WO2023037953A1 - 導電性チタン酸化物、金属担持導電性チタン酸化物、膜電極接合体、固体高分子形燃料電池、導電性チタン酸化物の製造方法、及び金属担持導電性チタン酸化物の製造方法 - Google Patents
導電性チタン酸化物、金属担持導電性チタン酸化物、膜電極接合体、固体高分子形燃料電池、導電性チタン酸化物の製造方法、及び金属担持導電性チタン酸化物の製造方法 Download PDFInfo
- Publication number
- WO2023037953A1 WO2023037953A1 PCT/JP2022/032920 JP2022032920W WO2023037953A1 WO 2023037953 A1 WO2023037953 A1 WO 2023037953A1 JP 2022032920 W JP2022032920 W JP 2022032920W WO 2023037953 A1 WO2023037953 A1 WO 2023037953A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- titanium oxide
- conductive titanium
- metal
- supported
- polymer electrolyte
- Prior art date
Links
- OGIDPMRJRNCKJF-UHFFFAOYSA-N titanium oxide Inorganic materials [Ti]=O OGIDPMRJRNCKJF-UHFFFAOYSA-N 0.000 title claims abstract description 158
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 title claims abstract description 156
- 239000005518 polymer electrolyte Substances 0.000 title claims description 50
- 238000004519 manufacturing process Methods 0.000 title claims description 37
- 239000007787 solid Substances 0.000 title claims description 30
- 239000012528 membrane Substances 0.000 title claims description 24
- 239000000446 fuel Substances 0.000 title claims description 21
- 239000003054 catalyst Substances 0.000 claims abstract description 99
- 238000010438 heat treatment Methods 0.000 claims description 35
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 claims description 33
- 239000010936 titanium Substances 0.000 claims description 31
- 229910052751 metal Inorganic materials 0.000 claims description 30
- 239000002184 metal Substances 0.000 claims description 30
- 229910052799 carbon Inorganic materials 0.000 claims description 29
- 239000007789 gas Substances 0.000 claims description 26
- 238000001035 drying Methods 0.000 claims description 24
- 239000012298 atmosphere Substances 0.000 claims description 19
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 claims description 16
- RTAQQCXQSZGOHL-UHFFFAOYSA-N Titanium Chemical compound [Ti] RTAQQCXQSZGOHL-UHFFFAOYSA-N 0.000 claims description 16
- 239000001257 hydrogen Substances 0.000 claims description 16
- 229910052739 hydrogen Inorganic materials 0.000 claims description 16
- 229910052719 titanium Inorganic materials 0.000 claims description 16
- 239000006185 dispersion Substances 0.000 claims description 13
- 238000009792 diffusion process Methods 0.000 claims description 11
- 239000003960 organic solvent Substances 0.000 claims description 11
- 125000002887 hydroxy group Chemical group [H]O* 0.000 claims description 10
- 238000001879 gelation Methods 0.000 claims description 8
- 239000002923 metal particle Substances 0.000 claims description 8
- BASFCYQUMIYNBI-UHFFFAOYSA-N platinum Substances [Pt] BASFCYQUMIYNBI-UHFFFAOYSA-N 0.000 description 45
- 238000000034 method Methods 0.000 description 25
- 239000000243 solution Substances 0.000 description 25
- 235000012209 glucono delta-lactone Nutrition 0.000 description 22
- 238000010248 power generation Methods 0.000 description 22
- 239000002245 particle Substances 0.000 description 21
- 229910052697 platinum Inorganic materials 0.000 description 19
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 15
- 230000000052 comparative effect Effects 0.000 description 14
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 13
- 239000000463 material Substances 0.000 description 11
- 239000000203 mixture Substances 0.000 description 11
- 239000000843 powder Substances 0.000 description 11
- 239000002904 solvent Substances 0.000 description 10
- 239000003575 carbonaceous material Substances 0.000 description 9
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 8
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 8
- 230000006866 deterioration Effects 0.000 description 8
- SOQBVABWOPYFQZ-UHFFFAOYSA-N oxygen(2-);titanium(4+) Chemical class [O-2].[O-2].[Ti+4] SOQBVABWOPYFQZ-UHFFFAOYSA-N 0.000 description 8
- 238000005259 measurement Methods 0.000 description 7
- 229920000557 Nafion® Polymers 0.000 description 6
- 125000001931 aliphatic group Chemical group 0.000 description 6
- 229910001873 dinitrogen Inorganic materials 0.000 description 6
- 239000012153 distilled water Substances 0.000 description 6
- 229920000642 polymer Polymers 0.000 description 6
- 239000010453 quartz Substances 0.000 description 6
- 238000012360 testing method Methods 0.000 description 6
- 229910000349 titanium oxysulfate Inorganic materials 0.000 description 6
- YCKRFDGAMUMZLT-UHFFFAOYSA-N Fluorine atom Chemical compound [F] YCKRFDGAMUMZLT-UHFFFAOYSA-N 0.000 description 5
- 238000002441 X-ray diffraction Methods 0.000 description 5
- 239000011737 fluorine Substances 0.000 description 5
- 229910052731 fluorine Inorganic materials 0.000 description 5
- 239000011261 inert gas Substances 0.000 description 5
- 239000011259 mixed solution Substances 0.000 description 5
- 229910000510 noble metal Inorganic materials 0.000 description 5
- 230000002093 peripheral effect Effects 0.000 description 5
- 238000001179 sorption measurement Methods 0.000 description 5
- 238000003756 stirring Methods 0.000 description 5
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- 239000004809 Teflon Substances 0.000 description 4
- 229920006362 Teflon® Polymers 0.000 description 4
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 4
- 239000006229 carbon black Substances 0.000 description 4
- 238000011156 evaluation Methods 0.000 description 4
- 229910002804 graphite Inorganic materials 0.000 description 4
- 239000010439 graphite Substances 0.000 description 4
- 238000010298 pulverizing process Methods 0.000 description 4
- 239000000126 substance Substances 0.000 description 4
- 150000003609 titanium compounds Chemical class 0.000 description 4
- XROWMBWRMNHXMF-UHFFFAOYSA-J titanium tetrafluoride Chemical compound [F-].[F-].[F-].[F-].[Ti+4] XROWMBWRMNHXMF-UHFFFAOYSA-J 0.000 description 4
- OKKJLVBELUTLKV-UHFFFAOYSA-N Methanol Chemical compound OC OKKJLVBELUTLKV-UHFFFAOYSA-N 0.000 description 3
- KDLHZDBZIXYQEI-UHFFFAOYSA-N Palladium Chemical compound [Pd] KDLHZDBZIXYQEI-UHFFFAOYSA-N 0.000 description 3
- 239000002202 Polyethylene glycol Substances 0.000 description 3
- NINIDFKCEFEMDL-UHFFFAOYSA-N Sulfur Chemical compound [S] NINIDFKCEFEMDL-UHFFFAOYSA-N 0.000 description 3
- 229910010413 TiO 2 Inorganic materials 0.000 description 3
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 3
- 230000003197 catalytic effect Effects 0.000 description 3
- 150000001875 compounds Chemical class 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000010419 fine particle Substances 0.000 description 3
- 239000001307 helium Substances 0.000 description 3
- 229910052734 helium Inorganic materials 0.000 description 3
- SWQJXJOGLNCZEY-UHFFFAOYSA-N helium atom Chemical compound [He] SWQJXJOGLNCZEY-UHFFFAOYSA-N 0.000 description 3
- 239000001301 oxygen Substances 0.000 description 3
- 229910052760 oxygen Inorganic materials 0.000 description 3
- 229920001223 polyethylene glycol Polymers 0.000 description 3
- -1 polyphenylene Polymers 0.000 description 3
- 229920001343 polytetrafluoroethylene Polymers 0.000 description 3
- 239000004810 polytetrafluoroethylene Substances 0.000 description 3
- 239000011148 porous material Substances 0.000 description 3
- 238000006722 reduction reaction Methods 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 229910052717 sulfur Inorganic materials 0.000 description 3
- 239000011593 sulfur Substances 0.000 description 3
- 238000005406 washing Methods 0.000 description 3
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- 230000002378 acidificating effect Effects 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 2
- 230000001070 adhesive effect Effects 0.000 description 2
- 230000002776 aggregation Effects 0.000 description 2
- 238000004220 aggregation Methods 0.000 description 2
- 150000001298 alcohols Chemical class 0.000 description 2
- 229910052786 argon Inorganic materials 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 239000011651 chromium Substances 0.000 description 2
- 239000000498 cooling water Substances 0.000 description 2
- 239000013078 crystal Substances 0.000 description 2
- 238000003795 desorption Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 238000003487 electrochemical reaction Methods 0.000 description 2
- 238000010304 firing Methods 0.000 description 2
- 239000002737 fuel gas Substances 0.000 description 2
- 239000010931 gold Substances 0.000 description 2
- 229930195733 hydrocarbon Natural products 0.000 description 2
- 150000002430 hydrocarbons Chemical class 0.000 description 2
- 125000001183 hydrocarbyl group Chemical group 0.000 description 2
- 150000002431 hydrogen Chemical class 0.000 description 2
- 230000006872 improvement Effects 0.000 description 2
- 239000007788 liquid Substances 0.000 description 2
- 239000007769 metal material Substances 0.000 description 2
- 150000002739 metals Chemical class 0.000 description 2
- 239000004570 mortar (masonry) Substances 0.000 description 2
- 230000001590 oxidative effect Effects 0.000 description 2
- 230000008569 process Effects 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 238000006479 redox reaction Methods 0.000 description 2
- 238000010992 reflux Methods 0.000 description 2
- 239000010948 rhodium Substances 0.000 description 2
- 238000005245 sintering Methods 0.000 description 2
- 238000012546 transfer Methods 0.000 description 2
- 229920003934 Aciplex® Polymers 0.000 description 1
- 238000004438 BET method Methods 0.000 description 1
- VYZAMTAEIAYCRO-UHFFFAOYSA-N Chromium Chemical compound [Cr] VYZAMTAEIAYCRO-UHFFFAOYSA-N 0.000 description 1
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 description 1
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 1
- ZOKXTWBITQBERF-UHFFFAOYSA-N Molybdenum Chemical compound [Mo] ZOKXTWBITQBERF-UHFFFAOYSA-N 0.000 description 1
- 229910002651 NO3 Inorganic materials 0.000 description 1
- NHNBFGGVMKEFGY-UHFFFAOYSA-N Nitrate Chemical compound [O-][N+]([O-])=O NHNBFGGVMKEFGY-UHFFFAOYSA-N 0.000 description 1
- 240000007594 Oryza sativa Species 0.000 description 1
- 235000007164 Oryza sativa Nutrition 0.000 description 1
- 241000282320 Panthera leo Species 0.000 description 1
- 239000004695 Polyether sulfone Substances 0.000 description 1
- 229920000265 Polyparaphenylene Polymers 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- KJTLSVCANCCWHF-UHFFFAOYSA-N Ruthenium Chemical compound [Ru] KJTLSVCANCCWHF-UHFFFAOYSA-N 0.000 description 1
- BQCADISMDOOEFD-UHFFFAOYSA-N Silver Chemical compound [Ag] BQCADISMDOOEFD-UHFFFAOYSA-N 0.000 description 1
- 229910010342 TiF4 Inorganic materials 0.000 description 1
- 229910010298 TiOSO4 Inorganic materials 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 239000003463 adsorbent Substances 0.000 description 1
- 230000032683 aging Effects 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 229910052782 aluminium Inorganic materials 0.000 description 1
- XAGFODPZIPBFFR-UHFFFAOYSA-N aluminium Chemical compound [Al] XAGFODPZIPBFFR-UHFFFAOYSA-N 0.000 description 1
- 125000002029 aromatic hydrocarbon group Chemical group 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 239000000919 ceramic Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 239000003638 chemical reducing agent Substances 0.000 description 1
- 229910052804 chromium Inorganic materials 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 238000007796 conventional method Methods 0.000 description 1
- 239000010431 corundum Substances 0.000 description 1
- 229910052593 corundum Inorganic materials 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000000151 deposition Methods 0.000 description 1
- 239000010411 electrocatalyst Substances 0.000 description 1
- 239000003792 electrolyte Substances 0.000 description 1
- 239000004744 fabric Substances 0.000 description 1
- 239000011888 foil Substances 0.000 description 1
- 239000011521 glass Substances 0.000 description 1
- PCHJSUWPFVWCPO-UHFFFAOYSA-N gold Chemical compound [Au] PCHJSUWPFVWCPO-UHFFFAOYSA-N 0.000 description 1
- 229910052737 gold Inorganic materials 0.000 description 1
- 229910001867 inorganic solvent Inorganic materials 0.000 description 1
- 239000003049 inorganic solvent Substances 0.000 description 1
- 229910052741 iridium Inorganic materials 0.000 description 1
- GKOZUEZYRPOHIO-UHFFFAOYSA-N iridium atom Chemical compound [Ir] GKOZUEZYRPOHIO-UHFFFAOYSA-N 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 150000007522 mineralic acids Chemical class 0.000 description 1
- 238000002156 mixing Methods 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 229910052750 molybdenum Inorganic materials 0.000 description 1
- 239000011733 molybdenum Substances 0.000 description 1
- 239000004745 nonwoven fabric Substances 0.000 description 1
- 229910052762 osmium Inorganic materials 0.000 description 1
- SYQBFIAQOQZEGI-UHFFFAOYSA-N osmium atom Chemical compound [Os] SYQBFIAQOQZEGI-UHFFFAOYSA-N 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- KADRTWZQWGIUGO-UHFFFAOYSA-L oxotitanium(2+);sulfate Chemical compound [Ti+2]=O.[O-]S([O-])(=O)=O KADRTWZQWGIUGO-UHFFFAOYSA-L 0.000 description 1
- 229910052763 palladium Inorganic materials 0.000 description 1
- 229920001643 poly(ether ketone) Polymers 0.000 description 1
- 229920006393 polyether sulfone Polymers 0.000 description 1
- 229920005649 polyetherethersulfone Polymers 0.000 description 1
- 229940068918 polyethylene glycol 400 Drugs 0.000 description 1
- 229920005597 polymer membrane Polymers 0.000 description 1
- 229920001021 polysulfide Polymers 0.000 description 1
- 239000005077 polysulfide Substances 0.000 description 1
- 150000008117 polysulfides Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 239000002243 precursor Substances 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000003825 pressing Methods 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- BDERNNFJNOPAEC-UHFFFAOYSA-N propan-1-ol Chemical compound CCCO BDERNNFJNOPAEC-UHFFFAOYSA-N 0.000 description 1
- 239000008213 purified water Substances 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 229910052703 rhodium Inorganic materials 0.000 description 1
- MHOVAHRLVXNVSD-UHFFFAOYSA-N rhodium atom Chemical compound [Rh] MHOVAHRLVXNVSD-UHFFFAOYSA-N 0.000 description 1
- 235000009566 rice Nutrition 0.000 description 1
- 229910052707 ruthenium Inorganic materials 0.000 description 1
- VSZWPYCFIRKVQL-UHFFFAOYSA-N selanylidenegallium;selenium Chemical compound [Se].[Se]=[Ga].[Se]=[Ga] VSZWPYCFIRKVQL-UHFFFAOYSA-N 0.000 description 1
- 229910052709 silver Inorganic materials 0.000 description 1
- 239000004332 silver Substances 0.000 description 1
- 239000011973 solid acid Substances 0.000 description 1
- 229910001220 stainless steel Inorganic materials 0.000 description 1
- 239000010935 stainless steel Substances 0.000 description 1
- 238000000967 suction filtration Methods 0.000 description 1
- 229910052715 tantalum Inorganic materials 0.000 description 1
- GUVRBAGPIYLISA-UHFFFAOYSA-N tantalum atom Chemical compound [Ta] GUVRBAGPIYLISA-UHFFFAOYSA-N 0.000 description 1
- 239000008399 tap water Substances 0.000 description 1
- 235000020679 tap water Nutrition 0.000 description 1
- 229910021642 ultra pure water Inorganic materials 0.000 description 1
- 239000012498 ultrapure water Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
- H01M4/9016—Oxides, hydroxides or oxygenated metallic salts
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G23/00—Compounds of titanium
- C01G23/04—Oxides; Hydroxides
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G23/00—Compounds of titanium
- C01G23/04—Oxides; Hydroxides
- C01G23/043—Titanium sub-oxides
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01G—COMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
- C01G23/00—Compounds of titanium
- C01G23/04—Oxides; Hydroxides
- C01G23/047—Titanium dioxide
- C01G23/053—Producing by wet processes, e.g. hydrolysing titanium salts
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/8605—Porous electrodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M4/00—Electrodes
- H01M4/86—Inert electrodes with catalytic activity, e.g. for fuel cells
- H01M4/90—Selection of catalytic material
- H01M4/92—Metals of platinum group
- H01M4/925—Metals of platinum group supported on carriers, e.g. powder carriers
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M8/1004—Fuel cells with solid electrolytes characterised by membrane-electrode assemblies [MEA]
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2002/00—Crystal-structural characteristics
- C01P2002/70—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data
- C01P2002/72—Crystal-structural characteristics defined by measured X-ray, neutron or electron diffraction data by d-values or two theta-values, e.g. as X-ray diagram
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/12—Surface area
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01P—INDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
- C01P2006/00—Physical properties of inorganic compounds
- C01P2006/40—Electric properties
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/10—Fuel cells with solid electrolytes
- H01M2008/1095—Fuel cells with polymeric electrolytes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P70/00—Climate change mitigation technologies in the production process for final industrial or consumer products
- Y02P70/50—Manufacturing or production processes characterised by the final manufactured product
Definitions
- the present invention provides a conductive titanium oxide, a metal-supporting conductive titanium oxide, a membrane electrode assembly, a polymer electrolyte fuel cell, a method for producing a conductive titanium oxide, and a method for producing a metal-supporting conductive titanium oxide. Regarding.
- a solid polymer fuel cell comprises a membrane electrode assembly having a solid polymer electrolyte layer and a pair of catalyst layers joined to the solid polymer electrolyte layer. Furthermore, the polymer electrolyte fuel cell comprises a pair of gas diffusion layers and a pair of separators.
- the gas diffusion layer is composed of a porous carbon material
- the separator is composed of a metal material.
- the catalyst layer has a structure in which noble metal fine particles such as Pt are supported on the surface of a carrier.
- a carbon material is generally used for the carrier.
- Patent Document 1 describes the use of a fluorine-based polymer such as Nafion (registered trademark) for the solid polymer electrolyte layer of a membrane electrode assembly.
- a membrane electrode assembly using a fluorine-based polymer may be used under super-strongly acidic conditions.
- the cell voltage is 0.4 to 1.0 V during normal operation of the polymer electrolyte fuel cell, but the cell voltage may rise to 1.5 V when starting and stopping. Therefore, the carbon material of the catalyst layer is electrochemically oxidized, and there is a possibility that a reaction of decomposing it into CO 2 may occur. There is a possibility that the durability of the carrier may be lowered due to the decomposition reaction of the carbon material.
- the gist of the conductive titanium oxide for solving the above problems is that the conductivity measured under a pressure of 10 MPa is 0.1 S/cm or more.
- the conductive titanium oxide preferably has a specific surface area of 100 m 2 /g or more.
- a gist of a metal-supported conductive titanium oxide for solving the above problems is to have the above-described conductive titanium oxide and metal particles supported on the conductive titanium oxide.
- a membrane electrode assembly for solving the above problems is a membrane electrode assembly comprising a solid polymer electrolyte layer and a pair of catalyst layers bonded to the solid polymer electrolyte layer, wherein the pair of catalyst layers contains the metal-supported conductive titanium oxide.
- the gist of a polymer electrolyte fuel cell for solving the above problems is to include the membrane electrode assembly, a pair of gas diffusion layers, and a pair of separators.
- a method for producing a conductive titanium oxide for solving the above problems comprises a gelation step of gelling a solution containing a titanium source and a carbon source; and a heating step of heating the dried body at a temperature of 800° C. or higher and 1200° C. or lower in an atmosphere containing hydrogen. .
- a method for producing a metal-supporting conductive titanium oxide for solving the above-mentioned problems comprises adding a conductive titanium oxide produced by the above-mentioned method for producing a conductive titanium oxide and a metal solution to an organic solvent having a hydroxyl group.
- the gist is to have a dispersing step of dispersing to prepare a dispersion, and a carrying step of heating the dispersion to carry the metal contained in the metal solution on the conductive titanium oxide.
- FIG. 4 is an X-ray diffraction pattern of the conductive titanium oxide of this embodiment.
- 4 is an X-ray diffraction pattern of another conductive titanium oxide of the present embodiment;
- 4 is an X-ray diffraction pattern of still another conductive titanium oxide of the present embodiment;
- 4 is a graph showing the results of powder conductivity measurement of conductive titanium oxide. It is an adsorption isotherm of the conductive titanium oxide of this embodiment.
- 4 is a graph showing power generation characteristics of a single cell using a membrane electrode assembly.
- 4 is a graph showing power generation characteristics of a single cell using another membrane electrode assembly.
- 4 is a graph showing the results of an accelerated deterioration test of a single cell using the membrane electrode assembly of this embodiment.
- Conductive titanium oxide, metal-supporting conductive titanium oxide, membrane electrode assembly, polymer electrolyte fuel cell, method for producing conductive titanium oxide, and method for producing metal-supporting conductive titanium oxide according to the present invention An embodiment embodying will be described.
- a polymer electrolyte fuel cell (hereinafter also referred to as "PEFC”) 20 includes a solid polymer electrolyte layer 11 and a pair of catalyst layers 12 bonded to the solid polymer electrolyte layer 11.
- a membrane electrode assembly (hereinafter also referred to as “MEA”) 10 having One of the pair of catalyst layers 12 constitutes the anode side electrode catalyst layer 12A, and the other constitutes the cathode side electrode catalyst layer 12C.
- the PEFC 20 includes a pair of gaskets 13 , a pair of gas diffusion layers (hereinafter also referred to as “GDL”) 21 and a pair of separators 22 .
- the catalyst layer 12 has a structure in which an electrode catalyst is supported on the surface of a carrier.
- the conductive titanium oxide of the present invention can be used as a support for catalyst layer 12 .
- the metal-supporting conductive titanium oxide of the present invention can be used as the anode-side electrode catalyst layer 12A of the pair of catalyst layers 12 described above. Alternatively, it can be used as the cathode-side electrode catalyst layer 12C. It can also be used for both the anode side electrode catalyst layer 12A and the cathode side electrode catalyst layer 12C.
- Solid polymer electrolyte layer As shown in FIG. 1, the solid polymer electrolyte layer 11 is a solid polymer membrane having proton conductivity.
- the material of the solid polymer electrolyte layer 11 is not particularly limited, and fluorine-based polymer electrolytes and hydrocarbon-based polymer electrolytes are used.
- fluorine-based polymer electrolytes include Nafion (registered trademark) manufactured by DuPont, FLMION (registered trademark) manufactured by Asahi Glass Co., Ltd., ACIPLEX (registered trademark) manufactured by Asahi Kasei Corporation, and Gore Corporation. and GORE-SELECT (registered trademark).
- hydrocarbon-based polymer electrolyte membranes examples include electrolyte membranes such as sulfonated polyether ketone, sulfonated polyether sulfone, sulfonated polyether ether sulfone, sulfonated polysulfide, and sulfonated polyphenylene.
- the solid polymer electrolyte layer 11 has a pair of surfaces.
- the anode-side electrode catalyst layer 12A is bonded to one of the pair of surfaces.
- a cathode-side electrode catalyst layer 12C is joined to the other surface. That is, on both surfaces of the solid polymer electrolyte layer 11, a pair of catalyst layers 12 composed of an anode side electrode catalyst layer 12A and a cathode side electrode catalyst layer 12C are joined.
- a pair of catalyst layers 12 are bonded to both surfaces of the solid polymer electrolyte layer 11 to form the MEA 10 .
- the surface to which the cathode side electrode catalyst layer 12C is bonded is the cathode surface
- the surface to which the anode side electrode catalyst layer 12A is bonded is the anode surface.
- the pair of catalyst layers 12 is composed of an anode side electrode catalyst layer 12A and a cathode side electrode catalyst layer 12C.
- Each of the pair of catalyst layers 12 has a carrier and an electrode catalyst supported on the surface of the carrier.
- the carrier is composed of a conductive titanium oxide. Specifically, the carrier is formed in the form of a film by aggregation of a plurality of particulate conductive titanium oxides.
- the conductive titanium oxide has a conductivity of 0.1 S/cm or more measured under a pressure of 10 MPa.
- the conductive titanium oxide preferably has a conductivity of 1 S/cm or more measured under a pressure of 10 MPa.
- the conductive titanium oxide Because the conductivity of the conductive titanium oxide is within the above numerical range, the conductive titanium oxide has conductivity comparable to that of graphite. Therefore, it can be used as a support for the catalyst layer 12 in place of a carbon material generally used. Since the conductive titanium oxide is excellent in durability, by using it as the carrier of the catalyst layer 12, it is possible to suitably suppress deterioration in the durability of the carrier. A method for measuring conductivity will be described later.
- the conductive titanium oxide preferably has a specific surface area of 100 m 2 /g or more, more preferably 150 m 2 /g or more.
- the specific surface area is within the above numerical range, the supported amount of the electrode catalyst can be relatively increased. Therefore, when used in the catalyst layer 12 of the polymer electrolyte fuel cell 20, it can contribute to the improvement of power generation performance.
- the method for measuring the specific surface area is not particularly limited, but for example, it can be measured by a gas adsorption method, also known as a BET method, using nitrogen (N 2 ) as an adsorbent molecule.
- the particle size of the conductive titanium oxide is not particularly limited, but the average particle size is preferably 500 nm or less, more preferably 100 nm or less.
- the specific surface area of the carrier can be relatively increased.
- the method for measuring the average particle size of the conductive titanium oxide is not particularly limited, but for example, it can be measured by observing a plurality of particles with an electron microscope, measuring the particle size, and calculating the average value. .
- the conductive titanium oxide is preferably composed of a single phase.
- the method for measuring the crystal structure of the conductive titanium oxide is not particularly limited, but for example, it can be measured by using a known X-ray diffractometer (hereinafter also referred to as "XRD diffractometer").
- the carrier may contain materials other than the conductive titanium oxide as long as the effects of the present invention can be achieved.
- materials other than conductive titanium oxide include carbon materials such as graphite.
- the electrode catalyst is a catalyst for promoting oxidation-reduction reaction in each catalyst layer 12 .
- the oxygen reduction reaction represented by the following formula (1) is promoted.
- the hydrogen oxidation reaction represented by the following formula (2) is promoted.
- electrode catalyst is not particularly limited, and both noble metal catalysts and non-noble metal catalysts can be used as long as they have electrochemical catalytic activity.
- electrode catalysts include platinum (Pt), ruthenium (Ru), iridium (Ir), palladium (Pd), rhodium (Rh), osmium (Os), gold (Au), silver (Ag), and the like.
- Noble metals and alloys containing these noble metals are included.
- tantalum (Ta), zirconium (Zr), titanium (Ti), molybdenum (Mo), chromium (Cr), cobalt (Co), iron (Fe), and the like are included.
- the amount of the electrode catalyst supported is not particularly limited, but is preferably 10% by mass or more, more preferably 15% by mass or more, relative to the sum of the mass of the electrode catalyst and the catalyst carrier.
- the cathode side electrode catalyst layer 12C and the anode side electrode catalyst layer 12A are configured to be one size smaller than the solid polymer electrolyte layer 11, and are positioned inside the outer peripheral edge of the solid polymer electrolyte layer 11. is joined to
- an anode-side gasket 13A is arranged as one of the pair of gaskets 13 on the outer periphery that is not covered with the anode-side electrode catalyst layer 12A.
- a cathode-side gasket 13C is arranged as the other of the pair of gaskets 13 on the outer peripheral portion not covered with the cathode-side electrode catalyst layer 12C.
- the material constituting the gasket 13 is not particularly limited, for example, fluororesin can be used. Specifically, a fluororesin film can be used. Gas leakage from the outer peripheral portion of the solid polymer electrolyte layer 11 is suppressed by arranging the cathode side gasket 13C and the anode side gasket 13A.
- GDL As shown in FIG. 1 , a pair of GDLs 21 are arranged on both sides of the MEA 10 .
- a cathode-side gas diffusion layer (hereinafter also referred to as “cathode-side GDL”) 21C is arranged in contact with the cathode-side electrode catalyst layer 12C of the MEA 10 .
- An anode-side gas diffusion layer (hereinafter also referred to as “anode-side GDL”) 21A is arranged in contact with the anode-side electrode catalyst layer 12A of the MEA 10 .
- a pair of GDLs 21 is made of a material having gas diffusion and electrical conductivity.
- Materials constituting the GDL 21 are not particularly limited, but examples thereof include porous carbon materials such as carbon cloth, carbon paper, and non-woven fabric.
- a cathode 20C also called an air electrode, is composed of the cathode-side electrode catalyst layer 12C and the cathode-side GDL 21C.
- An anode 20A which is also called a fuel electrode, is composed of the anode-side electrode catalyst layer 12A, the anode-side GDL, and 21A.
- a single cell is configured by arranging the cathode-side GDL 21C and the anode-side GDL 21A in the MEA 10 .
- the pair of separators 22 are arranged outside the GDLs 21 arranged on both sides of the MEA 10 .
- the separator 22 arranged on the cathode side GDL 21C is called a cathode side separator 22C.
- the separator 22 arranged on the anode-side GDL 21A is called an anode-side separator 22A.
- a pair of separators 22 has a plurality of grooves on both sides.
- the groove 22Cg on the GDL 21C side of the cathode-side separator 22C functions as a channel through which an oxidizing gas such as air flows.
- the groove 22Cw on the side opposite to the GDL 21 functions as a channel through which cooling water flows.
- the groove 22Ag on the GDL 21A side of the anode-side separator 22A functions as a channel through which fuel gas such as hydrogen or hydrogen-containing gas flows.
- the groove 22Aw on the side opposite to the GDL 21A functions as a channel through which cooling water flows.
- the oxidizing gas flowing through the grooves 22Cg of the cathode-side separator 22C is supplied to the cathode 20C, and the fuel gas flowing through the grooves 22Ag of the anode-side separator 22A is supplied to the anode 20A, thereby causing the above electrochemical reaction. occur. Thereby, a DC voltage is generated between the cathode 20C and the anode 20A.
- the material forming the separator 22 is not particularly limited, but examples include metal materials such as stainless steel and carbon materials such as graphite.
- the PEFC 20 is configured by the above members.
- PEFC20 can efficiently convert the chemical energy of hydrogen into electrical energy, it is expected that power generation systems using PEFC20 will spread. In addition, since it is easier to miniaturize than the conventional fuel cell, it is expected to be introduced as a small-scale fixed power source such as a vehicle power source and a household power source.
- a method for producing a conductive titanium oxide, a method for producing a metal-supported conductive titanium oxide, a method for producing the MEA 10, and a method for producing the PEFC 20 will be described below.
- a method for producing a conductive titanium oxide has a gelation step of gelling a solution containing a titanium source and a carbon source. Moreover, it has a drying step of drying the gel obtained in the gelling step at a temperature of 105° C. or higher and 200° C. or lower to prepare a dried body. Furthermore, it has a heating step of heating the dried body at a temperature of 800° C. or more and 1200° C. or less in an atmosphere containing hydrogen.
- the titanium source is not particularly limited, and known titanium compounds can be used.
- a known titanium compound one that is easily dissolved in a solvent such as water is preferred.
- Specific examples of titanium compounds include titanyl sulfate and titanium fluoride. Titanyl sulfate and titanium fluoride are relatively stable in the atmosphere, and are therefore easy to handle.
- the carbon source is not particularly limited, and known carbon-containing compounds can be used.
- the known carbon-containing compound one that is easily dissolved in a solvent such as water is preferable.
- a solvent such as water
- carbon-containing compounds having a relatively high carbon content include polymers in which bonds between carbon atoms form a main chain.
- the polymer include polyethylene glycol and polyvinyl alcohol.
- Gelation step first, a solvent is used to prepare a solution containing a titanium source and a carbon source.
- the solvent is not particularly limited, and known solvents can be used. Examples of known solvents include water and alcohols.
- the type of water is not particularly limited, and for example, distilled water, pure water, ultrapure water, purified water, tap water, etc. can be used.
- the type of alcohol is not particularly limited, and for example, methanol, ethanol, propanol, etc. can be used. A mixture of water and alcohol at any ratio may be used.
- the titanium source and the carbon source When preparing a solution containing a titanium source and a carbon source, it is preferable to add the titanium source and the carbon source to the solvent and stir. Stirring can be performed using a known stirrer. Moreover, you may stir while heating.
- the heating temperature during stirring while heating is not particularly limited, but is preferably 30° C. or higher and 300° C. or lower.
- the contents of the titanium source and the carbon source in the above solution are not particularly limited, and the contents can be selected as appropriate.
- the content of the titanium source and the carbon source in the solution is preferably such that the mass ratio of the carbon source to TiO 2 is 0.05 or more and 30 or less, assuming that the titanium source is all titanium oxide (TiO 2 ). It is more preferably 0.1 or more and 20 or less.
- the solution containing the titanium source and the carbon source is stirred to gel.
- the heating temperature for gelation is not particularly limited, it is preferably 50° C. or higher and 300° C. or lower, for example. Gelation may be performed without heating the solution. Moreover, although the solution is heated, gelation may be performed without stirring.
- the gel obtained in the gelling step is dried at a temperature of 105° C. or higher and 200° C. or lower to produce a dry body.
- the drying temperature is more preferably 110° C. or higher and 180° C. or lower, and further preferably 110° C. or higher and 150° C. or lower.
- dry body means that the solvent content is 20% by mass or less.
- a dry body can be rephrased as a precursor.
- the drying temperature is within the above numerical range, the gel can be dried efficiently.
- titanyl sulfate is used as the titanium source, the sulfur contained in the raw material can be efficiently removed by setting the drying temperature to 105° C. or higher, and the sulfur content of the dried product can be reduced. .
- drying time is not particularly limited, it is preferably 0.5 hours or more and 40 hours or less, more preferably 3 hours or more and 30 hours or less.
- a drying process can be performed using a well-known electric dryer.
- a step of pulverizing the dried body into a powder may be performed as appropriate.
- the step of pulverizing the dried matter can be rephrased as a step of crushing the dried matter.
- Heating process In the heating step, the dried body obtained in the drying step is heated at a temperature of 800° C. or higher and 1200° C. or lower in an atmosphere containing hydrogen. The heating temperature is preferably 900° C. or higher and 1050° C. or lower.
- the titanium compound contained in the dried body can be efficiently reduced with the carbon source to produce a conductive titanium oxide.
- a reaction involving the above reduction is also called a carbothermal reduction reaction.
- the atmosphere containing hydrogen is not particularly limited, and may be an atmosphere in which gases other than hydrogen are mixed.
- Gases other than hydrogen include inert gases.
- Specific examples of inert gas include nitrogen gas, helium gas, argon gas, and the like.
- the heating time is not particularly limited, it is preferably 1 hour or more and 8 hours or less. By setting the heating time within the above numerical range, the conductive titanium oxide can be obtained in a shorter time.
- a conductive titanium oxide having a conductivity of 0.1 S/cm or more measured under a pressure of 10 MPa can be produced.
- the method for producing a conductive titanium oxide it is possible to efficiently produce a titanium oxide having a Magnelli phase and a composition of Ti 3 O 5 in a single phase and having an average particle size of 500 nm or less. can be done.
- the conventional method for producing a Magneli phase or a titanium oxide having a composition of Ti 3 O 5 it was necessary to perform heating for a long time while the moisture content in the atmosphere was strictly controlled. . Therefore, it is difficult to produce a single phase, and long-term heating may cause an increase in particle size.
- the method for producing a conductive titanium oxide of the present invention it is not necessary to strictly control the amount of water in the atmosphere, and the production can be completed in a shorter period of time. Therefore, it is easy to produce a single phase, and the particle size can be made smaller. Moreover, production efficiency can be improved.
- a step of pulverizing the sintered body obtained through the heating step into a powder may be performed as appropriate.
- the step of pulverizing the fired body can be rephrased as the step of crushing the fired body.
- a method for producing a metal-supporting conductive titanium oxide comprises dispersing the conductive titanium oxide produced by the above method for producing a conductive titanium oxide and a metal solution in an organic solvent having a hydroxyl group to prepare a dispersion. It has a dispersing step that It also has a carrying step of heating the dispersion to carry the metal contained in the metal solution on the conductive titanium oxide.
- the conductive titanium oxide produced by the above method for producing a conductive titanium oxide and the metal solution are dispersed in an organic solvent having a hydroxyl group to prepare a dispersion.
- the type of metal dissolved in the metal solution is not particularly limited, and metals used in electrode catalysts can be used.
- the solvent for the metal solution is not particularly limited, and may be an inorganic solvent such as water or an inorganic acid, or an organic solvent such as alcohol.
- the metals dissolved in the metal solution may be used singly or in combination of two or more.
- the organic solvent having a hydroxyl group is not particularly limited.
- an organic solvent having a hydroxyl group bonded to a hydrocarbon group can be used.
- the hydrocarbon group may be an aromatic hydrocarbon group or an aliphatic hydrocarbon group.
- the aliphatic hydrocarbon group may be a linear aliphatic hydrocarbon group or a branched aliphatic hydrocarbon group. It may be a saturated aliphatic hydrocarbon group or an unsaturated aliphatic hydrocarbon group.
- organic solvents having hydroxyl groups include alcohols such as ethanol.
- the organic solvent having a hydroxyl group may be used alone or in combination of two or more.
- the dispersion liquid obtained in the dispersing step is heated to support the metal contained in the metal solution on the conductive titanium oxide. Specifically, when the dispersion is heated, the metal in the metal solution is reduced by an organic solvent having a hydroxyl group. Metal is supported on the conductive titanium oxide by depositing the reduced metal particles on the surface of the conductive titanium oxide.
- the above heating temperature is not particularly limited, it is preferably 20° C. or higher and 98° C. or lower, and more preferably 25° C. or higher and 95° C. or lower.
- the heating temperature is within the above numerical range, the metal can be efficiently supported on the conductive titanium oxide.
- the heating time is not particularly limited, it is preferably 6 hours or more and 48 hours or less. By setting the heating time within the above numerical range, the metal can be supported on the conductive titanium oxide in a shorter time.
- the supporting step can be performed using a known electric furnace.
- a post-treatment step may be performed after the supporting step.
- the post-treatment process is not particularly limited, but a washing process and a drying process may be performed.
- the washing step for example, the dispersion that has undergone the supporting step may be subjected to suction filtration and washed with distilled water.
- the drying step for example, the substrate that has undergone the carrying step and the washing step may be naturally dried, or may be dried by heating in an atmosphere of an inert gas such as nitrogen gas. Both natural drying and drying under an inert gas atmosphere may be performed.
- the conditions for drying by heating in an inert gas atmosphere are, for example, at 20° C. or higher and 120° C. or lower for 6 hours or longer and 48 hours or shorter, and after drying in a nitrogen gas atmosphere, further at 120° C. or higher and 400° C. or lower. Drying may be performed in a helium gas atmosphere for 6 hours or more and 48 hours or less.
- a metal-supported conductive titanium oxide can be obtained through the above steps.
- Metal particles as a metal catalyst are supported on the metal-supported conductive titanium oxide in a state of being dispersed on the surface of the conductive titanium oxide.
- the supported metal particles are fine particles having an average particle diameter of about 1 nm or more and 5 nm or less. When the average particle size of the metal particles is within the above numerical range, the catalytic activity can be improved when used as a catalyst layer.
- a method for manufacturing the MEA 10 is not particularly limited.
- the catalyst layer 12 may be formed on a known transfer substrate, and the catalyst layer 12 may be bonded to the solid polymer electrolyte layer 11 by thermocompression bonding.
- the catalyst layer 12 may be formed on a pair of GDLs 21, and the catalyst layer 12 may be bonded to the solid polymer electrolyte layer 11 by thermocompression bonding.
- the catalyst layer 12 may be formed directly on the solid polymer electrolyte layer 11 .
- the method for forming the catalyst layer 12 is not particularly limited, it can be formed, for example, by applying a catalyst ink to a transfer substrate and drying it.
- the catalyst ink contains an electrode catalyst and a carrier.
- the catalyst ink may contain a polymer electrolyte and a solvent in addition to the above.
- the manufacturing method of PEFC20 is not particularly limited.
- a known adhesive material is applied to the outer peripheral portions that are not covered with the pair of catalyst layers 12. As shown in FIG. By placing a pair of gaskets 13 on the adhesive material, the gaskets 13 are joined to the outer peripheral portions of both surfaces of the solid polymer electrolyte layer 11 .
- FIG. PEFC20 can be manufactured by the above method.
- the method for manufacturing the MEA 10 and the method for manufacturing the PEFC 20 are not limited to the above manufacturing methods, and the order may be changed as appropriate.
- the action and effect of the conductive titanium oxide of this embodiment will be described.
- the conductive titanium oxide has a conductivity of 0.1 S/cm or more measured under a pressure of 10 MPa.
- the conductive titanium oxide becomes as conductive as graphite. Therefore, it can be used in place of a carbon material generally used as a carrier for catalyst layers. Since the conductive titanium oxide is excellent in durability, it is possible to suitably suppress deterioration in the durability of the support by using it as the support for the catalyst layer.
- the conductive titanium oxide has a specific surface area of 100 m 2 /g or more.
- the specific surface area is within the above numerical range, the supported amount of the electrode catalyst can be relatively increased. Therefore, when used in the catalyst layer of a polymer electrolyte fuel cell, it can contribute to the improvement of power generation performance.
- the metal-supported conductive titanium oxide has the conductive titanium oxide and metal particles supported on the conductive titanium oxide. Therefore, when used as a catalyst layer of a polymer electrolyte fuel cell, excellent power generation performance can be exhibited.
- a method for producing a conductive titanium oxide comprises: a gelation step of gelling a solution containing a titanium source and a carbon source; It has a drying step of drying to produce a dried product. and a heating step of heating the dried body at a temperature of 800° C. or higher and 1200° C. or lower in an atmosphere containing hydrogen.
- a conductive titanium oxide having a conductivity of 0.1 S/cm or more measured under a pressure of 10 MPa can be produced. Further, it is possible to efficiently produce a titanium oxide having a Magneli phase or a single phase composition of Ti 3 O 5 and having an average particle size of 500 nm or less.
- a method for producing a metal-supporting conductive titanium oxide comprises dispersing the conductive titanium oxide produced by the above method for producing a conductive titanium oxide and a metal solution in an organic solvent having a hydroxyl group. It has a dispersing step of preparing a liquid. It also has a carrying step of heating the dispersion to carry the metal contained in the metal solution on the conductive titanium oxide.
- the metal particles which are fine particles having an average particle diameter of about 1 nm or more and 5 nm or less, can be supported on the conductive titanium oxide, so that the catalytic activity can be improved when used as a catalyst layer.
- the conductive titanium oxide and the metal-supported conductive titanium oxide of the present invention are not limited to the mode used for the membrane electrode assembly of the polymer electrolyte fuel cell. It may be used as a membrane electrode assembly in a fuel cell other than a polymer electrolyte fuel cell. It may also be used as a catalyst layer carrier or a catalyst layer other than the membrane electrode assembly.
- one of the pair of catalyst layers 12 constitutes the anode side electrode catalyst layer 12A and the other constitutes the cathode side electrode catalyst layer 12C, but it is not limited to this aspect.
- One of the pair of catalyst layers 12 may constitute the cathode side electrode catalyst layer 12C and the other may constitute the anode side electrode catalyst layer 12A.
- a pair of gaskets 13, a pair of GDLs 21, and a pair of separators 22 are the same. That is, the polymer electrolyte fuel cell 20 may have a structure in which FIG. 1 is turned upside down.
- polyethylene glycol 400 having an average molecular weight of 360 to 440 (hereinafter also simply referred to as "polyethylene glycol”) was used.
- a mixed solution was prepared by mixing 491 mL of distilled water and 9 mL of polyethylene glycol. 24.5 g of titanyl sulfate was added to this mixed solution. This mixed solution was stirred for 15 hours while being heated to 80° C. using a known stirrer to gel.
- the resulting gel was dried at 150° C. for 6 hours using a known electric dryer.
- the resulting dried body was ground in an agate mortar to form a powder.
- 1 g of the powdery dried body was placed on a known alumina boat. This alumina boat was set in a quartz tubular furnace, and both ends of the quartz tubular furnace were sealed. Nitrogen gas was introduced into the quartz tubular furnace for 20 minutes to replace the inside of the quartz tubular furnace with nitrogen gas.
- the gas to be circulated in the quartz tubular furnace was switched to a mixed gas of argon gas and hydrogen gas.
- the ratio of hydrogen gas in the mixed gas was 10% by volume.
- the temperature of the quartz tubular furnace was heated to 967° C. at a rate of 10° C./min to bake the dried body. After being held at 967° C. for 3 hours, it was naturally cooled to room temperature.
- the temperature for heating the dried body is also referred to as the firing temperature.
- Example 2 The sintered body obtained by sintering the dried body was ground in an agate mortar to obtain the conductive titanium oxide of Example 1.
- Example 2 A conductive titanium oxide was obtained in the same manner as in Example 1, except that the amount of dry powder placed on the alumina boat was changed to 2 g.
- Example 3 a conductive titanium oxide was obtained in the same manner as in Example 1, except that the amount of dry powder placed on the alumina boat was changed to 4 g.
- Example 4 A conductive titanium oxide was obtained in the same manner as in Example 1, except that the sintering temperature was changed to 1000°C.
- Example 5 A conductive titanium oxide was obtained in the same manner as in Example 1, except that titanyl sulfate was changed to titanium fluoride whose chemical formula is TiF4 .
- Example 2 A conductive titanium oxide was obtained in the same manner as in Example 1, except that the gel drying temperature was changed to 100°C.
- the resulting conductive titanium oxide had a strong sulfur odor originating from the raw material and was poor in handleability, so subsequent evaluation was not performed.
- the conductive titanium oxides of Examples 1 to 5 and Comparative Example 1 were observed using a known scanning electron microscope. In each example, the particle size of 10 randomly selected conductive titanium oxides was measured, and the average value was defined as the average particle size.
- Example 6 [Preparation of metal-supported conductive titanium oxide] (Example 6) 0.80 g of conductive titanium oxide (Ti 4 O 7 ) prepared by the method described in Example 1 was weighed. This was dispersed in 100 mL of distilled water and ultrasonically stirred at 28 kHz for 5 minutes.
- the resulting mixed solution was placed in a vessel equipped with a reflux condenser.
- the reflux condenser was immersed in an oil bath at 25°C.
- the mixture was stirred at room temperature at 800 rpm for 1 hour.
- Three 10 mL portions of ethanol were added to the container. Stirred at room temperature at 800 rpm for 30 minutes.
- the temperature of the oil bath was raised to 95°C.
- the mixture was stirred at a rotation speed of 600 rpm for 12 hours to support the platinum particles on the conductive titanium oxide.
- the resulting dispersion was suction filtered and washed with 1000 mL of distilled water.
- the resulting powder was air dried overnight at room temperature. After that, using a ceramic electric tubular furnace and a simple temperature control unit, it was dried at 80° C. for 10 hours under a nitrogen gas atmosphere (60 cm 3 /min). Then, the atmosphere was switched to helium gas (60 cm 3 /min) and dried at 300° C. for 2 hours.
- a metal-supported conductive titanium oxide was obtained by the above procedure. The amount of platinum supported on the conductive titanium oxide was 5% by mass.
- Example 7 In Example 6, except that the mass ratio of conductive titanium oxide to platinum (platinum: conductive titanium oxide) was 1:9, the same method as in Example 6 was performed to obtain the metal-supported conductive metal of Example 7. Titanium oxide was obtained. The amount of platinum supported on the conductive titanium oxide was 10% by mass.
- Example 8 In Example 6, except that the mass ratio of conductive titanium oxide to platinum (platinum: conductive titanium oxide) was 2: 8, the same method as in Example 6 was performed to obtain the metal-supported conductive metal of Example 8. Titanium oxide was obtained. The amount of platinum supported on the conductive titanium oxide was 20% by mass.
- Example 9 In Example 6, except that the mass ratio of conductive titanium oxide to platinum (platinum: conductive titanium oxide) was 3:7, the same method as in Example 6 was performed to obtain the metal-supported conductive metal of Example 9. Titanium oxide was obtained. The amount of platinum supported on the conductive titanium oxide was 30% by mass.
- Example 8 the metal-supported conductive titanium oxide of Comparative Example 3 was prepared in the same manner as in Example 8, except that the titanium oxide of Comparative Example 1 was used instead of the conductive titanium oxide of Example 1. got stuff The amount of platinum supported on the conductive titanium oxide was 20% by mass.
- Example 10 Metal-supported conductive titanium oxide having a platinum-supported amount of 5% by mass prepared in Example 6 was used as a cathode catalyst, and commercially available Pt/C (TEC10E50E, manufactured by Tanaka Kikinzoku Kogyo Co., Ltd.) was used as an anode catalyst to produce an MEA. fabricated and assembled into a single cell.
- Pt/C TEC10E50E, manufactured by Tanaka Kikinzoku Kogyo Co., Ltd.
- carbon paper was prepared as a support for the electrode catalyst layer. After forming the electrode catalyst layer on the carbon paper, it was thermocompression bonded to the polymer electrolyte membrane. 0.36 g of carbon black (Vulcan XC-72R, manufactured by Lion Corporation) was added to 7.2 mL of ethanol and ultrasonically stirred at room temperature at 28 kHz for 10 minutes.
- carbon black Vulcan XC-72R, manufactured by Lion Corporation
- PTFE polytetrafluoroethylene
- the prepared carbon black ink was applied onto carbon paper and baked at 350° C. for 1 hour in an air atmosphere.
- a Nafion solution of metal-supported conductive titanium oxide having a platinum-supported amount of 5% by mass was dried so that the mass ratio of metal-supported conductive titanium oxide to Nafion (Nafion: metal-supported conductive titanium oxide) was 1:9. and applied to carbon paper.
- Pt/C was applied to the anode carbon paper.
- the amount of platinum used per geometric area was adjusted to 0.5 mg/cm 2 for the carbon paper for the cathode and 0.2 mg/cm 2 for the carbon paper for the anode. 2.2 cm 2 .
- Teflon sheet frame (4.0 ⁇ 4.0 cm 2 , thickness 0.1 mm) and aluminum foil. Note that Teflon is a registered trademark.
- a 2.3 cm x 2.3 cm cutout was used for the inside of the Teflon sheet frame. They were thermocompressed at 135° C. for 20 minutes with a pressure of 10.0 MPa, and the Teflon sheet was removed to obtain an MEA.
- Power was generated by supplying pure hydrogen and pure oxygen to the anode and cathode, respectively, at a flow rate of 85 ml/min. Hydrogen was 80° C., oxygen was 100% humidified at 75° C., and the single cell was set at 80° C. to obtain current density-voltage characteristics.
- Example 11 In Example 10, using the method described in Example 10, MEA and single A cell was fabricated and power generation characteristics were obtained.
- Example 12 In Example 10, using the method described in Example 10, MEA and single A cell was fabricated and power generation characteristics were obtained.
- Example 13 In Example 10, using the method described in Example 10, MEA and single A cell was fabricated and power generation characteristics were obtained.
- Example 14 In Example 12, using the method described in Example 10, MEA and single A cell was fabricated and power generation characteristics were obtained. That is, in the MEA of Example 14, metal-supporting conductive titanium oxide having a platinum-supporting amount of 20% by mass was used for both the anode and the cathode.
- Example 10 an MEA and a single cell were produced using the method described in Example 10, except that the cathode catalyst was changed to the same Pt/C as the anode catalyst, and power generation characteristics were obtained. That is, the MEA of Reference Example 1 used Pt/C for both the anode and the cathode.
- Example 14 an MEA was produced using the method described in Example 14, except that the metal-supported conductive titanium oxide having a platinum-supported amount of 20% by mass synthesized in Comparative Example 3 was used as a catalyst for both electrodes. A single cell was fabricated and the power generation characteristics were obtained.
- Example 14 (Accelerated deterioration test) Using the MEA of Example 14, an accelerated aging test was performed to evaluate durability. After obtaining the initial power generation characteristics, the voltage was held at 0.6 V for 30 seconds while supplying hydrogen to the anode and oxygen to the cathode.
- the commercially available carbon black had a conductivity of about 10 S/cm at a pressure of 10 MPa.
- the conductive titanium oxide of Comparative Example 1 had a conductivity of about 0.001 S/cm at a pressure of 10 MPa.
- the conductive titanium oxide of Example 1 was confirmed to have a conductivity of about 1 S/cm at a pressure of 10 MPa.
- the average particle sizes of the conductive titanium oxides of Examples 1 to 5 were 0.1 ⁇ m, 0.1 ⁇ m, 0.1 ⁇ m, 0.2 ⁇ m, and 0.3 ⁇ m, respectively. there were. Also, the average particle size of the conductive titanium oxide of Comparative Example 1 was 3 ⁇ m. From the average particle size values, it is presumed that the conductive titanium oxides of Examples 2 to 5 have a specific surface area similar to that of Example 1.
- Comparative Example 4 had low power generation characteristics because it used a titanate compound with low conductivity.
- Examples 10 to 14 it was confirmed that the power generation characteristics were all improved.
- Examples 10 to 13 it was confirmed that by increasing the supported amount of platinum to 20% by mass to 30% by mass, the power generation characteristics were also improved. It is presumed that Ti 4 O 7 has a large specific surface area and has a sufficient area for supporting platinum. Generally, the performance of PEFCs is determined by the cathode, and the metal-supported conductive titanium oxide provided by the present invention has been found to function well as a cathode catalyst.
- Example 14 platinum-supported Ti 4 O 7 was used on both electrodes, but power generation performance equivalent to Example 12, which was used only on the cathode side, and Reference Example 1, which used Pt/C on both electrodes, was shown. rice field. It was found that platinum-supported Ti 4 O 7 also functions well as an anode catalyst.
- FIG. 9 shows the power generation characteristics of the single cell before and after the 10,000-cycle accelerated deterioration test.
- the performance did not deteriorate even after 10,000 accelerated deterioration tests, and that the MEA had high durability. From this, it was found that when the conductive titanium oxide of the present invention was used as the carrier of the catalyst layer, deterioration in the durability of the carrier could be suppressed.
- membrane electrode assembly 11 solid polymer electrolyte layer 12 catalyst layer 12A anode side electrode catalyst layer 12C cathode side electrode catalyst layer 13 gasket 13A anode side gasket 13C cathode side gasket 20 polymer electrolyte fuel cell 20A anode 20C cathode 21 gas diffusion Layer 21A Anode-side gas diffusion layer 21C Cathode-side gas diffusion layer 22 Separator 22A Anode-side separator 22C Cathode-side separator
Landscapes
- Chemical & Material Sciences (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Inorganic Chemistry (AREA)
- Environmental & Geological Engineering (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Materials Engineering (AREA)
- Sustainable Energy (AREA)
- Sustainable Development (AREA)
- Manufacturing & Machinery (AREA)
- Fuel Cell (AREA)
- Inert Electrodes (AREA)
Abstract
Description
上記導電性チタン酸化物について、比表面積が100m2/g以上であることが好ましい。
上記課題を解決するための膜電極接合体は、固体高分子電解質層と、前記固体高分子電解質層に接合された一対の触媒層とを備える膜電極接合体であって、前記一対の触媒層の少なくとも一方が、上記金属担持導電性チタン酸化物を含有することを要旨とする。
上記課題を解決するための導電性チタン酸化物の製造方法は、チタン源と炭素源とを含む溶液をゲル化するゲル化工程と、前記ゲル化工程で得られたゲルを、105℃以上200℃以下の温度で乾燥して乾燥体を作製する乾燥工程と、前記乾燥体を、水素を含有する雰囲気下で800℃以上1200℃以下の温度で加熱する加熱工程とを有することを要旨とする。
図1に示すように、固体高分子形燃料電池(以下、「PEFC」ともいう。)20は、固体高分子電解質層11と、固体高分子電解質層11に接合された一対の触媒層12とを有する膜電極接合体(以下、「MEA」ともいう。)10を備える。一対の触媒層12の一方がアノード側電極触媒層12Aを構成し、他方がカソード側電極触媒層12Cを構成する。
触媒層12は、担体の表面に電極触媒が担持された構造を有している。本発明の導電性チタン酸化物は、触媒層12の担体として用いることができる。本発明の金属担持導電性チタン酸化物は、上記一対の触媒層12のうち、アノード側電極触媒層12Aとして用いることができる。もしくは、カソード側電極触媒層12Cとして用いることができる。アノード側電極触媒層12Aとカソード側電極触媒層12Cの両方に用いることもできる。
[固体高分子電解質層]
図1に示すように、固体高分子電解質層11は、プロトン伝導性を有する固体状の高分子膜である。
フッ素系高分子電解質の具体例としては、例えば、デュポン社製のNafion(登録商標)、旭硝子(株)製のFLMION(登録商標)、旭化成(株)製のACIPLEX(登録商標)、ゴア社製のGORE-SELECT(登録商標)等が挙げられる。
[触媒層]
図1に示すように、一対の触媒層12は、アノード側電極触媒層12Aと、カソード側電極触媒層12Cとで構成される。一対の触媒層12はそれぞれ、担体と、担体の表面に担持された電極触媒とを有する。
担体は、導電性チタン酸化物で構成されている。具体的には、担体は、複数の粒子状の導電性チタン酸化物が凝集して、膜状に形成されている。
導電性チタン酸化物は、10MPaの圧力下で測定した導電率が1S/cm以上であることが好ましい。
比表面積が上記数値範囲であることにより、電極触媒の担持量を相対的に大きくすることができる。そのため、固体高分子形燃料電池20の触媒層12に用いた際に、発電性能の向上に寄与することができる。
導電性チタン酸化物の粒子径は、特に制限されないが、平均粒子径が500nm以下であることが好ましく、100nm以下であることがより好ましい。
導電性チタン酸化物の平均粒子径の測定方法は、特に制限されないが、例えば、電子顕微鏡で複数の粒子を観察して粒子径を測定し、その平均値を算出することによって測定することができる。
導電性チタン酸化物の結晶構造の測定方法は、特に制限されないが、例えば、公知のX線回折装置(以下、「XRD回折装置」ともいう。)を用いることによって測定することができる。
電極触媒は、各触媒層12での酸化還元反応を促すための触媒である。カソードでは、以下の式(1)で示される酸素還元反応を促す。アノードでは、以下の式(2)で示される水素酸化反応を促す。
H2→2H++2e-・・・式(2)
なお、上記の酸化還元反応を、電気化学反応ともいうものとする。
電極触媒の具体例としては、例えば白金(Pt)、ルテニウム(Ru)、イリジウム(Ir)、パラジウム(Pd)、ロジウム(Rh)、オスミウム(Os)、金(Au)、銀(Ag)等の貴金属、及びこれらの貴金属を含む合金が挙げられる。また、タンタル(Ta)、ジルコニウム(Zr)、チタン(Ti)、モリブデン(Mo)、クロム(Cr)、コバルト(Co)、鉄(Fe)等が挙げられる。
[ガスケット]
図1に示すように、カソード側電極触媒層12Cとアノード側電極触媒層12Aは、固体高分子電解質層11よりも一回り小さく構成されており、固体高分子電解質層11の外周縁よりも内側に接合されている。
カソード側ガスケット13C、及びアノード側ガスケット13Aが配置されていることによって、固体高分子電解質層11の外周部からのガス漏れが抑制される。
図1に示すように、一対のGDL21は、MEA10の両面に配置されている。MEA10のカソード側電極触媒層12Cに接した状態で、カソード側ガス拡散層(以下、「カソード側GDL」ともいう。)21Cが配置されている。また、MEA10のアノード側電極触媒層12Aに接した状態で、アノード側ガス拡散層(以下、「アノード側GDL」ともいう。)21Aが配置されている。
図1に示すように、一対のセパレーター22は、MEA10の両面に配置されたGDL21の外側に配置されている。カソード側GDL21Cに配置されたセパレーター22を、カソード側セパレーター22Cという。アノード側GDL21Aに配置されたセパレーター22を、アノード側セパレーター22Aという。
カソード側セパレーター22CにおけるGDL21C側の溝22Cgは、空気等の酸化性ガスが流通する流路として機能する。GDL21側とは反対側の溝22Cwは、冷却水が流通する流路として機能する。
以上の各部材によってPEFC20は構成される。
[導電性チタン酸化物の製造方法]
導電性チタン酸化物の製造方法は、チタン源と炭素源とを含む溶液をゲル化するゲル化工程を有する。また、ゲル化工程で得られたゲルを、105℃以上200℃以下の温度で乾燥して乾燥体を作製する乾燥工程を有する。さらに、乾燥体を、水素を含有する雰囲気下で800℃以上1200℃以下の温度で加熱する加熱工程を有する。
チタン化合物の具体例としては、例えば硫酸チタニル、フッ化チタン等が挙げられる。硫酸チタニルやフッ化チタンは、大気中で比較的安定であるため、取り扱い性に優れている。
(ゲル化工程)
ゲル化工程では、まず、溶媒を用いてチタン源と炭素源とを含む溶液を作製する。
水の種類は特に制限されず、例えば蒸留水、純水、超純水、精製水、水道水等を用いることができる。
水とアルコールを任意の割合で混合したものを用いてもよい。
乾燥工程では、ゲル化工程で得られたゲルを、105℃以上200℃以下の温度で乾燥して乾燥体を作製する。乾燥温度は、110℃以上180℃以下であることがより好ましく、110℃以上150℃以下であることがさらに好ましい。
乾燥温度が上記数値範囲であることにより、効率良くゲルを乾燥させることができる。また、チタン源として硫酸チタニルを使用している場合は、乾燥温度を105℃以上にすることによって、原料に含まれる硫黄を効率良く除去して、乾燥体の硫黄含有量を低減することができる。
乾燥工程は、公知の電気式乾燥機を用いて行うことができる。
(加熱工程)
加熱工程では、乾燥工程で得られた乾燥体を、水素を含有する雰囲気下で800℃以上1200℃以下の温度で加熱する。加熱温度は、900℃以上1050℃以下であることが好ましい。
金属担持導電性チタン酸化物の製造方法は、上記導電性チタン酸化物の製造方法で製造された導電性チタン酸化物と、金属溶液とを、水酸基を有する有機溶媒に分散させて分散液を作製する分散工程を有する。また、分散液を加熱して金属溶液が有する金属を導電性チタン酸化物に担持する担持工程を有する。
分散工程では、上記の導電性チタン酸化物の製造方法で製造された導電性チタン酸化物と、金属溶液とを、水酸基を有する有機溶媒に分散させて分散液を作製する。
水酸基を有する有機溶媒としては、特に制限されない。例えば炭化水素基に結合した水酸基を有する有機溶媒を用いることができる。上記炭化水素基としては、芳香族炭化水素基であってもよいし、脂肪族炭化水素基であってもよい。脂肪族炭化水素基は、直鎖脂肪族炭化水素基であってもよいし、分岐鎖を有する脂肪族炭化水素基であってもよい。飽和脂肪族炭化水素基であってもよいし、不飽和脂肪族炭化水素基であってもよい。
水酸基を有する有機溶媒は、一種を単独で使用してもよいし、二種以上を組み合わせて使用してもよい。
担持工程では、分散工程で得た分散液を加熱して、金属溶液が有する金属を導電性チタン酸化物に担持する。具体的には、分散液を加熱した際に、金属溶液中の金属が、水酸基を有する有機溶媒によって還元される。導電性チタン酸化物の表面に、還元された金属粒子が析出することによって、導電性チタン酸化物に金属が担持される。
加熱温度が上記数値範囲であることにより、効率良く導電性チタン酸化物に金属を担持することができる。
後処理工程としては、特に制限されないが、洗浄工程や、乾燥工程を行なってもよい。洗浄工程としては、例えば、担持工程を経た分散液を吸引濾過し、蒸留水を用いて洗浄してもよい。乾燥工程としては、例えば、担持工程や洗浄工程を経たものを自然乾燥してもよいし、窒素ガス等の不活性ガス雰囲気下で加熱して乾燥してもよい。自然乾燥と不活性ガス雰囲気下での乾燥の両方を行ってもよい。
MEA10の製造方法は、特に制限されない。例えば、公知の転写用基材に触媒層12を形成し、熱圧着によって固体高分子電解質層11に触媒層12を接合してもよい。また、一対のGDL21に触媒層12を形成し、熱圧着によって固体高分子電解質層11に触媒層12を接合してもよい。また、固体高分子電解質層11に対して、直に触媒層12を形成してもよい。
触媒インクは、電極触媒と担体とを含有する。触媒インクは、上記以外に、高分子電解質や溶媒を含有していてもよい。
PEFC20の製造方法は、特に制限されない。例えば、MEA10を構成する固体高分子電解質層11の両面において、一対の触媒層12によって覆われていない外周部に公知の粘着材を塗布する。この粘着材の上に一対のガスケット13を配置することによって、固体高分子電解質層11の両面の外周部にガスケット13を接合する。
以上の方法によってPEFC20を製造することができる。MEA10の製造方法、及びPEFCの製造方法20は、上記の製造方法に限定されず、適宜順番を入れかえて行ってもよい。
(1)導電性チタン酸化物は、10MPaの圧力下で測定した導電率が0.1S/cm以上である。導電性チタン酸化物がグラファイト並みの導電性を有したものとなる。そのため、触媒層の担体として一般的に用いられる炭素材料に代えて使用することが可能になる。導電性チタン酸化物は、耐久性に優れているため、触媒層の担体として用いることによって、担体の耐久性の低下を好適に抑制することが可能になる。
本実施形態は、以下のように変更して実施することができる。本実施形態及び以下の変更例は、技術的に矛盾しない範囲で互いに組み合わせて実施することができる。
[導電性チタン酸化物の作製]
(実施例1)
チタン源として、化学式がTiOSO4・nH2Oである硫酸チタニルを用いた。
蒸留水491mLと、ポリエチレングリコール9mLとを混合して、混合溶液を作製した。この混合溶液に硫酸チタニル24.5gを添加した。この混合溶液を、公知の撹拌機を用いて80℃に加熱しながら15時間撹拌して、ゲル化させた。
得られた乾燥体を、メノウ乳鉢で擂潰して粉末状にした。
次に、粉末状の乾燥体1gを、公知のアルミナボート上に載置した。このアルミナボートを石英管状炉にセットし、石英管状炉の両端を封止した。石英管状炉の内部に窒素ガスを20分間導入して、石英管状炉の内部を窒素ガスで置換した。
石英管状炉の温度を、10℃/minの昇温速度で967℃まで加熱して乾燥体を焼成した。967℃で3時間保持した後、室温まで自然冷却した。以下、乾燥体を加熱する温度を焼成温度ともいう。
(実施例2)
実施例1において、アルミナボートに載せる乾燥粉末を2gに変更したこと以外は、実施例1と同様な方法によって導電性チタン酸化物を得た。
実施例1において、アルミナボートに載せる乾燥粉末を4gに変更したこと以外は、実施例1と同様な方法によって導電性チタン酸化物を得た。
実施例1において、焼成温度を1000℃に変更したこと以外は、実施例1と同様な方法によって導電性チタン酸化物を得た。
実施例1において、硫酸チタニルを、化学式がTiF4であるフッ化チタンに変更したこと以外は、実施例1と同様な方法によって導電性チタン酸化物を得た。
粉末状の乾燥体として、化学式がTiO2である酸化チタン0.4gを用いたこと、及び焼成温度を1050℃に変更して6時間保持したことを除いて、実施例1と同様な方法によって導電性チタン酸化物を得た。
実施例1において、ゲルの乾燥温度を100℃に変更したこと以外は、実施例1と同様な方法によって導電性チタン酸化物を得た。得られた導電性チタン酸化物は、原料由来の硫黄臭がひどく、取扱性が悪いため、以後の評価を行わなかった。
(XRD測定)
XRD回折装置(MiniFlex600、(株)リガク製)を用いて、実施例1~5、及び比較例1の導電性チタン酸化物のX線回折パターンを測定した。結果を図2~4に示す。
自動粉体抵抗測定システム(MCP-PD600、(株)日東精工アナリテック製)を用いて、実施例1、比較例1の導電性チタン酸化物の導電率を測定した。また、参考として、市販のカーボンブラックの導電率を測定した。なお、導電率の測定は、3MPaから64MPaの範囲で圧力を加えながら測定した。結果を図5に示す。
比表面積・細孔分布測定装置(BELSORP MINI X、マイクロトラック・ベル(株)製)を用いて、実施例1の導電性チタン酸化物の吸着等温線を-196℃で測定した。吸着分子としては、窒素(N2)を用いた。結果を図6に示す。
公知の走査型電子顕微鏡を用いて、実施例1~5、及び比較例1の導電性チタン酸化物を観察した。各例において、ランダムに選択した10個の導電性チタン酸化物の粒子径を測定して、その平均値を平均粒子径とした。
(実施例6)
実施例1に記載した方法で作製した導電性チタン酸化物(Ti4O7)を0.80g秤量した。これを100mLの蒸留水に分散させ、5分間、28kHzで超音波撹拌した。
これらを、白金に対する導電性チタン酸化物の質量比(白金:導電性チタン酸化物)が1:19となるように混合した。
マグネチックスターラーを用いて、室温にて800rpmの回転数で1時間撹拌した。この容器に、エタノールを10mLずつ3回に分けて添加した。室温にて800rpmの回転数で30分間撹拌した。
得られた分散液を吸引濾過し、1000mLの蒸留水を用いて洗浄した。
実施例6において、白金に対する導電性チタン酸化物の質量比(白金:導電性チタン酸化物)を1:9とした以外は、実施例6と同様の方法によって、実施例7の金属担持導電性チタン酸化物を得た。導電性チタン酸化物に対する白金の担持量は、10質量%であった。
実施例6において、白金に対する導電性チタン酸化物の質量比(白金:導電性チタン酸化物)を2:8とした以外は、実施例6と同様の方法によって、実施例8の金属担持導電性チタン酸化物を得た。導電性チタン酸化物に対する白金の担持量は、20質量%であった。
実施例6において、白金に対する導電性チタン酸化物の質量比(白金:導電性チタン酸化物)を3:7とした以外は、実施例6と同様の方法によって、実施例9の金属担持導電性チタン酸化物を得た。導電性チタン酸化物に対する白金の担持量は、30質量%であった。
実施例8において、実施例1の導電性チタン酸化物に代えて、比較例1の酸化チタンを用いたこと以外は、実施例8と同様の方法によって、比較例3の金属担持導電性チタン酸化物を得た。導電性チタン酸化物に対する白金の担持量は、20質量%であった。
(実施例10)
実施例6で作製した白金担持量が5質量%の金属担持導電性チタン酸化物をカソード触媒とし、市販のPt/C(TEC10E50E、田中貴金属工業(株)製)をアノード触媒として用いてMEAを作製し、単セルに組み込んだ。
0.36gのカーボンブラック(Vulcan XC-72R、ライオン(株)製)を7.2mLのエタノールに加え、室温にて28kHzにて10分間超音波撹拌した。
次いで、ガラス棒を用いてPTFEが凝集しないよう、室温で20分間撹拌した。
白金担持量が5質量%の金属担持導電性チタン酸化物のNafion溶液を、乾燥後のNafionに対する金属担持導電性チタン酸化物の質量比(Nafion:金属担持導電性チタン酸化物)が1:9となるように混合し、カーボンペーパーに塗布した。
実施例10において、カソード触媒を実施例7で合成した白金担持量が10質量%の金属担持導電性チタン酸化物に変更したこと以外は、実施例10に記載の方法を用いて、MEAと単セルを作製し発電特性を得た。
実施例10において、カソード触媒を実施例8で合成した白金担持量が20質量%の金属担持導電性チタン酸化物に変更したこと以外は、実施例10に記載の方法を用いて、MEAと単セルを作製し発電特性を得た。
実施例10において、カソード触媒を実施例9で合成した白金担持量が30質量%の金属担持導電性チタン酸化物に変更したこと以外は、実施例10に記載の方法を用いて、MEAと単セルを作製し発電特性を得た。
実施例12において、アノード触媒を実施例8で合成した白金担持量が20質量%の金属担持導電性チタン酸化物に変更したこと以外は、実施例10に記載の方法を用いて、MEAと単セルを作製し発電特性を得た。すなわち、実施例14のMEAでは、アノードとカソード両極に白金担持量が20質量%の金属担持導電性チタン酸化物を用いた。
実施例10において、カソード触媒をアノード触媒と同じPt/Cに変更したこと以外は、実施例10に記載の方法を用いて、MEAと単セルを作製し発電特性を得た。すなわち、参考例1のMEAは、アノードとカソード両極にPt/Cを用いた。
実施例14において、両極の触媒として、比較例3で合成した白金担持量が20質量%の金属担持導電性チタン酸化物を用いたこと以外は、実施例14に記載の方法を用いて、MEAと単セルを作製し発電特性を得た。
(単セル発電特性)
実施例10~14、参考例1、比較例4のMEAを用いて作製した単セルの発電特性を測定した。結果を図7、8に示す。
実施例14のMEAを用いて、耐久性を評価するため加速劣化試験をした。初期の発電特性を取得後、アノードに水素、カソードに酸素を供給したまま30秒間0.6Vに電圧を保持した。
図2~4に示すX線回折パターンより、実施例1~3の導電性チタン酸化物は、単一相のTi4O7であることが確認された。また、実施例4の導電性チタン酸化物は、単一相のTi3O5であることが確認された。また、実施例5の導電性チタン酸化物は、単一相のTi2O3であることが確認された。
図9に示すように、実施例14のMEAを用いた試験では、1万回の加速劣化試験後も性能が低下せず、高耐久であることが確認された。これにより、本発明の導電性チタン酸化物を触媒層の担体に用いると、担体の耐久性の低下を抑制できることが分かった。
11 固体高分子電解質層
12 触媒層
12A アノード側電極触媒層
12C カソード側電極触媒層
13 ガスケット
13A アノード側ガスケット
13C カソード側ガスケット
20 固体高分子形燃料電池
20A アノード
20C カソード
21 ガス拡散層
21A アノード側ガス拡散層
21C カソード側ガス拡散層
22 セパレーター
22A アノード側セパレーター
22C カソード側セパレーター
Claims (7)
- 10MPaの圧力下で測定した導電率が0.1S/cm以上であることを特徴とする導電性チタン酸化物。
- 比表面積が100m2/g以上である請求項1に記載の導電性チタン酸化物。
- 請求項1又は2に記載の導電性チタン酸化物と、当該導電性チタン酸化物に担持された金属粒子とを有することを特徴とする金属担持導電性チタン酸化物。
- 固体高分子電解質層と、
前記固体高分子電解質層に接合された一対の触媒層とを備える膜電極接合体であって、
前記一対の触媒層の少なくとも一方が、請求項3に記載の金属担持導電性チタン酸化物を含有することを特徴とする膜電極接合体。 - 請求項4に記載された膜電極接合体と、一対のガス拡散層と、一対のセパレーターとを備えることを特徴とする固体高分子形燃料電池。
- チタン源と炭素源とを含む溶液をゲル化するゲル化工程と、
前記ゲル化工程で得られたゲルを、105℃以上200℃以下の温度で乾燥して乾燥体を作製する乾燥工程と、
前記乾燥体を、水素を含有する雰囲気下で800℃以上1200℃以下の温度で加熱する加熱工程とを有することを特徴とする導電性チタン酸化物の製造方法。 - 請求項6に記載された導電性チタン酸化物の製造方法で製造された導電性チタン酸化物と、金属溶液とを、水酸基を有する有機溶媒に分散させて分散液を作製する分散工程と、
前記分散液を加熱して前記金属溶液が有する金属を前記導電性チタン酸化物に担持する担持工程とを有することを特徴とする金属担持導電性チタン酸化物の製造方法。
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
EP22867275.4A EP4400480A1 (en) | 2021-09-08 | 2022-09-01 | Electroconductive titanium oxide, metal-supported electroconductive titanium oxide, membrane electrode assembly, solid polymer electrolyte fuel cell, method for producing electroconductive titanium oxide, and method for producing metal-supported electroconductive titanium oxide |
CN202280060468.2A CN117957199A (zh) | 2021-09-08 | 2022-09-01 | 导电性钛氧化物、金属担载导电性钛氧化物、膜电极接合体、固体高分子型燃料电池、导电性钛氧化物的制造方法以及金属担载导电性钛氧化物的制造方法 |
US18/689,674 US20240387834A1 (en) | 2021-09-08 | 2022-09-01 | Electroconductive titanium oxide, metal-supported electroconductive titanium oxide, membrane electrode assembly, solid polymer electrolyte fuel cell, method for producing electroconductive titanium oxide, and method for producing metal-supported electroconductive titanium oxide |
JP2023546911A JPWO2023037953A1 (ja) | 2021-09-08 | 2022-09-01 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021146229 | 2021-09-08 | ||
JP2021-146229 | 2021-09-08 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2023037953A1 true WO2023037953A1 (ja) | 2023-03-16 |
Family
ID=85506687
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2022/032920 WO2023037953A1 (ja) | 2021-09-08 | 2022-09-01 | 導電性チタン酸化物、金属担持導電性チタン酸化物、膜電極接合体、固体高分子形燃料電池、導電性チタン酸化物の製造方法、及び金属担持導電性チタン酸化物の製造方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20240387834A1 (ja) |
EP (1) | EP4400480A1 (ja) |
JP (1) | JPWO2023037953A1 (ja) |
CN (1) | CN117957199A (ja) |
WO (1) | WO2023037953A1 (ja) |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070037041A1 (en) * | 2005-08-12 | 2007-02-15 | Gm Global Technology Operations, Inc. | Electrocatalyst Supports for Fuel Cells |
JP2008186753A (ja) * | 2007-01-31 | 2008-08-14 | Hitachi Maxell Ltd | リチウム二次電池用正極活物質とその製造方法、リチウム二次電池用正極、およびリチウム二次電池 |
CN101279764A (zh) * | 2008-04-25 | 2008-10-08 | 陕西科技大学 | 一种金红石型纳米二氧化钛的制备方法 |
CN101671052A (zh) * | 2009-09-08 | 2010-03-17 | 西安瑞联近代电子材料有限责任公司 | 一种制备锐钛矿型纳米TiO2的方法 |
WO2013121801A1 (ja) * | 2012-02-17 | 2013-08-22 | 独立行政法人科学技術振興機構 | マクロ多孔性チタン化合物モノリスとその製造方法 |
JP2016219179A (ja) | 2015-05-18 | 2016-12-22 | 凸版印刷株式会社 | 膜電極構造体及び固体高分子形燃料電池、並びに膜電極構造体の製造方法 |
JP2018116872A (ja) * | 2017-01-19 | 2018-07-26 | トヨタ自動車株式会社 | 燃料電池用触媒層の製造方法 |
JP2018131370A (ja) * | 2017-02-17 | 2018-08-23 | テイカ株式会社 | 低次酸化チタン及びその製造方法 |
JP2020161272A (ja) * | 2019-03-26 | 2020-10-01 | 国立大学法人九州大学 | 電極材料、並びに電極、膜電極接合体及び固体高分子形燃料電池 |
-
2022
- 2022-09-01 WO PCT/JP2022/032920 patent/WO2023037953A1/ja active Application Filing
- 2022-09-01 CN CN202280060468.2A patent/CN117957199A/zh active Pending
- 2022-09-01 JP JP2023546911A patent/JPWO2023037953A1/ja active Pending
- 2022-09-01 EP EP22867275.4A patent/EP4400480A1/en active Pending
- 2022-09-01 US US18/689,674 patent/US20240387834A1/en active Pending
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20070037041A1 (en) * | 2005-08-12 | 2007-02-15 | Gm Global Technology Operations, Inc. | Electrocatalyst Supports for Fuel Cells |
JP2008186753A (ja) * | 2007-01-31 | 2008-08-14 | Hitachi Maxell Ltd | リチウム二次電池用正極活物質とその製造方法、リチウム二次電池用正極、およびリチウム二次電池 |
CN101279764A (zh) * | 2008-04-25 | 2008-10-08 | 陕西科技大学 | 一种金红石型纳米二氧化钛的制备方法 |
CN101671052A (zh) * | 2009-09-08 | 2010-03-17 | 西安瑞联近代电子材料有限责任公司 | 一种制备锐钛矿型纳米TiO2的方法 |
WO2013121801A1 (ja) * | 2012-02-17 | 2013-08-22 | 独立行政法人科学技術振興機構 | マクロ多孔性チタン化合物モノリスとその製造方法 |
JP2016219179A (ja) | 2015-05-18 | 2016-12-22 | 凸版印刷株式会社 | 膜電極構造体及び固体高分子形燃料電池、並びに膜電極構造体の製造方法 |
JP2018116872A (ja) * | 2017-01-19 | 2018-07-26 | トヨタ自動車株式会社 | 燃料電池用触媒層の製造方法 |
JP2018131370A (ja) * | 2017-02-17 | 2018-08-23 | テイカ株式会社 | 低次酸化チタン及びその製造方法 |
JP2020161272A (ja) * | 2019-03-26 | 2020-10-01 | 国立大学法人九州大学 | 電極材料、並びに電極、膜電極接合体及び固体高分子形燃料電池 |
Also Published As
Publication number | Publication date |
---|---|
CN117957199A (zh) | 2024-04-30 |
JPWO2023037953A1 (ja) | 2023-03-16 |
EP4400480A1 (en) | 2024-07-17 |
US20240387834A1 (en) | 2024-11-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11031604B2 (en) | Catalyst and electrode catalyst layer, membrane electrode assembly, and fuel cell using the catalyst | |
JP4629699B2 (ja) | 担持触媒とその製造方法、これを利用した電極及び燃料電池 | |
EP3053648B1 (en) | Use of carbon powder in fuel cell catalyst, fuel cell catalyst with carbon powder, electrode catalyst layer, membrane electrode assembly, and fuel cell | |
CA2910237C (en) | Catalyst and manufacturing method thereof, and electrode catalyst layer using the catalyst | |
KR100728182B1 (ko) | 연료 전지용 캐소드 촉매, 이를 포함하는 연료 전지용막-전극 어셈블리, 및 이를 포함하는 연료 전지 시스템 | |
JP6628867B2 (ja) | 電極触媒ならびに当該電極触媒を用いる膜電極接合体および燃料電池 | |
EP2991142A1 (en) | Catalyst, electrode catalyst layer using said catalyst, membrane electrode assembly, and fuel cell | |
CA2910375A1 (en) | Catalyst and electrode catalyst layer for fuel cell having the catalyst | |
CN106058268B (zh) | 燃料电池用电极的制造方法 | |
JP2006147563A (ja) | 金属触媒とその製造方法,電極の製造方法,および燃料電池 | |
KR20120026041A (ko) | 연료 전지용 애노드측 촉매 조성물 및 고체 고분자형 연료 전지용 막전극 접합체(mea) | |
JP2003036859A (ja) | 固体高分子型燃料電池及びその製造方法 | |
CA2910242A1 (en) | Catalyst, and electrode catalyst layer, membrane electrode assembly and fuel cell using the catalyst | |
JP2022513631A (ja) | 触媒、その製造方法、それを含む電極、それを含む膜-電極アセンブリー、及びそれを含む燃料電池 | |
WO2018047188A1 (en) | A bimetallic catalyst and fuel for use in a direct dimethyl ether fuel cell | |
JP6478677B2 (ja) | 燃料電池用電極 | |
JP2006210135A (ja) | 触媒電極材料、触媒電極、及びこれらの製造方法、電極触媒用の担体材料、並びに電気化学デバイス | |
JP6672622B2 (ja) | 燃料電池用電極触媒層およびその製造方法、ならびに当該触媒層を用いる膜電極接合体、燃料電池および車両 | |
WO2023037953A1 (ja) | 導電性チタン酸化物、金属担持導電性チタン酸化物、膜電極接合体、固体高分子形燃料電池、導電性チタン酸化物の製造方法、及び金属担持導電性チタン酸化物の製造方法 | |
JP6846210B2 (ja) | 電極触媒ならびに当該電極触媒を用いる膜電極接合体および燃料電池 | |
JP7570124B2 (ja) | 電極材料及びその製造方法 | |
JP6988143B2 (ja) | 燃料電池用触媒層の製造方法および電極触媒混合物 | |
JP2022138904A (ja) | 燃料電池用電極触媒、その選定方法及びそれを備える燃料電池 | |
KR100728185B1 (ko) | 연료 전지용 캐소드 촉매, 이를 포함하는 연료 전지용막-전극 어셈블리 및 연료 전지 시스템 | |
Golikand et al. | Gas Diffusion Electrodes for Direct Methanol Fuel Cells using Methanol-Resistant Catalyst |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 22867275 Country of ref document: EP Kind code of ref document: A1 |
|
DPE1 | Request for preliminary examination filed after expiration of 19th month from priority date (pct application filed from 20040101) | ||
WWE | Wipo information: entry into national phase |
Ref document number: 2023546911 Country of ref document: JP |
|
WWE | Wipo information: entry into national phase |
Ref document number: 18689674 Country of ref document: US Ref document number: 202280060468.2 Country of ref document: CN |
|
WWE | Wipo information: entry into national phase |
Ref document number: 2022867275 Country of ref document: EP |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2022867275 Country of ref document: EP Effective date: 20240408 |