-甲基噻唑-5-基)苄基)吡咯烷-2-甲酰胺
反应流程:
实施例流程:
步骤A:室温下将5-氯戊酸(152毫克,1.1毫摩尔)溶解于N,N-二甲基甲酰胺(4毫升)中,氩气保护,冰水浴并且搅拌下加入2-(7-氮杂苯并三氮唑)-N,N,N',N'-四甲基脲六氟磷酸酯(706毫克,1.9毫摩尔)。冰水浴下搅拌30分钟后依次加入中间体INT-6(400毫克,0.9毫摩尔)和N,N-二异丙基乙胺(0.8毫升,1.9毫摩尔)。反应液室温下搅拌1小时。LC-MS显示原料已消耗。向反应液中加入水(15毫升)后用乙酸乙酯(10毫升×3)萃取。合并后的有机相经饱和食盐水(10毫升×3)洗涤,无水硫酸钠干燥并过滤。滤液浓缩,所得残渣经硅胶柱层析分离,得到290毫克化合物12-1。
MS(ESI)M/Z:549.2[M+H]+
步骤B:室温下将化合物12-1(110毫克,0.20毫摩尔),脱盐的中间体INT-2(44毫克,0.10毫摩尔),碘化钾(40毫克,0.24毫摩尔)和N,N-二异丙基乙胺(129毫克,1.0毫摩尔)分散在N,N-二甲基甲酰胺(1毫升)中,氩气保护下加热至80摄氏度搅拌16小时。LC-MS显示大部分原料已消耗,并且有产物QL-MDC2018生成。向冷却后的反应液中加水(10毫升)后用乙酸乙酯(5毫升×3)萃取。合并后的有机相经饱和食盐水(10毫升×3)洗涤,无水硫酸钠干燥并过滤。滤液浓缩,所得残渣经薄层制备色谱分离,得到5.3毫克(2S,4R)-1-((2S)-2-(5-((2-((5-氯-3-(3-(2-氯-7-(1-甲氧基乙基)吡唑并[1,5-a]嘧啶-6-基)脲基)吡啶-2-基)氧基)乙基)氨基)戊酰胺基)-3,3-二甲基丁酰基)-4-羟基-N-(4-(4-甲基噻唑-5-基)苄基)吡咯烷-2-甲酰胺(化合物12)。
MS(ESI)M/Z:952.2[M+H]+
1H NMR(400MHz,CDCl3)δ9.40(d,J=3.6Hz,1H),8.91(d,J=8.0Hz,1H),8.73(s,1H),8.68(s,1H),8.59(d,J=2.4Hz,1H),7.61(d,J=2.4Hz,1H),7.36-7.30(m,4H),7.27-7.23(m,1H),6.77-6.71(m,1H),6.59(d,J=6.8Hz,1H),5.51(q,J=6.7Hz,1H),4.71-4.66(m,1H),4.60-4.46(m,5H),4.38-4.33(m,1H),3.96-3.93(m,1H),3.62-3.58(m,1H),3.38-3.34(m,5H),3.09-3.02(m,3H),2.50(s,3H),2.43-2.28(m,4H),2.23-2.15(m,1H),1.92-1.82(m,2H),1.76-1.71(m,2H),1.67(d,J=6.8Hz,3H),0.93(s,9H).
实施例13:
(2S,4R)-1-((2S)-2-(6-((2-((5-氯-3-(3-(2-氯-7-(1-甲氧基乙基)吡唑[1,5-a]嘧啶-6-基)脲基)吡啶-2-基)氧基)乙基)氨基)己酰胺基)-3,3-二甲基丁酰基)-4-羟基-N-(4-(4-(4-甲基噻唑-5-基)苄基)吡咯烷-2-甲酰胺
反应流程:
实施例流程:
化合物13-1的制备方法参考实施例12。
化合物rac-INT-2的制备参考中间体INT-2。
步骤A:室温下将化合物13-1(60毫克,0.1毫摩尔),化合物rac-INT-2(22毫克,0.05毫摩尔),碘化钾(20毫克,0.1毫摩尔)和N,N-二异丙基乙胺(64毫克,0.5毫摩尔)分散在N,N-二甲基甲酰胺(1毫升)中,反应液氩气保护下加热至80摄氏度搅拌16小时。LC-MS显示大部分原料已消耗,并且有产物QL-MDC2019生成。向冷却后的反应液中加水(10毫升)后用乙酸乙酯(5毫升×3)萃取。合并后的有机相经饱和食盐水(10毫升×3)洗涤,无水硫酸钠干燥并过滤。滤液浓缩,所得残渣经高效液相制备色谱(酸性条件,流动相含甲酸)分离,所得组分经冷冻干燥,得到6.2毫克(2S,4R)-1-((2S)-2-(6-((2-((5-氯-3-(3-(2-氯-7-(1-甲氧基乙基)吡唑[1,5-a]嘧啶-6-基)脲基)吡啶-2-基)氧基)乙基)氨基)己酰胺基)-3,3-二甲基丁酰基)-4-羟基-N-(4-(4-(4-甲基噻唑-5-基)苄基)吡咯烷-2-甲酰胺(化合物13)。
MS(ESI)M/Z:966.3[M+H]+
1H NMR(400MHz,CDCl3)δ9.52(s,1H),8.97(d,J=10.7Hz,1H),8.81(d,J=4.2Hz,1H),8.67(s,1H),8.60-8.59(m,1H),8.56(s,1H),7.68(d,J=2.4Hz,1H),7.36-7.30(m,4H),7.22-7.20(m,1H),6.64-6.61(m,2H),5.53-5.47(m,1H),5.43-5.25(m,4H),4.72-4.53(m,3H),4.49-4.46(m,1H),4.42-4.34(m,2H),3.86-3.78(m,1H),3.51-3.42(m,2H),3.33(d,J=8.0Hz,3H),3.20-3.14(m,1H),3.10-3.03(m,1H),2.50(s,3H),2.36-2.28(m,2H),2.24-2.20(m,3H),2.07-1.98(m,4H),1.47-1.44(m,2H),0.93(s,9H).
实施例14:
(2S,4R)-1-((2S)-2-(7-((2-((5-氯-3-(3-(2-氯-7-(1-甲氧基乙基)吡唑并[1,5-a]嘧啶-6-基)脲基)吡啶-2-基)氧基)乙基)氨基)庚酰胺基)-3,3-二甲基丁酰基)-4-羟基-N-(4-(4-甲基噻唑-5-基)苄基)吡咯烷-2-甲酰胺
反应流程:
实施例流程:
步骤A:室温下将化合物10-1(60毫克,0.1毫摩尔),化合物rac-INT-2(21毫克,50微摩尔),碘化钾(19毫克,0.1毫摩尔)和N,N-二异丙基乙胺(62毫克,0.5毫摩尔)分散在N,N-二甲基甲酰胺(1毫升)中,氩气保护下加热至80摄氏度搅拌16小时。LC-MS显示大部分原料已消耗,并且有产物QL-MDC2020生成。向冷却后的反应液中加水(10毫升)后用乙酸乙酯(5毫升×3)萃取。合并后的有机相经饱和食盐水(10毫升×3)洗涤,无水硫酸钠干燥并过滤。滤液浓缩,所得残渣经高效液相制备色谱(酸性条件,流动相含三氟乙酸)分离,所得组分经冷冻干燥,得到5.6毫克(2S,4R)-1-((2S)-2-(7-((2-((5-氯-3-(3-(2-氯-7-(1-甲氧基乙基)吡唑并[1,5-a]嘧啶-6-基)脲基)吡啶-2-基)氧基)乙基)氨基)庚酰胺基)-3,3-二甲基丁酰基)-4-羟基-N-(4-(4-甲基噻唑-5-基)苄基)吡咯烷-2-甲酰胺(化合物14)。
MS(ESI)M/Z:980.3[M+H]+
1H NMR(400MHz,CDCl3)δ9.61-9.48(m,1H),8.98-8.94(m,2H),8.81-8.80(m,2H),8.63(s,1H),8.58-8.56(m,1H),7.67-7.66(m,1H),7.38-7.32(m,4H),7.20-7.15(m,1H),6.65-6.61(m,2H),5.86-5.79(m,1H),5.53-5.47(m,2H),5.37-5.16(m,2H),4.67-4.60(m,3H),4.55-4.50(m,2H),4.45-4.38(m,2H),4.09-4.04(m,1H),3.57-3.53(m,1H),3.48-3.38(m,2H),3.32(d,J=7.2Hz,3H),3.18-3.04(m,2H),2.52(d,J=1.6Hz,3H),2.28-2.22(m,3H),1.80-1.74(m,2H),1.65-1.64(m,2H),1.61(d,J=6.8Hz,3H),0.94(s,9H).
实施例15:
(2S,4R)-1-((2S)-2-(5-((2-((5-氯-3-(3-(2-氯-7-(1-甲氧基乙基)吡唑并[1,5-a]嘧啶-6-基)脲基)吡啶-2-基)氧基)乙基)氨基)丙酰胺基)-3,3-二甲基丁酰基)-4-羟基-N-(4-(4-甲基噻唑-5-基)苄基)吡咯烷-2-甲酰胺
反应流程:
实施例流程:
步骤A:室温下将中间体INT-6(100毫克,0.2毫摩尔)和三乙胺(0.1毫升,0.7毫摩尔)溶解于无水二氯甲烷(1毫升)中,氩气保护,冰水浴并且搅拌下加入丙烯酰氯(21毫克,0.23毫摩尔)的无水二氯甲烷(1毫升)溶液。反应液室温并且氩气保护下搅拌16小时。LC-MS显示原料消失。向反应液中加入水(10毫升)后用二氯甲烷(10毫升×3)萃取。合并后的有机相经饱和食盐水(10毫升)洗涤,无水硫酸钠干燥并过滤。滤液浓缩,所得残渣经薄层制备色谱(展开剂:二氯甲烷/甲醇=20/1)纯化,得到46毫克化合物15-1。
MS(ESI)M/Z:485.2[M+H]+
步骤B:室温下将化合物15-1(46毫克,95微摩尔),化合物rac-INT-2(33毫克,76微摩尔)和碳酸钠(50毫克,47微摩尔)分散在甲醇(1毫升)中,反应液氩气保护下加热至65摄氏度搅拌48小时。LC-MS显示大部分原料消失并且有产物生成。将冷却后的反应液浓缩。向所得残渣中加水(10毫升)后用乙酸乙酯(5毫升×3)萃取。合并后的有机相经饱和食盐水(10毫升)洗涤,无水硫酸钠干燥并过滤。滤液浓缩,所得残渣经薄层制备色谱(展开剂:二氯甲烷/甲醇=10/1)纯化,得到11.2毫克(2S,4R)-1-((2S)-2-(5-((2-((5-氯-3-(3-(2-氯-7-(1-甲氧基乙基)吡唑并[1,5-a]嘧啶-6-基)脲基)吡啶-2-基)氧基)乙基)氨基)丙酰胺基)-3,3-二甲基丁酰基)-4-羟基-N-(4-(4-甲基噻唑-5-基)苄基)吡咯烷-2-甲酰胺(化合物15)。
MS(ESI)M/Z:924.1[M+H]+
1H NMR(400MHz,CDCl3)δ9.08(d,J=14.4Hz,1H),8.84(d,J=4.0Hz,1H),8.69-8.66(m,2H),8.53-8.47(m,1H),7.67-7.56(m,2H),7.35-7.26(m,4H),7.00-6.94(m,1H),6.64(s,1H),5.59-5.52(m,1H),4.69-4.64(m,3H),4.55-4.46(m,3H),4.36-4.30(m,1H),4.11-4.03(m,1H),3.61-3.54(m,1H),3.41(d,J=3.6Hz,3H),3.34(s,2H),3.30-3.15(m,2H),3.02-2.95(m,1H),2.58-2.53(m,1H),2.50(s,3H),2.48-2.40(m,1H),2.18-2.12(m,2H),2.04–1.84(m,4H),1.67(d,J=6.8Hz,3H),1.30–1.22(m,3H),0.94(s,9H).
实施例16:
N2-(2-((5-氯-3-(3-(2-氯-7-((S)-1-甲氧基乙基)吡唑[1,5-a]嘧啶-6-基)脲基)吡啶-2-基)氧基)乙基)-N6-((S)-1-((2S,4R)-4- 羟基-2-((4-(4-甲基噻唑-5-基)苄基)氨甲酰)吡咯烷-1-基)-3,3-二甲基-1-氧代丁烷-2-基)螺环[3.3]庚烷二甲酰胺
反应流程:
实施例流程:
步骤A:脱盐的中间体INT-2(100.0毫克,0.2毫摩尔)、6-(甲氧羰基)螺环[3.3]庚烷-2-羧酸(42.0毫克,0.2毫摩尔)、HATU(80.0毫克,0.2毫摩尔)和二异丙基乙基胺(0.2毫升,1.1毫摩尔)溶于N,N-二甲基甲酰胺(2毫升)中,反应体系在室温下搅拌1.5小时。LCMS监测显示原料消失后,将反应液倒入冰水中并用二氯甲烷(10毫升)萃取,用水(10毫升)和盐水(10毫升)洗涤,无水硫酸钠干燥,过滤并浓缩,粗品经硅胶柱层析纯化,获得60.0毫克化合物16-1。
MS(ESI)M/Z:620.1[M+H]+
步骤B:在零摄氏度条件下,将化合物16-1(60.0毫克,0.1毫摩尔)和一水合氢氧化锂(6.1毫克,0.1毫摩尔)溶于四氢呋喃/水(1毫升/1毫升)。得到的溶液在零摄氏度下搅拌1.5小时。LCMS监测显示原料消失后,用1摩尔盐酸水溶液调节溶液酸碱度到2-3,并用乙酸乙酯(5毫升)萃取,用水(5毫升)和盐水(5毫升)洗涤,无水硫酸钠干燥,过滤和浓缩,粗产品直接做下一步,无需进一步纯化。
MS(ESI)M/Z:606.2[M+H]+
步骤C:将化合物16-2(50毫克,82.6微摩尔)、中间体INT-6(42.0毫克,0.09毫摩尔)、HATU(80.0毫克,0.2毫摩尔)和二异丙基乙基胺(0.2毫升,1.1毫摩尔)溶于二氯甲烷(2毫升)中,所得的溶液在室温下搅拌15小时。LCMS监测显示原料消失后,倒入冰水中并用二氯甲烷(10毫升)萃取,用水和盐水洗涤,过滤并浓缩,通过制备TLC(展开剂:甲醇/二氯甲烷=1/15)纯化3次以获得25.0毫克N2-(2-((5-氯-3-(3-(2-氯-7-((S)-1-甲氧基乙基)吡唑[1,5-a]嘧啶-6-基)脲基)吡啶-2-基)氧基)乙基)-N6-((S)-1-((2S,4R)-4-羟基-2-((4-(4-甲基噻唑-5-基)苄基)氨甲酰)吡咯烷-1-基)-3,3-二甲基-1-氧代丁烷-2-基)螺环[3.3]庚烷二甲酰胺(化合物16)。
MS(ESI)M/Z:1018.2[M+H]+
1H NMR(400MHz,DMSO-d6)δ9.10(s,1H),8.98(s,1H),8.89(s,1H),8.75(s,1H),8.57-8.53(m,1H),8.45(d,J=2Hz,1H),7.88-7.85(t,J=4Hz,1H),7.80(d,J=2Hz,1H),7.66-7.62(t,J=7.6Hz,1H),7.42-7.37(m,4H),6.92(d,J=1.2Hz,1H),5.41-5.36(m,1H),5.12(d,J=2.8Hz,1H),4.52-4.48(m,1H),4.45-4.39(m,4H),4.34(br,1H),4.23-4.19(m,1H),3.67-3.61(m,2H),3.49-3.45(m,2H),3.27(s,3H),3.09-3.05(m,1H),2.85-2.82(m,1H),2.44(s,3H),2.18-1.86(m,9H),1.59(d,J=5.2Hz,3H),1.26-1.23(m,1H),0.90(d,J=5.2Hz,9H).
实施例17:
N-(2-((5-氯-3-(3-(2-氯-7-((S)-1-甲氧基乙基)吡唑[1,5-a]嘧啶-6-基)脲基)吡啶-2-基)氧基)乙基)-3-(2-((1-(2,6-二氧哌啶-3-基)-3-甲基-2-氧基-2,3-二氢-1H-苯并[d]咪唑-4-基)氨基)乙氧基)丙酰胺
反应流程:
实施例流程:
步骤A:将2-氟-3-硝基苯甲酸(20克,108毫摩尔)和甲胺盐酸盐(8.7克,129毫摩尔)溶于乙醇(200毫升),然后加入N,N-二异丙基乙胺(70克,540毫摩尔)。室温搅拌过夜。LCMS监测显示原料消失后,浓缩,加水(100毫升),用浓盐酸调节pH值到3,黄色沉淀过滤,干燥得10.5克化合物17-1。
MS(ESI)M/Z:197.3[M+H]+
步骤B:将化合物17-1(11.6克,59毫摩尔)溶于叔丁醇(200毫升)中,加入N,N-二异丙基乙胺(15.3克,118.3毫摩尔)和叠氮磷酸二苯酯(17.9克,65.0毫摩尔)。反应体系在90摄氏度下搅拌过夜。LCMS监测显示原料消失后,将反应液浓缩。粗产物加水(500毫升),捣碎,过滤,滤饼用乙酸乙酯(10毫升)洗涤,干燥获得化合物17-2(11.0克,黄色固体,收率95%)。
MS(ESI)M/Z:194.0[M+H]+
步骤C:将化合物17-2溶于N,N-二甲基甲酰胺(10毫升),冷却到零摄氏度,加入氢化钠(108毫克,2.7毫摩尔),反应10分钟后,加入3-溴哌啶-2,6-二酮(517毫克,2.7毫摩尔),零摄氏度反应2小时。用水(50毫升)稀释,用浓盐酸调节pH值到3,并用乙酸乙酯(100毫升×2)萃取。合并有机相,用水(20毫升)和盐水(20毫升)洗涤,无水硫酸钠干燥,浓缩。粗产物用硅胶柱层析分离(乙酸乙酯:二氯甲烷:石油醚=1:1:1),得化合物17-3(140毫克,黄色固体,收率27%)。
MS(ESI)M/Z:305[M+H]+
步骤D:将化合物17-3(140毫克,460微摩尔)溶与四氢呋喃(15毫升)和甲醇(15毫升)中,加入5%钯/碳(40毫克,含水50%)。室温氢化反应过夜。过滤,洗涤,浓缩,得化合物17-4(80毫克)。粗产品不经进一步反应,直接用于下一步反应。
MS(ESI)M/Z:275[M+H]+
步骤E:氮气保护下,于-78摄氏度下,无水二甲亚砜(666毫克,8.5毫摩尔)的二氯甲烷(2毫升)溶液慢慢加入草酰氯(541毫克,4.3毫摩尔)的二氯甲烷溶液(20毫升)中。-78摄氏度搅拌半小时,慢慢滴加含化合物17-5(500毫克,2.1毫摩尔)的二氯甲烷(2毫升)溶液,继续搅拌1小时。三乙胺(1293毫克,12.8毫摩尔)缓慢加入,继续恒温搅拌1小时。自然升到室温,浓缩。加水(20毫升),用乙酸乙酯萃取(20毫升×2),合并有机相,用饱和食盐水洗,无水硫酸钠干燥,浓缩得500毫克化合物17-6。粗产品不经进一步反应,直接用于下一步反应。
1H NMR(500MHz,CDCl3)δ9.73(s,1H),4.16(s,2H),3.75-3.60(m,6H),2.55-2.45(m,2H),1.44(s,9H).
步骤F:氮气保护下,化合物17-6(81毫克,340微摩尔)和化合物17-4(80毫克,0.3毫摩尔)下溶于二甲亚砜(4毫升),加入乙酸(0.2毫升),60摄氏度反应1小时,氰基硼氢化钠(27毫克,430微摩尔)分批加入,继续恒温搅拌过夜。加水(50毫升)稀释,用乙酸乙酯萃取(20毫升×2)合并有机相,无水硫酸钠干燥,浓缩。粗产物用硅胶柱层析分离,得到42毫克化合物17-7。
MS(ESI)M/Z:491.1[M+H]+
步骤G:将化合物17-7(42毫克,85微摩尔)溶于二氯甲烷(4毫升)中,加入三氟乙酸(1毫升)。室温下反应3小时,反应液浓缩,得40毫克化合物17-8。
MS(ESI)M/Z:435.2[M+H]+
步骤H:氮气保护下,往化合物17-8(40毫克,0.09毫摩尔)和中间体INT-2的盐酸盐(52毫克,0.1毫摩尔)的干燥N,N-二甲基甲酰胺(4毫升)溶液中,依次加入N,N-二异丙基乙胺(35毫克,0.27毫摩尔),2-(7-氮杂苯并三氮唑)-N,N,N',N'-四甲基脲六氟磷酸酯(53毫克,140微摩尔)。室温下反应2小时后,加入水(50毫升),用乙酸乙酯萃取(20毫升×2),无水硫酸钠干燥,过滤,浓缩。粗品用反相色谱柱制备(甲酸体系),得到25毫克N-(2-((5-氯-3-(3-(2-氯-7-((S)-1-甲氧基乙基)吡唑[1,5-a]嘧啶-6-基)脲基)吡啶-2-基)氧基)乙基)-3-(2-((1-(2,6-二氧哌啶-3-基)-3-甲基-2-氧基-2,3-二氢-1H-苯并[d]咪唑-4-基)氨基)乙氧基)丙酰胺(化合物17)。
MS(ESI)M/Z:856[M+H]+
1H NMR(500MHz,DMSO-d6)δ11.06(s,1H),9.18(s,1H),9.04(s,1H),8.75(s,1H),8.45(d,J=3.0Hz,1H),8.19(t,J=5.5Hz,1H),7.80(d,J=3.0Hz,1H),6.93(s,1H),6.85(t,J=8.0Hz,1H),6.50(d,J=8.0Hz,1H),6.43(d,J=8.5Hz,1H),5.37(q,J=7.0Hz,2H),5.30-5.27(m,1H),4.98(t,J=6.0Hz,1H),4.40(t,J=7.0Hz,2H),3.64-3.60(m,6H),3.52-3.46(m,6H),3.26(s,3H),3.21(t,J=5.5Hz,2H)2.91-2.85(m,1H),2.71-2.59(m,2H),2.36(t,J=6.5Hz,2H),1.98-1.95(m,1H),1.59(d,J=7.0Hz,3H).
实施例18:
N-(2-((5-氯-3-(3-(2-氯-7-((S)-1-甲氧基乙基)吡唑[1,5-a]嘧啶-6-基)脲基)吡啶-2-基)氧基)乙基)-3-(4-((1-(2,6-二氧哌啶-3-基)-3-甲基-2-氧基-2,3-二氢-1H-苯并[d]咪唑-4-基)氨基)甲基)哌啶-1-基)丙酰胺
反应流程:
实施例流程:
步骤A:将丙烯酸叔丁酯(tert-butyl acrylate,3.3克,25.8毫摩尔)和哌啶-4-基甲醇(2.0克,21.7毫摩尔)溶于甲醇(20毫升),该反应体系在室温下搅拌18小时。LCMS监测显示原料消失后,反应液减压浓缩,所得混合物用反相柱层析纯化(流动相:50%乙腈,50%蒸馏水,蒸馏水含0.01%碳酸氢铵)得到化合物18-1(3.9克,白色固体,收率92.0%)。
MS(ESI)M/Z:244.2[M+H]+
步骤B:在-78摄氏度下,将草酰氯(0.6克,4.5毫摩尔)溶于二氯甲烷(3毫升)中,将二甲基亚砜(0.7毫升,9.1毫摩尔)(溶于2毫升二氯甲烷)慢慢滴加到上述溶液中。该体系搅拌5分钟。将化合物18-1(1.0克,4.1毫摩尔)(溶于2.5毫升的二氯甲烷)慢慢滴加到反应液中。反应液在-78摄氏度下搅拌15分钟。将三乙胺(2毫升,14.8毫摩尔)慢慢滴加到反应体系中,反应液慢慢升至室温,并在室温下搅拌45分钟。LCMS监测显示原料消失后,反应液加水(20毫升)淬灭,二氯甲烷(20毫升×3)萃取。合并有机相,先后用10%的盐酸(20毫升),饱和碳酸氢钠(20毫升×3),水(20毫升×3),饱和食盐水(20毫升×3)洗涤,无水硫酸镁干燥。过滤,减压浓缩 得到700毫克化合物18-2。该化合物直接用于下一步。
步骤C:将化合物18-2(120.0毫克,0.5毫摩尔),化合物18-3(136.0毫克,0.5毫摩尔),乙酸(0.5毫升)和氰基硼氢化钠(47.0毫克,0.8毫摩尔)溶于二甲基亚砜(5毫升)中。该体系在60摄氏度下搅拌18小时。LCMS监测显示原料消失后,反应液加冰水(50毫升)淬灭,二氯甲烷(50毫升×3)萃取。合并有机相,先后用水(50毫升×3)和饱和食盐水(50毫升×3)洗涤,无水硫酸镁干燥。过滤,滤液减压浓缩,所得混合物用反相柱层析纯化(流动相:40%乙腈,60%蒸馏水,蒸馏水含0.025%甲酸)得到100.0毫克化合物18-4。
MS(ESI)M/Z:500.4[M+H]+
步骤D:将化合物18-4(120.0毫克,0.2毫摩尔)溶于二氯甲烷(4毫升)和三氟乙酸(1毫升)中。该体系在室温搅拌2小时。LCMS监测显示原料消失后,反应液减压浓缩。得到化合物18-5(100.0毫克)。该化合物直接用于下一步。
MS(ESI)M/Z:444.3[M+H]+
步骤E:将化合物18-5(100.0毫克,0.2毫摩尔),中间体INT-2(99.2毫克,0.2毫克),N,N-二异丙基乙胺(145.4毫克,1.1毫摩尔)和2-(7-氮杂苯并三氮唑)-N,N,N',N'-四甲基脲六氟磷酸酯(128.5毫克,0.3毫摩尔)溶于N,N-二甲基甲酰胺(5毫升)。该反应体系在室温下搅拌1小时。LCMS监测显示原料消失后,反应液用水(50毫升)淬灭,乙酸乙酯(50毫升×3)萃取。合并有机相,用水(10毫升×3)和饱和食盐水(10毫升×3)洗涤,无水硫酸钠干燥。过滤,减压浓缩。所得混合物用高效液相色谱制备(流动相:60%乙腈,40%蒸馏水,蒸馏水含0.025%甲酸)得到80.0毫克N-(2-((5-氯-3-(3-(2-氯-7-((S)-1-甲氧基乙基)吡唑[1,5-a]嘧啶-6-基)脲基)吡啶-2-基)氧基)乙基)-3-(4-((1-(2,6-二氧哌啶-3-基)-3-甲基-2-氧基-2,3-二氢-1H-苯并[d]咪唑-4-基)氨基)甲基)哌啶-1-基)丙酰胺(化合物18)。
MS(ESI)M/Z:865.3[M+H]+
1H NMR(400MHz,DMSO-d6)δ11.07(s,1H),9.13(s,1H),8.92(s,1H),8.75(s,1H),8.47(d,J=2Hz,1H),8.37(t,J=4.8Hz,1H),7.82(d,J=2Hz,1H),6.94(s,1H),6.87(t,J=6.4Hz,1H),6.52-6.43(m,2H),5.42-5.37(m,1H),5.30-5.26(m,1H),5.15(br,1H),4.46(t,J=4.4Hz,2H),3.62(s,3H),3.30-3.22(m,6H),2.99-2.84(m,5H),2.69-2.58(m,4H),2.07-1.95(m,4H),1.87-1.65(m,2H),1.58(d,J=6Hz,3H),1.44-1.38(m,2H).
实施例19:
1-(5-氯-2-(2-((4-((2-(2,6-二氧代哌啶-3-基)-1,3-二氧代异吲哚啉-4-基)氨基)丁基)氨基)乙氧基)吡啶-3-基)-3-(2-氯-7-((S)-1-甲氧基乙基)吡唑并[1,5-a]嘧啶-6-基)脲
反应流程:
实施例流程:
步骤A:室温下将化合物19-1(2.3克,8.3毫摩尔)溶解于N-甲基吡咯烷酮(20毫升)中,随后氩气保护并且搅拌下加入4-氨基丁醛二甲缩醛(1.0克,7.5毫摩尔)和N,N-二异丙基乙胺(5.2毫升,30.0毫摩尔)。将反应液埋入事先预热至140摄氏度的油浴锅中,140摄氏度并且氩气保护下搅拌30分钟。LC-MS显示无原料剩余,并且主产物为化合物19-2。向冷却后的反应液中加水(100毫升)后用乙酸乙酯(100毫升,50毫升)萃取。合并后的有机相经饱和食盐水(50毫升×10)洗涤,无水硫酸钠干燥并过滤。滤液浓缩,所得残渣经硅胶柱层析分离,得到2.16克化合物19-2。
MS(ESI)M/Z:388.2[M-H]-;412.1[M+Na]+
步骤B:零摄氏度下将化合物19-2(80毫克,0.2毫摩尔)加入到三氟乙酸(8毫升)中。将反应液置于室温下搅拌3小时。LC-MS显示原料消失。将反应液逐滴滴加到冰水浴冷却的饱和碳酸氢钠水溶液,边滴加边摇匀。滴加完毕加乙酸乙酯(20毫升×2)萃取。合并后的有机相经饱和食盐水(20毫升×3)洗涤,无水硫酸钠干燥并过滤。滤液浓缩,所得残渣经薄层制备色谱分离(展开剂:二氯甲烷/甲醇=20/1),得到15毫克化合物19-3。
步骤C:室温下将化合物19-3(15毫克,44微摩尔)和脱盐的中间体INT-2(10毫克,23微摩尔)溶解于四氢呋喃(2毫升)中,零摄氏度并且搅拌下加入三乙酰氧基硼氢化钠(24.4毫克,115微摩尔)。反应液室温搅拌2小时。LC-MS显示主产物为QL-MDC2040。将反应液用饱和碳酸氢钠水溶液(20毫升)淬灭,所得混合物用乙酸乙酯(20毫升×3)萃取。合并后的有机相经饱和食盐水(20毫升×3)洗涤,无水硫酸钠干燥并过滤。滤液浓缩,所得残渣经薄层制备色谱纯化(展开剂:二氯甲烷/甲醇=20/1),得到4.1毫克1-(5-氯-2-(2-((4-((2-(2,6-二氧代哌啶-3-基)-1,3-二氧代异吲哚啉-4-基)氨基)丁基)氨基)乙氧基)吡啶-3-基)-3-(2-氯-7-((S)-1-甲氧基乙基)吡唑并[1,5-a]嘧啶-6-基)脲(化合物19)。
MS(ESI)M/Z:767.1[M+H]+
1H NMR(400MHz,CDCl3)δ9.31(s,1H),9.03(s,1H),8.58-8.52(m,2H),7.63(s,1H),7.52-7.47(m,1H),7.11(d,J=7.2Hz,2H),6.86(d,J=8.8Hz,1H),6.65(s,1H),6.22(s,1H),5.61-5.56(m,1H),4.92-4.87(m,1H),4.54(s,2H),3.39(s,3H),3.31-3.26(m,4H),2.97-2.68(m,6H),1.50-0.82(m,7H).
实施例20:
1-(5-氯-2-(2-((7-((2-(2,6-二氧代哌啶-3-基)-1,3-二氧代异吲哚啉-4-基)氨基)庚基)氨基)乙氧基)吡啶-3-基)-3-(2-氯-7-((S)-1-甲氧基乙基)吡唑并[1,5-a]嘧啶-6-基)脲
反应流程:
实施例流程:
化合物20-1的制备参考实施例19。
步骤A:零摄氏度下将化合物20-1(18毫克,47微摩尔)和脱盐的中间体INT-2(20毫克,45微摩尔)溶解于四氢呋喃(2毫升)中,零摄氏度下并且搅拌下加入三乙酰氧基硼氢化钠(38毫克,180微摩尔)。反应液随后室温搅拌2小时。将反应液用饱和碳酸氢钠水溶液(20毫升)淬灭,所得混合物用乙酸乙酯(20毫升×3)萃取。合并后的有机相经饱和食盐水(50毫升×3)洗涤,无水硫酸钠干燥并过滤。滤液浓缩,所得产物经薄层制备色谱分离,得到9.3毫克1-(5-氯-2-(2-((7-((2-(2,6-二氧代哌啶-3-基)-1,3-二氧代异吲哚啉-4-基)氨基)庚基)氨基)乙氧基)吡啶-3-基)-3-(2-氯-7-((S)-1-甲氧基乙基)吡唑并[1,5-a]嘧啶-6-基)脲(化合物20)。
MS(ESI)M/Z:809.3[M+H]+
1H NMR(400MHz,CDCl3)δ9.30(brs,1H),8.87(brs,1H),8.67(brs,1H),8.63–8.59(m,2H),7.63(d,J=2.4Hz,1H),7.45-7.50(m,1H),7.10(d,J=6.8Hz,1H),6.88(d,J=8.4Hz,1H),6.65(s,1H),6.22(t,J=5.8Hz,1H),5.57(q,J=6.3Hz,1H),4.90–4.84(m,1H),4.61(s,2H),3.40(s,3H),3.40-3.23(m,4H),3.01-2.65(m,5H),2.18-2.10(m,1H),1.68-1.66(m,7H),1.41-1.12(m,6H).
实施例21:
1-(5-氯-2-(2-((5-((2-(2,6-二氧代哌啶-3-基)-1,3-二氧代异吲哚啉-4-基)氨基)戊基)氨基)乙氧基)吡啶-3-基)-3-(2-氯-7-((S)-1-甲氧基乙基)吡唑并[1,5-a]嘧啶-6-基)脲
反应流程:
实施例流程:
化合物21-1的制备参考实施例19。
步骤A:室温下将化合物21-1(80毫克,224微摩尔)和脱盐的中间体INT-2(30毫克,68微摩尔)溶解于四氢呋喃(5毫升)中,零摄氏度并且搅拌下加入三乙酰氧基硼氢化钠(72毫克,341微摩尔)。反应液随后室温搅拌2小时。LC-MS显示主产物为QL-MDC2042。向反应液中加入饱和碳酸氢钠水溶液(20毫升)后用乙酸乙酯(20毫升×3)萃取。合并后的有机相经饱和食盐水(20毫升×3)洗涤,无水硫酸钠干燥并过滤。滤液浓缩,所得残渣经薄层制备色谱分离(展开剂:二氯甲烷/甲醇=20/1),得到7.7毫克1-(5-氯-2-(2-((5-((2-(2,6-二氧代哌啶-3-基)-1,3-二氧代异吲哚啉-4-基)氨基)戊基)氨基)乙氧基)吡啶-3-基)-3-(2-氯-7-((S)-1-甲氧基乙基)吡唑并[1,5-a]嘧啶-6-基)脲(化合物21)。
MS(ESI)M/Z:781.3[M+H]+
1H NMR(400MHz,CDCl3)δ9.19(s,1H),8.82(s,1H),8.66(s,1H),8.58(d,J=2.0Hz,1H),7.61(d,J=2.0Hz,1H),7.48(t,J=7.6Hz,1H),7.09(d,J=7.2Hz,1H),6.84(d,J=8.4Hz,1H),6.65(s,1H),5.56(q,J=6.7Hz,1H),4.90-4.87(m,1H),4.67(s,2H),3.38-3.26(m,7H),3.05-3.00(m,2H),2.89-2.70(m,3H),2.14-2.10(m,1H),1.88(s,2H),1.67-1.62(m,5H),1.50-1.46(m,3H).
实施例22:
N1-(2-((5-氯-3-(3-(2-氯-7-((S)-1-甲氧基乙基)吡唑[1,5-a]嘧啶-6-基)脲基)吡啶-2-基)氧基)乙基)-N6-((S)-1-((2S,4R)-4-羟基-2-((S)-1-(4-(4-甲基噻唑-5-基)苯基)乙基)氨甲酰)吡咯烷-1-基)-3,3-二甲基-1-氧丁烷-2-基)己二胺
反应流程:
实施例流程:
步骤A:将7-氨基庚酸叔丁酯(100.0毫克,0.5毫摩尔),2-(2,6-二氧哌啶-3-基)-4-氟异吲哚啉-1,3-二酮(138.0毫克,0.5毫摩尔),N,N-二异丙基乙胺(0.4毫升,2.4毫摩尔)溶于二甲基亚砜(2毫升)。该反应体系在90摄氏度下搅拌18小时。LCMS监测显示原料消失后,反应液降至室温,用水(10毫升)淬灭,乙酸乙酯(10毫升×3)萃取。合并有机相,用水(10毫升×3)和饱和食盐水(10毫升×3)洗涤,无水硫酸钠干燥。过滤,减压浓缩。所得混合物先用硅胶柱层析纯化得到100.0毫克化合物22-1。
MS(ESI)M/Z:481.3[M+Na]+
步骤B:将化合物22-1(100毫克,0.2毫摩尔)于二氯甲烷(2毫升)和三氟乙酸(1毫升)中。该反应体系在室温下搅拌2小时。LCMS监测显示原料消失后,反应液减压浓缩,所得混合物用硅胶柱层析纯化得到50.0毫克化合物22-2。
MS(ESI)M/Z:402.3[M+H]+
步骤C:将中间体INT-2(77.0毫克,0.2毫摩尔),化合物22-2(65.0毫克,0.2毫摩尔),N,N-二异丙基乙胺(103.2毫克,0.8毫摩尔)和2-(7-氮杂苯并三氮唑)-N,N,N',N'-四甲基脲六氟磷酸酯(62.0毫克,0.2毫摩尔)溶于N,N-二甲基甲酰胺(3毫升)。该反应体系在室温下搅拌2小时。LCMS监测显示原料消失后,反应液用水(10毫升)淬灭,乙酸乙酯(10毫升×3)萃取合并有机相,用水(10毫升×3)和饱和食盐水(10毫升×3)洗涤,无水硫酸钠干燥。过滤,减压浓缩。所得混合物先用高效液相色谱制备,再用薄层层析纯化得到39.0毫克N-(2-((5-氯-3-(3-(2-氯-7-((S)-1-甲氧基乙基)吡唑[1,5-a]嘧啶-6-基)脲基)吡啶-2-基)氧基)乙基)-7-((2-(2,6-二氧哌啶-3-基)-1,3-二氧异喹啉-4-基)氨基)庚酰胺(化合物22)。
MS(ESI)M/Z:823.2[M+H]+
1H NMR(400MHz,DMSO-d6)δ11.08(s,1H),9.09(s,1H),8.88(s,1H),8.75(s,1H),8.44(d,J=1.6Hz,1H),8.00(t,J=4.8Hz,1H),7.79(d,J=2Hz,1H),7.56(t,J=6Hz,1H),7.05-6.99(m,2H),6.92(s,1H),6.50-6.47(m,1H),5.40-5.35(m,1H),5.06-5.02(m,1H),4.41(t,J=4.8Hz,2H),3.52-3.43(m,2H),3.27(s,3H),3.26-3.21(m,1H),2.90-2.83(m,1H),2.64-2.52(m,1H),2.09(t,J=6Hz,2H),2.04-1.99(m,1H),1.57(d,J=5.2Hz,3H),1.56-1.47(m,4H),1.34-1.23(m,6H).
实施例23:
N-(2-((5-氯-3-(3-(2-氯-7-(1-甲氧基乙基)吡唑并[1,5-a]嘧啶-6-基脲基)-6-(2H-1,2,3-三唑-2-基)吡啶-2-基)氧基)乙基)-9-((2-(2,6-二氧代哌啶-3-基)-1,3-二氧代异吲哚啉-4-基)氨基)壬酰胺
反应流程:
实施例流程:
化合物23-1的合成参考实施例22。
化合物rac-INT-4的制备参考中间体INT-4。
步骤A:零摄氏度并且氩气保护下向搅拌着的化合物23-1(33毫克,77微摩尔)的N,N-二甲基甲酰胺(1毫升) 溶液中加入2-(7-偶氮苯并三氮唑)-N,N,N',N'-四甲基脲六氟磷酸酯(HATU,40毫克,0.1毫摩尔)。反应液零摄氏度并且氩气保护下搅拌30分钟。加入化合物rac-INT-4(粗品盐酸盐,35.4毫克,65.1微摩尔)和N,N-二异丙基乙胺(27.1毫克,0.2毫摩尔)。反应液随后室温并且氩气保护下搅拌1小时。反应液加水(50毫升)稀释后用乙酸乙酯(50毫升×3)萃取。合并后的有机相经饱和食盐水(50毫升)洗涤,无水硫酸钠干燥并过滤。滤液浓缩,所得粗产品经薄层制备色谱,得到30.6毫克N-(2-((5-氯-3-(3-(2-氯-7-(1-甲氧基乙基)吡唑并[1,5-a]嘧啶-6-基脲基)-6-(2H-1,2,3-三唑-2-基)吡啶-2-基)氧基)乙基)-9-((2-(2,6-二氧代哌啶-3-基)-1,3-二氧代异吲哚啉-4-基)氨基)壬酰胺(化合物23)。
MS(ESI)M/Z:918.3[M+H]+
1H NMR(400MHz,CDCl3)δ9.96(d,J=4.4Hz,1H),9.16(s,1H),8.83(d,J=2.0Hz,1H),8.34(d,J=27.7Hz,1H),8.26(d,J=5.2Hz,1H),7.96(d,J=2.0Hz,2H),7.48(t,J=7.8Hz,1H),7.07(d,J=6.8Hz,1H),6.89-6.80(m,2H),6.67(s,1H),6.21(t,J=5.4Hz,1H),5.61(q,J=6.6Hz,1H),4.91(dd,J=11.8,5.0Hz,1H),4.59(t,J=4.8Hz,2H),3.78-3.70(m,2H),3.51(s,3H),3.24(q,J=6.6Hz,2H),2.92-2.71(m,3H),2.24(t,J=7.6Hz,2H),2.17-2.09(m,1H),1.68-1.61(m,6H),1.38-1.27(m,7H).
实施例24:
N-(2-((5-氯-3-(3-(2-氯-7-(1-甲氧基乙基)吡唑并[1,5-a]嘧啶-6-基)脲基)-6-(2H-1,2,3-三唑-2-基)吡啶-2-基)氧基)乙基)-3-(4-(3-((2-(2,6-二氧代哌啶-3-基)-1,3-二氧代异吲哚啉-4-基)氨基)丙氧基)哌啶-1-基)丙酰胺
反应流程:
实施例流程:
化合物24-1的制备参考实施例22。
步骤A:室温下将化合物24-1(45毫克,92.5微摩尔)溶解于N,N-二甲基甲酰胺(1毫升)中,冰水浴,氩气保护并且搅拌下加入2-(7-偶氮苯并三氮唑)-N,N,N',N'-四甲基脲六氟磷酸酯(HATU,47毫克,123.3微摩尔)。冰水浴下 搅拌30分钟后依次加入化合物rac-INT-4(17毫克,33.5微摩尔)和N,N-二异丙基乙胺(DIPEA,12毫克,92.5微摩尔)。反应液冰水浴并且氩气保护下搅拌1小时。LC-MS显示原料消失。向反应液中加入水(5毫升)后用乙酸乙酯(10毫升×3)萃取。合并后的有机相经饱和食盐水(15毫升)洗涤,无水硫酸钠干燥并过滤。滤液浓缩,所得粗品残渣经薄层制备色谱分离,得到3.3毫克N-(2-((5-氯-3-(3-(2-氯-7-(1-甲氧基乙基)吡唑并[1,5-a]嘧啶-6-基)脲基)-6-(2H-1,2,3-三唑-2-基)吡啶-2-基)氧基)乙基)-3-(4-(3-((2-(2,6-二氧代哌啶-3-基)-1,3-二氧代异吲哚啉-4-基)氨基)丙氧基)哌啶-1-基)丙酰胺(化合物24)。
MS(ESI)M/Z:975.3[M+H]+;973.3[M-H]-
1H NMR(400MHz,CDCl3)δ10.04(s,1H),9.18(d,J=4.0Hz,1H),8.88(s,1H),8.34(s,1H),8.11(s,2H),7.51(t,J=7.6Hz,1H),7.09(d,J=7.2Hz,1H),6.89(d,J=8.8Hz,1H),6.72-6.56(m,2H),5.64-5.56(m,1H),5.43-5.24(m,1H),5.01-4.88(m,1H),4.63(s,2H),3.84-3.55(m,5H),3.52(s,3H),3.49-3.33(m,4H),3.32-3.07(m,3H),2.92-2.67(m,6H),2.28-2.19(m,1H),2.18-2.06(m,2H),2.03-1.95(m,4H),1.88-1.77(m,3H).
实施例25:
N-(2-((5-氯-3-(3-(2-氯-7-(1-甲氧基乙基)吡唑并[1,5-a]嘧啶-6-基)脲基)-6-(2H-1,2,3-三唑-2-基)吡啶-2-基)氧基)乙基)-3-((3-(2-((2-(2,6-二氧代哌啶-3-基)-1,3-二氧代异吲哚啉-4-基)氨基)乙氧基)丙基)(甲基)氨基)丙酰胺
反应流程:
实施例流程:
步骤A:室温下将化合物25-1(23毫克,50微摩尔)和三乙胺(7毫克,70微摩尔)溶解于二氯甲烷(2毫升)中,冰水浴并且搅拌下加入2-(7-氮杂苯并三氮唑)-N,N,N',N'-四甲基脲六氟磷酸酯(HATU,19毫克,50微摩尔)。反应液随后在室温下搅拌0.5小时。冰水浴并且搅拌下再加入化合物rac-INT-4(18毫克,粗品盐酸盐,30微摩尔)。反应液室温下搅拌8小时。LC-MS显示原料消失。反应液用二氯甲烷(5毫升)稀释,再经水(5毫升×3)洗涤,饱和食盐水(5毫升×3)洗涤,无水硫酸钠干燥并过滤。滤液浓缩,所得残渣经薄层制备色谱分离(展开剂:二氯甲烷/甲醇=20/1),得到7.3毫克N-(2-((5-氯-3-(3-(2-氯-7-(1-甲氧基乙基)吡唑并[1,5-a]嘧啶-6-基)脲基)-6-(2H-1,2,3-三唑-2-基)吡啶-2-基)氧基)乙基)-3-((3-(2-((2-(2,6-二氧代哌啶-3-基)-1,3-二氧代异吲哚啉-4-基)氨基)乙氧基)丙基)(甲基)氨基)丙酰胺(化合物25)。
MS(ESI)M/Z:949.3[M+H]+
1H NMR(400MHz,CDCl3)δ10.11(s,1H),9.19(s,1H),8.86(s,1H),8.60(s,1H),8.34-8.29(m,3H),7.50(t,J=7.6Hz,1H),7.12(d,J=6.8Hz,1H),6.85(d,J=8.4Hz,1H),6.66(s,1H),6.52(s,1H),5.61(q,J=6.8Hz,1H),5.07-4.99(m 1H),4.58(s,2H),3.80-3.70(m,2H),3.70-3.63(m,2H),3.63-3.56(m,2H),3.52(s,3H),3.43-3.40(m,4H),3.34-3.10(m,2H),3.10-2.90(m,2H),2.84-2.83(m,2H),2.71-2.66(m,4H),2.16-2.13(m,3H),1.63(d,J=6.8Hz,3H).
实施例26:
1-(5-氯-2-(2-((8-(2-(2,6-二氧代哌啶-3-基)-1-氧代异喹啉-4-基)辛-7-炔-1-基)氨基)乙氧基)吡啶-3-基)-3-(2-氯-7-((S)-1-甲氧基乙基)吡唑并[1,5-a]嘧啶-6-基)脲
反应流程:
实施例流程:
步骤A:室温下将化合物26-1(1克,3.1毫摩尔)溶解于N,N-二甲基甲酰胺(20毫升)中,氩气保护下依次加入7辛炔醇(586毫克,4.6毫摩尔),碳酸铯(2.02克,6.2毫摩尔),碘化亚铜(118毫克,618.9微摩尔)和双(三苯 基磷)二氯化钯(217毫克,309.5微摩尔)。反应液在80摄氏度并且氩气保护下搅拌2小时。LC-MS显示原料反应完全。向冷却后的反应液中加入水(200毫升)后用乙酸乙酯(150毫升×3)萃取。合并后的有机相经饱和食盐水(400毫升×8)洗涤,无水硫酸钠干燥并过滤。滤液浓缩,所得残渣经硅胶柱层析分离(洗脱剂:二氯甲烷/无水甲醇=40/1),得到420毫克化合物26-2。
步骤B:室温下将化合物26-2(100毫克,271.4微摩尔)溶解于乙酸乙酯(25毫升)中,零摄氏度下加入戴斯-马丁氧化剂(158毫克,372.6微摩尔)。反应液缓慢恢复至室温并搅拌过夜。向反应液中加入饱和碳酸氢钠(10毫升)和水(10毫升)后用乙酸乙酯(20毫升×3)萃取。合并后的有机相经饱和食盐水(50毫升)洗涤,无水硫酸钠干燥并过滤。滤液浓缩,所得残渣经薄层制备色谱纯化,得到44毫克化合物26-3。
MS(ESI)M/Z:367.2[M+H]+
步骤C:室温下将化合物26-3(44毫克,120.1微摩尔)和脱盐的中间体INT-2(48毫克,109.2微摩尔)溶解于四氢呋喃(2毫升)中,零摄氏度下加入三乙酰氧基硼氢化钠(69毫克,327.5微摩尔)。反应液缓慢恢复至室温并搅拌2小时。LC-MS显示原料有少量剩余并且有产物生成。向反应液中加入饱和氯化钠水溶液(2毫升)和饱和碳酸氢钠水溶液(2毫升)后用乙酸乙酯(10毫升×3)萃取。合并后的有机相经饱和食盐水(10毫升)洗涤,无水硫酸钠干燥并过滤。滤液浓缩,所得残渣经薄层制备色谱纯化,得到的产物再次经薄层制备色谱纯化,得到26毫克1-(5-氯-2-(2-((8-(2-(2,6-二氧代哌啶-3-基)-1-氧代异喹啉-4-基)辛-7-炔-1-基)氨基)乙氧基)吡啶-3-基)-3-(2-氯-7-((S)-1-甲氧基乙基)吡唑并[1,5-a]嘧啶-6-基)脲(化合物26)。
MS(ESI)M/Z:790.2[M+H]+;788.3[M-H]-
1H NMR(400MHz,CDCl3)δ9.17(d,J=2.8Hz,1H),8.78(s,1H),8.68(s,1H),8.57(d,J=2.4Hz,1H),7.77(d,J=8.0Hz,1H),7.59(d,J=1.6Hz,1H),7.54(d,J=8.0Hz,1H),7.42(d,J=7.6Hz,1H),6.66(s,1H),5.54(q,J=6.9Hz,1H),5.25-5.21(m,1H),4.65(s,2H),4.49-4.27(m,2H),3.39-3.38(m,3H),3.04(t,J=7.4Hz,2H),2.85-2.76(m,2H),2.42(t,J=6.4Hz,2H),2.33-2.15(m,3H),1.67-1.64(m,4H),1.60-1.51(m,4H),1.45-1.31(m,4H).
实施例27:
1-(5-氯-2-(2-((5-(2-(2,6-二氧代哌啶-3-基)-1-氧代异喹啉-4-基)戊-4-炔-1-基)氨基)乙氧基)吡啶-3-基)-3-(2-氯-7-((S)-1-甲氧基乙基)吡唑并[1,5-a]嘧啶-6-基)脲
反应流程:
实施例流程:
化合物27-1的合成参考实施例26。
步骤A:室温下将化合物27-1(25毫克,77.1微摩尔)和脱盐的中间体INT-2(31毫克,70.1微摩尔)溶解于四氢呋喃(2毫升)中,零摄氏度下加入三乙酰氧基硼氢化钠(45毫克,210.2微摩尔)。反应液缓慢恢复至室温并搅拌2小时。LC-MS显示原料有少量剩余并且有产物生成。向反应液中加入饱和氯化钠水溶液(2毫升)和饱和碳酸氢钠水溶液(2毫升)后用乙酸乙酯(10毫升×3)萃取。合并后的有机相经饱和食盐水(10毫升)洗涤,无水硫酸钠干燥并过滤。滤液浓缩,所得残渣经薄层制备色谱纯化,得到的产物经薄层制备色谱纯化,得到12.2毫克1-(5-氯-2-(2-((5-(2-(2,6-二氧代哌啶-3-基)-1-氧代异喹啉-4-基)戊-4-炔-1-基)氨基)乙氧基)吡啶-3-基)-3-(2-氯-7-((S)-1-甲氧基乙基)吡唑并[1,5-a]嘧啶-6-基)脲QL-MDC2101(化合物27)。
MS(ESI)M/Z:748.2[M+H]+;746.2[M-H]-
1H NMR(400MHz,CDCl3)δ9.22(s,1H),8.95(s,1H),8.57(s,1H),8.52(s,1H),7.78(d,J=7.2Hz,1H),7.57(s,1H),7.51–7.46(m,1H),7.41(t,J=7.6Hz,1H),6.64(s,1H),5.60-5.53(m,1H),5.20-5.14(m,1H),4.59-4.50(m,3H),4.33-4.28(m,1H),3.39-3.37(m,3H),3.18-3.06(m,2H),2.83-2.75(m,2H),2.60-2.47(m,2H),2.44-2.33(m,2H),2.22-2.14(m,1H),2.12-2.02(m,3H),1.66-1.63(m,4H).
实施例28:
1-(5-氯-2-(2-((4-((4-(2-(2,6-二氧代哌啶-3-基)-6-氟-1,3-二氧代异吲哚啉-5-基)哌嗪-1-基)甲基)环己基)氨基)乙氧基)吡啶-3-基)-3-(2-氯-7-((S)-1-甲氧基乙基)吡唑并[1,5-a]嘧啶-6-基)脲
反应流程:
实施例流程:
步骤A:冰水浴下将化合物28-1(0.5克,2.9毫摩尔)和苄基-1-哌嗪碳酸脂(1.4克,6.4毫摩尔)溶解于四氢呋喃(20毫升)中,搅拌下分批加入三乙酰氧基硼氢化钠(1.9克,9.6毫摩尔),加完后将反应液升温至室温并且搅拌2小时。LC-MS显示原料消失并且主产物为化合物34-2。向反应液中加入水(20毫升)后用乙酸乙酯(50毫升×2)萃取。合并后的有机相经无水硫酸钠干燥并过滤。滤液浓缩,所得残渣经硅胶柱层析分离(洗脱剂:石油醚/乙酸乙酯=5/1),得到0.6克化合物28-2。
MS(ESI)M/Z:375.2[M+H]+
步骤B:室温下将化合物28-2(650毫克,1.7毫摩尔)溶解于甲醇(10毫升)中,加入钯/碳(65毫克,10%)。加料完毕,抽换氢气三次,氢气球保护并且室温下搅拌过夜。LC-MS显示原料消失并且主产物为化合物28-3。反应液经硅藻土过滤,滤饼用甲醇洗涤,合并后的滤液经浓缩得油状物,再经硅胶柱层析分离,得到423毫克化合物28-3。
步骤C:室温下将化合物28-4(1.2克,6.5毫摩尔)分散在冰醋酸(25毫升)中,加入3-胺基-哌啶-2,6-二酮的盐酸盐(1.1克,6.8毫摩尔)和醋酸钾(0.7克,7.2毫摩尔)。反应液升温至90摄氏度并且搅拌过夜。LC-MS显示原料消失。将反应液冷却至室温后慢慢加至水(500毫升)中,搅拌2小时后过滤。滤饼用水充分洗涤,收集并干燥,得到1.7克化合物28-5。
步骤D:室温下将化合物28-5(273毫克,0.9毫摩尔)溶解于N-甲基吡咯烷酮(10毫升)中,加入化合物28-3(110毫克,0.5毫摩尔)和N,N-二异丙基乙胺(853毫克,6.6毫摩尔)。将反应液埋至预先加热到140摄氏度的油浴锅中并且搅拌30分钟。LC-MS显示原料基本消耗完全并且主产物为化合物28-6。将反应液冷却至室温并加入水后用乙酸乙酯(20毫升×2)萃取。合并后的有机相经饱和食盐水(30毫升×10)洗涤,无水硫酸钠干燥并过滤。滤液浓缩,所得残渣经薄层制备色谱分离,得到143毫克化合物28-6。
MS(ESI)M/Z:515.2[M+H]+
步骤E:室温下将化合物28-6(75毫克,0.2毫摩尔)溶解于丙酮(10毫升)中,加入稀盐酸(1M,10毫升,10毫摩尔)。反应液室温搅拌过夜。LC-MS显示原料消失。向反应液中小心加入饱和碳酸钠水溶液(20毫升)和乙酸乙酯(20毫升),分离有机相。水相再用乙酸乙酯(10毫升)萃取。合并后的有机相经饱和食盐水(20毫升×3)洗涤,无水硫酸钠干燥并过滤。滤液浓缩,所得残渣经薄层制备色谱纯化,得到54毫克化合物28-7。
MS(ESI)M/Z:471.2[M+H]+
步骤F:冰水浴下将化合物28-7(50毫克,0.1毫摩尔)溶解于四氢呋喃(10毫升)中,加入脱盐的中间体INT-2(61毫克,0.1毫摩尔),冰水浴并且搅拌下加入三乙酰氧基硼氢化钠(112毫克,0.5毫摩尔)和无水醋酸钠(11毫克,0.1毫摩尔),反应液升温至室温并且搅拌5小时。向反应液中加入饱和碳酸氢钠水溶液并用乙酸乙酯(20毫升×3)萃取。合并后的有机相经无水硫酸钠干燥并过滤,滤液浓缩,所得残渣经薄层制备色谱纯化(展开剂:第一次二氯甲烷/甲醇=12/1;第二次乙酸乙酯/甲醇=10/1),得到62毫克化合物28(isomer1和isomer2的混合物),再经高效液相制备色谱分离(OD柱,流动相:60%甲醇,40%乙腈),得到17.2毫克化合物28-P1(保留时间3min)和12.2毫克化合物28-P2(保留时间2.8min)。
化合物28-P1:MS(ESI)M/Z:894.2[M+H]+
1H NMR(400MHz,DMSO-d6)δ11.12(s,1H),9.48(s,1H),9.36(s,1H),9.01(s,1H),8.81-8.73(m,3H),8.47(s,1H),7.87(d,J=2.4Hz,1H),7.86-7.81(m,2H),7.60(s,1H),6.94(s,1H),5.39(q,J=6.8Hz,1H),5.12(dd,J=13.2,5.2Hz,1H),4.64(t,J=5.2Hz,2H),3.84-3.77(m,1H),3.62-3.61(m,1H),3.47-3.30(m,3H),3.27(s,3H),3.11-3.01(m,1H),2.94-2.84(m,1H),2.68-2.57(m,4H),2.16-1.70(m,5H),1.59(d,J=6.8Hz,3H),1.50-1.29(m,5H),1.15-1.05(m,2H).
化合物28-P2:MS(ESI)M/Z:894.2[M+H]+
1H NMR(400MHz,DMSO-d6)δ11.11(s,1H),9.66(br,1H),9.37(s,1H),9.05(s,1H),8.81(br,2H),8.74(s,1H),8.48(d,J=2.4Hz,1H),7.86(d,J=2.4Hz,1H),7.82(d,J=10.8Hz,1H),7.60(d,J=6.8Hz,1H),6.94(s,1H),5.38(q,J=6.4Hz,1H),5.12(dd,J=12.8,5.2Hz,1H),4.64(t,J=5.0Hz,2H),3.87-3.65(m,1H),3.36-3.28(m,4H),3.26(s,3H),3.18-3.12(m,2H),2.94-2.84(m,1H),2.67-2.51(m,1H),2.16-1.86(m,5H),1.84-1.60(m,8H),1.59(d,J=6.8Hz,3H),1.53-1.41(m,2H).
实施例29:
1-(5-氯-2-(2-((1-(1-(2-(2,6-二氧哌啶-3-基)-6-氟-1,3-二氧异喹啉-5-基)氮杂环丁烷-3-基)哌啶-4-基)氨基)乙氧基)吡啶-3-(2-氯-7-((S)-1-甲氧基乙基)吡唑[1,5-a]嘧啶-6-基)脲
反应流程:
实施例流程:
步骤A:将1-[1-(二苯基甲基)氮杂环丁烷-3-基]吡咯烷-3-醇1-(二苯基甲基)氮杂环丁烷-3-基甲烷磺酸盐(3.1克,9.8毫摩尔)溶解于乙腈(35毫升)中。在上述溶液中加入1,4-二氧杂-8-氮杂螺环[4.5]癸烷(1.7克,12毫摩尔)和三乙胺(1.2克,12毫摩尔),所得的溶液加热到90度过夜。LCMS监测显示原料消失后,通过蒸发除去溶剂,并将残余物溶解在乙酸乙酯(100毫升)中,用无水硫酸钠干燥,过滤,然后减压浓缩的粗品,粗品经过柱层析纯化(展开剂:乙酸乙酯:石油醚=1:1)收集目标馏分获得3.1克化合物29-1。
MS(ESI)M/Z:365.4[M+H]+
步骤B:将化合物29-1(2.5克,6.8毫摩尔)在氮气下溶解于干燥的二氯甲烷(100毫升)中,并在零度下向所得溶液中添加1-氯甲酸氯乙酯(2.3毫升,21毫摩尔)。将混合物搅拌1.5h,然后添加甲醇。将溶液加热至回流 20分钟,然后通过蒸发除去溶剂。残渣用丙酮溶解,过滤得到的沉淀由异丙醇重结晶得到1.2克化合物29-2。
MS(ESI)M/Z:199.3[M+H]+
步骤C:在氮气保护的条件下,将化合物29-2(0.5克,2.5毫摩尔)溶于N-甲基吡咯烷酮(15毫升)中。加入化合物28-5(722毫克,2.5毫摩尔)和N,N-二异丙基乙胺(980毫克,7.5毫摩尔)。该体系在140摄氏度下搅拌2小时。LCMS监测显示原料消失后,将反应液过滤,滤液减压浓缩,所得混合物用薄层层析分离得到520毫克化合物29-3。
MS(ESI)M/Z:473[M+H]+
步骤D:将化合物29-3(520毫克,1.1毫摩尔)溶于四氢呋喃(5毫升),水(5毫升)和盐酸溶液(5毫升,4M溶于1,4-二氧六环中)中,将该反应体系加热到50度并搅拌三个小时。LCMS监测显示大部分原料消失后,将反应液调节至弱碱性并用反相纯化收集目标组分并冻干得到150毫克化合物29-4。
MS(ESI)M/Z:429.1[M+H]+
步骤E:将脱盐的中间体INT-2(200毫克,0.4毫摩尔)和化合物29-4(200毫克,0.4毫摩尔)溶于1,2-二氯乙烷(6毫升)和甲醇(1毫升)中,向上述溶液中加入醋酸(0.15毫升)和钛酸四异丙酯(0.3毫升),然后在室温下搅拌0.5小时,再向反应液中加入三乙酰氧基硼氢化钠(180.4毫克,0.9毫摩尔)。在室温下搅拌2小时,然后倒入冰中过滤,滤液用二氯甲烷升萃取,浓缩有机层得到粗品,粗品经过高效液相色谱制备,再经过制备薄层层析制得25毫克1-(5-氯-2-(2-((1-(1-(2-(2,6-二氧哌啶-3-基)-6-氟-1,3-二氧异喹啉-5-基)氮杂环丁烷-3-基)哌啶-4-基)氨基)乙氧基)吡啶-3-(2-氯-7-((S)-1-甲氧基乙基)吡唑[1,5-a]嘧啶-6-基)脲(化合物29)。
MS(ESI)M/Z:852.2[M+H]+
1H NMR(400MHz,DMSO-d6)δ11.09(s,1H),9.29(s,2H),8.71(s,1H),8.42(d,J=2.2Hz,1H),7.81(d,J=2.1Hz,1H),7.59(d,J=11.2Hz,1H),6.94–6.83(m,2H),5.36–5.21(m,1H),5.06(dd,J=12.6,5.5Hz,1H),4.47(s,2H),4.23–4.18(m,2H),3.93(s,2H),3.22(s,4H),3.07(s,2H),2.91–2.56(m,5H),2.01–1.80(m,6H),1.59(d,J=6.6Hz,4H),1.36(s,2H).
实施例30:
N-(2-((5-氯-3-(3-(2-氯-7-((S)-1-甲氧基乙基)吡唑[1,5-a]嘧啶-6-基)脲)吡啶-2-基)氧基)乙基)-1-(1-(2-(2-(2,6-二氧哌啶-3-基)-6-氟-1,3-二氧异吲哚啉-5-基)氮杂环丁烯-3-基)哌啶-4-甲酰胺
反应流程:
实施例流程:
步骤A:将哌啶-4-羧酸叔丁酯(10.0克,54.0毫摩尔)溶于甲醇(150毫升),加入3-氧代氮杂苯胺-1-羧酸苄酯(11.1克,54.0毫摩尔)和氰基硼氢化钠(6.8克,109.0毫摩尔)。该反应体系在室温下搅拌5小时。LCMS监测显示原料消失后,反应液过滤,减压浓缩,所得混合物用硅胶柱层析纯化(洗脱剂:石油醚/乙酸乙酯=4/1)得到4.0克化合物30-1。
MS(ESI)M/Z:375.2[M+H]+
步骤B:将化合物30-1(1.0克,2.7毫摩尔)溶于甲醇(15毫升)中。氮气保护下,加入氢氧化钯/碳(500.0毫克),该反应体系用氢气置换,并在氢气球的环境下搅拌17小时。LCMS监测显示原料消失后,过滤,减压浓缩。得到450.0毫克化合物30-2。该化合物直接用于下一步。
MS(ESI)M/Z:241.3[M+H]+
步骤C:在氮气保护的条件下,将化合物30-2(330.0毫克,1.4毫摩尔)溶于N-甲基吡咯烷酮(15毫升)中。加入化合物28-5(403.0毫克,1.4毫摩尔)和N,N-二异丙基乙胺(5.5克,55.0毫摩尔)。该体系在140摄氏度下搅拌2小时。LCMS监测显示原料消失后,将反应液过滤,滤液减压浓缩,所得混合物用薄层层析分离得到460毫克化合物30-3。
MS(ESI)M/Z:515.3[M+H]+
步骤D:将化合物30-3(120.0毫克,0.2毫摩尔)溶于二氯甲烷(4毫升)和三氟乙酸(4毫升)中。该体系在室温搅拌4小时。LCMS监测显示原料消失后,将反应液过滤,减压浓缩。得到100毫克化合物30-4。该化合物直接用于下一步。
MS(ESI)M/Z:459.3[M+H]+
步骤E:在N,N-二甲基甲酰胺(10毫升)中,加入化合物30-4(100.0毫克,0.2毫摩尔),脱盐的中间体INT-2(97.0毫克,0.2毫摩尔),1-羟基苯并三唑(44.0毫克,0.3毫摩尔),(1-乙基-3(3-二甲基丙胺)碳二亚胺)(126.0毫克,0.7毫摩尔)和三乙胺(3.1克,30.6毫摩尔)。该反应体系在室温下搅拌17小时。LCMS监测显示原料消失后,将反应液减压浓缩。所得混合物用薄层层析纯化得到41.2毫克N-(2-((5-氯-3-(3-(2-氯-7-((S)-1-甲氧基乙基)吡唑[1,5-a]嘧啶-6-基)脲)吡啶-2-基)氧基)乙基)-1-(1-(2-(2-(2,6-二氧哌啶-3-基)-6-氟-1,3-二氧异吲哚啉-5-基)氮杂环丁烯-3-基)哌啶-4-甲酰胺(化合物30)。
MS(ESI)M/Z:882.1[M+H]+
1H NMR(400MHz,DMSO-d6)δ11.09(s,1H),9.10(s,1H),8.88(s,1H),8.76(s,1H),8.43(d,J=2.4Hz,1H),7.97(t,J=4.8Hz,1H),7.81(d,J=2.4Hz,1H),7.60(d,J=11.2Hz,1H),6.90(t,J=3.6Hz,2H),5.41-5.35(m,1H),5.09-5.04(m,1H),4.42(t,J=6.0Hz,2H),4.25-4.13(m,2H),3.97-3.91(m,2H),3.51-3.43(m,2H),3.26(s,4H),3.25-3.22(m,1H),2.92-2.73(m,3H),2.60-2.46(m,1H),2.11-2.00(m,2H),1.83-1.67(m,4H),1.61-1.54(m,5H).
实施例31:
N-(2-(2-氯-7-((S)-1-甲氧基乙基)吡唑[1,5-a]嘧啶-6-基)脲)-5-(三氟甲基)吡啶-2-基)氧基)乙基)-1-(1-(2-(2,6-二氧哌啶-3-基)-6-氟-1,3-二氧异吲哚啉-5-基)氮杂环丁烷-3-基)哌啶-4-甲酰胺
反应流程:
步骤A:在N,N-二甲基甲酰胺(5毫升)中,加入化合物31-4(80.0毫克,0.2毫摩尔),脱盐的中间体INT-3(80.0毫克,0.2毫摩尔),1-羟基苯并三唑(34.0毫克,0.3毫摩尔),(1-乙基-3(3-二甲基丙胺)碳二亚胺)(97.0毫克,0.5毫摩尔)和三乙胺(51.0毫克,0.5毫摩尔)。该反应体系在室温下搅拌17小时。LCMS监测显示原料消失后,将反应液减压浓缩。所得混合物用薄层层析纯化得到31.1毫克N-(2-(2-氯-7-((S)-1-甲氧基乙基)吡唑[1,5-a]嘧啶-6- 基)脲)-5-(三氟甲基)吡啶-2-基)氧基)乙基)-1-(1-(2-(2,6-二氧哌啶-3-基)-6-氟-1,3-二氧异吲哚啉-5-基)氮杂环丁烷-3-基)哌啶-4-甲酰胺)(化合物31)。
MS(ESI)M/Z:914.1[M+H]+
1H NMR(400MHz,DMSO-d6)δ11.09(s,1H),9.24(s,1H),8.94(s,1H),8.77(s,1H),8.67(d,J=2.4Hz,1H),8.18(d,J=1.2Hz,1H),8.00(t,J=5.2Hz,1H),7.59(d,J=11.2Hz,1H),6.91-6.89(m,2H),5.42-5.36(m,1H),5.09-5.04(m,1H),4.53(t,J=5.6Hz,2H),4.19(t,J=6.4Hz,2H),3.98-3.84(m,2H),3.58-3.46(m,2H),3.27(s,3H),3.25-3.22(m,1H),2.88-2.77(m,3H),2.61-2.52(m,2H),2.11-2.00(m,2H),1.83-1.67(m,4H),1.60-1.55(m,5H).
实施例32:
N-(2-((5-氯-3-(3-(2-氯-7-((S)-1-甲氧基乙基)吡唑[1,5-a]嘧啶-6-基)脲)吡啶-2-基)氧基)乙基)-4-(4-(2-(2-(2,6-二氧哌啶-3-基)-6-氟-1,3-二氧异吲哚啉-5-基)哌嗪-1-基)环己烷-1-甲酰胺
反应流程:
实施例流程:
步骤A:将4-氧代环己烷-1-羧酸叔丁酯(500.0毫克,2.5毫摩尔)和哌嗪-1-羧酸苄酯(555.0毫克,2.5毫摩尔)溶于甲醇(5毫升),加入乙酸(1毫升)和氰基硼氢化钠(238.0毫克,3.8毫摩尔)。该反应体系在室温下搅拌2小时。LCMS监测显示原料消失后,反应液减压浓缩,所得混合物用反相柱层析纯化得到159.0毫克化合物32-1。
MS(ESI)M/Z:403.1[M+H]+
步骤B:将化合物32-1(1.0克,2.5毫摩尔)溶于四氢呋喃(5毫升)和甲醇(0.5毫升)中。氮气保护下,加 入钯/碳(10%,100.0毫克),该反应体系用氢气置换,并在氢气球的环境下搅拌3小时。LCMS监测显示原料消失后,过滤,减压浓缩。得到750毫克化合物32-2。该化合物直接用于下一步。
MS(ESI)M/Z:269.4[M+H]+
步骤C:在氮气保护的条件下,将化合物32-2(455.6毫克,1.7毫摩尔)溶于N-甲基吡咯烷酮(5毫升)中。加入化合物28-5(500.0毫克,1.7毫摩尔)和N,N-二异丙基乙胺(657.5毫克,5.1毫摩尔)。该体系在140摄氏度下搅拌2小时。LCMS监测显示原料消失后,反应液加入水中(15毫升)淬灭,乙酸乙酯(30毫升)萃取,有机相用饱和食盐水(20毫升)洗涤,无水硫酸镁干燥,过滤,滤液减压浓缩,所得混合物用硅胶柱层析分离得到323毫克化合物32-3。
MS(ESI)M/Z:543.1[M+H]+
步骤D:将化合物32-3(323.0毫克,0.6毫摩尔)溶于二氯甲烷(5毫升)和三氟乙酸(2毫升)中。该体系在室温搅拌1小时。LCMS监测显示原料消失后,过滤,减压浓缩。所得混合物通过高效液相色谱分离得到224.0毫克化合物32-4。
MS(ESI)M/Z:487.3[M+H]+
步骤E:在N,N-二甲基甲酰胺(3毫升)中,加入化合物32-4(70.0毫克,0.1毫摩尔),脱盐的中间体INT-2(57.0毫克,0.1毫摩尔),1-羟基苯并三唑(23.0毫克,0.2毫摩尔),(1-乙基-3(3-二甲基丙胺)碳二亚胺)(31.0毫克,0.2毫摩尔)和N,N-二异丙基乙胺(56.0毫克,0.4毫摩尔)。该反应体系在室温下搅拌3小时。LCMS监测显示原料消失后,反应液减压浓缩。所得混合物用高效液相制备纯化得到37毫克N-(2-((5-氯-3-(3-(2-氯-7-((S)-1-甲氧基乙基)吡唑[1,5-a]嘧啶-6-基)脲)吡啶-2-基)氧基)乙基)-4-(4-(2-(2-(2,6-二氧哌啶-3-基)-6-氟-1,3-二氧异吲哚啉-5-基)哌嗪-1-基)环己烷-1-甲酰胺(化合物32)。
MS(ESI)M/Z:909.2[M+H]+
1H NMR(400MHz,DMSO-d6)δ11.11(s,1H),9.14(s,1H),8.97(s,1H),8.79–8.74(m,1H),8.44-8.41(m,1H),7.98-7.94(m,1H),7.82-7.80(m,1H),7.74-7.69(m,1H),7.44-7.38(m,1H),6.93(s,1H),5.40-5.37(m,1H),5.13-5.08(m,1H),4.40(t,J=5.6Hz,2H),3.55-3.53(m,2H),3.27(s,3H),3.26-3.15(m,4H),2.89-2.84(m,1H),2.69-2.56(m,3H),2.54-2.46(m,2H),2.32-2.26(m,2H),2.08-2.01(m,2H),1.85-1.78(m,3H),1.61-1.58(m,3H),1.43-1.33(m,3H),1.24-1.17(m,2H).
实施例33:
N-(2-(2-氯-7-((S)-1-甲氧基乙基)吡唑[1,5-a]嘧啶-6-基)脲)-5-(三氟甲基)吡啶-2-基)氧基)乙基)-4-(4-(2-(2,6-二氧哌啶-3-基)-6-氟-1,3-二氧异吲哚啉-5-基)哌嗪-1-基)环己烷-1-甲酰胺
反应流程:
实施例流程:
步骤A:在N,N-二甲基甲酰胺(3毫升)中,加入化合物32-4(70.0毫克,0.1毫摩尔),脱盐的中间体INT-3(61.0毫克,0.1毫摩尔),1-羟基苯并三唑(23.0毫克,0.2毫摩尔),(1-乙基-3(3-二甲基丙胺)碳二亚胺)(31.0毫克,0.2毫摩尔)和N,N-二异丙基乙胺(56.0毫克,0.4毫摩尔)。该反应体系在室温下搅拌3小时。LCMS监测显示原料消失后,反应液加水(50毫升)淬灭,乙酸乙酯(50毫升×3)萃取。合并有机相,用饱和食盐水(50毫升×3)洗涤,无水硫酸钠干燥,过滤,减压浓缩。所得混合物用高效液相制备纯化(流动相:60%乙腈,40%蒸馏水,蒸馏水含0.001%甲酸)得到20毫克N-(2-(2-氯-7-((S)-1-甲氧基乙基)吡唑[1,5-a]嘧啶-6-基)脲)-5-(三氟甲基)吡啶-2-基)氧基)乙基)-4-(4-(2-(2,6-二氧哌啶-3-基)-6-氟-1,3-二氧异吲哚啉-5-基)哌嗪-1-基)环己烷-1-甲酰胺(化合物33)。
MS(ESI)M/Z:942.2[M+H]+
1H NMR(400MHz,DMSO-d6)δ11.13(s,1H),9.86(br,1H),9.62(br,1H)9.39–9.29(m,1H),9.15-9.12(m,1H),8.76-8.69(m,2H),8.20-8.17(m,2H),7.83-7.77(m,1H),7.60-7.54(m,1H),6.94-6.92(m,1H),5.41-5.37(m,1H),5.15-5.10(m,1H),4.52-4.49(m,2H),3.79-3.73(m,4H),3.26-3.13(m,6H),2.93-2.84(m,1H),2.63-2.54(m,2H),2.14-2.03(m,4H),1.89-1.63(m,3H),1.61-1.54(m,4H),1.51-1.37(m,4H).
实施例34:
N-(2-(2-氯-7-((S)-1-甲氧基乙基)吡唑[1,5-a]嘧啶-6-基)脲)-5-(三氟甲基)吡啶-2-基)氧基)乙基)-1-(1-(2-(2,6-二氧哌啶-3-基)-6-氟-1,3-二氧异吲哚啉-5-基)氮杂环丁烷-3-基)-N-甲基哌啶-4-甲酰胺
反应流程:
实施例流程:
化合物34-1的合成参考INT-2的合成;
步骤A:在N,N-二甲基甲酰胺(3毫升)中,加入化合物31-4(105.0毫克,0.2毫摩尔),化合物34-1(116.0毫克,0.2毫摩尔),2-(7-氮杂苯并三氮唑)-N,N,N',N'-四甲基脲六氟磷酸酯(135.8毫克,0.4毫摩尔),N,N-二异丙基乙胺(153.6毫克,1.2毫摩尔)。该反应体系在室温下搅拌1小时。LCMS监测显示原料消失后,加水(100毫升)淬灭,乙酸乙酯(100毫升×3)萃取。合并有机相,用饱和食盐水(100毫升×3)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩,所得混合物用高效液相色谱分离(流动相:50%乙腈,50%蒸馏水,蒸馏水中含0.01%甲酸)得到65.4毫克N-(2-(2-氯-7-((S)-1-甲氧基乙基)吡唑[1,5-a]嘧啶-6-基)脲)-5-(三氟甲基)吡啶-2-基)氧基)乙基)-1-(1-(2-(2,6-二氧哌啶-3-基)-6-氟-1,3-二氧异吲哚啉-5-基)氮杂环丁烷-3-基)-N-甲基哌啶-4-甲酰胺(化合物34)。
MS(ESI)M/Z:928.0[M+H]+
1H NMR(400MHz,DMSO-d6)δ11.10(s,1H),9.44-9.26(m,1H),8.93-8.63(m,3H),8.24–8.17(m,1H),7.63-7.53(m,1H),6.93-6.84(m,2H),5.41-5.37(m,1H),5.09-5.04(m,1H),4.79-4.77(m,1H),4.68-4.65(m,1H),4.22-4.14(m,2H),3.95-3.89(m,2H),3.81-3.70(m,2H),3.36(s,4H),3.10(s,2H),2.94-2.75(m,5H),2.60-2.51(m,3H),2.03–1.95(m,2H),1.58-1.50(m,7H).
实施例35:
1-(5-氯-2-(2,6-二氧哌啶-3-基)-3-甲基-2-氧代-2,3-二氢-1H-苯并[d]咪唑-4-基)丙-2-炔-1-基)氨基)乙氧基)吡啶-3-(2-氯-7-(S)-1-甲氧基乙基)吡唑[1,5-a]嘧啶-6-基)尿素
反应流程:
实施例流程:
步骤A:将碘化亚铜(12毫克,0.06毫摩尔),三乙胺(120毫克,1.20毫摩尔),2-丙炔-1-醇(68毫克,1.20毫摩尔)和1,1'-双二苯基膦二茂铁二氯化钯(44毫克,0.06毫摩尔)加入到化合物26-1(200毫克,0.60毫摩尔)的N,N-二甲基甲酰胺(5毫升)溶液中。氮气保护下,在80摄氏度下搅拌16小时后。LCMS监测显示原料消失后,加水(40毫升),并用乙酸乙酯(20毫升×2)萃取,并饱和食盐水洗涤,用无水硫酸钠干燥,过滤,浓缩。所得粗产物经硅胶柱层析纯化得到110毫克化合物35-1。
MS(ESI)M/Z:314.0[M+H]+
步骤B:将化合物35-1(90毫克,0.3毫摩尔)溶于二甲基亚砜(1毫升)中,加入2-碘酰苯甲酸(530毫克,1.9毫摩尔),室温下反应过夜。LCMS监测显示原料消失后,反应混合物用水稀释,水相用乙酸乙酯萃取(20毫升×2)。合并有机相,无水硫酸钠干燥,浓缩。所得粗产物经硅胶柱层析分离得到60毫克化合物35-2。
MS(ESI)M/Z:312.0[M+H]+
步骤C:将化合物35-2(60毫克,0.2毫摩尔),中间体INT-2(92毫克,0.2毫摩尔),三乙胺(19毫克,0.2毫摩尔)溶与二氯甲烷(10毫升)中,所得的溶液在室温下搅拌10分钟,然后加入乙酸(0.5毫升)和三乙酰氧基硼氢化钠(110毫克,0.57毫摩尔)。室温搅拌过夜。LCMS监测显示原料消失后,加入饱和碳酸氢钠水溶液(20毫升),二氯甲烷萃取(10毫升×2)。合并有机相,无水硫酸钠干燥,浓缩。所得粗产物用反相制备(甲酸体系)得4.3毫克1-(5-氯-2-(2,6-二氧哌啶-3-基)-3-甲基-2-氧代-2,3-二氢-1H-苯并[d]咪唑-4-基)丙-2-炔-1-基)氨基)乙氧基)吡啶-3-(2-氯-7-(S)-1-甲氧基乙基)吡唑[1,5-a]嘧啶-6-基)尿素(化合物35)。
MS(ESI)M/Z:735.3[M+H]+
1H NMR(400MHz,DMSO-d6)δ11.11(s,1H),9.21(s,1H),8.99(s,1H),8.74(s,1H),8.41(d,J=2.4Hz,1H),7.80(d,J=2.4Hz,1H),7.12(d,J=7.2Hz,1H),7.04-6.96(m,2H),6.92(s,1H),5.40-5.34(m,2H),4.53(t,J=5.2Hz,2H),3.76(s,2H),3.62(s,3H),3.23(s,3H),3.12(t,J=4.8Hz,2H),2.90-2.84(m,1H),2.70-2.60(m,2H),2.50-1.99(m,2H),1.56(d,J=6.4Hz,3H).
实施例36:
N-(2-(2-氯-7-((S)-1-甲氧基乙基)吡唑[1,5-a]嘧啶-6-基)脲)-5-(三氟甲基)吡啶-2-基)氧基)乙基)-2-(1-(2-(2,6-二氧哌啶-3-基)-6-氟-1,3-二氧异吲哚啉-5-基)哌啶-4-基)乙酰胺
反应流程:
实施例流程:
步骤A:将化合物28-5(500.0毫克,1.7毫摩尔)和2-(哌啶-4-基)乙酸叔丁酯(500.0毫克,2.5毫摩尔)溶于N-甲基吡咯烷酮(5毫升),加入N,N-二异丙基乙胺(668.0毫克,5.2毫摩尔)。该反应体系在140摄氏度下搅拌1小时。LCMS监测显示原料消失后,将反应液降至室温,加入水(50毫升)淬灭,乙酸乙酯(80毫升)萃取,有机相用饱和食盐水(80毫升)洗涤,无水硫酸镁干燥,过滤,滤液减压浓缩,所得混合物用高效液相制备纯化(流动相:30%乙腈,70%蒸馏水,蒸馏水含0.01%甲酸)得到589.0毫克的化合物36-1。
MS(ESI)M/Z:474.3[M+H]+
步骤B:将化合物36-1(300.0毫克,0.6毫摩尔)溶于二氯甲烷(10毫升)中,加入三氟乙酸(5毫升),该反应体系在室温的环境下搅拌2小时。LCMS监测显示原料消失后,减压浓缩。所得混合物用高效液相制备纯化(流动相:64%乙腈,36%蒸馏水,蒸馏水含0.01%甲酸)得到195.0毫克的化合物36-2。
MS(ESI)M/Z:418.1[M+H]+
步骤C:将化合物36-2(70.0毫克,0.2毫摩尔)和脱盐的中间体INT-3(79.5毫克,0.2毫摩尔)溶于N,N-二甲 基甲酰胺(5毫升)中。加入2-(7氮杂苯并三氮唑)-N,N,N’,N’-四甲基脲六氟磷酸酯(67.毫克,0.2毫摩尔)和N,N-二异丙基乙胺(64.0毫克,0.5毫摩尔)。该体系在室温下搅拌2小时。
LCMS监测显示原料消失后,反应液加入水(15毫升)淬灭,乙酸乙酯(30毫升)萃取,有机相用饱和食盐水(20毫升)洗涤,无水硫酸镁干燥,过滤,滤液减压浓缩。所得混合物用高效液相制备纯化(流动相:70%乙腈,30%蒸馏水,蒸馏水含0.01%甲酸)得到67.0毫克N-(2-(2-氯-7-((S)-1-甲氧基乙基)吡唑[1,5-a]嘧啶-6-基)脲)-5-(三氟甲基)吡啶-2-基)氧基)乙基)-2-(1-(2-(2,6-二氧哌啶-3-基)-6-氟-1,3-二氧异吲哚啉-5-基)哌啶-4-基)乙酰胺(化合物36)。
MS(ESI)M/Z:873.2[M+H]+
1H NMR(400MHz,DMSO-d6)δ11.12(s,1H),9.29(s,1H),8.98(s,1H),8.73(s,1H),8.68(d,J=1.6Hz,1H),8.19(d,J=0.4Hz,1H),8.13(t,J=4.8Hz,1H),7.61(d,J=9.2Hz,1H),7.37(d,J=6Hz,1H),6.90(s,1H),5.40-5.36(m,1H),5.11-5.07(m,1H),4.55(t,J=4.4Hz,2H),3.59–3.50(m,4H),3.26(s,3H),2.95-2.78(m,3H),2.61-2.51(m,2H),2.09-2.02(m,3H),1.89-1.84(m,1H),1.73(d,J=9.6Hz,2H),1.58(d,J=5.6Hz,3H),1.32-1.25(m,2H).
实施例37:
1-(2-氯-7-((S)-1-甲氧基乙基)吡唑[1,5-a]嘧啶-6-基)-3-(2-(2-(2,6-二氧哌啶-3-基)-6-氟-1,3-二氧异吲哚-5-基)哌啶-4-基)乙基)氨基)乙氧基)-5-(三氟甲基)吡啶-3-基)尿素
反应流程:
实施例流程:
化合物37-1的制备参考实施例35。
步骤A:将化合物37-1(50.0毫克,0.1毫摩尔),脱盐的中间体INT-3(60.0毫克,0.1毫摩尔)溶于甲醇(4毫升)中。加入醋酸(0.01毫升)。该体系在室温搅拌30分钟。将三乙酰氧基硼氢化钠(20.0毫克,0.4毫摩尔)加入到上述反应液中。该反应体。系在25摄氏度反应3小时。
LCMS监测显示原料消失后,反应液用水(20毫升)淬灭,二氯甲烷(20毫升×3)萃取。合并有机相,用 水(20毫升×3)和饱和食盐水(20毫升×3)洗涤,无水硫酸镁干燥,过滤,减压浓缩。所得混合物用反相柱层析(流动相:30%乙腈,70%蒸馏水,蒸馏水中含0.025%甲酸)纯化得到20.0毫克1-(2-氯-7-((S)-1-甲氧基乙基)吡唑[1,5-a]嘧啶-6-基)-3-(2-(2-(2,6-二氧哌啶-3-基)-6-氟-1,3-二氧异吲哚-5-基)哌啶-4-基)乙基)氨基)乙氧基)-5-(三氟甲基)吡啶-3-基)尿素(化合物37)。
MS(ESI)M/Z:859.2[M+H]+
1H NMR(400MHz,DMSO-d6)δ11.13(br,1H),10.35(br,1H),10.18(s,1H),8.73(d,J=1.2Hz,1H),8.65(s,1H),8.18(s,1H),7.69(d,J=11.2Hz,1H),7.42(d,J=6.8Hz,1H),6.93(s,1H),5.29-5.23(m,1H),5.13-5.08(m,1H),4.63-4.56(m,2H),3.59(d,J=11.6Hz,2H),3.37-3.27(m,2H),3.18(s,4H),3.04-2.91(m,2H),2.88-2.81(m,3H),2.68-2.57(m,1H),2.08-1.96(m,2H),1.79(d,J=12Hz,2H),1.65-1.59(m,6H),1.38-1.23(m,2H).
实施例38:
1-(5-氯-2-(2,6-二氧哌啶-3-基)-6-氟-1,3-二氧异喹啉-5-基)氨基)-7-氮杂螺环[3.5]壬-7-基)乙基)氨基)乙氧基)吡啶-3-基)-3-(2-氯-7-(S)-1-甲氧基乙基)吡唑[1,5-a]嘧啶-6-基)尿素
反应流程:

实施例流程:
步骤A:室温下,将化合物38-1(0.7克,2.6毫摩尔)和2-(溴甲基)-1,3-二氧戊环(0.5克,3.1毫摩尔)溶于乙腈(15毫升)中。加入碳酸钾(1.1克,8.0毫摩尔)。将该体系升至90摄氏度并在该温度下反应16小时。LCMS监测显示原料消失后,反应液降至室温,加入饱和碳酸氢钠水溶液(50毫升)淬灭,乙酸乙酯(50毫升×2)萃取。合并有机相,用饱和食盐水(50毫升×3)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩,所得混合物用硅胶柱层析纯化(洗脱剂:石油醚/乙酸乙酯=2/1)得到900.0毫克化合物38-2。
MS(ESI)M/Z:361.3[M+H]+
步骤B:室温下,将化合物38-2(900.0毫克,2.5毫摩尔)溶于甲醇(5毫升)中,氮气置换,加入钯/碳(90.0毫克,10%)。该体系用氢气置换并在氢气球的环境中室温搅拌16小时。LCMS监测显示原料消失后,过滤,滤液减压浓缩,得到500.0毫克化合物38-3。
MS(ESI)M/Z:227.1[M+H]+
步骤C:在氮气保护的条件下,将化合物38-3(500.0毫克,2.2毫摩尔)溶于N-甲基吡咯烷酮(15毫升)中。加入化合物28-5(650.0毫克,2.2毫摩尔)和N,N-二异丙基乙胺(850.0毫克,6.6毫摩尔)。该体系在120摄氏度下搅拌1小时。LCMS监测显示原料消失后,反应液降至室温,用反相柱分离(流动相:40%乙腈,60%蒸馏水,蒸馏水中含0.01%甲酸)得到500.0毫克化合物38-4。
MS(ESI)M/Z:501.2[M+H]+
步骤D:将化合物38-4(400.0毫克,0.8毫摩尔)溶于浓盐酸(20毫升)中。该体系在50摄氏度下搅拌3小时。LCMS监测显示原料消失后,反应液降至室温,加入饱和碳酸氢钠溶液(100毫升)淬灭,乙酸乙酯(100毫升)萃取,有机相用饱和食盐水(50毫升)洗涤,无水硫酸钠干燥。过滤,滤液减压浓缩,所得混合物用反相柱层析纯化(流动相:40%乙腈,60%蒸馏水,蒸馏水中含0.01%甲酸)得到150.0毫克化合物38-5。
MS(ESI)M/Z:475.2[M+18]+
步骤E:将化合物38-5(130.0毫克,0.3毫摩尔)和脱盐的中间体INT-2(150.0毫克,0.3毫摩尔)溶于四氢呋喃(8毫升)中,加入醋酸(0.25毫升)和四异丙氧基钛(243.0毫克,0.9毫摩尔)。该体系在室温搅拌1小时。将三醋酸硼氢化钠(181.0毫克,0.9毫摩尔)加入到上述反应体系中。反应液在室温搅拌5小时。LCMS监测显示原料消失后,反应液减压浓缩,所得混合物先后用反相柱纯化和薄层层析(展开剂:二氯甲烷/甲醇=15/1)纯化得到1.9毫克的1-(5-氯-2-(2,6-二氧哌啶-3-基)-6-氟-1,3-二氧异喹啉-5-基)氨基)-7-氮杂螺环[3.5]壬-7-基)乙基)氨基)乙氧基)吡啶-3-基)-3-(2-氯-7-(S)-1-甲氧基乙基)吡唑[1,5-a]嘧啶-6-基)尿素(化合物38)。
MS(ESI)M/Z:880.2[M+H]+
1H NMR(400MHz,DMSO-d6)δ11.13(br,1H),9.40-9.60(m,2H),8.76(s,1H),8.51(d,J=2Hz,1H),7.87(d,J=2Hz,1H),7.62(d,J=8.4Hz,1H),7.11-7.07(m,1H),7.06-7.01(m,1H),6.97(s,1H),5.42-5.34(m,1H),5.13-5.09(m,1H),4.58-4.53(m,2H),4.15-4.07(m,1H),3.31-3.13(m,6H),3.02-2.76(m,3H),2.70-2.61(m,1H),2.53-2.52(m,2H),2.40-2.29(m,4H),2.08-2.04(m,2H),1.81-1.72(m,2H),1.68-1.58(m,5H),1.57-1.47(m,4H).
实施例39:
N-(2-(3-(3-(2-氯-7-((S)-1-甲氧基乙基)吡唑[1,5-a]嘧啶-6-基)脲)-5-(三氟甲基)吡啶-2-基)氧基)乙基)-2-(2-(2,6-二氧哌啶-3-基)-6-氟-1,3-二氧异吲哚啉-5-基)氨基)-7-氮杂螺环[3.5]壬基)乙酰胺
反应流程:
实施例流程:
化合物39-1的制备参考实施例38。
步骤A:将化合物39-1(50.0毫克,0.1毫摩尔),脱盐的中间体INT-3(50.0毫克,0.1毫摩尔),N,N-二异丙基乙胺(43.0毫克,0.3毫摩尔)和2-(7-氮杂苯并三氮唑)-N,N,N',N'-四甲基脲六氟磷酸酯(41.8毫克,0.1毫摩尔)溶于二氯甲烷(5毫升)。该反应体系在室温下搅拌4小时。LCMS监测显示原料消失后,反应液用乙酸乙酯(20毫升)稀释,有机相用水(20毫升×3)和饱和食盐水(20毫升×3)洗涤。合并有机相,用水(10毫升×3)和饱和食盐水(10毫升×3)洗涤,无水硫酸钠干燥。过滤,减压浓缩。所得混合物用硅胶柱层析纯化(洗脱剂:二氯甲烷/甲醇=10/1)得到51.0毫克N-(2-(3-(3-(2-氯-7-((S)-1-甲氧基乙基)吡唑[1,5-a]嘧啶-6-基)脲)-5-(三氟甲基)吡啶-2-基)氧基)乙基)-2-(2-(2,6-二氧哌啶-3-基)-6-氟-1,3-二氧异吲哚啉-5-基)氨基)-7-氮杂螺环[3.5]壬基)乙酰胺(化合物39)。
MS(ESI)M/Z:928.2[M+H]+
1H NMR(400MHz,DMSO-d6)δ11.08(s,1H),9.32(s,1H),8.98(s,1H),8.76(s,1H),8.69(d,J=1.2Hz,1H),8.18(d,J=0.8Hz,1H),7.97(s,1H),7.56(d,J=8Hz,1H),7.02(d,J=3.2Hz,1H),6.93(d,J=5.6Hz,1H),6.89(s,1H),5.42-5.37(m,1H),5.08-5.03(m,1H),4.57-4.55(t,J=4Hz,2H),4.02-3.99(m,1H),3.65-3.56(m,2H),3.31(s,2H),3.27(s,3H),2.92-2.85(m,2H),2.64-2.52(m,2H),2.31-2.14(m,4H),2.02-1.96(m,2H),1.76-1.67(m,2H),1.65-1.55(m,5H),1.54-1.42(m,2H).
实施例40:
1-(5-氯-2-(3-(2-((2-(2,6-二氧哌啶-3-基)-6-氟-1,3-二氧异喹啉-5-基)氨基)-7-氮杂螺环[3.5]壬-7-基)丙氧基)吡啶-3-(2-氯-7-((S)-1-甲氧基乙基)吡唑[1,5-a]嘧啶-6-基)尿素
反应流程:
实施例流程:
化合物40-1的制备参考中间体INT-2的制备流程。
步骤A:将化合物40-1(400.0毫克,0.7毫摩尔)溶于四氢呋喃(5毫升)中,加入氟化氢的三乙胺溶液(566.0毫克,3.5毫摩尔)。该体系在室温搅拌3小时。LCMS监测显示原料消失后,零摄氏度下,滴加饱和碳酸氢钠溶液,调至反应液的酸碱度为中性,乙酸乙酯(20毫升×3)萃取,合并有机相,用水(20毫升×3)和饱和食盐水(20毫升×3)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩,所得混合物用硅胶柱层析纯化(洗脱剂:石油醚/乙酸乙酯=1/1)得到350.0毫克化合物40-2。
MS(ESI)M/Z:455.1[M+H+]。
步骤B:将化合物40-2(300.0毫克,0.7毫摩尔)溶于二甲基亚砜(10毫升),加入2-碘酰苯甲酸(369.0毫克,1.3毫摩尔)。该反应体系在28摄氏度下搅拌4小时。LCMS监测显示原料消失后,反应液中加乙酸乙酯(20毫升)稀释,依次用饱和硫代硫酸钠溶液(20毫升×3),碳酸氢钠溶液(20毫升×3),水(20毫升×3)和饱和食盐水(20毫升×3)洗涤,无水硫酸钠干燥。过滤,滤液减压浓缩,得到260.0毫克化合物40-3。
MS(ESI)M/Z:452.9[M+H]+
步骤C:在氮气保护的条件下,将化合物40-4(500.0毫克,2.0毫摩尔)溶于N-甲基吡咯烷酮(5毫升)中。加入化合物28-5(573.8毫克,2.0毫摩尔)和N,N-二异丙基乙胺(1毫升,6.0毫摩尔)。该体系在130摄氏度下搅拌2小时。LCMS监测显示原料消失后,反应液直接用反相柱分离(流动相:50%乙腈,50%蒸馏水,蒸馏水中含0.01%甲酸)得到580.0毫克化合物40-5。
MS(ESI)M/Z:537.3[M+Na]+
步骤D:将化合物40-5(480.0毫克,0.9毫摩尔)悬浊于盐酸的二氧六环溶液(4摩尔,30毫升)中。该体系在室温搅拌2小时。LCMS监测显示原料消失后,减压浓缩得到410.0毫克化合物40-6的盐酸盐。
步骤E:将化合物40-6的盐酸盐(235.0毫克,0.5毫摩尔)和化合物40-3(260.0毫克,0.6毫摩尔)溶于甲醇(30毫升)中,加入醋酸(62.5毫克,1.0毫摩尔)。该体系在室温搅拌1小时。氰基硼氢化钠(98.0毫克,1.6毫摩尔)加入到上述反应体系中。反应液在室温搅拌3小时。LCMS监测显示原料消失后,反应液中加入水(20毫升)淬灭,乙酸乙酯(20毫升×3)萃取。合并有机相,用饱和食盐水(20毫升×3)洗涤,无水硫酸钠干燥。过滤,滤液减压浓缩,所得混合物先后用高效液相色谱制备和薄层层析(展开剂:二氯甲烷/甲醇=15/1)纯化得到40.0毫克的1-(5-氯-2-(3-(2-((2-(2,6-二氧哌啶-3-基)-6-氟-1,3-二氧异喹啉-5-基)氨基)-7-氮杂螺环[3.5]壬-7-基)丙氧基)吡啶-3-(2-氯-7-((S)-1-甲氧基乙基)吡唑[1,5-a]嘧啶-6-基)尿素(化合物40)。
MS(ESI)M/Z:853.2[M+H]+
1H NMR(400MHz,DMSO-d6)δ11.08(s,1H),9.10(s,1H),8.98(s,1H),8.74(s,1H),8.41(d,J=2Hz,1H),7.81(d,J=1.6Hz,1H),7.57(d,J=8Hz,1H),7.05-7.04(m,1H),7.00(d,J=5.6Hz,1H),6.92(s,1H),5.39-5.34(m,1H),5.07-5.03(m,1H),4.43(t,J=4.8Hz,2H),4.13-4.08(m,1H),3.24(s,3H),2.91-2.84(m,1H),2.64-2.54(m,3H),2.48-2.36(m,2H),2.40-2.22(m,4H),2.02-1.94(m,4H),1.80-1.76(t,J=7.2Hz,2H),1.70-1.64(m,2H),1.59(d,J=5.6Hz,3H),1.55-1.51(m,2H).
实施例41:
1-(2-氯-7-((S)-1-甲氧基乙基)吡唑[1,5-a]嘧啶-6-基)-3-(2-(4-((4-(2-(2,6-二氧哌啶-3-基)-1,3-二氧异喹啉-5-基)哌嗪-1-基)甲基)哌啶-1-基)乙氧基)-5-(三氟甲基)吡啶-3-基)尿素
反应流程:
实施例流程:
化合物41-6的制备参考实施例40。
步骤A:将哌嗪-1-羧酸叔丁酯(1.9克,10.0毫摩尔)溶于N-甲基吡咯烷酮(30毫升),加入N,N-二异丙基乙胺(4.9毫升,28.1毫摩尔)和化合物41-1(2.8克,10.0毫摩尔)。该反应体系在140摄氏度下搅拌1小时。LCMS监测显示原料消失后,反应液降至室温,加水(50毫升)淬灭,乙酸乙酯(50毫升×3)萃取。合并有机相,用水(50毫升×3)和饱和食盐水(50毫升×3)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩,所的混合物用硅胶柱层析纯化(洗脱剂:100%乙酸乙酯)得到3.5克化合物41-2。
步骤B:将化合物41-2(3.5克,7.9毫摩尔)溶于乙酸乙酯(15毫升)中,加入盐酸的1,4-二氧六环溶液(4摩尔,15毫升)。该体系在室温搅拌3小时。LCMS监测显示原料消失后,反应液减压浓缩得到2.6克化合物41-3的盐酸盐。
MS(ESI)M/Z:343.3[M+H]+
步骤C:室温下,将化合物41-3的盐酸盐(350.0毫克,0.9毫摩尔)和4-甲酰哌啶-1-羧酸叔丁酯(218.0毫克,1.0毫摩尔)溶于N,N-二甲基甲酰胺(5毫升)和四氢呋喃(5毫升)中,加入醋酸(306.0毫克,5.1毫摩尔)。该体系在室温搅拌0.5小时。三醋酸硼氢化钠(649.0毫克,3.1毫摩尔)加入到上述反应体系中。反应液在室温搅拌3小时。LCMS监测显示原料消失后,反应液中加入饱和碳酸氢钠水溶液(50毫升)淬灭,乙酸乙酯(50毫升×2)萃取。合并有机相,用水(50毫升×3)和饱和食盐水(50毫升×3)洗涤,无水硫酸镁干燥。过滤,滤液减压浓缩,所得混合物先后用硅胶柱层析纯化(洗脱剂:二氯甲烷/甲醇=15/1)得到化合物450.0毫克41-4。
MS(ESI)M/Z:562.3[M+Na]+
步骤D:将化合物41-4(450.0毫克,0.8毫摩尔)溶于二氯甲烷(10毫升)。加入盐酸的二氧六环溶液(4摩尔,3毫升)中。该体系在室温搅拌2小时。LCMS监测显示原料消失后,过滤,滤饼用二氯甲烷洗涤,干燥,得到300.0毫克化合物41-5的盐酸盐。
MS(ESI)M/Z:440.3[M+H]+
步骤E:室温下,将化合物41-5的盐酸盐(50.0毫克,0.1毫摩尔)和化合物41-6(54.0毫克,0.1毫摩尔)溶于甲醇(2毫升)中,加入醋酸(0.1毫升)和四异丙氧基钛(0.2毫升)。该体系在室温搅拌1小时。2-甲基吡啶硼烷络合物(37.0毫克,0.3毫摩尔)加入到上述反应体系中。反应液在室温搅拌3小时。LCMS监测显示原料消失后,反应液减压浓缩,所得混合物先后用反相柱层析和薄层色谱层析纯化(展开剂:二氯甲烷/甲醇)得到6.2毫克的1-(2-氯-7-((S)-1-甲氧基乙基)吡唑[1,5-a]嘧啶-6-基)-3-(2-(4-((4-(2-(2,6-二氧哌啶-3-基)-1,3-二氧异喹啉-5-基)哌嗪-1-基)甲基)哌啶-1-基)乙氧基)-5-(三氟甲基)吡啶-3-基)尿素(化合物41)。
MS(ESI)M/Z:896.2[M+H]+
1H NMR(400MHz,DMSO-d6)δ11.09(s,1H),9.30(s,1H),9.00(s,1H),8.76(s,1H),8.68(d,J=2.3Hz,1H),8.18(d,J=2.2Hz,1H),7.67(d,J=8.5Hz,1H),7.32(d,J=2.3Hz,1H),7.23(dd,J=8.7,2.3Hz,1H),6.92(s,1H),5.38(q,J=6.6Hz,1H),5.07(dd,J=12.8,5.4Hz,1H),4.64(t,J=6.2Hz,2H),3.42–3.38(m,4H),3.26(s,3H),2.98–2.76(m,5H),2.62–2.53(m,2H),2.47–2.42(m,4H),2.13(d,J=7.1Hz,2H),2.05–1.91(m,3H),1.71-1.64(m,2H),1.58(d,J=6.7Hz,3H),1.52(s,1H),1.16-1.03(m,2H).
实施例42:
1-(5-氯-2-(2-((4-(4-(2-(2,6-二氧哌啶-3-基)-6-氟-1,3-二氧异吲哚-5-基)哌嗪-1-基)环己基)氨基)乙氧基)吡啶-3-基)-3-(2-氯-7-((S)-1-甲氧基乙基)吡唑[1,5-a]嘧啶-6-基)尿素
反应流程:
实施例流程:
步骤A:将1,4-二氧杂-8-氮杂螺[4.5]癸烷(5.0克,32.1毫摩尔),哌嗪-1-羧酸苄酯(7.1克,32.2毫摩尔)溶于甲醇(50毫升)中,加入乙酸(1滴)。该反应体系在室温下搅拌0.5小时。将氰基硼氢化钠(3.0克,48.0毫摩尔)加入上述反应液中。该反应液在室温下搅拌2小时。LCMS监测显示原料消失后,反应液加水淬灭(100毫升),二氯甲烷(100毫升×3)萃取。合并有机相,用水(200毫升)和饱和食盐水(200毫升)洗涤,无水硫酸镁干燥,过滤,滤液减压浓缩。所得混合物通过硅胶柱层析(乙酸乙酯:石油醚=1:2)纯化得到3.0克化合物42-1。
MS(ESI)M/Z:361.3[M+H]+
步骤B:将化合物42-1(3.0克,8.3毫摩尔)溶于干燥的四氢呋喃(30毫升),氮气置换,加入钯碳(0.3克,10%)中。该反应体系在氢气球和室温下搅拌6小时。LCMS监测显示原料消失后,过滤,滤液减压浓缩,得到1.7克化合物42-2。
MS(ESI)M/Z:227.4[M+H]+
步骤C:将化合物42-2(1.7克,7.6毫摩尔))溶于N-甲基吡咯烷酮(25毫升)。加入化合物28-5(2.3克,7.6毫摩尔)和N,N-二异丙基乙胺(3.0克,23.1毫摩尔)。该反应体系在120摄氏度下搅拌1小时。LCMS监测显示原料消失后,反应液加水淬灭(100毫升),乙酸乙酯(100毫升×3)萃取。合并有机相,用水(200毫升)和饱和食盐水(200毫升)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩。所得混合物通过硅胶柱层析(乙酸乙酯:石油醚=2:1)纯化得到3.8克化合物42-3。
MS(ESI)M/Z:501.3[M+H]+
步骤D:将化合物42-3(800.0毫克,1.6毫摩尔)溶于于盐酸(2.4毫升)和乙酸乙酯(12毫升)中。该反应体系在室温下搅拌1小时。LCMS监测显示原料消失后,反应液加冰水淬灭(50毫升),乙酸乙酯(50毫升×3)萃取。合并有机相,用水(50毫升)和饱和食盐水(50毫升)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩,得到222.0毫克化合物42-4。
MS(ESI)M/Z:457.3[M+H]+
步骤E:将化合物42-4(150.0毫克,0.3毫摩尔),中间体INT-2(144.6毫克,0.3毫摩尔)和钛酸四异丙酯(0.3毫升)溶于1,2-二氯乙烷(10毫升)中。加入醋酸(0.3毫升)和1-硼烷基-2-甲基-1-吡啶(70.3毫克,0.7毫摩尔)。该体系在室温搅拌1小时。LCMS监测显示原料消失后,反应液用水(50毫升)淬灭,二氯甲烷(50毫升×3)萃取,合并有机相,有机相用饱和食盐水(50毫升)洗涤,无水硫酸钠干燥,过滤,减压浓缩。所得混合物用反相纯 化(45%乙腈:55%水:0.025%甲酸)得到7.3毫克的化合物42-P1(保留时间2.12min)和11.9毫克化合物42-P2(保留时间2.26min)。
化合物42-P1:
MS(ESI)M/Z:880.2[M+H]+
1H NMR(400MHz,DMSO-d6)δ11.10(br,1H),9.33(br,1H),8.76-8.73(m,1H),8.44-8.41(m,1H),8.07(s,1H),7.82(s,1H),7.71(d,J=8.8Hz,1H),7.42(d,J=5.6Hz,1H),6.91(s,1H),5.38-5.29(m,1H),5.14-5.08(m,1H),4.68-4.61(m,1H),4.50-4.42(m,2H),3.27-3.18(m,8H),2.94-2.85(m,1H),2.75-2.60(m,6H),2.40-2.20(m,2H),2.09-1.95(m,6H),1.85-1.75(m,2H),1.59(d,J=5.2Hz,3H),1.54-1.41(m,2H).
化合物42-P2:
MS(ESI)M/Z:880.2[M+H]+
1H NMR(400MHz,DMSO-d6)δ11.12(br,1H),9.96(br,1H),9.71(s,1H),8.62(d,J=4Hz,1H),8.43(d,J=1.6Hz,1H),7.82(d,J=1.6Hz,1H),7.76(d,J=4.8Hz,1H),7.44(d,J=11.6Hz,1H),6.91(s,1H),5.28-5.25(m,1H),5.13-5.08(m,1H),4.57-4.51(t,J=10.8Hz,2H),3.46-3.38(m,7H),3.18(s,3H),2.91-2.81(m,5H),2.70-2.54(m,4H),2.15-1.98(m,5H),1.90-1.78(m,2H),1.63(d,J=6.8Hz,3H),1.53-1.45(m,2H).
实施例43:
1-(2-氯-7-((S)-1-甲氧基乙基)吡唑[1,5-a]嘧啶-6-基)-3-(2-(2-((4-((4-(2-(2,6-二氧哌啶-3-基)-6-氟-1,3-二氧异喹啉-5-基)哌嗪-1-基)甲基)环己基)氨基)乙氧基)-5-(三氟甲基)吡啶-3-基)尿素
反应流程:
实施例流程:
化合物43-1的制备参考实施例42。
步骤A:将脱盐的中间体INT-3(200.0毫克,0.4毫摩尔)和化合物43-1(201.0毫克,0.4毫摩尔)溶于1,2-二氯乙烷(10毫升)和甲醇(1.5毫升)中。加入醋酸(0.1毫升)和四异丙氧基钛(0.4毫升,1.4毫摩尔)。该反应体系在25摄氏度反应0.5小时。将三醋酸硼氢化钠(180.4毫克,0.9毫摩尔)加入上述反应体系中,该反应液在25摄氏度反应2小时。LCMS监测有21%的产物生成,反应液用水(15毫升)淬灭,二氯甲烷(20毫升)萃取,有机相用饱和食盐水(15毫升)洗涤,无水硫酸钠干燥,过滤,减压浓缩。所得混合物用反相柱层析纯化得到120.0毫克的1-(2-氯-7-((S)-1-甲氧基乙基)吡唑[1,5-a]嘧啶-6-基)-3-(2-(2-((4-((4-(2-(2,6-二氧哌啶-3-基)-6-氟-1,3-二氧异喹啉-5-基)哌嗪-1-基)甲基)环己基)氨基)乙氧基)-5-(三氟甲基)吡啶-3-基)尿素(化合物43)。
MS(ESI)M/Z:928.3[M+H]+
1H NMR(400MHz,DMSO-d6)δ11.12(br,1H),9.32(br,1H),8.96(s,1H),8.77(d,J=4.8Hz,1H),8.68-8.65(m,1H),8.18(s,1H),7.74-7.70(m,1H),7.45-7.42(m,1H),6.92(d,J=2Hz,1H),5.41-5.37(m,1H),5.13-5.09(m,1H),4.61-4.53(m,2H),3.29-3.24(m,3H),3.21-3.20(m,4H),3.15-2.71(m,4H),2.64-2.53(m,2H),2.49-2.45(m,5H),2.17-2.10(m,2H),2.05-2.02(m,1H),1.93-1.91(m,1H),1.78-1.76(m,1H),1.62-1.58(m,4H),1.51-1.29(m,6H).
实施例44:
1-(5-氯-2-(2-((1-((1-(2-(2,6-二氧哌啶-3-基)-6-氟-1,3-二氧异喹啉-5-基)哌啶-4-基)甲基)哌啶-4-基)氨基)乙氧基)吡啶 -3-(2-氯-7-((S)-1-甲氧基乙基)吡唑[1,5-a]嘧啶-6-基)尿素
反应流程:
实施例流程:
化合物44-1的制备参考实施例42。
步骤A:将化合物44-1(100.0毫克,0.2毫摩尔),脱盐的中间体INT-2(92.0毫克,0.2毫摩尔)和钛酸四异丙酯(0.4毫升)溶于1,2-二氯乙烷(5毫升)中。加入醋酸(0.02毫升)。该体系在室温搅拌30分钟。将醋酸硼氢化钠(88.6毫克,2.4毫摩尔)加入到上述反应液中。该反应体系在25摄氏度反应2小时。LCMS监测显示原料消失后,反应液用水(10毫升)淬灭,乙酸乙酯(15毫升)萃取,有机相用饱和食盐水(15毫升)洗涤,无水硫酸钠干燥,过滤,减压浓缩。所得混合物用硅胶柱层析和反相柱层析纯化得到31.0毫克的1-(5-氯-2-(2-((1-((1-(2-(2,6-二氧哌啶-3-基)-6-氟-1,3-二氧异喹啉-5-基)哌啶-4-基)甲基)哌啶-4-基)氨基)乙氧基)吡啶-3-(2-氯-7-((S)-1-甲氧基乙基)吡唑[1,5-a]嘧啶-6-基)尿素(化合物44)。
MS(ESI)M/Z:894.2[M+H]+
1H NMR(400MHz,DMSO-d6)δ11.07(br,1H),9.26(br,1H),9.04(br,1H),8.73(s,1H),8.42(d,J=2Hz,1H),7.82(d,J=2Hz,1H),7.69(d,J=9.2Hz,1H),7.42(d,J=5.6Hz,1H),6.92(s,1H),5.40-5.31(m,1H),5.12-5.07(m,1H),4.46(t,J=4.4Hz,2H),3.58(d,J=9.6Hz,2H),3.25(s,3H),3.10–2.97(m,2H),2.95-2.82(m,4H),2.79-2.76(m,2H),2.74-2.48(m,2H),2.12-2.10(m,2H),2.10–1.96(m,2H),1.90-1.76(m,7H),1.72-1.65(m,1H),1.59(d,J=5.2Hz,3H),1.48-1.25(m,3H).
实施例45:
N-(2-(5-氯-3-(3-(2-氯-7-((S)-1-甲氧基乙基)吡唑[1,5-a]嘧啶-6-基)脲基)吡啶-2-基)氧基)乙基)-3-(4-(1-(2,6-二氧哌啶-3-基)-3-甲基-2-氧基-2,3-二氢-1H-苯并[d]咪唑-4-基)哌嗪-1-基)丙胺
反应流程:
实施例流程
步骤A:将原料4-溴-3-甲基-1-((2-(三甲基硅基)乙氧基)甲基)-1,3-二氢-2H-苯并[d]咪唑-2-酮(500毫克,1.4毫摩尔),1-叔丁氧羰基哌嗪(261毫克,1.4毫摩尔),叔丁醇钠(400毫克,4.2毫摩尔),2-双环已基膦-2',6'-二异丙氧基联苯(65毫克,140微摩尔),三二亚苄基丙酮二钯(64毫克,70微摩尔),加入到三口烧瓶中,加入二氧六环(10毫升),置换氮气3次。将反应液加热到90摄氏度,在90摄氏度氮气保护下搅拌过夜。LCMS监测显示原料消失后,向反应体系中加水(100毫升)淬灭。混合液用乙酸乙酯(50毫升×3)萃取,合并有机相,有机相先用饱和食盐水(10毫升x 3)洗涤,然后用无水硫酸钠干燥,过滤,最后减压浓缩反应液浓缩,粗品用硅胶柱层析分离(石油醚/乙酸乙酯=1/2),得到600毫克的化合物45-1。
MS(ESI)M/Z:463.2[M+H]+
步骤B:在室温下,将化合物45-1(600毫克,1.3毫摩尔)溶于1M四丁基氟化铵/四氢呋喃(10.4毫升)中。反应液加热回流过夜。LCMS监测显示原料消失后,向反应体系中加水(50毫升)淬灭。混合液用乙酸乙酯(50毫升×3)萃取,合并有机相,有机相用水(20毫升×2)和饱和食盐水(20毫升)洗涤,然后用无水硫酸钠干燥,过滤,最后减压浓缩。所得残余物用硅胶柱层析纯化(洗脱剂:石油醚/乙酸乙酯)得到330毫克化合物45-2。
MS(ESI)M/Z:333.1[M+H]+
步骤C:将化合物45-2(270毫克,0.8毫摩尔)溶于无水四氢呋喃(10毫升)中,氮气保护下,冷却到零摄氏度,加入叔丁醇钾(182毫克,1.6毫摩尔),并且加入完毕后搅拌5分钟,再滴加入1-(4-甲氧基苄基)-2,6-二氧哌啶-3-三氟甲基磺酸酯(450毫克,1.2毫摩尔)的四氢呋喃溶液(2毫升),加完后在此温度下搅拌30分钟。LCMS监测显示原料消失后,加入饱和氯化铵水溶液(10毫升)淬灭反应。混合液用乙酸乙酯(20毫升×3)萃取,合并有机相,有机相先用饱和食盐水(10毫升)洗涤,然后用无水硫酸钠干燥,过滤,最后减压浓缩反应液浓缩,粗品用硅 胶柱层析分离(二氯甲烷/乙酸乙酯),得到160毫克化合物45-3。
MS(ESI)M/Z:564.2[M+H]+
步骤D:在室温和氮气保护下,化合物45-3(160毫克,0.3毫摩尔)溶于三氟乙酸(10毫升)中。随后,向其中加入三氟甲磺酸(480毫克,3.2毫摩尔)。反应液在60摄氏度下继续搅拌过夜。LCMS监测显示原料消失后,反应液浓缩,得500毫克化合物45-4。化合物不经进一步提纯,直接进行下一步反应。
MS(ESI)M/Z:344.1[M+H]+
步骤E:将化合物45-4(500毫克)溶于乙腈(10毫升)中。在零摄氏度下,向其中加入三乙胺(324毫克,3.2毫摩尔),然后加入丙烯酸乙酯(205毫克,1.6毫摩尔),室温下继续搅拌过夜。LCMS监测显示原料消失后,反应液浓缩。加水(40毫升),用乙酸乙酯(20毫升×3)萃取,合并有机相,有机相先用饱和食盐水(10毫升)洗涤,然后用无水硫酸钠干燥,过滤,浓缩。粗品用硅胶柱层析分离(二氯甲烷/甲醇),得到140毫克化合物45-5。
MS(ESI)M/Z:472.2[M+H+]。
步骤F:将化合物45-5(70毫克,0.2毫摩尔)溶于二氯化甲烷(4毫升)中。在零摄氏度下,向其中加入三氟乙酸(2毫升),室温下继续搅拌过夜。LCMS监测显示原料消失后,反应液浓缩。得到80毫克化合物45-6。
MS(ESI)M/Z:416.1[M+H]+
步骤G:将化合物45-6(80毫克,0.2毫摩尔)和脱盐的中间体INT-2(72毫克,0.2毫摩尔)溶于N,N-二甲基甲酰胺(5毫升)中。在零摄氏度下,向其中依次加入N,N-二异丙基乙胺(97毫克,0.8毫摩尔)和2-(7-氮杂苯并三氮唑)-N,N,N',N'-四甲基脲六氟磷酸酯(95毫克,0.3毫摩尔)。室温下反应2小时后,加入水(50毫升),用乙酸乙酯萃取(20毫升×2),无水硫酸钠干燥,过滤,浓缩。粗品用硅胶柱层析分离(二氯甲烷/甲醇),得43.5毫克N-(2-(5-氯-3-(3-(2-氯-7-((S)-1-甲氧基乙基)吡唑[1,5-a]嘧啶-6-基)脲基)吡啶-2-基)氧基)乙基)-3-(4-(1-(2,6-二氧哌啶-3-基)-3-甲基-2-氧基-2,3-二氢-1H-苯并[d]咪唑-4-基)哌嗪-1-基)丙胺(化合物45)。
MS(ESI)M/Z:837.1[M+H]+
1H NMR(500MHz,DMSO-d6)δ11.09(s,1H),9.13(s,1H),8.92(s,1H),8.74(s,1H),8.46(d,J=2.0Hz,1H),8.29(t,J=6.0Hz,1H),7.82(d,J=3.0Hz,1H),6.95-6.92(m,2H),6.87-6.86(m,1H),6.73(d,J=8.5Hz,1H),5.38(q,J=6.5Hz,1H),5.35-5.32(m,1H),4.42(t,J=6.0Hz,2H)3.58(s,3H),3.53(t,J=6.0Hz,2H),3.26(s,3H),2.92-2.85(m,5H),2.72-2.61(m,6H),2.34(t,J=7.0Hz,2H),2.23-2.21(m,2H),1.99-1.97(m,1H),1.57(d,J=6.5Hz,3H).
实施例46:
1-(5-氯-2-(2-((4-(4-(2-(2,6-二氧哌啶-3-基)-1-氧异喹啉-5-基)哌嗪-1-羰基)环己基)氨基)乙氧基)吡啶-3-基)-3-(2-氯-7-((S)-1-甲氧基乙基)吡唑[1,5-a]嘧啶-6-基)尿素
反应流程:
实施例流程:
化合物46-7的制备参考实施例42。
步骤A:将5-溴-3H-异苯并呋喃-1-酮(5.0克,23.5毫摩尔)和叔丁基哌嗪-1-羧酸酯(4.8克,25.8毫摩尔)溶于甲苯(50毫升)中。添加碳酸铯(15.3克,46.9毫摩尔))、2-二环己基膦基-2'-(N,N-二甲氨基)联苯(73.9毫克,0.2毫摩尔)和乙酸钯(II)(0.1克,0.4毫摩尔)。反应体系在氮气保护下100摄氏度搅拌16小时。LCMS监测显示原料消失后,将反应液过滤,用乙酸乙酯(100毫升×2)冲洗滤渣。所得溶液减压浓缩,所得混合物用快速硅胶层析柱纯化(洗脱剂:石油醚/乙酸乙酯=13/7)得到4.7克化合物46-1。
MS(ESI)M/Z:319.1[M+H]+
步骤B:将化合物46-1(4.7克,14.7毫摩尔)溶于四氢呋喃/甲醇/水(体积比为1/1/1)(90毫升)中。在零摄氏度下加入氢氧化钠(2.2克,55.6毫摩尔),然后将混合物在室温下搅拌过夜。LCMS监测显示原料消失后,用2摩尔的稀盐酸将反应液的酸碱值调至4-5。用乙酸乙酯(100毫升×4)萃取。合并有机相,用无水硫酸钠干燥,减压浓缩得到3.2克化合物46-2。该化合物直接用于下一步。
MS(ESI)M/Z:337.1[M+H]+
步骤C:将化合物46-2(3.2克,9.4毫摩尔)溶在甲醇(20毫升)和乙酸乙酯(20毫升)的溶液中。在零下10摄氏度下,向溶液中滴加(三甲基甲硅烷基)重氮甲烷(2摩尔,20毫升),滴加完后继续搅拌15分钟。LCMS监测显示原料消失后,反应液用水(50毫升)淬灭,乙酸乙酯(100毫升×3)萃取。有机相用无水硫酸钠干燥,过滤,减压浓缩,得到3.1克化合物46-3。
MS(ESI)M/Z:351.0[M+H]+
步骤D:将化合物46-3(3.1克,8.9毫摩尔)溶在四氢呋喃(30毫升)中,向溶液中加入三苯基膦(3.5克,13.4毫摩尔)和四溴化碳(4.5克,13.4毫摩尔)。混合物在室温下搅拌1小时。LCMS监测显示原料消失后,向反应液中加入水(50毫升)淬灭,再用乙酸乙酯(100毫升×3)萃取,过滤,减压浓缩。所得混合物用快速硅胶层析柱纯化(洗脱剂:石油醚/乙酸乙酯=3/1)得到3.1克化合物46-4。
步骤E:将化合物46-4(3.1克,7.4毫摩尔)溶在N,N-二甲基甲酰胺(30毫升)中,向溶液中加入3-氨基哌啶-2,6-二酮盐酸盐(2.5克,14.9毫摩尔)和N,N-二异丙基乙胺(3.8克,29.8毫摩尔),反应在100摄氏度下搅拌过夜。LCMS监测显示原料消失后,将反应液倒入水(50毫升)中,过滤,滤饼用乙腈(100毫升)洗涤,干燥后得到2.3克化合物46-5。
MS(ESI)M/Z:429.0[M+H]+
步骤F:将化合物46-5(2.3克,5.4毫摩尔)溶于1,4-二氧六环(30毫升)中,加入盐酸的1,4-二氧六环溶液(4摩尔,22.5毫升),混合物在室温下搅拌16小时。LCMS监测显示原料消失后,将反应液过滤,得到的固体用乙酸乙酯(20毫升×2)和二氯甲烷(20毫升×2)洗涤,干燥后得到2.0克化合物46-6。
MS(ESI)M/Z:329.1[M+H]+
步骤G:将化合物46-7(100.0毫克,0.2毫摩尔)溶于四氢呋喃(5毫升)和水(1毫升),加入一水合氢氧化锂(21.0毫克,0.5毫摩尔)。该反应体系在零摄氏度下搅拌5小时。LCMS监测显示原料消失后,反应液用冰水(3毫升)淬灭,并用1摩尔的盐酸调至溶液的酸碱值为2。乙酸乙酯(6毫升×3)萃取,合并有机相,用饱和食盐水(6毫升×3)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩,得到85.0毫克化合物46-8。该粗品可直接用于下一步反应。
MS(ESI)M/Z:566.3[M+H]+
步骤H:在N,N-二甲基甲酰胺(5毫升)中,加入化合物46-8(85.0毫克,0.1毫摩尔),化合物46-6(109.0毫克,0.3毫摩尔),1-羟基苯并三唑(30.0毫克,0.2毫摩尔),(1-乙基-3(3-二甲基丙胺)碳二亚胺)(86.0毫克,0.5毫摩尔)和三乙胺(45.0毫克,0.5毫摩尔)。该反应体系在室温下搅拌17小时。LCMS监测显示原料消失后,反应液减压浓缩。所得混合物用薄层层析纯化(展开剂:二氯甲烷/甲醇=10/1)得到12.8毫克的1-(5-氯-2-(2-((4-(4-(2-(2,6-二氧哌啶-3-基)-1-氧异喹啉-5-基)哌嗪-1-羰基)环己基)氨基)乙氧基)吡啶-3-基)-3-(2-氯-7-((S)-1-甲氧基乙基)吡唑[1,5-a]嘧啶-6-基)尿素(化合物46)。
MS(ESI)M/Z:875.9[M+H]+
1H NMR(400MHz,DMSO-d6)δ10.97(s,1H),9.22(s,1H),9.03(s,1H),8.73(s,1H),8.43(d,J=2.4Hz,1H),7.82(d,J=2.4Hz,1H),7.55(d,J=8.4Hz,1H),7.08(s,1H),7.07(d,J=8Hz,1H),6.93(s,1H),5.39-5.34(m,1H),5.08-5.03(m,1H),4.47-4.44(m,2H),4.36-4.18(m,2H),3.67-3.55(m,4H),3.24(s,6H),3.12-2.85(m,3H),2.71-2.56(m,4H),2.44-2.32(m,1H),2.04–1.88(m,3H),1.77-1.68(m,2H),1.59(d,J=6.4Hz,3H),1.45-1.32(m,2H),1.30-1.03(m,3H).
实施例47:
1-(2-氯-7-((S)-1-甲氧基乙基)吡唑[1,5-a]嘧啶-6-基)-3-(2-(2-(4-(4-((2,6-二氧哌啶-3-基)氨基)苯基)环己基)氨基)乙氧基)-5-(三氟甲基)吡啶-3-基)尿素
反应流程:
实施例流程:
化合物47-5的制备参考实施例40。
步骤A:在氮气保护条件下,将1-溴-4-硝基苯(500.0毫克,2.5毫摩尔)和叔丁基(4-(4,4,5,5-四甲基-1,3,2-二氧苯甲醛-2-基)环己-3-烯-1-基)氨基甲酸酯(803毫克,2.5毫摩尔)溶于1,4-二氧六环(10毫升),加入二氯[1,1'-二(二苯基膦)二茂铁]钯(183.0毫克,0.3毫摩尔)和碳酸钾水溶液(2毫升,10%)。该反应体系在90摄氏度下搅拌1小时。LCMS监测显示原料消失后,冰浴下,加入乙酸乙酯(150毫升)稀释,有机相用水(150毫升×3)洗涤,无水硫酸钠干燥。过滤,滤液减压浓缩,所得混合物用硅胶柱层析纯化(洗脱剂:石油醚/乙酸乙酯)得到660.0毫克化合物47-1。
步骤B:将化合物47-1(560.0毫克,1.8毫摩尔)溶于四氢呋喃(100毫升)中。反应体系用氮气置换,加入钯/碳(56毫克,10%),该反应体系用氢气置换,并在氢气球的环境中室温搅拌16小时。LCMS监测显示原料消失后,过滤,滤液减压浓缩,得到450毫克的化合物47-2。
步骤C:在5毫升的微波管中,依次加入化合物47-2(450.0毫克,1.6毫摩尔),3-溴哌啶-2,6-二酮(703.0毫克,3.7毫摩尔),N,N-二异丙基乙基胺(460.0毫克,3.5毫摩尔)和1,4-二氧六环(1毫升)。密封后,反应液在80摄氏度下搅拌14小时。LCMS监测显示原料消失后,反应液降至室温,加入乙酸乙酯(50毫升)稀释。有机相,用水(50毫升×3)和饱和食盐水(50毫升×3)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩,所得混合物用硅胶柱层析纯化(洗脱剂:二氯甲烷/甲醇=10/1)得到340.0毫克化合物47-3。
MS(ESI)M/Z:424.3[M+Na]+
步骤D:将化合物47-3(290.0毫克,0.7毫摩尔)溶于乙酸乙酯(10毫升)中,加入盐酸的1,4-二氧六环溶液(4摩尔,10毫升)。该体系在室温搅拌2小时。LCMS监测显示原料消失后,反应液减压浓缩,得到210.0毫克化合物47-4。
MS(ESI)M/Z:302.1[M+H]+
步骤E:在氮气保护下,将化合物47-4(210.0毫克,0.7毫摩尔)和化合物47-5(329.0毫克,0.7毫摩尔)溶于甲醇(20毫升)中,加入醋酸(0.2毫升,0.1毫摩尔)和钛酸四异丙酯。该体系在50摄氏度下搅拌1小时。反应液降至室温,加入2-甲基吡啶硼烷(112.0毫克,1.1毫摩尔)。反应液在室温搅拌16小时。LCMS监测显示原料消失后,反应液中加入甲醇(40毫升)和十水硫酸钠淬灭,加二氯甲烷(40毫升)萃取。有机相用水(40毫升×3)和饱和食盐水(40毫升×3)洗涤,无水硫酸镁干燥。过滤,滤液减压浓缩,所得混合物用硅胶柱层析纯化(洗脱剂:二氯甲烷/甲醇=10/1)得到18.0毫克的1-(2-氯-7-((S)-1-甲氧基乙基)吡唑[1,5-a]嘧啶-6-基)-3-(2-(2-(4-(4-((2,6-二氧哌啶-3-基)氨基)苯基)环己基)氨基)乙氧基)-5-(三氟甲基)吡啶-3-基)尿素(化合物47)。
MS(ESI)M/Z:758.3[M+H]+
1H NMR(400MHz,DMSO-d6)δ10.75(s,1H),9.97(br,1H),9.53(br,1H),9.07(br,1H),8.74-8.66(m,2H),8.20(s,1H),7.12-6.92(m,3H),6.59(d,J=6.4Hz,2H),5.67-5.63(m,1H),5.38-5.31(m,1H),4.71-4.65(m,2H),4.28-4.22(m,1H),3.23-3.22(m,4H),2.80-2.66(m,1H),2.59-2.54(m,2H),2.37-2.22(m,1H),2.11–1.75(m,8H),1.63-1.39(m,6H).
实施例48:
N-(2-((3-(2-氯-7-((S)-1-甲氧基乙基)吡唑[1,5-a]嘧啶-6-基)脲)-5-(三氟甲基)吡啶-2-基)氧基)乙基)-4-((4-(2,6-二氧哌啶-3-基)苯基)氨基)甲基)环己烷-1-甲酰胺
反应流程:
实施例流程:
步骤A:将1-氯-4-硝基苯(5.0克,31.8毫摩尔),2-氰基乙酸甲酯(7.9克,79.3毫摩尔),碳酸钾(11.8克,85.5毫摩尔)溶于N,N-二甲基甲酰胺(25毫升)。该反应体系在110摄氏度下搅拌1小时。LCMS监测显示原料消失后,反应液降至室温,加水(50毫升)淬灭。滴加稀硫酸,调至溶液的酸碱度为2。过滤,滤饼用水洗涤,滤液用乙酸乙酯(100毫升×2)萃取。合并有机相,用饱和食盐水(100毫升×3)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩,所得混合物与滤饼合并,用硅胶柱层析纯化(洗脱剂:石油醚/乙酸乙酯=3/2)得到6.0克化合物48-1。
MS(ESI)M/Z:221.1[M+H]+
步骤B:将化合物48-1(0.5克,2.2毫摩尔)溶于四氢呋喃(10毫升)中。加入丙烯酸甲酯(190.0毫克,2.2毫摩尔)和N-甲基吗啡啉(222.0毫克,2.2毫摩尔),该反应体系在60摄氏度下搅拌3小时。LCMS监测显示原料消失后,反应液降至室温,加用水(20毫升)淬灭,乙酸乙酯(20毫升×2)萃取。合并有机相,用饱和食盐水(20毫升×3)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩,所得混合物用硅胶柱层析纯化(洗脱剂:石油醚/乙酸乙酯=3/2)得到0.7克化合物48-2。
MS(ESI)M/Z:307.2[M+H]+
步骤C:将化合物48-2(700.0毫克,2.3毫摩尔)溶于乙酸(10毫升)中。加入浓硫酸(800.0毫克,8.2毫摩尔)。该体系在110摄氏度下搅拌2个小时。LCMS监测显示原料消失后,反应液降至室温,慢慢加入3摩尔的氢氧化钠水溶液,调至溶液为弱酸性。乙酸乙酯(25毫升×2)萃取。合并有机相,用水(25毫升×2)饱和食盐水(25毫升×3)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩,所得混合物用硅胶柱层析纯化(洗脱剂:石油醚/乙酸乙酯=1/4)得到400.0毫克化合物48-3。
MS(ESI)M/Z:235.3[M+Na]+
步骤D:将化合物48-3(400.0毫克,1.7毫摩尔),氯化铵(130.0毫克,2.5毫摩尔)和铁粉(400.0毫克,7.1毫摩尔)溶于乙醇(5毫升)和水(0.5毫升)中。该体系在100摄氏度下搅拌1小时。LCMS监测显示原料消失后,反应液降至室温,过滤,减压浓缩。残余物加乙酸乙酯(50毫升)溶解,有机相用水(50毫升)和饱和食盐水(50毫升)洗涤,无水硫酸钠干燥。过滤,滤液减压浓缩,所得混合物通过硅胶柱层析纯化得到300.0毫克化合物48-4。
MS(ESI)M/Z:205.3[M+H]+
1H NMR(400MHz,DMSO-d6)δ10.74(s,1H),6.84(d,J=8Hz,2H),6.52(d,J=7.6Hz,2H),5.04(br,2H),3.64-3.60(m,1H),2.68-2.56(m,1H),2.46-2.33(m,1H),2.11-1.96(m,2H).
步骤E:将(1R,4R)-4-(甲氧羰基)环己烷-1-羧酸(393.0毫克,2.1毫摩尔),脱盐的中间体INT-3(1.0克,2.1毫摩尔),N,N-二异丙基乙胺(1.4克,10.6毫摩尔)和2-(7-氮杂苯并三氮唑)-N,N,N',N'-四甲基脲六氟磷酸酯(1.2克,3.2 毫摩尔)溶于N,N-二甲基甲酰胺(10毫升)。该反应体系在室温下搅拌1小时。LCMS监测显示原料消失后,反应液用水(100毫升)淬灭,乙酸乙酯(100毫升×3)萃取。合并有机相,用饱和食盐水(100毫升×3)洗涤,无水硫酸钠干燥。过滤,减压浓缩。所得混合物通过高效液相色谱纯化得到1.4克化合物48-5。
MS(ESI)M/Z:642.1[M+H]+
步骤F:在零下78摄氏度和氩气保护的条件下,将化合物48-5(1.0克,1.6毫摩尔)溶于四氢呋喃(16毫升)。慢慢滴加二异丙基氢化铝(2摩尔的四氢呋喃溶液,4.1毫升),滴加完毕,该反应体系慢慢升至室温,并在该问下搅拌2小时。LCMS监测显示原料消失后,反应液加水(50毫升)淬灭。过滤,滤液用乙酸乙酯(50毫升×3)萃取。合并有机相,用水(50毫升×3)和饱和食盐水(50毫升×3)洗涤,无水硫酸钠干燥。过滤,减压浓缩,得到350.0毫克化合物48-6。该化合物直接用于下一步。
MS(ESI)M/Z:614.4[M+H]+
步骤G:将化合物48-6(350.0毫克,0.6毫摩尔)溶于二甲基亚砜(5毫升),加入2-碘酰苯甲酸(319.2毫克,1.1毫摩尔)。该反应体系在30摄氏度下搅拌2小时。LCMS监测显示原料消失后,反应液中加水(50毫升)淬灭。过滤,滤液用乙酸乙酯(50毫升×3)萃取。合并有机相,先后用饱和硫代硫酸钠溶液(50毫升×3),饱和碳酸氢钠溶液(50毫升×3),水(50毫升×3)和饱和氯化钠溶液(50毫升×3)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩,得到288.0毫克化合物48-7。
MS(ESI)M/Z:612.2[M+H]+
步骤H:室温下,将化合物48-7(200.0毫克,0.3毫摩尔),化合物48-4(66.0毫克,0.3毫摩尔)溶于甲醇(8毫升)中。加入醋酸(39.2毫克,0.7毫摩尔)。该反应液在50摄氏度下搅拌1小时。将2-甲基吡啶的硼烷络合物(70.0毫克,0.7毫摩尔)加入到上述反应液中。该体系在室温搅拌1小时。LCMS监测显示原料消失后,反应液倒入水(100毫升)中,乙酸乙酯(100毫升×3)萃取。合并有机相,用水(100毫升×3)和饱和氯化钠溶液(100毫升×3)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩,减压浓缩。所得混合物用反相柱层析纯化得到48.9毫克N-(2-((3-(2-氯-7-((S)-1-甲氧基乙基)吡唑[1,5-a]嘧啶-6-基)脲)-5-(三氟甲基)吡啶-2-基)氧基)乙基)-4-((4-(2,6-二氧哌啶-3-基)苯基)氨基)甲基)环己烷-1-甲酰胺(化合物48)。
MS(ESI)M/Z:800.3[M+H]+
1H NMR(400MHz,DMSO-d6)δ10.75(s,1H),9.34(s,1H),9.14(s,1H),8.76(s,1H),8.69(d,J=1.6Hz,1H),8.17(s,1H),8.11-8.08(t,J=4.8Hz,1H),6.96-6.93(m,3H),6.63(s,2H),5.40-5.36(m,1H),4.50-4.47(t,J=4.4Hz,2H),3.69-3.65(m,1H),3.56-3.48(m,3H),3.25(s,3H),2.87(d,J=4.8Hz,2H),2.65-2.58(m,1H),2.48-2.42(m,1H),2.13-2.05(m,2H),2.02-1.96(m,1H),1.85-1.74(m,4H),1.59(d,J=5.2Hz,3H),1.54-1.47(m,1H),1.38-1.23(m,2H),0.97-0.89(m,2H).
实施例49:
1-(2-氯-7-((S)-1-甲氧基乙基)吡唑[1,5-a]嘧啶-6-基)-3-(2-(4-((4-(1-(2,6-二氧哌啶-3-基)-3-甲基-2-氧代-2,3-二氢-1H-苯并[d]咪唑-4-基)哌嗪-1-基)甲基)哌啶-1-基)乙氧基)-5-(三氟甲基)吡啶-3-基)尿素
反应流程:
实施例流程:
步骤A:在氮气保护的条件下,将4-溴-3-甲基-1-((2-(三甲基硅基)乙氧基)甲基)-1,3-二氢-2H-苯并[d]咪唑-2-酮(2.0克,5.6毫摩尔),哌嗪-1-羧酸叔丁酯(1.3克,6.8毫摩尔),叔丁醇钠(808.0毫克,8.4毫摩尔),2-双环已基膦-2',6'-二异丙氧基联苯(20.0毫克,0.04毫摩尔)和氯(2-二环己基膦基-2',6'-二-异丙氧基-1,1'-联苯基)(2-氨基-1,1'-联苯-2-基)钯(II)(32.0毫克,0.04毫摩尔)溶于甲苯(20毫升)中。该体系在90摄氏度搅拌2小时。LCMS监测显示原料消失后,反应液降至室温,加水(200毫升)淬灭,乙酸乙酯(200毫升)萃取。合并有机相,用饱和食盐水(200毫升)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩,所得混合物用硅胶柱层析纯化得到2.2克4-(3-甲基-2-氧代-1-((2-(三甲基硅基)乙氧基)甲基)-2,3-二氢-1H-苯并[d]咪唑-4-基)哌嗪-1-羧酸叔丁酯(化合物49-1)。
MS(ESI)M/Z:463.3[M+H]+
1H-NMR(500MHz,CDCl3)δ7.07(t,J=7.9Hz,1H),7.01(dd,J=7.8,0.8Hz,1H),6.94(dd,J=8.0,0.8Hz,1H),5.33(s,2H),4.15(q,J=7.1Hz,2H),3.77(s,3H),3.69–3.60(m,2H),3.07(s,4H),2.87(s,2H),1.53(s,9H),0.98–0.93(m,2H),0.02(s,9H).
步骤B:在氮气保护的条件下,将化合物49-1(2.2克,4.8毫摩尔)溶于四丁基氟化铵的四氢呋喃溶液(1摩尔,48毫升)。该反应体系在80摄氏度搅拌16小时。LCMS监测显示原料消失后,反应液降至室温,加入饱和氯化铵溶液(200毫升)淬灭,乙酸乙酯(200毫升)萃取。合并有机相,用水(100毫升)和饱和食盐水(100毫升)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩,所得混合物通过硅胶柱层析纯化得到1.8克化合物49-2。
MS(ESI)M/Z:333.3[M+H]+
1H-NMR(400MHz,CDCl3)δ9.04(s,1H),7.00(t,J=7.9Hz,1H),6.87(dd,J=7.5,4.3Hz,2H),4.28–3.95(m,2H),3.75(s,3H),3.04(s,4H),2.84(s,2H),1.50(s,9H).
步骤C:在氮气保护和0摄氏度条件下,将化合物49-2(1.8克,5.4毫摩尔)溶于四氢呋喃(50毫升)中,慢慢滴加叔丁醇钾(1摩尔,8毫升),滴加完毕,该体系在0摄氏度搅拌1小时。在0摄氏度下,将1-(4-甲氧基苄基)-2,6-二氧哌啶-3-基三氟甲烷磺酸盐(2.4克,6.3毫摩尔)和四氢呋喃(50毫升)的混合溶液缓慢滴加到上述溶液中,并在该温度下搅拌2小时。LCMS监测显示原料消失后,反应液中加入乙酸乙酯(100毫升)稀释,有机相用水(50毫升×3)和饱和食盐水(50毫升×3)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩。所得混合物经过硅胶柱层析纯化得到2.3克化合物49-3。
MS(ESI)M/Z:564.3[M+H]+
1H-NMR(400MHz,CDCl3)δ7.37(d,J=8.6Hz,2H),6.93–6.74(m,5H),5.03–4.90(m,2H),3.80–3.76(m,7H),3.18–2.95(m,4H),2.89–2.76(m,4H),2.71–2.51(m,2H),2.26–2.11(m,2H),1.49(s,9H).
步骤D:常温下,将化合物49-3(1.2克,2.1毫摩尔)溶于乙酸乙酯(50毫升)中,加入盐酸的1,4-二氧六环溶液(4摩尔,5毫升),该体系在室温下搅拌2小时。LCMS监测显示原料消失后,反应液中加入乙酸乙酯(100毫升)稀释,有机相用水(100毫升×3)和饱和食盐水(100毫升×3)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩。所得混合物经过硅胶柱层析纯化得到950毫克化合物49-4。
MS(ESI)M/Z:464.3[M+H]+
步骤E:在氮气保护下,将化合物49-4(200.0毫克,0.4毫摩尔),4-甲酰哌啶-1-羧酸叔丁酯(91.0毫克,0.4毫摩尔),乙酸(51.6毫克,0.9毫摩尔)和四异丙氧基钛(244.0毫克,0.9毫摩尔)溶于甲醇(20毫升)中,该体系在50摄氏度搅拌0.5小时。将反应液降至室温,加入2-甲基吡啶的硼烷络合物(70.0毫克,0.5毫摩尔),该反应液在室温下搅拌3小时。LCMS监测显示原料有50%的剩余,反应液中加入二氯甲烷(50毫升)稀释,十水硫酸钠(5.0克)淬灭并搅拌0.5小时。过滤,滤液用水(50毫升×3)和饱和食盐水(50毫升×3)洗涤,无水硫酸镁干燥,过滤,滤液减压浓缩。所得混合物经过硅胶柱层析纯化得到130.0毫克化合物49-5。
MS(ESI)M/Z:661.3[M+H]+
步骤F:在氮气保护下,将化合物49-5(130.0毫克,0.2毫摩尔)溶于三氟乙酸(5毫升)中,加入三氟甲磺酸(0.5毫升)。该体系在60摄氏度搅拌16小时。LCMS监测显示原料反应完全后,将反应液减压浓缩。得到360毫克化合物49-6。
MS(ESI)M/Z:441.3[M+H]+
步骤G:在氮气保护下,将化合物49-6(130.0毫克,0.2毫摩尔)溶于乙腈(5毫升)中,加入三乙胺(4.0g,4.0毫摩尔)和碳酸二叔丁酯(65.4毫克,0.3毫摩尔)。该体系在室温下搅拌3小时。LCMS监测显示原料反应完全后,反应液中加入二氯甲烷(50毫升)稀释,有机相用水(50毫升×3)和饱和食盐水(50毫升×3)洗涤,无水硫酸镁干燥,过滤,滤液减压浓缩。所得混合物通过硅胶柱层析纯化得到77毫克化合物49-7。
MS(ESI)M/Z:541.3[M+H]+
步骤H:在氮气保护下,将化合物49-7(130.0毫克,0.2毫摩尔)溶于二氯甲烷(10毫升)中,加入三氟乙酸(1毫升)。该体系在室温下搅拌3小时。LCMS监测显示原料反应完全后,将反应液减压浓缩,得到60毫克化合物49-8。
MS(ESI)M/Z:441.3[M+H]+
步骤I:在氮气保护下,将化合物49-8(60.0毫克,0.1毫摩尔),化合物49-9(64.0毫克,0.1毫摩尔),乙酸(17.0毫克,0.3毫摩尔)和钛酸四异丙酯(80.0毫克,0.3毫摩尔)溶于甲醇(5毫升)中,该体系在50摄氏度搅拌0.5小时。将反应液降至室温,加入2-甲基吡啶的硼烷络合物(23.0毫克,0.2毫摩尔),该反应液在室温下搅拌16小时。LCMS监测显示原料反应完全后,反应液中加入二氯甲烷(50毫升)稀释,十水硫酸钠淬灭并搅拌0.5小时。过滤,滤液用水(50毫升×3)和饱和食盐水(50毫升×3)洗涤,无水硫酸镁干燥,过滤,滤液减压浓缩。所得混合物经过硅胶柱层析纯化得到25毫克1-(2-氯-7-((S)-1-甲氧基乙基)吡唑[1,5-a]嘧啶-6-基)-3-(2-(4-((4-(1-(2,6-二氧哌啶-3-基)-3-甲基-2-氧代-2,3-二氢-1H-苯并[d]咪唑-4-基)哌嗪-1-基)甲基)哌啶-1-基)乙氧基)-5-(三氟甲基)吡啶-3-基)尿素(化合物49)。
MS(ESI)M/Z:897.3[M+H]+
1H-NMR(400MHz,DMSO-d6)δ11.11(s,1H),9.32(s,1H),9.03(s,1H),8.76(s,1H),8.68(d,J=2Hz,1H),8.19(s,1H),7.00-6.84(m,4H),5.41-5.33(m,2H),4.67-4.63(t,J=5.2Hz,2H),3.62(s,3H),3.29(s,3H),2.97-2.78(m,10H),2.77-2.54(m,4H),2.33-2.09(m,4H),2.66-1.91(m,2H),1.76-1.65(m,2H),1.60-1.55(m,4H),1.17-1.01(m,2H).
实施例50:
1-(2-氯-7-((S)-1-甲氧基乙基)吡唑[1,5-a]嘧啶-6-基)-3-(2-((1-(2,6-二氧哌啶-3-基)-3-甲基-2-氧代-2,3-二氢-1H-苯并[d]咪唑-4-基)氨基)-7-氮杂螺环[3.5]壬-7-基)乙氧基)-5-(三氟甲基)吡啶-3-基)尿素
反应流程:
实施例流程:
步骤A:在氮气保护的条件下,将2-氨基-7-氮杂螺环[3.5]壬烷-7-羧酸叔丁酯(1.0g,4.2毫摩尔),4-溴-3-甲基-1-((2-(三甲基硅基)乙氧基)甲基)-1,3-二氢-2H-苯并[d]咪唑-2-酮(1.5g,4.2毫摩尔),叔丁醇钠(599.0毫克,6.2毫摩尔),2-双环已基膦-2',6'-二异丙氧基联苯(194.0毫克,0.4毫摩尔)和氯(2-二环己基膦基-2',6'-二-异丙氧基-1,1'-联苯基)(2-氨基-1,1'-联苯-2-基)钯(II)(323.0毫克,0.4毫摩尔)溶于甲苯(10毫升)中。该体系在90摄氏度搅拌2小时。LCMS监测显示原料消失后,反应液降至室温,加水(100毫升)淬灭,乙酸乙酯(100毫升)萃取。合并有机相,用饱和食盐水(100毫升)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩,所得混合物用硅胶柱层析纯化得到1.7g化合物50-1。
MS(ESI)M/Z:517.3[M+H]+
步骤B:在氮气保护的条件下,将化合物50-1(1.2g,2.3毫摩尔)溶于四氢呋喃(5毫升),加入四丁基氟化铵的四氢呋喃溶液(1摩尔,23毫升)。该反应体系在90摄氏度搅拌16小时。LCMS监测显示原料消失后,反应液降至室温,加入饱和氯化铵溶液(200毫升)淬灭,乙酸乙酯(200毫升)萃取。合并有机相,用水(100毫升)和饱和食盐水(100毫升)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩,所得混合物通过硅胶柱层析纯化得到800毫克化合物50-2。
MS(ESI)M/Z:387.3[M+H]+
步骤C:在氮气保护和0摄氏度的条件下,将化合物50-2(800毫克,2.1毫摩尔)溶于四氢呋喃(10毫升)中,慢慢滴加叔丁醇钾(1摩尔,2.1毫升),滴加完毕,该体系在0摄氏度搅拌1小时。在0摄氏度下,将1-(4-甲氧基苄基)-2,6-二氧哌啶-3-基三氟甲烷磺酸盐(1.6克,4.1毫摩尔)和四氢呋喃(5毫升)的混合溶液缓慢滴加到上述溶液中,并在该温度下搅拌2小时。LCMS监测显示原料消失后,反应液中加入乙酸乙酯(100毫升)稀释,有机相用水(50毫升×3)和饱和食盐水(50毫升×3)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩。所得混合物经过硅胶柱层析得到1.16克化合物50-3。
MS(ESI)M/Z:618.3[M+H]+
步骤D:在氮气保护下,将化合物50-3(1.2克,1.8毫摩尔)溶于三氟乙酸(10毫升)中,加入三氟甲磺酸(1毫升)。该体系在60摄氏度搅拌16小时。LCMS监测显示原料反应完全后,将反应液减压浓缩。得到746毫克化合物50-4。
MS(ESI)M/Z:398.3[M+H]+
步骤E:在氮气保护下,将化合物50-4(746.0毫克,1.8毫摩尔)溶于乙腈(5毫升)中,加入三乙胺(379.6毫克,3.8毫摩尔)和碳酸二叔丁酯(491.6毫克,2.3毫摩尔)。该体系在室温下搅拌3小时。LCMS监测显示原料反应完全后,反应液中加入二氯甲烷(50毫升)稀释,有机相用水(50毫升×3)和饱和食盐水(50毫升×3)洗涤,无水硫酸镁干燥,过滤,滤液减压浓缩。所得混合物通过硅胶柱层析纯化得到510毫克化合物50-5。
MS(ESI)M/Z:498.3[M+H]+
步骤F:在氮气保护下,将化合物50-5(510.0毫克,1.0毫摩尔)溶于二氯甲烷(4毫升)中,加入盐酸-1,4-二氧六环(1毫升)。该体系在室温下搅拌2小时。LCMS监测显示原料反应完全后,将反应液减压浓缩,得到400毫克化合物50-6。
MS(ESI)M/Z:398.3[M+H]+
步骤G:在氮气保护下,将化合物50-6(120.0毫克,0.3毫摩尔),(S)-1-(2-氯-7-(1-甲氧基乙基)吡唑[1,5-a]嘧啶-6-基)-3-(2-(2-氧乙氧基)-5-(三氟甲基)吡啶-3-基)尿素(化合物50-7,142.7.0毫克,0.3毫摩尔),乙酸(0.05毫升)和四异丙氧基钛(0.1毫升)溶于甲醇(5毫升)中,该体系在50摄氏度搅拌0.5小时。将反应液降至室温,加入2-甲基吡啶的硼烷络合物(69.0毫克,0.2毫摩尔),该反应液在室温下搅拌2小时。LCMS监测显示原料反应完全后,反应液中加入二氯甲烷(50毫升)稀释,十水硫酸钠淬灭并搅拌0.5小时。过滤,滤液用水(50毫升×3)和饱和食盐水(50毫升×3)洗涤,无水硫酸镁干燥,过滤,滤液减压浓缩。所得混合物经过硅胶柱层析纯化得到43.7毫克1-(2-氯-7-((S)-1-甲氧基乙基)吡唑[1,5-a]嘧啶-6-基)-3-(2-((1-(2,6-二氧哌啶-3-基)-3-甲基-2-氧代-2,3-二氢-1H-苯并[d]咪唑-4-基)氨基)-7-氮杂螺环[3.5]壬-7-基)乙氧基)-5-(三氟甲基)吡啶-3-基)尿素(化合物50)。
MS(ESI)M/Z:854.3[M+H]+
1H-NMR(400MHz,DMSO-d6)δ11.07(s,1H),9.42(s,1H),9.17(s,1H),8.75(d,J=1.4Hz,1H),8.69(d,J=0.8Hz,1H),8.19(d,J=1.8Hz,2H),6.94(s,1H),6.82-6.85(m,1H),6.52(d,J=3.0Hz,1H),6.28(d,J=3.2Hz,1H),5.18-5.39(m,3H),4.63-4.65(m,2H),3.79-3.80(m,1H),3.61(s,3H),3.24(s,4H),2.86-2.88(m,3H),2.59-2.64(m,4H),2.26-2.27(m,2H),1.96-1.98(m,1H),1.59-1.69(m,10H).
实施例51:
1-(2-氯-7-((S)-1-甲氧基乙基)吡唑并[1,5-a]嘧啶-6-基)-3-(2-(2-(4-((4-(4))-((2,6-二氧代哌啶-3-基)氨基)-2-氟苯基)哌嗪-1-基)甲基)哌啶-1-基)乙氧基)-5-(三氟甲基)吡啶-3-基)脲
反应流程:
实施例流程:
步骤A:将1-溴-2-氟-4-硝基苯(1.0g,4.5毫摩尔)和哌嗪-1-羧酸叔丁酯(0.83g,4.5毫摩尔)溶于N,N-二甲基甲酰胺(20毫升)中,加入三乙胺(1.36g,13.5毫摩尔)。该体系在100摄氏度下搅拌16小时。LCMS监测显示原料消失后,将反应液冷却至室温,用乙酸乙酯(50毫升×3)萃取。合并有机相,用饱和食盐水(50毫升×2)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩。所得混合物用硅胶柱层析纯化得到720毫克化合物51-1。
MS(ESI)M/Z:270.1[M-56+H]+
1H-NMR(400MHz,DMSO-d6)δ8.10–7.97(m,2H),7.18(dd,J=11.1,7.3Hz,1H),3.48(d,J=5.0Hz,4H),3.34–3.18(m,4H),1.46–1.39(m,9H).
步骤B:将化合物51-1(720.0毫克,2.21毫摩尔)和氯化铵(120.0毫克,2.6毫摩尔)溶于乙醇(10毫升)和水(1毫升)中,搅拌下加入铁粉(1.0g,22.1毫摩尔)。将该体系升至100摄氏度并在该温度下搅拌18小时。LCMS监测显示原料消失后,将反应液降至室温,过滤,滤液减压浓缩,所得混合物用乙酸乙酯(50毫升)溶解,有机相用水(40毫升×3)和饱和食盐水(30毫升×2)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩。所得混合物用硅胶柱层析纯化得到560毫克化合物51-2。
MS(ESI)M/Z:296.2[M+H]+
步骤C:在氮气保护的条件下,将化合物51-2(560.0毫克,1.89毫摩尔),3-溴哌啶-2,6-二酮(903.0毫克,4.73毫摩尔)溶于N,N-二甲基甲酰胺(10毫升)中,加入N,N-二异丙基乙胺(731.0毫克,5.67毫摩尔)。将该体系升至80摄氏度并在该温度下搅拌16小时。LCMS监测显示原料消失后,将反应液降至室温,用乙酸乙酯(50毫升×3)萃取。合并有机相,用饱和食盐水(50毫升×2)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩。所得混合物用硅胶柱层析纯化得到600毫克化合物51-3。
MS(ESI)M/Z:407.1[M+H]+
1H-NMR(400MHz,DMSO-d6)δ10.79(s,1H),6.90–6.79(m,1H),6.53(dd,J=14.9,2.5Hz,1H),6.43(dd,J=8.7,2.4Hz,1H),5.87(d,J=7.7Hz,1H),4.32–4.24(m,1H),3.44(s,4H),2.82–2.77(m,5H),2.57(dt,J=8.6,3.9Hz,1H),2.14–2.05(m,1H),1.91–1.79(m,1H),1.42(s,9H).
步骤D:在氮气保护的条件下,将化合物51-3(100.0毫克,0.246毫摩尔)溶于二氯甲烷(3毫升)中,加入盐酸的1,4-二氧六环溶液(1毫升)。该反应液在室温下搅拌1小时。LCMS监测显示原料消失后,反应液中加入二氯甲烷(10毫升)稀释,反应液减压浓缩,得到80毫克化合物51-4。
步骤E:在氮气保护下,将化合物51-4(80.0毫克,0.26毫摩尔)和4-甲酰哌啶-1-羧酸叔丁酯(55.0毫克,0.261毫摩尔)溶于混合溶剂(N,N-二甲基甲酰胺:四氢呋喃=1:1)(6毫升)中,加入三乙胺(79.0毫克,0.78毫摩尔),室温搅拌0.5小时.然后加入乙酸(0.1毫升)和四异丙氧基钛(0.1毫升),该体系在常温下搅拌半小时。加入三乙酰氧基硼氢化钠(165.0毫克,0.783毫摩尔),该反应液在室温下搅拌2小时。LCMS监测显示原料消失后,反应液减压浓缩。所得混合物经过反相纯化得到110毫克化合物51-5。
MS(ESI)M/Z:504.3[M+H]+
1H-NMR(400MHz,DMSO-d6)δ10.79(s,1H),6.82(t,J=9.3Hz,1H),6.50(d,J=15.0Hz,1H),6.42(d,J=8.6Hz, 1H),5.81(d,J=7.7Hz,1H),4.26(t,J=8.2Hz,1H),3.92(d,J=9.7Hz,3H),2.92–2.59(m,7H),2.23–1.96(m,4H),1.84(dt,J=11.7,7.8Hz,2H),1.68(d,J=10.8Hz,4H),1.39(s,9H),0.91(t,J=19.1Hz,3H).
步骤F:在氮气保护的条件下,将化合物51-5(110.0毫克,0.218毫摩尔)溶于二氯甲烷(3毫升)中,加入盐酸的1,4-二氧六环溶液(1毫升)。该反应液在室温下搅拌1小时。LCMS监测显示原料消失后,反应液中加入二氯甲烷(10毫升)稀释,反应液减压浓缩,得到60毫克化合物51-6。
MS(ESI)M/Z:404.3[M+H]+
步骤G:在氮气保护下,将化合物51-6(60.0毫克,0.148毫摩尔)和化合物51-7(70.0毫克,0.148毫摩尔)溶于混合溶剂(N,N-二甲基甲酰胺:四氢呋喃=1:1)(6毫升)中,加入三乙胺(46.4毫克,0.42毫摩尔)室温搅拌30分钟。然后加入乙酸(0.3毫升)和四异丙氧基钛(0.2毫升),该体系在常温下搅拌30分钟。加入三乙酰氧基硼氢化钠(134.0毫克,0.63毫摩尔),该反应液在室温下搅拌3小时。LCMS监测显示原料消失后,反应液减压浓缩。所得混合物先后经过反相纯化和薄层层析制备得到15毫克1-(2-氯-7-(S)-1-甲氧基乙基)吡唑[1,5-a]嘧啶-6-基)-3-(2-(4-(4-(2,6-二氧哌啶-3-基)氨基)-2-氟苯基)哌嗪-1-基)甲基)哌啶-1-基)乙氧基)-5-(三氟甲基)吡啶-3-基)尿素(化合物51)。
MS(ESI)M/Z:860.3[M+H]+
1H-NMR(400MHz,DMSO-d6)δ10.79(s,1H),9.30(s,1H),8.97(s,1H),8.77(s,1H),8.68(s,1H),8.19(s,1H),6.94(s,1H),6.83–6.79(m,1H),6.52-6.40(d,J=7.8Hz,2H),5.80–5.36(m,2H),4.64(d,J=7.8Hz,1H),4.26(s,1H),3.42(m,10H),2.92(s,2H),2.83-2.77(s,4H),2.14–2.01(m,4H),1.99–1.65(t,J=8.8Hz,6H),1.58(s,3H),1.26(d,J=19.0Hz,3H).
实施例52:
1-(2-氯-7-(S)-1-甲氧基乙基)吡唑[1,5-a]嘧啶-6-基)-3-(2-(1-(1-(2-(2,6-二氧哌啶-3-基)-1,3-二氧异异丙醇-5-基)哌啶-4-基)甲基)哌啶-4-基)乙氧基)-5-(三氟甲基)吡啶-3-基)尿素
反应流程:
实施例流程:
步骤A:在0摄氏度和氮气保护条件下,将3-硝基-5-(三氟甲基)吡啶-2-醇(2.2g,9.6毫摩尔),4-(2-羟乙基)哌啶-1-羧酸叔丁酯(2.0g,9.6毫摩尔),三苯基膦(5.0g,19.2毫摩尔)溶于四氢呋喃(50毫升),慢慢滴加偶氮二甲酸二乙酯(3.5g,20.2毫摩尔)。滴加完毕,该反应体系在室温下搅拌16小时。LCMS监测显示原料消失后,反应液用饱和碳酸氢钠水溶液(100毫升)淬灭,乙酸乙酯(100毫升×2)萃取。合并有机相,有机相用水(100毫升)和饱和食盐水(100毫升×3)洗涤,无水硫酸钠干燥。过滤,滤液减压浓缩,所得混合物用硅胶柱层析纯化(洗脱剂:石油醚/乙酸乙酯=5/1)得到3.2g化合物52-1。
MS(ESI)M/Z:442.1[M+Na]+
1H-NMR(400MHz,CDCl3)δ8.64(d,J=1.3Hz,1H),8.48(d,J=2.1Hz,1H),4.62(t,J=6.5Hz,2H),4.12(dd,J=14.3,7.1Hz,2H),3.75(t,J=6.6Hz,1H),2.72(s,2H),1.89-1.66(m,6H),1.46(s,9H),1.24-1.12(m,2H).
步骤B:将化合物52-1(3.2克,7.64毫摩尔)和氯化铵(0.83g,15.28毫摩尔)溶于乙醇(100毫升)和水(10毫升)中。加入铁粉(4.29克,76.4毫摩尔),该反应体系在85摄氏度搅拌3小时。LCMS监测显示原料消失后,反应液降至室温,加水(50毫升)稀释,乙酸乙酯(100毫升×3)萃取。合并有机相,有机相用饱和食盐水(100毫升×3)洗涤,无水硫酸钠干燥。过滤,滤液减压浓缩,所得混合物用硅胶柱层析纯化得到2.8克化合物52-2。
MS(ESI)M/Z:412.2[M+Na]+
步骤C:将化合物52-2(1.62克,6.37毫摩尔)溶于1,4-二氧六环(50毫升)中。加入叠氮磷酸二苯酯(2.48克,5.0毫摩尔)和三乙胺(3.1毫升,22.2毫摩尔)。该体系在室温下搅拌半个小时。将4-(2-(3-氨基-5-(三氟甲基)吡啶-2-基)氧基)乙基)哌啶-1-羧酸叔丁酯(2.8克,7.4毫摩尔)加入上述反应体系中。该反应液加热至100摄氏度并搅拌3小时。LCMS监测显示原料消失后,反应液降至室温,加入饱和碳酸氢钠水溶液(100毫升)淬灭,乙酸乙酯(100毫升×3)萃取。合并有机相,用水(100毫升×3)和饱和食盐水(100毫升×3)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩,所得混合物用硅胶柱层析纯化得到1.95克化合物52-3。
MS(ESI)M/Z:642.3[M+H]+
1H-NMR(400MHz,DMSO-d6):δ9.21(s,1H),8.96(s,1H),8.77(s,1H),8.68(d,J=2.2Hz,1H),8.19(d,J=1.1Hz,1H),6.94(s,1H),5.39(q,J=6.7Hz,1H),4.58(t,J=6.9Hz,2H),3.93(s,2H),3.26(s,3H),2.68(s,2H),1.85-1.56(m,8H),1.39(s,9H),1.19-1.05(m,2H).
步骤D:将化合物52-3(600.0毫克,0.9毫摩尔)溶于二氯甲烷(10毫升)中,再将氯化氢的1,4-二氧六环溶液(5毫升,4摩尔)加入上述溶液中。得到的反应液于室温搅拌反应4个小时。LCMS监测显示原料消失,将反应液浓缩得500毫克化合物52-4。
MS(ESI)M/Z:542.2[M+H]+
步骤E:将哌啶-4-甲醇(626.0毫克,5.4毫摩尔)溶于N-甲基吡咯烷酮(15毫升),加入N,N-二异丙基乙胺(1.8毫升,10.9毫摩尔)和化合物52-5(1.0克,3.6毫摩尔)。该反应体系在140摄氏度搅拌2小时。LCMS监测显示原料消失后,反应液降至室温,加水(50毫升)淬灭,乙酸乙酯(50毫升×3)萃取。合并有机相,用水(50毫升×3)和饱和食盐水(50毫升×3)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩,所的混合物用反相纯化得到1.1克化合物52-6。
MS(ESI)M/Z:372.1[M+H]+
1H-NMR(400MHz,DMSO-d6)δ11.08(s,1H),7.64(d,J=8.6Hz,1H),7.31(d,J=2.0Hz,1H),7.23(dd,J=8.7,2.2Hz,1H),5.06(dd,J=12.9,5.4Hz,1H),4.48(s,1H),4.06(d,J=12.8Hz,2H),3.27(d,J=6.0Hz,2H),3.06-2.76(m,3H),2.73-2.53(m,3H),2.03-1.94(m,1H),1.82-1.56(m,3H),1.29-1.09(m,2H).
步骤F:将化合物起始原料化合物52-6(350.0毫克,0.95毫摩尔)溶于二甲基亚砜(6毫升)中,再将2-碘酰基苯甲酸(530.0毫克,1.9毫摩尔)加入上述溶液中。得到的反应液于室温搅拌反应16个小时。LCMS监测显示原料消失,加水(30毫升)淬灭,乙酸乙酯(30毫升×3)萃取。合并有机相,用水(30毫升×3)和饱和食盐水(30毫升×3)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩,所的混合物用重结晶得到280毫克化合物52-7。
MS(ESI)M/Z:370.2[M+H]+
步骤G:将化合物起始原料化合物52-4(176.0毫克,0.3毫摩尔)溶于四氢呋喃和N,N-二甲基甲酰胺(4.0毫升/4.0毫升)中,再加三乙胺(0.13毫升,0.98毫摩尔)并于室温搅拌30分钟,再将醋酸(0.1毫升)和化合物52-7(120毫克,0.3毫摩尔)加入上述溶液中并于室温搅拌15分钟,再将三乙酰氧基硼氢化钠(138.0毫克,0.7毫摩尔)加入上述溶液中。得到的反应液于室温搅拌反应3个小时。LCMS监测显示原料消失,将反应液加入水和乙酸乙酯的混合溶液中并过滤,滤液分层得到有机层,有机层用无水硫酸钠干燥,过滤后将滤液浓缩,所得粗品经反相纯化,再经过制备薄层层析得到100毫克产物1-(2-氯-7-(S)-1-甲氧基乙基)吡唑[1,5-a]嘧啶-6-基)-3-(2-(1-(1-(2-(2,6-二氧哌啶-3-基)-1,3-二氧异异丙醇-5-基)哌啶-4-基)甲基)哌啶-4-基)乙氧基)-5-(三氟甲基)吡啶-3-基)尿素(化合物52)。
MS(ESI)M/Z:895.2[M+H]+
1H-NMR(400MHz,DMSO-d6)δ11.09(s,1H),9.22(s,1H),9.00(s,1H),8.76(s,1H),8.67(d,J=2.0Hz,1H),8.19(s,1H),7.66(d,J=8.6Hz,1H),7.38-7.15(m,2H),6.94(s,1H),5.39(q,J=6.6Hz,1H),5.07(dd,J=12.9,5.4Hz,1H),4.58(d,J=7.0Hz,2H),4.05(d,J=10.8Hz,2H),3.26(s,3H),3.03-2.76(m,5H),2.64-2.53(m,4H),2.03(dd,J=22.6,17.4Hz,4H),1.80(s,8H),1.60(d,J=6.8Hz,3H),1.14(s,3H).
实施例53:
1-(2-氯-7-((S)-1-甲氧基乙基)吡唑[1,5-a]嘧啶-6-基)-3-(2-(4-((2R)-4-(2-(2,6-二氧哌啶-3-基)-1,3-二氧异辛多林-5-基)-2-甲基哌嗪-1-基)甲基)哌啶-1-基)乙氧基)-5-(三氟甲基)吡啶-3-基)尿素
反应流程:
实施例流程:
步骤A:将5-氟异苯并呋喃-1,3-二酮(1.0克,6.0毫摩尔)溶于乙酸(2毫升)中。加入3-氨基哌啶-2,6-二酮(1.1克,6.6毫摩尔)和醋酸钾(1.8克,18.6毫摩尔)。该体系在90摄氏度搅拌16小时。LCMS监测显示原料消失后,反应液降至室温。零摄氏度下,加入水(20毫升)淬灭,减压浓缩以除去上清液,剩余粗品用甲醇转移至250毫升的单口瓶中,减压浓缩,所得混合物用硅胶柱层析纯化得到700毫克化合物53-1。
MS(ESI)M/Z:277.3[M+H]+
1H-NMR(400MHz,DMSO-d6)δ11.13(s,1H),8.01(dd,J=8.3,4.5Hz,1H),7.85(dd,J=7.4,2.2Hz,1H),7.78-7.63(m,1H),5.17(dd,J=12.8,5.4Hz,1H),2.98-2.81(m,1H),2.69-2.53(m,2H),2.14-2.01(m,1H).
步骤B:在氮气保护下,将化合物53-2(1.0克,4.3毫摩尔)和4-甲酰哌啶-1-羧酸叔丁酯(916.0毫克,4.3毫摩尔)溶于甲醇(5毫升)中,加入醋酸(0.5毫升),该反应液在室温搅拌0.5小时。将三乙酰氧基硼氢化钠(1.4克,6.4毫摩尔)加入到上述反应体系中,该反应液在室温下搅拌3小时。LCMS监测显示原料消失后,反应液中加入二氯甲烷和十水硫酸钠,继续搅拌0.5小时。过滤,滤液用水(100毫升×3)和饱和食盐水(100毫升)洗涤,无水硫酸镁干燥,过滤,滤液减压浓缩,所得混合物用硅胶柱层析纯化得到1.2克化合物53-3。
MS(ESI)M/Z:432.3[M+H]+
步骤C:将化合物53-3(1.2克,2.8毫摩尔)溶于甲醇(50毫升)中。氮气置换该体系后,加入钯/碳(100毫克),氢气置换反应体系,该反应液在氢气球的环境下室温搅拌3小时。LCMS监测显示原料消失后,反应液经硅藻土过滤后,滤液减压浓缩,得到900毫克化合物53-4。该化合物直接用于下一步反应。
MS(ESI)M/Z:298.1[M+H]+
步骤D:室温下,将化合物53-4(240.0毫克,0.8毫摩尔)和化合物53-1(230.0毫克,0.8毫摩尔)溶于N-甲基吡咯烷酮(10毫升)中,加入N,N-二异丙基乙胺(322.0毫克,2.5毫摩尔),将该体系加热至140摄氏度并搅拌1小时。LCMS监测显示原料消失后,将反应液降至室温,加水(100毫升)淬灭,二氯甲烷(50毫升×3)萃取。合并有机相,有机相用水(100毫升)和饱和食盐水(100毫升×3)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩,所得混合物经过反相纯化得到750毫克化合物53-5。
MS(ESI)M/Z:576.3[M+Na]+
步骤E:将化合物53-5(400.0毫克,1.4毫摩尔)溶于二氯甲烷(5毫升)中,加入盐酸的乙酸乙酯溶液(4摩尔,1毫升)。该反应液在室温并搅拌1小时。LCMS检测显示原料反应完全后,将反应液减压浓缩,得到300.毫克化合物53-6。
MS(ESI)M/Z:454.2[M+H]+
步骤F:室温下,将化合物53-6(100.0毫克,0.2毫摩尔)溶于四氢呋喃(5毫升)和N,N-二甲基甲酰胺(5毫升)中,加入三乙胺(0.5毫升),该体系在室温下搅拌0.5小时。再依次将醋酸(0.5毫升),化合物53-7(104.0毫克,0.2毫摩尔)和三乙酰氧基硼氢化钠(55.8毫克,0.3毫摩尔)加入到上述反应体系中,反应液在室温搅拌2小时。LCMS监测显示原料消失后,反应液中加入二氯甲烷(50毫升)稀释,加入十水硫酸钠并搅拌0.5小时。过滤,滤液用水(50毫升×3)和饱和食盐水(50毫升)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩。所得混合物通过薄层层析(展开剂:二氯甲烷/甲醇=15/1)纯化两次得到40毫克1-(2-氯-7-((S)-1-甲氧基乙基)吡唑[1,5-a]嘧啶-6-基)-3-(2-(4-((2R)-4-(2-(2,6-二氧哌啶-3-基)-1,3-二氧异辛多林-5-基)-2-甲基哌嗪-1-基)甲基)哌啶-1-基)乙氧基)-5-(三氟甲基)吡啶-3-基)尿素(化合物53)。
MS(ESI)M/Z:910.7[M+H]+
1H-NMR(400MHz,DMSO-d6)δ11.08(s,1H),9.32(s,1H),9.03(s,1H),8.75(s,1H),8.68(d,J=2Hz,1H),8.19(s,1H),7.66(d,J=8.4Hz,1H),7.34(s,1H),7.25-7.20(m,1H),6.93(s,1H),5.40-5.31(m,1H),5.09-5.04(m,1H),4.69-4.60(m,2H),3.78-3.68(m,2H),3.25(s,3H),3.03-2.78(m,7H),2.72-2.56(m,3H),2.22-1.91(m,7H),1.78-1.72(m,1H),1.67-1.57(m,4H),1.54-1.43(m,2H),1.13-1.01(m,4H).
实施例54:
1-(2-氯-7-((S)-1-甲氧乙基)吡唑并[1,5-a]嘧啶-6-基)-3-(2-(2-(1-(1-(2,6-二氧哌啶-3-基)3-甲基-2-氧代-2,3-二氢-1H-苯并[d]咪唑-4-基)哌啶-4-基]乙基)氨基)乙氧基)-5-(三氟甲基)吡啶-3-基尿素
反应流程:
实施例流程:
步骤A:将4-溴-3-甲基-1-(2-(三甲基硅基)乙氧基)甲基)-1,3-二氢-2H-苯并[d]咪唑-2-酮(1.5克,4.2毫摩尔)和叔丁基(2-(哌啶-4-基)乙基)氨基甲酸酯(1.2克,5.2毫摩尔),叔丁醇钠(1.0克,10.5毫摩尔),2-双环已基膦-2',6'-二异丙氧基联苯(98毫克,0.2毫摩尔)溶于1,4-二氧六环(20毫升)中,置换氮气三次,再将三(二亚苄基丙酮)二钯(192毫克,0.2毫摩尔)加入上述溶液中。得到的反应液于90摄氏度搅拌2个小时。LCMS监测显示原料消失,将反应液冷却后过滤,滤液旋干得粗品。粗品经正相纯化得到0.6克化合物54-1。
MS(ESI)M/Z:505.3[M+H]+
1H NMR(400MHz,CDCl3)δ7.05(t,J=7.9Hz,1H),6.95(dd,J=11.7,7.6Hz,2H),5.32(s,2H),3.76(s,3H),3.68–3.60(m,2H),3.21(dd,J=20.4,8.8Hz,4H),2.75(s,2H),1.85(d,J=8.9Hz,2H),1.49(s,15H),1.00–0.89(m,2H),0.00(s,9H).
步骤B:将化合物54-1(0.6克,1.2毫摩尔)溶于四丁基氟化铵(11.9毫升,1摩尔四氢呋喃溶液)中,得到的混合物在80摄氏度搅拌16个小时。LCMS监测原料消失,将反应液冷却后倒入乙酸乙酯和饱和氯化铵的混合溶液中,有机层用饱和氯化铵洗涤,水洗,盐水洗,干燥,过滤,滤液旋干得到0.4克化合物54-2。
MS(ESI)M/Z:375.2[M+H]+
步骤C:将化合物54-2(470毫克,1.3毫摩尔)溶于四氢呋喃(15毫升)中,将反应体系置于冰浴中,将叔丁醇钾(1.9毫升,1.9毫摩尔)滴加到上述溶液中,所得混合物在零度搅拌一个小时,再将1-(4-甲氧基苄基)-2,6-二氧哌啶-3-基-三氟甲磺酸酯(506毫克,2.5毫摩尔)溶于四氢呋喃(10毫升)中,滴加到上述溶液中,反应体系缓慢升至室温并搅拌两个小时。LCMS检测大部分都是产物,还有少量原料,将反应液倒入水和乙酸乙酯的混合溶剂中,分液,将有机层用无水硫酸钠干燥,过滤,旋干得粗品,粗品经正相纯化得到600毫克化合物54-3。
MS(ESI)M/Z:606.3[M+H]+
步骤D:将化合物54-3(0.6克,1.0毫摩尔)溶于三氟乙酸(7毫升)中,再将三氟甲磺酸(0.7毫升,7.9毫摩尔)加入上述溶液,加热到60摄氏度过夜。LCMS显示原料消失,将反应液将至室温,旋干得到380毫克化合物54-4。
MS(ESI)M/Z:386.2[M+H]+
步骤E:将化合物54-4(380毫克,粗品)溶于乙腈(10毫升)中,零度条件下滴加三乙胺至反应液的PH值在8-9,再将碳酸二叔丁酯(324毫克,1.5毫摩尔)加入上述溶液中,得到的混合物在室温条件下搅拌2个小时。 LCMS监测显示反应完全,将反应液旋干,再加水和乙酸乙酯,乙酸乙酯层再用盐水洗,无水硫酸钠干燥,过滤,滤液旋干后正相纯化得到170毫克化合物54-5。
MS(ESI)M/Z:486.3[M+H]+
步骤F:将化合物54-5(140毫克,0.3毫摩尔)溶于二氯甲烷(5毫升)中,再将盐酸的乙酸乙酯溶液(2毫升)加入上述溶液中,得到的混合物在室温条件下搅拌2个小时。LCMS显示原料消失,直接旋干得到110毫克化合物54-6。
MS(ESI)M/Z:386.2[M+H]+
步骤G:将化合物54-6(110毫克,0.3毫摩尔),化合物54-7(119毫克,0.3毫摩尔),醋酸(0.2毫升),和钛酸四异丙酯(0.3毫升)溶于甲醇(5毫升)中,加热至50摄氏度搅拌半个小时,降至室温,将2-甲基吡啶硼烷(60毫克,0.6毫摩尔)加入上述溶液中。得到的反应液于室温搅拌反应3个小时。LCMS监测显示原料消失,将反应液加入水和乙酸乙酯的混合溶剂中,过滤,滤液用乙酸乙酯萃取,用无水硫酸钠干燥,过滤,滤液浓缩得粗品,粗品经过正相制备三次得到20毫克1-(2-氯-7-((S)-1-甲氧乙基)吡唑并[1,5-a]嘧啶-6-基)-3-(2-(2-(1-(1-(2,6-二氧哌啶-3-基)3-甲基-2-氧代-2,3-二氢-1H-苯并[d]咪唑-4-基)哌啶-4-基]乙基)氨基)乙氧基)-5-(三氟甲基)吡啶-3-基尿素(化合物54)。
MS(ESI)M/Z:842.3[M+H]+
1H-NMR(400MHz,DMSO-d6)δ10.92(br,1H),9.28(s,1H),8.96(s,1H),8.75(d,J=2.9Hz,1H),8.68(d,J=2.2Hz,1H),8.20(s,1H),6.99–6.63(m,4H),5.45–5.31(m,2H),4.58(t,J=5.6Hz,2H),3.60(s,2H),3.53(s,1H),3.26(s,3H),3.05-2.98(m,5H),2.75–2.56(m,6H),2.04–1.94(m,1H),1.74(d,J=11.1Hz,2H),1.58(d,J=6.6Hz,3H),1.52-1.27(m,6H).
实施例55:
1-(2-氯-7-((S)-1-甲氧基乙基)吡唑并[1,5-a]嘧啶-6-基)-3-(2-(2-(4-(4-((1-(2,6-二羰基哌啶-3-基)-3-甲基-2-羰基-2,3-二氢-1H-苯并[d]咪唑-5-基)甲基)哌嗪-1-基)哌啶-1-基)乙氧基)-5-(三氟甲基)吡啶-3-基)脲甲酸盐
反应流程:
实施例流程:
化合物55-1的制备参考实施例42。
步骤A:在常温下,将化合物55-1(60毫克,0.09毫摩尔),吡啶(32毫克,0.4毫摩尔)溶于甲醇(5毫升)。将反应液加热至60摄氏度搅拌10分钟。反应液冷却至室温,将(S)-1-(2-氯-7-(1-甲氧基乙基)吡唑并[1,5-a]嘧啶-6-基)-3-(2-(2-羰基乙氧基)-5-(三氟甲基)吡啶-3-基)脲(32毫克,0.07毫摩尔)和2-甲基吡啶硼烷(58毫克,0.5毫摩尔)加入到反应液中,经氮气置换后在常温下搅拌16小时。LCMS监测原料基本反应完全。将反应液浓缩,所得残留物通过制备型高效液相色谱纯化得到12.9毫克1-(2-氯-7-((S)-1-甲氧基乙基)吡唑并[1,5-a]嘧啶-6-基)-3-(2-(2-(4-(4-((1-(2,6-二羰基哌啶-3-基)-3-甲基-2-羰基-2,3-二氢-1H-苯并[d]咪唑-5-基)甲基)哌嗪-1-基)哌啶-1-基)乙氧基)-5-(三氟甲基)吡啶-3-基)脲甲酸盐(化合物55)。
MS(ESI)M/Z:897.3[M+H]+
1HNMR(400MHz,DMSO-d6)δ11.10(s,1H),9.31(s,1H),9.02(s,1H),8.75(s,1H),8.68(d,J=2.2Hz,1H),8.19-8.17(m,1H),8.16(s,1H),7.07(d,J=7.8Hz,1H),6.98-6.91(m,2H),6.87(d,J=7.3Hz,1H),5.41-5.33(m,2H),4.63(t,J=5.9Hz,2H),3.65(d,J=8.6Hz,5H),3.25(s,3H),3.08-2.99(m,2H),2.94-2.80(m,3H),2.76-2.58(m,3H),2.49-2.08(m,10H),2.05-1.97(m,1H),1.77-1.69(m,2H),1.58(d,J=6.7Hz,3H),1.46-1.33(m,2H).
实施例56:
1-(2-氯-7-((S)-1-甲氧基乙基)吡唑并[1,5-a]嘧啶-6-基)-3-(2-(2-(4-((6-(1-(2,6-二羰基哌啶-3-基)-3-甲基-2-羰基-2,3-二氢-1H-苯并[d]咪唑-4-基)-2,6-二氮杂螺[3.3]庚烷-2-基)甲基)哌啶-1-基)乙氧基)-5-(三氟甲基)吡啶-3-基)脲
反应流程:
实施例流程:
化合物55-1的制备参考实施例42。
步骤A:在常温下,将化合物55-1(55毫克,0.05毫摩尔)溶于三氟乙酸(1毫升)和三氟甲磺酸(0.1毫升)的混合溶液中。该反应液升温至70摄氏度,在氮气保护下搅拌12小时。TLC和LCMS监测原料基本反应完全,将反应液冷却至室温,减压浓缩,所得混合物经制备型高效液相色谱纯化得到5.5毫克1-(2-氯-7-((S)-1-甲氧基乙基)吡唑并[1,5-a]嘧啶-6-基)-3-(2-(2-(4-((6-(1-(2,6-二羰基哌啶-3-基)-3-甲基-2-羰基-2,3-二氢-1H-苯并[d]咪唑-4-基)-2,6-二氮杂螺[3.3]庚烷-2-基)甲基)哌啶-1-基)乙氧基)-5-(三氟甲基)吡啶-3-基)脲(化合物56)。
MS(ESI)M/Z:909.6[M+H]+
1H NMR(400MHz,DMSO-d6)δ11.08(s,1H),9.33(s,1H),9.00(s,1H),8.76(s,1H),8.68(d,J=2.2Hz,1H), 8.19(d,J=1.1Hz,1H),8.17(s,1H),6.98-6.90(m,2H),6.73(d,J=7.9Hz,1H),6.62(d,J=8.1Hz,1H),5.39(q,J=6.7Hz,1H),5.32(dd,J=12.7,5.4Hz,1H),4.64(t,J=5.9Hz,2H),3.90(s,3H),3.55(s,4H),3.26(s,4H),3.17(s,2H),2.97(d,J=11.0Hz,4H),2.83(t,J=5.3Hz,3H),2.83(t,J=5.3Hz,3H),2.69-2.62(m,2H),2.42(d,J=5.3Hz,2H),2.09(t,J=10.4Hz,2H),2.01-1.95(m,1H),1.59(d,J=6.7Hz,4H),1.30(d,J=7.3Hz,1H),1.15-1.05(m,2H),1.15-1.04(m,2H).
实施例57:
1-(2-氯-7-((S)-1-甲氧基乙基)吡唑并[1,5-a]嘧啶-6-基)-3-(2-(2-(4-((1-(2))-(2,6-二氧代哌啶-3-基)-1,3-二氧代异吲哚啉-5-基)哌啶-4-基)甲基)哌嗪-1-基)乙氧基)-5-(三氟甲基)吡啶-3-基)尿素
反应流程:
实施例流程:
步骤A:在室温下,将化合物57-1(86毫克,0.16毫摩尔)溶于四氢呋喃(2毫升)和N,N-二甲基甲酰胺(2毫升)中。随后,向其中加入N,N-二异丙基乙胺(41毫克,0.3毫摩尔),室温下搅拌10分钟,然后加入乙酸(0.5毫升)和(S)-1-(2-氯-7-(1-甲氧基乙基)吡唑并[1,5-a]嘧啶-6-基)-3-(2-(2-氧代乙氧基)-5-(三氟甲基)吡啶-3-基)脲(76毫克,0.2毫摩尔),反应液在室温下搅拌1小时,再加入三乙酰氧基硼氢化钠(51毫克,0.24毫摩尔)。反应液在室温下继续搅拌过夜。LCMS监测显示原料消失后,反应液浓缩。加入饱和碳酸氢钠溶液(10毫升)。混合液用乙酸乙酯(20毫升×3)萃取,合并有机相,有机相先用饱和食盐水(10毫升)洗涤,然后用无水硫酸钠干燥,过滤,浓缩。粗品先用硅胶柱层析分离,然后反相制备得44毫克1-(2-氯-7-((S)-1-甲氧基乙基)吡唑并[1,5-a]嘧啶-6-基)-3-(2-(2-(4-((1-(2))-(2,6-二氧代哌啶-3-基)-1,3-二氧代异吲哚啉-5-基)哌啶-4-基)甲基)哌嗪-1-基)乙氧基)-5-(三氟甲基)吡啶-3-基)尿素(化合物57)。
MS(ESI)M/Z:897.2[M+H]+
1H NMR(400MHz,DMSO-d6)δ11.08(s,1H),9.26(d,J=4.4Hz,1H),8.99(d,J=4.0Hz,1H),8.77-8.76(m,1H),8.67(d,J=2.4Hz,1H),8.19(s,2H),7.64(d,J=8.8Hz,1H),7.29(d,J=1.6Hz,1H),7.21(dd,J=8.8,1.6Hz,1H),6.93(s,1H),5.38(q,J=6.4Hz,1H),5.05(dd,J=12.8,6.0Hz,1H),4.64(t,J=6.4Hz,2H),4.04-4.01(m,2H),3.25(s, 3H),2.96-2.80(m,3H),2.79(t,J=6.0Hz,3H),2.60-2.57(m,5H),2.40-2.23(m,4H),2.10(d,J=6.8Hz,2H),2.02-1.86(m,1H),1.77-1.74(m,3H),1.58(d,J=6.4Hz,3H),1.15-1.07(m,2H).
实施例58:
1-(2-氯-7-(S)-1-甲氧基乙基)吡唑并[1,5-a]嘧啶-6-基)-3-(2-(2-(4-(4-(2-(2,6-二氧代异戊啶-3-基)-1,3-二氧代异吲哚啉-5-基)哌啶-1-基)哌啶-1-基)乙氧基)-5-(三氟甲基)吡啶-3-基)脲
反应流程:
实施例流程:
步骤A:在氮气保护下,将化合物58-1(100.0毫克,0.2毫摩尔),1-(2-氯-7-(1-甲氧基乙基)吡唑并[1,5-a]嘧啶-6-基)-3-(2-氧代乙氧基)-5-三氟甲基吡啶-3-基脲(107.7毫克,0.2毫摩尔),乙酸(27.9毫克,0.5毫摩尔)和钛酸四异丙酯(64.8毫克,0.2毫摩尔)溶于甲醇(5毫升)中,该体系在室温下搅拌0.5小时。将反应液降至室温,加入三乙酰氧基硼氢化钠(96.8毫克,0.5毫摩尔),该反应液在室温下搅拌2小时。LCMS监测显示原料反应完全后,反应液中加入二氯甲烷(50毫升)稀释,十水硫酸钠淬灭并搅拌0.5小时。过滤,滤液用水(50毫升×3)和饱和食盐水(50毫升×3)洗涤,无水硫酸镁干燥,过滤,滤液减压浓缩。所得混合物经过硅胶柱层析纯化得到18.4毫克1-(2-氯-7-(S)-1-甲氧基乙基)吡唑并[1,5-a]嘧啶-6-基)-3-(2-(2-(4-(4-(2-(2,6-二氧代异戊啶-3-基)-1,3-二氧代异吲哚啉-5-基)哌啶-1-基)哌啶-1-基)乙氧基)-5-(三氟甲基)吡啶-3-基)脲(化合物58)。
MS(ESI)M/Z:894.3[M+H]+
1H-NMR(400MHz,DMSO-d6)δ11.12(s,1H),9.32(s,1H),9.00(s,1H),8.77(s,1H),8.69(d,J=1.0Hz,1H),8.19(d,J=1.2Hz,1H),7.76-7.86(m,3H),6.93(s,1H),5.37-5.40(m,1H),5.11-5.16(m,1H),4.64-4.67(m,2H),3.26(s,3H),2.75-2.94(m,9H),1.91-2.19(m,8H),1.68-1.77(m,6H),1.58-1.61(m,4H).
实施例59:
1-(2-氯-7-((S)-1-甲氧基乙基)吡唑[1,5-a]嘧啶-6-基)-3-(2-(4-(2-(1-(2,6-二氧哌啶-3-基)-3-甲基-2-氧基-2,3-二氢-1H-苯并[d]咪唑-4-基)乙基)哌嗪-1-基)哌啶-1-基)乙氧基)-5-(三氟甲基)吡啶-3-基)尿素
反应流程:
实施例流程:
步骤A:室温下,将化合物59-1(130.0毫克,0.3毫摩尔)溶于四氢呋喃(5毫升)和N,N-二甲基甲酰胺(5毫升)中,加入三乙胺(0.5毫升),该体系在室温下搅拌0.5小时。再依次将醋酸(0.5毫升),化合物1-(2-氯-7-(1-甲氧基乙基)吡唑并[1,5-a]嘧啶-6-基)-3-(2-氧代乙氧基)-5-三氟甲基吡啶-3-基脲(144.4毫克,0.3毫摩尔)和三乙酰氧基硼氢化钠(97.3毫克,0.45毫摩尔)加入到上述反应体系中,反应液在室温搅拌2小时。LCMS监测显示原料消失后,反应液中加入二氯甲烷(50毫升)稀释,加入十水硫酸钠并搅拌0.5小时。过滤,滤液用水(50毫升×3)和饱和食盐水(50毫升)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩。所得混合物通过薄层层析(展开剂:二氯甲烷/甲醇=15/1)纯化两次得到42.4毫克1-(2-氯-7-((S)-1-甲氧基乙基)吡唑[1,5-a]嘧啶-6-基)-3-(2-(4-(2-(1-(2,6-二氧哌啶-3-基)-3-甲基-2-氧基-2,3-二氢-1H-苯并[d]咪唑-4-基)乙基)哌嗪-1-基)哌啶-1-基)乙氧基)-5-(三氟甲基)吡啶-3-基)尿素(化合物59)。
MS(ESI)M/Z:882.3[M+H]+
1HNMR(400MHz,DMSO-d6)δ10.94(s,1H),9.33(s,1H),9.07(s,1H),8.76(s,1H),8.68(d,J=2.2Hz,1H),8.27–8.10(m,2H),7.52(d,J=8.7Hz,1H),7.09–7.01(m,2H),6.93(s,1H),5.45–5.31(m,1H),5.05(dd,J=13.3,5.1Hz,1H),4.65(t,J=6.0Hz,2H),4.26(dd,J=49.9,17.0Hz,2H),3.26(s,5H),3.03–2.94(m,2H),2.94–2.88(m,1H),2.88–2.79(m,2H),2.64–2.54(m,1H),2.49–2.43(m,4H),2.40–2.30(m,1H),2.19–2.06(m,4H),2.03–1.91(m,1H),1.69(d,J=12.2Hz,2H),1.59(d,J=6.7Hz,3H),1.57–1.47(m,1H),1.17–1.02(m,2H).
实施例60:
1-(2-氯-7-((S)-1-甲氧基乙基)吡唑并[1,5-a]嘧啶-6-基)-3-(2-(2-(4-((1-(2-(2,6-二氧代异戊啶-3-基)-1,3-二氧代异吲哚啉-5-基)哌啶-4-基)(甲基)氨基)哌啶-1-基)乙氧基)-5-(三氟甲基)吡啶-3-基)脲
反应流程:
实施例流程:
步骤A:步骤A:室温下,将化合物60-1(130.0毫克,0.3毫摩尔)溶于四氢呋喃(5毫升)和N,N-二甲基甲酰胺(5毫升)中,加入三乙胺(0.5毫升),该体系在室温下搅拌0.5小时。再依次将醋酸(0.5毫升),1-(2-氯-7-(1-甲氧基乙基)吡唑并[1,5-a]嘧啶-6-基)-3-(2-氧代乙氧基)-5-三氟甲基吡啶-3-基脲(135.5毫克,0.3毫摩尔)和三乙酰氧基硼氢化钠(97.3毫克,0.45毫摩尔)加入到上述反应体系中,反应液在室温搅拌2小时。LCMS监测显示原料消失后,反应液中加入二氯甲烷(50毫升)稀释,加入十水硫酸钠并搅拌0.5小时。过滤,滤液用水(50毫升×3)和饱和食盐水(50毫升)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩。所得混合物通过薄层层析(展开剂:二氯甲烷/甲醇=15/1)纯化两次得到32.8毫克1-(2-氯-7-((S)-1-甲氧基乙基)吡唑并[1,5-a]嘧啶-6-基)-3-(2-(2-(4-((1-(2-(2,6-二氧代异戊啶-3-基)-1,3-二氧代异吲哚啉-5-基)哌啶-4-基)(甲基)氨基)哌啶-1-基)乙氧基)-5-(三氟甲基)吡啶-3-基)脲(化合物60)。
MS(ESI)M/Z:910.3[M+H]+
1H NMR(400MHz,DMSO-d6)δ11.07(br,1H),9.25(br,1H),8.95(br,1H),8.77(s,1H),8.68(d,J=2.4Hz,1H),8.19-8.18(m,1H),7.66(d,J=8.8Hz,1H),7.30(s,1H),7.24-7.21(m,1H),6.92(s,1H),5.41-5.37(m,1H),5.08-5.04(m,1H),4.65-4.62(m,2H),4.07-4.02(m,2H),3.26(s,3H),2.99-2.91(m,4H),2.78-2.75(m,2H),2.68-2.66(m,1H),2.60-2.56(m,1H),2.34-2.32(m,1H),2.12(s,3H),2.07-1.98(m,3H),1.74-1.71(m,2H),1.64-1.59(m,2H),1.58-1.58(d,J=6.4Hz,3H),1.50-1.40(m,4H).
实施例61:
1-(2-氯-7-((S)-1-甲氧乙基)吡唑并[1,5-a]嘧啶-6-基)-3-(2-(2-(4-(2-(2,6-二氧哌啶-3-基)-3-氧代异吲哚-5-基)哌嗪-1-基)甲基)哌啶-1-基)乙氧基)-5-(三氟甲基)吡啶-3-基)脲
反应流程:
实施例流程:
步骤A:在室温下,将化合物61-1(90毫克,0.2毫摩尔)溶于二氯甲烷(5mL)和N,N-二甲基甲酰胺(2毫升)中,加入N,N-二异丙基乙胺(66毫克,0.5毫摩尔),室温下搅拌10分钟。然后加入乙酸(0.5毫升)和(S)-1-(2-氯-7-(1-甲氧基乙基)吡唑并[1,5-a]嘧啶-6-基)-3-(2-(2-氧代乙氧基)-5-(三氟甲基)吡啶-3-基)尿素(95毫克,0.2毫摩尔),室温下搅拌10分钟,再加入三乙酰氧基硼氢化钠(72毫克,0.3毫摩尔)。反应液在室温下继续搅拌过夜。LCMS监测显示原料消失后,加入饱和碳酸氢钠溶液(10毫升),混合液用乙酸乙酯(10毫升×3)萃取,合并有机相,有机相先用饱和食盐水(10毫升)洗涤,然后用无水硫酸钠干燥,过滤,浓缩。粗品用薄层硅胶板分离,得33.4毫克1-(2-氯-7-((S)-1-甲氧乙基)吡唑并[1,5-a]嘧啶-6-基)-3-(2-(2-(4-(2-(2,6-二氧哌啶-3-基)-3-氧代异吲哚-5-基)哌嗪-1-基)甲基)哌啶-1-基)乙氧基)-5-(三氟甲基)吡啶-3-基)脲(化合物61)。
MS(ESI)M/Z:882.3[M+H]+
1H-NMR(400MHz,DMSO-d6)δ10.98(br,1H),9.26(br,1H),8.96(br,1H),8.76(s,1H),8.67(s,J=2.0Hz,1H),8.19(s,1H),7.42(d,J=8.4Hz,1H),7.24(dd,J=8.4,2.0Hz,1H),7.14(d,J=1.6Hz,1H),6.93(s,1H),5.38(q,J=6.8Hz,1H),5.09(dd,J=13.2,5.2Hz,1H),4.64(t,J=6.4Hz,2H),4.32(d,J=16.4Hz,1H),4.20(d,J=16.8Hz,1H),3.33-3.31(m,4H),3.25(s,3H),3.18-3.15(m,4H),2.94-2.90(m,3H),2.78-2.76(m,2H),2.61-2.51(m,2H),2.43-2.32(m,1H),2.14(d,J=6.8Hz,2H),2.03-1.9(m,3H),1.68-1.66(m,2H),1.57(d,J=6.8Hz,3H)1.52-1.50(m,1H),1.25-1.04(m,2H).
实施例62:
1-(2-氯-7-((S)-1-甲氧基乙基)吡唑并[1,5-a]嘧啶-6-基)-3-(2-(2-(1-(2,6-二氧代哌啶-3-基-3-甲基-2-氧代-2,3-二氢-1H-苯并[d]咪唑-4-基-2,7-二氮杂[3.5]壬-7-基)乙基)氨基)乙氧基)-5-(三氟甲基)吡啶-3-基脲
反应流程:
实施例流程:
步骤A:在0摄氏度下,将化合物62-1(80.0毫克,0.2毫摩尔)溶于四氢呋喃(3.0毫升)和N,N-二甲基甲酰胺(3.0毫升)中,加入N,N-二异丙基乙胺(97.0毫克,0.8毫摩尔),冰浴下搅拌10分钟。然后加入乙酸(0.2毫升)和(S)-1-(2-氯-7-(1-甲氧基乙基)吡唑并[1,5-a]嘧啶-6-基)-3-(2-(2-氧代乙氧基)-5-(三氟甲基)吡啶-3-基)尿素(71.0毫克,0.15毫摩尔),室温下搅拌10分钟,再加入三乙酰氧基硼氢化钠(64.0毫克,0.3毫摩尔)。反应液在室温下继续搅拌过夜。
LCMS监测显示原料消失后,加入饱和碳酸氢钠溶液(10毫升),混合液用乙酸乙酯(20毫升×3)萃取,合并有机相。有机相先用饱和食盐水(10毫升)洗涤,然后用无水硫酸钠干燥,过滤,浓缩。粗品用硅胶柱层析分离得20.5毫克1-(2-氯-7-((S)-1-甲氧基乙基)吡唑并[1,5-a]嘧啶-6-基)-3-(2-(2-(2-(1-(2,6-二氧哌啶-3-基)-3-甲基-2-氧代-2,3-二氢-1h-苯并[d]咪唑-4-基)-2,7-重氮阿司匹林[3.5]壬-7-基)乙基)乙氧基)-5-(三氟甲基)吡啶-3-基)尿素(化合物62)。
MS(ESI)M/Z:883.3[M+H]+
1H-NMR(400MHz,DMSO-d6)δ11.10(br,1H),9.29(br,1H),9.05(br,1H),8.76(s,1H),8.68(d,J=2.0Hz,1H),8.20(s,1H),6.94-6.91(m,2H),6.71(d,J=7.6Hz,1H),6.58(d,J=8.4Hz,1H),5.39(q,1H),5.32(dd,J=12.8,5.6Hz, H),4.58(t,J=5.6Hz,2H),3.52(s,3H),3.50-3.46(m,4H),3.26(s,3H),3.03-3.01(m,2H),2.91-2.84(m,1H),2.73-2.59(m,5H),2.41-2.26(m,6H),1.98-1.97(m,2H),1.71-1.67(m,4H),1.60(d,J=6.0Hz,3H).
实施例63:
1-(2-氯-7-(S)-1-甲氧基乙基)吡唑并[1,5-a]嘧啶-6-基)-3-(2-(2-(2-(2-(2-(2-(2,6-二氧代哌啶-3-基)-6-氟-1,3-二氧代异吲哚啉-5-基)哌啶-4-基)乙基)-2-氮杂螺[3,3]庚烷-6-基)氧基)-5-(三氟甲基)吡啶-3-基)尿素
反应流程:
实施例流程:
步骤A:将化合物63-1(100.0毫克,0.3毫摩尔)和化合物63-2(130.9毫克,0.3毫摩尔),醋酸(29.9毫克,0.5毫摩尔),四异丙氧基钛(70.8毫克,0.3毫摩尔)溶于甲醇(2毫升)和二氯甲烷(2毫升)中,该体系在室温下搅拌1小时。再加入三乙酰氧基硼氢化钠(105.7毫克,0.5毫摩尔),该反应液在室温下搅拌2小时。LCMS监测显示原料反应完全后,反应液中加入二氯甲烷(50毫升)稀释,和水(30毫升)。过滤,滤液用水(50毫升×3)和饱和食盐水(50毫升×3)洗涤,无水硫酸镁干燥,过滤,滤液减压浓缩。所得混合物反相柱层析纯化得37.3毫克1-(2-氯-7-(S)-1-甲氧基乙基)吡唑并[1,5-a]嘧啶-6-)-3-(2-(2-(2-(2-(2-(2-(2,6-二氧代哌啶-3-基)-6-氟-1,3-二氧代异吲哚啉-5-基)哌啶-4-基)乙基)-2-氮杂螺[3,3]庚烷-6-基)氧基)-5-(三氟甲基)吡啶-3-基)尿素(化合物63)。
MS(ESI)M/Z:911.2[M+H]+
1H-NMR(400MHz,DMSO-d6)δ11.12(brs,1H),9.20(brs,1H),9.04(brs,1H),8.74(s,1H),8.66(d,J=2.2Hz,1H),8.16(s,1H),7.72(d,J=11.4Hz,1H),7.45(d,J=7.4Hz,1H),6.94(s,1H),5.39(q,J=6.7Hz,1H),5.24(t,J=7.1Hz,1H),5.10(dd,J=5.4Hz,1H),3.60(d,J=11.9Hz,3H),3.26(s,3H),2.85(dd,J=14.8Hz,7H),2.67(s,1H),2.08–1.98(m,1H),1.76(d,J=12.5Hz,2H),1.60(d,J=6.7Hz,3H),1.52(s,2H),1.41–1.21(m,8H).
实施例64:
1-(2-氯-7-((S)-1-甲氧基乙基)吡唑并[1,5-a]嘧啶-6-基)-3-(2-(4-(9-(1-(2,6-二氧哌啶-3-基)-3-甲基-2-氧代-2,3-二氢-1h-苯并[d]咪唑-4-基)-3,9-重氮阿司匹林[5.5]十一烷-3-基)哌啶-1-基)乙氧基)-5-(三氟甲基)吡啶-3-基)脲
反应流程:
实施例流程:
步骤A:在室温下,将化合物64-1(120.0毫克,0.2毫摩尔)溶于四氢呋喃(10.0mL)和N,N-二甲基甲酰胺(2.0毫升)的混合溶剂中。随后,向其中加入N,N-二异丙基乙胺(49毫克,0.4毫摩尔),室温下搅10分钟,然后加入乙酸(0.5毫升)和(S)-1-(2-氯-7-(1-甲氧基乙基)吡唑并[1,5-a]嘧啶-6-基)-3-(2-(2-氧代乙氧基)-5-(三氟甲基)吡啶-3-基)尿素(90.0毫克,0.19毫摩尔)。反应液在室温下搅拌0.5小时,然后加入三乙酰氧基硼氢化钠(81.0毫克,0.38毫摩尔),反应液在室温下继续搅拌过夜。LCMS监测显示原料消失后,反应液浓缩,加入饱和碳酸氢钠溶液(10毫升)。混合液用乙酸乙酯(20毫升×3)萃取,合并有机相,有机相先用饱和食盐水(10毫升)洗涤,然后用无水硫酸钠干燥,过滤,浓缩。残余物用薄层硅胶板层析纯化得49.1毫克1-(2-氯-7-((S)-1-甲氧基乙基)吡唑并[1,5-a]嘧啶-6-基)-3-(2-(4-(9-(1-(2,6-二氧哌啶-3-基)-3-甲基-2-氧代-2,3-二氢-1h-苯并[d]咪唑-4-基)-3,9-重氮阿司匹林[5.5]十一烷-3-基)哌啶-1-基)乙氧基)-5-(三氟甲基)吡啶-3-基)脲(化合物64)。
MS(ESI)M/Z:965.2[M+H]+
1H-NMR(400MHz,DMSO-d6)δ11.09(s,1H),9.29(br,1H),9.00(br,1H),8.77(d,J=2.0Hz,1H),8.67(d,J=2.0Hz,1H),8.19(d,J=1.2Hz,1H),6.96-6.93(m,3H),6.86-6.85(m,1H),5.39-5.35(m,2H),4.64(t,J=6.0Hz,2H),3.62(s,3H),3.26(s,3H),2.91-2.80(m,9H),2.78-2.58(m,2H),2.33-2.29(m,4H),2.08-1.97(m,5H),1.65-1.35(m,14H),1.06-1.02(m,2H).
实施例65:
1-(5-氯-2-(2-(4-(9-(1-(2,6-二氧哌啶-3-基)-3-甲基-2-氧代-2,3-二氢-1H-苯并[d]咪唑-4-基)-3,9-二氮螺环[5.5]十一碳-3-基)甲基)哌啶-1-基)乙氧基)吡啶-3-(2-氯-7-((S)-1-甲氧基乙基)吡唑[1,5-a]嘧啶-6-基)脲
反应流程:
实施例流程:
步骤A:将原料化合物65-1(1克,2.8毫摩尔),3,9-二氮螺环[5.5]十一烷-3-羧酸叔丁酯(712毫克,2.8毫摩尔),叔丁醇钠(807毫克,8.4毫摩尔),2-双环已基膦-2',6'-二异丙氧基联苯(65.0毫克,0.14毫摩尔),氯(2-二环己基膦基-2',6'-二-异丙氧基-1,1'-联苯基)(2-氨基-1,1'-联苯-2-基)钯(II)(109毫克,0.14mol),加入到三口烧瓶中,加入二氧六环(10毫升),置换氮气3次。将反应液加热到90摄氏度,在90摄氏度氮气保护下搅拌过夜。LCMS监测显示原料消失后,向反应体系中加水(50毫升)淬灭。混合液用乙酸乙酯(50毫升×3)萃取,合并有机相。有机相先用饱和食盐水(10毫升×3)洗涤,然后用无水硫酸钠干燥,过滤,最后减压浓缩。所得残余物用硅胶柱层析纯化得到710毫克化合物65-2。
MS(ESI)M/Z:531.2[M+H]+
步骤B:在室温下,将化合物65-2(710毫克,1.3毫摩尔)溶于1摩尔四丁基氟化铵/四氢呋喃(13.4毫升)中。反应液加热回流过夜。LCMS监测显示原料消失后,向反应体系中加水(50毫升)淬灭。混合液用乙酸乙酯 (50毫升×3)萃取,合并有机相,有机相用水(20毫升×2)和饱和食盐水(20毫升)洗涤,然后用无水硫酸钠干燥,过滤,最后减压浓缩。所得残余物用硅胶柱层析纯化得到480毫克化合物65-3。
MS(ESI)M/Z:401.2[M+H]+
步骤C:将化合物65-3(480毫克,1.2毫摩尔)溶于无水四氢呋喃(20毫升)中。氮气保护下,冷却到0摄氏度,加入叔丁醇钾(269毫克,2.4毫摩尔),加入完毕后搅拌5分钟。再滴加入1-(4-甲氧基苄基)-2,6-二氧哌啶-3-三氟甲基磺酸酯(549毫克,1.4毫摩尔)的四氢呋喃溶液(4毫升),加完后在此温度下搅拌0.5小时。LCMS监测显示原料消失后,加入饱和氯化铵水溶液(10毫升)淬灭反应。混合液用乙酸乙酯(20毫升×3)萃取,合并有机相,有机相先用饱和食盐水(10毫升)洗涤,然后用无水硫酸钠干燥,过滤,最后反应液浓缩。粗品用硅胶柱层析分离得到370毫克化合物65-4。
MS(ESI)M/Z:632.2[M+H]+
步骤D:在室温和氮气保护下,将化合物65-4(370毫克,0.6毫摩尔)溶于三氟乙酸(10毫升)中。随后,向其中加入三氟甲磺酸(1毫升)。反应液在60摄氏度下搅拌过夜。LCMS监测显示原料消失后,反应液浓缩,得到600毫克三氟甲磺酸化合物65-5。
MS(ESI)M/Z:412.1[M+H]+
步骤E:在室温下,将化合物65-5(600毫克,0.6毫摩尔含有三氟甲磺酸)溶于乙腈(10毫升)中。随后,向其中加入N,N-二异丙基乙胺(381毫克,3.0毫摩尔)和二碳酸二叔丁酯(194毫克,0.9毫摩尔)。反应液在室温下搅拌过夜。LCMS监测显示原料消失后,反应液浓缩。加入水(20毫升)。混合液用乙酸乙酯(20毫升×3)萃取,合并有机相,有机相先用饱和食盐水(10毫升)洗涤,然后用无水硫酸钠干燥,过滤,浓缩。粗品用硅胶柱层析分离得到280毫克化合物65-6。
MS(ESI)M/Z:512.2[M+H]+
步骤F:在室温下,将化合物65-6(280毫克,0.6毫摩尔)溶于二氯甲烷(2毫升)中。随后,向其中加入三氟乙酸(2毫升)。反应液在室温下搅拌过夜。LCMS监测显示原料消失后,反应液浓缩,得到290毫克化合物65-7。
MS(ESI)M/Z:412.1[M+H]+
步骤G:在室温下,将化合物65-7(290毫克,0.6毫摩尔)溶于二氯甲烷(20毫升)中。随后,向其中加入N,N-二异丙基乙胺(107毫克,0.8毫摩尔),室温下搅拌10分钟,然后加入乙酸(1毫升)和4-甲酰哌啶-1-羧酸叔丁酯(176毫克,0.8毫摩尔),反应液在室温下搅拌0.5小时。再加入三乙酰氧基硼氢化钠(233毫克,1.1毫摩尔),反应液在室温下继续搅拌过夜。LCMS监测显示原料消失后,反应液浓缩。加入饱和碳酸氢钠溶液(20毫升)。混合液用乙酸乙酯(20毫升×3)萃取,合并有机相,有机相先用饱和食盐水(10毫升)洗涤,然后用无水硫酸钠干燥,过滤,浓缩。粗品用硅胶柱层析分离得到290毫克化合物65-8。
MS(ESI)M/Z:609.3[M+H]+
步骤H:在室温下,将化合物65-8(290毫克0.6毫摩尔)溶于3摩尔/升盐酸乙酸乙酯溶液(10毫升)中。室温下搅拌2小时。LCMS监测显示原料消失后,反应液浓缩,得到270毫克化合物65-9。
MS(ESI)M/Z:509.2[M+H]+
步骤I:在室温下,将化合物65-9(50.0毫克,0.08毫摩尔)溶于二氯甲烷(10毫升)中。随后,向其中加入N,N-二异丙基乙胺(21毫克,0.2毫摩尔),室温下搅拌10分钟,然后加入乙酸(0.5毫升)和(S)-1-(5-氯-2-(2-氧乙氧基)吡啶-3-基)-3-(2-氯-7-(1-甲氧基乙基)吡唑并[1,5-a]嘧啶-6-基)尿素(化合物65-10,35毫克,0.08毫摩尔)。反应液在室温下搅拌1小时,然后加入三乙酰氧基硼氢化钠(25毫克,0.1毫摩尔),反应液在室温下继续搅拌过夜。LCMS监测显示原料消失后,反应液浓缩。加入饱和碳酸氢钠溶液(10毫升)。混合液用乙酸乙酯(20毫升 x 3)萃取,合并有机相,有机相先用饱和食盐水(10毫升)洗涤,然后用无水硫酸钠干燥,过滤,浓缩。粗品用硅胶柱层析分离得16.6毫克1-(5-氯-2-(2-(4-(9-(1-(2,6-二氧哌啶-3-基)-3-甲基-2-氧代-2,3-二氢-1H-苯并[d]咪唑-4-基)-3,9-二氮螺环[5.5]十一碳-3-基)甲基)哌啶-1-基)乙氧基)吡啶-3-(2-氯-7-((S)-1-甲氧基乙基)吡唑[1,5-a]嘧啶-6-基)脲(化合物65)。
MS(ESI)M/Z:931.3[M+H]+
1H-NMR(400MHz,DMSO-d6)δ11.11(s,1H),9.13(s,1H),8.94(s,1H),8.76(s,1H),8.44(d,J=2.0Hz,1H),7.83(d,J=2.0Hz,1H),6.97-6.95(m,2H),6.94(s,1H),6.87-6.85(m,1H),5.39-5.36(m,2H),4.54(t,J=6.0Hz,2H),3.62(s,3H),3.26(s,3H),2.91-2.86(m,7H),2.73(t,J=6.0Hz,2H),2.67-2.57(m,2H),2.30-2.28(m,4H),2.09-2.08(m,2H),2.03-1.98(m,3H),1.69-1.23(m,14H),1.05-1.02(m,2H).
实施例66:
1-(2-氯-7-((S)-1-甲氧基乙基)吡唑并[1,5-a]嘧啶-6-基)-3-(2-(2-(1-(2,6-二氧哌啶-3-基)-5-甲氧基-3-甲基-2-氧代-2,3-二氢-1H-苯并[d]咪唑-4-基)氨基)-7-氮杂螺[3.5]壬烯-7-基)乙氧基)-5-(三氟甲基)吡啶-3-基)尿素
反应流程:
实施例流程:
步骤A:在氮气保护条件下,将化合物66-1(5.0克,22.8毫摩尔)溶于四氢呋喃(50毫升)中,将甲胺的四氢呋喃溶液(4.7克,25.1毫摩尔)滴加入上述溶液中,该反应体系在0摄氏度下搅拌2小时。LCMS监测显示原料消失后,加入二氯甲烷(150毫升),有机相用饱和食盐水(50毫升×2)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩,所得混合物用硅胶柱层析纯化得到4.9克化合物66-2。
MS(ESI)M/Z:249.1[M+H]+
步骤B:在0摄氏度下,将化合物66-2(4.9克,19.7毫摩尔)溶于甲醇(50毫升)中,将甲醇钠的甲醇溶液(40毫升)滴加其中,在0摄氏度下搅拌2小时。LCMS监测显示原料消失后,加入二氯甲烷(150毫升),有机相用饱和食盐水(50毫升×2)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩,所得混合物用硅胶柱层析纯化得到4.3克化合物66-3。
MS(ESI)M/Z:261.0[M+H]+
步骤C:在室温条件下,将化合物66-3(4.3克,16.6毫摩尔)溶于乙醇(40毫升)中,将铁粉(9.2克,166毫摩尔)和氯化铵(1.7克,33.2毫摩尔)加入其中,该反应体系90摄氏度下搅拌2小时。LCMS监测显示原料消失后,反应液过滤后,减压浓缩,粗产物经硅胶柱层析纯化得到3.9克化合物66-4。
MS(ESI)M/Z:231.1[M+H]+
步骤D:在室温条件下,将化合物66-4(3.9克,16.9毫摩尔)溶于乙腈(40毫升)溶剂中,将N,N-羰基二咪唑(3.6克,22毫摩尔)加入其中,在80摄氏度下搅拌16小时。LCMS监测显示原料消失后,反应物过滤后得到滤饼,粗产物经硅胶柱层析纯化得2.2克化合物66-5。
MS(ESI)M/Z:257.0[M+H]+
步骤E:在0摄氏度条件下,将化合物66-5(1.1克,4.3毫摩尔)溶于N,N-二甲基甲酰胺(10毫升)溶剂中,将氢化钠(344.0毫克,8.6毫摩尔)加入其中,再滴加2-(三甲硅烷基)乙氧甲基氯(1.1克,6.5毫摩尔),该反应体系0摄氏度下搅拌16小时。LCMS监测显示原料消失后,加入冰水淬灭后,加入乙酸乙酯(100毫升×2)萃取合并有机相,有机相用饱和食盐水(50毫升)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩,得到的粗品通过薄层硅胶板分离得到840.0毫克化合物66-6。
MS(ESI)M/Z:387.0[M+H]+
步骤F:在室温条件下,将化合物66-6(840.0毫克,2.2毫摩尔)溶于1,4-二氧六环(10毫升)溶剂中,将叔丁醇钠(620.0毫克,6.4毫摩尔),三[二亚苄基丙酮]二钯(0)(218.4毫克,220微摩尔),2-二环己基磷-2',6'-二异丙氧基-1,1'-联苯(101.9毫克,218.4微摩尔)溶液在90摄氏度下搅拌2小时。LCMS监测显示原料消失后,加入乙酸乙酯(100毫升×2)萃取合并有机相,有机相用饱和食盐水(50毫升)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩,粗产物经硅胶柱层析纯化得到520.0毫克化合物66-7。
MS(ESI)M/Z:547.3[M+H]+
步骤G:在室温条件下,将化合物66-7(520.0毫克,1.4毫摩尔),溶于四甲基氟化胺的四氢呋喃溶液(15毫升)中,反应液升至80摄氏度下搅拌16小时。LCMS监测显示原料消失后,二氯甲烷(30毫升×2)萃取,合并有机相,有机相用饱和氯化铵(50毫升×2)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩,得到的粗品通过薄层硅胶板分离得到240.0毫克化合物66-8。
MS(ESI)M/Z:417.2[M+H]+
步骤H:在氮气保护和0摄氏度条件下,将化合物66-8(240.0毫克,0.6毫摩尔)溶于四氢呋喃(5毫升)中,慢慢滴加叔丁醇钾(1摩尔,8毫升),滴加完毕,并在该温度下搅拌1小时。在0摄氏度下,将1-(4-甲氧基苄基)-2,6-二氧哌啶-3-基三氟甲烷磺酸盐(331毫克,0.9毫摩尔)和四氢呋喃(5毫升)的混合溶液缓慢滴加到上述溶液中,并在该温度下搅拌2小时。LCMS监测显示原料消失后,反应液中加入乙酸乙酯(50毫升)稀释,有机相用水(50毫升×3)和饱和食盐水(50毫升×3)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩,所得粗品经过硅胶柱层析纯化得到140.0毫克化合物66-9。
MS(ESI)M/Z:648.3[M+H]+
步骤I:在氮气保护下,将化合物66-9(140.0毫克,0.22毫摩尔)溶于三氟乙酸(5毫升)中,加入三氟甲磺酸(0.5毫升)。该体系在60摄氏度下搅拌16小时。LCMS监测显示原料反应完全后,将反应液减压浓缩,得到90.0毫克化合物66-10。
MS(ESI)M/Z:428.2[M+H]+
步骤J:将化合物66-10(90.0毫克,0.2毫摩尔)溶于乙腈(5毫升)中,加入三乙胺(60.0毫克,0.6毫摩尔)和二碳酸二叔丁酯(65.4毫克,0.3毫摩尔)。该体系在室温下搅拌3小时。LCMS监测显示原料反应完全后,反应液中加入二氯甲烷(50毫升)稀释,有机相用水(50毫升×3)和饱和食盐水(50毫升×3)洗涤,无水硫酸镁干燥,过滤,滤液减压浓缩。所得混合物通过硅胶柱层析纯化得到95.0毫克化合物66-11。
MS(ESI)M/Z:528.2[M+H]+
步骤K:将化合物66-11(95.0毫克,0.2毫摩尔)溶于二氯甲烷(3毫升)中,加入盐酸二氧六环溶液(3毫升)。该体系在室温下搅2小时。LCMS监测显示原料反应完全后,将反应液减压浓缩,得到65.0毫克化合物66-12。
MS(ESI)M/Z:428.2[M+H]+
步骤L:将化合物66-12(65.0毫克,0.2毫摩尔),溶于N,N-二甲基甲酰胺(3毫升)和四氢呋喃(3毫升)的混合溶剂中,将N,N-二异丙基乙胺(58毫克,0.5毫摩尔)加入其中,并于室温下搅拌30分钟,再加入醋酸(0.1毫升)和(S)-1-(2-氯-7-(1-甲氧基乙基)吡唑并[1,5-a]嘧啶-6-基)-3-(2-(2-氧代乙氧基)-5-(三氟甲基)吡啶-3-基)尿素 (85.0毫克,0.2毫摩尔),最后加入三乙酰氧基硼氢化钠(80.0毫克,0.4毫摩尔),该反应体系室温下搅拌1小时。LCMS监测显示原料消失后,加入饱和碳酸氢钠中和,乙酸乙酯(30毫升×2)合并有机相,有机相用饱和食盐水(50毫升)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩,得到的粗品通过薄层硅胶板分离得到11.7毫克1-(2-氯-7-((S)-1-甲氧基乙基)吡唑并[1,5-a]嘧啶-6-基)-3-(2-(2-(1-(2,6-二氧哌啶-3-基)-5-甲氧基-3-甲基-2-氧代-2,3-二氢-1H-苯并[d]咪唑-4-基)氨基)-7-氮杂螺[3.5]壬烯-7-基)乙氧基)-5-(三氟甲基)吡啶-3-基)尿素(化合物66)。
MS(ESI)M/Z:884.3[M+H]+
1H-NMR(400MHz,DMSO-d6)δ11.06(s,1H),9.29(s,1H),8.95(s,1H),8.76(s,1H),8.67(d,J=2.0Hz,1H),8.18(s,1H),6.93(s,1H),6.76-6.71(m,2H),5.40-5.35(m,1H),5.30-5.27(m,1H),4.64-4.60(t,J=6.0Hz,2H),4.01(d,J=10.8Hz,1H),3.48(s,3H),3.45(s,3H),3.25(s,3H),2.91-2.84(m,1H),2.72-2.62(m,4H),2.50-2.34(m,2H),2.20-1.90(m,4H),1.80-1.70(m,3H),1.69-1.59(m,4H),1.70-1.65(m,4H).
实施例67:
1-(2-氯-7-((S)-1-甲氧基乙基)吡唑并[1,5-a]嘧啶-6-基)-3-(2-(2-(2-((1-(2,6-二羰基哌啶-3-基)-5-氟-3-甲基-2-羰基-2,3-二氢-1H-苯并[d]咪唑-4-基)氨基)-7-氮杂螺[3.5]壬烷-7-基)乙氧基)-5-(三氟甲基)吡啶-3-基)脲
反应流程:
实施例流程:
步骤A:在室温下,将化合物67-1(4.5克,19.0毫摩尔)和甲胺溶液(4.5克,47.4毫摩尔)溶于四氢呋喃(50毫升),然后在60摄氏度下闷罐中搅拌16小时。将反应液冷却至室温,LCMS监测显示原料消失,减压浓缩,所得混合物用硅胶柱层析纯化得到3.5克化合物67-2。
MS(ESI)M/Z:249.0[M+H]+
步骤B:在室温下,将化合物67-2(3.3克,13.3毫摩尔)溶于混合溶剂丙酮(15毫升)和饱和碳酸氢钠溶液,15毫升),然后在0摄氏度下分批加入连二亚硫酸钠(18.5克,106.0毫摩尔),常温下搅拌0.5小时。LCMS监测显示原料消失,反应液加水淬灭,乙酸乙酯萃取,饱和食盐水洗涤,无水硫酸钠干燥,减压浓缩,所得混合物用硅胶柱层析纯化得到1.8克化合物67-3。
MS(ESI)M/Z:221.0[M+H]+
步骤C:在室温下,将化合物67-3(1.3克,6.0毫摩尔),N,N'-羰基二咪唑(1.9克,11.9毫摩尔)溶于四氢呋喃(20毫升)中。氮气置换3次,然后在65摄氏度下搅拌16小时。LCMS监测显示原料消失,将反应液冷却至室温,减压浓缩,所得混合物用硅胶柱层析纯化得到1.2克化合物67-4。
MS(ESI)M/Z:245.0[M+H]+
步骤D:在室温下,将化合物67-4(1.2克,4.9毫摩尔)溶于无水N,N-二甲基甲酰胺(20毫升)中,然后在0摄氏度下加入钠氢(377.0毫克,9.8毫摩尔),搅拌10分钟后加入2-(三甲基硅烷基)乙氧甲基氯(1.6克,9.8毫摩尔),在常温下搅拌16小时。LCMS监测显示原料消失,反应液经甲醇淬灭后减压浓缩,所得混合物用硅胶柱层析纯化得到1.5克化合物67-5。
步骤E:在室温下,将化合物67-5(1.5克,4.0毫摩尔)和叔-丁基2-氨基-7-氮杂螺[3.5]壬烷-7-羧酸酯(1.1克,4.4毫摩尔),三(二亚苄基丙酮)钯(367.0毫克,0.4毫摩尔),2-二环己基磷-2',6'-二异丙氧基-1,1'-联苯(373.0毫克,0.8毫摩尔)和叔丁醇钠(1.2克,12.0毫摩尔)溶于无水1.4-二氧六环(25毫升)中,经氮气置换3次后,在100摄氏度下搅拌16小时。LCMS监测显示原料消失,将反应液冷却至室温,减压浓缩,所得混合物用硅胶柱 层析纯化得到345.0毫克化合物67-6。
MS(ESI)M/Z:535.5[M+H]+
步骤F:在常温下,将化合物67-6(345.0毫克,0.6毫摩尔)溶于混合溶剂三氟乙酸(1毫升)和二氯甲烷(3毫升),然后在常温下搅拌4小时。LCMS监测原料基本反应完全,减压浓缩,所得残留物溶于混合溶剂乙腈(2毫升)和氨水(4毫升),然后在常温下搅拌1小时。LCMS监测显示原料消失,减压浓缩,所得混合物用制备色谱纯化得到200.0毫克化合物67-7。
MS(ESI)M/Z:305.1[M+H]+
步骤G:在室温下,将化合物67-7(196.0毫克,0.6毫摩尔),三乙胺(195.0毫克,1.9毫摩尔)和二碳酸二叔丁酯(281.0毫克,1.3毫摩尔)溶于二氯甲烷(5毫升)中,然后在常温下搅拌3小时。LCMS监测显示原料消失,将反应液减压浓缩,所得混合物用硅胶柱层析纯化得到166.0毫克化合物67-8。
MS(ESI)M/Z:405.2[M+H]+
步骤H:在室温下,将化合物67-8(166.0毫克,0.4毫摩尔)和叔丁醇钾(92.0毫克,0.8毫摩尔)溶于无水四氢呋喃(8毫升)中,在0摄氏度下搅拌10分钟。然后将溶于无水四氢呋喃(6毫升)的1-(4-甲氧苄基)-2,6-二羰基哌啶-3-基三氟甲磺酸(235.0毫克,0.6毫摩尔)溶液缓慢滴加入反应液,加入完毕后0摄氏度下搅拌2小时。LCMS监测显示原料消失,将反应液减压浓缩,所得混合物用硅胶柱层析纯化得到220.0毫克化合物67-9。
MS(ESI)M/Z:636.3[M+H]+
步骤I:在常温下,将化合物67-9(200.0毫克,0.3毫摩尔)溶于混合溶剂三氟乙酸(1毫升)和三氟甲磺酸(3毫升),然后在50摄氏度下搅拌10小时。LCMS监测原料基本反应完全,将反应液冷却至室温,减压浓缩,所得混合物用制备色谱纯化得到100.0毫克化合物67-10。
MS(ESI)M/Z:416.2[M+H]+
步骤J:在氮气保护下,将化合物67-10(95.0毫克,148.0微摩尔),吡啶(70.0毫克,0.9毫摩尔)溶于甲醇(8毫升),反应液在室温下搅拌10分钟,将(S)-1-(2-氯-7-(1-甲氧基乙基)吡唑并[1,5-a]嘧啶-6-基)-3-(2-(2-羰基乙氧基)-5-(三氟甲基)吡啶-3-基)脲(70.0毫克,148.0微摩尔)和2-甲基吡啶硼烷(127.0毫克,1.2毫摩尔)加入到反应液中,反应液在常温下搅拌16小时。LCMS监测显示原料消失,将反应液浓缩,所得混合物通过制备色谱纯化得到51.6毫克1-(2-氯-7-((S)-1-甲氧基乙基)吡唑并[1,5-a]嘧啶-6-基)-3-(2-(2-(2-((1-(2,6-二羰基哌啶-3-基)-5-氟-3-甲基-2-羰基-2,3-二氢-1H-苯并[d]咪唑-4-基)氨基)-7-氮杂螺[3.5]壬烷-7-基)乙氧基)-5-(三氟甲基)吡啶-3-基)脲(化合物67)。
MS(ESI)M/Z:872.3[M+H]+
1HNMR(400MHz,DMSO-d6)δ11.08(s,1H),9.24(s,1H),8.95(s,1H),8.76(s,1H),8.68(d,J=2.4Hz,1H),8.21-8.15(m,1H),6.93(s,1H),6.87-6.78(m,1H),6.73-6.70(m,1H),5.45-5.26(m,2H),4.62(t,J=6.0Hz,2H),4.45-4.43(m,1H),3.62-3.53(m,4H),3.25(s,3H),2.92-2.81(m,1H),2.76-2.70(m,2H),2.70-2.58(m,2H),2.45-2.30(m,4H),2.15-2.06(m,2H),2.03-1.94(m,1H),1.73-1.67(m,2H),1.58(d,J=6.8Hz,3H),1.51-1.45(m,4H).
实施例68:
1-(2-氯-7-((S)-1-甲氧基乙基)吡唑并[1,5-a]嘧啶-6-基)-3-(2-(2-((1-(2,6-二氧代哌啶-3-基)-3,3-二甲基-2-氧代吲哚-4-基)氨基)-7-氮杂螺[3.5]壬-7-基)乙氧基)-5-(三氟甲基)吡啶-3-基)脲
反应流程:
实施例流程:
步骤A:在氮气的保护下,将化合物68-1(3.0克,14.1毫摩尔)溶于四氢呋喃(75毫升)中,将反应液降到-78摄氏度,将双三甲基硅基胺基锂(1摩尔,53毫升)加入上述溶液中,在该温度下搅拌30分钟后,再将碘甲烷(5.0克,35.4毫摩尔)缓慢滴加进反应液中。该反应体系在室温下搅拌3小时。LCMS监测显示原料消失后,向反应液中加入饱和氯化铵溶液(100毫升)淬灭,乙酸乙酯(100毫升×3)萃取,合并有机相,用饱和食盐水(50毫升×3)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩,所得混合物通过硅胶柱层析纯化得到3.1克化合物68-2。
MS(ESI)M/Z:242.1[M+H]+
步骤B:将化合物68-2(500.0毫克,2.1毫摩尔)和2-氨基-7-氮螺[3.5]壬-7-羧酸叔丁酯(750.0毫克,3.1毫摩尔),叔丁醇钠(400.0毫克,4.2毫摩尔),2-二环己基磷-2',6'-二异丙氧基-1,1'-联苯(48.6毫克,0.1毫摩尔)和三二亚苄基丙酮二钯(190.6毫克,0.2毫摩尔)溶于1,4-二氧六环(10毫升)中,该体系在110摄氏度下搅拌3小时。LCMS监测显示原料反应完全后,反应液中加入乙酸乙酯(100毫升)和水(100毫升)稀释,,饱和食盐水(100毫升×3)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩。所得混合物硅胶柱层析纯化得到650.0毫克化合物68-3。
MS(ESI)M/Z:400.4[M+H]+
步骤C:在氮气保护和零摄氏度的条件下,将化合物68-3(650.0毫克,1.6毫摩尔)溶于四氢呋喃(5毫升) 中,慢慢滴加叔丁醇钾(1摩尔,2.4毫升),滴加完毕,该体系在零摄氏度搅拌1小时。在零摄氏度下,将1-(4-甲氧基苄基)-2,6-二氧代哌啶-3-基三氟甲磺酸酯(1.2克,3.3毫摩尔)和四氢呋喃(5毫升)的混合溶液缓慢滴加到上述溶液中,并在该温度下搅拌2小时。LCMS监测显示原料消失后,反应液中加入乙酸乙酯(100毫升)稀释,有机相用水(50毫升×3)和饱和食盐水(50毫升×3)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩,所得混合物经过硅胶柱层析纯化得到400.0毫克化合物68-4。
MS(ESI)M/Z:631.3[M+H]+
步骤D:在氮气保护下,将化合物68-4(400.0毫克,0.6毫摩尔)溶于三氟乙酸(4毫升)中,加入三氟甲磺酸(0.4毫升)。该体系在60摄氏度搅拌16小时。LCMS监测显示原料反应完全后,将反应液减压浓缩,得到260.0毫克粗品化合物68-5,直接用于下一步反应。
MS(ESI)M/Z:411.3[M+H]+
步骤E:将化合物68-5(260.0毫克,0.6毫摩尔)溶于乙腈(5毫升)中,加入三乙胺(128.1毫克,1.3毫摩尔)和二碳酸二叔丁酯(289.9毫克,0.8毫摩尔)。该体系在室温下搅拌2小时。LCMS监测显示原料反应完全后,反应液中加入二氯甲烷(50毫升)稀释,有机相用水(50毫升×3)和饱和食盐水(50毫升×3)洗涤,无水硫酸镁干燥,过滤,滤液减压浓缩。所得混合物通过硅胶柱层析纯化得到210.0毫克化合物68-6。
MS(ESI)M/Z:511.2[M+H]+
步骤F:将化合物68-6(65.0毫克,130.0微摩尔)溶于二氯甲烷(2毫升),加入盐酸1,4-二氧六环(2毫升)。该反应体系在室温下搅拌2小时。LCMS监测显示原料消失后,反应液减压浓缩,得到52.0毫克化合物68-7。
MS(ESI)M/Z:411.3[M+H]+
步骤G:将化合物68-7(52.0毫克,130.0微摩尔)和N,N-二异丙基乙胺(49.0毫克,0.4毫摩尔)溶入N,N-二甲基甲酰胺(2毫升)和四氢呋喃(2毫升)的混合溶剂中,室温下搅拌0.5小时,然后加入(S)-1-(2-氯-7-(1-甲氧基乙基)吡唑并[1,5-a]嘧啶-6-基)-3-(2-(2-氧代乙氧基)-5-(三氟甲基)吡啶-3-基)脲(59.8毫克,130.0微摩尔),醋酸(0.1毫升),再加入三乙酰氧基硼氢化钠(53.8毫克,253.8微摩尔),该反应液在室温下搅拌2小时。LCMS监测显示原料消失,反应液中加入乙酸乙酯(50毫升)稀释,用水(50毫升×3)和饱和食盐水(50毫升×3)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩。所得混合物反相柱层析纯化得到33.5毫克1-(2-氯-7-((S)-1-甲氧基乙基)吡唑并[1,5-a]嘧啶-6-基)-3-(2-(2-((1-(2,6-二氧代哌啶-3-基)-3,3-二甲基-2-氧代吲哚-4-基)氨基)-7-氮杂螺[3.5]壬-7-基)乙氧基)-5-(三氟甲基)吡啶-3-基)脲(化合物68)。
MS(ESI)M/Z:867.2[M+H]+
1H-NMR(400MHz,DMSO-d6)δ11.03(s,1H),9.30(s,1H),9.00(s,1H),8.76(s,1H),8.69(d,J=2.2Hz,1H),8.19(s,1H),7.01-6.97(m,1H),6.94(s,1H),6.30-6.22(m,2H),5.41-5.36(m,,1H),5.11(s,1H),4.72-4.58(m,3H),3.97–3.82(m,1H),3.26(s,3H),2.92–2.73(m,3H),2.65–2.52(m,2H),2.42(s,3H),2.25-2.21(m,2H),1.96-1.85(m,1H),1.78-1.69(m,2H),1.65-1.48(m,6H),1.37(s,3H),1.36(s,3H).
实施例69:
1-(2-氯-7-((S)-1-甲氧基乙基)吡唑并[1,5-a]嘧啶-6-基)-3-(2-(2-(6-(2-((1-(2,6-二羰基哌啶-3-基)-3-甲基-2-羰基-2,3-二氢-1H-苯并[d]咪唑-4-基)氨基)乙基)-2-氮杂螺[3.3]庚烷-2-基)乙氧基)-5-(三氟甲基)吡啶-3-基)脲
反应流程:
实施例流程:
化合物69-1的制备方法参考实施例50。
步骤A:在氮气保护下,将化合物69-1(250.0毫克,0.4毫摩尔),吡啶(100.0毫克,1.3毫摩尔)溶于甲醇(8毫升),反应液在室温下搅拌10分钟,将(S)-1-(2-氯-7-(1-甲氧基乙基)吡唑并[1,5-a]嘧啶-6-基)-3-(2-(2-羰基乙氧基)-5-(三氟甲基)吡啶-3-基)脲(100.0毫克,0.2毫摩尔)和2-甲基吡啶硼烷(181.0毫克,1.7毫摩尔)加入到反应液中,在常温下搅拌16小时。LCMS监测显示原料消失,将反应液浓缩,所得混合物通过制备色谱纯化得到5.9毫克1-(2-氯-7-((S)-1-甲氧基乙基)吡唑并[1,5-a]嘧啶-6-基)-3-(2-(2-(6-(2-((1-(2,6-二羰基哌啶-3-基)-3-甲基-2-羰基-2,3-二氢-1H-苯并[d]咪唑-4-基)氨基)乙基)-2-氮杂螺[3.3]庚烷-2-基)乙氧基)-5-(三氟甲基)吡啶-3-基)脲(化合物69)。
MS(ESI)M/Z:854.4[M+H]+
1HNMR(400MHz,DMSO-d6)δ11.05(s,1H),9.23(s,1H),8.98(s,1H),8.77(s,1H),8.68(d,J=2.4Hz,1H),8.18(s,1H),6.93(s,1H),6.85(t,J=8.0Hz,1H),6.49(d,J=8.0Hz,1H),6.37(d,J=8.0Hz,1H),5.41-5.36(m,1H),5.31-5.23(m,1H),4.96-4.94(m,1H),4.50-4.47(m,2H),3.59(s,3H),3.25(s,4H),3.14(s,2H),2.96-2.79(m,5H),2.69-2.59(m,2H),2.24-2.16(m,3H),2.00-1.93(m,1H),1.80-1.62(m,5H),1.59(d,J=6.8Hz,3H).
实施例70:
1-(2-氯-7-((S)-1-甲氧基乙基)吡唑并[1,5-a]嘧啶-6-基)-3-(2-(2-(6-((1-(2,6-二羰基哌啶-3-基)-3-甲基-2-羰基-2,3-二氢-1H-苯并[d]咪唑-4-基)氨基)-2-氮杂螺[3.3]庚烷-2-基)乙氧基)-5-(三氟甲基)吡啶-3-基)脲
反应流程:
实施例流程:
化合物70-1的制备方法参考实施例50。
步骤A:在氮气保护下,将化合物70-1(100.0毫克,0.3毫摩尔)和吡啶(126.4毫克,1.6毫摩尔)溶于甲醇(1毫升),反应液在室温下搅拌10分钟,加入(S)-1-(2-氯-7-(1-甲氧基乙基)吡唑并[1,5-a]嘧啶-6-基)-3-(2-(2-羰基乙氧基)-5-(三氟甲基)吡啶-3-基)脲(191.2毫克,0.4毫摩尔)和2-甲基吡啶-N-甲硼烷(235.2毫克,2.2毫摩尔),反应液在室温下搅拌12小时。LCMS监测显示原料消失,将反应液减压浓缩,所得混合物通过制备色谱纯化得到55.3毫克1-(2-氯-7-((S)-1-甲氧基乙基)吡唑并[1,5-a]嘧啶-6-基)-3-(2-(2-(6-((1-(2,6-二羰基哌啶-3-基)-3-甲基-2-羰基-2,3-二氢-1H-苯并[d]咪唑-4-基)氨基)-2-氮杂螺[3.3]庚烷-2-基)乙氧基)-5-(三氟甲基)吡啶-3-基)脲(化合物70)。
MS(ESI)M/Z:826.1[M+H]+
1H NMR(400MHz,DMSO-d6)δ11.05(s,1H),9.25(s,1H),8.99(s,1H),8.78(s,1H),8.70(d,J=2.2Hz,1H),8.19(s,1H),6.93(s,1H),6.85-6.81(m,1H),6.52(d,J=8.0Hz,1H),6.27(d,J=8.4Hz,1H),5.41-5.36(m,1H),5.30-5.25(m,1H),5.18(d,J=6.8Hz,1H),4.50(t,J=5.6Hz,2H),3.71-3.66(m,1H),3.59(s,3H),3.26(s,3H),3.20(s,2H),2.94-2.79(m,3H),2.74-2.51(m,6H),2.13-1.87(m,3H),1.59(d,J=6.8Hz,3H).
实施例71:
1-(2-氯-7-((S)-1-甲氧基乙基)吡唑并[1,5-a]嘧啶-6-基)-3-(2-(1-(1-(2,6-二氧代哌啶-3-基)-3-甲基-2-氧代-2,3-二氢-1H-苯并[d]咪唑-4-基)哌啶-4-基)甲基)哌啶-4-基)乙氧基)-5-(三氟甲基)吡啶-3-基)尿素
反应流程:
实施例流程:
步骤A:在0摄氏度下,向化合物71-1(5.0克,23.3毫摩尔)的四氢呋喃(50毫升)溶液中,缓慢加入氢化钠(837.0毫克,34.9毫摩尔),并在0摄氏度下搅拌1小时,再将溴化苄(4.7克,27.9毫摩尔)加入上述溶液中。将混合物升温至室温后继续搅拌4小时。LCMS显示反应完成后,将混合物用饱和氯化铵溶液(50毫升)和乙酸乙酯(70毫升)进行淬灭。收集有机相并用水(50毫升)和饱和食盐水(50毫升)进行洗涤。有机相用无水硫酸钠进行干燥,过滤,旋干后用硅胶柱层析纯化得到5.9克化合物71-2。
MS(ESI)M/Z:328.2[M+Na]+
步骤B:在0摄氏度下,向化合物71-2(5.9克,19.3毫摩尔)的二氯甲烷(100毫升)溶液中,缓慢滴加盐酸的乙酸乙酯溶液(1摩尔,40毫升),所得反应液在室温下搅拌1小时。LCMS显示反应完成后,旋干得到5.1克化合物71-3。
MS(ESI)M/Z:205.8[M+H]+
步骤C:在室温下,向化合物71-3(2.0克,10毫摩尔)的1,4-二氧六环(100毫升)溶液中,加入4-溴-3-甲基-1-((2-(三甲基硅)乙氧基)甲基)-1,3-二氢-2H-苯并[d]咪唑-2-酮(3.5克,10毫摩尔),叔丁醇钠(2.0克,20.0毫摩尔),三二亚苄基丙酮二钯(1.0克,1.0毫摩尔)和2-双环己基膦-2`,6`-二异丙氧基联苯(500毫克,1.0毫摩尔)。用氮气将体系置换三次后在90摄氏度下搅拌4小时。LCMS显示反应完成后,将反应液降至室温,加入水(100毫升)和乙酸乙酯(100毫升)进行萃取。收集有机相后用饱和食盐水(100毫升)进行洗涤并用无水硫酸钠干燥,过滤浓缩,粗品用硅胶柱层析纯化得到2.9克化合物71-4。
MS(ESI)M/Z:482.2[M+H]+
步骤D:在室温下,向化合物71-4(2.9克,6.0毫摩尔)的四氢呋喃(20毫升)溶液中,加入四丁基氟化铵的四氢呋喃溶液(80.0毫升,80.0毫摩尔)并在80摄氏度下搅拌16小时。LCMS显示反应完成后,将反应液降至室温,加入水(50毫升)和乙酸乙酯(50毫升)进行萃取。收集有机相后用饱和食盐水(100毫升)洗涤并用无水硫酸钠干燥,过滤浓缩,所得混合物用硅胶柱层析纯化得到1.9克化合物71-5。
MS(ESI)M/Z:352.2[M+H]+
步骤E:在0摄氏度下,向化合物71-5(1.9克,5.4毫摩尔)的四氢呋喃(100毫升)溶液中,滴加叔丁醇钾的四氢呋喃溶液(1摩尔,13.5毫升)并在0摄氏度下搅拌1小时后,缓慢滴加1-(4-甲氧基苄基)-2,6-二氧代哌啶-3-基三氟甲磺酸酯(4.1克,10.8毫摩尔)的四氢呋喃溶液,将反应液升至室温后继续反应4小时。LCMS显示反应完成后,将混合物加入水(60毫升)和乙酸乙酯(60毫升)进行萃取。收集有机相后用饱和食盐水(100毫升)进行洗涤并用无水硫酸钠干燥,过滤,旋干后用硅胶柱层析纯化得到1.2克化合物71-6。
MS(ESI)M/Z:583.2[M+H]+
步骤F:在室温下,向含有化合物71-6(1.2克,3.4毫摩尔)的三氟醋酸(10毫升)溶液中,滴加三氟甲磺酸溶液(1毫升)并在60摄氏度下搅拌16小时。LCMS显示反应完成后,旋去大部分溶剂后得到3.5克化合物71-7。
MS(ESI)M/Z:468.4[M+H]+
步骤G:在0摄氏度下,向化合物71-7(3.5克,7.5毫摩尔)的甲醇(20毫升)溶液中加入碳酸钾(2.1克,15毫摩尔)并在0摄氏度下继续搅拌30分钟。LCMS显示反应完全后过滤,滤液加入二氯甲烷(50毫升)并用水进行洗涤,收集有机相后用无水硫酸钠干燥,过滤浓缩,所得混合物用硅胶柱层析纯化后得200.0毫克化合物71-8。
MS(ESI)M/Z:373.1[M+H]+
步骤H:室温下,将化合物71-8(90.0毫克,242.0微摩尔)溶于二甲亚砜(4毫升),加入2-碘酰苯甲酸(135.0毫克,0.5毫摩尔),室温搅拌3小时。LCMS监测显示原料消失,反应液加入碳酸氢钠溶液(50毫升),乙酸乙酯(50毫升)萃取,有机相用水(50毫升)洗和盐水(50毫升)洗,干燥,浓缩,得到80.0毫克化合物71-9。
MS(ESI)M/Z:371.1[M+H]+
步骤I:将化合物71-10(117.0毫克,0.2毫摩尔)溶于四氢呋喃(2毫升)和N,N-二甲基甲酰胺(2毫升)中,加入三乙胺(0.2毫升),室温搅拌半小时,加入乙酸(0.3毫升)和化合物71-9(80.0毫克,0.2毫摩尔),室温搅拌半小时,再加入三乙酰氧基硼氢化钠(92.0毫克,432.0微摩尔),该体系在室温下搅拌3小时。LCMS监测显示原料消失后,反应液浓缩,粗品用薄层硅胶层析纯化得到43.8毫克1-(2-氯-7-((S)-1-甲氧基乙基)吡唑并[1,5-a]嘧啶-6-基)-3-(2-(1-(1-(2,6-二氧哌啶-3-基)-2-甲基-2-氧代-2,3-二氢-1H-苯并[d]咪唑-4-基)哌啶-4-基甲基)哌啶-4-基(乙氧基)-5-(三氟甲基)吡啶-3-基脲(化合物71)。
MS(ESI)M/Z:896.3[M+H]+
1H-NMR(400MHz,DMSO-d6)δ11.09(s,1H),9.20(s,1H),8.96(s,1H),8.76(s,1H),8.66(s,1H),8.17(s,1H), 6.95-6.92(m,2H),6.87-6.84(m,2H),5.39-5.32(m,2H),4.55(t,J=7.2Hz,2H),3.61(s,3H),3.26(s,3H),3.10-3.08(m,2H),2.88-2.81(m,2H),2.70-2.62(m,4H),2.15(s,2H),2.00-1.97(m,2H),1.88-1.76(m,6H),1.71-1.68(m,2H),1.58(d,J=6.4Hz,3H),1.45-1.18(m,6H).
实施例72:
1-(2-氯-7-((S)-1-甲氧基乙基)吡唑并[1,5-a]嘧啶-6-基)-3-(2-(2-((1-((1-(2-(2,6-二氧代哌啶-3-基)-1,3-二氧代异吲哚啉-5-基)哌啶-4-基)甲基)哌啶-4-基)氧基)乙氧基)-5-(三氟甲基)吡啶-3-基)脲
反应流程:
实施例流程:
步骤A:在氮气保护下,将化合物72-1(5.0克,24.9毫摩尔)溶于N,N-二甲基甲酰胺(50毫升)中,在0摄氏度下加入钠氢(657.6毫克,27.4毫摩尔)。该体系在0摄氏度下搅拌30分钟,然后缓慢滴加(2-溴乙氧基)甲基) 苯(5.9克,27.4毫摩尔),反应液升至室温搅拌12小时。LCMS监测显示原料消失后,加入冰水(50毫升)淬灭,用乙酸乙酯(200毫升×3)萃取,合并有机相,用饱和食盐水(100毫升×2)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩。所得混合物用硅胶柱层析纯化得到4.4克化合物72-2。
MS(ESI)M/Z:336.2[M+H]+
步骤B:将化合物72-2(4.4克,13.1毫摩尔)和钯碳(500.0毫克)加入甲醇(40毫升)中,反应液经氢气置换3次后,在室温下搅拌18小时。LCMS监测显示原料消失后,将反应液降至室温,过滤,滤液减压浓缩,所得混合物用乙酸乙酯(50毫升)溶解,有机相用水(50毫升×3)和饱和食盐水(50毫升×3)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩。所得混合物用硅胶柱层析纯化得到1.2克化合物72-3。
MS(ESI)M/Z:268.1[M+Na]+
步骤C:在氮气保护下,将化合物72-3(1.2克,4.9毫摩尔),3-硝基-5-(三氟甲基)吡啶-2-醇(1.0克,4.9毫摩尔),三苯基膦(2.6克,9.8毫摩尔),溶于四氢呋喃(60毫升)中,在0摄氏度下,缓慢滴加偶氮二羧酸二乙酯(1.7克,9.9毫摩尔),滴加完毕,将反应液缓慢升至室温搅拌16小时,LCMS监测显示原料消失后,用乙酸乙酯(100毫升×3)萃取。合并有机相,用饱和食盐水(50毫升×2)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩,所得混合物用硅胶柱层析纯化得到300.0毫克化合物72-4。
MS(ESI)M/Z:458.1[M+Na]+
步骤D:将化合物72-4(300.0毫克,0.7毫摩尔)和氯化铵(73.0毫克,1.4毫摩尔)溶于乙醇(10毫升)和水(1毫升)中,搅拌下加入铁粉(380.0毫克,6.8毫摩尔),然后将反应液升至90摄氏度搅拌2小时。LCMS监测显示原料消失后,将反应液降至室温,过滤,滤液减压浓缩,所得混合物用乙酸乙酯(10毫升)溶解,有机相用水(10毫升×3)和饱和食盐水(10毫升×3)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩,所得混合物用硅胶柱层析纯化得到270.0毫克化合物72-5。
MS(ESI)M/Z:406.2[M+H]+
步骤E:在氮气保护下,将化合物INT-1(170.9毫克,0.7毫摩尔)溶于1,4二氧六环(10毫升)中,再将三乙胺(203.0毫克,2.0毫摩尔)和叠氮磷酸二苯酯(203.5毫克,0.7毫摩尔)加入上述溶液中,得到的混合物在室温下搅拌30分钟,再将4-(2-((3-氨基-5-(三氟甲基)吡啶-2-基)氧基)乙氧基)哌啶-1-羧酸叔丁酯(化合物72-5,270.0毫克,0.7毫摩尔)加入到反应液中,反应液升至100摄氏度搅拌1小时。LCMS监测显示原料消失后,将反应液降至室温,用水和乙酸乙酯稀释,水层用乙酸乙酯(30毫升×3)萃取,有机层用饱用食盐水(30毫升×3)洗涤,并在无水硫酸钠上干燥,过滤浓缩,所得混合物用硅胶柱层析纯化得到105.0毫克化合物72-6。
MS(ESI)M/Z:658.2[M+H]+
步骤F:在氮气保护下,将化合物72-6(105.0毫克,0.2毫摩尔)溶于二氯甲烷(3毫升)中,加入盐酸的1,4-二氧六环溶液(1毫升),反应液在室温下搅拌1小时。LCMS监测显示原料消失后,反应液减压浓缩,得到80.0毫克化合物72-7。
MS(ESI)M/Z:558.2[M+H]+
步骤G:在氮气保护下,将化合物72-7(80.0毫克,143.0微摩尔)溶于混合溶剂N,N-二甲基甲酰胺(3毫升)和四氢呋喃(3毫升)中,然后加入三乙胺(46.4毫克,0.4毫摩尔),在室温搅拌30分钟,再加入1-(2-(2,6-二氧哌啶-3-基)-1,3-二氧异吲哚-5-基)哌啶-4-甲醛(化合物72-8,52.9毫克,143.0微摩尔),乙酸(0.3毫升)和三乙酰氧基硼氢化钠(134.0毫克,0.63毫摩尔),反应液在室温下搅拌3小时。LCMS监测显示原料消失后,反应液减压浓缩,所得混合物先后经过反相纯化和薄层硅胶板分离得到15.0毫克1-(2-氯-7-((S)-1-甲氧基乙基)吡唑并[1,5-a]嘧啶-6-基)-3-(2-(2-((1-((1-(2-(2,6-二氧代哌啶-3-基)-1,3-二氧代异吲哚啉-5-基)哌啶-4-基)甲基)哌啶-4-基)氧基)乙氧基)-5-(三氟甲基)吡啶-3-基)脲(化合物72)。
MS(ESI)M/Z:911.3[M+H]+
1H-NMR(400MHz,DMSO-d6)δ11.08(s,1H),9.31(s,1H),9.02(s,1H),8.78(s,1H),8.70(s,1H),8.19(s,1H),7.64(d,J=8.4Hz,1H),7.29(s,1H),7.22-7.19(m,1H),6.93(s,1H),5.42-5.37(m,1H),5.09-5.04(m,1H),4.69-4.66(m,2H),4.01(d,J=12.8Hz,2H),3.85-3.83(m,2H),3.27(s,3H),2.92–2.78(m,3H),2.62–2.53(m,4H),2.12-1.93(m,6H),1.82–1.68(m,6H),1.59(d,J=6.8Hz,3H),1.47-1.33(m,2H),1.23-1.01(m,2H).
实施例73:
1-(2-氯-7-((S)-1-甲氧乙基)吡唑并[1,5-a]嘧啶-6-基)-3-(2-(4-(4-((2,6-二氧哌啶-3-基)氨基)-3-氟苯基)哌嗪-1-基)甲基)哌啶-1-基(乙氧基)-5-(三氟甲基)吡啶-3-基尿素
反应流程:
实施例流程:
化合物73-1的制备方法参考实施例51。
步骤A:在0摄氏度条件下,将化合物73-1(100.0毫克,0.3毫摩尔),溶于N,N-二甲基甲酰胺(4.0毫升)和四氢呋喃(4.0毫升)的混合溶剂中,然后加入N,N-二异丙基乙胺(96.8毫克,0.8毫摩尔),反应液在室温下搅拌10分钟,再加入醋酸(0.3毫升)和(S)-1-(2-氯-7-(1-甲氧基乙基)吡唑并[1,5-a]嘧啶-6-基)-3-(2-(2-氧代乙氧基)-5-(三氟甲基)吡啶-3-基)尿素(177.0毫克,0.4毫摩尔)和三乙酰氧基硼氢化钠(132.0毫克,0.6毫摩尔),反应液在室温下搅拌3小时。LCMS监测显示原料消失后,加入饱和碳酸氢钠中和,乙酸乙酯(30毫升×2)萃取合并有机相,有机相用饱和食盐水(50毫升)洗涤,无水硫酸钠干燥,过滤浓缩,所得粗品通过薄层硅胶板分离得到28.4毫克1-(2-氯-7-((S)-1-甲氧乙基)吡唑并[1,5-a]嘧啶-6-基)-3-(2-(2-(4-(4-(2,6-二氧哌啶-3-基)氨基)-3-氟苯基)哌嗪-1-基)甲基)哌啶-1-基)乙氧基)-5-(三氟甲基)吡啶-3-基)脲(化合物73)。
MS(ESI)M/Z:860.2[M+H]+
1H-NMR(400MHz,DMSO-d6)δ10.77(s,1H),9.25(s,1H),8.95(s,1H),8.77(s,1H),8.67(d,J=2.4Hz,1H),8.18(s,1H),6.93(s,1H),6.76-6.71(m,2H),6.58-6.56(m,1H),5.07-5.05(m,1H),4.64(t,J=6.0Hz,2H),4.28-4.23(m,1H),3.26(s,3H),2.96-2.91(m,6H),2.78-2.72(m,3H),2.58-2.53(m,2H),2.43(s,4H),2.13-1.94(m,6H),1.67-1.64(m,2H),1.58(d,J=6.8Hz,3H),1.55-1.41(m,1H),1.32-1.01(m,2H).
实施例74:
1-(2-氯-7-((S)-1-甲氧基乙基)吡唑并[1,5-a]嘧啶-6-基)-3-(2-(2-(4-(4-(2,6-二氧哌啶-3-基)氨基)苯基)哌啶-1-基)甲基)哌啶-1-基)乙氧基)-5-(三氟甲基)吡啶-3-基)脲
反应流程:
实施例流程:
化合物74-1的制备方法参考实施例51。
步骤A:在0摄氏度下,将化合物74-1(50.0毫克,0.2毫摩尔)溶于N,N-二甲基甲酰胺和(2.0毫升)和四氢呋喃(2.0毫升)的混合溶剂中,将N,N-二异丙基乙胺(56.0毫克,0.4毫摩尔)加入其中,反应液在室温下搅拌10分钟,然后加入醋酸(0.2毫升)和(S)-1-(2-氯-7-(1-甲氧基乙基)吡唑并[1,5-a]嘧啶-6-基)-3-(2-(2-氧代乙氧基)-5-(三氟甲基)吡啶-3-基)尿素(120.0毫克,0.3毫摩尔)和三乙酰氧基硼氢化钠(90.0毫克,0.4毫摩尔),该反应体系室温下搅拌3小时。LCMS监测显示原料消失后,加入饱和碳酸氢钠中和,乙酸乙酯(30毫升×2)合并有机相,有机相用饱和食盐水(50毫升)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩,得到的粗品通过薄层硅胶板分离得到17.2毫克1-(2-氯-7-((S)-1-甲氧基乙基)吡唑并[1,5-a]嘧啶-6-基)-3-(2-(2-(4-(4-(2,6-二氧哌啶-3-基)氨基)苯基)哌啶-1-基)甲基)哌啶-1-基)乙氧基)-5-(三氟甲基)吡啶-3-基)脲(化合物74)。
MS(ESI)M/Z:841.2[M+H]+
1H-NMR(400MHz,DMSO-d6)δ10.78(s,1H),9.26(s,1H),8.97(s,1H),8.76(s,1H),8.68(s,1H),8.19(s,1H),6.95–6.93(m,3H),6.60(d,J=8.4Hz,2H),5.64(s,1H),5.41–5.36(m,1H),4.65(s,2H),4.31–4.20(m,1H),3.26(s,3H),3.01–2.65(m,9H),2.59(s,3H),2.20–1.78(m,8H),1.68–1.58(m,7H),1.06(s,2H).
实施例75:
1-(2-氯-7-(S)-1-甲氧基乙基)吡唑并[1,5-a]嘧啶-6-基)-3-(2-(2-(4-(4-(5-(2,6-二氧代哌啶-3-基)氨基)吡啶-2-基)哌嗪-1-基)甲基)哌啶-1-基)乙氧基)-5-(三氟甲基)吡啶-3-基)脲
反应流程:
实施例流程:
化合物75-1的制备方法参考实施例51。
步骤A:在氮气保护条件下,将化合物75-1(50.0毫克,120.0微摩尔)和三乙胺(0.04毫升)溶于N,N-二甲基甲酰胺(2毫升)和四氢呋喃(2毫升)的混合溶液中,反应体系在室温下下搅拌10分钟,加入(S)-1-(2-氯-7-(1-甲氧基乙基)吡唑并[1,5-a]嘧啶-6-基)-3-(2-(2-氧乙氧基)-5-(三氟甲基)吡啶-3-基)尿素(67.0毫克,0.14毫摩尔)和醋酸(0.04毫升)和醋酸硼氢化钠(54.1毫克,0.2毫摩尔),该反应体系在室温下搅拌3小时。LCMS监测显示原料消失后,加入饱和碳酸氢钠中和,乙酸乙酯(30毫升×2)合并有机相,有机相用饱和食盐水(30毫升)洗涤,无水硫酸钠干燥。过滤,滤液减压浓缩,得到的粗品通过薄层硅胶板分离得到19.8毫克1-(2-氯-7-((S)-1-甲氧基乙基)吡唑并[1,5-a]嘧啶-6-基)-3-(2-(2-(4-((4-(5))-((2,6-二氧代哌啶-3-基)氨基)吡啶-2-基)哌嗪-1-基)甲基)哌啶-1-基)乙氧基)-5-(三氟甲基)吡啶-3-基)脲(化合物75)。
MS(ESI)M/Z:845.3[M+H]+
1H-NMR(400MHz,DMSO-d6)δ10.76(s,1H),9.23(s,1H),8.96(s,1H),8.76(s,1H),8.68(d,J=2.0Hz,1H),8.19(s,1H),7.69(d,J=2.8Hz,1H),7.06-7.03(m,1H),6.93(s,1H),6.66(d,J=8.8Hz,1H),5.41-5.38(m,2H),4.64(t,J=6.4Hz,2H),4.22-4.19(m,1H),3.29(s,3H),3.26(s,4H),2.93-2.58(m,7H),2.40(s,4H),2.13-1.99(m,6H),1.68-1.65(m,2H),1.58(d,J=6.8Hz,3H),1.23-1.20(m,2H).
实施例76:
1-(2-氯-7-((S)-1-甲氧基乙基)吡唑并[1,5-a]嘧啶-6-基)-3-(2-(2-(4-((4-(1))-(2,6-二氧代哌啶-3-基)-3-甲基-2-氧代-2,3-二氢-1H-苯并[d]咪唑-4-基)哌啶-1-基)甲基)哌啶-1-基)乙氧基)-5-(三氟甲基)吡啶-3-基)脲
反应流程:
实施例流程:
步骤A:将化合物76-1(1.0克,2.2毫摩尔)溶于1,4-二氧六环溶液(20毫升)中,加入4-(4,4,5,5-四甲基-1,3,2-二氧硼杂环戊烷-2-基)-3,6-二氢吡啶-1(2H)-羧酸叔丁酯(696.0毫克,2.2毫摩尔),碳酸铯(1.1克,3.4毫摩尔),四三苯基磷钯(46.2毫克,40.0微摩尔)和水(2毫升),反应液经氮气置换3次后,升温至100摄氏度搅拌2小时。LCMS显示反应完成后,将反应液降至室温,加入乙酸乙酯(100毫升×3)和水(100毫升)进行萃取,收集有机相用饱和食盐水(100毫升×2)洗涤后,无水硫酸钠干燥,浓缩旋干,所得混合物用硅胶柱层析纯化得到1.0克化合物76-2。
MS(ESI)M/Z:482.3[M+Na]+
步骤B:向含有化合物76-2(1.0克,2.2毫摩尔)的四氢呋喃溶液(20毫升)中,加入四丁基氟化铵(4摩尔,5毫升)。体系用氮气置换三次后升温至60摄氏度搅拌16小时。LCMS显示反应完成后,将反应液降至室温,加入乙酸乙酯(100毫升×3)和水(100毫升)进行萃取,收集有机相用饱和食盐水(100毫升×2)洗涤后,无水硫酸钠干燥,浓缩旋干,所得粗品用硅胶柱层析纯化得到860.0毫克化合物76-3。
MS(ESI)M/Z:330.2[M+H]+
步骤C:在氮气保护和0摄氏度条件下,将叔丁醇钾(1摩尔,3.1毫升)滴加到含有化合物76-3(680.0毫克,2.1毫摩尔)的四氢呋喃(15毫升)溶液中,并在0摄氏度下搅拌1小时,之后再在0摄氏度下缓慢滴加1-(4-甲氧基苯基)-2,6-二氧蛋白酶-3-基三氟甲磺酸酯(1.7克,4.5毫摩尔)的四氢呋喃(15毫升)溶液,滴加完毕后继续搅拌2小时。LCMS显示反应完成,加入乙酸乙酯(100毫升)后用水(100毫升)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩,所得粗品用硅胶柱层析纯化得到950.0毫克化合物76-4。
MS(ESI)M/Z:561.3[M+H]+
步骤D:将钯碳(500.0毫克)加到化合物76-4(1.2克,0.4毫摩尔)的甲醇(50毫升)溶液中,再用氢气置换三次后,在室温下搅拌16小时。LCMS显示反应完成,过滤除去钯碳,滤液减压浓缩,得到1.3克化合物76-5。
MS(ESI)M/Z:563.1[M+H]+
步骤E:在氮气保护下将盐酸的乙酸乙酯溶液(4摩尔,5.0毫升)加到化合物76-5(1.2克,21.4毫摩尔)的二氯甲烷(10毫升)的溶液中,并在室温下搅拌2小时。LCMS显示反应完成,滤液减压浓缩得到1.3克化合物76-6。
MS(ESI)M/Z:463.1[M+H]+
步骤F:在氮气保护下,将三乙酰氧基硼氢化钠(560.0毫克,2.5毫摩尔)加到化合物76-6(950.0毫克,1.7毫摩尔)和4-甲酰哌啶-1-羧酸叔丁酯(360.0毫克,0.4毫摩尔)的甲醇(10毫升)的溶液后,滴加0.2毫升乙酸,并在室温下搅拌2小时。LCMS显示反应完成,加入二氯甲烷和水后进行萃取,收集有机相干燥过滤,滤液减压浓缩,粗品用硅胶柱层析纯化得到740.0毫克化合物76-7。
MS(ESI)M/Z:660.3[M+H]+
步骤G:将化合物76-7(740.0毫克,1.1毫摩尔)加到三氟甲磺酸(1毫升)的三氟乙酸(8毫升)的溶液中,反应液升至60摄氏度搅拌16小时。LCMS显示反应完成,溶剂减压浓缩后,得到1.0克化合物76-8。
MS(ESI)M/Z:540.2[M+H]+
步骤H:将化合物76-8(1.0克,2.3毫摩尔)加到含有三乙胺(920.0毫克,9.1毫摩尔)的乙腈(50毫升)的溶液中,室温搅拌1小时后,加入二碳酸二叔丁酯(746.0毫克,3.4毫摩尔)并继续搅拌2小时。LCMS显示反应完成后,加入乙酸乙酯(200毫升x 2)和水(200毫升)进行萃取,收集有机相并用饱和食盐水洗涤后干燥过滤,滤液减压浓缩,粗品经硅胶柱层析纯化纯化后得到680.0毫克化合物76-9。
MS(ESI)M/Z:540.3[M+H]+
步骤I:将化合物76-9(680.0毫克,1.3毫摩尔)加到含有三氟乙酸(2毫升)的二氯甲烷(10毫升)的溶液中,室温搅拌2小时。LCMS显示反应完成,溶剂减压浓缩后得到600.0毫克化合物76-10。
MS(ESI)M/Z:440.2[M+H]+
步骤J:将化合物76-10(100.0毫克,0.2毫摩尔)加到N,N-二异丙基乙基胺(0.2毫升)的四氢呋喃(8毫升)和DMF(1毫升)的混合溶液中,室温搅拌0.5小时后,加入乙酸(0.5毫升)和(S)-1-(2-氯-7-(1-甲氧基乙基)吡唑[1,5-a]嘧啶-6-基)-3-(2-(2-氧乙氧基)-5-(三氟甲基)吡啶-3-基)尿素(104.0毫克,0.2毫摩尔)并继续搅拌20分钟后,加入三乙酰氧基硼氢化钠(74毫克,0.4毫摩尔)并于室温下搅拌2小时。LCMS显示反应完成。加入乙 酸乙酯(10毫升)和水(10毫升)洗涤后回收有机相并干燥,溶剂减压浓缩后用薄层硅胶板分离纯化得到16.3毫克(S)-1-(2-氯-7-(1-甲氧基乙基)吡唑并[1,5-a]嘧啶-6-基)-3-(2-(2-氧代乙氧基)-5-(三氟甲基)吡啶-3-基)脲(化合物76)。
MS(ESI)M/Z:896.3[M+H]+
1H-NMR(400MHz,DMSO-d6)δ11.10(s,1H),9.29(s,1H),8.96(s,1H),8.77(s,1H),8.68(d,J=2.0Hz,1H),8.19(s,1H),7.01-6.96(m,3H),6.93(s,1H),5.42-5.32(m,2H),4.64(t,J=6.0Hz,2H),3.57(s,3H),3.24(s,3H),2.94-2.85(m,5H),2.78-2.60(m,5H),2.14-2.13(s,2H),2.08-1.99(m,5H),1.77-1.66(m,6H),1.58(d,J=6.8Hz,3H),1.49(s,1H),1.07-1.04(m,2H).
实施例77:
1-(2-氯-7-(S)-1-甲氧基乙基吡唑并[1,5-a]嘧啶-6-基)-3-(2-(2-(4-(1-(1-(2,6-二羰基哌啶-3-基)-3-甲基-2-羰基-2,3-二氢-1H-苯并咪唑-4-基)哌啶-4-基(甲基)氨基)哌啶-1-基)乙氧基)-5-(三氟甲基)吡啶-3-基)脲
反应流程:
实施例流程:
化合物77-1的制备方法参考实施例65。
步骤A:将化合物77-1(80.0毫克,0.2毫摩尔)加到N,N-二异丙基乙基胺(0.2毫升)的四氢呋喃(8毫升)和DMF(1毫升)的混合溶液中,室温搅拌0.5小时后,加入乙酸(0.5毫升)和(S)-1-(2-氯-7-(1-甲氧基乙基)吡唑[1,5-a]嘧啶-6-基)-3-(2-(2-氧乙氧基)-5-(三氟甲基)吡啶-3-基)尿素(100.0毫克,0.2毫摩尔)并继续搅拌20分钟后,加入三乙酰氧基硼氢化钠(75.0毫克,0.4毫摩尔)并于室温下搅拌2小时。LCMS显示反应完成,加入饱和碳酸氢钠中和,乙酸乙酯(30毫升×2)萃取合并有机相,有机相用饱和食盐水(30毫升)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩,得到的粗品通过薄层硅胶板分离纯化得到7.6毫克1-(2-氯-7-(S)-1-甲氧基乙基吡唑并[1,5-a]嘧啶-6-基)-3-(2-(2-(4-(1-(1-(2,6-二羰基哌啶-3-基)-3-甲基-2-羰基-2,3-二氢-1H-苯并咪唑-4-基)哌啶-4-基(甲基)氨基)哌啶-1-基)乙氧基)-5-(三氟甲基)吡啶-3-基)脲(化合物77)。
MS(ESI)M/Z:911.3[M+H]+
1HNMR(400MHz,DMSO-d6)δ11.09(s,1H),9.29(s,1H),8.96(s,1H),8.78(s,1H),8.68(d,J=2.0Hz,1H),8.19(s,1H),6.99-6.93(m,2H),6.89-6.85(m,2H),5.42-5.32(m,2H),4.64(t,J=5.6Hz,2H),3.62(s,3H),3.26(s,3H),3.13-3.11(m,2H),2.99-2.97(m,2H),2.94-2.84(m,1H),2.79-2.58(m,7H),2.21(s,3H),2.10-1.98(m,4H),1.79-1.64(m,6H),1.59(d,J=6.4Hz,3H),1.51-1.37(m,2H).
实施例78:
1-(2-氯-7-((S)-1-甲氧基乙基)吡唑并[1,5-a]嘧啶-6-基)-3-(2-(2-(4-((4-(4-(2,6-二羰基哌啶-3-基)-2-氟苯基)哌嗪-1-基)甲基)哌啶-1-基)乙氧基)-5-(三氟甲基)吡啶-3-基)脲
反应流程:
实施例流程:
步骤A:在室温下,将化合物78-1(6.4克,25.2毫摩尔),[1,1'-双(二苯基膦基)二茂铁]二氯化钯(1.7克,2.1毫摩尔)和乙酸钾(4.1克,42.0毫摩尔)溶于无水1,4-二氧六环(46毫升)中,反应液氮气置换3次后,升温至95摄氏度搅拌12小时。LCMS监测显示原料消失,将反应液冷却至室温,过滤,减压浓缩,所得混合物用硅胶柱层析纯化得4.6克化合物78-2。
MS(ESI)M/Z:238.3[M+H]+
步骤B:在室温下,将化合物78-2(3.3克,13.8毫摩尔),2,6-二(苄氧基)-3-溴吡啶(4.7克,12.6毫摩尔), [1,1'-双(二苯基膦基)二茂铁]二氯化钯(1.1克,1.3毫摩尔)和碳酸钾(5.2克,37.8毫摩尔)溶于1,4-二氧六环和水(40毫升)中。该反应液升温至95摄氏度,在氮气保护下搅拌12小时。LCMS监测显示原料消失,将反应液冷却至室温,过滤,减压浓缩,所得混合物用硅胶柱层析纯化得到3.3克化合物78-3。
MS(ESI)M/Z:401.5[M+H]+
步骤C:在常温下,将化合物78-3(3.3克,8.1毫摩尔)和钯碳(650.0毫克)溶于乙醇(15毫升),乙酸乙酯(15毫升)和二氯甲烷(3毫升)的混合溶液中。该反应液在室温下,氢气保护搅拌12小时。LCMS监测显示原料消失,过滤,减压浓缩,所得混合物用硅胶柱层析纯化得到750.0毫克化合物78-4。
MS(ESI)M/Z:348.5[M+H]+
步骤D:在常温下将化合物78-4(300.0毫克,1.35毫摩尔),双(2-溴乙基)胺(632.0毫克,2.0毫摩尔)和碳酸钾(373.0毫克)加入到异丙醇(5毫升)中,反应液在90摄氏度下搅拌24小时。LCMS监测显示原料消失,将反应液过滤,滤液减压浓缩,所得混合物通过硅胶柱层析纯化得到210.0毫克化合物78-5。
MS(ESI)M/Z:292.2[M+H]+
步骤E:在常温下,将化合物78-5(50.0毫克,0.2毫摩尔),苯甲基4-甲酰基哌啶-1-羧酸酯(46.7毫克,0.2毫摩尔),2-甲基吡啶硼烷(55.0毫克,0.5毫摩尔),醋酸(8.2毫克,140.0微摩尔)和钛酸四异丙酯(24.4毫克,85.0微摩尔)溶于甲醇(5毫升)。经氮气置换后将反应液加热至50摄氏度搅拌30分钟。LCMS监测显示原料消失,反应液冷却至室温,将反应液浓缩,所得混合物用薄层硅胶板纯化得到30.0毫克化合物78-6。
MS(ESI)M/Z:523.2[M+H]+
步骤F:在常温下,将化合物78-6(30.0毫克,60.0微摩尔)溶于混合溶剂二氯甲烷(3毫升),三氟乙酸(1毫升)。反应液搅拌2小时。LCMS监测显示原料消失,将反应液浓缩所得到35.0毫克化合物78-7。
MS(ESI)M/Z:389.0[M+H]+
步骤G:在常温下,将化合物78-7(35.0毫克,60.0微摩尔),吡啶(27.0毫克,0.3毫摩尔)溶于甲醇(5毫升),反应液在室温下搅拌10分钟,将(S)-1-(2-氯-7-(1-甲氧基乙基)吡唑并[1,5-a]嘧啶-6-基)-3-(2-(2-羰基乙氧基)-5-(三氟甲基)吡啶-3-基)脲(32.0毫克,68.0微摩尔)和2-甲基吡啶硼烷(48.6毫克,450.0微摩尔)加入到反应液中,并且在常温下搅拌16小时。LCMS监测显示原料消失,将反应液浓缩,所得混合物通过制备色谱纯化得到6.4毫克1-(2-氯-7-((S)-1-甲氧基乙基)吡唑并[1,5-a]嘧啶-6-基)-3-(2-(2-(4-((4-(4-(2,6-二羰基哌啶-3-基)-2-氟苯基)哌嗪-1-基)甲基)哌啶-1-基)乙氧基)-5-(三氟甲基)吡啶-3-基)脲(化合物78)。
MS(ESI)M/Z:845.5[M+H]+
1HNMR(400MHz,DMSO-d6)δ10.81(s,1H),9.50-9.30(m,2H),8.74(s,1H),8.68(d,J=2.0Hz,1H),8.19-8.17(m,1H),7.04-7.00(m,1H),6.98-6.94(m,2H),6.93(s,1H),5.40-5.35(m,1H),4.66-4.58(m,2H),3.83-3.79(m,1H),3.24(s,3H),3.06-2.90(m,6H),2.87-2.73(m,2H),2.67-2.60(m,1H),2.55-2.52(m,3H),2.48-2.45(m,3H),2.24-2.13(m,3H),2.05-1.95(m,2H),1.73-1.64(m,2H),1.61(d,J=6.8Hz,3H),1.55-1.43(m,1H),1.16-0.97(m,2H).
实施例79:
2-氯-N-(2-(2-(4-((4-(2-(2,6-二羰基哌啶-3-基)-1,3-二羰基异二氢吲哚-5-基)哌嗪-1-基)甲基)哌啶-1-基)乙氧基)-5-(三氟甲基)吡啶-3-基)-8-甲基-8-(三氟甲基)-7,8-二氢-6H-吡唑并[1,5-a]吡咯并[2,3-e]嘧啶-6-甲酰胺
反应流程:
实施例流程:
步骤A:在室温下,将化合物79-1(20.0克,103.6毫摩尔)和三乙胺(20.9克,207.3毫摩尔)溶于二氯甲 烷(250毫升)中。然后在0摄氏度下缓慢滴加溶于二氯甲烷(80毫升)的丙酰氯(11.4克,124.3毫摩尔)溶液,滴加完毕后在室温下搅拌16小时。LCMS监测显示原料消失,加入水(300毫升)淬灭,乙酸乙酯(200毫升×3)萃取合并有机相,有机相用饱和食盐水(300毫升)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩,所得混合物用硅胶柱层析纯化得到26.0克化合物79-2。
MS(ESI)M/Z:250.2[M+H]+
步骤B:在75摄氏度下,向溶于四氢呋喃(300毫升)的钠氢(3.9克,101.2毫摩尔)中缓慢滴加化合物79-2(21.0克,84.3毫摩尔)的四氢呋喃(150毫升)的溶液,滴加完毕后在75摄氏度下搅拌16小时。LCMS监测显示消失,将反应液冷却至室温,加入水(300毫升)淬灭,乙酸乙酯(200毫升×3)萃取合并有机相,有机相用饱和食盐水(100毫升×3)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩,所得混合物用硅胶柱层析纯化得到12.0克化合物79-3。
MS(ESI)M/Z:204.3[M+H]+
步骤C:在常温下,将化合物79-3(3.4克,17.0毫摩尔)溶于N,N-二甲基甲酰胺(70毫升),然后在0摄氏度下向其中加入钠氢(975.0毫克,25.4毫摩尔)。反应液在常温下搅拌半小时。然后降温至零下55摄氏度,向其中加入S-(三氟甲基)二苯并噻吩三氟甲基磺酸盐(7.5克,18.7毫摩尔),反应液在该温度下搅拌1小时然后升至室温搅拌1小时。LCMS监测显示原料消失,将反应液缓慢倒入冰水(300毫升)中,乙酸乙酯(300毫升)萃取,合并有机相,无水硫酸钠干燥,过滤浓缩,所得混合物用硅胶柱层析纯化得到3.4克化合物79-4。
MS(ESI)M/Z:272.2[M+H]+
步骤D:在0摄氏度下,向溶于四氢呋喃(80毫升)的化合物79-4(3.4克,12.5毫摩尔)溶液中缓慢滴加氢化铝锂溶液(1摩尔,56.5毫升),滴加完毕后在0摄氏度下搅拌半小时,然后加热至80摄氏度搅拌15小时。LCMS监测显示原料消失,将反应液冷却至0摄氏度,先后缓慢加入水(2.1毫升),10%饱和氢氧化钠溶液(2.1毫升),水(2.1毫升)淬灭,然后室温下搅拌半小时,通过硅藻土过滤,滤液进行减压浓缩,所得混合物用硅胶柱层析纯化得到2.5克化合物79-5。
MS(ESI)M/Z:260.2[M+H]+
步骤E:在常温下,将化合物79-5(2.5克,9.7毫摩尔),钯碳(600.0毫克,20%),1摩尔盐酸溶液(10毫升)溶于乙醇(10毫升),经氢气置换后,反应液升温至50摄氏度,搅拌16小时。LCMS监测原料基本反应完全,将反应液冷却至室温,1摩尔盐酸溶液(10毫升)加入反应液,室温下搅拌30分钟,经硅藻土过滤,滤液减压浓缩,得到2.1克化合物79-6。
MS(ESI)M/Z:170.0[M+H]+
步骤F:在常温下,将化合物79-6(2.1克,12.4毫摩尔),二碳酸二叔丁酯(5.4克,24.7毫摩尔),三乙胺(6.3克,61.8毫摩尔)溶于四氢呋喃(50毫升)中,然后在常温下搅拌16小时。LCMS监测显示原料消失,对该反应液进行减压浓缩,所得混合物用硅胶柱层析纯化得到2.0克化合物79-7。
MS(ESI)M/Z:270.0[M+H]+
步骤G:在常温下,将化合物79-7(2.0克,7.4毫摩尔),氯铬酸吡啶盐(8.0克,37.2毫摩尔),4A分子筛(10.0克)溶于二氯甲烷(50毫升)中,氮气置换后在40摄氏度下搅拌16小时。LCMS监测显示原料消失,将反应液冷却至室温,经硅藻土过滤,减压浓缩,所得混合物用硅胶柱层析法纯化得到1.3克化合物79-8。
MS(ESI)M/Z:268.0[M+H]+
步骤H:在常温下,将化合物79-8(1.3克,4.9毫摩尔)溶于N,N-二甲基甲酰胺二甲基缩醛(30毫升)中,氮气置换后在室温下搅拌16小时。LCMS监测显示原料消失,将反应液进行减压浓缩,所得混合物用硅胶柱层析纯化得到540.0毫克化合物79-9。
MS(ESI)M/Z:323.6[M+H]+
步骤I:在常温下,将化合物79-9(540.0毫克,1.7毫摩尔),3-氯-1H-吡唑-5-胺(216.8毫克,1.8毫摩尔),乙酸(3毫升)溶于甲苯(50毫升)中,氮气置换后在95摄氏度下搅拌1.5小时。LCMS监测显示原料消失,将反应液冷却至室温,减压浓缩,所得混合物用硅胶柱层析纯化得到160.0毫克化合物79-10。
MS(ESI)M/Z:377.0[M+H]+
步骤J:在常温下,将化合物79-10(160.0毫克,0.4毫摩尔)溶于混合溶剂二氯甲烷(3毫升)和三氟乙酸(1毫升)中,然后在常温下搅拌1小时。LCMS监测显示原料消失,将反应液减压浓缩,所得混合物用硅胶柱层析纯化得到130.0毫克化合物79-11。
MS(ESI)M/Z:277.0[M+H]+
步骤K:在0摄氏度下,将化合物79-12(50.0毫克,150.0微摩尔),三乙胺(30.0毫克,0.3毫摩尔)和三光气(17.6毫克,1.8毫摩尔)溶于四氢呋喃(3毫升)中。然后在常温下搅拌1小时,过滤,滤液在0摄氏度下加入溶于四氢呋喃(3毫升)的2-氯-8-甲基-8-(三氟甲基)-7,8-二氢-6H-吡唑并[1,5-a]吡咯并[2,3-e]嘧啶(化合物79-11,37.0毫克,134.0毫摩尔)溶液,搅拌5分钟,然后向其中加入三乙胺(150.0毫克,1.5毫摩尔)和4-二甲氨基吡啶(36.3毫克,0.3毫摩尔),反应液在常温下搅拌2小时。LCMS监测显示原料消失,将反应液减压浓缩,所得混合物用硅胶柱层析纯化得到60.0毫克化合物79-13。
步骤L:在常温下,将化合物79-13(50毫克,78.0微摩尔)和四丁基氟化铵(0.8毫升)溶于四氢呋喃(2毫升)中,然后在55摄氏度下搅拌0.5小时。LCMS监测显示原料消失,将反应液冷却至室温,减压浓缩,所得混合物用硅胶柱层析纯化得到55.0毫克化合物79-14。
MS(ESI)M/Z:525.0[M+H]+
步骤M:在常温下,将化合物79-14(45.0毫克,86.0微摩尔)和邻苯二甲酸二甲酯(72.8毫克,0.2毫摩尔)溶于二氯甲烷(5毫升)中,然后在45摄氏度下搅拌24小时。LCMS监测显示原料消失,将反应液冷却至室温,加水(10毫升)淬灭,乙酸乙酯(30毫升×3)萃取,有机相合并无水硫酸钠干燥,过滤浓缩,所得混合物用硅胶柱层析纯化得到39.0毫克化合物79-15。
MS(ESI)M/Z:523.5[M+H]+
步骤N:在常温下,将2-(2,6-二羰基哌啶-3-基)-5-(4-(哌啶-4-基甲基)哌嗪-1-基)异二氢吲哚-1,3-二酮(55.0毫克,82.0微摩尔),吡啶(30.0毫克,0.4毫摩尔)溶于甲醇(4毫升)。将反应液加热至60摄氏度搅拌10分钟。反应液冷却至室温,将化合物79-15(33.0毫克,63.0微摩尔)和2-甲基吡啶硼烷(54.0毫克,0.5毫摩尔)加入到反应液中,经氮气置换后在常温下搅拌16小时。LCMS监测显示原料消失,将反应液浓缩,所得混合物用制备色谱纯化得到6.6毫克2-氯-N-(2-(2-(4-((4-(2-(2,6-二羰基哌啶-3-基)-1,3-二羰基异二氢吲哚-5-基)哌嗪-1-基)甲基)哌啶-1-基)乙氧基)-5-(三氟甲基)吡啶-3-基)-8-甲基-8-(三氟甲基)-7,8-二氢-6H-吡唑并[1,5-a]吡咯并[2,3-e]嘧啶-6-甲酰胺(化合物79)。
MS(ESI)M/Z:946.9[M+H]+
1HNMR(400MHz,DMSO-d6)δ11.08(s,1H),9.30(s,1H),8.40-8.34(m,2H),7.68(d,J=8.4Hz,1H),7.33(d,J=2.0Hz,1H),7.28-7.21(m,1H),7.04(s,1H),5.12-5.05(m,1H),4.82(d,J=11.4Hz,1H),4.59-4.51(m,2H),4.25(d,J=11.4Hz,1H),3.40-3.35(m,4H),3.00-2.85(m,3H),2.84-2.70(m,2H),2.68-2.53(m,2H),2.44-2.37(m,4H),2.13-2.06(m,3H),2.06-2.00(m,2H),1.98(s,3H),1.68-1.57(m,2H),1.54-1.36(m,1H),1.13-0.99(m,2H).
实施例80:
N1-(2-((3-(3-(2-氯-7-((S)-1-甲氧基乙基)吡唑[1,5-a]嘧啶-6-基)脲基)-5-(三氟甲基)吡啶-2-基)氧基)乙基)-N7-((S,4R)-4-羟基-2-((R)-2-羟基-1-(4-(4-甲基噻唑-5-基)苯基)乙基)氨基甲酰基)吡咯烷)-3,3-二甲基-1-氧代丁-2-基)庚二酰胺
反应流程:
实施例流程:
步骤A:将化合物80-1(5.0克,18.0毫摩尔)溶于85%的乙醇水溶液(100毫升)中,在室温下加入甲酸钠 (3.7克,54.0毫摩尔),反应体系在110摄氏度下搅拌3小时。LCMS监测显示原料消失后,加入水搅拌半小时,将析出固体过滤出来,冻干水分,得到3.8克化合物80-2。
MS(ESI)M/Z:216.9[M+H]+
步骤B:在冰浴条件下,将化合物80-2(3.8克,17.8毫摩尔)溶于二氯甲烷(50毫升)中,加入咪唑(3.6克,53.3毫摩尔)和4-二甲胺基吡啶(220.0毫克,1.8毫摩尔),最后缓慢加入叔丁基二甲基氯硅烷(3.2克,21.3毫摩尔),反应液在室温下搅拌2小时。LCMS监测显示原料消失后,加水淬灭,用二氯甲烷(50毫升×3)萃取,合并有机相,有机相先用饱和食盐水(20毫升)洗涤,然后用无水硫酸钠干燥,过滤,最后减压浓缩,得到粗品通过硅胶柱层析纯化得到2.5克化合物80-3。
MS(ESI)M/Z:329.0[M+H]+
步骤C:在室温下,将化合物80-3(2.5克,7.6毫摩尔)和(S)-2-甲基丙烷-2-磺酰胺(1.4克,11.4毫摩尔)溶于四氢呋喃(50毫升)中,缓慢加入钛酸四异丙酯(6.5克,22.8毫摩尔),反应溶在80℃下搅拌过夜。LCMS监测显示原料消失后,加水淬灭,过滤掉析出固体,滤液用乙酸乙酯(50毫升×3)萃取,合并有机相,有机相先用饱和食盐水(50毫升)洗涤,然后用无水硫酸钠干燥,过滤,最后减压浓缩,得到粗品通过硅胶柱层析纯化得到1.8克化合物80-4。
MS(ESI)M/Z:432.0[M+H]+
步骤D:在干冰丙酮浴下,将化合物80-4(1.8克,4.2毫摩尔)溶于四氢呋喃(30.0毫升)中,缓慢加入硼烷的四氢呋喃溶液(12.5毫升,12.5毫摩尔)后,在低温下搅拌3小时。LCMS监测显示原料消失后,在低温下缓慢滴加甲醇淬灭,用乙酸乙酯(30毫升×3)萃取,合并有机相,有机相先用饱和食盐水(20毫升)洗涤,然后用无水硫酸钠干燥,过滤,最后减压浓缩,得到1.8克化合物80-5。
MS(ESI)M/Z:434.1[M+H]+
步骤E:在室温下,将化合物80-5(1.8克,4.2毫摩尔)溶于二氯甲烷(20毫升)中,缓慢滴加入盐酸的二氧六环溶液(10.4毫升,10.4毫摩尔),反应溶液在室温下搅拌1小时后,将反应液减压浓缩,溶于乙腈(20毫升)中,冰浴条件下,加入三乙胺(2.1克,20.8毫摩尔)和二碳酸二叔丁酯(1.8克,8.3毫摩尔),反应液在室温下搅拌3小时。LCMS监测显示原料消失后,加水稀释,用乙酸乙酯(20毫升×3)萃取,合并有机相,有机相先用饱和食盐水(20毫升)洗涤,然后用无水硫酸钠干燥,过滤,最后减压浓缩,得到粗品通过硅胶柱层析纯化得到800.0毫克化合物80-6。
MS(ESI)M/Z:217.9[M+H]+
步骤F:在室温下,将化合物80-6(800.0毫克,2.5毫摩尔)和4-甲基噻唑(497.0毫克,5.0毫摩尔)溶于N,N-二甲基乙酰胺(10.0毫升)中,加入乙酸钾(496.0毫克,5.0毫摩尔)和醋酸钯(68.0毫克,0.3毫摩尔),反应液升温至120摄氏度搅拌3小时。LCMS监测显示反应完成,反应液加水稀释,用乙酸乙酯(30毫升×3)萃取,合并有机相,有机相先用饱和食盐水(20毫升)洗涤,然后用无水硫酸钠干燥,过滤,最后减压浓缩,得到粗品通过硅胶柱层析纯化得到300.0毫克化合物80-7。
MS(ESI)M/Z:334.9[M+H]+
步骤G:在室温条件下,将化合物80-7(300.0毫克,0.9毫摩尔)溶于二氯甲烷(5毫升)中,加入盐酸二氧六环(1.2毫升),反应液在室温下搅拌2小时。LCMS监测显示原料消失后,反应液直接减压浓缩,得到300.0毫克化合物80-8。
MS(ESI)M/Z:235.0[M+H]+
步骤H:在室温下,将化合物80-8(300.0毫克,1.1毫摩尔)和(2S,4R)-1-((R)-2-((叔丁氧基羰基)氨基)-3,3-二甲基丁酰基)-4-羟基吡咯烷-2-羧酸(573.0毫克,1.7毫摩尔)溶于二氯甲烷(15毫升)中,将三乙胺(333.0毫 克,3.3毫摩尔)和2-(7-氮杂苯并三氮唑)-N,N,N',N'-四甲基脲六氟磷酸酯(646.0毫克,1.7毫摩尔)加入其中,该反应体系室温下搅拌1小时。LCMS监测显示原料消失后,体系溶液加水稀释,用二氯甲烷(20毫升×3)萃取,合并有机相,有机相先用饱和食盐水(20毫升)洗涤,然后用无水硫酸钠干燥,过滤,最后减压浓缩,得到的粗品通过硅胶柱层析纯化得到400.0毫克化合物80-9。
MS(ESI)M/Z:560.9[M+H]+
步骤I:在室温下,将化合物80-9(400.0毫克,0.7毫摩尔)溶于二氯甲烷(5毫升)中,缓慢滴加入三氟乙酸(2毫升),反应液在室温下搅拌1小时。LCMS监测显示原料消失后,直接减压浓缩,得到400.0毫克粗品化合物80-10。
MS(ESI)M/Z:461.0[M+H]+
步骤J:在室温下,将粗品化合物80-10(400.0毫克,0.7毫摩尔)和7-(叔丁氧基)-7-氧代庚酸(233.0毫克,1.1毫摩尔)溶于二氯甲烷(15.0毫升)中,将三乙胺(218.0毫克,2.2毫摩尔)和2-(7-氮杂苯并三氮唑)-N,N,N',N'-四甲基脲六氟磷酸酯(418.0毫克,1.1毫摩尔)加入其中,该反应体系室温下搅拌2小时。LCMS监测显示原料消失后,体系溶液加水稀释,用二氯甲烷(20毫升×3)萃取,合并有机相,有机相先用饱和食盐水(20毫升)洗涤,然后用无水硫酸钠干燥,过滤,最后减压浓缩,得到的粗品通过硅胶柱层析纯化得到150.0毫克化合物80-11。
MS(ESI)M/Z:659.2[M+H]+
步骤K:在室温下,将化合物80-11(150.0毫克,0.2毫摩尔)溶于二氯甲烷(5毫升)中,缓慢滴加入三氟乙酸(2.0毫升),反应液在室温下搅拌1小时。LCMS监测显示原料消失后,直接减压浓缩,得到150.0毫克粗品化合物80-12。
MS(ESI)M/Z:603.2[M+H]+
步骤L:在室温下,将粗品化合物80-12(150.0毫克,0.3毫摩尔)和(S)-1-(2-(2-氨基乙氧基)-5-(三氟甲基)吡啶-3-基)-3-(2-氯-7-(1-甲氧基乙基)吡唑并[1,5-a]嘧啶-6-基)脲盐酸盐(化合物80-13,127.0毫克,0.3毫摩尔)溶于N,N-二甲基甲酰胺(10.0毫升)中,将二异丙基乙基胺(97.0毫克,0.8毫摩尔)和1-乙基-3-(3-二甲基丙胺)碳二亚胺(68.0毫克,0.4毫摩尔)和1-羟基苯并三氮唑(81.0毫克,0.4毫摩尔)加入其中,该反应体系室温下搅拌2小时。LCMS监测显示原料消失后,体系溶液加水稀释,用乙酸乙酯(20毫升×3)萃取,合并有机相,有机相先用饱和食盐水(20毫升)洗涤,然后用无水硫酸钠干燥,过滤,最后减压浓缩,得到的粗品通过反相纯化得到51.5毫克N1-(2-((3-(3-(2-氯-7-((S)-1-甲氧基乙基)吡唑[1,5-a]嘧啶-6-基)脲基)-5-(三氟甲基)吡啶-2-基)氧基)乙基)-N7-((S,4R)-4-羟基-2-(((R)-2-羟基-1-(4-(4-甲基噻唑-5-基)苯基)乙基)氨基甲酰基)吡咯烷)-3,3-二甲基-1-氧代丁-2-基)庚二酰胺(化合物80)。
MS(ESI)M/Z:529.7[M/2+H]+
1H-NMR(400MHz,DMSO-d6)δ9.33(s,1H),9.09(s,1H),8.99(s,1H),8.76(s,1H),8.69(d,J=2.4Hz,1H),8.37(d,J=8.0Hz,1H),8.18(s,1H),8.15-8.12(s,1H),7.81(d,J=9.2Hz,1H),7.44–7.38(m,4H),6.94(s,1H),5.41-5.36(m,1H),5.11-5.10(m,1H),4.89-4.84(m,1H),4.77-4.74(m,1H),4.51–4.43(m,4H),4.28(s,1H),3.60–3.57(m,3H),3.55-3.52(m,2H),3.26(s,3H),2.46(s,3H),2.27–2.18(m,1H),2.10-2.07(m,3H),2.03–1.98(m,1H),1.85–1.76(m,1H),1.59(d,J=6.8Hz,3H),1.53–1.41(m,4H),1.24–1.17(m,3H),0.92(s,9H).
实施例81:
(2S,4R)-N-(2-(2-(1-(2-((3-(3-(2-氯-7-((S)-1-甲氧基乙基)吡唑并[1,5-a]嘧啶-6-基)脲基)-5-(三氟甲基)吡啶-2-基)氧基)乙基)哌啶-4-基)乙氧基)-4-(4-甲基噻唑-5-基)苄基)-1-((S)-2-(1-氟环丙烷-1-甲酰胺基)-3,3-二甲基丁酰基)-4-羟基吡咯烷-2-甲酰胺
反应流程:
实施例流程:
步骤A:在氮气保护下,将化合物81-1(10.0克,50.5毫摩尔),4-甲基噻唑(10.0克,101.0毫摩尔),乙酸钾(9.9克,101.0毫摩尔)和醋酸钯(0.11克,0.51毫摩尔)溶于超干N,N-二甲基乙酰胺(100毫升)中,该反应液加热至150摄氏度下搅拌3小时。LCMS监测显示原料消失后,反应液冷却至室温,加入水(100毫升)淬灭,用乙酸乙酯(100毫升×3)萃取,合并有机相,用饱和食盐水(100毫升×2)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩。所得混合物用硅胶柱层析纯化得到6.7克化合物81-2。
MS(ESI)M/Z:216.9[M+H]+
步骤B:在氮气保护下,将化合物81-2(6.7克,31.0毫摩尔),溶于超干四氢呋喃(500毫升)中,降至0摄氏度后,缓慢滴加四氢铝锂的四氢呋喃溶液(93毫升,1摩尔),该反应液搅拌5分钟后,在氮气保护下,加热至50摄氏度搅拌3小时。LCMS监测显示原料消失后,反应液冷却至室温,在冰水浴条件下缓慢加入十水合硫酸钠(12.0克),搅拌1小时后过滤,滤饼用混合溶剂(二氯甲烷/甲醇=10:1)(100毫升×4)洗涤,滤液合并,减压浓缩,得到2.5克化合物81-3。
MS(ESI)M/Z:221.1[M+H]+
步骤C:在氮气保护下,将(2S,4R)-1-((S)-2-((叔丁氧羰基)氨基)-3,3-二甲基丁酰)-4-羟基吡咯烷-2-羧酸(3.9克,11.4毫摩尔),化合物81-3(2.5克,11.4毫摩尔),1-乙基-(3-二甲基氨基丙基)碳二亚胺盐酸盐(2.4克,12.5毫摩尔)和1-羟基苯并三唑(1.8克,13.6毫摩尔)溶于N,N-二甲基甲酰胺(100毫升)中,反应液降至0摄氏度后,缓慢滴加N,N-二异丙基乙胺(4.4克,34.1毫摩尔),该反应液升至室温并搅拌16小时。LCMS监测显示原料消失后,向反应液中加入冰水(100毫升)淬灭,用乙酸乙酯(300毫升×3)萃取,合并有机相,用饱和食盐水(200毫升)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩。所得混合物用硅胶柱层析纯化得到2.6克化合物81-4。
MS(ESI)M/Z:547.2[M+H]+
步骤D:室温条件下,将化合物81-4(2.6克,4.8毫摩尔)溶于二氯甲烷(21毫升)中,缓慢滴加三氟乙酸(7毫升),该反应液在室温下搅拌1小时。LCMS监测显示原料消失后,用二氯甲烷稀释,减压浓缩得到2.0克化合物81-5。
MS(ESI)M/Z:447.2[M+H]+
步骤E:在氮气保护和0摄氏度下,将化合物81-5(2.0克,4.5毫摩尔),1-氟环丙烷-1-羧酸(514.8毫克,5.0毫摩尔),1-乙基-(3-二甲基氨基丙基)碳二亚胺盐酸盐(945.5毫克,4.95毫摩尔)和1-羟基苯并三唑(729.0毫克,5.4毫摩尔)溶于N,N-二甲基甲酰胺(50毫升)中,缓慢滴加N,N-二异丙基乙胺(2.3克,18.0毫摩尔),该反应液升至室温下搅拌16小时。LCMS监测显示原料消失后,向反应液中加入冰水(50毫升)淬灭,用乙酸乙酯(200毫升×4)萃取,合并有机相,用饱和食盐水(150毫升)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩,所得混合物用硅胶柱层析纯化得到1.5克化合物81-6。
MS(ESI)M/Z:533.3[M+H]+
步骤F:在0摄氏度下向化合物81-7(5.0克,21.8毫摩尔)的二氯甲烷(60毫升)溶液中添加四溴化碳(11.6克,34.9毫摩尔)和三苯基膦(6.9克,26.2毫摩尔)。在室温下将混合物搅拌17小时。LCMS监测显示原料消失后,反应液减压浓缩。所得混合物用硅胶柱层析纯化得到4.8克化合物81-8。
MS(ESI)M/Z:292.1[M+H]+
步骤G:向化合物81-8(300.0毫克,1.0毫摩尔)的丙酮溶液(10毫升)中加化合物81-6(547.9毫克,1.0毫摩尔)碳酸钾(568.5毫克,4.1毫摩尔)和四丁基碘化铵(77.5毫克,0.2毫摩尔)。将反应液升温至60摄氏度搅拌17小时。LCMS监测显示原料消失后,反应液减压浓缩。所得混合物用硅胶柱层析纯化得到180.0毫克化合物81-9。
MS(ESI)M/Z:744.3[M+H]+
步骤H:在氮气保护下,将化合物81-9(180.0毫克,240.0微摩尔)溶于三氟醋酸(1毫升)和二氯甲烷(8毫升)中,反应液在室温下搅拌4小时。LCMS监测显示原料消失后,过滤,减压浓缩,得到140.0毫克化合物81-10。
MS(ESI)M/Z:644.2[M+H]+
步骤I:在氮气保护下,将化合物81-10(140.0毫克,220.0微摩尔)溶于混合溶剂N,N-二甲基甲酰胺(3毫升)和四氢呋喃(3毫升)中,加入三乙胺(66.7毫克,0.7毫摩尔)室温搅拌0.5小时.然后加入乙酸(0.1毫升)和四异丙氧基钛(0.2毫升)和(S)-1-(2-氯-7-(1-甲氧基乙基)吡唑并[1,5-a]嘧啶-6-基)-3-(2-(2-氧乙氧基)-5-(三氟甲基)吡啶 -3-基)脲(103.8毫克,0.2毫摩尔),该体系在常温下搅拌0.5小时,加入三乙酰氧基硼氢化钠(93.3毫克,0.4毫摩尔),该反应液在室温下搅拌2小时。LCMS监测显示原料消失后,反应液减压浓缩。所得混合物用硅胶柱层析纯化得到24.0毫克(2S,4R)-N-(2-(2-(1-(2-((3-(3-(2-氯-7-((S)-1-甲氧基乙基)吡唑并[1,5-a]嘧啶-6-基)脲基)-5-(三氟甲基)吡啶-2-基)氧基)乙基)哌啶-4-基)乙氧基)-4-(4-甲基噻唑-5-基)苄基)-1-((S)-2-(1-氟环丙烷-1-甲酰胺基)-3,3-二甲基丁酰基)-4-羟基吡咯烷-2-甲酰胺(化合物81)。
MS(ESI)M/Z:1101.2[M+H]+
1H-NMR(400MHz,DMSO-d6)δ9.31(s,1H),9.06(s 1H),8.98(s,1H),8.76(s,1H),8.69(d,J=2.4Hz,1H),8.52-8.49(m,1H),8.25(s,1H),8.18(s,1H),7.39(d,J=8.0Hz,1H),7.30-7.27(m,1H),7.01(s,1H),6.96(s,1H),6.93(s,1H),5.39-5.34(m,1H),4.64(t,J=6.0Hz,2H),4.58(d,J=8.8Hz,1H),4.51(t,J=8.0Hz,1H),4.35–4.18(m,3H),4.08(d,J=6.0Hz,2H),3.65–3.58(m,2H),3.24(s,3H),2.98–2.93(m,2H),2.81-2.78(m,2H),2.45(s,3H),2.12–2.03(m,3H),1.93–1.89(m,1H),1.72–1.66(m,4H),1.57(d,J=6.8Hz,3H),1.39–1.35(m,2H),1.30–1.15(m,5H),0.94(s,9H).
实施例82:
(2S,4R)-N-(2-((1-(2-(3-(2-氯-7-((S)-1-甲氧基乙基)吡唑[1,5-a]嘧啶-6-基)脲基)-5-(三氟甲基)吡啶-2-基)氧基)乙基)哌啶-4-基)甲氧基)-4-(4-甲基噻唑-5-基)苄基)-1-(((S-2-(1-氟环丙烷-1-甲酰胺基)-3,3-二甲基丁酰基)-4-羟基吡咯烷-2-甲酰胺
反应流程:
实施例流程:
化合物82-1的制备方法参考实施例81。
步骤A:在氮气保护下,将(2S,4R)-1-((S)-2-(1-氟环丙烷-1-甲酰胺基)-3,3-二甲基丁酰基)-4-羟基-N-(4-(4-甲基噻唑-5-基)-2-(哌啶-4-基甲氧基)苄基)吡咯烷-2-甲酰胺三氟乙酸盐(化合物82-1,95.0毫克,130.0微摩尔)溶于混合溶剂N,N-二甲基甲酰胺(1.5毫升)和四氢呋喃(1.5毫升)中,加入三乙胺(40.0毫克,0.4毫摩尔)并于室温搅 拌三十分钟,然后加入乙酸(0.1毫升)和(S)-1-(2-氯-7-(1-甲氧基乙基)吡唑并[1,5-a]嘧啶-6-基)-3-(2-(2-氧乙氧基)-5-(三氟甲基)吡啶-3-基)脲(62.0毫克,130.0微摩尔),再将三乙酰氧基硼氢化钠(55.0毫克,260.0微摩尔)加入上述反应液,该反应液在室温下搅拌2小时。LCMS监测显示原料消失后,加入碳酸氢钠水溶液,用乙酸乙酯(10毫升)萃取,无水硫酸钠干燥,过滤后旋干。所得混合物用薄层硅胶板纯化得到35.0毫克(2S,4R)-N-(2-((1-(2-(3-(2-氯-7-((S)-1-甲氧基乙基)吡唑[1,5-a]嘧啶-6-基)脲基)-5-(三氟甲基)吡啶-2-基)氧基)乙基)哌啶-4-基)甲氧基)-4-(4-甲基噻唑-5-基)苄基)-1-(((S-2-(1-氟环丙烷-1-甲酰胺基)-3,3-二甲基丁酰基)-4-羟基吡咯烷-2-甲酰胺(化合物82)。
MS(ESI)M/Z:1086.2[M+H]+
1H-NMR(400MHz,DMSO-d6)δ9.27(s,1H),8.98(s,1H),8.96(s,1H),8.77(s,1H),8.69(d,J=2.2Hz,1H),8.52(t,J=5.6Hz,1H),8.20(s,1H),7.41(d,J=7.8Hz,1H),7.33–7.25(m,1H),7.00–6.92(m,3H),5.38(q,J=6.6Hz,1H),5.18(d,J=3.6Hz,1H),4.67(s,2H),4.59(d,J=9.0Hz,1H),4.51(t,J=8.2Hz,1H),4.38–4.26(m,2H),4.19(dd,J=16.6,5.6Hz,1H),3.90(s,2H),3.66–3.56(m,2H),3.25(s,3H),3.01(s,2H),2.82(s,2H),2.45(s,3H),2.18–2.01(m,3H),1.96–1.87(m,1H),1.79(s,3H),1.58(d,J=6.8Hz,3H),1.41–1.27(m,6H),0.94(s,9H).
实施例83:
(2S,4R)-N-((S)-3-((1-(2-(3-(3-(3-(3-(2-氯-7-((S)-1-甲氧乙基)吡唑并[1,5-a]嘧啶-6-基)尿嘧啶)-5-(三氟甲基)吡啶-2-基)氧基)乙基)哌啶-4-基)甲基)氨基)-1-(4-(4-甲基噻唑-5-基)苯基)-3-氧丙基)-1-((S)-2-(1-氟环丙烷-1-甲酰胺)-3,3-二甲基丁酰基)-4-羟基吡咯烷-2-甲酰胺
反应流程:
实施例流程:
步骤A:室温下,将化合物83-1(5.0克,14.5毫摩尔)溶于四氢呋喃(50毫升)和甲醇(20毫升)中,体系降温至0-5摄氏度,滴加三甲基硅重氮甲烷(2.5克,21.8毫摩尔),室温搅拌3小时。LCMS显示原料反应完全。反应液加碳酸氢钠溶液(150毫升)淬灭,乙酸乙酯(150毫升×2)萃取。合并有机相,用水(150毫升)洗涤,饱和食盐水(150毫升)洗涤,无水硫酸钠干燥,过滤,减压浓缩。所得混合物经硅胶柱层析纯化得到5.1克化合物83-2。
MS(ESI)M/Z:380.2[M+Na]+
步骤B:室温下,将化合物83-2(4.0克,11.2毫摩尔)溶于N,N-二甲基甲酰胺(50毫升)中,加入醋酸钾(2.20克,22.4毫摩尔)和醋酸钯(126.0毫克,0.6毫摩尔),再加入4-甲基噻唑(4.4克,44.8毫摩尔),反应液升温至90摄氏度搅拌3小时。LCMS监测显示原料反应完全,反应液降至室温,加入碳酸氢钠溶液(150毫升)淬灭,加乙酸乙酯(200毫升)萃取,水(150毫升)洗,饱和食盐水(150毫升)洗涤,无水硫酸钠干燥,过滤,减压浓缩,所得粗品经硅胶柱层析纯化得到2.0克化合物83-3。
MS(ESI)M/Z:377.0[M+H]+
步骤C:室温下,将化合物83-3(2.0克,5.3毫摩尔)溶于二氯甲烷(30毫升),将三氟乙酸(10毫升)加入上述反应液,室温搅拌2小时。LCMS监测显示原料反应完全,反应液减压浓缩,得到1.5克化合物83-4。
MS(ESI)M/Z:277.0[M+H]+
步骤D:室温下,将化合物83-4(1.5克,5.3毫摩尔)和化合物83-5(1.7克,5.3毫摩尔)溶于N,N-二甲基甲酰胺(30毫升)中,加入1-羟基苯并三唑(0.9克,6.4毫摩尔)和1-乙基-(3-二甲基氨基丙基)碳二亚胺盐酸盐(1.1克,5.8毫摩尔),再加入N,N-二异丙基乙胺(1.4克,10.6毫摩尔),室温下搅拌3小时。LCMS监测显示原料反应完全。反应液加入碳酸氢钠溶液(150毫升)淬灭,加乙酸乙酯(200毫升)萃取,水(150毫升)洗,饱和食盐水(150毫升)洗涤,无水硫酸钠干燥,过滤,减压浓缩,所得粗品经硅胶柱层析纯化得到1.8克化合物83-6。
MS(ESI)M/Z:589.3[M+H]+
步骤E:将化合物83-6(1.8克,3.1毫摩尔)溶于四氢呋喃(15毫升)和水(15毫升)中,冰水浴下加入氢氧化锂一水合物(257.0毫克,6.1毫摩尔),冰水浴下搅拌3小时。LCMS监测显示原料反应完全。反应液加水(35毫升)于冰水浴中滴加盐酸调PH至2-3,再加入乙酸乙酯(100毫升)萃取,有机相用饱和食盐水(50毫升)洗涤,无水硫酸钠干燥,过滤,减压浓缩,所得粗品经反相纯化得到700.0毫克化合物83-7。
MS(ESI)M/Z:575.1[M+H]+
步骤F:在0摄氏度条件下,将(S)-1-(2-氯-7-(1-甲氧基乙基)吡唑并[1,5-a]嘧啶-6-基)-3-(2-(2-氧乙氧基)-5-(三氟甲基)吡啶-3-基)脲(250.0毫克,0.5毫摩尔)溶于甲醇(5.0毫升)中,再加入醋酸(0.2毫升)和叔丁基(哌啶-4-甲基)氨基甲酸酯(化合物83-8,100.0毫克,0.5毫摩尔),最后加入氰基硼氢化钠(50.0毫克,0.8毫摩尔),该反应体系室温下搅拌2小时。LCMS监测显示原料消失后,加入饱和碳酸氢钠水溶液中和,乙酸乙酯(30毫升×2)萃取,合并有机相,有机相用饱和食盐水(50毫升)洗涤,无水硫酸钠干燥,过滤,滤液减压浓缩,得到的粗品通过薄层硅胶板分离得到170.0毫克化合物83-9。
MS(ESI)M/Z:670.9[M+H]+
步骤G:在室温条件下,将化合物83-9(170.0毫克,0.3毫摩尔)溶于二氯甲烷(2毫升)和盐酸二氧六环(4摩尔,5毫升)混合溶剂中,溶液在室温下搅拌1小时。LCMS监测显示原料消失后,直接浓缩得到120.0毫克化合物83-10。
MS(ESI)M/Z:571.2[M+H]+
步骤H:在氮气保护的条件下,将化合物83-10(50.0毫克,87.0微摩尔)溶于二氯甲烷(5毫升)中,加入化合物83-7(50.0毫克,87.0微摩尔),N,N-二异丙基乙胺(34.0毫克,0.3毫摩尔),1-羟基苯并三唑(18.0毫克,130.0微摩尔)和1-(3-二甲氨基丙基)-3-乙基碳二亚胺盐酸盐(50.0毫克,0.3毫摩尔)。该反应液在室温下搅拌2小时。LCMS监测显示原料消失后,反应液中加入二氯甲烷(20毫升)稀释,有机相用饱和食盐水(50毫升)洗涤,无水硫酸镁干燥,过滤,滤液减压浓缩。所得混合物通过制备色谱纯化得到46.2毫克(2S,4R)-N-((S)-3-((1-(2-(3-(3-(3-(3-(2-氯-7-((S)-1-甲氧乙基)吡唑并[1,5-a]嘧啶-6-基)尿嘧啶)-5-(三氟甲基)吡啶-2-基)氧基)乙基)哌啶-4-基)甲基)氨基)-1-(4-(4-甲基噻唑-5-基)苯基)-3-氧丙基)-1-((S)-2-(1-氟环丙烷-1-甲酰胺)-3,3-二甲基丁酰基)-4-羟基吡咯烷-2-甲酰胺(化合物83)。
MS(ESI)M/Z:1128.0[M+H]+
1H-NMR(400MHz,DMSO-d6)δ9.26(s,1H),8.99(s,1H),8.96(s,1H),8.75(s,1H),8.68(d,J=2.4Hz,1H),8.56(d,J=8.0Hz,1H),8.22–8.15(m,1H),7.84(t,J=4.8Hz,1H),7.42–7.31(m,4H),7.25–7.23(m,1H),6.94(s,1H),5.38(q,J=6.8Hz,1H),5.18-5.12(m,2H),4.58-4.56(m,3H),4.43(t,J=7.6Hz,1H),4.27(s,1H),3.61-3.54(m, 2H),3.25(s,3H),2.92-2.90(m,1H),2.80(s,2H),2.79-2.73(m,3H),2.72-2.66(m,2H),2.59-2.57(m,2H),2.45(s,3H),2.06-2.00(m,1H),1.88-1.79(m,2H),1.76–1.69(m,1H),1.58(d,J=6.4Hz,3H),1.42-1.32(m,4H),1.22-1.17(m,3H),0.96(s,9H).
实施例84:
(2S,4R)-N-((S)-3-(4-(2-(3-(2-氯-7-((S)-1-甲氧基乙基)吡唑[1,5-a]嘧啶-6-基)脲)-5-(三氟甲基)吡啶-2-基)氧)乙基)哌嗪-1-基)-1-(4-(4-甲基噻唑-5-基)苯基)-3-氧代丙基)-1-((S)-2-(1-氟环丙烷-1-甲酰胺)-3,3-二甲基丁酰)-4-羟基吡咯烷-2-甲酰胺
反应流程:
实施例流程:
化合物84-4的制备方法参考实施例83。
步骤A:在氮气保护下,将三乙酰氧基硼氢化钠(140.0毫克,0.7毫摩尔)加到(S)-1-(2-氯-7-(1-甲氧基乙基)吡唑并[1,5-a]嘧啶-6-基)-3-(2-(2-氧代乙氧基)-5-(三氟甲基)吡啶-3)脲(200毫克,0.4毫摩尔)和化合物84-1(78.8毫克,0.4毫摩尔)的1,2-二氯乙烷(2毫升)的溶液后,滴加乙酸(0.2毫升),并在室温下搅拌2小时。LCMS显示反应完成后,加入二氯甲烷(30毫升)和水(30毫升),收集有机相干燥并浓缩,所得粗品通过硅胶柱层 析纯化后得到198.0毫克化合物84-2。
MS(ESI)M/Z:643.0[M+H]+
步骤B:将化合物84-2(198.0毫克,0.3毫摩尔)和三氟醋酸(1毫升)加到二氯甲烷(5毫升)中。在室温下搅拌1小时。LCMS显示反应完全。将反应液浓缩后用反相纯化得到110.0毫克化合物84-3。
MS(ESI)M/Z:543.1[M+H]+
步骤C:将化合物84-3(35.0毫克,70.0微摩尔)和(S)-3-((2S,4R)-1-((S)-2-(1-氟环丙烷-1-甲酰胺)-3,3-二甲基丁酰)-4-羟基吡咯烷-2-甲酰胺)-3-(4-(4-甲基噻唑-5-基)苯基)丙酸(化合物84-4,44.2毫克,70.0微摩尔)溶于二氯甲烷(4毫升)中。在0摄氏度下依次加入二异丙基乙基胺(45.0毫克,0.4毫摩尔)、1-羟基苯并三唑(14.2毫克,105.0微摩尔)和1-乙基-(3-二甲基氨基丙基)碳化二亚胺盐酸盐(20.0毫克,105.0微摩尔),加料完毕,升至室温搅拌3小时。LCMS显示反应完全,加入二氯甲烷(10毫升)和水(40毫升)进行洗涤后收集有机相。用饱和食盐水(20毫升)洗涤后用无水硫酸钠固体进行干燥,过滤浓缩,所得粗品用反相纯化得到15.0毫克产品(2S,4R)-N-((S)-3-(4-(2-(3-(2-氯-7-((S)-1-甲氧基乙基)吡唑[1,5-a]嘧啶-6-基)脲)-5-(三氟甲基)吡啶-2-基)氧)乙基)哌嗪-1-基)-1-(4-(4-甲基噻唑-5-基)苯基)-3-氧代丙基)-1-((S)-2-(1-氟环丙烷-1-甲酰胺)-3,3-二甲基丁酰)-4-羟基吡咯烷-2-甲酰胺(化合物84)。
MS(ESI)M/Z:1099.3[M+H]+
1H-NMR(400MHz,DMSO-d6)δ9.26(s,1H),8.98(s,1H),8.97(s,1H),8.76(s,1H),8.68(s,1H),8.50(d,J=8.0Hz,1H),8.17(s,1H),7.43–7.38(m,3H),7.28–7.21(m,1H),6.94(s,1H),5.39(q,J=6.4Hz,1H),5.24–5.08(m,2H),4.64–4.62(m,2H),4.56(d,J=9.2Hz,1H),4.44(t,J=8.0Hz,1H),4.31–4.23(m,1H),3.62–3.32(m,5H),3.25(s,3H),2.88–2.72(m,5H),2.44(s,3H),2.39–2.29(m,2H),2.29–2.19(m,1H),2.08–2.00(m,1H),1.80–1.72(m,1H),1.57(d,J=6.8Hz,3H),1.39–1.30(m,2H),1.13–1.18(m,4H),0.94(s,9H).
实施例85:
1-(2-氯-7-((S)-1-甲氧基乙基)吡唑并[1,5-a]嘧啶-6-基)-3-(2-(2-(9-((1-(2,6-二羰基哌啶-3-基)-3-甲基-2-羰基-2,3-二氢-1H-苯并[d]咪唑-4-基)氨基)-3-氮杂螺[5.5]十一烷-3-基)乙氧基)-5-(三氟甲基)吡啶-3-基)脲
反应流程:
实施例流程:
步骤A:将化合物85-1(900.0毫克,3.4毫摩尔),(2,4-二甲氧苯基)甲胺(675.0毫克,4.0毫摩尔),三乙酰氧基硼氢化钠(1.1克,5.1毫摩尔)和醋酸(141.0毫克,2.4毫摩尔)溶于1,2-二氯乙烷(15毫升)中。反应体系经氮气置换3次,在室温下搅拌16小时。LCMS监测显示原料消失后,反应液用水(50毫升)淬灭,乙酸乙酯(50毫升×3)萃取。合并有机相,用饱和食盐水(50毫升×3)洗涤,无水硫酸钠干燥,过滤浓缩,所得混合物用硅胶柱层析纯化得到1.4克化合物85-2。
MS(ESI)M/Z:419.2[M+H]+
步骤B:将化合物85-2(700.0毫克,1.7毫摩尔),氢氧化钯(150.0毫克),钯碳(150.0毫克)溶于甲醇(10毫升)。反应体系经氢气置换3次后,反应液升温至60摄氏度搅拌16小时。LCMS监测显示原料消失后,将反应液冷却至室温,过滤浓缩,所得混合物用硅胶柱层析纯化得到450.0毫克化合物85-3。
MS(ESI)M/Z:269.2[M+H]+
步骤C:将化合物85-3(450.0毫克,1.7毫摩尔),4-溴-3-甲基-1-((2-(三甲基甲硅烷基)乙氧基)甲基)-1,3-二氢-2H-苯并[d]咪唑-2-酮(460.0毫克,1.3毫摩尔),三二亚苄基丙酮二钯(118.0毫克,130.0微摩尔),2-双环已基膦-2',6'-二异丙氧基联苯(120.0毫克,260.0微摩尔)和叔丁醇钠(372.0毫克,3.9毫摩尔)溶于1,4-二氧六环(8毫升)溶液中。将反应液氮气置换3分钟,然后置于微波反应器中,升温至100摄氏度搅拌1小时。LCMS监测显示原料消失后,将反应液冷至室温,反应液加入水(30毫升),乙酸乙酯(30毫升×3)萃取,合并有机相,用饱和食盐水(30毫升×3)洗涤,无水硫酸钠干燥,过滤浓缩,所得混合物用硅胶柱层析纯化得到480.0毫克化合物85-4。
MS(ESI)M/Z:545.4[M+H]+
步骤D:将化合物85-4(480.0毫克,0.9毫摩尔)溶于四丁基氟化铵(1摩尔,10毫升)中。反应液升温至70摄氏度,搅拌16小时。LCMS监测显示原料消失后,将反应液冷至室温,减压浓缩,所得混合物用硅胶柱层析纯化得到170.0毫克化合物85-5。
MS(ESI)M/Z:415.6[M+H]+
步骤E:将化合物85-5(170.0毫克,0.4毫摩尔)溶于四氢呋喃(10毫升)溶液中,在0摄氏度下加入叔丁醇钾(1摩尔,1毫升),室温下搅拌10分钟,加入1-(4-甲氧苄基)-2,6-二羰基哌啶-3-基三氟甲磺酸(187.0毫克,0.5毫摩尔),升温至60摄氏度搅拌16小时。LCMS监测显示原料消失后,将反应液冷却至室温,反应液加入水(10毫升)淬灭,乙酸乙酯(30毫升×3)萃取,合并有机相,用饱和食盐水(10毫升×3)洗涤,无水硫酸钠干燥,过滤浓缩,所得混合物用硅胶柱层析纯化得到110.0毫克化合物85-6。
MS(ESI)M/Z:646.9[M+H]+
步骤F:将化合物85-6(110.0毫克,170微摩尔)溶于混合溶剂二氯甲烷(3毫升)和三氟乙酸(1毫升)中,反应液在室温下搅拌2小时。LCMS监测显示原料消失后,将反应液减压浓缩,得到50毫克化合物85-7。
MS(ESI)M/Z:546.2[M+H]+
步骤G:将化合物85-7(50.0毫克,65.0微摩尔),吡啶(30.7毫克,0.4毫摩尔)溶于甲醇(5毫升),在室温下搅拌反应10分钟,将(S)-1-(2-氯-7-(1-甲氧基乙基)吡唑并[1,5-a]嘧啶-6-基)-3-(2-(2-羰基乙氧基)-5-(三氟甲基)吡啶-3-基)脲(30.5毫克,65.0微摩尔)和2-甲基吡啶硼烷(55.3毫克,0.5毫摩尔)加入到反应液中,经氮气置换后在常温下搅拌16小时。LCMS监测显示原料消失后,反应液加入水(10毫升)淬灭,乙酸乙酯(20毫升×3)萃取,合并有机相,用饱和食盐水(10毫升)洗涤,无水硫酸钠干燥,过滤浓缩,所得混合物用硅胶柱层析纯化得到25.0毫克化合物85-8。
MS(ESI)M/Z:1002.6[M+H]+
步骤H:将化合物85-8(25.0毫克,25.0微摩尔)溶于混合溶剂三氟甲磺酸(1毫升)和三氟乙酸(3毫升)。反应体系经氮气置换后,反应液升温至50摄氏度搅拌16小时。LCMS监测显示原料消失后,将反应液冷却至室温,减压浓缩,所得混合物用制备色谱纯化得到7.1毫克1-(2-氯-7-((S)-1-甲氧基乙基)吡唑并[1,5-a]嘧啶-6-基)-3-(2-(2-(9-((1-(2,6-二羰基哌啶-3-基)-3-甲基-2-羰基-2,3-二氢-1H-苯并[d]咪唑-4-基)氨基)-3-氮杂螺[5.5]十一烷-3-基)乙氧基)-5-(三氟甲基)吡啶-3-基)脲(化合物85)。
MS(ESI)M/Z:883.0[M+H]+
1HNMR(400MHz,DMSO-d6)δ11.07(s,1H),9.37(s,1H),9.15(s,1H),8.86(s,1H),8.79(d,J=2.0Hz,1H),8.71(s,1H),8.26(s,1H),7.21(s,1H),7.08(s,1H),6.95(s,1H),5.44-5.39(m,1H),5.32-5.28(m,1H),4.91-4.80(m,2H),3.63(s,3H),3.31-3.12(m,8H),2.96-2.81(m,1H),2.74-2.59(m,2H),2.16-1.93(m,4H),1.85-1.77(m,2H),1.65-1.55(m,5H),1.54-1.36(m,6H),1.30-1.20(m,2H).
生物学测试评价
一、活细胞中蛋白实时定量检测实验
评价本发明化合物对MALT1蛋白的降解作用
本实验采用HiBiT蛋白标记技术方法在MALT1-HiBiT 293T细胞中测试PROTAC化合物对MALT1的降解作用,并得出化合物降解MALT1的半数降解效应浓度DC50
1.实验材料
HiBiT空载体及检测发光底物Nano-Glo Endurazine(100×)购自Promega公司。
MALT1-HiBiT 293T稳转细胞由本公司构建。
RPMI 1640培养基,胎牛血清(FBS),青霉素-链霉素(Penicillin-Streptomycin)购自GIBCO。
2.实验方法
1)按照每孔150000个细胞的密度将MALT1-HiBiT 293T细胞接种于96孔培养板,每孔100μL培养液。
2)Day 0:将培养板置于细胞培养箱(37℃,5%CO2)孵育过夜。
3)Day 1:制备3×Nano-Glo Endurazine培养液,每50μL培养液加入1.5μL的Nano-Glo Endurazine试剂,混合均匀。
4)向接种MALT1-HiBiT 293T细胞的96孔培养板中每孔加入50μL的3×Nano-Glo Endurazine培养液,终体积为150μL。
5)使用TECAN D300e超微量加样仪向培养板细胞中加入150nL梯度稀释的待测化合物,DMSO终浓度为0.1%。空白对照加入每孔150nL的DMSO。
6)Spark酶标仪(瑞士TECAN公司)检测不同时间点生物发光信号。
7)使用GraphPad Prism 6软件进行数据分析,得出PROTAC化合物的DC50。除非特别说明,否则DC50均表示在加入化合物后8小时的DC50
3.实验结果
本发明化合物对MALT1蛋白的降解作用活性结果见表1。
表1 MALT1蛋白的降解活性
化合物 MALT1DC50(nM) 化合物 MALT1DC50(nM)
化合物1 A 化合物2 A
化合物3 B 化合物4 A
化合物5 B 化合物6 B
化合物7 C 化合物8 B
化合物9 B 化合物12 C
化合物13 C 化合物14 C
化合物15 C 化合物16 A
化合物18 A 化合物28-P1 B
化合物29 B 化合物30 A
化合物31 A 化合物32 A
化合物33 A 化合物34 B
化合物36 B 化合物37 A
化合物38 A 化合物39 A
化合物40 A 化合物41 A
化合物42-P1 A 化合物43 A
化合物44 A 化合物45 A
化合物46 A 化合物48 B
化合物49 A 化合物50 A
化合物51 A 化合物52 A
化合物53 A 化合物54 A
化合物56 A 化合物57 B
化合物58 A 化合物59 A
化合物60 A 化合物61 A
化合物62 A 化合物63 A
化合物64 A 化合物65 A
化合物66 A 化合物67 A
化合物68 A 化合物69 A
化合物70 A 化合物71 A
化合物72 A 化合物73 A
化合物74 A 化合物75 A
化合物76 A 化合物77 A
化合物78 A 化合物79 A
化合物80 B 化合物81 A
化合物82 B 化合物83 B
化合物84 B 化合物85 A
注:本发明化合物对MALT1蛋白的降解活性DC50数据如表1中所展示。其中DC50≤200nM的化合物用A来标识,200nm<DC50≤2μM之间的化合物用B来标识,2μM<DC50≤10μM之间的化合物用C来标识,DC50>10μM的化合物用D来标识。
数据显示,本发明化合物对MALT1蛋白具有较好的降解活性。
二、细胞增殖抑制实验
评价本发明化合物对弥漫性大B细胞淋巴瘤OCI-LY3细胞增殖抑制作用
本实验采用CellTiter-Glo(CTG)的方法测试化合物对OCI-LY3细胞增殖的抑制作用,并得出化合物抑制细胞生长半数的浓度IC50
1.实验材料
IMDM培养基,胎牛血清(FBS),Penicillin-Streptomycin,2-巯基乙醇(2-Mercaptoethanol)购自GIBCO。
OCI-LY3细胞购自南京科佰生物科技有限公司。
CellTiter-Glo试剂,购自Promega公司。
2.实验方法
1)按照每孔1000个细胞的密度将OCI-LY3细胞接种于96孔培养板,每孔100μL。
2)Day 0:使用TECAN D300e超微量加样仪向培养板细胞中加入100nL梯度稀释的待测化合物,DMSO终浓度为0.1%,空白对照加入每孔100nL的DMSO。将培养板置于细胞培养箱中孵育120小时(37℃,5%CO2)。
3)Day 5:每孔加入50μL Cell Titer-Glo试剂,500rpm震荡2分钟,室温避光静置孵育10分钟稳定发光信号。
4)Envision酶标仪(PerkinElmer公司)检测化学发光信号。
5)使用GraphPad Prism 6软件进行数据分析,得出化合物的IC50
3.实验结果
本发明化合物对弥漫性大B细胞淋巴瘤OCI-LY3细胞增殖抑制结果见表2。
表2 OCI-LY3细胞增殖抑制结果
化合物 OCI-Ly3 IC50(nM) 化合物 OCI-Ly3 IC50(nM)
化合物1 A 化合物2 A
化合物3 B 化合物4 A
化合物5 A 化合物6 A
化合物7 B 化合物8 A
化合物9 B 化合物10 C
化合物11 C 化合物12 C
化合物13 B 化合物14 B
化合物15 C 化合物16 B
化合物17 C 化合物18 A
化合物19 A 化合物20 B
化合物21 A 化合物22 C
化合物23 C 化合物24 C
化合物25 B 化合物26 A
化合物27 B 化合物28-1 B
化合物28-2 B 化合物29 A
化合物30 B 化合物31 B
化合物32 B 化合物33 B
化合物34 B 化合物35 C
化合物36 C 化合物37 A
化合物38 A 化合物39 A
化合物40 A 化合物41 A
化合物42-P1 B 化合物42-P2 A
化合物43 A 化合物44 B
化合物45 B 化合物46 B
化合物47 A 化合物48 B
化合物49 A 化合物50 A
化合物51 A 化合物52 A
化合物53 A 化合物54 A
化合物55 A 化合物56 A
化合物57 B 化合物58 A
化合物59 A 化合物60 A
化合物61 A 化合物62 A
化合物63 A 化合物64 A
化合物65 A 化合物66 A
化合物67 A 化合物68 A
化合物69 A 化合物70 A
化合物71 A 化合物72 A
化合物73 A 化合物74 A
化合物75 A 化合物76 A
化合物77 A 化合物78 A
化合物79 A 化合物80 A
化合物81 A 化合物82 A
化合物83 B 化合物84 A
化合物85 A / /
注:本发明化合物对弥漫性大B细胞淋巴瘤OCI-LY3细胞增殖抑制活性的抑制IC50数据如表1中所展示。其中IC50≤300nM的化合物用A来标识,300nM<IC50≤1μM之间的化合物用B来标识,1μM<IC50≤5μM之间的化合物用C来标识,5μM<IC50≤10μM的化合物用D来标识,IC50>10μM的化合物用E来标识。
数据显示,本发明化合物对弥漫性大B细胞淋巴瘤OCI-LY3细胞具有较好的增殖抑制活性。
以上所述仅为本发明的较佳实施例,并不用以限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包含在本发明保护的范围之内。

Claims (24)

  1. 一种式(I’)所示的化合物:
    或其异构体或其药学上可接受的盐,其中TGL为结合MALT1靶标配体,
    选自
    其中E为结合泛素连接酶的降解决定子,选自
    其中L为接头,具有式(Ⅱ’)所示结构
    B1为C1-15亚烃基链,其中所述C1-15亚烃基链中的氢原子任选地被1-3个Ra取代,C1-15亚烃基链中的碳原子任选的被-NRb-、-O-、羰基所替代;Ra为C1-4烷基;Rb为H或者C1-4烷基;
    B2为化学键、任选被取代的如下基团:C3-6的环烷基、3-6元杂环烷基、C7-11螺环烷基、7-11元螺杂环烷基;
    B3为化学键、C1-4亚烷基链,所述亚烷基链中碳原子任选的被-NRb-、-O-、羰基所替代;
    B4为化学键、任选被取代的如下基团:C3-6环烷基、3-6元杂环烷基、C7-11螺环烷基、7-11元螺杂环烷基;
    B5为化学键、C1-5亚烷基链,所述亚烷基链中碳原子任选的被NRc、羰基或氧所替代,Rc为H或C1-4烷基;
    n1、n2、n3、n4为0或1。
  2. 根据权利要求1所述的化合物、或其异构体或其药学上可接受的盐,其特征在于,L具有式(Ⅱ’a)结构:
  3. 根据权利要求1所述的化合物、或其异构体或其药学上可接受的盐,其特征在于,L具有式(Ⅱ’b)结构:
  4. 根据权利要求1所述的化合物、或其异构体或其药学上可接受的盐,其特征在于,L具有式(Ⅱ’c)结构:
  5. 根据权利要求1所述的化合物、或其异构体或其药学上可接受的盐,其特征在于,L具有式(Ⅱ’d)结构:

  6. 根据权利要求1所述的化合物、或其异构体或其药学上可接受的盐,其特征在于,L具有式(Ⅱ’e)结构:
  7. 根据权利要求1所述的化合物、或其异构体或其药学上可接受的盐,其特征在于,L具有式(Ⅱ’f)结构:
  8. 根据权利要求1~7任一项所述的化合物、或其异构体或其药学上可接受的盐,其特征在于,B1为C1-15亚烃基链,C1-15亚烃基链中氢原子任选地被1-2个Ra取代,C1-15亚烃基链中碳原子任选2~4个碳原子被-NRb-、-O-、羰基所替代,Ra为C1-4烷基;Rb为H或者C1-4烷基。
  9. 根据权利要求1~7任一项所述的化合物、或其异构体或其药学上可接受的盐,其特征在于,B2选自C3-6的环烷基、4-6元杂环烷基,其中杂环烷基中含有1-2个N杂原子,所述环烷基、杂环烷基任选被C1-4烷基取代。
  10. 根据权利要求1~7任一项所述的化合物、或其异构体或其药学上可接受的盐,其特征在于,B2选自C9-11螺环烷基、7-11元螺杂环烷基,其中螺杂环烷基中含有1-2个N杂原子。
  11. 根据权利要求1~7任一项所述的化合物、或其异构体或其药学上可接受的盐,其特征在于,B4为选自C9-11螺环烷基、7-11元螺杂环烷基,其中螺杂环烷基中含有1-2个N杂原子。
  12. 根据权利要求1~11任一项所述的化合物、或其异构体或其药学上可接受的盐,其特征在于,Ra为甲基。
  13. 根据权利要求1~12任一项所述的化合物、或其异构体或其药学上可接受的盐,其特征在于,Rb为氢或甲基。
  14. 根据权利要求1~13任一项所述的化合物、或其异构体或其药学上可接受的盐,其特征在于,Rc为氢。
  15. 根据权利要求1~14任一项所述的化合物、或其异构体或其药学上可接受的盐,其特征在于,B1
  16. 根据权利要求1~15任一项所述的化合物、或其异构体或其药学上可接受的盐,其特征在于,B2
  17. 根据权利要求1~16任一项所述的化合物、或其异构体或其药学上可接受的盐,其特征在于,B3为-CH2-、-CH2-N(CH3)-、-CO-、-N(CH3)-、-(CH2)2-。
  18. 根据权利要求1~17任一项所述的化合物、或其异构体或其药学上可接受的盐,其特征在于,B4
  19. 根据权利要求1~18任一项所述的化合物、或其异构体或其药学上可接受的盐,其特征在于, B5选自
  20. 根据权利要求1-19任一项所述的化合物、或其异构体或其药学上可接受的盐,其特征在于,L选自



  21. 根据权利要求1-20任一项所述的化合物、或其异构体或其药学上可接受的盐,其特征在于,所述化合物选自:












  22. 一种药物组合物,其包含权利要求1-21任一项所述的化合物、或其异构体或其药学上可接受的盐及药学上可接受的载体、稀释剂或赋形剂。
  23. 权利要求1-21任一项所述的化合物、或其异构体或其药学上可接受的盐及权利要求22所述的药物组合物在制备治疗由MALT1靶点介导的相关疾病药物中的用途。
  24. 根据权利要求23所述的用途,所述MALT1靶点介导的相关疾病为细胞异常增殖性疾病;
    优选地,所述的细胞异常增殖性疾病为癌症。
PCT/CN2023/072620 2022-01-28 2023-01-17 靶向malt1的蛋白降解化合物 WO2023143249A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202380015266.0A CN118525021A (zh) 2022-01-28 2023-01-17 靶向malt1的蛋白降解化合物

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
CN202210107957.0 2022-01-28
CN202210107957 2022-01-28
CN202211410392.X 2022-11-11
CN202211410392 2022-11-11
CN202310016529.1 2023-01-06
CN202310016529 2023-01-06

Publications (1)

Publication Number Publication Date
WO2023143249A1 true WO2023143249A1 (zh) 2023-08-03

Family

ID=87470680

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/072620 WO2023143249A1 (zh) 2022-01-28 2023-01-17 靶向malt1的蛋白降解化合物

Country Status (3)

Country Link
CN (1) CN118525021A (zh)
TW (1) TW202340198A (zh)
WO (1) WO2023143249A1 (zh)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106170489A (zh) * 2014-05-28 2016-11-30 诺华股份有限公司 新的吡唑并嘧啶衍生物及其作为malt1抑制剂的用途
WO2018085247A1 (en) * 2016-11-01 2018-05-11 Cornell University Compounds for malt1 degradation
CN109641874A (zh) * 2016-05-10 2019-04-16 C4医药公司 用于靶蛋白降解的c3-碳连接的戊二酰亚胺降解决定子体
WO2020264499A1 (en) * 2019-06-28 2020-12-30 Kymera Therapeutics, Inc. Irak degraders and uses thereof
CN113412259A (zh) * 2018-10-15 2021-09-17 紐力克斯治疗公司 通过泛素蛋白酶体途径降解btk的双官能化合物
CN113710661A (zh) * 2019-04-02 2021-11-26 上海睿跃生物科技有限公司 治疗癌症的化合物和方法
WO2022235698A1 (en) * 2021-05-03 2022-11-10 Nurix Therapeutics, Inc. Compounds for inhibiting or degrading target proteins, compositions, comprising the same, methods of their making, and methods of their use

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106170489A (zh) * 2014-05-28 2016-11-30 诺华股份有限公司 新的吡唑并嘧啶衍生物及其作为malt1抑制剂的用途
CN109641874A (zh) * 2016-05-10 2019-04-16 C4医药公司 用于靶蛋白降解的c3-碳连接的戊二酰亚胺降解决定子体
WO2018085247A1 (en) * 2016-11-01 2018-05-11 Cornell University Compounds for malt1 degradation
CN113412259A (zh) * 2018-10-15 2021-09-17 紐力克斯治疗公司 通过泛素蛋白酶体途径降解btk的双官能化合物
CN113710661A (zh) * 2019-04-02 2021-11-26 上海睿跃生物科技有限公司 治疗癌症的化合物和方法
WO2020264499A1 (en) * 2019-06-28 2020-12-30 Kymera Therapeutics, Inc. Irak degraders and uses thereof
WO2022235698A1 (en) * 2021-05-03 2022-11-10 Nurix Therapeutics, Inc. Compounds for inhibiting or degrading target proteins, compositions, comprising the same, methods of their making, and methods of their use

Also Published As

Publication number Publication date
CN118525021A (zh) 2024-08-20
TW202340198A (zh) 2023-10-16

Similar Documents

Publication Publication Date Title
AU2014368992B2 (en) Tetrahydropyridopyrazines modulators of GPR6
EP2124951B1 (en) 5-cyan0-4- (pyrrolo[2, 3b]pyridine-3-yl) -pyrimidine derivatives useful as protein kinase inhibitors
EP2964223B1 (en) Compounds inhibiting leucine-rich repeat kinase enzyme activity
WO2019158019A1 (zh) 嘧啶并环化合物及其制备方法和应用
KR20230074486A (ko) Glp-1r 효능제로서의 화합물
US9688654B2 (en) Compounds inhibiting leucine-rich repeat kinase enzyme activity
US11897900B2 (en) Inhibitors of KEAP1-Nrf2 protein-protein interaction
KR102653190B1 (ko) 고 활성 sting 단백질 작용제 화합물
WO2014134772A1 (en) Compounds inhibiting leucine-rich repeat kinase enzyme activity
WO2015026683A1 (en) Compounds inhibiting leucine-rich repeat kinase enzyme activity
WO2022165513A1 (en) Cdk2 inhibitors and methods of using the same
CA2577100A1 (en) Chemical compounds
WO2017101796A1 (zh) 酞嗪酮衍生物、其制备方法及用途
WO2020188467A1 (zh) 作为激酶抑制剂的稠合三环化合物
JP2024508547A (ja) ベンゾ[c][2,6]ナフチリジン誘導体、組成物およびその治療的使用
CA3182105A1 (en) Heterocyclic compounds as triggering receptor expressed on myeloid cells 2 agonists and methods of use
WO2022266258A1 (en) Compounds and methods for the targeted degradation of irak-4
CN110655520A (zh) 嘧啶并环化合物及其制备方法和应用
EP4353724A1 (en) Compound as cdk kinase inhibitor and use thereof
US11981658B2 (en) Substituted aminopyridine compounds as EGFR inhibitors
WO2023143249A1 (zh) 靶向malt1的蛋白降解化合物
CA3088288A1 (en) Triazole, imidazole and pyrrole condensed piperazine derivatives and their use as modulators of mglu5 receptors
AU2022215616A1 (en) Quinoxaline derivatives and uses thereof
CN117203202A (zh) 喹喔啉衍生物及其用途
AU2023225437A1 (en) Indazole compound and pharmaceutical use thereof

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23746131

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 202380015266.0

Country of ref document: CN

NENP Non-entry into the national phase

Ref country code: DE