[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2023142457A1 - 一种基于矩阵波的雾化输出方法、及其相关设备 - Google Patents

一种基于矩阵波的雾化输出方法、及其相关设备 Download PDF

Info

Publication number
WO2023142457A1
WO2023142457A1 PCT/CN2022/113903 CN2022113903W WO2023142457A1 WO 2023142457 A1 WO2023142457 A1 WO 2023142457A1 CN 2022113903 W CN2022113903 W CN 2022113903W WO 2023142457 A1 WO2023142457 A1 WO 2023142457A1
Authority
WO
WIPO (PCT)
Prior art keywords
voltage value
proportional parameter
parameter
atomization
proportional
Prior art date
Application number
PCT/CN2022/113903
Other languages
English (en)
French (fr)
Inventor
田亚雷
龚文博
周勇
向宇
Original Assignee
深圳市吉迩科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市吉迩科技有限公司 filed Critical 深圳市吉迩科技有限公司
Publication of WO2023142457A1 publication Critical patent/WO2023142457A1/zh

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A24TOBACCO; CIGARS; CIGARETTES; SIMULATED SMOKING DEVICES; SMOKERS' REQUISITES
    • A24FSMOKERS' REQUISITES; MATCH BOXES; SIMULATED SMOKING DEVICES
    • A24F40/00Electrically operated smoking devices; Component parts thereof; Manufacture thereof; Maintenance or testing thereof; Charging means specially adapted therefor
    • A24F40/50Control or monitoring

Definitions

  • the present application relates to the technical field of aerosol generating devices, in particular to an atomization output method based on matrix waves and related equipment.
  • the purpose of the embodiments of the present application is to propose a matrix wave-based atomization output method and related equipment to solve the problems of poor applicability of aerosol generating devices and poor taste of aerosol generated in the prior art.
  • the embodiment of the present application provides an atomization output method based on matrix waves, which adopts the following technical solutions:
  • step of acquiring the preset voltage value and the segment type of the current cycle it also includes:
  • An actual preheating voltage value is calculated according to the preheating time parameter, the initial voltage value and the target voltage value.
  • the step of obtaining the preset voltage value and the segment type of the current cycle includes:
  • the step of calculating the atomization voltage value according to the preset voltage value and the first proportional parameter specifically includes:
  • the step of calculating the atomization voltage value according to the preset voltage value and the first proportional parameter it also includes:
  • step of determining the first proportional parameter from the proportional parameter library includes:
  • the first proportional parameter of the current period is determined from a proportional parameter library according to the waveform variation mode and the first proportional parameter of the previous period.
  • the step of determining the first proportional parameter of the current period from the proportional parameter library according to the waveform change mode and the first proportional parameter of the previous period includes:
  • the first proportional parameter of the current period equal to the first proportional parameter of the previous period is obtained from the proportional parameter library;
  • the first proportional parameter of the current period that is different from the first proportional parameter of the previous period is obtained from the proportional parameter.
  • the step of calculating the atomization voltage value according to the preset voltage value and the first proportional parameter includes:
  • the embodiment of the present application also provides an atomization output device based on matrix waves, which adopts the following technical solutions:
  • the first obtaining module is used to obtain the preset voltage value and the segmentation type of the current cycle
  • a determining module configured to determine a first proportional parameter from a proportional parameter library according to the segment type of the current cycle, wherein the proportional parameter library includes a plurality of first proportional parameters;
  • An output module configured to calculate an atomization voltage value according to the preset voltage value and the first proportional parameter, and output the atomization voltage value.
  • the embodiment of the present application also provides a computer device, which adopts the following technical solutions:
  • a memory and a processor are included, and a computer program is stored in the memory, and when the processor executes the computer program, the steps of the above-mentioned matrix wave-based atomization output method are realized.
  • the embodiment of the present application also provides a computer-readable storage medium, which adopts the following technical solution:
  • a computer program is stored on the computer-readable storage medium, and when the computer program is executed by a processor, the steps of the above-mentioned matrix wave-based atomization output method are implemented.
  • the embodiment of the present application mainly has the following beneficial effects: by obtaining the preset voltage value and the segment type of the current cycle; according to the segment type of the current cycle, the first proportional parameter is determined from the proportional parameter library,
  • the ratio parameter database includes a plurality of first ratio parameters; the atomization voltage value is calculated according to the preset voltage value and the first ratio parameter, and the atomization voltage value is output.
  • This application is an atomization output method in matrix wave mode, by determining the first proportional parameter from the proportional parameter library according to the segment type of the current cycle, and then calculating according to the preset voltage value and the first proportional parameter Atomization voltage value, in this way, by adjusting the first ratio parameter, the atomization voltage value calculated in the follow-up will be dynamically unchanged or dynamically changed to meet the suction needs of different users, and can be adapted to different specifications of aerosol base
  • the atomization of the material makes the aerosol formed by the atomization taste good and full.
  • FIG. 1 is an exemplary system architecture diagram to which the present application can be applied;
  • Fig. 2 is a flowchart of an embodiment of the atomization output method based on matrix waves according to the present application
  • Fig. 3 is according to the matrix waveform diagram (dynamic constant) of an embodiment of the atomization output method based on matrix wave of the present application;
  • Fig. 4 is according to the matrix waveform diagram (dynamic reduction) of an embodiment of the atomization output method based on matrix wave of the present application;
  • Fig. 5 is a matrix waveform diagram (dynamic increase) according to an embodiment of the atomization output method based on matrix wave of the present application;
  • Fig. 6 is a schematic structural diagram of an embodiment of an atomization output device based on matrix waves according to the present application
  • Fig. 7 is a schematic structural diagram of an embodiment of a computer device according to the present application.
  • a system architecture 100 may include terminal devices 101 , 102 , 103 , a network 104 and a server 105 .
  • the network 104 is used as a medium for providing communication links between the terminal devices 101 , 102 , 103 and the server 105 .
  • Network 104 may include various connection types, such as wires, wireless communication links, or fiber optic cables, among others.
  • Terminal devices 101 , 102 , 103 Users can use terminal devices 101 , 102 , 103 to interact with server 105 via network 104 to receive or send messages and the like.
  • Various communication client applications can be installed on the terminal devices 101, 102, 103, such as web browser applications, shopping applications, search applications, instant messaging tools, email clients, social platform software, and the like.
  • Terminal devices 101, 102, 103 can be various electronic devices with display screens and support web browsing, including but not limited to smartphones, tablet computers, e-book readers, MP3 players (Moving Picture Experts Group Audio Layer III, dynamic Video experts compress standard audio layer 3), MP4 (Moving Picture Experts Group Audio Layer IV, moving picture experts compress standard audio layer 4) player, laptop portable computer and desktop computer, etc.
  • MP3 players Moving Picture Experts Group Audio Layer III, dynamic Video experts compress standard audio layer 3
  • MP4 Moving Picture Experts Group Audio Layer IV, moving picture experts compress standard audio layer 4
  • laptop portable computer and desktop computer etc.
  • the server 105 may be a server that provides various services, such as a background server that provides support for pages displayed on the terminal devices 101 , 102 , 103 .
  • the atomization output method based on matrix wave provided in the embodiment of the present application is generally executed by the server/terminal device, and correspondingly, the atomization output device based on matrix wave is generally set in the server/terminal device.
  • terminal devices, networks and servers in Fig. 1 are only illustrative. According to the implementation needs, there can be any number of terminal devices, networks and servers.
  • FIG. 2 it shows a flow chart of an embodiment of a method for atomization output based on matrix waves according to the present application.
  • the described atomization output method based on matrix wave is suitable for aerosol generating device, wherein the aerosol generating device is used to atomize/heat the aerosol substrate to form an aerosol; the aerosol generating device includes a host body (including a control chip ) and atomization components (including atomization cores)/heating components (including heating cores), the host body is used to control the atomization components/heating components to start or stop; the above-mentioned matrix wave-based atomization output method includes the following steps:
  • Step S201 acquiring a preset voltage value and a segment type of the current cycle.
  • the preset voltage value can be set by the user, and the preset voltage value is less than or equal to the rated voltage value.
  • the segment types of the above current cycle include rising segment type and falling segment type, so that the follow-up atomization voltage value (please refer to the description below) output with medium and high levels is formed through the rising segment type and falling segment type, so that the generated The thicker taste and the lighter taste of the aerosol appear alternately, forming an obvious sense of taste frustration, strong irritating taste, and improving the user's smoking experience.
  • Step S202 according to the segmentation type of the current period, determine a first proportional parameter from a proportional parameter library, wherein the proportional parameter library includes a plurality of first proportional parameters.
  • the segment type of the current period includes an ascending segment type and a descending segment type, wherein the first proportional parameter corresponding to the ascending segment type is different from that of the descending segment type, and the first proportional parameter corresponding to the ascending segment type
  • the scale parameter is greater than or equal to the first scale parameter corresponding to the descending segment type.
  • the range of the first proportional parameter corresponding to the ascending segment type is [1,+ ⁇ ]
  • the range of the first proportional parameter corresponding to the descending segment type is [0,1].
  • the first ratio parameter corresponding to the ascending segment type and the second ratio parameter corresponding to the descending segment type can be classified, so that in the follow-up, according to the segment type of the current period, from the ratio parameter
  • the library determines the first scale parameter.
  • Step S203 calculating an atomization voltage value according to the preset voltage value and the first proportional parameter, and outputting the atomization voltage value.
  • the atomization voltage value is characterized as the current voltage value in the atomization stage; it should be noted that the waveform generated by applying the method of the present application is a matrix waveform (see Figures 3 to 5), and the matrix waveform (See Figures 3 to 5) includes a plurality of cycles, each cycle has an ascending segment type and a descending segment type, so that in the process of using the aerosol generating device, the aerosol formed by the atomization of the aerosol substrate On the palate it is medium and soft.
  • the atomization voltage value is sent to the control chip in the form of an electrical signal, and the control chip controls the atomization component to atomize the aerosol substrate according to the atomization voltage value.
  • step S201 before the step of acquiring the preset voltage value and the segment type of the current cycle, it further includes:
  • An actual preheating voltage value is calculated according to the preheating time parameter, the initial voltage value and the target voltage value.
  • step S201 the step of acquiring the preset voltage value and the segment type of the current cycle includes:
  • the above warm-up time parameter is characterized as the warm-up time of the atomization component.
  • the above initial voltage value is characterized as the voltage value when the atomization component is warmed up and started;
  • the above target voltage value is characterized as the voltage value when the atomization component is preheated.
  • the above actual preheating voltage value represents the current voltage value in the preheating stage; it should be noted that, when the actual preheating voltage value is equal to or greater than the target voltage value, the atomization stage is entered, that is, step S201 is executed.
  • the step of calculating the atomization voltage value according to the preset voltage value and the first proportional parameter specifically includes:
  • the initial voltage value U0 can be a fixed value
  • the storage element pre-stored on the host body can be directly called from the storage component at the preset start, or it can be obtained through the The voltage detection element is detected, and the voltage detection element is electrically connected with the control chip to transmit the data detected by the voltage detection element.
  • the target voltage value U max is a fixed value, which can be set at the factory or adjusted by the user to meet different usage requirements.
  • the preset required time parameter T from the initial voltage value U 0 to the target voltage value U max can be obtained through prior experiments.
  • U 0 ⁇ *U max , Wherein ⁇ is the second proportional parameter, R is the preset resistance parameter, and P is the preset power parameter.
  • the parameters of the preset resistance parameter R and the preset power parameter P mentioned above can be obtained from the preset electrical parameters as described above.
  • the second proportional parameter ⁇ is obtained through pre-experimentation, and the mapping relationship between the initial voltage value U 0 and the target voltage value U max can be determined through the second proportional parameter ⁇ .
  • mapping relationship between the preset required time parameter T and the initial voltage value U 0 or the target voltage value U max needs to be established.
  • the mapping relationship can be obtained by Obtained from previous experiments; when the initial voltage value U 0 and the target voltage value U max are adjusted, it is necessary to establish a mapping relationship between the initial voltage value U 0 , the target voltage value U max and the preset required time parameter T, The mapping relationship between the three can be obtained through prior experiments.
  • the method before the step of calculating the atomization voltage value according to the preset voltage value and the first proportional parameter, the method further includes:
  • the above-mentioned atomization stop command can be generated by the user triggering the start-stop switch (such as a start-stop button or a microphone) on the host body, or it can be generated when the atomization time parameter reaches a preset value;
  • the start-stop switch such as a start-stop button or a microphone
  • the data is extracted from the storage element on the host body (this data is preset when leaving the factory or initially set by the user), and the first proportional parameter is adjusted according to the extracted data to obtain a new first proportional parameter.
  • the new first ratio parameter is smaller than the first ratio parameter, so that the atomization component atomizes with a smaller voltage, so as to protect the atomization core and avoid damage when the high voltage state is switched to the stop state atomizing core.
  • the residual temperature in the thermal environment formed during the atomization stage/heating stage is also used to atomize the aerosol substrate, so that The next puff during the user's continued puffing.
  • step S202 the step of determining the first proportional parameter from the proportional parameter library includes:
  • the first proportional parameter of the current period is determined from a proportional parameter library according to the waveform variation mode and the first proportional parameter of the previous period.
  • the waveform change mode includes a dynamic constant mode and a dynamic change mode, wherein, in the dynamic constant mode, the atomization voltage values in each subsequent cycle are the same, so that the atomization in each cycle is formed
  • the taste of the aerosol is consistent, but in the dynamic change mode, the atomization voltage value in each subsequent cycle is different, so that the taste and plumpness of the generated aerosol show a dynamic change, and the irritation to the user after inhalation is strong.
  • the step of determining the first proportional parameter of the current period from the proportional parameter library according to the waveform variation mode and the first proportional parameter of the previous period includes:
  • the first proportional parameter of the current period equal to the first proportional parameter of the previous period is obtained from the proportional parameter library;
  • the first proportional parameter of the current period that is different from the first proportional parameter of the previous period is obtained from the proportional parameter.
  • Fig. 3 is a matrix waveform that is dynamically constant, and in each cycle of the matrix waveform that is dynamically constant, the output atomization voltage values are the same; During the atomization process of the aerosol base material, the amount of aerosol generated is stable, ensuring the consistency of the aerosol suction taste.
  • Figure 4 and Figure 5 are dynamically changing matrix waveforms, and in each period of the dynamically changing matrix waveform, the output atomization voltage value is in a changing state, wherein the dynamic changes include dynamic increase and dynamic reduce.
  • the waveform change mode is dynamic increase, and if the segment type of the current period is an ascending segment type, at this time, the current value of the first proportional parameter greater than that of the previous period is obtained from the proportional parameter.
  • the first proportional parameter of the period and if the segment type of the current period is a descending segment type, the first proportional parameter of the current period that is smaller than the first proportional parameter of the previous period is obtained from the proportional parameter at this time.
  • the fullness of the aerosol generated during the nebulization process is on the rise, and the puffing in the later period is highly irritating.
  • the waveform change mode is dynamically decreasing, and if the segment type of the current cycle is the rising segment type, at this time, the first value of the current cycle that is smaller than the first cycle parameter of the previous cycle is obtained from the proportional parameter. scale parameter, and if the segment type of the current period is a descending segment type, the first scale parameter of the current period greater than the first scale parameter of the previous period is obtained from the scale parameter at this time.
  • the fullness of the aerosol in the early stage of atomization is sufficient, the explosiveness is strong, and the aerosol particle feeling is strong.
  • the fullness of the generated aerosol shows a downward trend. Staggered pumping experience.
  • the step of calculating the atomization voltage value according to the preset voltage value and the first proportional parameter includes:
  • the atomization voltage value U(t 1 ) is positively correlated with the first proportional parameter ⁇ (please refer to the above description about the waveform change mode), where the first proportional parameter ⁇ can be
  • the settings can also be set by the user to meet the different suction needs of the user and improve the suction experience.
  • This application is the atomization output method of the matrix wave mode (see Figure 3 to Figure 5), by determining the first proportional parameter from the proportional parameter library according to the segment type of the current cycle, and then according to the preset voltage value Calculate the atomization voltage value with the first ratio parameter, so that by adjusting the first ratio parameter, the atomization voltage value calculated in the follow-up will be dynamically unchanged or dynamically changed to meet the suction needs of different users. It is suitable for the atomization of aerosol substrates of different specifications, so that the aerosol formed by atomization has a good taste and fullness.
  • the computer program can be stored in a computer-readable storage medium. During execution, it may include the processes of the embodiments of the above-mentioned methods.
  • the aforementioned storage medium may be a nonvolatile storage medium such as a magnetic disk, an optical disk, a read-only memory (Read-Only Memory, ROM), or a random access memory (Random Access Memory, RAM).
  • the present application provides an embodiment of an atomization output device based on matrix waves, which corresponds to the method embodiment shown in Fig. 2 , the device can be specifically applied to various electronic devices.
  • the matrix wave-based atomization output device 600 in this embodiment includes: a first acquisition module 601 , a determination module 602 and an output module 603 . in:
  • the first obtaining module 601 is used to obtain the preset voltage value and the segmentation type of the current cycle
  • a determining module 602 configured to determine a first proportional parameter from a proportional parameter library according to the segment type of the current period, wherein the proportional parameter library includes a plurality of first proportional parameters;
  • An output module 603 configured to calculate an atomization voltage value according to the preset voltage value and the first proportional parameter, and output the atomization voltage value.
  • This application is the atomization output method of the matrix wave mode (see Figure 3 to Figure 5), by determining the first proportional parameter from the proportional parameter library according to the segment type of the current cycle, and then according to the preset voltage value Calculate the atomization voltage value with the first ratio parameter, so that by adjusting the first ratio parameter, the atomization voltage value calculated in the follow-up will be dynamically unchanged or dynamically changed to meet the suction needs of different users. It is suitable for the atomization of aerosol substrates of different specifications, so that the aerosol formed by atomization has a good taste and fullness.
  • a second acquisition module and a second calculation module are also included. in:
  • the second obtaining module is used to obtain the warm-up time parameter, the initial voltage value and the preset target voltage value
  • the second calculation module is configured to calculate an actual preheating voltage value according to the preheating time parameter, the initial voltage value and the target voltage value.
  • the above-mentioned first acquiring module 601 also includes a first acquiring submodule. in:
  • the first obtaining module 601 is configured to obtain a preset voltage value and a segment type of a current cycle when the actual preheating voltage value meets the target voltage value.
  • the second calculation module includes a warm-up calculation sub-module. in:
  • an adjustment module and a replacement module are also included. in:
  • An adjustment module configured to adjust the first proportional parameter to obtain a new first proportional parameter when an atomization stop instruction is received, wherein the new first proportional parameter is smaller than the first proportional parameter;
  • a replacement module configured to use the new first proportional parameter as the first proportional parameter.
  • the determination module 602 includes a second acquisition submodule and a determination submodule. in:
  • the second acquisition sub-module is used to acquire the waveform change mode and the first proportional parameter of the previous period of the current period;
  • the determining sub-module is used to determine the first proportional parameter of the current period from the proportional parameter library according to the waveform variation mode and the first proportional parameter of the previous period.
  • the determining submodule includes a first acquiring unit and a second acquiring unit. in:
  • the first acquisition unit is configured to acquire the first proportional parameter of the current period that is equal to the first proportional parameter of the previous period from the proportional parameter library when the waveform change mode is dynamic;
  • the second obtaining unit is configured to obtain the first proportional parameter of the current period different from the first proportional parameter of the previous period from the proportional parameters if the waveform change mode is dynamic change.
  • the above-mentioned first calculation module includes an atomization calculation sub-module. in:
  • FIG. 7 is a block diagram of the basic structure of the computer device in this embodiment.
  • the computer device 7 includes a memory 71 , a processor 72 and an interface 73 connected to each other through a system bus. It should be noted that only the computer device 7 with components 71-73 is shown in the figure, but it should be understood that it is not required to implement all the components shown, and more or fewer components may be implemented instead. Among them, those skilled in the art can understand that the computer device here is a device that can automatically perform numerical calculation and/or information processing according to preset or stored instructions, and its hardware includes but is not limited to microprocessors, dedicated Integrated circuit (Application Specific Integrated Circuit, ASIC), programmable gate array (Field-Programmable Gate Array, FPGA), digital processor (Digital Signal Processor, DSP), embedded devices, etc.
  • ASIC Application Specific Integrated Circuit
  • FPGA Field-Programmable Gate Array
  • DSP Digital Signal Processor
  • the computer equipment may be computing equipment such as a desktop computer, a notebook, a palmtop computer, and a cloud server.
  • the computer device can perform human-computer interaction with the user through keyboard, mouse, remote controller, touch panel or voice control device.
  • the memory 71 includes at least one type of readable storage medium, and the readable storage medium includes flash memory, hard disk, multimedia card, card-type memory (for example, SD or DX memory, etc.), random access memory (RAM), static Random Access Memory (SRAM), Read Only Memory (ROM), Electrically Erasable Programmable Read Only Memory (EEPROM), Programmable Read Only Memory (PROM), Magnetic Memory, Magnetic Disk, Optical Disk, etc.
  • the memory 71 may be an internal storage unit of the computer device 7 , such as a hard disk or memory of the computer device 7 .
  • the memory 71 can also be an external storage device of the computer device 7, such as a plug-in hard disk equipped on the computer device 7, a smart memory card (Smart Media Card, SMC), a secure digital (Secure Digital, SD) card, flash memory card (Flash Card), etc.
  • the memory 71 may also include both the internal storage unit of the computer device 7 and its external storage device.
  • the memory 71 is usually used to store the operating system and various application software installed in the computer device 7, such as the program codes of the atomization output method based on matrix waves.
  • the memory 71 can also be used to temporarily store various types of data that have been output or will be output.
  • the processor 72 may be a central processing unit (Central Processing Unit, CPU), a controller, a microcontroller, a microprocessor, or other data processing chips in some embodiments. This processor 72 is generally used to control the general operation of said computer device 7 . In this embodiment, the processor 72 is configured to run the program code or process data stored in the memory 71 , for example, run the program code of the matrix wave-based atomization output method.
  • CPU Central Processing Unit
  • controller central processing unit
  • microcontroller a microcontroller
  • microprocessor microprocessor
  • This processor 72 is generally used to control the general operation of said computer device 7 .
  • the processor 72 is configured to run the program code or process data stored in the memory 71 , for example, run the program code of the matrix wave-based atomization output method.
  • the interface 73 may include a wireless interface or a wired interface, and the interface 73 is generally used to establish a communication connection between the computer device 7 and other electronic devices for signal transmission or data transmission.
  • This application is the atomization output method of the matrix wave mode (see Figure 3 to Figure 5), by determining the first proportional parameter from the proportional parameter library according to the segment type of the current cycle, and then according to the preset voltage value Calculate the atomization voltage value with the first ratio parameter, so that by adjusting the first ratio parameter, the atomization voltage value calculated in the follow-up will be dynamically unchanged or dynamically changed to meet the suction needs of different users. It is suitable for the atomization of aerosol substrates of different specifications, so that the aerosol formed by atomization has a good taste and fullness.
  • the present application also provides another embodiment, which is to provide a computer-readable storage medium, the computer-readable storage medium stores an atomization output program based on matrix waves, and the atomization output program based on matrix waves can be Executed by at least one processor, so that the at least one processor executes the steps of the above-mentioned matrix wave-based atomization output method.
  • This application is the atomization output method of the matrix wave mode (see Figure 3 to Figure 5), by determining the first proportional parameter from the proportional parameter library according to the segment type of the current cycle, and then according to the preset voltage value Calculate the atomization voltage value with the first ratio parameter, so that by adjusting the first ratio parameter, the atomization voltage value calculated in the follow-up will be dynamically unchanged or dynamically changed to meet the suction needs of different users. It is suitable for the atomization of aerosol substrates of different specifications, so that the aerosol formed by atomization has a good taste and fullness.
  • the methods of the above embodiments can be implemented by means of software plus a necessary general-purpose hardware platform, and of course also by hardware, but in many cases the former is better implementation.
  • the technical solution of the present application can be embodied in the form of a software product in essence or the part that contributes to the prior art, and the computer software product is stored in a storage medium (such as ROM/RAM, disk, CD) contains several instructions to make a terminal device (which may be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) execute the methods described in the various embodiments of the present application.
  • a terminal device which may be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.

Landscapes

  • Electrostatic Spraying Apparatus (AREA)

Abstract

本申请实施例属于气溶胶生成装置领域,涉及一种基于矩阵波的雾化输出方法,包括获取预设电压值以及当前周期的分段类型;根据当前周期的分段类型,从比例参数库中确定第一比例参数,其中比例参数库中包括多个第一比例参数;根据预设电压值和第一比例参数计算雾化电压值,输出雾化电压值。本申请还提供一种基于矩阵波的雾化输出的相关设备。本申请为矩阵波模式的雾化输出方法,可通过调整第一比例参数,后续中计算得到的雾化电压值呈动态不变或动态变化,以满足不同使用者的抽吸需求,可适配于不同规格气溶胶基材的雾化,使雾化形成的气溶胶口感好,饱满性足。

Description

一种基于矩阵波的雾化输出方法、及其相关设备 技术领域
本申请涉及气溶胶生成装置技术领域,尤其涉及一种基于矩阵波的雾化输出方法、及其相关设备。
背景技术
目前,气溶胶基材的规格繁多,不同规格的气溶胶基材的雾化温度/加热温度不同,而现有的气溶胶生成装置中,一种气溶胶生成装置只能对一种规格的气溶胶基材进行雾化/加热,适用性差,造成口感单一,口感刺激性、爆发性不足,抽吸体验差的问题,这样导致不得不购置多种气溶胶生成装置,以满足使用者不同口感的需求,成本高,也容易造成气溶胶生成装置闲置,资源浪费。
发明内容
本申请实施例的目的在于提出一种基于矩阵波的雾化输出方法、及其相关设备,用于解决现有技术中气溶胶生成装置适用性差,生成的气溶胶口感差的问题。
为了解决上述技术问题,本申请实施例提供一种基于矩阵波的雾化输出方法,采用了如下所述的技术方案:
获取预设电压值以及当前周期的分段类型;
根据所述当前周期的分段类型,从比例参数库中确定第一比例参数,其中所述比例参数库中包括多个第一比例参数;
根据所述预设电压值和所述第一比例参数计算雾化电压值,输出所述雾化电压值。
进一步的,在所述获取预设电压值以及当前周期的分段类型的步骤之前,还包括:
获取预热时间参数、初始电压值以及预设的目标电压值;
根据所述预热时间参数、所述初始电压值以及所述目标电压值计算预热实际电压值。
所述获取预设电压值以及当前周期的分段类型的步骤包括:
当所述预热实际电压值满足所述目标电压值时,获取预设电压值以及当前周期的分段类型。
进一步的,所述根据所述预设电压值和所述第一比例参数计算雾化电压值的步骤具体包括:
根据第一公式U(t 2)=U 0+(U max-U 0)*t 2/T计算所述预热实际电压值,其中U(t 2)为预热实际电压值,U 0为初始电压值,U max为目标电压值,t 2为预热时间参数,T为U 0至U max的预设所需时间参数。
进一步的,在所述根据所述预设电压值和所述第一比例参数计算雾化电压值的步骤之前,还包括:
当接收到雾化停止指令时,调整所述第一比例参数,得到新第一比例参数,其中所述新第一比例参数小于所述第一比例参数;
将所述新第一比例参数作为所述第一比例参数。
进一步的,从比例参数库中确定第一比例参数的步骤包括:
获取波形变化方式以及所述当前周期的上一周期的第一比例参数;
根据波形变化方式以及所述上一周期的第一比例参数,从比例参数库中确定所述当前周期的第一比例参数。
进一步的,所述根据波形变化方式以及所述上一周期的第一比例参数,从比例参数库中 确定所述当前周期的第一比例参数的步骤包括:
若所述波形变化方式为动态不变时,从比例参数库中获取与上一周期的第一比例参数相等的所述当前周期的第一比例参数;
若所述波形变化方式为动态变化时,从比例参数中获取与上一周期的第一比例参数不同的所述当前周期的第一比例参数。
进一步的,所述根据所述预设电压值和所述第一比例参数计算雾化电压值的步骤包括:
根据第二公式U(t 1)=α*U 1计算雾化电压值,其中U(t 1)为所述雾化电压值,α为所述第一比例参数,U 1为预设电压值。
为了解决上述技术问题,本申请实施例还提供一种基于矩阵波的雾化输出装置,采用了如下所述的技术方案:
第一获取模块,用于获取预设电压值以及当前周期的分段类型;
确定模块,用于根据所述当前周期的分段类型,从比例参数库中确定第一比例参数,其中所述比例参数库中包括多个第一比例参数;及
输出模块,用于根据所述预设电压值和所述第一比例参数计算雾化电压值,输出所述雾化电压值。
为了解决上述技术问题,本申请实施例还提供一种计算机设备,采用了如下所述的技术方案:
包括存储器和处理器,所述存储器中存储有计算机程序,所述处理器执行所述计算机程序时实现如上所述的基于矩阵波的雾化输出方法的步骤。
为了解决上述技术问题,本申请实施例还提供一种计算机可读存储介质,采用了如下所述的技术方案:
所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时实现如上所述的基于矩阵波的雾化输出方法的步骤。
与现有技术相比,本申请实施例主要有以下有益效果:通过获取预设电压值以及当前周期的分段类型;根据当前周期的分段类型,从比例参数库中确定第一比例参数,其中比例参数库中包括多个第一比例参数;根据预设电压值和第一比例参数计算雾化电压值,输出雾化电压值。本申请为矩阵波模式的雾化输出方法,通过根据所述当前周期的分段类型,从比例参数库中确定第一比例参数,之后根据所述预设电压值和所述第一比例参数计算雾化电压值,这样可通过调整第一比例参数,后续中计算得到的雾化电压值呈动态不变或动态变化,以满足不同使用者的抽吸需求,可适配于不同规格气溶胶基材的雾化,使雾化形成的气溶胶口感好,饱满性足。
附图说明
为了更清楚地说明本申请中的方案,下面将对本申请实施例描述中所需要使用的附图作一个简单介绍,显而易见地,下面描述中的附图是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本申请可以应用于其中的示例性系统架构图;
图2根据本申请的基于矩阵波的雾化输出方法的一个实施例的流程图;
图3根据本申请的基于矩阵波的雾化输出方法的一个实施例的矩阵波形图(动态不变);
图4根据本申请的基于矩阵波的雾化输出方法的一个实施例的矩阵波形图(动态减小);
图5根据本申请的基于矩阵波的雾化输出方法的一个实施例的矩阵波形图(动态增大);
图6是根据本申请的基于矩阵波的雾化输出装置的一个实施例的结构示意图;
图7是根据本申请的计算机设备的一个实施例的结构示意图。
具体实施方式
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术人 员通常理解的含义相同;本文中在申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请;本申请的说明书和权利要求书及上述附图说明中的术语“包括”和“具有”以及它们的任何变形,意图在于覆盖不排他的包含。本申请的说明书和权利要求书或上述附图中的术语“第一”、“第二”等是用于区别不同对象,而不是用于描述特定顺序。
在本文中提及“实施例”意味着,结合实施例描述的特定特征、结构或特性可以包含在本申请的至少一个实施例中。在说明书中的各个位置出现该短语并不一定均是指相同的实施例,也不是与其它实施例互斥的独立的或备选的实施例。本领域技术人员显式地和隐式地理解的是,本文所描述的实施例可以与其它实施例相结合。
为了使本技术领域的人员更好地理解本申请方案,下面将结合附图,对本申请实施例中的技术方案进行清楚、完整地描述。
如图1所示,系统架构100可以包括终端设备101、102、103,网络104和服务器105。网络104用以在终端设备101、102、103和服务器105之间提供通信链路的介质。网络104可以包括各种连接类型,例如有线、无线通信链路或者光纤电缆等等。
用户可以使用终端设备101、102、103通过网络104与服务器105交互,以接收或发送消息等。终端设备101、102、103上可以安装有各种通讯客户端应用,例如网页浏览器应用、购物类应用、搜索类应用、即时通信工具、邮箱客户端、社交平台软件等。
终端设备101、102、103可以是具有显示屏并且支持网页浏览的各种电子设备,包括但不限于智能手机、平板电脑、电子书阅读器、MP3播放器(Moving Picture Experts Group Audio Layer III,动态影像专家压缩标准音频层面3)、MP4(Moving Picture Experts Group Audio Layer IV,动态影像专家压缩标准音频层面4)播放器、膝上型便携计算机和台式计算机等等。
服务器105可以是提供各种服务的服务器,例如对终端设备101、102、103上显示的页面提供支持的后台服务器。
需要说明的是,本申请实施例所提供的基于矩阵波的雾化输出方法一般由服务器/终端设备执行,相应地,基于矩阵波的雾化输出装置一般设置于服务器/终端设备中。
应该理解,图1中的终端设备、网络和服务器的数目仅仅是示意性的。根据实现需要,可以具有任意数目的终端设备、网络和服务器。
继续参考图2,示出了根据本申请的基于矩阵波的雾化输出的方法的一个实施例的流程图。所述的基于矩阵波的雾化输出方法,适用于气溶胶生成装置,其中气溶胶生成装置用于对气溶胶基材雾化/加热形成气溶胶;气溶胶生成装置包括主机本体(包括控制芯片)以及雾化组件(包括雾化芯)/加热组件(包括加热芯),主机本体用于控制雾化组件/加热组件进行启动或停止;上述基于矩阵波的雾化输出方法,包括以下步骤:
步骤S201,获取预设电压值以及当前周期的分段类型。
在本实施例中,上述预设电压值可由使用者自行设定,且预设电压值小于或等于额定电压值。
上述当前周期的分段类型包括上升分段类型以及下降分段类型,这样通过上升分段类型与下降分段类型形成后续中高低错落的雾化电压值(请参见下文描述)输出,使生成的气溶胶较浓口感和较淡口感交替出现,形成明显的口感顿挫感,口感刺激性强,提升使用者抽吸体验。
步骤S202,根据所述当前周期的分段类型,从比例参数库中确定第一比例参数,其中所述比例参数库中包括多个第一比例参数。
在本实施例中,当前周期的分段类型包括上升分段类型以及下降分段类型,其中上升分段类型与下降分段类型对应的第一比例参数不同,其中上升分段类型对应的第一比例参数大于或等于下降分段类型对应的第一比例参数。如上升分段类型对应的第一比例参数的范围为[1,+∞],下降分段类型对应的第一比例参数的范围[0,1]。
上述比例参数库中,可将上升分段类型对应的第一比例参数与下降分段类型对应的第二 比例参数进行分类,这样以便于后续中根据所述当前周期的分段类型,从比例参数库中确定第一比例参数。
步骤S203,根据所述预设电压值和所述第一比例参数计算雾化电压值,输出所述雾化电压值。
在本实施例中,雾化电压值表征为在雾化阶段中当前的电压值;需要说明的是,应用本申请的方法生成的波形为矩阵波形(参见图3至图5),在矩阵波形(参见图3至图5)包括有多个周期,每个周期均具有上升分段类型与下降分段类型,这样在气溶胶生成装置使用的过程中,气溶胶基材雾化形成的气溶胶口感适中,柔和。
上述输出所述雾化电压值的步骤中,雾化电压值以电信号的形式发送至控制芯片中,控制芯片根据雾化电压值控制雾化组件对气溶胶基材进行雾化。
在一些可选的实现方式中,在步骤S201,在所述获取预设电压值以及当前周期的分段类型的步骤之前,还包括:
获取预热时间参数、初始电压值以及预设的目标电压值;
根据所述预热时间参数、所述初始电压值以及所述目标电压值计算预热实际电压值。
在步骤S201中,所述获取预设电压值以及当前周期的分段类型的步骤包括:
当所述预热实际电压值满足所述目标电压值时,获取预设电压值以及当前周期的分段类型。
在本实施例中,上述预热时间参数表征为雾化组件的预热时间。
上述初始电压值表征为雾化组件预热启动时的电压值;
上述目标电压值表征为雾化组件预热完成时的电压值。
上述预热实际电压值表征为预热阶段中当前的电压值;需要说明的是,当预热实际电压值等于或大于目标电压值后,进入雾化阶段,即执行步骤S201。
在一些可选的实现方式中,所述根据所述预设电压值和所述第一比例参数计算雾化电压值的步骤具体包括:
根据第一公式U(t 2)=U 0+(U max-U 0)*t 2/T计算所述预热实际电压值,其中U(t 2)为预热实际电压值,U 0为初始电压值,U max为目标电压值,t 2为预热时间参数,T为U 0至U max的预设所需时间参数。
在本实施例中,初始电压值U 0可为固定值,预存于主机本体上的存储元件,在预设起始时直接从储存组件上调用得到,也可为在预热起始时,通过电压检测元件检测得到,而电压检测元件与控制芯片电连接,以传输电压检测元件检测得到的数据。
目标电压值U max为固定值,其可在出厂时已设定或由使用者自行调节设定,以满足不同的使用需求。
初始电压值U 0至目标电压值U max的预设所需时间参数T,该预设所需时间参数T可通过事先实验获取的得到。
需要说明的是,U 0=α*U max
Figure PCTCN2022113903-appb-000001
其中α为第二比例参数,R为预设电阻参数,P为预设功率参数,上述中预设电阻参数R和预设功率参数P可参数见上文描述,可由预设电参数提取得到。
需要说明的是,第二比例参数α通过预先实验得到,通过第二比例参数α可确定初始电压值U 0与目标电压值U max之间的映射关系。
进一步说明的是,当初始电压值U 0或目标电压值U max调整时,需建立预设所需时间参数T、与初始电压值U 0或目标电压值U max映射关系,该映射关系可通过事先实验获取的得到;当初始电压值U 0和目标电压值U max调整时,需建立初始电压值U 0、目标电压值U max与预设所需时 间参数T三者之间的映射关系,而三者之间的映射关系可通过事先实验获取的得到。
在一些可选的实现方式中,在所述根据所述预设电压值和所述第一比例参数计算雾化电压值的步骤之前,还包括:
当接收到雾化停止指令时,调整所述第一比例参数,得到新第一比例参数,其中所述新第一比例参数小于所述第一比例参数;
将所述新第一比例参数作为所述第一比例参数。
在本实施例中,上述雾化停止指令可由使用者触发主机本体上的启停开关(如启停按键或咪头)生成,也可当雾化时间参数达到预设值时生成;在接收到雾化停止指令后,从主机本体上的存储元件中提取数据(此数据出厂时预先设置或用户初始时预先设置),根据提取的数据对第一比例参数进行调整,得到新第一比例参数。
需要说明的是,新第一比例参数小于第一比例参数,以使雾化组件以较小的电压雾化,这样以对雾化芯形成保护,以避免在高电压状态切换至停止状态时损坏雾化芯。
进一步说明的是,上述中,在雾化组件以较小的电压雾化的同时,也利用雾化阶段/加热阶段过程中形成的热环境中的余温对气溶胶基材进行雾化,以便于使用者持续抽吸过程中下次的抽吸。
在一些可选的实现方式中,在步骤S202中,从比例参数库中确定第一比例参数的步骤包括:
获取波形变化方式以及所述当前周期的上一周期的第一比例参数;
根据波形变化方式以及所述上一周期的第一比例参数,从比例参数库中确定所述当前周期的第一比例参数。
在本实施例中,波形变化方式包括动态不变方式以及动态变化方式,其中,在动态不变方式中,后续中各周期上的雾化电压值均相同,以使各周期的中雾化形成的气溶胶口感一致,而在动态变化方式中,后续中各周期上的雾化电压值不相同,使生成气溶胶口感和饱满性呈动态性的变化,使用者抽吸后的刺激性强。
在一些可选的实现方式中,所述根据波形变化方式以及所述上一周期的第一比例参数,从比例参数库中确定所述当前周期的第一比例参数的步骤包括:
若所述波形变化方式为动态不变时,从比例参数库中获取与上一周期的第一比例参数相等的所述当前周期的第一比例参数;
若所述波形变化方式为动态变化时,从比例参数中获取与上一周期的第一比例参数不同的所述当前周期的第一比例参数。
在本实施例中,参见图3,图3为动态不变的矩阵波形,而在动态不变的矩阵波形的各周期中,输出的雾化电压值相同;这样在动态不变中,在整体气溶胶基材雾化的过程中,气溶胶的生成量稳定,保证气溶胶抽吸口感的一致性。
参见图4和图5,图4和图5为动态变化的矩阵波形,而在动态变化的矩阵波形的各周期中,输出的雾化电压值呈变化状态,其中动态变化包括动态增大以及动态减少。
具体的,参见图5,当波形变化方式为动态增大时,且若当前周期的分段类型为上升分段类型时,此时从比例参数中获取大于上一周期的第一比例参数的当前周期的第一比例参数,而若当前周期的分段类型为下降分段类型时,此时从比例参数中获取小于上一周期的第一比例参数的当前周期的第一比例参数。在动态增大的波形变化方式中,雾化过程中生成气溶胶的饱满度呈上升趋势,后期的抽吸刺激性强。
参见图4,当波形变化方式为动态减小时,且若当前周期的分段类型为上升分段类型时,此时从比例参数中获取小于上一周期的第一比例参数的当前周期的第一比例参数,而若当前周期的分段类型为下降分段类型时,此时从比例参数中获取大于上一周期的第一比例参数的当前周期的第一比例参数。在动态增大的波形变化方式中,在雾化前期气溶胶的饱满性足,爆发性强,气溶胶颗粒感强,在持续的雾化过程中生成气溶胶的饱满度呈下降趋势,形成高低错落的抽吸体验。
在一些可选的实现方式中,上述步骤S203中,所述根据所述预设电压值和所述第一比例参数计算雾化电压值的步骤包括:
根据第二公式U(t 1)=α*U 1计算雾化电压值,其中U(t 1)为所述雾化电压值,α为所述第一比例参数,U 1为预设电压值。
在本实施例中,雾化电压值U(t 1)与第一比例参数α为正相关的关系(请参见上文关于波形变化方式的描述),其中第一比例参数α可为出厂时已设定,也可由使用者自行设定,满足使用者不同的抽吸需求,提升抽吸体验。
本申请为矩阵波模式(参见图3至图5)的雾化输出方法,通过根据所述当前周期的分段类型,从比例参数库中确定第一比例参数,之后根据所述预设电压值和所述第一比例参数计算雾化电压值,这样可通过调整第一比例参数,后续中计算得到的雾化电压值呈动态不变或动态变化,以满足不同使用者的抽吸需求,可适配于不同规格气溶胶基材的雾化,使雾化形成的气溶胶口感好,饱满性足。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,该计算机程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,前述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)等非易失性存储介质,或随机存储记忆体(Random Access Memory,RAM)等。
应该理解的是,虽然附图的流程图中的各个步骤按照箭头的指示依次显示,但是这些步骤并不是必然按照箭头指示的顺序依次执行。除非本文中有明确的说明,这些步骤的执行并没有严格的顺序限制,其可以以其他的顺序执行。而且,附图的流程图中的至少一部分步骤可以包括多个子步骤或者多个阶段,这些子步骤或者阶段并不必然是在同一时刻执行完成,而是可以在不同的时刻执行,其执行顺序也不必然是依次进行,而是可以与其他步骤或者其他步骤的子步骤或者阶段的至少一部分轮流或者交替地执行。
进一步参考图6,作为对上述图6所示方法的实现,本申请提供了一种基于矩阵波的雾化输出装置的一个实施例,该装置实施例与图2所示的方法实施例相对应,该装置具体可以应用于各种电子设备中。
如图4所示,本实施例所述的基于矩阵波的雾化输出装置600包括:第一获取模块601、确定模块602以及输出模块603。其中:
第一获取模块601,用于获取预设电压值以及当前周期的分段类型;
确定模块602,用于根据所述当前周期的分段类型,从比例参数库中确定第一比例参数,其中所述比例参数库中包括多个第一比例参数;及
输出模块603,用于根据所述预设电压值和所述第一比例参数计算雾化电压值,输出所述雾化电压值。
本申请为矩阵波模式(参见图3至图5)的雾化输出方法,通过根据所述当前周期的分段类型,从比例参数库中确定第一比例参数,之后根据所述预设电压值和所述第一比例参数计算雾化电压值,这样可通过调整第一比例参数,后续中计算得到的雾化电压值呈动态不变或动态变化,以满足不同使用者的抽吸需求,可适配于不同规格气溶胶基材的雾化,使雾化形成的气溶胶口感好,饱满性足。
在一些可选的实现方式中,还包括第二获取模块以及第二计算模块。其中:
第二获取模块,用于获取预热时间参数、初始电压值以及预设的目标电压值;
第二计算模块,用于根据所述预热时间参数、所述初始电压值以及所述目标电压值计算预热实际电压值。
上述第一获取模块601还包括第一获取子模块。其中:
第一获取模块601,用于当所述预热实际电压值满足所述目标电压值时,获取预设电压值以及当前周期的分段类型。
在一些可选的实现方式中,第二计算模块包括预热计算子模块。其中:
预热计算子模块,用于根据第一公式U(t 2)=U 0+(U max-U 0)*t 2/T计算所述预热实际电压值,其中U(t 2)为预热实际电压值,U 0为初始电压值,U max为目标电压值,t 2为预热时间参数,T为U 0至U max的预设所需时间参数。
在一些可选的实现方式中,还包括调整模块以及替换模块。其中:
调整模块,用于当接收到雾化停止指令时,调整所述第一比例参数,得到新第一比例参数,其中所述新第一比例参数小于所述第一比例参数;
替换模块,用于将所述新第一比例参数作为所述第一比例参数。
在一些可选的实现方式中,上述确定模块602包括第二获取子模块以及确定子模块。其中:
第二获取子模块,用于获取波形变化方式以及所述当前周期的上一周期的第一比例参数;
确定子模块,用于根据波形变化方式以及所述上一周期的第一比例参数,从比例参数库中确定所述当前周期的第一比例参数。
在一些可选的实现方式中,确定子模块包括第一获取单元以及第二获取单元。其中:
第一获取单元,用于若所述波形变化方式为动态不变时,从比例参数库中获取与上一周期的第一比例参数相等的所述当前周期的第一比例参数;
第二获取单元,用于若所述波形变化方式为动态变化时,从比例参数中获取与上一周期的第一比例参数不同的所述当前周期的第一比例参数。
在一些可选的实现方式中,上述第一计算模块包括雾化计算子模块。其中:
雾化计算子模块,用于根据第二公式U(t 1)=α*U 1计算雾化电压值,其中U(t 1)为所述雾化电压值,α为所述第一比例参数,U 1为预设电压值。
为解决上述技术问题,本申请实施例还提供计算机设备。具体请参阅图6,图7为本实施例计算机设备基本结构框图。
所述计算机设备7包括通过系统总线相互通信连接存储器71、处理器72、接口73。需要指出的是,图中仅示出了具有组件71-73的计算机设备7,但是应理解的是,并不要求实施所有示出的组件,可以替代的实施更多或者更少的组件。其中,本技术领域技术人员可以理解,这里的计算机设备是一种能够按照事先设定或存储的指令,自动进行数值计算和/或信息处理的设备,其硬件包括但不限于微处理器、专用集成电路(Application Specific Integrated Circuit,ASIC)、可编程门阵列(Field-Programmable Gate Array,FPGA)、数字处理器(Digital Signal Processor,DSP)、嵌入式设备等。
所述计算机设备可以是桌上型计算机、笔记本、掌上电脑及云端服务器等计算设备。所述计算机设备可以与用户通过键盘、鼠标、遥控器、触摸板或声控设备等方式进行人机交互。
所述存储器71至少包括一种类型的可读存储介质,所述可读存储介质包括闪存、硬盘、多媒体卡、卡型存储器(例如,SD或DX存储器等)、随机访问存储器(RAM)、静态随机访问存储器(SRAM)、只读存储器(ROM)、电可擦除可编程只读存储器(EEPROM)、可编程只读存储器(PROM)、磁性存储器、磁盘、光盘等。在一些实施例中,所述存储器71可以是所述计算机设备7的内部存储单元,例如该计算机设备7的硬盘或内存。在另一些实施例中,所述存储器71也可以是所述计算机设备7的外部存储设备,例如该计算机设备7上配备的插接式硬盘,智能存储卡(Smart Media Card,SMC),安全数字(Secure Digital,SD)卡,闪存卡(Flash Card)等。当然,所述存储器71还可以既包括所述计算机设备7的内部存储单元也包括其外部存储设备。本实施例中,所述存储器71通常用于存储安装于所述计算机设备7的操作系统和各类应用软件,例如基于矩阵波的雾化输出方法的程序代码等。此外,所述存储器71还可以用于暂时地存储已经输出或者将要输出的各类数据。
所述处理器72在一些实施例中可以是中央处理器(Central Processing Unit,CPU)、控 制器、微控制器、微处理器、或其他数据处理芯片。该处理器72通常用于控制所述计算机设备7的总体操作。本实施例中,所述处理器72用于运行所述存储器71中存储的程序代码或者处理数据,例如运行所述基于矩阵波的雾化输出方法的程序代码。
所述接口73可包括无线接口或有线接口,该接口73通常用于在所述计算机设备7与其他电子设备之间建立通信连接,以用于进行信号传输或数据传输。
本申请为矩阵波模式(参见图3至图5)的雾化输出方法,通过根据所述当前周期的分段类型,从比例参数库中确定第一比例参数,之后根据所述预设电压值和所述第一比例参数计算雾化电压值,这样可通过调整第一比例参数,后续中计算得到的雾化电压值呈动态不变或动态变化,以满足不同使用者的抽吸需求,可适配于不同规格气溶胶基材的雾化,使雾化形成的气溶胶口感好,饱满性足。
本申请还提供了另一种实施方式,即提供一种计算机可读存储介质,所述计算机可读存储介质存储有基于矩阵波的雾化输出程序,所述基于矩阵波的雾化输出程序可被至少一个处理器执行,以使所述至少一个处理器执行如上述的基于矩阵波的雾化输出方法的步骤。
本申请为矩阵波模式(参见图3至图5)的雾化输出方法,通过根据所述当前周期的分段类型,从比例参数库中确定第一比例参数,之后根据所述预设电压值和所述第一比例参数计算雾化电压值,这样可通过调整第一比例参数,后续中计算得到的雾化电压值呈动态不变或动态变化,以满足不同使用者的抽吸需求,可适配于不同规格气溶胶基材的雾化,使雾化形成的气溶胶口感好,饱满性足。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
显然,以上所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例,附图中给出了本申请的较佳实施例,但并不限制本申请的专利范围。本申请可以以许多不同的形式来实现,相反地,提供这些实施例的目的是使对本申请的公开内容的理解更加透彻全面。尽管参照前述实施例对本申请进行了详细的说明,对于本领域的技术人员来而言,其依然可以对前述各具体实施方式所记载的技术方案进行修改,或者对其中部分技术特征进行等效替换。凡是利用本申请说明书及附图内容所做的等效结构,直接或间接运用在其他相关的技术领域,均同理在本申请专利保护范围之内。

Claims (20)

  1. 一种基于矩阵波的雾化输出方法,其中,包括下述步骤:
    获取预设电压值以及当前周期的分段类型;
    根据所述当前周期的分段类型,从比例参数库中确定第一比例参数,其中所述比例参数库中包括多个第一比例参数;
    根据所述预设电压值和所述第一比例参数计算雾化电压值,输出所述雾化电压值。
  2. 根据权利要求1所述的基于矩阵波的雾化输出方法,其中,在所述获取预设电压值以及当前周期的分段类型的步骤之前,还包括:
    获取预热时间参数、初始电压值以及预设的目标电压值;
    根据所述预热时间参数、所述初始电压值以及所述目标电压值计算预热实际电压值;
    所述获取预设电压值以及当前周期的分段类型的步骤包括:
    当所述预热实际电压值满足所述目标电压值时,获取预设电压值以及当前周期的分段类型。
  3. 根据权利要求2所述的基于矩阵波的雾化输出方法,其中,所述根据所述预设电压值和所述第一比例参数计算雾化电压值的步骤具体包括:
    根据第一公式U(t 2)=U 0+(U max-U 0)*t 2/T计算所述预热实际电压值,其中U(t 2)为预热实际电压值,U 0为初始电压值,U max为目标电压值,t 2为预热时间参数,T为U 0至U max的预设所需时间参数。
  4. 根据权利要求1所述的基于矩阵波的雾化输出方法,其中,在所述根据所述预设电压值和所述第一比例参数计算雾化电压值的步骤之前,还包括:
    当接收到雾化停止指令时,调整所述第一比例参数,得到新第一比例参数,其中所述新第一比例参数小于所述第一比例参数;
    将所述新第一比例参数作为所述第一比例参数。
  5. 根据权利要求1所述的基于矩阵波的雾化输出方法,其中,从比例参数库中确定第一比例参数的步骤包括:
    获取波形变化方式以及所述当前周期的上一周期的第一比例参数;
    根据波形变化方式以及所述上一周期的第一比例参数,从比例参数库中确定所述当前周期的第一比例参数。
  6. 根据权利要求5所述的基于矩阵波的雾化输出方法,其中,所述根据波形变化方式以及所述上一周期的第一比例参数,从比例参数库中确定所述当前周期的第一比例参数的步骤包括:
    若所述波形变化方式为动态不变时,从比例参数库中获取与上一周期的第一比例参数相等的所述当前周期的第一比例参数;
    若所述波形变化方式为动态变化时,从比例参数中获取与上一周期的第一比例参数不同的所述当前周期的第一比例参数。
  7. 根据权利要求1所述的基于矩阵波的雾化输出方法,其中,所述根据所述预设电压值和所述第一比例参数计算雾化电压值的步骤包括:
    根据第二公式U(t 1)=α*U 1计算雾化电压值,其中U(t 1)为所述雾化电压值,α为所述第一比例参数,U 1为预设电压值。
  8. 一种基于矩阵波的雾化输出装置,其中,包括:
    第一获取模块,用于获取预设电压值以及当前周期的分段类型;
    确定模块,用于根据所述当前周期的分段类型,从比例参数库中确定第一比例参数,其中所述比例参数库中包括多个第一比例参数;及
    输出模块,用于根据所述预设电压值和所述第一比例参数计算雾化电压值,输出所述雾 化电压值。
  9. 一种计算机设备,包括存储器和处理器,所述存储器中存储有计算机程序,其中,所述处理器执行所述计算机程序时实现以下步骤:
    获取预设电压值以及当前周期的分段类型;
    根据所述当前周期的分段类型,从比例参数库中确定第一比例参数,其中所述比例参数库中包括多个第一比例参数;
    根据所述预设电压值和所述第一比例参数计算雾化电压值,输出所述雾化电压值。
  10. 根据权利要求9所述的计算机设备,其中,在所述获取预设电压值以及当前周期的分段类型的步骤之前,还包括:
    获取预热时间参数、初始电压值以及预设的目标电压值;
    根据所述预热时间参数、所述初始电压值以及所述目标电压值计算预热实际电压值;
    所述获取预设电压值以及当前周期的分段类型的步骤包括:
    当所述预热实际电压值满足所述目标电压值时,获取预设电压值以及当前周期的分段类型。
  11. 根据权利要求10所述的计算机设备,其中,所述根据所述预设电压值和所述第一比例参数计算雾化电压值的步骤具体包括:
    根据第一公式U(t 2)=U 0+(U max-U 0)*t 2/T计算所述预热实际电压值,其中U(t 2)为预热实际电压值,U 0为初始电压值,U max为目标电压值,t 2为预热时间参数,T为U 0至U max的预设所需时间参数。
  12. 根据权利要求9所述的计算机设备,其中,在所述根据所述预设电压值和所述第一比例参数计算雾化电压值的步骤之前,还包括:
    当接收到雾化停止指令时,调整所述第一比例参数,得到新第一比例参数,其中所述新第一比例参数小于所述第一比例参数;
    将所述新第一比例参数作为所述第一比例参数。
  13. 根据权利要求9所述的计算机设备,其中,从比例参数库中确定第一比例参数的步骤包括:
    获取波形变化方式以及所述当前周期的上一周期的第一比例参数;
    根据波形变化方式以及所述上一周期的第一比例参数,从比例参数库中确定所述当前周期的第一比例参数。
  14. 根据权利要求13所述的计算机设备,其中,所述根据波形变化方式以及所述上一周期的第一比例参数,从比例参数库中确定所述当前周期的第一比例参数的步骤包括:
    若所述波形变化方式为动态不变时,从比例参数库中获取与上一周期的第一比例参数相等的所述当前周期的第一比例参数;
    若所述波形变化方式为动态变化时,从比例参数中获取与上一周期的第一比例参数不同的所述当前周期的第一比例参数。
  15. 根据权利要求9所述的计算机设备,其中,所述根据所述预设电压值和所述第一比例参数计算雾化电压值的步骤包括:
    根据第二公式U(t 1)=α*U 1计算雾化电压值,其中U(t 1)为所述雾化电压值,α为所述第一比例参数,U 1为预设电压值。
  16. 一种计算机可读存储介质,其中,所述计算机可读存储介质上存储有计算机程序,所述计算机程序被处理器执行时使所述处理器执行以下操作:
    获取预设电压值以及当前周期的分段类型;
    根据所述当前周期的分段类型,从比例参数库中确定第一比例参数,其中所述比例参数库中包括多个第一比例参数;
    根据所述预设电压值和所述第一比例参数计算雾化电压值,输出所述雾化电压值。
  17. 根据权利要求16所述的计算机可读存储介质,其中,在所述获取预设电压值以及当前周期的分段类型的步骤之前,还包括:
    获取预热时间参数、初始电压值以及预设的目标电压值;
    根据所述预热时间参数、所述初始电压值以及所述目标电压值计算预热实际电压值;
    所述获取预设电压值以及当前周期的分段类型的步骤包括:
    当所述预热实际电压值满足所述目标电压值时,获取预设电压值以及当前周期的分段类型。
  18. 根据权利要求17所述的计算机可读存储介质,其中,所述根据所述预设电压值和所述第一比例参数计算雾化电压值的步骤具体包括:
    根据第一公式U(t 2)=U 0+(U max-U 0)*t 2/T计算所述预热实际电压值,其中U(t 2)为预热实际电压值,U 0为初始电压值,U max为目标电压值,t 2为预热时间参数,T为U 0至U max的预设所需时间参数。
  19. 根据权利要求16所述的计算机可读存储介质,其中,在所述根据所述预设电压值和所述第一比例参数计算雾化电压值的步骤之前,还包括:
    当接收到雾化停止指令时,调整所述第一比例参数,得到新第一比例参数,其中所述新第一比例参数小于所述第一比例参数;
    将所述新第一比例参数作为所述第一比例参数。
  20. 根据权利要求16所述的计算机可读存储介质,其中,从比例参数库中确定第一比例参数的步骤包括:
    获取波形变化方式以及所述当前周期的上一周期的第一比例参数;
    根据波形变化方式以及所述上一周期的第一比例参数,从比例参数库中确定所述当前周期的第一比例参数。
PCT/CN2022/113903 2022-01-27 2022-08-22 一种基于矩阵波的雾化输出方法、及其相关设备 WO2023142457A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202210102081.0A CN114521685B (zh) 2022-01-27 2022-01-27 一种基于矩阵波的雾化输出方法、及其相关设备
CN202210102081.0 2022-01-27

Publications (1)

Publication Number Publication Date
WO2023142457A1 true WO2023142457A1 (zh) 2023-08-03

Family

ID=81623111

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/113903 WO2023142457A1 (zh) 2022-01-27 2022-08-22 一种基于矩阵波的雾化输出方法、及其相关设备

Country Status (2)

Country Link
CN (1) CN114521685B (zh)
WO (1) WO2023142457A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN120113846A (zh) * 2025-05-13 2025-06-10 深圳市汉清达科技有限公司 电子烟的电池管理系统及方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114521685B (zh) * 2022-01-27 2025-05-30 深圳市吉迩技术有限公司 一种基于矩阵波的雾化输出方法、及其相关设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106509998A (zh) * 2016-11-09 2017-03-22 深圳瀚星翔科技有限公司 电子雾化装置的温度控制方法和系统
CN110074465A (zh) * 2019-05-20 2019-08-02 深圳市合元科技有限公司 电子烟及其控制方法和雾化器
CN110547511A (zh) * 2019-08-01 2019-12-10 深圳葭南科技有限公司 用于更好还原烟油口感的电子烟控制方法及电子烟
CN111418900A (zh) * 2020-03-20 2020-07-17 深圳麦克韦尔科技有限公司 烟油尼古丁含量检测系统、方法、装置及电子雾化装置
CN114521685A (zh) * 2022-01-27 2022-05-24 深圳市吉迩技术有限公司 一种基于矩阵波的雾化输出方法、及其相关设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110487848A (zh) * 2019-07-30 2019-11-22 深圳麦克韦尔科技有限公司 雾化组件含油量检测方法、装置及电子雾化装置
CN110558617B (zh) * 2019-07-30 2022-12-27 深圳麦克韦尔科技有限公司 电子雾化装置、加热控制方法、装置和存储介质
CN112998322B (zh) * 2019-12-20 2022-07-01 深圳市国科瑞芯科技有限公司 一种动态功率补偿方法及雾化式电子烟
CN113412968A (zh) * 2021-05-27 2021-09-21 深圳麦时科技有限公司 雾化控制方法、充电设备、雾化设备及电子雾化系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106509998A (zh) * 2016-11-09 2017-03-22 深圳瀚星翔科技有限公司 电子雾化装置的温度控制方法和系统
CN110074465A (zh) * 2019-05-20 2019-08-02 深圳市合元科技有限公司 电子烟及其控制方法和雾化器
CN110547511A (zh) * 2019-08-01 2019-12-10 深圳葭南科技有限公司 用于更好还原烟油口感的电子烟控制方法及电子烟
CN111418900A (zh) * 2020-03-20 2020-07-17 深圳麦克韦尔科技有限公司 烟油尼古丁含量检测系统、方法、装置及电子雾化装置
CN114521685A (zh) * 2022-01-27 2022-05-24 深圳市吉迩技术有限公司 一种基于矩阵波的雾化输出方法、及其相关设备

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN120113846A (zh) * 2025-05-13 2025-06-10 深圳市汉清达科技有限公司 电子烟的电池管理系统及方法

Also Published As

Publication number Publication date
CN114521685B (zh) 2025-05-30
CN114521685A (zh) 2022-05-24

Similar Documents

Publication Publication Date Title
WO2023142442A1 (zh) 一种基于正弦波的雾化输出方法、及其相关设备
CN108847219A (zh) 一种唤醒词预设置信度阈值调节方法及系统
CN111432226B (zh) 直播推荐方法、装置、服务器、终端及存储介质
CN104636406B (zh) 一种根据用户行为推送信息的方法和装置
CN110798527B (zh) 一种节点数据部署方法、装置、系统及介质
US20190110377A1 (en) Altitude correction method and system for regulating and controlling server fan
CN110941411A (zh) 帧率的控制方法、装置及计算机存储介质
WO2023142457A1 (zh) 一种基于矩阵波的雾化输出方法、及其相关设备
WO2023142478A1 (zh) 一种基于三角波的雾化输出方法、及其相关设备
WO2023142446A1 (zh) 一种基于谐振波的雾化输出方法、及其相关设备
WO2023142443A1 (zh) 一种基于双波形的雾化输出方法、及其相关设备
CN114532616B (zh) 一种雾化输出保护方法、装置、计算机设备及存储介质
CN1955874A (zh) 中央处理器超频系统及方法
CN112558747B (zh) 一种服务器的功率封顶方法、系统及相关组件
WO2025026411A1 (zh) 信息展示方法及相关设备
CN118590526A (zh) 企业客户批量开卡套餐推荐方法、装置、平台和介质
CN114647561A (zh) 一种处理方法、装置及系统
CN108735239B (zh) 一种音频播放的控制方法及终端设备
CN118819272A (zh) 一种处理器的调节方法、移动终端和存储设备
CN114137844B (zh) 智能家居设备的控制方法、控制装置与物联网系统
CN118158188A (zh) 信息推送方法及装置
CN119002786A (zh) 一种内容提供方法、装置、设备以及存储介质
CN118748598A (zh) 应用的登录方法、设备及存储介质
CN118672411A (zh) 按键灵敏度调节方法、装置、终端设备及可读存储介质
CN119722193A (zh) 一种广告竞价方法、装置及电子设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22923261

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22923261

Country of ref document: EP

Kind code of ref document: A1