[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2023140307A1 - Adsorption device and air-conditioning apparatus - Google Patents

Adsorption device and air-conditioning apparatus Download PDF

Info

Publication number
WO2023140307A1
WO2023140307A1 PCT/JP2023/001436 JP2023001436W WO2023140307A1 WO 2023140307 A1 WO2023140307 A1 WO 2023140307A1 JP 2023001436 W JP2023001436 W JP 2023001436W WO 2023140307 A1 WO2023140307 A1 WO 2023140307A1
Authority
WO
WIPO (PCT)
Prior art keywords
carbon dioxide
adsorption device
moisture
adsorbent
adsorption
Prior art date
Application number
PCT/JP2023/001436
Other languages
French (fr)
Japanese (ja)
Inventor
賢輝 信長
明子 香村
悠香子 明山
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Publication of WO2023140307A1 publication Critical patent/WO2023140307A1/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/26Drying gases or vapours
    • B01D53/28Selection of materials for use as drying agents
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/22Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising organic material
    • B01J20/26Synthetic macromolecular compounds
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/28Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof characterised by their form or physical properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • B01J20/34Regenerating or reactivating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F3/00Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems
    • F24F3/12Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling
    • F24F3/14Air-conditioning systems in which conditioned primary air is supplied from one or more central stations to distributing units in the rooms or spaces where it may receive secondary treatment; Apparatus specially designed for such systems characterised by the treatment of the air otherwise than by heating and cooling by humidification; by dehumidification
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F8/00Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying
    • F24F8/95Treatment, e.g. purification, of air supplied to human living or working spaces otherwise than by heating, cooling, humidifying or drying specially adapted for specific purposes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2

Definitions

  • the present disclosure relates to an adsorption device that is used in an air conditioner or the like and is capable of adsorbing and releasing at least carbon dioxide, and an air conditioner that includes the adsorption device.
  • Patent Document 1 discloses a blower capable of adjusting the concentration of carbon dioxide in a room, and an air conditioner and a ventilation system equipped with this blower.
  • This air blower includes a carbon dioxide absorbing means capable of absorbing carbon dioxide in a room and a regeneration means for regenerating the carbon dioxide, detects the concentration of carbon dioxide in the room (or a factor affecting the carbon dioxide concentration), determines whether the detection result satisfies a predetermined condition, and causes the blowing means to generate an airflow or regenerates the carbon dioxide absorption means.
  • the carbon dioxide absorbing means a carbon dioxide absorbing/releasing part using polymer compound particles having an amino group is disclosed, and as an example of the regenerating means, a heating/cooling part for heating or cooling the carbon dioxide absorbing/releasing part such as a Peltier element is disclosed.
  • Patent Literature 2 discloses an air conditioning system that includes a humidification unit and a controller.
  • the humidifying unit has a moisture absorbing material that absorbs moisture in the air introduced from the outdoors and discharged to the outside, and releases the moisture to the air that is introduced from the outdoors and released into the target space (indoor).
  • a ring-shaped desiccant material is exemplified as a specific moisture absorbing material, but no specific material is mentioned.
  • JP 2019-090546 A Japanese Patent Application Laid-Open No. 2021-055906
  • Patent Document 1 makes it possible to adjust the concentration of carbon dioxide in the room, but do not specifically mention the adjustment of humidity.
  • Patent Literature 1 merely describes that the blower device may be provided in a dehumidifier or a humidifier.
  • Patent Document 2 In the air conditioning system disclosed in Patent Document 2, it is possible to humidify the room (target space) using a moisture absorbing material, but there is no particular reference to adjusting the concentration of carbon dioxide.
  • Patent Document 2 only discloses the use of a desiccant material as a medium for introducing outdoor moisture into the room, and does not specifically mention the direct use of the desiccant material for indoor humidity control.
  • the present invention was made in order to solve such problems, and the object of the present invention is to enable good absorption and desorption of moisture in the air flow generated by the blower, as well as good adsorption and release of carbon dioxide, with a simple configuration.
  • the hygroscopic material can release moisture at a temperature of less than 100 ° C., and the adsorption amount of moisture at a water vapor equilibrium pressure of less than 1,600 Pa is equal to or greater than the moisture adsorption amount of the carbon dioxide adsorbent.
  • a porous carbon dioxide adsorbent containing a polymer compound having a functional group including an amine group is used together with the moisture absorbing material having moisture absorption and desorption characteristics. This makes it possible to obtain an adsorption device having moisture absorption and desorption characteristics and carbon dioxide adsorption and desorption characteristics (carbon dioxide adsorption and desorption characteristics).
  • the moisture absorption and desorption and the adsorption and release of carbon dioxide can be adjusted by using a combination of moisture absorbing materials that release moisture at a temperature of less than 100°C and that adsorb moisture at a water vapor equilibrium pressure of less than 1,600 Pa in excess of the amount of water adsorbed by the carbon dioxide adsorbent.
  • an adsorption device By applying such an adsorption device to an application device having a blower, such as an air conditioner, it is possible to adjust not only the humidity but also the concentration of carbon dioxide well when conditioning the indoor air.
  • a blower such as an air conditioner
  • an air conditioner according to the present invention is configured to include the adsorption device having the above configuration. According to this configuration, since the adsorption device capable of favorably adsorbing or desorbing carbon dioxide and moisture is applied to the air conditioner, the function of adjusting the carbon dioxide concentration and humidity can be imparted to the air conditioner simply by providing the adsorption device.
  • the present invention has the effect of being able to absorb and desorb moisture well with respect to the air flow generated by the blower, and to adsorb and release carbon dioxide well, with a simple configuration.
  • the adsorption device is used to adsorb and release predetermined components contained in an airflow blown from a blower, and includes a carbon dioxide adsorbent that repeatedly adsorbs and releases carbon dioxide as one of the predetermined components, and a moisture absorbent that adsorbs and releases moisture as another one of the predetermined components.
  • the carbon dioxide adsorbent includes a polymer compound having a chemical structure in which a functional group including an amine group that is at least a primary amine group is bonded, is formed in a porous shape, and adsorbs and releases moisture. Further, it is configured such that carbon dioxide can be desorbed at a temperature of 40° C.
  • a porous carbon dioxide adsorbent containing a polymer compound having a functional group including an amine group is used together with the moisture absorbing material having moisture absorption and desorption characteristics. This makes it possible to obtain an adsorption device having moisture absorption and desorption characteristics and carbon dioxide adsorption and desorption characteristics (carbon dioxide adsorption and desorption characteristics).
  • the carbon dioxide adsorbent has not only carbon dioxide adsorption and desorption characteristics but also moisture absorption and desorption characteristics, and that the preferred ranges of the carbon dioxide desorption temperature and moisture release temperature are different. Therefore, the carbon dioxide adsorbent can also be used as a moisture absorbent, and by using the carbon dioxide absorbent in combination with another moisture absorbent, the moisture absorption and desorption characteristics of the adsorption device can be further improved.
  • the moisture absorption and desorption and the adsorption and release of carbon dioxide can be adjusted by using a combination of moisture absorbing materials that release moisture at a temperature of less than 100°C and that adsorb moisture at a water vapor equilibrium pressure of less than 1,600 Pa in excess of the amount of water adsorbed by the carbon dioxide adsorbent.
  • an adsorption device By applying such an adsorption device to an application device having a blower, such as an air conditioner, it is possible to adjust not only the humidity but also the concentration of carbon dioxide well when conditioning the indoor air.
  • a blower such as an air conditioner
  • the carbon dioxide adsorbent may be a powder having an average particle size in the range of 400 ⁇ m or more and 1.3 mm or less.
  • the carbon dioxide adsorbent is a powder within the above range, it can be easily applied to an adsorption device, and good practicality can be imparted to the carbon dioxide adsorbent.
  • the adsorption device having the above configuration includes a holder that holds at least the carbon dioxide adsorbent so that it can come into contact with air.
  • the holder has a holder body formed with a plurality of cells having an internal space for containing the carbon dioxide adsorbent, an inlet for introducing air into the internal space, and an outlet for discharging the air that has passed through the internal space. It may be a configuration that
  • the material of the holder main body may include the moisture absorbing material.
  • the holder main body can contain or be made of a hygroscopic material, so that the hygroscopic material and the holder main body can be made into one member. Therefore, it is possible not only to suppress an increase in the number of members, but also to relatively increase the usage amount of the absorbent when the holder main body includes the absorbent.
  • the material of the holder body may include at least one of resin, metal, and ceramic.
  • the material of the holder main body is resin, metal, or ceramic, or includes a plurality of materials, so that the holder main body can be formed of a material with high thermal conductivity.
  • the carbon dioxide adsorbent or the hygroscopic material they can be heated through the holder main body. Therefore, for example, when the carbon dioxide adsorbent releases carbon dioxide by heating, the carbon dioxide adsorbent can be heated well to facilitate the release of carbon dioxide.
  • the covering material may include a nonwoven fabric.
  • the covering material can be formed relatively thin and light in weight compared to the case of using a woven fabric as the covering material, for example.
  • the material of the nonwoven fabric may include the moisture absorbing material.
  • the covering material can contain a moisture absorbing material or the covering material itself can be made of a moisture absorbing material, so that the moisture absorbing material and the covering material can be made into one member. Therefore, an increase in the number of members can be suppressed.
  • the holder main body contains a moisture absorbing material, or when the covering material contains a moisture absorbing material, it is also possible to relatively increase the usage amount of the moisture absorbing material.
  • the usage amount of the moisture absorbing material can be further increased. Therefore, it becomes easy to set the usage amount of the moisture absorbent according to various conditions.
  • the covering material may include a metal mesh.
  • the pressure loss when air is passed through the covering material at a flow rate of 1 m/sec may be in the range of 5 Pa or more and 30 Pa or less.
  • the moisture absorbing material may be provided as a moisture absorbing sheet member formed into a sheet.
  • the moisture absorbent is used as the moisture absorbent sheet member, for example, when it is difficult to include the moisture absorbent in the holder main body or the covering material, it is easy to apply the moisture absorbent to the adsorption device. Also, even when the holder main body or the covering material contains a moisture absorbing material, using the moisture absorbing material as a separate member makes it easy to set the usage amount of the moisture absorbing material according to various conditions.
  • the carbon dioxide adsorbent may be immobilized on the moisture absorbing sheet member.
  • the moisture absorbing material and the carbon dioxide adsorbing material can be integrated, so it is possible not only to suppress an increase in the number of parts, but also to diversify the form of the adsorption device by processing the moisture absorbing sheet member into various shapes.
  • the moisture-absorbing sheet member may be configured to be used as a laminate obtained by laminating a plurality of moisture-absorbing sheet members, or as a cylindrical body obtained by winding the moisture-absorbing sheet members in a cylindrical shape.
  • the hygroscopic material is a crosslinked hydrophilic polymer
  • the hydrophilic group it becomes possible for the hydrophilic group to contain water molecules between the crosslinked structures in an adsorbed state by crosslinking the polymer. Therefore, it is possible to achieve better hygroscopicity and to release moisture at lower temperatures. This makes it possible to better control moisture absorption and desorption and carbon dioxide adsorption and desorption, respectively, when combined with a carbon dioxide adsorbent.
  • the channel cross-sectional area of the independent internal space in the flow direction of the air introduced into and discharged from the adsorption device may be in the range of 0.5 cm2 or more and 10.0 cm2 or less.
  • the carbon dioxide adsorbent and the hygroscopic material can be efficiently brought into contact with the air flow. Therefore, the adsorption amount or release amount of the carbon dioxide adsorbent and the moisture absorbent can be made more suitable.
  • the air conditioner according to the present disclosure may be configured to include the adsorption device configured as described above. According to this configuration, since the adsorption device capable of favorably adsorbing or desorbing carbon dioxide and moisture is applied to the air conditioner, the function of adjusting the carbon dioxide concentration and humidity can be imparted to the air conditioner simply by providing the adsorption device.
  • an air conditioner 1 includes an indoor unit 10 and an outdoor unit, and FIG. 1 shows only the indoor unit 10 in a perspective view.
  • the air conditioner 1 is an example of an application device that includes the adsorption device 4 .
  • refrigerant circulates between the indoor unit 10 and the outdoor unit.
  • the indoor unit 10 includes a heat exchanger 2 that exchanges heat between a refrigerant and indoor air, and a blower mechanism 3 (blower) that takes in indoor air, exchanges heat with the heat exchanger 2, and then discharges the air.
  • the indoor unit 10 also includes an adsorption device 4 that includes an adsorbent 5 that repeatedly adsorbs and releases a predetermined component from the airflow sent out from the air blowing mechanism 3, and a heating mechanism 6 that heats the adsorbent 5 in the adsorption device 4 to release the predetermined component.
  • an adsorption device 4 that includes an adsorbent 5 that repeatedly adsorbs and releases a predetermined component from the airflow sent out from the air blowing mechanism 3, and a heating mechanism 6 that heats the adsorbent 5 in the adsorption device 4 to release the predetermined component.
  • the prescribed components in the present disclosure are carbon dioxide and moisture. Therefore, as will be described later, in the present embodiment, two types of adsorbent 5 are used: a carbon dioxide adsorbent and a moisture absorbent. Carbon dioxide adsorbents adsorb carbon dioxide in the airflow and release the adsorbed carbon dioxide into the airflow. The hygroscopic material adsorbs (absorbs) moisture in the airflow and releases (desorbs) the adsorbed moisture. Therefore, the indoor unit 10 can adjust the carbon dioxide concentration and humidity (moisture concentration) in the indoor air.
  • the heating mechanism 6 heats the adsorbent 5 to release the predetermined component adsorbed by the adsorbent 5, namely carbon dioxide or moisture.
  • the heat exchanger 2 and the blower mechanism 3 also serve as the heating mechanism 6 as an example. Therefore, the air conditioner 1 does not need to have a separate heating mechanism for releasing the predetermined component from the adsorbent 5 .
  • the heat exchanger 2 heats the air by exchanging heat with the refrigerant.
  • the blower mechanism 3 blows heated air to the adsorption device 4 .
  • the adsorption device 4 is arranged in the middle of the air flow passage provided inside the indoor unit 10 .
  • the air blowing mechanism 3 generates an air flow passing through the adsorption device 4 by the air flowing through the air flow passage.
  • the adsorption device 4 carries an adsorbent 5 .
  • the carbon dioxide adsorbent constituting the adsorbent 5 is heated by the heating mechanism 6 to release carbon dioxide.
  • the released carbon dioxide is diffused in the room by air blowing from the air blowing mechanism 3 . This increases the carbon dioxide concentration in the room.
  • the humidity sensor, control unit, etc. determine that the room is in a dry state
  • the hygroscopic material forming the adsorbent 5 is heated by the heating mechanism 6 to release (moisture release) moisture.
  • the released moisture is diffused into the room by air blowing from the air blowing mechanism 3, thereby increasing the humidity in the room.
  • the carbon dioxide generated by heating the carbon dioxide adsorbent with the heating mechanism 6 may be discharged outside without being released into the room.
  • adsorbent As the adsorbent 5 used in the adsorption device 4 according to this embodiment, as described above, carbon dioxide adsorbents and hygroscopic materials are exemplified. Other adsorbents may be used together as necessary.
  • the carbon dioxide adsorbent contains a polymer compound 7 that repeatedly adsorbs and releases carbon dioxide, as illustrated in FIG.
  • the carbon dioxide adsorbent is porous. Carbon dioxide adsorbents adsorb carbon dioxide by chemisorption.
  • the carbon dioxide adsorption amount of the carbon dioxide adsorbent is, for example, a value in the range of 0.06 mol/kg or more and 3.91 mol/kg or less.
  • the carbon dioxide adsorption amount of the carbon dioxide adsorbent is a value in the range of 2.0 mol/kg or more and 3.91 mol/kg or less.
  • the carbon dioxide adsorption amount of the carbon dioxide adsorbent is a value in the range of 2.79 mol/kg or more and 3.91 mol/kg or less.
  • the polymer compound 7, which is the main component of the carbon dioxide adsorbent also has the property of repeatedly adsorbing and releasing water, as will be described later.
  • the specific shape of the carbon dioxide adsorbent is not particularly limited.
  • the carbon dioxide adsorbent is powder containing a plurality of spherical particles.
  • the carbon dioxide adsorbent according to the present embodiment is powder having an average particle size in the range of 300 ⁇ m or more and 1.3 mm or less.
  • the larger the average particle size of the carbon dioxide adsorbent the better the handleability.
  • the smaller the average particle diameter the more the specific surface area of the carbon dioxide adsorbent is improved.
  • the average particle diameter can be measured by Coulter counter method, laser diffraction method, image analysis method, or the like.
  • the average particle size is calculated as a 50% volume average particle size.
  • the carbon dioxide adsorbent includes a polymer compound 7 having a chemical structure in which at least a functional group 7b containing an amine group, which is a primary amine group, is bonded.
  • FIG. 2 schematically shows the structure of the polymer compound 7 including a partial chemical structure.
  • This polymer compound 7 has a base material 7a forming a molecular skeleton and a functional group 7b containing an amine group that is chemically bonded to the base material 7a.
  • the amine group is, for example, desirably a primary amine group, but may be a secondary amine group.
  • Functional group 7b in the present embodiment includes, for example, a CH2--NH2 group. In this embodiment, the functional group 7b is bonded as a side chain to the main chain of the base material 7a.
  • the base material 7a includes a resin skeleton composed of one or more resins.
  • the base material 7a in the present embodiment includes at least a polystyrene (PS)-based resin skeleton as the resin skeleton, but is not limited to this.
  • PS polystyrene
  • the carbon dioxide adsorbent is porous, the functional groups 7b are also present in the pores. Thereby, the carbon dioxide adsorbent adsorbs carbon dioxide even in the pores.
  • the amine group is located at the end of the branched chain in the chemical structure of the polymer compound 7.
  • the chemical structure of polymer compound 7 also includes an aromatic ring (eg, a benzene ring) directly or indirectly bonded to an amine group.
  • an aromatic ring eg, a benzene ring
  • the carbon dioxide adsorbent due to the hydrophobicity of the aromatic ring, excessive bonding of water molecules to the amine group is prevented. For example, the closer the distance between the aromatic ring and the amine group, the better.
  • the branched chain may be derived from either the main chain (for example, the main chain of the base material 7a) or the side chain of the chemical structure of the polymer compound 7.
  • the polymer compound 7 according to the present embodiment shown in FIG. 2 is a solid polymer in which benzylamine (BZA) is bonded to the base material 7a.
  • BZA benzylamine
  • the carbon dioxide adsorption amount of the carbon dioxide adsorbent using this polymer compound 7 is a value in the range of 2.79 mol/kg or more and 3.91 mol/kg or less.
  • the polymer compound 7 has a structure in which an amine group is bonded to a base material 7a forming a molecular skeleton via a hydrophobic group (an example of an aromatic ring) having higher hydrophobicity than an amine group. Therefore, the carbon dioxide adsorbent can release carbon dioxide at a relatively low temperature due to the action of this hydrophobic group. Also, the carbon dioxide adsorbent is kept solid within the operating temperature range of the air conditioner 1 .
  • the carbon dioxide adsorbent is heated during the release of carbon dioxide, the decomposition and volatilization of the amine groups are prevented. Further, since the carbon dioxide adsorbent is kept solid within the operating temperature range of the air conditioner 1, a binder for binding and holding the polymer compound 7, for example, is unnecessary. As a result, it is possible to prevent the pores of the carbon dioxide adsorbent from being clogged with the binder and the adsorption performance of the carbon dioxide adsorbent to decline.
  • the carbon dioxide adsorbent according to the present embodiment has an amine-supported amount in the range of 2.0 mmol/g or more.
  • the carbon dioxide adsorbent has an amine loading in the range of 2.5 mmol/g or more.
  • the carbon dioxide adsorbent is intended to improve the amount of carbon dioxide adsorbed.
  • the amount of amine supported by the carbon dioxide adsorbent can be measured by, for example, a quantitative analysis method such as titration, or a CHN elemental analysis method.
  • the object to be measured is combusted with oxygen to generate H2O , CO2 , and NOx . It also reduces NOx to N2 . Then, each gas of H 2 O, CO 2 and N 2 is separated by a column and introduced into a detector (TCD). Thereby, the contents of carbon, hydrogen, and nitrogen to be measured are measured, and the amount of amine supported is calculated.
  • the CHN elemental analysis method when the amine group is an NH 2 group, the amount of amine supported is calculated based on the following formulas 1 and 2.
  • a porous carbon dioxide adsorbent containing a polymer compound having a chemical structure in which a functional group containing an amine group, which is at least a primary amine group, is bonded can adsorb a large amount of carbon dioxide contained in the air and release the carbon dioxide adsorbed by the polymer compound at a relatively low temperature.
  • the aforementioned polymer compound 7 is based on such findings.
  • the polymer compound 7 according to the present embodiment has a structure in which an amine group is bonded to a base material 7a forming a molecular skeleton via a hydrophobic group (an example of an aromatic ring) having higher hydrophobicity than an amine group. Therefore, it is considered that the carbon dioxide adsorbent containing such polymer compound 7 can selectively adsorb carbon dioxide and release carbon dioxide at a relatively low temperature due to the action of this hydrophobic group.
  • this carbon dioxide adsorbent is kept solid within the operating temperature range of the air conditioner 1 . Therefore, even if this carbon dioxide adsorbent is heated during the release of carbon dioxide, decomposition and volatilization of the amine groups are prevented. Further, since the carbon dioxide adsorbent is kept solid within the operating temperature range of the air conditioner 1, a binder for binding and holding the polymer compound 7, for example, is unnecessary. As a result, it is possible to prevent the pores of the carbon dioxide adsorbent from being clogged with the binder and the adsorption performance of the carbon dioxide adsorbent to decline.
  • Patent Document 1 discloses that polymer compound particles having amino groups are used as a means for absorbing carbon dioxide in an air blower, it does not disclose any specific types of polymers, binding structures of amino groups to polymers, particle shapes, and the like. Moreover, Patent Document 1 describes that the carbon dioxide absorbing/releasing part is not limited to polymer compound particles having an amino group, and may be zeolite, activated carbon, or the like, and does not describe that polymer compound particles having an amino group are superior. Therefore, it is considered that the moisture absorbing/desorbing ability of carbon dioxide possessed by the polymer compound particles having amino groups disclosed in Patent Document 1 is substantially similar to that of zeolite, activated carbon, or the like.
  • the polymer compound 7 according to the present embodiment has a relatively low carbon dioxide desorption temperature in the range of 40° C. or higher and 100° C. or lower as a carbon dioxide adsorbent.
  • carbon dioxide adsorption performance of general materials containing amine groups (amine-based materials) was investigated, it became clear that many of them had relatively high carbon dioxide desorption temperatures.
  • the desorption temperature of carbon dioxide in meta-xylene diamine (MXDA) is 100° C. or higher
  • MXDA meta-xylene diamine
  • MEA monoethanolamine
  • BZA desorption temperature of carbon dioxide in benzylamine
  • PEI polyethyleneimine
  • MXDA MXDA
  • MEA MEA
  • BZA BZA
  • PEI polyethyleneimine
  • the polymer compound 7 suitably used as a carbon dioxide adsorbent in the present disclosure has a structure in which BZA is bound to the polymer that is the base material 7a. Based on BZA, the desorption temperature of carbon dioxide in polymer compound 7 is considered to be 64° C. or higher. Considering the behavior of PEI, even a polymer may be liquefied and volatilized by adsorption of water.
  • the lower limit of the carbon dioxide desorption temperature of polymer compound 7 is 40° C. or more, and compared to other general amine-based materials, not only can carbon dioxide be desorbed at a lower temperature, but it also has good reusability, showing good physical properties as a carbon dioxide adsorbent.
  • polymer compound 7 also has the property of repeatedly adsorbing and releasing water, and exhibits good physical properties as a hygroscopic material.
  • polymer compound 7 could selectively and abundantly adsorb carbon dioxide because its hydrophobic group excluded the adsorption of water molecules or molecules with a large polarity like water.
  • the behavior of the adsorption isotherm of carbon dioxide and the adsorption isotherm of water in polymer compound 7 is different, and that the adsorption mechanism or adsorption mechanism of carbon dioxide and water is considered to be different.
  • polymer compound 7 has a different peak temperature for the release of adsorbed carbon dioxide and a peak temperature for the release of water molecules (water release).
  • carbon dioxide (of) release amount refers to the number of carbon dioxide molecules released (the number of molecules).
  • water release amount refers to the number of released water molecules (the number of molecules).
  • the carbon dioxide adsorbent containing polymer compound 7 was heated at a temperature increase of 5°C per minute based on the generated gas analysis method (EGA-MS), and the changes in the amount of water released and the amount of carbon dioxide released over time were graphed and evaluated.
  • EVA-MS generated gas analysis method
  • the water release peak temperature of the carbon dioxide adsorbent (polymer compound 7) was in the range of 20°C or higher and lower than 40°C (approximately 35°C in this experimental example), and the carbon dioxide release peak temperature of the carbon dioxide adsorbent (polymer compound 7) was in the range of 40°C or higher and 80°C or lower (approximately 60°C in this experimental example).
  • the carbon dioxide release peak temperature of the polymer compound 7 and the water release amount peak temperature of the polymer compound 7 were different from each other.
  • the relationship between the heating temperature of the carbon dioxide adsorbent (polymer compound 7), the carbon dioxide desorption rate from the carbon dioxide adsorbent, and the water desorption rate from the carbon dioxide adsorbent was also graphed and evaluated.
  • the carbon dioxide desorption rate referred to herein is the number of moles of carbon dioxide desorbed by the polymer compound 7 per hour
  • the water desorption rate is the weight of water desorbed by the polymer compound 7 per hour.
  • the heating temperature of the carbon dioxide adsorbent is in the range of approximately 20°C or higher and less than 40°C, the carbon dioxide adsorbent preferentially releases water over carbon dioxide. It was also found that when the heating temperature of the carbon dioxide adsorbent (polymer compound 7) is in the range of about 40° C. or higher, the carbon dioxide adsorbent releases water together with carbon dioxide at the beginning of the temperature rise. After that, it was also found that as the heating temperature of the carbon dioxide adsorbent increased and approached 60° C., the increasing tendency of the released amount of carbon dioxide molecules became more pronounced than the increasing tendency of the released amount of water molecules.
  • the carbon dioxide adsorbent (polymer compound 7) according to the present disclosure has not only carbon dioxide adsorption and desorption characteristics but also moisture absorption and desorption characteristics, and it was also revealed that the carbon dioxide adsorbent has different suitable conditions for moisture absorption and desorption and carbon dioxide adsorption and desorption. That is, the carbon dioxide adsorbent (polymer compound 7) according to the present disclosure has a unique physical property that enables desorption of carbon dioxide at a temperature of 40°C or higher and release of moisture at a temperature of lower than 40°C.
  • zeolite or activated carbon are known as moisture absorbents that absorb relatively large amounts of moisture per unit weight. It became clear that it is difficult to control the release of carbon dioxide from the carbon dioxide adsorbent (the release peak temperature is 20° C. or higher and lower than 40° C.). Considering the practicality of the adsorption device 4, it was considered preferable that the water release temperature be less than 100°C. On the other hand, it has also become clear that it is difficult to adjust the release of carbon dioxide well by simply selecting a moisture absorbent with a low moisture release temperature (regeneration temperature of the moisture absorbent).
  • the inventors of the present application focused on the fact that the annual water vapor equilibrium pressure in Japan is less than 1,600 Pa for a period of 6 months or more. That is, by selecting a hygroscopic material that has a water release temperature of less than 100°C and a water adsorption amount at a water vapor equilibrium pressure of less than 1,600 Pa that is equal to or greater than the water adsorption amount of the carbon dioxide adsorbent (polymer compound 7), it is possible to adjust the moisture absorption and desorption and the adsorption and release of carbon dioxide.
  • examples of materials that can be used as moisture absorbents include polymers having hydrophilicity, hygroscopicity, and water absorption. Specific examples include polyetheresters, polyetheramides, polyetheresteramides, polyamides, thermoplastic cellulose derivatives, polyvinylpyrrolidone, poly(meth)acrylates, and the like.
  • These polymers may be copolymers containing other monomer structures, or hydrophilic groups may form salts.
  • hydrophilic group is an anion, it may ionically bond with a cation such as a metal salt to form a salt.
  • These polymers may have side chains, may have a crosslinked structure, or may be modified in a known manner.
  • the molecular weight (number-average molecular weight Mn, weight-average molecular weight Mw, etc.) or other physical properties are also not particularly limited. These macromolecules are preferably formed in a porous state like the carbon dioxide adsorbent.
  • a more specific example of a crosslinked hydrophilic polymer is a crosslinked polymer containing acrylonitrile as a monomer unit (a crosslinked acrylonitrile-based polymer).
  • the specific structure of the crosslinked acrylonitrile-based polymer is not particularly limited, but one example is the porous hygroscopic polymer disclosed in Reference 1: JP-A-2021-031635. The contents of that Reference 1 are incorporated herein by reference.
  • the crosslinked acrylonitrile-based polymer described in the publication may be modified within a known range.
  • the polymer used as the hygroscopic material in the present disclosure is not limited to a crosslinked acrylonitrile-based polymer, and may be any polymer that has a water release temperature of less than 100°C and a water adsorption amount at a water vapor equilibrium pressure of less than 1,600 Pa that is equal to or greater than the water adsorption amount of the carbon dioxide adsorbent (polymer compound 7).
  • the hygroscopic material may be other materials that are not polymeric.
  • the absorbent material according to the present disclosure can be used in various shapes.
  • One example is powder (particles) having an average particle diameter in the range of 400 ⁇ m or more and 1.3 mm or less, like the carbon dioxide adsorbent.
  • the powder of the hygroscopic material can be used in the same manner as the powder of the carbon dioxide adsorbent.
  • the carbon dioxide adsorbent or moisture absorbent may not be powder as long as it is applicable to the adsorption device 4 .
  • the shape or size of the particles may not be the same.
  • the adsorption device 4 includes an adsorbent 5 and a holder 8 that holds the adsorbent 5 so as to be in contact with an air flow.
  • the adsorbent 5 is composed of a carbon dioxide adsorbent that repeatedly adsorbs and releases carbon dioxide in the airflow and a moisture absorbent that repeatedly adsorbs and releases moisture in the airflow (absorbs or releases moisture). Both the carbon dioxide adsorbent and the moisture absorbent are porous powders, as described above.
  • the holder 8 comprises a holder body 80 , a covering material 81 and an adhesive material 82 .
  • the inside of the adsorption device 4 covered with the covering material 81 is indicated by a solid line.
  • the holder main body 80 is formed in a plate shape in this embodiment.
  • a plurality of cells 80 a are formed in the holder body 80 .
  • the holder main body 80 is a cell assembly.
  • the adsorbent 5 is arranged inside each cell 80a. As a result, the adsorbents 5 are dispersedly arranged in the holder body 80 .
  • the cell 80a has an internal space 80b that accommodates the adsorbent 5, an inlet 80c that introduces airflow into the internal space 80b, and an outlet 80d that discharges the airflow that has passed through the internal space 80b.
  • the holder main body 80 has a plurality of inlets 80c arranged on one surface and a plurality of outlets 80d arranged on the other surface.
  • the holder body 80 includes, for example, a plurality of hexagonal cells 80a in plan view.
  • the cross-sectional shape of the internal space 80b in the direction of air flow from the inlet 80c to the outlet 80d is polygonal (eg, hexagonal). With this configuration, the shape of the cross section of the flow path of the internal space 80b of the holder body 80 can be easily maintained.
  • the holder main body 80 in the present embodiment has an outer wall portion 80e surrounding the outer circumference and an inner wall portion 80f arranged inside the outer wall portion 80e in plan view.
  • the outer wall portion 80 e and the inner wall portion 80 f are erected in the thickness direction of the holder main body 80 . That is, the wall surfaces of the outer wall portion 80e and the inner wall portion 80f are arranged within a plane including the thickness direction of the holder main body 80.
  • the plurality of cells 80a are individually partitioned by the outer wall portion 80e and the inner wall portion 80f.
  • the wall thickness dimension of the outer wall portion 80e and the inner wall portion 80f may be the same or different.
  • each internal space 80b is independent of each other. Adjacent internal spaces 80b are separated from each other. Therefore, the adsorbents 5 can be dispersedly held in the holder body 80 while preventing the adsorbents 5 from moving between the adjacent internal spaces 80b. Moreover, the holder main body 80 has sufficient strength to maintain its shape in its natural state. Therefore, deformation of the holder main body 80 does not block the passage of the internal space 80b.
  • each internal space 80b in the direction of air flow from the inlet 80c of the adsorption device 4 to the outlet 80d can be set appropriately.
  • the channel cross-sectional area of each internal space 80b is within the range of 0.5 cm2 or more and 10.0 cm2 or less.
  • the channel cross-sectional area in the adsorption device 4 is the channel cross-sectional area of the internal space 80b of each cell 80a in the direction of air flow from the inlet 80c to the outlet 80d.
  • the configuration of the adsorption device 4 is not limited to the configuration shown in FIG.
  • the adsorbent 5 may be held by the adsorption device 4 so that it can come into contact with the airflow over a large area.
  • the adsorption device 4 is formed with a flow path through which air is circulated so as to bring the air into continuous contact with the adsorbent 5 .
  • the channel cross-sectional area can be appropriately set depending on the configuration of the adsorption device 4 . Therefore, in the present disclosure, the channel cross-sectional area of the "independent internal space" in the flow direction of the air introduced into and discharged from the adsorption device 4 should be within the range of 0.5 cm 2 or more and 10.0 cm 2 or less.
  • the filling amount of the adsorbent 5 in each cell 80a can be increased, and the gas adsorption/desorption amount of the adsorption device 4 can be improved.
  • the cross-sectional area of the flow path is reduced within a certain range, the heat dissipation of the adsorbent 5 in each cell 80a to the outside can be reduced, and the heat retaining effect of the adsorbent 5 can be improved.
  • the heat from the outside can be well transferred to the adsorbent 5 through the holder main body 80 .
  • the adsorption target can be easily released to the adsorbent 5, and the time required for heating the adsorbent 5 can be shortened.
  • the heat retaining effect of the adsorbent 5 and the effect of heat conduction from the holder main body 80 to the adsorbent 5 are enhanced, and the adsorbent 5 can be easily heated.
  • the holder main body 80 also serves as a moisture absorbing material, as in a modification described later, the holder main body 80 (hygroscopic material) can satisfactorily release moisture from the holder main body 80 (moisture absorbing material) by heating the holder main body 80 satisfactorily.
  • the adsorption device 4 has a pressure loss in the range of 40 Pa or more and 500 Pa or less when air is passed from the inlet 80c side to the outlet 80d side at a flow rate of 1 m/sec.
  • this pressure loss is a value in the range of 150 Pa or more and 500 Pa or less.
  • the air flow when setting the pressure loss in the adsorption device 4 is the air flow from the introduction port 80c side to the discharge port 80d side, as described above.
  • the direction of the air flow is appropriately set depending on the configuration of the adsorption device 4 . Therefore, in the present disclosure, the pressure loss when the air introduced into and discharged from the adsorption device 4 is allowed to pass through at a flow rate of 1 m/sec may be within a range of, for example, 40 Pa or more and 500 Pa or less.
  • the material of the holder main body 80 is not particularly limited except that it contains a hygroscopic material, but as an example, it contains at least one of paper and resin. Paper and resin are examples of materials with low thermal conductivity.
  • the material of holder main body 80 according to the present embodiment may include paper. In this manner, if the holder body 80 is configured to contain paper, the heat retaining effect of the adsorbent 5 held by the holder body 80 can be enhanced. In addition, the heat retaining effect of the hygroscopic material included in the holder main body 80 can be enhanced.
  • the covering material 81 has air permeability and covers the inlet 80c and the outlet 80d of the cell 80a.
  • a peripheral portion of the inlet 80c of each cell 80a and a peripheral portion of the outlet 80d of each cell 80a are covered with a covering material 81.
  • the adsorbent 5 accommodated in the internal space 80b of each cell 80a is not mixed through the inlet 80c or the outlet 80d.
  • the state in which the adsorbents 5 are arranged dispersedly over the entire plate surface of the holder main body 80 is maintained.
  • the adsorbent 5 is held in each internal space 80b surrounded by the cells 80a and the covering material 81 .
  • this configuration does not require a binder or the like for holding the adsorbent 5 in the cell 80a. Therefore, the adsorption performance is not deteriorated by covering the surface of the adsorbent 5 with a binder or the like (for example, when the adsorbent 5 is formed in a porous state, the pores on the surface of the adsorbent 5 are filled with the binder or the like).
  • the covering material 81 includes nonwoven fabric.
  • the material of the non-woven fabric is not limited, but one example includes at least one of polypropylene (PP), polyethylene (PE), and polyethylene terephthalate (PET).
  • the nonwoven fabric may contain a moisture absorbent material.
  • the non-woven fabric is used, for example, to prevent the powder adsorbent 5 from dropping through the gaps of the covering material 81 . It can also be used for other known purposes.
  • the degree of freedom in designing the covering material 81 can be improved.
  • the nonwoven fabric contains at least one of PP, PE, and PET
  • the nonwoven fabric and the holder main body 80 can be relatively easily joined by heat welding or the like without using an adhesive.
  • the structure of the adsorption device 4 can be simplified, and the weight of the adsorption device 4 can be reduced.
  • the basis weight of the covering material 81 can be set as appropriate, but is a value in the range of 10 g/m 2 or more and 90 g/m 2 or less as an example. This prevents the adsorption material 5 from falling off from the covering material 81 and suppresses the pressure loss of the airflow passing through the adsorption device 4 .
  • the adsorption device 4 has a pair of covering materials 81 arranged on both sides of the holder body 80 .
  • the pair of covering materials 81 are welded to each other at their peripheries while covering the holder main body 80 from both sides. As this welding, heat welding can be adopted when the coating material 81 contains a resin material or the like.
  • the pair of coating materials 81 are integrated by melting and solidifying each other at their contact portions. Therefore, an adhesive for bonding the pair of covering materials 81 is not required.
  • the covering material 81 can be made relatively thin and lightweight as compared with the case of using a woven fabric for the covering material 81, for example.
  • the pair of covering materials 81 may not be welded to each other, and may be adhered with an adhesive, for example.
  • options for the material of the covering material 81 can be expanded.
  • the adhesive material 82 is arranged between the coating material 81 and the holder body 80 to bond the coating material 81 and the holder body 80 together.
  • the coating material 81 and the holder main body 80 are adhered by the adhesive material 82 . Therefore, as long as the coating material 81 and the holder main body 80 can be adhered to the adhesive material 82, the materials of the coating material 81 and the holder main body 80 may be different from each other.
  • the adhesive 82 is arranged on both sides of the holder body 80 .
  • the material of the adhesive material 82 is not particularly limited, one example includes at least one of a thermoplastic resin-based material and an elastomer-based material.
  • thermoplastic resin materials include vinyl acetate resin, ethylene vinyl acetate (EVA), urethane resin, and acrylic materials.
  • EVA ethylene vinyl acetate
  • urethane resin urethane resin
  • acrylic materials acrylic materials.
  • elastomer-based materials include silicone resin-based materials, modified silicone resin-based materials, silylated urethane resin-based materials, and rubber-based materials.
  • the adhesive 82 that bonds the covering material 81 and the holder main body 80 is used, and if the adhesive material 82 contains at least one of a thermoplastic resin-based material and an elastomer-based material, the covering material 81 can be firmly adhered to the holder main body 80 by the adhesive material 82. Therefore, it is possible to further prevent the adsorbent 5 from falling off from the holder main body 80 . Therefore, good durability can be imparted to the adsorption device 4 .
  • the adsorbent 5 is powder having an average particle size in the range of 400 ⁇ m or more and 1.3 mm or less.
  • the covering material 81 has openings through which the powder does not pass. This can effectively prevent the adsorbent 5 from falling off from the covering material 81 .
  • the adsorption device 4 according to the present embodiment is arranged inside the indoor unit 10 so as to correspond to the outer surface of the heat exchanger 2, as an example.
  • the shape of the adsorption device 4 may be processed in order to arrange the adsorption device 4 within a predetermined space.
  • the adsorption device 4 is not limited to the configuration shown in FIG. 3, and includes various modifications.
  • an adsorption device 41 shown in FIG. 4 has substantially the same basic configuration as the adsorption device 4 shown in FIG. Therefore, in the adsorption device 41 shown in FIG. 4, the adsorbent 5 arranged inside each cell 80a is only the carbon dioxide adsorbent 51, and no hygroscopic material is arranged. With this configuration, the amount of carbon dioxide adsorbent accommodated in the holder body 80 can be relatively increased without increasing the number of members.
  • the carbon dioxide adsorbent 51 and the moisture absorbent may be arranged inside each cell 80a in the same manner as in the adsorption device 4 shown in FIG. Thereby, the amount of moisture absorbent can be relatively increased. Whether to increase the amount of the carbon dioxide adsorbent or the moisture absorbent in the adsorbent 5 may be appropriately set according to the intended use or usage conditions of the adsorption device 41 .
  • the adsorption device 42 shown in FIG. 5 has substantially the same basic configuration as the adsorption device 4 (see FIG. 3) or the adsorption device 41 (see FIG. 4) according to the first embodiment, but the material of the nonwoven fabric 80g contains a moisture absorbent material.
  • the nonwoven fabric 80g may be made of a moisture absorbent material, or the moisture absorbent material may be blended with a known nonwoven fabric material.
  • the nonwoven fabric 80g contains or is made of a moisture absorbing material
  • the moisture absorbing material and the nonwoven fabric 80g can be made into one member. Therefore, an increase in the number of members can be suppressed.
  • the holder main body contains a moisture absorbing material, it is possible to relatively increase the amount of the moisture absorbing material used. Therefore, it becomes easy to set the usage amount of the moisture absorbent according to various conditions.
  • the covering material 81 contains a metal mesh.
  • the material of this metal mesh is, for example, stainless steel such as SUS304.
  • the durability of the covering material 81 can be improved.
  • the thermal conductivity of the covering material 81 can be improved. Therefore, for example, when the adsorbent 5 is heated, the adsorbent 5 is heated through the covering material 81 from the outside of the adsorption device 4 or the adsorption device 41 .
  • carbon dioxide can be easily released from the carbon dioxide adsorbent, and moisture can be easily released from the hygroscopic material.
  • the coating material 81 includes a mesh having a mesh diameter in the range of 50 (mesh/inch) or more and 200 (mesh/inch) or less.
  • Another example of the mesh diameter is a value in the range of 65 (mesh/inch) to 200 (mesh/inch).
  • the material of the holder body 80 includes at least one of metal and ceramic.
  • the metal include, but are not limited to, those having excellent thermal conductivity (eg, aluminum, copper, and alloys containing at least one of these).
  • the holder main body 80 of this modification has a thermal conductivity in the range of 50 W/mK or more and 500 W/mK or less.
  • the material of the holder body 80 includes at least one of metal and ceramic, so that the holder body 80 can be made of a material with high thermal conductivity.
  • the adsorbent 5 when the adsorbent 5 is heated, the adsorbent 5 can be heated through the holder main body 80 . Therefore, for example, when the adsorbent 5 releases a predetermined component by heating, the adsorbent 5 can be heated well to make it easier to release the adsorption target to the adsorbent 5, and the adsorbent 5 can be efficiently heated.
  • the adhesive material 82 is omitted, and a pair of covering materials 81 are adhered to the holder main body 80 by thermal welding.
  • the material of the holder main body 80 includes paper. According to this modification, the weight of the adsorption device 4 can be reduced by omitting the adhesive 82 . Moreover, the manufacturing efficiency of the adsorption device 4 can be improved.
  • the adsorption device according to the second embodiment does not include the holder 8 that holds the adsorbent so that it can come into contact with the air.
  • the absorbent is used as the absorbent sheet member, for example, when it is difficult to include the absorbent in the holder body or the covering material, it becomes easier to apply the absorbent to the adsorption device. Also, even when the holder main body or the covering material contains a moisture absorbing material, using the moisture absorbing material as a separate member makes it easy to set the usage amount of the moisture absorbing material according to various conditions.
  • the moisture absorbing material and the carbon dioxide adsorbing material can be integrated, so not only can the increase in the number of parts be suppressed, but also the shape of the adsorption device can be diversified by processing the moisture absorbing sheet member into various shapes.
  • the adsorption device 43 shown in FIG. 6A is configured as a cylindrical body (rotor body) in which the powdery carbon dioxide adsorbent 51 is dispersed and fixed on the surface of the moisture-absorbing sheet member 83 and is wound in a cylindrical shape.
  • the adsorption device 44 shown in FIG. 6B is configured as a laminated body in which a plurality of sheets of the moisture absorbent sheet member 83 on which the powdery carbon dioxide adsorbent 51 is dispersed and fixed are laminated.
  • the moisture absorbing sheet member 83 in which the carbon dioxide adsorbent is immobilized is configured as a cylindrical body (rotor body) wound in a cylindrical shape, or as a laminate in which a plurality of moisture absorbing sheet members 83 are laminated, the density of the moisture absorbing material and the carbon dioxide adsorbent can be increased with a simple shape. Therefore, it is possible to improve the performance of the adsorption device.
  • the moisture absorbent and the carbon dioxide adsorbent can be integrated. Therefore, as in the adsorption device 43 having a cylindrical body (rotor body) structure shown in FIG. 6A or the adsorption device 44 having a laminate structure shown in FIG.
  • the method for fixing the carbon dioxide adsorbent to the moisture absorbing sheet member 83 is not particularly limited.
  • the carbon dioxide adsorbent 51 in powder form may be dispersed on the surface of the moisture absorbent sheet member 83 and fixed using an adhesive or the like, or the carbon dioxide adsorbent 51 may be mixed in the moisture absorbent sheet member 83. If the moisture absorbing sheet member 83 is a nonwoven fabric or a woven fabric, the carbon dioxide adsorbent 51 may be processed into a fibrous form or supported on the fibers and mixed in the nonwoven fabric or woven fabric.
  • powder of the moisture absorbent may be additionally immobilized on the moisture absorbent sheet member 83 to which the carbon dioxide adsorbent is immobilized.
  • a nonwoven fabric, a woven fabric, or the like may be used as a base material, and the carbon dioxide adsorbent powder and the hygroscopic material powder may be fixed or supported on this base material.
  • the method of sheeting the hygroscopic material is not particularly limited, and it may be a nonwoven fabric, a woven fabric, or the like, a continuous porous film, or other forms.
  • the specific shape of the moisture absorbing sheet member 83 is also not particularly limited.
  • the thickness, width, length, etc. can be appropriately set.
  • the moisture absorbing sheet member 83 may be a flat sheet, a corrugated sheet, or a sheet having irregularities or holes. These shape characteristics can be appropriately set according to the specific shape or application of the adsorption device.
  • the application equipment to which the adsorption device according to the present disclosure can be applied is not particularly limited, but an air conditioner can be mentioned as a representative example. This makes it possible to provide the air conditioner with a carbon dioxide concentration and humidity adjustment function simply by providing the adsorption device.
  • Other application devices may be devices provided with a blower and used indoors. As an example, it can be applied to blowers such as electric fans, circulators, or ventilation fans.
  • Polystyrene skeleton benzylamine (benzylamine-modified polystyrene) as an example of the carbon dioxide adsorbent (polymer compound 7 shown in FIG. 3) according to the present disclosure, activated carbon (manufactured by Osaka Gas Chemicals Co., Ltd., Granular Shirasagi G2c (product name)), silica gel (manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd., granular reagent), zeolite 4A (manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd., synthetic zeolite, A-4, granular), diatomaceous earth sheet (Techno Frontier Co., Ltd.) ), WSS desiccant rotor (product name)), and a crosslinked acrylonitrile-based polymer (manufactured by Nihon Exlan Kogyo Co., Ltd., Exrotor (product name)) as
  • solid polymer BZA polystyrene skeleton benzylamine
  • crosslinked acrylonitrile polymer is referred to as "hygroscopic polymer” for convenience of explanation.
  • hygroscopic polymer water vapor adsorption isotherm data was obtained in two types of forms: a sheet and a pellet.
  • the solid polymer BZA was produced by modifying polystyrene with benzylamine by a known method (for example, the method described in WO2005/123971).
  • the moisture absorption amount (water vapor adsorption amount) in the water vapor equilibrium pressure region of less than 1,600 Pa (1,600 Pa ⁇ ) and the water vapor equilibrium pressure region of 1,600 Pa or more (1,600 Pa ⁇ ) was evaluated for each of the above materials.
  • Example 1 The above-described solid polymer BZA porous powder and hygroscopic polymer porous powder were used as adsorbent powders, and these adsorbent powders were arranged in each cell 80a of the adsorption device 4 having the configuration shown in FIG. 3 to prepare an adsorption device according to Example 1.
  • the adsorption device at this time was 100 mm ⁇ 100 mm ⁇ 10 mm.
  • the adsorption device according to Example 1 includes a nonwoven fabric to prevent the adsorbent powder from dropping out of the gap.
  • the blending ratio (blend ratio) between the solid polymer BZA porous powder (carbon dioxide adsorbent powder) that is the carbon dioxide adsorbent and the hygroscopic polymer porous powder (moisture absorbent powder) that is the hygroscopic material was set to 80% by mass when the mass ratio of the carbon dioxide adsorbent powder to the mass of all the adsorbent powder was taken. Therefore, the mass ratio of the moisture absorbent powder in the total moisture absorbent powder is 20% by mass.
  • the definition of the compounding ratio of all adsorbents (not necessarily powder) is the same for Examples 2-5.
  • mixed adsorbent powders were prepared by blending carbon dioxide adsorbent powder and moisture absorbent powder at multiple compounding ratios in the range of 100% by mass to 30% by mass. For each of the mixed adsorbent powders with these multiple compounding ratios, the amount of carbon dioxide or water adsorbed relative to the mass ratio was measured, plotted on a graph of the adsorbed amount against the compounding ratio, and approximate lines were derived for each of the carbon dioxide adsorbent and moisture absorbent.
  • the carbon dioxide adsorption amount and water adsorption amount (moisture absorption amount) in the adsorption device according to this Example 1 were calculated. Table 2 shows the results. The calculation of the adsorption amount is the same for Examples 2 to 5 as well.
  • Example 2 An adsorption device according to Example 2 was prepared in the same manner as in Example 1 except that the adsorption device 41 (first modification of Embodiment 1) shown in FIG. 4 was used as the adsorption device, and the carbon dioxide adsorption amount and the moisture absorption amount were calculated. Table 2 shows the results.
  • the carbon dioxide adsorbent is powder, but the moisture absorbent is the material forming the holder body 80 (that is, the holder body 80 contains the moisture absorbent).
  • the blending ratio of the adsorbent is 91% by mass (the blending ratio of carbon dioxide powder and hygroscopic material is 9% by mass).
  • Example 3 An adsorption device according to Example 3 was prepared in the same manner as in Example 1 except that the adsorption device 42 shown in FIG. 5 (second modification of Embodiment 1) was used as the adsorption device, and the carbon dioxide adsorption amount and the moisture absorption amount were calculated. Table 2 shows the results.
  • the carbon dioxide adsorbent is powder, but the moisture absorbent is the material forming the nonwoven fabric 80g (that is, the nonwoven fabric 80g or the covering material 81 contains the moisture absorbent).
  • the blending ratio of the adsorbent is 92% by mass (the blending ratio of carbon dioxide powder and hygroscopic material is 8% by mass).
  • Example 4 An adsorption device according to Example 4 was prepared in the same manner as in Example 1 except that the adsorption device 43 (Embodiment 2) shown in FIG. 6A was used as the adsorption device, and the carbon dioxide adsorption amount and the moisture absorption amount were calculated. Table 2 shows the results.
  • a cylindrical body (rotor body) is formed by fixing a powdery carbon dioxide adsorbent to a moisture absorbing sheet member.
  • the blending ratio of the adsorbent is 97% by mass (the blending ratio of carbon dioxide powder and hygroscopic material is 3% by mass).
  • Example 5 An adsorption device according to Example 5 was prepared in the same manner as in Example 1 except that the adsorption device 44 (Embodiment 2) shown in FIG. 6B was used as the adsorption device, and the carbon dioxide adsorption amount and the moisture absorption amount were calculated. Table 2 shows the results.
  • the powdery carbon dioxide adsorbent is fixed to the moisture absorbing sheet member to form a laminate.
  • the blending ratio of the adsorbent is 97% by mass (the blending ratio of carbon dioxide powder and hygroscopic material is 3% by mass).
  • the adsorption device according to the present disclosure can achieve good results in terms of both carbon dioxide adsorption amount and moisture absorption amount (water adsorption amount). Therefore, an adsorption device having moisture absorption/desorption characteristics and carbon dioxide adsorption/desorption characteristics can be obtained. Therefore, in the present disclosure, it can be seen that a hygroscopic material, such as a hygroscopic polymer, which releases moisture at a temperature of less than 100°C and has an adsorption amount of moisture at a water vapor equilibrium pressure of less than 1,600 Pa that is equal to or greater than the moisture adsorption amount of the carbon dioxide adsorbent.
  • a hygroscopic material such as a hygroscopic polymer
  • Example 1 since the mounting space for the carbon dioxide adsorbent powder and the moisture absorbent powder is the same portion (inside the cell of the holder body), the amount of carbon dioxide adsorbent is relatively small compared to other examples. Therefore, both the amount of carbon dioxide adsorption and the amount of moisture absorbed are relatively low compared to other examples.
  • Example 2 since the other members of the adsorption device according to Embodiment 1 are integrated with the moisture absorbing material, both moisture absorption and desorption characteristics and carbon dioxide adsorption and release characteristics can be achieved, and a relatively high carbon dioxide adsorption amount can be achieved compared to Example 1.
  • Example 4 the blending ratio of the hygroscopic material is relatively low compared to other examples, so the moisture absorption amount is also relatively small.
  • adsorption devices with various configurations can be obtained without being limited to the configuration having a holder as in Examples 1 to 3.
  • Air conditioner 3 Blower mechanism (blower) 4, 41, 42, 43, 44: adsorption device 5: adsorbent 7: polymer compound (carbon dioxide adsorbent) 8: holder 51: carbon dioxide adsorbent (powder) 80: Holder body 80a: Cell 80b: Internal space 80c: Inlet 80d: Outlet 80g: Nonwoven fabric 81: Covering material 83: Moisture absorbing sheet member

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Analytical Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Drying Of Gases (AREA)
  • Central Air Conditioning (AREA)
  • Gas Separation By Absorption (AREA)

Abstract

This adsorption device is used for adsorbing and releasing prescribed components in an air flow from an air blower and comprises a carbon dioxide adsorber that repeatedly adsorbs and releases carbon dioxide and a hygroscopic material that adsorbs and releases water. The carbon dioxide adsorber contains a polymer compound having a chemical structure to which at least a functional group containing a primary amine group is linked, is porous, adsorbs and releases water, can release carbon dioxide at a temperature of 40°C or higher and can release water at a temperature lower than 40°C. The hygroscopic material can release water at a temperature lower than 100°C and a water adsorption at a water vapor equilibrium pressure of less than 1,600 Pa is at or above the water adsorption of the carbon dioxide adsorber. Because of the configuration, moisture can be satisfactorily adsorbed and released and carbon dioxide can be satisfactorily adsorbed and released from air flow generated in an air blower with a simple structure.

Description

吸着デバイスおよび空気調和装置Adsorption device and air conditioner
 本開示は、空気調和装置等に用いられて少なくとも二酸化炭素を吸着および放出可能とする吸着デバイスと、当該吸着デバイスを備える空気調和装置とに関する。 The present disclosure relates to an adsorption device that is used in an air conditioner or the like and is capable of adsorbing and releasing at least carbon dioxide, and an air conditioner that includes the adsorption device.
 特許文献1には、室内の二酸化炭素の濃度を調節可能とする送風装置とこの送風装置を備える空気調和装置および換気システムが開示されている。この送風装置では、室内の二酸化炭素を吸収可能な二酸化炭素吸収手段と、これを再生する再生手段とを備えており、室内の二酸化炭素の濃度(あるいは二酸化炭素濃度に影響を与える因子)を検出し、検出結果が所定の条件を満たすか否かを判定して、送風手段に気流を発生させるか、二酸化炭素吸収手段を再生させる構成となっている。 Patent Document 1 discloses a blower capable of adjusting the concentration of carbon dioxide in a room, and an air conditioner and a ventilation system equipped with this blower. This air blower includes a carbon dioxide absorbing means capable of absorbing carbon dioxide in a room and a regeneration means for regenerating the carbon dioxide, detects the concentration of carbon dioxide in the room (or a factor affecting the carbon dioxide concentration), determines whether the detection result satisfies a predetermined condition, and causes the blowing means to generate an airflow or regenerates the carbon dioxide absorption means.
 二酸化炭素吸収手段の一例として、アミノ基を有する高分子化合物粒子が用いられる二酸化炭素吸放出部が開示され、再生手段の一例として、ペルチェ素子のような二酸化炭素吸放出部を加熱または冷却する加熱冷却部が開示されている。 As an example of the carbon dioxide absorbing means, a carbon dioxide absorbing/releasing part using polymer compound particles having an amino group is disclosed, and as an example of the regenerating means, a heating/cooling part for heating or cooling the carbon dioxide absorbing/releasing part such as a Peltier element is disclosed.
 ところで、空気調和装置の分野においては、室内の温度だけでなく湿度を調節可能とする構成のものも知られている。例えば、特許文献2には、加湿ユニットと制御部とを備える、空気調和システムが開示されている。加湿ユニットは、屋外から導入して屋外に排出される空気中の水分を吸着し、屋外から導入されて対象空間(室内)に放出される空気に水分を放出する吸湿材を有している。具体的な吸湿材としては、環状に形成されたデシカント材が例示されているが、具体的な材質は言及されていない。 By the way, in the field of air conditioners, there are also known ones that are configured to adjust not only the indoor temperature but also the humidity. For example, Patent Literature 2 discloses an air conditioning system that includes a humidification unit and a controller. The humidifying unit has a moisture absorbing material that absorbs moisture in the air introduced from the outdoors and discharged to the outside, and releases the moisture to the air that is introduced from the outdoors and released into the target space (indoor). A ring-shaped desiccant material is exemplified as a specific moisture absorbing material, but no specific material is mentioned.
特開2019-090546号公報JP 2019-090546 A 特開2021-055906号公報Japanese Patent Application Laid-Open No. 2021-055906
 特許文献1に開示される送風装置および空気調和装置では、室内の二酸化炭素の濃度を調節可能としているが、湿度の調節については特に言及されていない。特許文献1では、当該送風装置が、除湿器または加湿器に備えられてもよいことが記載される程度である。 The air blower and the air conditioner disclosed in Patent Document 1 make it possible to adjust the concentration of carbon dioxide in the room, but do not specifically mention the adjustment of humidity. Patent Literature 1 merely describes that the blower device may be provided in a dehumidifier or a humidifier.
 特許文献2に開示される空気調和システムでは、吸湿材を用いて室内(対象空間)を加湿可能としているが、二酸化炭素の濃度の調節については特に言及されていない。特許文献2では、室外の水分を室内に導入するための媒体としてデシカント材を用いることを開示するのみで、室内の湿度の調節にデシカント材を直接的に利用することについては特に言及されていない。 In the air conditioning system disclosed in Patent Document 2, it is possible to humidify the room (target space) using a moisture absorbing material, but there is no particular reference to adjusting the concentration of carbon dioxide. Patent Document 2 only discloses the use of a desiccant material as a medium for introducing outdoor moisture into the room, and does not specifically mention the direct use of the desiccant material for indoor humidity control.
 近年、空気調和装置の分野では、室内の湿度の調節だけではなく室内の二酸化炭素の濃度を調節することについても、その需要が高まっている。そのため、湿度とともに二酸化炭素の濃度も調節し、室内の空気質のさらなる向上が求められる傾向にある。しかしながら、湿度および二酸化炭素の濃度の双方を良好に調節する手法については、ほとんど提案されていない。 In recent years, in the field of air conditioners, there has been an increasing demand not only for adjusting indoor humidity, but also for adjusting indoor carbon dioxide concentration. Therefore, there is a trend toward further improvement of indoor air quality by adjusting the concentration of carbon dioxide as well as humidity. However, very few techniques have been proposed for good control of both humidity and carbon dioxide concentration.
 本発明はこのような課題を解決するためになされたものであって、簡素な構成で、送風器で発生した空気流に対して、良好に吸放湿できるとともに、二酸化炭素の良好な吸着および放出を可能とすることを目的とする。 The present invention was made in order to solve such problems, and the object of the present invention is to enable good absorption and desorption of moisture in the air flow generated by the blower, as well as good adsorption and release of carbon dioxide, with a simple configuration.
 本発明に係る吸着デバイスは、前記の課題を解決するために、送風器から送風される空気流に含まれる所定成分を吸着および放出するために用いられ、前記所定成分の一つとしての二酸化炭素を繰り返し吸着および放出する二酸化炭素吸着材と、前記所定成分の他の一つとしての水分を吸着および放出する吸湿材と、を備え、前記二酸化炭素吸着材が、少なくとも1級アミン基であるアミン基を含む官能基が結合した化学構造を有する高分子化合物を含み、多孔質状に形成され、水分を吸着および放出するものであり、さらに、40℃以上の温度で二酸化炭素を脱離可能とするとともに、40℃未満の温度で水分を放出可能とし、前記吸湿材が、100℃未満の温度で水分を放出可能とし、かつ、水蒸気平衡圧1,600Pa未満での水分の吸着量が、前記二酸化炭素吸着材の水分吸着量以上であるものである構成である。 In order to solve the above-mentioned problems, the adsorption device according to the present invention is used to adsorb and release a predetermined component contained in an air flow blown from a blower, and includes a carbon dioxide adsorbent that repeatedly adsorbs and releases carbon dioxide as one of the predetermined components, and a moisture absorbent that adsorbs and releases moisture as another one of the predetermined components. Further, it is capable of desorbing carbon dioxide at a temperature of 40 ° C. or higher and releasing moisture at a temperature of less than 40 ° C., the hygroscopic material can release moisture at a temperature of less than 100 ° C., and the adsorption amount of moisture at a water vapor equilibrium pressure of less than 1,600 Pa is equal to or greater than the moisture adsorption amount of the carbon dioxide adsorbent.
 前記構成によれば、吸放湿特性を有する吸湿材とともに、アミン基を含む官能基を有する高分子化合物を含み、多孔質状に形成された二酸化炭素吸着材を併用する。これにより、吸放湿特性と二酸化炭素の吸着および放出する特性(二酸化炭素吸着放出特性)とを有する吸着デバイスを得ることができる。 According to the above configuration, a porous carbon dioxide adsorbent containing a polymer compound having a functional group including an amine group is used together with the moisture absorbing material having moisture absorption and desorption characteristics. This makes it possible to obtain an adsorption device having moisture absorption and desorption characteristics and carbon dioxide adsorption and desorption characteristics (carbon dioxide adsorption and desorption characteristics).
 しかも、前記二酸化炭素吸着材は、二酸化炭素吸着放出特性だけでなく吸放湿特性を有し、二酸化炭素の脱離温度と水分の放出温度との好適な範囲が異なることが新たに明らかとなった。そのため、前記二酸化炭素吸着材も吸湿材として利用可能であり、かつ、前記二酸化炭素吸湿材をさらに別の吸湿材と組み合わせて用いることにより、吸着デバイスにおける吸放湿特性をより一層良好なものとすることができる。 Moreover, it has been newly found that the carbon dioxide adsorbent has not only carbon dioxide adsorption and desorption characteristics but also moisture absorption and desorption characteristics, and that the preferred ranges of the carbon dioxide desorption temperature and moisture release temperature are different. Therefore, the carbon dioxide adsorbent can also be used as a moisture absorbent, and by using the carbon dioxide absorbent in combination with another moisture absorbent, the moisture absorption and desorption characteristics of the adsorption device can be further improved.
 さらに、前記の通り、二酸化炭素の脱離温度と水分の放出温度との好適な範囲が異なることに基づけば、吸湿材として、水分を放出する温度が100℃未満であり、かつ、水蒸気平衡圧1,600Pa未満での水分の吸着量が、前記二酸化炭素吸着材の水分吸着量以上であるものであるものを組み合わせて用いることにより、吸放湿と二酸化炭素の吸着放出とをそれぞれ調節可能であることも明らかとなった。 Furthermore, as described above, based on the fact that the preferred ranges of the carbon dioxide desorption temperature and the water release temperature are different, it was found that the moisture absorption and desorption and the adsorption and release of carbon dioxide can be adjusted by using a combination of moisture absorbing materials that release moisture at a temperature of less than 100°C and that adsorb moisture at a water vapor equilibrium pressure of less than 1,600 Pa in excess of the amount of water adsorbed by the carbon dioxide adsorbent.
 このような吸着デバイスを、送風器を有する応用機器、例えば、空気調和装置に適用することで、室内の空気を調和する際に、湿度の調節とともに二酸化炭素の濃度も良好に調節できる。 By applying such an adsorption device to an application device having a blower, such as an air conditioner, it is possible to adjust not only the humidity but also the concentration of carbon dioxide well when conditioning the indoor air.
 また、本発明に係る空気調和装置は、前記構成の吸着デバイスを備える構成である。当該構成によれば、二酸化炭素および水分を良好に吸着または脱離できる吸着デバイスを空気調和装置に適用するので、吸着デバイスを設けるだけで空気調和装置に二酸化炭素濃度および湿度の調節機能を付与することができる。 Further, an air conditioner according to the present invention is configured to include the adsorption device having the above configuration. According to this configuration, since the adsorption device capable of favorably adsorbing or desorbing carbon dioxide and moisture is applied to the air conditioner, the function of adjusting the carbon dioxide concentration and humidity can be imparted to the air conditioner simply by providing the adsorption device.
 本発明の上記目的、他の目的、特徴、および利点は、添付図面参照の下、以下の好適な実施態様の詳細な説明から明らかにされる。 The above object, other objects, features, and advantages of the present invention will be made clear from the following detailed description of preferred embodiments with reference to the accompanying drawings.
 本発明では、以上の構成により、簡素な構成で、送風器で発生した空気流に対して、良好に吸放湿できるとともに、二酸化炭素の良好な吸着および放出を可能とする、という効果を奏する。 With the above configuration, the present invention has the effect of being able to absorb and desorb moisture well with respect to the air flow generated by the blower, and to adsorb and release carbon dioxide well, with a simple configuration.
図1は、本開示の代表的な実施の形態に係る空気調和装置の室内機の斜視図である。FIG. 1 is a perspective view of an indoor unit of an air conditioner according to a representative embodiment of the present disclosure. 図2は、図1に示す空気調和装置に用いられる吸着デバイスの代表的な一例を示す概念図である。FIG. 2 is a conceptual diagram showing a representative example of an adsorption device used in the air conditioner shown in FIG. 図3は、図1に示す吸着デバイスに用いられる二酸化炭素吸着材が含む高分子化合物を示す概念図である。FIG. 3 is a conceptual diagram showing polymer compounds contained in the carbon dioxide adsorbent used in the adsorption device shown in FIG. 図4は、図2に示す吸着デバイスの具体的な構成例を示す概念図である。FIG. 4 is a conceptual diagram showing a specific configuration example of the adsorption device shown in FIG. 図5は、図4に示す吸着デバイスの他の実施の形態を示す概念図である。5 is a conceptual diagram showing another embodiment of the adsorption device shown in FIG. 4. FIG. 図6Aおよび図6Bは、図1に示す空気調和装置に用いられる吸着デバイスの他の実施の形態を示す概念図である。6A and 6B are conceptual diagrams showing another embodiment of the adsorption device used in the air conditioner shown in FIG. 1. FIG.
 本開示に係る吸着デバイスは、送風器から送風される空気流に含まれる所定成分を吸着および放出するために用いられ、前記所定成分の一つとしての二酸化炭素を繰り返し吸着および放出する二酸化炭素吸着材と、前記所定成分の他の一つとしての水分を吸着および放出する吸湿材と、を備え、前記二酸化炭素吸着材が、少なくとも1級アミン基であるアミン基を含む官能基が結合した化学構造を有する高分子化合物を含み、多孔質状に形成され、水分を吸着および放出するものであり、さらに、40℃以上の温度で二酸化炭素を脱離可能とするとともに、40℃未満の温度で水分を放出可能とし、前記吸湿材が、100℃未満の温度で水分を放出可能とし、かつ、水蒸気平衡圧1,600Pa未満での水分の吸着量が、前記二酸化炭素吸着材の水分吸着量以上であるものである構成である。 The adsorption device according to the present disclosure is used to adsorb and release predetermined components contained in an airflow blown from a blower, and includes a carbon dioxide adsorbent that repeatedly adsorbs and releases carbon dioxide as one of the predetermined components, and a moisture absorbent that adsorbs and releases moisture as another one of the predetermined components. The carbon dioxide adsorbent includes a polymer compound having a chemical structure in which a functional group including an amine group that is at least a primary amine group is bonded, is formed in a porous shape, and adsorbs and releases moisture. Further, it is configured such that carbon dioxide can be desorbed at a temperature of 40° C. or higher and moisture can be released at a temperature of less than 40° C., the hygroscopic material can release moisture at a temperature of less than 100° C., and the amount of moisture adsorbed at a water vapor equilibrium pressure of less than 1,600 Pa is greater than or equal to the amount of water adsorbed by the carbon dioxide adsorbent.
 前記構成によれば、吸放湿特性を有する吸湿材とともに、アミン基を含む官能基を有する高分子化合物を含み、多孔質状に形成された二酸化炭素吸着材を併用する。これにより、吸放湿特性と二酸化炭素の吸着および放出する特性(二酸化炭素吸着放出特性)とを有する吸着デバイスを得ることができる。 According to the above configuration, a porous carbon dioxide adsorbent containing a polymer compound having a functional group including an amine group is used together with the moisture absorbing material having moisture absorption and desorption characteristics. This makes it possible to obtain an adsorption device having moisture absorption and desorption characteristics and carbon dioxide adsorption and desorption characteristics (carbon dioxide adsorption and desorption characteristics).
 しかも、前記二酸化炭素吸着材は、二酸化炭素吸着放出特性だけでなく吸放湿特性を有し、二酸化炭素の脱離温度と水分の放出温度との好適な範囲が異なることが新たに明らかとなった。そのため、前記二酸化炭素吸着材も吸湿材として利用可能であり、かつ、前記二酸化炭素吸湿材をさらに別の吸湿材と組み合わせて用いることにより、吸着デバイスにおける吸放湿特性をより一層良好なものとすることができる。 Moreover, it has been newly found that the carbon dioxide adsorbent has not only carbon dioxide adsorption and desorption characteristics but also moisture absorption and desorption characteristics, and that the preferred ranges of the carbon dioxide desorption temperature and moisture release temperature are different. Therefore, the carbon dioxide adsorbent can also be used as a moisture absorbent, and by using the carbon dioxide absorbent in combination with another moisture absorbent, the moisture absorption and desorption characteristics of the adsorption device can be further improved.
 さらに、前記の通り、二酸化炭素の脱離温度と水分の放出温度との好適な範囲が異なることに基づけば、吸湿材として、水分を放出する温度が100℃未満であり、かつ、水蒸気平衡圧1,600Pa未満での水分の吸着量が、前記二酸化炭素吸着材の水分吸着量以上であるものであるものを組み合わせて用いることにより、吸放湿と二酸化炭素の吸着放出とをそれぞれ調節可能であることも明らかとなった。 Furthermore, as described above, based on the fact that the preferred ranges of the carbon dioxide desorption temperature and the water release temperature are different, it was found that the moisture absorption and desorption and the adsorption and release of carbon dioxide can be adjusted by using a combination of moisture absorbing materials that release moisture at a temperature of less than 100°C and that adsorb moisture at a water vapor equilibrium pressure of less than 1,600 Pa in excess of the amount of water adsorbed by the carbon dioxide adsorbent.
 このような吸着デバイスを、送風器を有する応用機器、例えば、空気調和装置に適用することで、室内の空気を調和する際に、湿度の調節とともに二酸化炭素の濃度も良好に調節できる。 By applying such an adsorption device to an application device having a blower, such as an air conditioner, it is possible to adjust not only the humidity but also the concentration of carbon dioxide well when conditioning the indoor air.
 前記構成の吸着デバイスにおいては、前記二酸化炭素吸着材は、平均粒径が400μm以上1.3mm以下の範囲の値である粉体である構成であってもよい。 In the adsorption device having the above configuration, the carbon dioxide adsorbent may be a powder having an average particle size in the range of 400 μm or more and 1.3 mm or less.
 前記構成によれば、前記二酸化炭素吸着材が前記範囲の粉体であるため、吸着デバイスに適用しやすくなり、当該二酸化炭素吸着材に良好な実用性を付与できる。 According to the above configuration, since the carbon dioxide adsorbent is a powder within the above range, it can be easily applied to an adsorption device, and good practicality can be imparted to the carbon dioxide adsorbent.
 また、前記構成の吸着デバイスにおいては、少なくとも前記二酸化炭素吸着材を空気と接触可能に保持するホルダを備えており、当該ホルダは、前記二酸化炭素吸着材を収容する内部空間と、前記内部空間に空気を導入する導入口と、前記内部空間を通過した空気を排出する排出口と、を有する複数のセルが形成されたホルダ本体と、通気性を有し、前記セルの前記導入口と前記排出口とを覆う被覆材と、を有し、前記二酸化炭素吸着材は、前記セル内に収容されている構成であってもよい。 In addition, the adsorption device having the above configuration includes a holder that holds at least the carbon dioxide adsorbent so that it can come into contact with air. The holder has a holder body formed with a plurality of cells having an internal space for containing the carbon dioxide adsorbent, an inlet for introducing air into the internal space, and an outlet for discharging the air that has passed through the internal space. It may be a configuration that
 前記構成によれば、二酸化炭素吸着材を複数のセルの内部空間に分けて収容することで、当該二酸化炭素吸着材を各セルに分布および分散させて配置できる。これにより、二酸化炭素吸着材の空気に対する接触面積を拡大させ、二酸化炭素吸着材の吸着量を増大できる。よって、吸着デバイスの良好な吸着性能を得ることができる。また、二酸化炭素吸着材は、繰り返し空気中の二酸化炭素および水分を吸着および放出する。このため、二酸化炭素吸着材から二酸化炭素および水分を放出することで持続的に使用できる。よって、吸着デバイスの交換回数や交換に伴う作業負担、および、コストを低減できる。 According to the above configuration, the carbon dioxide adsorbent can be distributed and dispersed in each cell by storing the carbon dioxide adsorbent in the internal spaces of the plurality of cells. As a result, the contact area of the carbon dioxide adsorbent with air can be increased, and the adsorption amount of the carbon dioxide adsorbent can be increased. Therefore, good adsorption performance of the adsorption device can be obtained. Also, the carbon dioxide adsorbent repeatedly adsorbs and releases carbon dioxide and moisture in the air. Therefore, it can be used continuously by releasing carbon dioxide and moisture from the carbon dioxide adsorbent. Therefore, it is possible to reduce the number of exchanges of the adsorption device, the work load associated with the exchange, and the cost.
 また、前記構成の吸着デバイスにおいては、前記ホルダ本体の材質が、前記吸湿材を含む構成であってもよい。 Further, in the adsorption device having the above configuration, the material of the holder main body may include the moisture absorbing material.
 前記構成によれば、ホルダ本体が吸湿材を含むか吸湿材製にできるので、吸湿材とホルダ本体とを一つの部材にできる。そのため、部材点数の増加を抑制できるだけでなく、ホルダ本体が吸湿材を含む場合には、吸湿材の使用量を相対的に増加させることも可能になる。 According to the above configuration, the holder main body can contain or be made of a hygroscopic material, so that the hygroscopic material and the holder main body can be made into one member. Therefore, it is possible not only to suppress an increase in the number of members, but also to relatively increase the usage amount of the absorbent when the holder main body includes the absorbent.
 また、前記構成の吸着デバイスにおいては、前記ホルダ本体の材質が、樹脂、金属およびセラミックのうちの少なくともいずれかを含む構成であってもよい。 Further, in the suction device having the above configuration, the material of the holder body may include at least one of resin, metal, and ceramic.
 前記構成によれば、ホルダ本体の材質が樹脂、金属、またはセラミックのいずれか、もしくは複数の材質を含むことで、ホルダ本体を高熱伝導率の材料により形成できる。これにより、二酸化炭素吸着材あるいは吸湿材を加熱する場合、ホルダ本体を介してこれらを加熱できる。よって、例えば二酸化炭素吸着材が加熱により二酸化炭素を放出する場合、当該二酸化炭素吸着材を良好に加熱して二酸化炭素を放出しやすくできる。 According to the above configuration, the material of the holder main body is resin, metal, or ceramic, or includes a plurality of materials, so that the holder main body can be formed of a material with high thermal conductivity. Thereby, when heating the carbon dioxide adsorbent or the hygroscopic material, they can be heated through the holder main body. Therefore, for example, when the carbon dioxide adsorbent releases carbon dioxide by heating, the carbon dioxide adsorbent can be heated well to facilitate the release of carbon dioxide.
 また、前記構成の吸着デバイスにおいては、前記被覆材が不織布を含む構成であってもよい。 Further, in the adsorption device having the above configuration, the covering material may include a nonwoven fabric.
 前記構成によれば、被覆材に不織布を用いることで、例えば被覆材に織物を用いた場合に比べ、当該被覆材を比較的薄くかる軽量に形成できる。 According to the above configuration, by using a non-woven fabric as the covering material, the covering material can be formed relatively thin and light in weight compared to the case of using a woven fabric as the covering material, for example.
 また、前記構成の吸着デバイスにおいては、前記不織布の材質が、前記吸湿材を含む構成であってもよい。 Further, in the adsorption device having the above configuration, the material of the nonwoven fabric may include the moisture absorbing material.
 前記構成によれば、被覆材が吸湿材を含むか被覆材そのものを吸湿材製にできるので、吸湿材と被覆材とを一つの部材にできる。そのため、部材点数の増加を抑制できる。また、ホルダ本体が吸湿材を含む場合、あるいは、被覆材が吸湿材を含む場合には、吸湿材の使用量を相対的に増加させることも可能になる。特に、ホルダ本体および被覆材の双方が吸湿材を含む場合には、吸湿材の使用量をより一層増加させることができる。そのため、諸条件に応じて吸湿材の使用量を設定しやすくなる。 According to the above configuration, the covering material can contain a moisture absorbing material or the covering material itself can be made of a moisture absorbing material, so that the moisture absorbing material and the covering material can be made into one member. Therefore, an increase in the number of members can be suppressed. Moreover, when the holder main body contains a moisture absorbing material, or when the covering material contains a moisture absorbing material, it is also possible to relatively increase the usage amount of the moisture absorbing material. In particular, when both the holder main body and the covering material contain a moisture absorbing material, the usage amount of the moisture absorbing material can be further increased. Therefore, it becomes easy to set the usage amount of the moisture absorbent according to various conditions.
 また、前記構成の吸着デバイスにおいては、前記被覆材が、金属メッシュを含む構成であってもよい。 Further, in the adsorption device having the above configuration, the covering material may include a metal mesh.
 前記構成によれば、金属メッシュにより被覆材の耐久性を向上できる。また、被覆材の熱伝導性を向上できる。よって、例えば二酸化炭素吸着材が加熱により二酸化炭素を放出する場合、吸着デバイスの外部から被覆材を通じて二酸化炭素吸着材を加熱しやすくなる。 According to the above configuration, the metal mesh can improve the durability of the covering material. Also, the thermal conductivity of the covering material can be improved. Therefore, for example, when the carbon dioxide adsorbent releases carbon dioxide by heating, it becomes easier to heat the carbon dioxide adsorbent from the outside of the adsorption device through the covering material.
 また、前記構成の吸着デバイスにおいては、前記被覆材に空気を流速1m/秒で通過させたときの圧力損失が、5Pa以上30Pa以下の範囲の値である構成であってもよい。 Further, in the adsorption device having the above configuration, the pressure loss when air is passed through the covering material at a flow rate of 1 m/sec may be in the range of 5 Pa or more and 30 Pa or less.
 前記構成によれば、各セルに収容(保持)された二酸化炭素吸着材がホルダ本体から脱落するのを被覆材により防止できるとともに、良好な通気性を確保でき、二酸化炭素吸着材を空気と効率よく接触できる。 According to the above configuration, the covering material can prevent the carbon dioxide adsorbent contained (held) in each cell from falling off from the holder main body, ensure good air permeability, and allow the carbon dioxide adsorbent to come into contact with air efficiently.
 また、前記構成の吸着デバイスにおいては、前記吸湿材を、シート化された吸湿シート部材として備えている構成であってもよい。 Further, in the adsorption device having the above configuration, the moisture absorbing material may be provided as a moisture absorbing sheet member formed into a sheet.
 前記構成によれば、吸湿材を吸湿シート部材として用いるため、例えば、ホルダ本体または被覆材に吸湿材を含ませることが難しい場合には、吸着デバイスに吸湿材を適用しやすくなる。また、ホルダ本体または被覆材が吸湿材を含む場合も別部材として吸湿材を用いることにより、諸条件に応じて吸湿材の使用量を設定しやすくなる。 According to the above configuration, since the moisture absorbent is used as the moisture absorbent sheet member, for example, when it is difficult to include the moisture absorbent in the holder main body or the covering material, it is easy to apply the moisture absorbent to the adsorption device. Also, even when the holder main body or the covering material contains a moisture absorbing material, using the moisture absorbing material as a separate member makes it easy to set the usage amount of the moisture absorbing material according to various conditions.
 また、前記構成の吸着デバイスにおいては、前記吸湿シート部材には、前記二酸化炭素吸着材が固定化されている構成であってもよい。 Further, in the adsorption device having the above configuration, the carbon dioxide adsorbent may be immobilized on the moisture absorbing sheet member.
 前記構成によれば、吸湿材と二酸化炭素吸着材とを一体化できるので、部材点数の増加を抑制できるだけでなく、吸湿シート部材をさまざまな形状に加工することで、吸着デバイスの形態を多様化できる。 According to the above configuration, the moisture absorbing material and the carbon dioxide adsorbing material can be integrated, so it is possible not only to suppress an increase in the number of parts, but also to diversify the form of the adsorption device by processing the moisture absorbing sheet member into various shapes.
 また、前記構成の吸着デバイスにおいては、前記吸湿シート部材は、当該吸湿シート部材を複数積層した積層体、または、当該吸湿シート部材を円筒状に巻き付けた円筒体として用いられる構成であってもよい。 In addition, in the adsorption device having the above configuration, the moisture-absorbing sheet member may be configured to be used as a laminate obtained by laminating a plurality of moisture-absorbing sheet members, or as a cylindrical body obtained by winding the moisture-absorbing sheet members in a cylindrical shape.
 前記構成によれば、積層体または円筒体(ロータ体)とすることで、簡素な形状で吸湿材および二酸化炭素吸着材の充填量を増加することができる。それゆえ、吸着デバイスの性能向上が可能となる。 According to the above configuration, by using a laminated body or a cylindrical body (rotor body), it is possible to increase the filling amount of the hygroscopic material and the carbon dioxide adsorbent with a simple shape. Therefore, it is possible to improve the performance of the adsorption device.
 また、前記構成の吸着デバイスにおいては、前記吸湿材は、親水性基および架橋構造を有する、架橋型親水性高分子である構成であってもよい。 Further, in the adsorption device having the above configuration, the moisture absorbent may be a crosslinked hydrophilic polymer having a hydrophilic group and a crosslinked structure.
 前記構成によれば、吸湿材が架橋型親水性高分子であれば、高分子が架橋されることにより、架橋構造の間で親水基が水分子を吸着した状態で包摂することが可能になる。そのため、より良好な吸湿性を実現できるとともに、より低温での放湿も可能となる。これにより、二酸化炭素吸着材と組み合わせたときに、吸放湿と二酸化炭素の吸着放出とをそれぞれより良好に調節できる。 According to the above configuration, if the hygroscopic material is a crosslinked hydrophilic polymer, it becomes possible for the hydrophilic group to contain water molecules between the crosslinked structures in an adsorbed state by crosslinking the polymer. Therefore, it is possible to achieve better hygroscopicity and to release moisture at lower temperatures. This makes it possible to better control moisture absorption and desorption and carbon dioxide adsorption and desorption, respectively, when combined with a carbon dioxide adsorbent.
 また、前記構成の吸着デバイスにおいては、前記吸着デバイスに導入されて排出される空気の流通方向における独立した内部空間の流路断面積が、0.5cm2 以上10.0cm2 以下の範囲の値である構成であってもよい。 In addition, in the adsorption device having the above configuration, the channel cross-sectional area of the independent internal space in the flow direction of the air introduced into and discharged from the adsorption device may be in the range of 0.5 cm2 or more and 10.0 cm2 or less.
 前記構成によれば、二酸化炭素吸着材および吸湿材を空気流と効率よく接触できる。よって、二酸化炭素吸着材および吸湿材の吸着量または放出量をより好適化できる。 According to the above configuration, the carbon dioxide adsorbent and the hygroscopic material can be efficiently brought into contact with the air flow. Therefore, the adsorption amount or release amount of the carbon dioxide adsorbent and the moisture absorbent can be made more suitable.
 また、前記構成の吸着デバイスにおいては、前記吸着デバイスに導入されて排出される空気を流速1m/秒で通過させたときの圧力損失が、40Pa以上500Pa以下の範囲である構成であってもよい。前記構成によれば、吸着デバイスの通気性をさらに良好にできる。 In addition, the adsorption device having the above configuration may have a configuration in which the pressure loss is in the range of 40 Pa or more and 500 Pa or less when the air introduced into and discharged from the adsorption device is passed at a flow rate of 1 m/sec. According to the above configuration, the air permeability of the adsorption device can be further improved.
 本開示に係る空気調和装置は、前記構成の吸着デバイスを備える構成であればよい。この構成によれば、二酸化炭素および水分を良好に吸着または脱離できる吸着デバイスを空気調和装置に適用するので、吸着デバイスを設けるだけで空気調和装置に二酸化炭素濃度および湿度の調節機能を付与することができる。 The air conditioner according to the present disclosure may be configured to include the adsorption device configured as described above. According to this configuration, since the adsorption device capable of favorably adsorbing or desorbing carbon dioxide and moisture is applied to the air conditioner, the function of adjusting the carbon dioxide concentration and humidity can be imparted to the air conditioner simply by providing the adsorption device.
 以下、本発明の代表的な実施の形態を、図面を参照しながら説明する。なお、以下では全ての図を通じて同一または相当する要素には同一の参照符号を付して、その重複する説明を省略する。 Hereinafter, representative embodiments of the present invention will be described with reference to the drawings. In the following description, the same reference numerals are given to the same or corresponding elements throughout all the drawings, and duplicate descriptions thereof will be omitted.
 (実施の形態1)
 [空気調和装置の構成例]
 図1に示すように、本実施の形態に係る空気調和装置1は、室内機10と室外機とを備えており、図1では室内機10のみ斜視図で示している。空気調和装置1は、吸着デバイス4を備える応用装置の一例である。空気調和装置1では、冷媒が室内機10と室外機との間を循環する。室内機10は、冷媒と室内の空気とを熱交換する熱交換器2と、室内の空気を取り込んで熱交換器2により熱交換した後に排出する送風機構3(送風器)とを備える。
(Embodiment 1)
[Configuration example of air conditioner]
As shown in FIG. 1, an air conditioner 1 according to the present embodiment includes an indoor unit 10 and an outdoor unit, and FIG. 1 shows only the indoor unit 10 in a perspective view. The air conditioner 1 is an example of an application device that includes the adsorption device 4 . In the air conditioner 1, refrigerant circulates between the indoor unit 10 and the outdoor unit. The indoor unit 10 includes a heat exchanger 2 that exchanges heat between a refrigerant and indoor air, and a blower mechanism 3 (blower) that takes in indoor air, exchanges heat with the heat exchanger 2, and then discharges the air.
 また室内機10は、送風機構3から送出される空気流から繰り返し所定成分を吸着および放出する吸着材5を備える吸着デバイス4と、吸着デバイス4内の吸着材5を加熱して所定成分を放出させる加熱機構6とを備える。 The indoor unit 10 also includes an adsorption device 4 that includes an adsorbent 5 that repeatedly adsorbs and releases a predetermined component from the airflow sent out from the air blowing mechanism 3, and a heating mechanism 6 that heats the adsorbent 5 in the adsorption device 4 to release the predetermined component.
 本開示における所定成分は、二酸化炭素および水分である。したがって、後述するように、本実施の形態では、吸着材5としては、二酸化炭素吸着材および吸湿材の2種類を用いる。二酸化炭素吸着材は、空気流中の二酸化炭素を吸着し、また吸着した二酸化炭素を空気流に放出する。吸湿材は、空気流中の水分を吸着(吸湿)し、また吸着した水分を放出(放湿)する。したがって、室内機10は、室内の空気中における二酸化炭素濃度および湿度(水分濃度)を調節できる。 The prescribed components in the present disclosure are carbon dioxide and moisture. Therefore, as will be described later, in the present embodiment, two types of adsorbent 5 are used: a carbon dioxide adsorbent and a moisture absorbent. Carbon dioxide adsorbents adsorb carbon dioxide in the airflow and release the adsorbed carbon dioxide into the airflow. The hygroscopic material adsorbs (absorbs) moisture in the airflow and releases (desorbs) the adsorbed moisture. Therefore, the indoor unit 10 can adjust the carbon dioxide concentration and humidity (moisture concentration) in the indoor air.
 加熱機構6は、吸着材5を加熱することで吸着材5に吸着した所定成分すなわち二酸化炭素または水分を放出させる。本実施の形態に係る空気調和装置1では、一例として、熱交換器2と送風機構3とが加熱機構6を兼ねる。このため空気調和装置1は、吸着材5から所定成分を放出するために別途の加熱機構を備える必要がない。熱交換器2は、冷媒と熱交換して空気を加熱する。送風機構3は、加熱された空気を吸着デバイス4に送風する。 The heating mechanism 6 heats the adsorbent 5 to release the predetermined component adsorbed by the adsorbent 5, namely carbon dioxide or moisture. In the air conditioner 1 according to the present embodiment, the heat exchanger 2 and the blower mechanism 3 also serve as the heating mechanism 6 as an example. Therefore, the air conditioner 1 does not need to have a separate heating mechanism for releasing the predetermined component from the adsorbent 5 . The heat exchanger 2 heats the air by exchanging heat with the refrigerant. The blower mechanism 3 blows heated air to the adsorption device 4 .
 一例として、吸着デバイス4は、室内機10内に設けられた空気流通路の途中に配置される。送風機構3は、空気流通路を流通する空気により、吸着デバイス4を通過する空気流を発生させる。吸着デバイス4は、吸着材5を担持する。 As an example, the adsorption device 4 is arranged in the middle of the air flow passage provided inside the indoor unit 10 . The air blowing mechanism 3 generates an air flow passing through the adsorption device 4 by the air flowing through the air flow passage. The adsorption device 4 carries an adsorbent 5 .
 空気調和装置1は、二酸化炭素濃度を調節する場合には、一例として、室内の空気中の二酸化炭素濃度を低減する第1モードと、室内の空気中の二酸化炭素濃度を増大させる第2モードとのいずれかで駆動される。湿度を調節する場合には、一例として、室内の湿度を低減する第3モードと、室内の湿度を上昇させる第4モードとのいずれかで駆動される。二酸化炭素濃度を調節する第1モードと、湿度を調節する第3モードまたは第4モードとは適宜組み合わせることができる。同様に、第2モードと第3モードまたは第4モードとも適宜組み合わせることができる。 When adjusting the carbon dioxide concentration, the air conditioner 1 is, for example, driven in either a first mode for reducing the carbon dioxide concentration in the indoor air or a second mode for increasing the carbon dioxide concentration in the indoor air. When adjusting the humidity, for example, it is driven in either the third mode for reducing the humidity in the room or the fourth mode for increasing the humidity in the room. The first mode of adjusting the carbon dioxide concentration and the third or fourth mode of adjusting the humidity can be appropriately combined. Similarly, the second mode and the third mode or the fourth mode can be combined as appropriate.
 これら駆動モードの一例について二酸化炭素濃度の調節を例に挙げて説明する。第1モードでの駆動時には、室内機10において、室内の空気が送風機構3により吸着材5に向けて送風される。これにより、吸着材5を構成する二酸化炭素吸着材は、空気に含まれる二酸化炭素を吸着する。ここで室内に人が居る場合、室内の空気中の二酸化炭素濃度は、例えば1600ppm以上まで上昇する場合がある。本実施の形態によれば、二酸化炭素吸着材が室内の二酸化炭素を吸着することで、このように上昇した室内の二酸化炭素濃度を例えば1000ppm以下に減少できる。 An example of these drive modes will be explained using the adjustment of the carbon dioxide concentration as an example. At the time of driving in the first mode, indoor air is blown toward the adsorbent 5 by the blowing mechanism 3 in the indoor unit 10 . Thereby, the carbon dioxide adsorbent constituting the adsorbent 5 adsorbs carbon dioxide contained in the air. Here, when there are people in the room, the concentration of carbon dioxide in the air in the room may rise to, for example, 1600 ppm or more. According to this embodiment, the carbon dioxide adsorbent adsorbs carbon dioxide in the room, so that the carbon dioxide concentration in the room, which has risen in this way, can be reduced to, for example, 1000 ppm or less.
 また第2モードでの駆動時には、吸着材5を構成する二酸化炭素吸着材が加熱機構6により加熱され、二酸化炭素を放出する。放出された二酸化炭素は、送風機構3からの送風により室内に拡散される。これにより、室内の二酸化炭素濃度が上昇する。 Also, when driven in the second mode, the carbon dioxide adsorbent constituting the adsorbent 5 is heated by the heating mechanism 6 to release carbon dioxide. The released carbon dioxide is diffused in the room by air blowing from the air blowing mechanism 3 . This increases the carbon dioxide concentration in the room.
 また、湿度の調節を例に挙げて説明する。第3モードでの駆動時には、一例として空気調和装置1が備える湿度センサーおよび制御部等により室内が高湿状態にあると判定されると、室内機10において、室内の空気が送風機構3により吸着材5に向けて送風される。これにより、吸着材5を構成する吸湿材は、空気に含まれる水分を吸着(吸湿)する。 In addition, we will use humidity control as an example. When driving in the third mode, as an example, when the humidity sensor and the control unit provided in the air conditioner 1 determine that the room is in a high humidity state, the air in the room is blown by the air blowing mechanism 3 toward the adsorbent 5 in the indoor unit 10. As a result, the hygroscopic material forming the adsorbent 5 adsorbs (absorbs) moisture contained in the air.
 一方、湿度センサーおよび制御部等により室内が乾燥状態にあると判定されると、吸着材5を構成する吸湿材が加熱機構6により加熱され、水分を放出(放湿)する。放出された水分は、送風機構3からの送風により室内に拡散され、これにより、室内の湿度が上昇する。 On the other hand, when the humidity sensor, control unit, etc. determine that the room is in a dry state, the hygroscopic material forming the adsorbent 5 is heated by the heating mechanism 6 to release (moisture release) moisture. The released moisture is diffused into the room by air blowing from the air blowing mechanism 3, thereby increasing the humidity in the room.
 なお、空気調和装置1により室内の二酸化炭素濃度を低濃度で維持し続ける場合には、加熱機構6により二酸化炭素吸着材を加熱して発生する二酸化炭素は、室内に放出せずに、室外に排出されてもよい。 When the air conditioner 1 continues to maintain the carbon dioxide concentration in the room at a low concentration, the carbon dioxide generated by heating the carbon dioxide adsorbent with the heating mechanism 6 may be discharged outside without being released into the room.
 [吸着材]
 本実施の形態に係る吸着デバイス4に用いられる吸着材5としては、前記の通り、二酸化炭素吸着材および吸湿材が挙げられる。必要に応じて他の吸着材を併用してもよい。
[Adsorbent]
As the adsorbent 5 used in the adsorption device 4 according to this embodiment, as described above, carbon dioxide adsorbents and hygroscopic materials are exemplified. Other adsorbents may be used together as necessary.
 二酸化炭素吸着材は、図2に例示するように、繰り返し二酸化炭素を吸着および放出する高分子化合物7を含む。二酸化炭素吸着材は、多孔質状に形成されている。二酸化炭素吸着材は、化学吸着により二酸化炭素を吸着する。二酸化炭素吸着材の二酸化炭素吸着量は、一例として0.06mol/kg以上3.91mol/kg以下の範囲の値である。また別の例では、二酸化炭素吸着材の二酸化炭素吸着量は、2.0mol/kg以上3.91mol/kg以下の範囲の値である。また別の例では、二酸化炭素吸着材の二酸化炭素吸着量は、2.79mol/kg以上3.91mol/kg以下の範囲の値である。 The carbon dioxide adsorbent contains a polymer compound 7 that repeatedly adsorbs and releases carbon dioxide, as illustrated in FIG. The carbon dioxide adsorbent is porous. Carbon dioxide adsorbents adsorb carbon dioxide by chemisorption. The carbon dioxide adsorption amount of the carbon dioxide adsorbent is, for example, a value in the range of 0.06 mol/kg or more and 3.91 mol/kg or less. In another example, the carbon dioxide adsorption amount of the carbon dioxide adsorbent is a value in the range of 2.0 mol/kg or more and 3.91 mol/kg or less. In another example, the carbon dioxide adsorption amount of the carbon dioxide adsorbent is a value in the range of 2.79 mol/kg or more and 3.91 mol/kg or less.
 二酸化炭素吸着材は、比較的低温(一例として、40℃以上100℃以下の範囲の温度)で加熱されることで、吸着した二酸化炭素を放出する。すなわち、二酸化炭素吸着材における二酸化炭素の脱離温度は、40℃~100℃の範囲内という比較的低温である。このように、本開示で用いられる二酸化炭素吸着材は、低温で二酸化炭素を放出できるため、放出に必要なエネルギーを低減できる。また、二酸化炭素吸着材を加熱する加熱温度により室内機10が影響を受けるのを抑制できる。 The carbon dioxide adsorbent releases the adsorbed carbon dioxide when heated at a relatively low temperature (for example, a temperature in the range of 40°C or higher and 100°C or lower). That is, the desorption temperature of carbon dioxide in the carbon dioxide adsorbent is a relatively low temperature within the range of 40°C to 100°C. In this way, the carbon dioxide adsorbent used in the present disclosure can release carbon dioxide at low temperatures, thereby reducing the energy required for release. In addition, it is possible to suppress the indoor unit 10 from being affected by the heating temperature for heating the carbon dioxide adsorbent.
 さらに、二酸化炭素吸着材の主成分である高分子化合物7は、後述するように、繰り返し水を吸着および放出する特性も有する。 Furthermore, the polymer compound 7, which is the main component of the carbon dioxide adsorbent, also has the property of repeatedly adsorbing and releasing water, as will be described later.
 二酸化炭素吸着材の具体的な形状は特に限定されない。一例として、二酸化炭素吸着材は、複数の球状粒子を含む粉体である。本実施の形態に係る二酸化炭素吸着材は、平均粒径が300μm以上1.3mm以下の範囲の値である粉体である。例えば、二酸化炭素吸着材は、平均粒径が大きいほど取扱性が向上する。また例えば、平均粒径が小さいほど二酸化炭素吸着材の比表面積が向上する。ここで平均粒径は、コールターカウンター法、レーザ回折法、画像解析法等により測定できる。例えば、コールターカウンター法によれば、平均粒径は、50%体積平均粒径として算出される。 The specific shape of the carbon dioxide adsorbent is not particularly limited. As an example, the carbon dioxide adsorbent is powder containing a plurality of spherical particles. The carbon dioxide adsorbent according to the present embodiment is powder having an average particle size in the range of 300 μm or more and 1.3 mm or less. For example, the larger the average particle size of the carbon dioxide adsorbent, the better the handleability. Further, for example, the smaller the average particle diameter, the more the specific surface area of the carbon dioxide adsorbent is improved. Here, the average particle diameter can be measured by Coulter counter method, laser diffraction method, image analysis method, or the like. For example, according to the Coulter Counter method, the average particle size is calculated as a 50% volume average particle size.
 具体的な高分子化合物7の一例は、図2に示すように、二酸化炭素吸着材は、少なくとも1級アミン基であるアミン基を含む官能基7bが結合した化学構造を有する高分子化合物7を含む。なお、図2では、高分子化合物7の構造を部分的な化学構造を含めて模式的に図示している。 As an example of a specific polymer compound 7, as shown in FIG. 2, the carbon dioxide adsorbent includes a polymer compound 7 having a chemical structure in which at least a functional group 7b containing an amine group, which is a primary amine group, is bonded. Note that FIG. 2 schematically shows the structure of the polymer compound 7 including a partial chemical structure.
 この高分子化合物7は、分子骨格をなす基材7aと、基材7aに化学結合してアミン基を含む官能基7bとを有する。アミン基は、例えば、1級アミン基であることが望ましいが、2級アミン基であってもよい。本実施の形態における官能基7bは、一例としてCH2-NH2基を含む。本実施の形態では、基材7aの主鎖に対し、官能基7bが側鎖として結合している。基材7aは、1種以上の樹脂により構成される樹脂骨格を含む。本実施の形態における基材7aは、この樹脂骨格として、少なくともポリスチレン(PS)系樹脂の骨格を含むが、これに限定されない。 This polymer compound 7 has a base material 7a forming a molecular skeleton and a functional group 7b containing an amine group that is chemically bonded to the base material 7a. The amine group is, for example, desirably a primary amine group, but may be a secondary amine group. Functional group 7b in the present embodiment includes, for example, a CH2--NH2 group. In this embodiment, the functional group 7b is bonded as a side chain to the main chain of the base material 7a. The base material 7a includes a resin skeleton composed of one or more resins. The base material 7a in the present embodiment includes at least a polystyrene (PS)-based resin skeleton as the resin skeleton, but is not limited to this.
 前記の通り、二酸化炭素吸着材は多孔質状に形成されているため、その細孔内にも官能基7bが存在している。これにより、二酸化炭素吸着材は、細孔内でも二酸化炭素を吸着する。 As described above, since the carbon dioxide adsorbent is porous, the functional groups 7b are also present in the pores. Thereby, the carbon dioxide adsorbent adsorbs carbon dioxide even in the pores.
 本実施の形態における官能基7bは、アミン基が、高分子化合物7の化学構造における分枝鎖の末端に位置している。また高分子化合物7の化学構造は、アミン基に直接または間接的に結合した芳香環(一例としてベンゼン環)を含む。二酸化炭素吸着材では、芳香環の疎水性により、アミン基に水分子が過度に結合しないように図られている。例えば、芳香環とアミン基との距離は、近い方が望ましい。 In the functional group 7b in the present embodiment, the amine group is located at the end of the branched chain in the chemical structure of the polymer compound 7. The chemical structure of polymer compound 7 also includes an aromatic ring (eg, a benzene ring) directly or indirectly bonded to an amine group. In the carbon dioxide adsorbent, due to the hydrophobicity of the aromatic ring, excessive bonding of water molecules to the amine group is prevented. For example, the closer the distance between the aromatic ring and the amine group, the better.
 前記の分枝鎖は、高分子化合物7の化学構造が有する主鎖(例えば基材7aの主鎖)または側鎖のいずれに由来するものでもよい。図2に示す本実施の形態に係る高分子化合物7は、言い換えると基材7aにベンジルアミン(BZA)が結合した固体高分子である。この高分子化合物7を用いた二酸化炭素吸着材の二酸化炭素吸着量は、2.79mol/kg以上3.91mol/kg以下の範囲の値である。 The branched chain may be derived from either the main chain (for example, the main chain of the base material 7a) or the side chain of the chemical structure of the polymer compound 7. In other words, the polymer compound 7 according to the present embodiment shown in FIG. 2 is a solid polymer in which benzylamine (BZA) is bonded to the base material 7a. The carbon dioxide adsorption amount of the carbon dioxide adsorbent using this polymer compound 7 is a value in the range of 2.79 mol/kg or more and 3.91 mol/kg or less.
 高分子化合物7は、分子骨格をなす基材7aに、アミン基よりも高い疎水性を有する疎水性基(一例として芳香環)を介してアミン基が結合された構造を有する。よって二酸化炭素吸着材は、この疎水基の作用により、比較的低温にて二酸化炭素を放出できる。また二酸化炭素吸着材は、空気調和装置1の駆動温度範囲内において固体に保たれる。 The polymer compound 7 has a structure in which an amine group is bonded to a base material 7a forming a molecular skeleton via a hydrophobic group (an example of an aromatic ring) having higher hydrophobicity than an amine group. Therefore, the carbon dioxide adsorbent can release carbon dioxide at a relatively low temperature due to the action of this hydrophobic group. Also, the carbon dioxide adsorbent is kept solid within the operating temperature range of the air conditioner 1 .
 したがって、二酸化炭素吸着材が二酸化炭素の放出時に加熱されても、アミン基の分解や揮発が防止される。また、空気調和装置1の駆動温度範囲内において二酸化炭素吸着材が固体に保たれるため、例えば高分子化合物7を結合して保持するためのバインダが不要である。これにより、二酸化炭素吸着材の細孔がバインダにより閉塞して二酸化炭素吸着材の吸着性能が低下するのを回避できる。 Therefore, even if the carbon dioxide adsorbent is heated during the release of carbon dioxide, the decomposition and volatilization of the amine groups are prevented. Further, since the carbon dioxide adsorbent is kept solid within the operating temperature range of the air conditioner 1, a binder for binding and holding the polymer compound 7, for example, is unnecessary. As a result, it is possible to prevent the pores of the carbon dioxide adsorbent from being clogged with the binder and the adsorption performance of the carbon dioxide adsorbent to decline.
 本実施の形態に係る二酸化炭素吸着材は、アミン担持量が2.0mmol/g以上の範囲の値である。また別の例では、二酸化炭素吸着材は、アミン担持量が2.5mmol/g以上の範囲の値である。これにより、二酸化炭素吸着材は、二酸化炭素吸着量の向上が図られている。二酸化炭素吸着材のアミン担持量は、例えば、滴定等の定量分析法や、CHN元素分析法により測定可能である。 The carbon dioxide adsorbent according to the present embodiment has an amine-supported amount in the range of 2.0 mmol/g or more. In another example, the carbon dioxide adsorbent has an amine loading in the range of 2.5 mmol/g or more. As a result, the carbon dioxide adsorbent is intended to improve the amount of carbon dioxide adsorbed. The amount of amine supported by the carbon dioxide adsorbent can be measured by, for example, a quantitative analysis method such as titration, or a CHN elemental analysis method.
 具体的にCHN元素分析法では、測定対象を酸素で燃焼させ、H2 O、CO2 、およびNOx を発生させる。また、NOx をN2 に還元する。そして、H2 O、CO2 、N2 の各ガスをカラムにより分離して検出器(TCD)に導入する。これにより、測定対象の炭素、水素、および窒素の含有量を測定し、アミン担持量を算出する。ここでCHN元素分析法では、アミン基がNH2 基である場合、以下の式1および式2に基づいてアミン担持量が算出される。 Specifically, in the CHN elemental analysis method, the object to be measured is combusted with oxygen to generate H2O , CO2 , and NOx . It also reduces NOx to N2 . Then, each gas of H 2 O, CO 2 and N 2 is separated by a column and introduced into a detector (TCD). Thereby, the contents of carbon, hydrogen, and nitrogen to be measured are measured, and the amount of amine supported is calculated. Here, in the CHN elemental analysis method, when the amine group is an NH 2 group, the amount of amine supported is calculated based on the following formulas 1 and 2.
[式1]
 測定対象の1級アミン含有量(質量%)=測定対象の窒素含有量(質量%)×16(NH2 分子量)/{14(窒素原子量)×官能基中の窒素原子数}
[Formula 1]
Primary amine content to be measured (mass%) = nitrogen content to be measured (mass%) x 16 ( NH2 molecular weight) / {14 (nitrogen atomic weight) x number of nitrogen atoms in functional groups}
[式2]
 アミン担持量(mmol/g)=測定対象の1級アミン含有量(質量%)/{16(NH2 分子量)×100}×1000
[Formula 2]
Amine supported amount (mmol/g) = content of primary amine to be measured (% by mass)/{16 ( NH2 molecular weight) x 100} x 1000
 本願発明者らの検討した結果、少なくとも1級アミン基であるアミン基を含む官能基が結合した化学構造を有する高分子化合物を含む多孔質状の二酸化炭素吸着材は、空気に含まれる二酸化炭素を豊富に吸着できるととともに、比較的低温で当該高分子化合物が吸着した二酸化炭素を放出できることが確認された。前述した高分子化合物7は、このような知見に基づくものである。 As a result of the investigation by the inventors of the present application, it was confirmed that a porous carbon dioxide adsorbent containing a polymer compound having a chemical structure in which a functional group containing an amine group, which is at least a primary amine group, is bonded can adsorb a large amount of carbon dioxide contained in the air and release the carbon dioxide adsorbed by the polymer compound at a relatively low temperature. The aforementioned polymer compound 7 is based on such findings.
 本実施の形態に係る高分子化合物7は、分子骨格をなす基材7aに、アミン基よりも高い疎水性を有する疎水性基(一例として芳香環)を介してアミン基が結合された構造を有する。よって、このような高分子化合物7を含む二酸化炭素吸着材は、この疎水基の作用により、選択的に二酸化炭素を吸着できるとともに、比較的低温にて二酸化炭素を放出できると考えられる。 The polymer compound 7 according to the present embodiment has a structure in which an amine group is bonded to a base material 7a forming a molecular skeleton via a hydrophobic group (an example of an aromatic ring) having higher hydrophobicity than an amine group. Therefore, it is considered that the carbon dioxide adsorbent containing such polymer compound 7 can selectively adsorb carbon dioxide and release carbon dioxide at a relatively low temperature due to the action of this hydrophobic group.
 また、この二酸化炭素吸着材は、空気調和装置1の駆動温度範囲内において固体に保たれる。したがって、この二酸化炭素吸着材が、二酸化炭素の放出時に加熱されても、アミン基の分解や揮発が防止される。また、空気調和装置1の駆動温度範囲内において二酸化炭素吸着材が固体に保たれるため、例えば高分子化合物7を結合して保持するためのバインダが不要である。これにより、二酸化炭素吸着材の細孔がバインダにより閉塞して当該二酸化炭素吸着材の吸着性能が低下するのを回避できる。 Also, this carbon dioxide adsorbent is kept solid within the operating temperature range of the air conditioner 1 . Therefore, even if this carbon dioxide adsorbent is heated during the release of carbon dioxide, decomposition and volatilization of the amine groups are prevented. Further, since the carbon dioxide adsorbent is kept solid within the operating temperature range of the air conditioner 1, a binder for binding and holding the polymer compound 7, for example, is unnecessary. As a result, it is possible to prevent the pores of the carbon dioxide adsorbent from being clogged with the binder and the adsorption performance of the carbon dioxide adsorbent to decline.
 なお、特許文献1では、アミノ基を有する高分子化合物粒子を送風装置の二酸化炭素吸収手段として用いることを開示しているが、具体的な高分子の種類、アミノ基の高分子への結合構造、粒子の形状等については一切開示がない。しかも、特許文献1では、二酸化炭素吸放出部が、アミノ基を有する高分子化合物粒子に限定されておらず、ゼオライトまたは活性炭等であってもよいと記載されており、アミノ基を有する高分子化合物粒子の方が優れているとも記載されていない。したがって、特許文献1に開示される、アミノ基を有する高分子化合物粒子が有する二酸化炭素の吸放湿能力は、実質的にゼオライトまたは活性炭等と同様であると考えられる。 Although Patent Document 1 discloses that polymer compound particles having amino groups are used as a means for absorbing carbon dioxide in an air blower, it does not disclose any specific types of polymers, binding structures of amino groups to polymers, particle shapes, and the like. Moreover, Patent Document 1 describes that the carbon dioxide absorbing/releasing part is not limited to polymer compound particles having an amino group, and may be zeolite, activated carbon, or the like, and does not describe that polymer compound particles having an amino group are superior. Therefore, it is considered that the moisture absorbing/desorbing ability of carbon dioxide possessed by the polymer compound particles having amino groups disclosed in Patent Document 1 is substantially similar to that of zeolite, activated carbon, or the like.
 また、本実施の形態に係る高分子化合物7は、前記の通り、二酸化炭素吸着材としては、二酸化炭素の脱離温度が、40℃以上100℃以下の範囲という比較的低温である。しかしながら、アミン基を含む一般的な材料(アミン系材料)の二酸化炭素の吸着性能を検討したところ、二酸化炭素の脱離温度が相対的に高温であるものが多いことが明らかとなった。例えば、メタキシレンジアミン(MXDA)における二酸化炭素の脱離温度は100℃以上であり、モノエタノールアミン(MEA)における二酸化炭素の脱離温度は80℃以上であり、ベンジルアミン(BZA)における二酸化炭素の脱離温度は64℃以上である。 In addition, as described above, the polymer compound 7 according to the present embodiment has a relatively low carbon dioxide desorption temperature in the range of 40° C. or higher and 100° C. or lower as a carbon dioxide adsorbent. However, when the carbon dioxide adsorption performance of general materials containing amine groups (amine-based materials) was investigated, it became clear that many of them had relatively high carbon dioxide desorption temperatures. For example, the desorption temperature of carbon dioxide in meta-xylene diamine (MXDA) is 100° C. or higher, the desorption temperature of carbon dioxide in monoethanolamine (MEA) is 80° C. or higher, and the desorption temperature of carbon dioxide in benzylamine (BZA) is 64° C. or higher.
 一般的なアミン系材料のうち、例えば、ポリエチレンイミン(PEI)は、前述したMXDA,MEA,BZAに比較すると、二酸化炭素の脱離温度は相対的に低温であり、50℃以上である。しかしながら、PEIを二酸化炭素吸着材として繰り返し使用すると、液状化して揮発することが明らかとなった。そのため、PEIは、高分子材料であるにも関わらず、本開示のように、送風器から送風される空気流に含まれる二酸化炭素を吸着および放出する用途としては、実用性に欠ける。 Among common amine-based materials, polyethyleneimine (PEI), for example, has a relatively low carbon dioxide desorption temperature of 50°C or higher, compared to the aforementioned MXDA, MEA, and BZA. However, it was found that repeated use of PEI as a carbon dioxide adsorbent liquefies and volatilizes. Therefore, although PEI is a polymer material, it lacks practicality as an application for adsorbing and releasing carbon dioxide contained in an air flow blown from a blower as in the present disclosure.
 本開示において二酸化炭素吸着材として好適に用いられる高分子化合物7は、前記の通り、基材7aである高分子にBZAを結合させた構造を有する。BZAを基準とすれば、高分子化合物7における二酸化炭素の脱離温度は64℃以上になると考えられる。またPEIの挙動を考慮すれば、例え高分子であっても、水の吸着により液状化して揮発する可能性が考えられる。 As described above, the polymer compound 7 suitably used as a carbon dioxide adsorbent in the present disclosure has a structure in which BZA is bound to the polymer that is the base material 7a. Based on BZA, the desorption temperature of carbon dioxide in polymer compound 7 is considered to be 64° C. or higher. Considering the behavior of PEI, even a polymer may be liquefied and volatilized by adsorption of water.
 ところが、高分子化合物7は、二酸化炭素の脱離温度の下限が40℃以上であり、他の一般的なアミン系材料に比べて、より低温で二酸化炭素を脱離できるだけでなく、良好な繰り返し使用性を有するという、二酸化炭素吸着材として良好な物性を示す。加えて、高分子化合物7は、繰り返し水を吸着および放出する特性も有し、吸湿材としても良好な物性を示す。 However, the lower limit of the carbon dioxide desorption temperature of polymer compound 7 is 40° C. or more, and compared to other general amine-based materials, not only can carbon dioxide be desorbed at a lower temperature, but it also has good reusability, showing good physical properties as a carbon dioxide adsorbent. In addition, polymer compound 7 also has the property of repeatedly adsorbing and releasing water, and exhibits good physical properties as a hygroscopic material.
 ここで、高分子化合物7は、その疎水性基により水分子または水と同様に極性の大きい分子の吸着を除外するため、二酸化炭素を選択的かつ豊富に吸着できると考えられた。ところが、本願発明者らのさらなる検討の結果、現時点での詳細は不明であるが、後述するように、高分子化合物7における二酸化炭素の吸着等温線と水の吸着等温線との挙動が異なり、二酸化炭素および水の吸着機構または吸着メカニズムが異なると考えられることが明らかとなった。 Here, it was thought that polymer compound 7 could selectively and abundantly adsorb carbon dioxide because its hydrophobic group excluded the adsorption of water molecules or molecules with a large polarity like water. However, as a result of further studies by the inventors of the present application, although the details are unknown at the present time, as will be described later, it became clear that the behavior of the adsorption isotherm of carbon dioxide and the adsorption isotherm of water in polymer compound 7 is different, and that the adsorption mechanism or adsorption mechanism of carbon dioxide and water is considered to be different.
 しかも、高分子化合物7は、吸着した二酸化炭素の放出量のピーク温度と、水分子の放出量(水放出量)のピーク温度とが互いに異なることも明らかとなった。ここで言う「二酸化炭素(の)放出量」とは、二酸化炭素分子が放出される数(分子の数)を指す。また「水放出量」とは、水分子が放出される数(分子の数)を指す。 Moreover, it was also found that polymer compound 7 has a different peak temperature for the release of adsorbed carbon dioxide and a peak temperature for the release of water molecules (water release). The term "carbon dioxide (of) release amount" as used herein refers to the number of carbon dioxide molecules released (the number of molecules). The term "water release amount" refers to the number of released water molecules (the number of molecules).
 具体的には、詳細な実験結果は省略するが、高分子化合物7を含む二酸化炭素吸着材において、発生ガス分析法(EGA-MS)に基づき、1分当たり5℃の温度上昇で二酸化炭素吸着材を加熱し、水放出量および二酸化炭素放出量の経時的な変化をグラフ化して評価した。 Specifically, although detailed experimental results are omitted, the carbon dioxide adsorbent containing polymer compound 7 was heated at a temperature increase of 5°C per minute based on the generated gas analysis method (EGA-MS), and the changes in the amount of water released and the amount of carbon dioxide released over time were graphed and evaluated.
 その結果、二酸化炭素吸着材(高分子化合物7)の水放出ピーク温度は、20℃以上40℃未満の範囲の温度(この実験例では約35℃)であり、また、二酸化炭素吸着材(高分子化合物7)の二酸化炭素放出ピーク温度は、40℃以上80℃以下の範囲の温度(この実験例では約60℃)であった。このように二酸化炭素吸着材では、高分子化合物7の二酸化炭素放出ピーク温度と、高分子化合物7の水放出量ピーク温度とが、互いに異なるという結果が得られた。 As a result, the water release peak temperature of the carbon dioxide adsorbent (polymer compound 7) was in the range of 20°C or higher and lower than 40°C (approximately 35°C in this experimental example), and the carbon dioxide release peak temperature of the carbon dioxide adsorbent (polymer compound 7) was in the range of 40°C or higher and 80°C or lower (approximately 60°C in this experimental example). As described above, with the carbon dioxide adsorbent, the carbon dioxide release peak temperature of the polymer compound 7 and the water release amount peak temperature of the polymer compound 7 were different from each other.
 また、詳細な実験結果は省略するが、二酸化炭素吸着材(高分子化合物7)の加熱温度、二酸化炭素吸着材からの二酸化炭素脱離速度、および二酸化炭素吸着材からの水脱離速度の関係もグラフ化して評価した。ここで言う二酸化炭素脱離速度は、高分子化合物7が1時間当たりに脱離させる二酸化炭素のモル数であり、水脱離速度は、高分子化合物7が1時間当たりに脱離させる水の重量である。 In addition, although detailed experimental results are omitted, the relationship between the heating temperature of the carbon dioxide adsorbent (polymer compound 7), the carbon dioxide desorption rate from the carbon dioxide adsorbent, and the water desorption rate from the carbon dioxide adsorbent was also graphed and evaluated. The carbon dioxide desorption rate referred to herein is the number of moles of carbon dioxide desorbed by the polymer compound 7 per hour, and the water desorption rate is the weight of water desorbed by the polymer compound 7 per hour.
 その結果、二酸化炭素吸着材の加熱温度がおよそ20℃以上40℃未満の範囲の温度である場合、二酸化炭素吸着材は、二酸化炭素よりも水を優先的に放出することが明らかとなった。また、二酸化炭素吸着材(高分子化合物7)の加熱温度がおよそ40℃以上の範囲の温度である場合、二酸化炭素吸着材は、温度上昇の初期には二酸化炭素とともに水を放出することが明らかとなった。その後、二酸化炭素吸着材は、加熱温度が上昇して60℃に近づくほど、水分子の放出量の増加傾向よりも二酸化炭素分子の放出量の増加傾向の方が顕著になることも明らかとなった。 As a result, it was found that when the heating temperature of the carbon dioxide adsorbent is in the range of approximately 20°C or higher and less than 40°C, the carbon dioxide adsorbent preferentially releases water over carbon dioxide. It was also found that when the heating temperature of the carbon dioxide adsorbent (polymer compound 7) is in the range of about 40° C. or higher, the carbon dioxide adsorbent releases water together with carbon dioxide at the beginning of the temperature rise. After that, it was also found that as the heating temperature of the carbon dioxide adsorbent increased and approached 60° C., the increasing tendency of the released amount of carbon dioxide molecules became more pronounced than the increasing tendency of the released amount of water molecules.
 このように、本開示に係る二酸化炭素吸着材(高分子化合物7)は、二酸化炭素吸着放出特性だけでなく吸放湿特性を有することが新たに明らかとなり、さらに、当該二酸化炭素吸着材では、吸放湿と二酸化炭素の吸着放出とで好適な条件が異なることも明らかとなった。すなわち、本開示に係る二酸化炭素吸着材(高分子化合物7)は、40℃以上の温度で二酸化炭素の脱離を可能とするとともに、40℃未満の温度で水分の放出を可能とする、という独自の物性を有する。 As described above, it was newly revealed that the carbon dioxide adsorbent (polymer compound 7) according to the present disclosure has not only carbon dioxide adsorption and desorption characteristics but also moisture absorption and desorption characteristics, and it was also revealed that the carbon dioxide adsorbent has different suitable conditions for moisture absorption and desorption and carbon dioxide adsorption and desorption. That is, the carbon dioxide adsorbent (polymer compound 7) according to the present disclosure has a unique physical property that enables desorption of carbon dioxide at a temperature of 40°C or higher and release of moisture at a temperature of lower than 40°C.
 そこで、この二酸化炭素吸着材を吸湿材と組み合わせて用いることにより、吸着デバイス4における湿度の調節機能をより一層向上することが期待された。しかしながら、二酸化炭素吸着材に対して吸湿材を単に組み合わせるだけでは、良好な吸着放出特性を実現できないことも明らかとなった。すなわち、単に吸湿量が大きい吸湿材を用いただけでは、二酸化炭素吸着材が有する、二酸化炭素放出量のピーク温度と水放出量のピーク温度が異なるという特性を十分に活用することができない。 Therefore, it was expected that the humidity control function of the adsorption device 4 would be further improved by using this carbon dioxide adsorbent in combination with a moisture absorbent. However, it has also become clear that simply combining a hygroscopic material with a carbon dioxide adsorbent cannot achieve good adsorption and desorption characteristics. In other words, simply using a hygroscopic material with a large amount of moisture absorption cannot fully utilize the characteristic that the carbon dioxide adsorbent has a different peak temperature for releasing carbon dioxide and peak temperature for releasing water.
 後述する実施例の「参考例」で示すように、単位重量に対する吸湿量が相対的に大きい吸湿材としては、ゼオライトまたは活性炭が知られるが、これら吸湿材は少なくとも120℃以上の高温で加熱しなければ水分を十分に放出できない。これでは、二酸化炭素吸着材における二酸化炭素の放出(放出ピーク温度が20℃以上40℃未満)の良好な調節が難しいことが明らかとなった。吸着デバイス4の実用性を考慮すると、水分の放出温度は100℃未満であることが好ましいと考えられた。一方、水分の放出温度(吸湿材の再生温度)が低い吸湿材を選択するだけであっても、二酸化炭素の放出の良好な調節が難しいことも明らかとなった。 As shown in the "reference example" of the examples described later, zeolite or activated carbon are known as moisture absorbents that absorb relatively large amounts of moisture per unit weight. It became clear that it is difficult to control the release of carbon dioxide from the carbon dioxide adsorbent (the release peak temperature is 20° C. or higher and lower than 40° C.). Considering the practicality of the adsorption device 4, it was considered preferable that the water release temperature be less than 100°C. On the other hand, it has also become clear that it is difficult to adjust the release of carbon dioxide well by simply selecting a moisture absorbent with a low moisture release temperature (regeneration temperature of the moisture absorbent).
 ここで、本願発明者らは、日本国内における一年間の水蒸気平衡圧は、6ヶ月以上の期間で1,600Pa未満であることに着目した。すなわち、水分の放出温度が100℃未満であり、かつ、水蒸気平衡圧1,600Pa未満での水分の吸着量が、二酸化炭素吸着材(高分子化合物7)の水分吸着量と同等かそれ以上である吸湿材を選択することによって、吸放湿と二酸化炭素の吸着放出とをそれぞれ調節することが可能となった。 Here, the inventors of the present application focused on the fact that the annual water vapor equilibrium pressure in Japan is less than 1,600 Pa for a period of 6 months or more. That is, by selecting a hygroscopic material that has a water release temperature of less than 100°C and a water adsorption amount at a water vapor equilibrium pressure of less than 1,600 Pa that is equal to or greater than the water adsorption amount of the carbon dioxide adsorbent (polymer compound 7), it is possible to adjust the moisture absorption and desorption and the adsorption and release of carbon dioxide.
 本開示に係る吸着デバイス4において、吸湿材として使用可能な材質としては、親水性、吸湿性、吸水性を有する高分子を挙げることができる。具体的には、例えば、ポリエーテルエステル、ポリエーテルアミド、ポリエーテルエステルアミド、ポリアミド、熱可塑性セルロース誘導体、ポリビニルピロリドン、ポリ(メタ)アクリレート等を挙げることができる。 In the adsorption device 4 according to the present disclosure, examples of materials that can be used as moisture absorbents include polymers having hydrophilicity, hygroscopicity, and water absorption. Specific examples include polyetheresters, polyetheramides, polyetheresteramides, polyamides, thermoplastic cellulose derivatives, polyvinylpyrrolidone, poly(meth)acrylates, and the like.
 これら高分子は、他のモノマー構造を含む共重合体であってもよいし、親水性基が塩を形成してもよい。例えば、親水性基がアニオンであれば金属塩等のカチオンとイオン結合して塩を構成してもよい。これら高分子は、側鎖を有してもよいし架橋構造を有してもよいし公知の変性がなされてもよい。分子量(数平均分子量Mnまたは重量平均分子量Mw等)あるいは他の物性についても特に限定されない。これら高分子は、二酸化炭素吸着材と同様に多孔質状に形成されることが好ましい。 These polymers may be copolymers containing other monomer structures, or hydrophilic groups may form salts. For example, if the hydrophilic group is an anion, it may ionically bond with a cation such as a metal salt to form a salt. These polymers may have side chains, may have a crosslinked structure, or may be modified in a known manner. The molecular weight (number-average molecular weight Mn, weight-average molecular weight Mw, etc.) or other physical properties are also not particularly limited. These macromolecules are preferably formed in a porous state like the carbon dioxide adsorbent.
 このような高分子の中でも、親水性基および架橋構造を有する架橋型親水性高分子を、本開示に係る吸湿材として好適に用いることができる。高分子が架橋されることにより、架橋構造の間で親水基が水分子を吸着した状態で包摂することが可能になる。そのため、より良好な吸湿性を実現できるとともに、より低温での放湿も可能となる。これにより、二酸化炭素吸着材(高分子化合物7)と組み合わせたときに、吸放湿と二酸化炭素の吸着放出とをそれぞれより良好に調節しやすくなる。 Among such polymers, a crosslinked hydrophilic polymer having a hydrophilic group and a crosslinked structure can be suitably used as the moisture absorbent according to the present disclosure. By cross-linking the polymer, it becomes possible for the hydrophilic groups to contain the water molecules between the cross-linked structures in an adsorbed state. Therefore, it is possible to achieve better hygroscopicity and to release moisture at lower temperatures. As a result, when combined with the carbon dioxide adsorbent (polymer compound 7), it becomes easier to better control moisture absorption and desorption and adsorption and desorption of carbon dioxide.
 より具体的な架橋型親水性高分子としては、一例として、モノマー単位としてアクリロニトリルを含む架橋型重合体(架橋型アクリロニトリル系重合体)を挙げることができる。この架橋型アクリロニトリル系重合体の具体的な構成は特に限定されないが、一例として、参考文献1:特開2021-031635号公報に開示される多孔質吸湿性重合体を挙げることができる。当該参考文献1の内容は、本明細書で参照することにより本明細書の記載の一部とする。また、当該公開公報に掲載される架橋型アクリロニトリル系重合体は、公知の範囲内で改変されてもよい。 A more specific example of a crosslinked hydrophilic polymer is a crosslinked polymer containing acrylonitrile as a monomer unit (a crosslinked acrylonitrile-based polymer). The specific structure of the crosslinked acrylonitrile-based polymer is not particularly limited, but one example is the porous hygroscopic polymer disclosed in Reference 1: JP-A-2021-031635. The contents of that Reference 1 are incorporated herein by reference. Moreover, the crosslinked acrylonitrile-based polymer described in the publication may be modified within a known range.
 なお、本開示において吸湿材として用いられる高分子は、架橋型アクリロニトリル系重合体に限定されず、水分の放出温度が100℃未満であり、かつ、水蒸気平衡圧1,600Pa未満での水分の吸着量が、二酸化炭素吸着材(高分子化合物7)の水分吸着量と同等かそれ以上である高分子であればよい。あるいは、吸湿材は高分子ではない他の材料であってもよい。 The polymer used as the hygroscopic material in the present disclosure is not limited to a crosslinked acrylonitrile-based polymer, and may be any polymer that has a water release temperature of less than 100°C and a water adsorption amount at a water vapor equilibrium pressure of less than 1,600 Pa that is equal to or greater than the water adsorption amount of the carbon dioxide adsorbent (polymer compound 7). Alternatively, the hygroscopic material may be other materials that are not polymeric.
 本開示において吸湿材として用いられる他の高分子としては、例えば、参考文献2:特開2019-031633号公報に開示される(メタ)アクリル酸を主成分とし塩基性化合物を添加したポリマーであってもよいし、参考文献3:特開2018-002979号公報に開示されるウレタンフォームであってもよいし、参考文献4:特開2007-113165号公報に開示される吸放湿性ポリエステルであってもよい。これら高分子は、多孔質でないものは多孔質状に形成されてもよいし、公知の範囲内で改変されてもよい。なお、これら参考文献2~4の内容は、本明細書で参照することにより本明細書の記載の一部とする。 Other polymers used as moisture absorbents in the present disclosure may be, for example, a polymer containing (meth)acrylic acid as a main component disclosed in Reference Document 2: JP-A-2019-031633 with the addition of a basic compound, a urethane foam disclosed in Reference Document 3: JP-A-2018-002979, or a moisture absorbing/desorbing polyester disclosed in Reference Document 4: JP-A-2007-113165. These polymers may be made porous if they are not porous, and may be modified within known limits. The contents of these references 2 to 4 are incorporated herein by reference.
 本開示に係る吸湿材は、様々な形状で使用できる。一例として、二酸化炭素吸着材と同様に、平均粒径が400μm以上1.3mm以下の範囲の値である粉体(粒子)である。これにより、吸湿材の粉体も二酸化炭素吸着材の粉体と同様に使用できる。なお、二酸化炭素吸着材または吸湿材は、吸着デバイス4に適用可能であれば粉体でなくてもよい。また二酸化炭素吸着材または吸湿材が粉体であれば、粒子の形状またはサイズが同一でなくてもよい。 The absorbent material according to the present disclosure can be used in various shapes. One example is powder (particles) having an average particle diameter in the range of 400 μm or more and 1.3 mm or less, like the carbon dioxide adsorbent. As a result, the powder of the hygroscopic material can be used in the same manner as the powder of the carbon dioxide adsorbent. Note that the carbon dioxide adsorbent or moisture absorbent may not be powder as long as it is applicable to the adsorption device 4 . Also, if the carbon dioxide adsorbent or moisture absorbent is powder, the shape or size of the particles may not be the same.
 [吸湿デバイスの構成例]
 本実施の形態に係る吸着デバイス4は、図3に示すように、吸着材5と、当該吸着材5を空気流と接触可能に保持するホルダ8とを備える。吸着材5は、繰り返し空気流の二酸化炭素を吸着および放出する二酸化炭素吸着材と、繰り返し空気流の水分を吸着および放出する(吸湿または放湿する)吸湿材とで構成される。これら二酸化炭素吸着材および吸湿材は、前述した通り、いずれも多孔質の粉体である。ホルダ8は、ホルダ本体80、被覆材81、および接着材82を備える。なお、図3では、吸着デバイス4の被覆材81で覆われる内部を実線で示している。
[Configuration example of moisture absorption device]
The adsorption device 4 according to the present embodiment, as shown in FIG. 3, includes an adsorbent 5 and a holder 8 that holds the adsorbent 5 so as to be in contact with an air flow. The adsorbent 5 is composed of a carbon dioxide adsorbent that repeatedly adsorbs and releases carbon dioxide in the airflow and a moisture absorbent that repeatedly adsorbs and releases moisture in the airflow (absorbs or releases moisture). Both the carbon dioxide adsorbent and the moisture absorbent are porous powders, as described above. The holder 8 comprises a holder body 80 , a covering material 81 and an adhesive material 82 . In addition, in FIG. 3, the inside of the adsorption device 4 covered with the covering material 81 is indicated by a solid line.
 ホルダ本体80は、本実施の形態では、板状に形成されている。ホルダ本体80には、複数のセル80aが形成されている。言い換えると、ホルダ本体80はセル集合体である。吸着材5は、各セル80aの内部に配置されている。これにより吸着材5は、ホルダ本体80に分散して配置されている。 The holder main body 80 is formed in a plate shape in this embodiment. A plurality of cells 80 a are formed in the holder body 80 . In other words, the holder main body 80 is a cell assembly. The adsorbent 5 is arranged inside each cell 80a. As a result, the adsorbents 5 are dispersedly arranged in the holder body 80 .
 図3に示すように、セル80aは、吸着材5を収容する内部空間80bと、内部空間80bに空気流を導入する導入口80cと、内部空間80bを通過した空気流を排出する排出口80dとを有する。ホルダ本体80は、一方の面に複数の導入口80cが配置され、他方の面に複数の排出口80dが配置されている。 As shown in FIG. 3, the cell 80a has an internal space 80b that accommodates the adsorbent 5, an inlet 80c that introduces airflow into the internal space 80b, and an outlet 80d that discharges the airflow that has passed through the internal space 80b. The holder main body 80 has a plurality of inlets 80c arranged on one surface and a plurality of outlets 80d arranged on the other surface.
 ホルダ本体80は、図3に示すように、一例としては、平面視において六角形の複数のセル80aを含む。吸着デバイス4は、導入口80cから排出口80dへ向かう空気流の流通方向における内部空間80bの流路断面形状が多角形(一例として六角形)である。この構成により、ホルダ本体80の内部空間80bの流路断面の形状を保持しやすくできる。 As shown in FIG. 3, the holder body 80 includes, for example, a plurality of hexagonal cells 80a in plan view. In the adsorption device 4, the cross-sectional shape of the internal space 80b in the direction of air flow from the inlet 80c to the outlet 80d is polygonal (eg, hexagonal). With this configuration, the shape of the cross section of the flow path of the internal space 80b of the holder body 80 can be easily maintained.
 また本実施の形態におけるホルダ本体80は、平面視において、外周囲を取り囲む外壁部80eと、外壁部80eよりも内側に配置された内壁部80fとを有する。外壁部80eと内壁部80fとは、ホルダ本体80の厚み方向に立設されている。すなわち、外壁部80eと内壁部80fとの各壁面は、ホルダ本体80の厚み方向を含む平面内に配置されている。複数のセル80aは、この外壁部80eと内壁部80fとにより個別に区画される。外壁部80eと内壁部80fとの壁厚み寸法は、同一でもよいし、異なっていてもよい。 Further, the holder main body 80 in the present embodiment has an outer wall portion 80e surrounding the outer circumference and an inner wall portion 80f arranged inside the outer wall portion 80e in plan view. The outer wall portion 80 e and the inner wall portion 80 f are erected in the thickness direction of the holder main body 80 . That is, the wall surfaces of the outer wall portion 80e and the inner wall portion 80f are arranged within a plane including the thickness direction of the holder main body 80. As shown in FIG. The plurality of cells 80a are individually partitioned by the outer wall portion 80e and the inner wall portion 80f. The wall thickness dimension of the outer wall portion 80e and the inner wall portion 80f may be the same or different.
 複数のセル80aにおいて、各内部空間80bは、互いに独立している。また、隣接する内部空間80b同士は、隔てられている。このため、隣接する内部空間80b同士間での吸着材5の移動を阻止しながら、吸着材5をホルダ本体80中で分散させて保持できる。またホルダ本体80は、自然状態で形状を維持できる程度の強度を有する。したがって、ホルダ本体80の変形により内部空間80bの流路が閉塞されることがない。 In the plurality of cells 80a, each internal space 80b is independent of each other. Adjacent internal spaces 80b are separated from each other. Therefore, the adsorbents 5 can be dispersedly held in the holder body 80 while preventing the adsorbents 5 from moving between the adjacent internal spaces 80b. Moreover, the holder main body 80 has sufficient strength to maintain its shape in its natural state. Therefore, deformation of the holder main body 80 does not block the passage of the internal space 80b.
 吸着デバイス4の導入口80cから排出口80dへ向かう空気流の流通方向における各々の内部空間80bの流路断面積は、適宜設定可能である。一例として、各々の内部空間80bの流路断面積は、0.5cm2 以上10.0cm2 以下の範囲内である。本実施の形態では、吸着デバイス4における流路断面積は、導入口80cから排出口80dへ向かう空気流の流通方向において、各セル80aの内部空間80bの流路断面積である。 The cross-sectional area of each internal space 80b in the direction of air flow from the inlet 80c of the adsorption device 4 to the outlet 80d can be set appropriately. As an example, the channel cross-sectional area of each internal space 80b is within the range of 0.5 cm2 or more and 10.0 cm2 or less. In the present embodiment, the channel cross-sectional area in the adsorption device 4 is the channel cross-sectional area of the internal space 80b of each cell 80a in the direction of air flow from the inlet 80c to the outlet 80d.
 なお、吸着デバイス4の構成は図3に示す構成に限定されない。吸着材5は、広い面積で空気流に接触できるように吸着デバイス4により保持されればよい。このため、一例として、吸着デバイス4には、吸着材5に空気を連続的に接触させるべく空気を流通させる流路が形成される。ただし、吸着デバイス4の構成により流路断面積は適宜設定され得る。したがって、本開示では、吸着デバイス4に導入されて排出される空気の流通方向における「独立した内部空間」の流路断面積が、0.5cm2 以上10.0cm2 以下の範囲内であればよい。 Note that the configuration of the adsorption device 4 is not limited to the configuration shown in FIG. The adsorbent 5 may be held by the adsorption device 4 so that it can come into contact with the airflow over a large area. For this reason, as an example, the adsorption device 4 is formed with a flow path through which air is circulated so as to bring the air into continuous contact with the adsorbent 5 . However, the channel cross-sectional area can be appropriately set depending on the configuration of the adsorption device 4 . Therefore, in the present disclosure, the channel cross-sectional area of the "independent internal space" in the flow direction of the air introduced into and discharged from the adsorption device 4 should be within the range of 0.5 cm 2 or more and 10.0 cm 2 or less.
 例えば一定範囲において、前記流路断面積を大きくすれば、各セル80a内の吸着材5の充填量を増大でき、吸着デバイス4のガス吸脱着量を向上できる。また一定範囲において、前記流路断面積を小さくすれば、各セル80a内の吸着材5の外部への放熱を低減し、吸着材5の保温効果を向上できる。また、外部からの熱を、ホルダ本体80を介して吸着材5に良好に伝熱できる。 For example, if the cross-sectional area of the flow path is increased within a certain range, the filling amount of the adsorbent 5 in each cell 80a can be increased, and the gas adsorption/desorption amount of the adsorption device 4 can be improved. Further, if the cross-sectional area of the flow path is reduced within a certain range, the heat dissipation of the adsorbent 5 in each cell 80a to the outside can be reduced, and the heat retaining effect of the adsorbent 5 can be improved. Moreover, the heat from the outside can be well transferred to the adsorbent 5 through the holder main body 80 .
 このため、各々の内部空間80bの流路断面積を適切に設定することで、吸着材5を加熱する場合には、吸着材5に吸着対象を放出しやすくし、吸着材5の加熱に要する時間を短縮化できる。また、吸着材5の保温効果や、ホルダ本体80から吸着材5への熱伝導効果を高め、吸着材5を加熱しやすくできる。なお、後述する変形例のように、ホルダ本体80が吸湿材を兼ねている場合には、ホルダ本体80を良好に加熱することで、ホルダ本体80(吸湿材)から水分を良好に放出させる(放湿させる)こともできる。 Therefore, by appropriately setting the flow channel cross-sectional area of each internal space 80b, when the adsorbent 5 is heated, the adsorption target can be easily released to the adsorbent 5, and the time required for heating the adsorbent 5 can be shortened. In addition, the heat retaining effect of the adsorbent 5 and the effect of heat conduction from the holder main body 80 to the adsorbent 5 are enhanced, and the adsorbent 5 can be easily heated. It should be noted that when the holder main body 80 also serves as a moisture absorbing material, as in a modification described later, the holder main body 80 (hygroscopic material) can satisfactorily release moisture from the holder main body 80 (moisture absorbing material) by heating the holder main body 80 satisfactorily.
 本実施の形態に係る吸着デバイス4では、一例として、被覆材81に空気を流速1m/秒で通過させたときの圧力損失が、5Pa以上30Pa以下の範囲の値である。これにより、吸着デバイス4において、各セル80aに保持された吸着材5がホルダ本体80から脱落するのを被覆材81により防止すると共に、良好な通気性を確保し、吸着材5を空気流と効率よく接触させることができる。 In the adsorption device 4 according to the present embodiment, as an example, the pressure loss when air is passed through the covering material 81 at a flow rate of 1 m/sec is a value in the range of 5 Pa or more and 30 Pa or less. As a result, in the adsorption device 4, the covering material 81 prevents the adsorbent 5 held in each cell 80a from falling off from the holder body 80, ensures good air permeability, and allows the adsorbent 5 to efficiently contact the air flow.
 また吸着デバイス4は、導入口80c側から排出口80d側まで空気を流速1m/秒で通過させたときの圧力損失が、40Pa以上500Pa以下の範囲の値である。また別の例では、この圧力損失は、150Pa以上500Pa以下の範囲の値である。これにより、各セル80aの通気性を更に良好にすることができる。 In addition, the adsorption device 4 has a pressure loss in the range of 40 Pa or more and 500 Pa or less when air is passed from the inlet 80c side to the outlet 80d side at a flow rate of 1 m/sec. In another example, this pressure loss is a value in the range of 150 Pa or more and 500 Pa or less. Thereby, the air permeability of each cell 80a can be further improved.
 なお、本実施の形態では、吸着デバイス4における圧力損失を設定するときの空気流は、前記の通り、導入口80c側から排出口80d側まで空気流である。しかしながら、吸着デバイス4の構成により空気流の方向は適宜設定される。したがって、本開示では、吸着デバイス4に導入されて排出される空気を流速1m/秒で通過させたときの圧力損失が、例えば40Pa以上500Pa以下の範囲内であればよい。 Incidentally, in the present embodiment, the air flow when setting the pressure loss in the adsorption device 4 is the air flow from the introduction port 80c side to the discharge port 80d side, as described above. However, the direction of the air flow is appropriately set depending on the configuration of the adsorption device 4 . Therefore, in the present disclosure, the pressure loss when the air introduced into and discharged from the adsorption device 4 is allowed to pass through at a flow rate of 1 m/sec may be within a range of, for example, 40 Pa or more and 500 Pa or less.
 本実施の形態では、ホルダ本体80の材質は、吸湿材を含んでいる以外は特に限定されないが、一例として、紙および樹脂のうちの少なくともいずれかを含む。紙および樹脂は、低熱伝導率を有する材料の一例である。本実施の形態に係るホルダ本体80の材質は、紙を含んでもよい。このように、ホルダ本体80が紙を含む構成であれば、ホルダ本体80に保持される吸着材5の保温効果を高めることができる。また、ホルダ本体80に含まれる吸湿材の保温効果も高めることができる。 In the present embodiment, the material of the holder main body 80 is not particularly limited except that it contains a hygroscopic material, but as an example, it contains at least one of paper and resin. Paper and resin are examples of materials with low thermal conductivity. The material of holder main body 80 according to the present embodiment may include paper. In this manner, if the holder body 80 is configured to contain paper, the heat retaining effect of the adsorbent 5 held by the holder body 80 can be enhanced. In addition, the heat retaining effect of the hygroscopic material included in the holder main body 80 can be enhanced.
 被覆材81は、通気性を有し、セル80aの導入口80cと排出口80dとを覆っている。各セル80aの導入口80cの周縁部分と、各セル80aの排出口80dの周縁部分とは、被覆材81と被着している。これにより、各セル80aの内部空間80bに収容された吸着材5は、導入口80cまたは排出口80dを通じて混合することがない。また、ホルダ本体80の板面全体に分散して吸着材5を配置した状態が維持される。また、セル80aと被覆材81とにより囲まれた各内部空間80bに吸着材5が保持される。 The covering material 81 has air permeability and covers the inlet 80c and the outlet 80d of the cell 80a. A peripheral portion of the inlet 80c of each cell 80a and a peripheral portion of the outlet 80d of each cell 80a are covered with a covering material 81. As shown in FIG. Thereby, the adsorbent 5 accommodated in the internal space 80b of each cell 80a is not mixed through the inlet 80c or the outlet 80d. Also, the state in which the adsorbents 5 are arranged dispersedly over the entire plate surface of the holder main body 80 is maintained. Also, the adsorbent 5 is held in each internal space 80b surrounded by the cells 80a and the covering material 81 .
 よって、この構成であれば、吸着材5をセル80a内に保持するためのバインダ等が不要である。したがって、バインダ等により吸着材5の表面が覆われる(例えば吸着材5が多孔質状に形成されている場合、吸着材5の表面の孔がバインダ等により埋まる)ことで吸着性能が低下することがない。 Therefore, this configuration does not require a binder or the like for holding the adsorbent 5 in the cell 80a. Therefore, the adsorption performance is not deteriorated by covering the surface of the adsorbent 5 with a binder or the like (for example, when the adsorbent 5 is formed in a porous state, the pores on the surface of the adsorbent 5 are filled with the binder or the like).
 本実施の形態に係る被覆材81は、不織布を含む。不織布の材料は限定されないが、一例として、ポリプロピレン(PP)、ポリエチレン(PE)、ポリエチレンテレフタレート(PET)のうちの少なくともいずれかを含む。さらに後述するように、不織布は吸湿材を含んでもよい。不織布は、一例として、粉体である吸着材5が被覆材81の間隙を通じて脱落することを抑制するために用いられる。公知の他の目的で用いることもできる。 The covering material 81 according to the present embodiment includes nonwoven fabric. The material of the non-woven fabric is not limited, but one example includes at least one of polypropylene (PP), polyethylene (PE), and polyethylene terephthalate (PET). As further described below, the nonwoven fabric may contain a moisture absorbent material. The non-woven fabric is used, for example, to prevent the powder adsorbent 5 from dropping through the gaps of the covering material 81 . It can also be used for other known purposes.
 不織布が、PP、PE、PETのうちの少なくともいずれかを含むことにより、被覆材81の設計自由度を向上できる。また、このように不織布がPP、PE、PETのうちの少なくともいずれかを含む場合、接着材を用いずに、不織布とホルダ本体80とを熱溶着等により比較的容易に接合できる。これにより、吸着デバイス4の構造を簡素化できると共に、吸着デバイス4の軽量化を図れる。 By including at least one of PP, PE, and PET in the nonwoven fabric, the degree of freedom in designing the covering material 81 can be improved. Moreover, when the nonwoven fabric contains at least one of PP, PE, and PET, the nonwoven fabric and the holder main body 80 can be relatively easily joined by heat welding or the like without using an adhesive. As a result, the structure of the adsorption device 4 can be simplified, and the weight of the adsorption device 4 can be reduced.
 被覆材81の目付量は、適宜設定可能であるが、一例として10g/m2 以上90g/m2 以下の範囲の値である。これにより、吸着材5の被覆材81からの脱落を防止しつつ、吸着デバイス4を通過する空気流の圧損が抑制される。具体例として吸着デバイス4は、ホルダ本体80の両面に配置された一対の被覆材81を有する。 The basis weight of the covering material 81 can be set as appropriate, but is a value in the range of 10 g/m 2 or more and 90 g/m 2 or less as an example. This prevents the adsorption material 5 from falling off from the covering material 81 and suppresses the pressure loss of the airflow passing through the adsorption device 4 . As a specific example, the adsorption device 4 has a pair of covering materials 81 arranged on both sides of the holder body 80 .
 一対の被覆材81は、ホルダ本体80を両面側から覆った状態で、各々の周縁において互いに溶着されている。この溶着としては、被覆材81が樹脂材料等を含む場合、熱溶着を採用できる。一対の被覆材81は、互いの接触部分で互いに溶解して固化することで一体化されている。このため、一対の被覆材81を接着する接着材が不要である。被覆材81に不織布を用いることで、例えば被覆材81に織物を用いた場合に比べ、被覆材81を比較的薄くかつ軽量に構成できる。 The pair of covering materials 81 are welded to each other at their peripheries while covering the holder main body 80 from both sides. As this welding, heat welding can be adopted when the coating material 81 contains a resin material or the like. The pair of coating materials 81 are integrated by melting and solidifying each other at their contact portions. Therefore, an adhesive for bonding the pair of covering materials 81 is not required. By using a non-woven fabric for the covering material 81, the covering material 81 can be made relatively thin and lightweight as compared with the case of using a woven fabric for the covering material 81, for example.
 また一対の被覆材81は、互いに溶着されなくてもよく、例えば、接着材により接着されてもよい。この場合、例えば、被覆材81の材質の選択肢を広げることができる。接着材82は、被覆材81とホルダ本体80との間に配置され、被覆材81とホルダ本体80とを接着する。言い換えると、被覆材81とホルダ本体80とは接着材82により接着される。このため、被覆材81とホルダ本体80とが接着材82に対して接着可能なものであれば、被覆材81とホルダ本体80との材質が互いに異なっていてもよい。 Also, the pair of covering materials 81 may not be welded to each other, and may be adhered with an adhesive, for example. In this case, for example, options for the material of the covering material 81 can be expanded. The adhesive material 82 is arranged between the coating material 81 and the holder body 80 to bond the coating material 81 and the holder body 80 together. In other words, the coating material 81 and the holder main body 80 are adhered by the adhesive material 82 . Therefore, as long as the coating material 81 and the holder main body 80 can be adhered to the adhesive material 82, the materials of the coating material 81 and the holder main body 80 may be different from each other.
 接着材82は、ホルダ本体80の両面に配置されている。接着材82の材質は特に限定されないが、一例として、熱可塑性樹脂系およびエラストマー系のうちの少なくともいずれかの材料を含む。熱可塑性樹脂系の材料としては、例えば、酢酸ビニル樹脂系、エチレン酢酸ビニル樹脂(EVA)系、ウレタン樹脂系、およびアクリル系の材料を例示できる。またエラストマー系の材料としては、シリコーン樹脂系、変成シリコーン樹脂系、シリル化ウレタン樹脂系、およびゴム系の材料を例示できる。 The adhesive 82 is arranged on both sides of the holder body 80 . Although the material of the adhesive material 82 is not particularly limited, one example includes at least one of a thermoplastic resin-based material and an elastomer-based material. Examples of thermoplastic resin materials include vinyl acetate resin, ethylene vinyl acetate (EVA), urethane resin, and acrylic materials. Examples of elastomer-based materials include silicone resin-based materials, modified silicone resin-based materials, silylated urethane resin-based materials, and rubber-based materials.
 このように、被覆材81とホルダ本体80とを接着する接着材82が用いられ、当該接着材82が、熱可塑性樹脂系およびエラストマー系のうちの少なくともいずれかの材料を含むものであれば、ホルダ本体80に対して被覆材81を接着材82により強固に被着できる。そのため、吸着材5がホルダ本体80から脱落することを一層防止できる。よって、吸着デバイス4に良好な耐久性を付与できる。 Thus, if the adhesive 82 that bonds the covering material 81 and the holder main body 80 is used, and if the adhesive material 82 contains at least one of a thermoplastic resin-based material and an elastomer-based material, the covering material 81 can be firmly adhered to the holder main body 80 by the adhesive material 82. Therefore, it is possible to further prevent the adsorbent 5 from falling off from the holder main body 80 . Therefore, good durability can be imparted to the adsorption device 4 .
 前述したように、本実施の形態では、吸着材5は、平均粒径が400μm以上1.3mm以下の範囲の値である粉体である。被覆材81は、この粉体が通過しない目開きを有する。これにより、吸着材5が被覆材81から脱落するのを良好に防止できる。図1に示すように、本実施の形態に係る吸着デバイス4は、一例として、熱交換器2の外表面に対応するように、室内機10の内部に配置されている。なお、吸着デバイス4を所定のスペース内に配置するために、吸着デバイス4の形状を加工してもよい。 As described above, in the present embodiment, the adsorbent 5 is powder having an average particle size in the range of 400 μm or more and 1.3 mm or less. The covering material 81 has openings through which the powder does not pass. This can effectively prevent the adsorbent 5 from falling off from the covering material 81 . As shown in FIG. 1, the adsorption device 4 according to the present embodiment is arranged inside the indoor unit 10 so as to correspond to the outer surface of the heat exchanger 2, as an example. In addition, the shape of the adsorption device 4 may be processed in order to arrange the adsorption device 4 within a predetermined space.
 [変形例]
 本実施の形態に係る吸着デバイス4は、図3に示す構成に限定されず、種々の変形例も含まれる。第1変形例として、図4に示す吸着デバイス41は、基本的な構成は、図3に示す吸着デバイス4と実質的に同一であるが、ホルダ本体80が吸湿材を含んでおり、それゆえ、ホルダ本体80は吸着材5のうち吸湿材を兼ねる。したがって、図4に示す吸着デバイス41では、各セル80aの内部に配置される吸着材5は、二酸化炭素吸着材51のみであり吸湿材は配置されない。この構成であれば、部材点数を増やすことなく、ホルダ本体80内に収容される二酸化炭素吸着材の量を相対的に多くすることができる。
[Modification]
The adsorption device 4 according to this embodiment is not limited to the configuration shown in FIG. 3, and includes various modifications. As a first modified example, an adsorption device 41 shown in FIG. 4 has substantially the same basic configuration as the adsorption device 4 shown in FIG. Therefore, in the adsorption device 41 shown in FIG. 4, the adsorbent 5 arranged inside each cell 80a is only the carbon dioxide adsorbent 51, and no hygroscopic material is arranged. With this configuration, the amount of carbon dioxide adsorbent accommodated in the holder body 80 can be relatively increased without increasing the number of members.
 なお、図4に示す吸着デバイス41においても、図3に示す吸着デバイス4と同様に、各セル80aの内部に二酸化炭素吸着材51と吸湿材とを配置してもよい。これにより、吸湿材の量を相対的に多くすることができる。吸着材5のうち二酸化炭素吸着材の量を多くするか吸湿材の量を多くするかについては、吸着デバイス41の使用目的または使用条件に応じて適宜設定すればよい。 It should be noted that in the adsorption device 41 shown in FIG. 4 as well, the carbon dioxide adsorbent 51 and the moisture absorbent may be arranged inside each cell 80a in the same manner as in the adsorption device 4 shown in FIG. Thereby, the amount of moisture absorbent can be relatively increased. Whether to increase the amount of the carbon dioxide adsorbent or the moisture absorbent in the adsorbent 5 may be appropriately set according to the intended use or usage conditions of the adsorption device 41 .
 第2変形例として、図5に示す吸着デバイス42は、基本的な構成は、前記実施の形態1に係る吸着デバイス4(図3参照)または吸着デバイス41(図4参照)と実質的に同一であるが、不織布80gの材質が吸湿材を含む。不織布80gが吸湿材で形成されてもよいし、公知の不織布の材質に吸湿材が配合されてもよい。 As a second modification, the adsorption device 42 shown in FIG. 5 has substantially the same basic configuration as the adsorption device 4 (see FIG. 3) or the adsorption device 41 (see FIG. 4) according to the first embodiment, but the material of the nonwoven fabric 80g contains a moisture absorbent material. The nonwoven fabric 80g may be made of a moisture absorbent material, or the moisture absorbent material may be blended with a known nonwoven fabric material.
 このような吸着デバイス42であれば、不織布80gが吸湿材を含むか吸湿材製であるので、吸湿材と不織布80g(あるいは不織布80gを含む被覆材81)とを一つの部材にできる。そのため、部材点数の増加を抑制できる。また、ホルダ本体が吸湿材を含む場合には、吸湿材の使用量を相対的に増加させることも可能になる。そのため、諸条件に応じて吸湿材の使用量を設定しやすくなる。 With such an adsorption device 42, since the nonwoven fabric 80g contains or is made of a moisture absorbing material, the moisture absorbing material and the nonwoven fabric 80g (or the covering material 81 containing the nonwoven fabric 80g) can be made into one member. Therefore, an increase in the number of members can be suppressed. Moreover, when the holder main body contains a moisture absorbing material, it is possible to relatively increase the amount of the moisture absorbing material used. Therefore, it becomes easy to set the usage amount of the moisture absorbent according to various conditions.
 第3変形例として、吸着デバイス4または吸着デバイス41では、被覆材81が、金属メッシュを含む。この金属メッシュの材質は、例えば、SUS304等のステンレスである。これにより、被覆材81の耐久性を向上できる。また、被覆材81の熱伝導性を向上できる。よって、例えば吸着材5を加熱する場合、吸着デバイス4または吸着デバイス41の外部から被覆材81を通じて吸着材5が加熱される。これにより、二酸化炭素吸着材から二酸化炭素を放出しやすくでき、吸湿材から水分を放出しやすくできる。 As a third modification, in the adsorption device 4 or the adsorption device 41, the covering material 81 contains a metal mesh. The material of this metal mesh is, for example, stainless steel such as SUS304. Thereby, the durability of the covering material 81 can be improved. Also, the thermal conductivity of the covering material 81 can be improved. Therefore, for example, when the adsorbent 5 is heated, the adsorbent 5 is heated through the covering material 81 from the outside of the adsorption device 4 or the adsorption device 41 . As a result, carbon dioxide can be easily released from the carbon dioxide adsorbent, and moisture can be easily released from the hygroscopic material.
 また、吸着材5(少なくとも二酸化炭素吸着材)が、前記の通り、平均粒径が400μm以上1.3mm以下の範囲の値である粉体であれば、本変形例では、被覆材81は、メッシュ径が、50(mesh/inch)以上200(mesh/inch)以下の範囲の値であるメッシュを含んでいる。このメッシュ径の別の例としては、65(mesh/inch)以上200(mesh/inch)以下の範囲の値である。これにより、吸着材5の比表面積を良好に確保しながら、粉体である吸着材5が被覆材81の間隙を通じて脱落するのを抑制できる。 In addition, if the adsorbent 5 (at least the carbon dioxide adsorbent) is a powder having an average particle diameter in the range of 400 μm or more and 1.3 mm or less as described above, in this modification, the coating material 81 includes a mesh having a mesh diameter in the range of 50 (mesh/inch) or more and 200 (mesh/inch) or less. Another example of the mesh diameter is a value in the range of 65 (mesh/inch) to 200 (mesh/inch). As a result, it is possible to prevent the powdery adsorbent 5 from coming off through the gaps of the coating material 81 while securing a good specific surface area of the adsorbent 5 .
 第4変形例に係る吸着デバイス4は、ホルダ本体80の材質が、金属およびセラミックのうちの少なくともいずれかを含む。この金属としては、熱伝導性に優れるもの(例えばアルミニウム、銅、およびこれらの少なくともいずれかを含む合金等)を例示できるが、これに限定されない。本変形例のホルダ本体80は、熱伝導率が、50W/mK以上500W/mK以下の範囲の値である。 In the adsorption device 4 according to the fourth modification, the material of the holder body 80 includes at least one of metal and ceramic. Examples of the metal include, but are not limited to, those having excellent thermal conductivity (eg, aluminum, copper, and alloys containing at least one of these). The holder main body 80 of this modification has a thermal conductivity in the range of 50 W/mK or more and 500 W/mK or less.
 本変形例によれば、ホルダ本体80の材質が金属およびセラミックのうちの少なくともいずれかを含むことで、ホルダ本体80を高熱伝導率の材料により構成できる。これにより、吸着材5を加熱する場合、ホルダ本体80を介して吸着材5を加熱できる。よって、例えば吸着材5が加熱により所定成分を放出する場合、吸着材5を良好に加熱して吸着材5に吸着対象を放出し易くし、吸着材5を効率よく加熱できる。 According to this modification, the material of the holder body 80 includes at least one of metal and ceramic, so that the holder body 80 can be made of a material with high thermal conductivity. Thereby, when the adsorbent 5 is heated, the adsorbent 5 can be heated through the holder main body 80 . Therefore, for example, when the adsorbent 5 releases a predetermined component by heating, the adsorbent 5 can be heated well to make it easier to release the adsorption target to the adsorbent 5, and the adsorbent 5 can be efficiently heated.
 第5変形例に係る吸着デバイス4は、接着材82が省略され、ホルダ本体80に一対の被覆材81が熱溶着により接着されている。ホルダ本体80の材質は、紙を含む。本変形例によれば、接着材82が省略されたことにより、吸着デバイス4の軽量化を図ることができる。また、吸着デバイス4の製造効率を向上できる。 In the adsorption device 4 according to the fifth modified example, the adhesive material 82 is omitted, and a pair of covering materials 81 are adhered to the holder main body 80 by thermal welding. The material of the holder main body 80 includes paper. According to this modification, the weight of the adsorption device 4 can be reduced by omitting the adhesive 82 . Moreover, the manufacturing efficiency of the adsorption device 4 can be improved.
 (実施の形態2)
 本実施の形態2に係る吸着デバイスは、前記実施の形態1に係る吸着デバイス4(または、吸着デバイス41、吸着デバイス42)とは異なり、吸着材を空気と接触可能に保持するホルダ8を備えておらず、吸湿材をシート化された吸湿シート部材として備え、当該吸湿シート部材に二酸化炭素吸着材が固定化されている。
(Embodiment 2)
Unlike the adsorption device 4 (or the adsorption device 41 or the adsorption device 42) according to the first embodiment, the adsorption device according to the second embodiment does not include the holder 8 that holds the adsorbent so that it can come into contact with the air.
 このように、吸湿材を吸湿シート部材として用いれば、一例として、ホルダ本体または被覆材に吸湿材を含ませることが難しい場合には、吸着デバイスに吸湿材を適用しやすくなる。また、ホルダ本体または被覆材が吸湿材を含む場合も別部材として吸湿材を用いることにより、諸条件に応じて吸湿材の使用量を設定しやすくなる。 In this way, if the absorbent is used as the absorbent sheet member, for example, when it is difficult to include the absorbent in the holder body or the covering material, it becomes easier to apply the absorbent to the adsorption device. Also, even when the holder main body or the covering material contains a moisture absorbing material, using the moisture absorbing material as a separate member makes it easy to set the usage amount of the moisture absorbing material according to various conditions.
 また、吸湿シート部材に二酸化炭素吸着材を固定化すれば、吸湿材と二酸化炭素吸着材とを一体化できるので、部材点数の増加を抑制できるだけでなく、吸湿シート部材をさまざまな形状に加工することで、吸着デバイスの形態を多様化できる。 In addition, if the carbon dioxide adsorbent is fixed to the moisture absorbing sheet member, the moisture absorbing material and the carbon dioxide adsorbing material can be integrated, so not only can the increase in the number of parts be suppressed, but also the shape of the adsorption device can be diversified by processing the moisture absorbing sheet member into various shapes.
 一例として、図6Aに示す吸着デバイス43は、吸湿シート部材83の表面に、粉体の二酸化炭素吸着材51が散布されて固定化されたものを、円筒状に巻き付けた円筒体(ロータ体)として構成される。他の例として、図6Bに示す吸着デバイス44は、吸湿シート部材83の表面に、粉体の二酸化炭素吸着材51が散布されて固定化されたものを複数枚積層した積層体として構成される。 As an example, the adsorption device 43 shown in FIG. 6A is configured as a cylindrical body (rotor body) in which the powdery carbon dioxide adsorbent 51 is dispersed and fixed on the surface of the moisture-absorbing sheet member 83 and is wound in a cylindrical shape. As another example, the adsorption device 44 shown in FIG. 6B is configured as a laminated body in which a plurality of sheets of the moisture absorbent sheet member 83 on which the powdery carbon dioxide adsorbent 51 is dispersed and fixed are laminated.
 このように、二酸化炭素吸着材が固定化された吸湿シート部材83を、円筒状に巻き付けた円筒体(ロータ体)として構成したり、吸湿シート部材83を複数積層した積層体として構成したりすれば、簡素な形状で吸湿材および二酸化炭素吸着材を高密度化できる。それゆえ、吸着デバイスの性能向上が可能となる。 In this way, if the moisture absorbing sheet member 83 in which the carbon dioxide adsorbent is immobilized is configured as a cylindrical body (rotor body) wound in a cylindrical shape, or as a laminate in which a plurality of moisture absorbing sheet members 83 are laminated, the density of the moisture absorbing material and the carbon dioxide adsorbent can be increased with a simple shape. Therefore, it is possible to improve the performance of the adsorption device.
 また、吸湿シート部材83に二酸化炭素吸着材を固定化することにより、吸湿材と二酸化炭素吸着材とを一体化できる。そのため、図6Aに示す円筒体(ロータ体)構造の吸着デバイス43、あるいは、図6Bに示す積層体構造の吸着デバイス44のように、部材点数の増加を抑制できるだけでなく、吸湿シート部材83をさまざまな形状に加工することで、吸着デバイスの形態を多様化できる。 Also, by fixing the carbon dioxide adsorbent to the moisture absorbent sheet member 83, the moisture absorbent and the carbon dioxide adsorbent can be integrated. Therefore, as in the adsorption device 43 having a cylindrical body (rotor body) structure shown in FIG. 6A or the adsorption device 44 having a laminate structure shown in FIG.
 なお、吸湿シート部材83に対する二酸化炭素吸着材の固定化方法は特に限定されない。前記の通り、粉体の二酸化炭素吸着材51を吸湿シート部材83の表面に散布して接着剤等の利用により固定化してもよいし、二酸化炭素吸着材51を吸湿シート部材83内に混在させてもよい。吸湿シート部材83が不織布または織物等であれば、二酸化炭素吸着材51を繊維状に加工または繊維に担持して不織布または織物に混在させてもよい。 The method for fixing the carbon dioxide adsorbent to the moisture absorbing sheet member 83 is not particularly limited. As described above, the carbon dioxide adsorbent 51 in powder form may be dispersed on the surface of the moisture absorbent sheet member 83 and fixed using an adhesive or the like, or the carbon dioxide adsorbent 51 may be mixed in the moisture absorbent sheet member 83. If the moisture absorbing sheet member 83 is a nonwoven fabric or a woven fabric, the carbon dioxide adsorbent 51 may be processed into a fibrous form or supported on the fibers and mixed in the nonwoven fabric or woven fabric.
 また、二酸化炭素吸着材が固定化された吸湿シート部材83に対して、吸湿材の粉体を追加で固定化してもよい。あるいは、不織布または織物等を基材として、この基材に二酸化炭素吸着材の粉体および吸湿材の粉体を固定または担持してもよい。また、吸湿材をシート化する方法も特に限定されず、不織布または織物等であってもよいし、連続的な多孔フィルムであってもよいし、他の形態であってもよい。 Also, powder of the moisture absorbent may be additionally immobilized on the moisture absorbent sheet member 83 to which the carbon dioxide adsorbent is immobilized. Alternatively, a nonwoven fabric, a woven fabric, or the like may be used as a base material, and the carbon dioxide adsorbent powder and the hygroscopic material powder may be fixed or supported on this base material. Also, the method of sheeting the hygroscopic material is not particularly limited, and it may be a nonwoven fabric, a woven fabric, or the like, a continuous porous film, or other forms.
 吸湿シート部材83の具体的な形状等についても特に限定されない。例えば厚み、幅、長さ等は適宜設定できる。また、吸湿シート部材83は平坦なシートであってもよいし、波打ったシートであってもよいし、凹凸もしくは孔が形成されたシートであってもよい。これら形状の特徴は吸着デバイスの具体的な形状または用途等に応じて適宜設定することができる。 The specific shape of the moisture absorbing sheet member 83 is also not particularly limited. For example, the thickness, width, length, etc. can be appropriately set. Also, the moisture absorbing sheet member 83 may be a flat sheet, a corrugated sheet, or a sheet having irregularities or holes. These shape characteristics can be appropriately set according to the specific shape or application of the adsorption device.
 また、本開示に係る吸着デバイスが適用可能な応用機器は特に限定されないが、代表的には空気調和装置を挙げることができる。これにより、吸着デバイスを設けるだけで空気調和装置に二酸化炭素濃度および湿度の調節機能を付与することができる。他の応用機器としては、送風器を備えて室内で使用される機器であればよい。一例として、扇風機、サーキュレーター、または換気扇等の送風装置に適用できる。 Also, the application equipment to which the adsorption device according to the present disclosure can be applied is not particularly limited, but an air conditioner can be mentioned as a representative example. This makes it possible to provide the air conditioner with a carbon dioxide concentration and humidity adjustment function simply by providing the adsorption device. Other application devices may be devices provided with a blower and used indoors. As an example, it can be applied to blowers such as electric fans, circulators, or ventilation fans.
 本発明について、実施例、比較例および参考例に基づいてより具体的に説明するが、本発明はこれに限定されるものではない。当業者は本発明の範囲を逸脱することなく、種々の変更、修正、および改変を行うことができる。 The present invention will be described more specifically based on examples, comparative examples, and reference examples, but the present invention is not limited to these. Various changes, modifications and alterations can be made by those skilled in the art without departing from the scope of the invention.
 (参考例)
 本開示に係る二酸化炭素吸着材(図3に示す高分子化合物7)の一例としてのポリスチレン骨格ベンジルアミン(ベンジルアミン変性ポリスチレン)、活性炭(大阪ガスケミカル(株)製、粒状白鷺G2c(製品名))、シリカゲル(富士フイルム和光純薬(株)製、粒状試薬)、ゼオライト4A(富士フイルム和光純薬(株)製、合成ゼオライト、A-4,粒状)、珪藻土シート(テクノフロンティア(株)製、WSSデシカントローター(製品名))、吸湿材の一例としての架橋型アクリロニトリル系重合体(日本エクスラン工業(株)製、エクスローター(製品名))について、それぞれJIS K1150-1994に規定される方法に基づいて水蒸気吸着等温線データを取得してグラフ化した。
(Reference example)
Polystyrene skeleton benzylamine (benzylamine-modified polystyrene) as an example of the carbon dioxide adsorbent (polymer compound 7 shown in FIG. 3) according to the present disclosure, activated carbon (manufactured by Osaka Gas Chemicals Co., Ltd., Granular Shirasagi G2c (product name)), silica gel (manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd., granular reagent), zeolite 4A (manufactured by FUJIFILM Wako Pure Chemical Industries, Ltd., synthetic zeolite, A-4, granular), diatomaceous earth sheet (Techno Frontier Co., Ltd.) ), WSS desiccant rotor (product name)), and a crosslinked acrylonitrile-based polymer (manufactured by Nihon Exlan Kogyo Co., Ltd., Exrotor (product name)) as an example of a moisture absorbent. Water vapor adsorption isotherm data was obtained and graphed based on the method specified in JIS K1150-1994.
 なお、本参考例を含む実施例全体においては、説明の便宜上、ポリスチレン骨格ベンジルアミンは「固体高分子BZA」と称し、架橋型アクリロニトリル系重合体は「吸湿性ポリマー」と称する。また、吸湿性ポリマーについては、シートとペレットとの2種類の形態で水蒸気吸着等温線データを取得した。また、本実施例では、固体高分子BZAは、公知の手法(例えばWO2005/123971に記載の方法)でポリスチレンをベンジルアミンで変性することにより製造した。 In addition, throughout the examples including this reference example, the polystyrene skeleton benzylamine is referred to as "solid polymer BZA" and the crosslinked acrylonitrile polymer is referred to as "hygroscopic polymer" for convenience of explanation. For the hygroscopic polymer, water vapor adsorption isotherm data was obtained in two types of forms: a sheet and a pellet. In this example, the solid polymer BZA was produced by modifying polystyrene with benzylamine by a known method (for example, the method described in WO2005/123971).
 作成した水蒸気吸着等温線データのグラフに基づいて、1,600Paを境界とし、かつ、固体高分子BZAの吸湿量を基準として、前記の各材料について、1,600Pa未満(1,600Pa<)の水蒸気平衡圧領域と、1,600Pa以上(1,600Pa≧)の水蒸気平衡圧領域とにおける吸湿量(水蒸気吸着量)を評価した。 Based on the created water vapor adsorption isotherm data graph, with 1,600 Pa as the boundary and the moisture absorption amount of the solid polymer BZA as a reference, the moisture absorption amount (water vapor adsorption amount) in the water vapor equilibrium pressure region of less than 1,600 Pa (1,600 Pa <) and the water vapor equilibrium pressure region of 1,600 Pa or more (1,600 Pa ≥) was evaluated for each of the above materials.
 固体高分子BZAよりも特に吸湿量が多い場合には「◎」、固体高分子BZAよりも吸湿量が多い場合には「○」、固体高分子BZAよりも吸湿量が少ない場合には「×」と評価した。前記の各材質の吸湿量の評価を、これら各材質の放湿温度(水分を放出する温度)の評価とともに表1に示す。なお、放湿温度の評価は、100℃未満であるとき「○」100℃以上であるとき「×」として評価した。 When the amount of moisture absorption is particularly higher than that of solid polymer BZA, it is evaluated as "◎"; Table 1 shows the evaluation of the amount of moisture absorbed by each material, together with the evaluation of the moisture release temperature (the temperature at which moisture is released) of each material. The moisture release temperature was evaluated as "○" when less than 100°C and "x" when 100°C or more.
Figure JPOXMLDOC01-appb-T000001
 
Figure JPOXMLDOC01-appb-T000001
 
 表1の結果から明らかなように、放湿温度が100℃未満であり、かつ、水蒸気平衡圧が1,600Pa未満の領域でも、水蒸気平衡圧が1,600Pa以上の領域でも、固体高分子BZAの吸湿量を上回っているのは、吸湿性ポリマーのペレットおよびシートのみであった。すなわち、参考例の結果に基づけば、複数の吸湿性材料のうち吸湿性ポリマーが特に好ましいことがわかる。 As is clear from the results in Table 1, only the hygroscopic polymer pellets and sheets exceeded the moisture absorption amount of the solid polymer BZA in both the region where the moisture release temperature was less than 100°C and the water vapor equilibrium pressure was less than 1,600 Pa and the region where the water vapor equilibrium pressure was 1,600 Pa or more. That is, based on the results of Reference Examples, it can be seen that a hygroscopic polymer is particularly preferable among a plurality of hygroscopic materials.
 (実施例1)
 前述した固体高分子BZAの多孔質粉体と吸湿性ポリマーの多孔質粉体とを吸着材粉体として、図3に示す構成の吸着デバイス4の各セル80a中にこれら吸着材粉体を配置して、実施例1に係る吸着デバイスを準備した。このときの吸着デバイスは、100mm×100mm×10mmとした。また、実施例1に係る吸着デバイスは、吸着材粉体が間隙から脱落することを抑制するために不織布を備えている。
(Example 1)
The above-described solid polymer BZA porous powder and hygroscopic polymer porous powder were used as adsorbent powders, and these adsorbent powders were arranged in each cell 80a of the adsorption device 4 having the configuration shown in FIG. 3 to prepare an adsorption device according to Example 1. The adsorption device at this time was 100 mm×100 mm×10 mm. Further, the adsorption device according to Example 1 includes a nonwoven fabric to prevent the adsorbent powder from dropping out of the gap.
 なお、二酸化炭素吸着材である固体高分子BZAの多孔質粉体(二酸化炭素吸着材粉体)と吸湿材である吸湿性ポリマーの多孔質粉体(吸湿材粉体)との配合比(ブレンド比)を、全ての吸着材粉体の質量中における二酸化炭素吸着材粉体の質量比としたときに80質量%とした。したがって、全吸湿材粉体中の吸湿材粉体の質量比は20質量%である。全吸着材(粉体とは限らない)の配合比の定義は実施例2~5も同様である。 The blending ratio (blend ratio) between the solid polymer BZA porous powder (carbon dioxide adsorbent powder) that is the carbon dioxide adsorbent and the hygroscopic polymer porous powder (moisture absorbent powder) that is the hygroscopic material was set to 80% by mass when the mass ratio of the carbon dioxide adsorbent powder to the mass of all the adsorbent powder was taken. Therefore, the mass ratio of the moisture absorbent powder in the total moisture absorbent powder is 20% by mass. The definition of the compounding ratio of all adsorbents (not necessarily powder) is the same for Examples 2-5.
 予備実験により、二酸化炭素吸着材粉体および吸湿材粉体を100質量%から30質量%の範囲で複数の配合比で配合した混合吸着材粉体を準備し、これら複数の配合比の混合吸着材粉体のそれぞれについて、質量比に対する二酸化炭素または水の吸着量を計測して、配合比に対する吸着量のグラフにプロットし、二酸化炭素吸着材および吸湿材のそれぞれについて近似線を導出した。 By preliminary experiments, mixed adsorbent powders were prepared by blending carbon dioxide adsorbent powder and moisture absorbent powder at multiple compounding ratios in the range of 100% by mass to 30% by mass. For each of the mixed adsorbent powders with these multiple compounding ratios, the amount of carbon dioxide or water adsorbed relative to the mass ratio was measured, plotted on a graph of the adsorbed amount against the compounding ratio, and approximate lines were derived for each of the carbon dioxide adsorbent and moisture absorbent.
 当該予備実験では、二酸化炭素吸着材の近似線は下記式3であり、吸湿材の近似線は下記式4であった。 In the preliminary experiment, the approximation line for the carbon dioxide adsorbent was Equation 3 below, and the approximation line for the moisture absorbent was Equation 4 below.
[式3]
 二酸化炭素の吸着量(mmol/g)=0.7788×二酸化炭素吸着材の配合比(質量%)
[Formula 3]
Adsorption amount of carbon dioxide (mmol/g) = 0.7788 × blending ratio of carbon dioxide adsorbent (mass%)
[式4]
 水の吸着量(吸湿量、mmol/g)=-1.0234×二酸化炭素吸着材の配合量(質量%)+3.5965
[Formula 4]
Water adsorption amount (moisture absorption amount, mmol / g) = -1.0234 × amount of carbon dioxide adsorbent (% by mass) + 3.5965
 実施例1に係る吸着デバイスにおける二酸化炭素吸着材粉体および吸湿材粉体の配合比、吸着デバイスに搭載された吸着材粉体の全質量から、本実施例1に係る吸着デバイスにおける二酸化炭素吸着量および水の吸着量(吸湿量)を算出した。その結果を表2に示す。なお、この吸着量の算出は実施例2~5も同様である。 From the mixing ratio of the carbon dioxide adsorbent powder and the moisture absorbent powder in the adsorption device according to Example 1 and the total mass of the adsorbent powder mounted on the adsorption device, the carbon dioxide adsorption amount and water adsorption amount (moisture absorption amount) in the adsorption device according to this Example 1 were calculated. Table 2 shows the results. The calculation of the adsorption amount is the same for Examples 2 to 5 as well.
 (実施例2)
 吸着デバイスとして、図4に示す吸着デバイス41(実施の形態1における第1変形例)を用いた以外は実施例1と同様にして、実施例2に係る吸着デバイスを準備し、二酸化炭素吸着量および吸湿量を算出した。その結果を表2に示す。
(Example 2)
An adsorption device according to Example 2 was prepared in the same manner as in Example 1 except that the adsorption device 41 (first modification of Embodiment 1) shown in FIG. 4 was used as the adsorption device, and the carbon dioxide adsorption amount and the moisture absorption amount were calculated. Table 2 shows the results.
 なお、実施例2に係る吸着デバイスでは、二酸化炭素吸着材は粉体であるが、吸湿材はホルダ本体80を形成する材料である(すなわち、ホルダ本体80が吸湿材を含む)。また吸着材の配合比は91質量%(二酸化炭素粉体、吸湿材の配合比は9質量%)である。 In addition, in the adsorption device according to the second embodiment, the carbon dioxide adsorbent is powder, but the moisture absorbent is the material forming the holder body 80 (that is, the holder body 80 contains the moisture absorbent). The blending ratio of the adsorbent is 91% by mass (the blending ratio of carbon dioxide powder and hygroscopic material is 9% by mass).
 (実施例3)
 吸着デバイスとして、図5に示す吸着デバイス42(実施の形態1における第2変形例)を用いた以外は実施例1と同様にして、実施例3に係る吸着デバイスを準備し、二酸化炭素吸着量および吸湿量を算出した。その結果を表2に示す。
(Example 3)
An adsorption device according to Example 3 was prepared in the same manner as in Example 1 except that the adsorption device 42 shown in FIG. 5 (second modification of Embodiment 1) was used as the adsorption device, and the carbon dioxide adsorption amount and the moisture absorption amount were calculated. Table 2 shows the results.
 なお、実施例3に係る吸着デバイスでは、二酸化炭素吸着材は粉体であるが、吸湿材は不織布80gを形成する材料である(すなわち、不織布80gまたは被覆材81が吸湿材を含む)。また吸着材の配合比は92質量%(二酸化炭素粉体、吸湿材の配合比は8質量%)である。 In addition, in the adsorption device according to Example 3, the carbon dioxide adsorbent is powder, but the moisture absorbent is the material forming the nonwoven fabric 80g (that is, the nonwoven fabric 80g or the covering material 81 contains the moisture absorbent). The blending ratio of the adsorbent is 92% by mass (the blending ratio of carbon dioxide powder and hygroscopic material is 8% by mass).
 (実施例4)
 吸着デバイスとして、図6Aに示す吸着デバイス43(実施の形態2)を用いた以外は実施例1と同様にして、実施例4に係る吸着デバイスを準備し、二酸化炭素吸着量および吸湿量を算出した。その結果を表2に示す。
(Example 4)
An adsorption device according to Example 4 was prepared in the same manner as in Example 1 except that the adsorption device 43 (Embodiment 2) shown in FIG. 6A was used as the adsorption device, and the carbon dioxide adsorption amount and the moisture absorption amount were calculated. Table 2 shows the results.
 なお、実施例4に係る吸着デバイスでは、粉体の二酸化炭素吸着材を吸湿シート部材に固定化したものを円筒体(ロータ体)に形成している。また吸着材の配合比は97質量%(二酸化炭素粉体、吸湿材の配合比は3質量%)である。 In addition, in the adsorption device according to the fourth embodiment, a cylindrical body (rotor body) is formed by fixing a powdery carbon dioxide adsorbent to a moisture absorbing sheet member. The blending ratio of the adsorbent is 97% by mass (the blending ratio of carbon dioxide powder and hygroscopic material is 3% by mass).
 (実施例5)
 吸着デバイスとして、図6Bに示す吸着デバイス44(実施の形態2)を用いた以外は実施例1と同様にして、実施例5に係る吸着デバイスを準備し、二酸化炭素吸着量および吸湿量を算出した。その結果を表2に示す。
(Example 5)
An adsorption device according to Example 5 was prepared in the same manner as in Example 1 except that the adsorption device 44 (Embodiment 2) shown in FIG. 6B was used as the adsorption device, and the carbon dioxide adsorption amount and the moisture absorption amount were calculated. Table 2 shows the results.
 なお、実施例5に係る吸着デバイスでは、粉体の二酸化炭素吸着材を吸湿シート部材に固定化したものを積層体に形成している。また吸着材の配合比は97質量%(二酸化炭素粉体、吸湿材の配合比は3質量%)である。 In addition, in the adsorption device according to Example 5, the powdery carbon dioxide adsorbent is fixed to the moisture absorbing sheet member to form a laminate. The blending ratio of the adsorbent is 97% by mass (the blending ratio of carbon dioxide powder and hygroscopic material is 3% by mass).
Figure JPOXMLDOC01-appb-T000002
 
Figure JPOXMLDOC01-appb-T000002
 
 (実施例の結果)
 実施例1~5の結果から明らかなように、本開示に係る吸着デバイスであれば、二酸化炭素吸着量および吸湿量(水吸着量)のいずれも良好な結果を実現することができる。そのため、吸放湿特性と二酸化炭素吸着放出特性とを有する吸着デバイスを得ることができる。したがって、本開示においては、吸湿性ポリマーのように、水分を放出する温度が100℃未満であり、かつ、水蒸気平衡圧1,600Pa未満での水分の吸着量が、前記二酸化炭素吸着材の水分吸着量以上である吸湿材が好ましいことがわかる。
(Results of Example)
As is clear from the results of Examples 1 to 5, the adsorption device according to the present disclosure can achieve good results in terms of both carbon dioxide adsorption amount and moisture absorption amount (water adsorption amount). Therefore, an adsorption device having moisture absorption/desorption characteristics and carbon dioxide adsorption/desorption characteristics can be obtained. Therefore, in the present disclosure, it can be seen that a hygroscopic material, such as a hygroscopic polymer, which releases moisture at a temperature of less than 100°C and has an adsorption amount of moisture at a water vapor equilibrium pressure of less than 1,600 Pa that is equal to or greater than the moisture adsorption amount of the carbon dioxide adsorbent.
 なお、実施例1では、二酸化炭素吸着材粉体と吸湿材粉体の搭載スペースが同じ部位(ホルダ本体のセル内)であるため、他の実施例と比較して相対的に二酸化炭素吸着材の量が少なくなる。そのため、二酸化炭素吸着量および吸湿量のいずれも、他の実施例と比較して相対的に低くなる。 In addition, in Example 1, since the mounting space for the carbon dioxide adsorbent powder and the moisture absorbent powder is the same portion (inside the cell of the holder body), the amount of carbon dioxide adsorbent is relatively small compared to other examples. Therefore, both the amount of carbon dioxide adsorption and the amount of moisture absorbed are relatively low compared to other examples.
 一方、実施例2~3では、実施の形態1に係る吸着デバイスの他の部材を吸湿材と一体化していることになるため、吸放湿特性と二酸化炭素吸着放出特性とを両立できるとともに、実施例1に比較して相対的に高い二酸化炭素吸着量を実現できる。 On the other hand, in Examples 2 and 3, since the other members of the adsorption device according to Embodiment 1 are integrated with the moisture absorbing material, both moisture absorption and desorption characteristics and carbon dioxide adsorption and release characteristics can be achieved, and a relatively high carbon dioxide adsorption amount can be achieved compared to Example 1.
 実施例4~5では、他の実施例に比較して吸湿材の配合比が相対的に低いため、吸湿量も相対的に少なくなっている。しかしながら、二酸化炭素吸着材が固定化された吸湿シート部材を用いることで、実施例1~3のようなホルダを有する構成に限定されず、さまざまな構成の吸着デバイスを得ることができる。また、実施例4~5のような事例であれば、吸湿材を粉体として追加することで、実施例2~3と同様かそれ以上の吸湿量を得ることも可能である。 In Examples 4 and 5, the blending ratio of the hygroscopic material is relatively low compared to other examples, so the moisture absorption amount is also relatively small. However, by using the hygroscopic sheet member on which the carbon dioxide adsorbent is fixed, adsorption devices with various configurations can be obtained without being limited to the configuration having a holder as in Examples 1 to 3. Further, in the case of Examples 4 and 5, it is possible to obtain a moisture absorption amount equal to or greater than that of Examples 2 and 3 by adding the moisture absorbent in the form of powder.
 上記説明から、当業者にとっては、本発明の多くの改良や他の実施形態が明らかである。従って、上記説明は、例示としてのみ解釈されるべきであり、本発明を実行する最良の態様を当業者に教示する目的で提供されたものである。本発明の精神を逸脱することなく、その構造及び/又は機能の詳細を実質的に変更できる。 From the above description, many modifications and other embodiments of the invention will be apparent to those skilled in the art. Accordingly, the above description is to be construed as illustrative only and is provided for the purpose of teaching those skilled in the art the best mode of carrying out the invention. Substantial details of construction and/or function may be changed without departing from the spirit of the invention.
 また、本発明は前記実施の形態の記載に限定されるものではなく、特許請求の範囲に示した範囲内で種々の変更が可能であり、異なる実施の形態や複数の変形例にそれぞれ開示された技術的手段を適宜組み合わせて得られる実施の形態についても本発明の技術的範囲に含まれる。 In addition, the present invention is not limited to the description of the above embodiments, and various modifications are possible within the scope of the claims, and embodiments obtained by appropriately combining technical means disclosed in different embodiments and multiple modifications are also included in the technical scope of the present invention.
  1:空気調和装置
  3:送風機構(送風器)
  4,41,42,43,44:吸着デバイス
  5:吸着材
  7:高分子化合物(二酸化炭素吸着材)
  8:ホルダ
  51:二酸化炭素吸着材(粉体)
  80:ホルダ本体
  80a:セル
  80b:内部空間
  80c:導入口
  80d:排出口
  80g:不織布
  81:被覆材
  83:吸湿シート部材
1: Air conditioner 3: Blower mechanism (blower)
4, 41, 42, 43, 44: adsorption device 5: adsorbent 7: polymer compound (carbon dioxide adsorbent)
8: holder 51: carbon dioxide adsorbent (powder)
80: Holder body 80a: Cell 80b: Internal space 80c: Inlet 80d: Outlet 80g: Nonwoven fabric 81: Covering material 83: Moisture absorbing sheet member

Claims (16)

  1.  送風器から送風される空気流に含まれる所定成分を吸着および放出するために用いられ、
     前記所定成分の一つとしての二酸化炭素を繰り返し吸着および放出する二酸化炭素吸着材と、
     前記所定成分の他の一つとしての水分を吸着および放出する吸湿材と、
    を備え、
     前記二酸化炭素吸着材が、少なくとも1級アミン基であるアミン基を含む官能基が結合した化学構造を有する高分子化合物を含み、多孔質状に形成され、水分を吸着および放出するものであり、さらに、40℃以上の温度で二酸化炭素を脱離可能とするとともに、40℃未満の温度で水分を放出可能とし、
     前記吸湿材が、100℃未満の温度で水分を放出可能とし、かつ、水蒸気平衡圧1,600Pa未満での水分の吸着量が、前記二酸化炭素吸着材の水分吸着量以上であるものであることを特徴とする、吸着デバイス。
    Used to adsorb and release predetermined components contained in the air flow blown from the blower,
    a carbon dioxide adsorbent that repeatedly adsorbs and releases carbon dioxide as one of the predetermined components;
    a hygroscopic material that adsorbs and releases moisture as another one of the predetermined components;
    with
    The carbon dioxide adsorbent contains a polymer compound having a chemical structure in which a functional group containing an amine group that is at least a primary amine group is bonded, is formed in a porous shape, and is capable of adsorbing and releasing moisture.
    The hygroscopic material can release moisture at a temperature of less than 100 ° C., and the adsorption amount of moisture at a water vapor equilibrium pressure of less than 1,600 Pa is greater than or equal to the moisture adsorption amount of the carbon dioxide adsorbent. An adsorption device.
  2.  前記二酸化炭素吸着材は、平均粒径が400μm以上1.3mm以下の範囲の値である粉体である、
    請求項1に記載の吸着デバイス。
    The carbon dioxide adsorbent is a powder having an average particle size in the range of 400 μm or more and 1.3 mm or less.
    The adsorption device according to claim 1.
  3.  少なくとも前記二酸化炭素吸着材を空気と接触可能に保持するホルダを備えており、
     当該ホルダは、
      前記二酸化炭素吸着材を収容する内部空間と、前記内部空間に空気を導入する導入口と、前記内部空間を通過した空気を排出する排出口と、を有する複数のセルが形成されたホルダ本体と、
      通気性を有し、前記セルの前記導入口と前記排出口とを覆う被覆材と、を有し、
      前記二酸化炭素吸着材は、前記セル内に収容されている、
    請求項1または2に記載の吸着デバイス。
    A holder that holds at least the carbon dioxide adsorbent so that it can come into contact with air,
    The holder is
    a holder body formed with a plurality of cells having an internal space for containing the carbon dioxide adsorbent, an inlet for introducing air into the internal space, and an outlet for discharging the air that has passed through the internal space;
    a covering material having air permeability and covering the inlet and the outlet of the cell;
    The carbon dioxide adsorbent is housed in the cell,
    The adsorption device according to claim 1 or 2.
  4.  前記ホルダ本体の材質が、前記吸湿材を含む、
    請求項3に記載の吸着デバイス。
    a material of the holder main body includes the moisture absorbing material;
    The adsorption device according to claim 3.
  5.  前記ホルダ本体の材質が、樹脂、金属およびセラミックのうちの少なくともいずれかを含む、
    請求項3または4に記載の吸着デバイス。
    the material of the holder body includes at least one of resin, metal and ceramic;
    The adsorption device according to claim 3 or 4.
  6.  前記被覆材が不織布を含む、
    請求項3から5のいずれか1項に記載の吸着デバイス。
    wherein said dressing comprises a non-woven fabric;
    The adsorption device according to any one of claims 3-5.
  7.  前記不織布の材質が、前記吸湿材を含む、
    請求項6に記載の吸着デバイス。
    The material of the nonwoven fabric contains the moisture absorbent material,
    The adsorption device according to claim 6.
  8.  前記被覆材が、金属メッシュを含む、
    請求項3から7のいずれか1項に記載の吸着デバイス。
    wherein the dressing comprises a metal mesh;
    The adsorption device according to any one of claims 3-7.
  9.  前記被覆材に空気を流速1m/秒で通過させたときの圧力損失が、5Pa以上30Pa以下の範囲の値である、
    請求項3から8のいずれか1項に記載の吸着デバイス。
    The pressure loss when air is passed through the covering material at a flow rate of 1 m / sec is a value in the range of 5 Pa or more and 30 Pa or less.
    The adsorption device according to any one of claims 3-8.
  10.  前記吸湿材を、シート化された吸湿シート部材として備えている、
    請求項1から9のいずれか1項に記載の吸着デバイス。
    The moisture absorbent material is provided as a moisture absorbent sheet member formed into a sheet,
    The adsorption device according to any one of claims 1-9.
  11.  前記吸湿シート部材には、前記二酸化炭素吸着材が固定化されている、
    請求項10に記載の吸着デバイス。
    The carbon dioxide adsorbent is immobilized on the moisture absorbing sheet member,
    The adsorption device according to claim 10.
  12.  前記吸湿シート部材は、当該吸湿シート部材を複数積層した積層体、または、当該吸湿シート部材を円筒状に巻き付けた円筒体として用いられる、
    請求項11に記載の吸着デバイス。
    The hygroscopic sheet member is used as a laminate obtained by laminating a plurality of the hygroscopic sheet members, or as a cylindrical body obtained by winding the hygroscopic sheet member in a cylindrical shape.
    The adsorption device according to claim 11.
  13.  前記吸湿材は、親水性基および架橋構造を有する、架橋型親水性高分子である、
    請求項1から12のいずれか1項に記載の吸着デバイス。
    The hygroscopic material is a crosslinked hydrophilic polymer having a hydrophilic group and a crosslinked structure,
    The adsorption device according to any one of claims 1-12.
  14.  前記吸着デバイスに導入されて排出される空気の流通方向における独立した内部空間の流路断面積が、0.5cm2 以上10.0cm2 以下の範囲の値である、
    請求項1から13のいずれか1項に記載の吸着デバイス。
    The flow channel cross-sectional area of the independent internal space in the flow direction of the air introduced into and discharged from the adsorption device is a value in the range of 0.5 cm or more and 10.0 cm or less.
    14. The adsorption device according to any one of claims 1-13.
  15.  前記吸着デバイスに導入されて排出される空気を流速1m/秒で通過させたときの圧力損失が、40Pa以上500Pa以下の範囲である、
    請求項1から14いずれか1項に記載の吸着デバイス。
    The pressure loss is in the range of 40 Pa or more and 500 Pa or less when the air introduced into and discharged from the adsorption device is passed at a flow rate of 1 m/sec.
    15. The adsorption device according to any one of claims 1-14.
  16.  請求項1から15のいずれか1項に記載の吸着デバイスを備える、空気調和装置。 An air conditioner comprising the adsorption device according to any one of claims 1 to 15.
PCT/JP2023/001436 2022-01-20 2023-01-19 Adsorption device and air-conditioning apparatus WO2023140307A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022007128A JP2023106026A (en) 2022-01-20 2022-01-20 Adsorption device and air conditioning apparatus
JP2022-007128 2022-01-20

Publications (1)

Publication Number Publication Date
WO2023140307A1 true WO2023140307A1 (en) 2023-07-27

Family

ID=87348297

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/001436 WO2023140307A1 (en) 2022-01-20 2023-01-19 Adsorption device and air-conditioning apparatus

Country Status (2)

Country Link
JP (1) JP2023106026A (en)
WO (1) WO2023140307A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007113165A (en) * 2005-09-26 2007-05-10 Nippon Ester Co Ltd Moisture-absorbing/releasing polyester fiber
JP2007529297A (en) * 2004-03-12 2007-10-25 エムエムアール・テクノロジーズ・インコーポレイテッド Method and apparatus for removing water and carbon dioxide from a gas mixture using pressure swing adsorption
JP2017528316A (en) * 2014-09-12 2017-09-28 ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Public Limited Company Systems and processes for carbon dioxide removal from vehicle passenger cabin air
JP2018002979A (en) * 2016-07-08 2018-01-11 株式会社イノアックコーポレーション Urethane foam production method, and composition of urethane foam
JP2019031633A (en) * 2017-08-09 2019-02-28 帝人フロンティア株式会社 Fiber structure and method for producing the same
WO2020191197A1 (en) * 2019-03-19 2020-09-24 Basf Corporation Filter unit for adsorbing water and gas and systems and methods of use thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007529297A (en) * 2004-03-12 2007-10-25 エムエムアール・テクノロジーズ・インコーポレイテッド Method and apparatus for removing water and carbon dioxide from a gas mixture using pressure swing adsorption
JP2007113165A (en) * 2005-09-26 2007-05-10 Nippon Ester Co Ltd Moisture-absorbing/releasing polyester fiber
JP2017528316A (en) * 2014-09-12 2017-09-28 ジョンソン、マッセイ、パブリック、リミテッド、カンパニーJohnson Matthey Public Limited Company Systems and processes for carbon dioxide removal from vehicle passenger cabin air
JP2018002979A (en) * 2016-07-08 2018-01-11 株式会社イノアックコーポレーション Urethane foam production method, and composition of urethane foam
JP2019031633A (en) * 2017-08-09 2019-02-28 帝人フロンティア株式会社 Fiber structure and method for producing the same
WO2020191197A1 (en) * 2019-03-19 2020-09-24 Basf Corporation Filter unit for adsorbing water and gas and systems and methods of use thereof

Also Published As

Publication number Publication date
JP2023106026A (en) 2023-08-01

Similar Documents

Publication Publication Date Title
JP4341924B2 (en) Desiccant ventilation system
JP2008057953A (en) Air conditioning system
JP2009106849A (en) Adsorption-desorption element, and carbon dioxide concentration control device, carbon dioxide concentration control system, and carbon dioxide concentration control method using this element
JP4075950B2 (en) Air conditioner
WO2023140307A1 (en) Adsorption device and air-conditioning apparatus
JP2006306293A (en) Air conditioner for vehicle
JP2008302874A (en) Humidity control air-conditioning system for automobile
WO2022172490A1 (en) Carbon dioxide adsorption material for air-conditioning, adsorption device, and air-conditioning device
WO2022249773A1 (en) Adsorption device
JP2012057874A (en) Air-conditioning system
WO2022249774A1 (en) Adsorption device
JP4393478B2 (en) Desiccant ventilation system
JP2005172272A (en) Humidity controller
JP3680617B2 (en) Adsorption processing member
JP6352915B2 (en) Device with hygroscopic membrane and water vapor separator and heat exchanger with device with hygroscopic membrane
JP2017013031A (en) Humidity control element
WO2022172488A1 (en) Carbon dioxide-adsorbing material for air conditioning, adsorbing device, and air conditioning device
WO2023135838A1 (en) Carbon dioxide adsorbent for air conditioning, adsorption device, and air conditioning device
JP2004225969A (en) Total enthalpy heat exchanging element
JP2001215097A (en) Heat exchange element with added harmful gas elimination function
JP3601338B2 (en) Adsorption treatment member, adsorption treatment apparatus and adsorption treatment method using the same
JP2000039278A (en) Total heat exchanging element
JP3570267B2 (en) Adsorption treatment member, adsorption treatment apparatus and adsorption treatment method using the same
JP3594486B2 (en) Moisture exchange element
JP4341394B2 (en) Humidity control device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23743300

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE