[go: up one dir, main page]
More Web Proxy on the site http://driver.im/

WO2023037758A1 - 車両制御装置、車両制御方法、及び車両制御システム - Google Patents

車両制御装置、車両制御方法、及び車両制御システム Download PDF

Info

Publication number
WO2023037758A1
WO2023037758A1 PCT/JP2022/027368 JP2022027368W WO2023037758A1 WO 2023037758 A1 WO2023037758 A1 WO 2023037758A1 JP 2022027368 W JP2022027368 W JP 2022027368W WO 2023037758 A1 WO2023037758 A1 WO 2023037758A1
Authority
WO
WIPO (PCT)
Prior art keywords
control command
vehicle
control
trajectory
unit
Prior art date
Application number
PCT/JP2022/027368
Other languages
English (en)
French (fr)
Inventor
健太郎 上野
Original Assignee
日立Astemo株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立Astemo株式会社 filed Critical 日立Astemo株式会社
Priority to JP2023546811A priority Critical patent/JPWO2023037758A1/ja
Priority to DE112022004317.2T priority patent/DE112022004317T5/de
Priority to CN202280059749.6A priority patent/CN117916137A/zh
Publication of WO2023037758A1 publication Critical patent/WO2023037758A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/10Path keeping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/10Path keeping
    • B60W30/12Lane keeping
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/14Adaptive cruise control
    • B60W30/16Control of distance between vehicles, e.g. keeping a distance to preceding vehicle
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles

Definitions

  • the present invention relates to a vehicle control device, a vehicle control method, and a vehicle control system.
  • the travel locus generating device of Patent Document 1 derives a travel locus that satisfies the passing time required by the driver and other driving conditions.
  • a first convergence calculation unit that performs convergence calculations to derive a running trajectory so as to satisfy a condition, and a convergence calculation of an evaluation function for prioritizing a predetermined operating condition in a state in which the first constraint condition is satisfied.
  • a running locus derivation unit that derives the running locus by
  • the present invention has been made in view of the conventional situation, and its object is to provide a vehicle control device and a vehicle that can add performance of different indicators such as comfortable ride comfort in a vehicle running state due to driving assistance or automatic driving.
  • An object of the present invention is to provide a control method and a vehicle control system.
  • the control command to be output to the actuator unit that controls the motion of the vehicle is a control command related to driving assistance or automatic driving of the vehicle.
  • a certain first control command is switched to a second control command, which is a control command for executing the motion of the vehicle based on an index different from the first control command.
  • the present invention it is possible to add different indicators of performance, such as comfortable ride comfort, in vehicle running states due to driving assistance and automatic driving.
  • FIG. 1 is a block diagram showing a vehicle control system
  • FIG. FIG. 4 is a diagram showing the route, vehicle speed, acceleration, and jerk in traveling by LKA and ACC
  • FIG. 4 is a diagram showing a route, vehicle speed, acceleration, and jerk during travel under ride comfort control
  • 1 is a block diagram showing a specific configuration of a vehicle control system
  • FIG. It is a figure which shows the outline
  • FIG. 5 is a diagram showing an example of route calculation by trajectory planning; It is a figure which shows the setting of the vehicle speed, acceleration, and jerk by a trajectory plan. It is a figure which shows the 1st form of the switching process of a track
  • FIG. 11 is a diagram showing a second mode of track switching processing;
  • FIG. 11 is a diagram showing a third mode of track switching processing;
  • It is a block diagram which shows the structure of a track
  • 7 is a flowchart showing a process for determining an intervention condition for ride comfort control;
  • 5 is a time chart showing switching processing from a second control command to a first control command;
  • FIG. 4 is a system block diagram when the ADAS-ECU has a ride comfort control function;
  • FIG. 1 is a schematic configuration diagram showing one aspect of a vehicle control system 200 mounted on a vehicle 100 that is a four-wheeled vehicle.
  • the vehicle control system 200 includes an external recognition sensor device 300, a driving support control unit 400 (hereinafter referred to as ADAS-ECU 400) as a first control unit, a vehicle motion control device 500 as a second control unit, and an actuator section 600.
  • the external world recognition sensor device 300 is a device that detects and recognizes external world information of the vehicle 100, and has a stereo camera, a monocular camera, an all-around camera, and the like. Then, the external world recognition sensor device 300 outputs information about the road white lines and road shoulders on which the vehicle 100 is traveling, and information about the preceding vehicle of the vehicle 100 .
  • Actuator section 600 that controls motion of vehicle 100 includes steering device 610 , drive device 620 and braking device 630 .
  • the steering device 610 is an electronically controlled power steering device that includes a steering actuator such as a motor for changing the direction of the front wheels 101 and 102, that is, the steering angle, and can vary the steering angle by electronically controlling the steering actuator. Alternatively, it is a steer-by-wire steering system.
  • Drive device 620 is a device that transmits driving force generated by a power source such as a motor or an internal combustion engine to front wheels 101, 102 and/or rear wheels 103, 104 of vehicle 100, and electronically controls power supplied to the motor, It is a device that can change the driving force through electronic control of the throttle of the internal combustion engine.
  • the braking device 630 is equipped with, for example, an electric hydraulic pump as an energy source, and is a device capable of varying the braking force applied to the wheels 101-104 through electronic control of the hydraulic pressure supplied to the brake cylinders of the wheels 101-104. .
  • the braking device 630 is not limited to a hydraulic type or friction braking, and the vehicle control system 200 may use a braking device that moves a brake pad by driving a motor, a regenerative braking by a motor as the driving device 620, or the like as the braking device 630. can be used.
  • the ADAS-ECU 400 is an electronic control device that includes a microcomputer (arithmetic processing unit) that outputs results of arithmetic processing based on acquired information.
  • ADAS-ECU 400 acquires various kinds of information including forward information of vehicle 100 from external recognition sensor device 300 or the like, and issues a control command (hereinafter referred to as a first control command) for controlling actuator section 600. Generate.
  • Control commands for controlling actuator unit 600 include a steering command output to steering device 610 , a drive command output to drive device 620 , and a braking command output to braking device 630 .
  • the steering command is a steering torque command or a steering angle command
  • the driving command is a driving torque command
  • the braking command is a braking torque command, a hydraulic pressure command, a brake pressure command, or the like.
  • the ADAS-ECU 400 has a function of controlling the actuator unit 600 to assist the driving operation of the driver of the vehicle 100, and the first control command generated by the ADAS-ECU 500 is a control command for realizing driving assistance. is.
  • the ADAS-ECU 400 has, as driving support functions, a lane keeping assist function 410 (hereinafter referred to as LKA function 410) and an adaptive cruise control function 420 (hereinafter referred to as ACC function 420). ).
  • the LKA function 410 is a driving support function that maintains the center of the lane and suppresses deviation from the lane by steering control based on the detection and recognition of road white lines and road shoulders. That is, the LKA function 410 is a function for controlling the lateral position of the vehicle 100, in other words, the position of the vehicle 100 in the width direction of the road or lane, and causes the vehicle 100 to follow the route along the road shape.
  • the ACC function 420 is a function for controlling the braking/driving force based on the detection and recognition of the inter-vehicle distance, which is the distance to the preceding vehicle, and is basically used together with the LKA function 410 .
  • the ACC function 420 causes the vehicle 100 to run at a set speed at a constant speed, and when the vehicle 100 approaches the preceding vehicle, automatically accelerates or decelerates the vehicle 100 to follow the preceding vehicle while maintaining an appropriate inter-vehicle distance. It is a support function.
  • a state in which either one of the LKA function 410 and the ACC function 420 provides driving assistance corresponds to level 1 automatic driving.
  • the state of following the preceding vehicle while maintaining the lane corresponds to Level 2 automated driving.
  • the ADAS-ECU 400 has a control function that realizes level 1 to level 2 automatic driving with a person as the driving subject, and is a control command related to driving support or automatic driving First control that generates a first control command It is a control device with a command generator.
  • the vehicle motion control device 500 is an electronic control device provided with a microcomputer (in other words, an arithmetic processing unit) that outputs results of arithmetic processing based on acquired information.
  • the vehicle motion control device 500 includes a forward information acquisition section 510, a first control command acquisition section 520, a second control command generation section 530, and a switching section 540, and outputs a control command to the actuator section 600 to control the vehicle 100.
  • a vehicle control device that controls the motion of the
  • Forward information acquisition unit 510 acquires forward information of vehicle 100 detected and recognized by external world recognition sensor device 300 or the like. In other words, forward information acquisition unit 510 executes a step of acquiring forward information of vehicle 100 in vehicle motion control.
  • the first control command acquisition unit 520 acquires the first control command, which is the control command generated by the LKA function 410 and the ACC function 420 of the ADAS-ECU 400 . That is, the first control command acquisition unit 520 executes a step of acquiring the first control command in vehicle motion control.
  • the second control command generation unit 530 plans a trajectory that can realize a comfortable ride, and generates a control command (hereinafter referred to as a second control command) for the actuator unit 600 to cause the vehicle 100 to follow the planned trajectory. Generate. That is, the second control command generator 530 executes a step of generating the second control command in vehicle motion control.
  • the trajectory generated by second control command generation unit 530 includes route information and vehicle speed information.
  • the second control command generating unit 530 plans a trajectory that can realize a comfortable ride by performing trajectory planning with the acceleration in the lateral direction of the vehicle 100 or the jerk in the lateral direction of the vehicle 100 as a condition. do. In other words, the second control command generator 530 plans the trajectory in consideration of the lateral acceleration of the vehicle 100 or the lateral jerk of the vehicle 100 so as to satisfy a predetermined ride comfort condition. .
  • the first control command is a control command relating to a route along the road shape, the inter-vehicle distance, or the set speed
  • the second control command is a control command relating to the lateral acceleration of the vehicle 100, or It is a control command related to a trajectory planned on the condition of the lateral jerk of the vehicle 100 . That is, the second control command generator 530 generates a second control command, which is a control command for executing the motion of the vehicle, based on an index different from that of the first control command. Note that vehicle control based on the second control command is hereinafter referred to as "riding comfort control".
  • Switching unit 540 changes the control command to be output to actuator unit 600 from the first control command generated by ADAS-ECU 400 to the second control command generated by second control command generating unit 530 when forward information of vehicle 100 satisfies a predetermined condition. 2 Switch to the control command. That is, the switching unit 540 executes a step of switching from the first control command to the second control command in vehicle motion control. In other words, the switching unit 540 adds the performance index of "comfortable ride" that is different from the driving assistance in the vehicle running state in which the driving assistance by the LKA function 410 and the ACC function 420 is being performed. In other words, by switching the switching unit 540 from the first control command to the second control command, it is possible to improve ride comfort when driving assistance is performed by the LKA function 410 and the ACC function 420 .
  • the switching unit 540 determines whether or not to switch the control command based on road curvature information as forward information of the vehicle 100 and information as to whether or not a predetermined vehicle motion is requested. done based on In addition, the transition between the vehicle motion control state (in other words, driving support state) by the first control command and the vehicle motion control state (in other words, ride comfort control state) by the second control command is smooth.
  • the switching unit 540 and/or the second control command generating unit 530 may have a function of transiently processing the control command output to the actuator unit 600 so as to be performed.
  • the vehicle motion with good ride comfort in the second control command generation unit 530 means a vehicle in which the acceleration in the left-right direction (in other words, the lateral direction) and the jerk in the left-right direction of the vehicle 100 are suppressed within a predetermined range. Exercise.
  • the second control command generation unit 530 plans a trajectory that can reduce lateral acceleration and jerk in accordance with the ever-changing travelable area, and determines the planned trajectory. to generate a second control command for causing the vehicle 100 to follow.
  • the drivable area is within the lane of the road ahead, ensuring a margin up to the white line of the road (in other words, the lane boundary), avoiding obstacles, and ensuring a distance between the vehicle and the preceding vehicle. area.
  • the second control command generation unit 530 simultaneously calculates the vehicle speed that reduces the acceleration and jerk according to the route and the route that effectively uses the road width according to the vehicle speed, and plans the trajectory appropriately. As a result, the lateral acceleration and jerk of the vehicle 100 are reduced, thereby improving the ride comfort of the occupant.
  • FIG. 2 is a diagram illustrating vehicle speed, lateral acceleration, and lateral jerk when vehicle 100 is traveling at a constant speed while maintaining its lane by LKA function 410 and ACC function 420 .
  • FIG. 3 is a diagram illustrating vehicle speed, lateral acceleration, and lateral jerk on the same road as in FIG. 2 in a running state with ride comfort control interposed.
  • Ride comfort control on the other hand, simultaneously calculates the vehicle speed that reduces the acceleration and jerk according to the route and the route that effectively uses the road width according to the vehicle speed, thereby setting a route that can reduce the steering angle. , and the vehicle speed is reduced according to the increase in road curvature (see FIG. 3). Therefore, even when the road is curved, lateral acceleration and lateral jerk can be suppressed, and the ride comfort for the occupant of the vehicle 100 is improved (see FIG. 3).
  • FIG. 4 is a block diagram more specifically showing the configuration of the vehicle control system 200.
  • the vehicle control system 200 includes an external world recognition sensor device 300 , a map database 301 , a V2X module 302 , a GPS (Global Positioning System) receiver 303 , and a vehicle physical quantity sensor 304 .
  • GPS Global Positioning System
  • Map database 301 is formed in a storage device mounted on vehicle 100 .
  • the map information in the map database 301 includes information such as road positions, road shapes, and intersection positions.
  • a V2X (vehicle-to-everything) module 302 is a device for the microcomputers of the ADAS-ECU 400 and the vehicle motion control device 500 to communicate with microcomputers of other vehicles and roadside equipment, which are facilities on the road. is.
  • GPS receiver 303 measures the latitude and longitude of the position of vehicle 100 by receiving signals from GPS satellites.
  • the vehicle control system 200 refers to the map database 301 based on the position information of the vehicle 100 measured by the GPS receiving unit 303 to identify the road on which the vehicle 100 is traveling and to determine the purpose of the vehicle 100 . set a route to the ground.
  • Vehicle physical quantity sensor 304 has a vehicle speed sensor or a wheel speed sensor and detects the vehicle speed of vehicle 100 . Further, vehicle physical quantity sensor 304 has a vehicle behavior sensor that detects any one of longitudinal acceleration, lateral acceleration, vertical acceleration, yaw rate, pitch rate, and roll rate of vehicle 100 .
  • the vehicle motion control device 500 has a ride comfort control section 550 that constitutes the second control command generation section 530 , and the ride comfort control section 550 has a trajectory generation section 560 and a trajectory following control section 570 .
  • the trajectory generation unit 560 performs trajectory planning to generate a target trajectory that allows safe, secure, comfortable, and time-saving movement based on information on the drivable area in front of the vehicle.
  • the target trajectory generated by the trajectory generation unit 560 includes target route information and target vehicle speed information.
  • the trajectory generation unit 560 plans the target trajectory with the lateral acceleration and the jerk of the vehicle 100 as conditions in order to achieve the above-mentioned "comfort”, in other words, a comfortable ride.
  • the trajectory generation unit 560 reduces the acceleration and jerk in the left and right direction compared to the driving state by the LKA function 410 and the ACC function 420, so that the left and right acceleration and jerk are predetermined. Plan the target trajectory to be within range.
  • the predetermined range of acceleration and jerk is a range that is allowable from the viewpoint of ride comfort and is below the allowable upper limit.
  • the trajectory following control unit 570 outputs a steering control command, a drive control command, and a braking control command as actuator control commands for causing the vehicle 100 to follow the target trajectory planned by the trajectory generation unit 560, that is, second control commands. Output each.
  • the vehicle motion control device 500 also has a control intervention determination section 580 and three switches 590A, 590B, and 590C that constitute the switching section 540 .
  • the control intervention determination unit 580 provides a condition for intervening the ride comfort control, in other words, instead of the first control command generated by the driving support function of the ADAS-ECU 500, the second control command by the ride comfort control is sent to the actuator unit 600. It is determined whether or not the conditions for outputting to are satisfied. Then, control intervention determination section 580 outputs a switching control signal corresponding to the result of determining whether the intervention condition is met or not to switches 590A, 590B, and 590C.
  • the switch 590A outputs a steering control command (hereinafter referred to as a first steering control command) from the ADAS-ECU 500 (specifically, the LKA function 410) and a ride comfort control unit 550 (specifically, a trajectory following A steering control command (hereinafter referred to as a second steering control command) output by the control unit 570) is acquired.
  • Switch 590A switches the steering control command output to steering device 610 from the first steering control command to the second steering control command when control intervention determination unit 580 determines that the intervention condition for ride comfort control is satisfied.
  • the switch 590B outputs a drive control command (hereinafter referred to as a first drive control command) output by the ADAS-ECU 500 (more specifically, the ACC function 420) and a drive control command (hereinafter referred to as a first drive control command) output by the ride comfort control unit 550. hereinafter referred to as a second drive control command). Then, when control intervention determination unit 580 determines that the intervention condition for ride comfort control is satisfied, switch 590B switches the drive control command output to drive device 620 from the first drive control command to the second drive control command.
  • a drive control command hereinafter referred to as a first drive control command
  • a drive control command hereinafter referred to as a first drive control command
  • switch 590B switches the drive control command output to drive device 620 from the first drive control command to the second drive control command.
  • the switch 590C outputs a braking control command (hereinafter referred to as a first braking control command) output by the ADAS-ECU 500 (more specifically, the ACC function 420) and a braking control command (hereinafter referred to as a first braking control command) output by the ride comfort control unit 550. hereinafter referred to as a second braking control command).
  • a braking control command hereinafter referred to as a first braking control command
  • switch 590C switches the braking control command output to braking device 630 from the first braking control command to the second braking control command.
  • FIG. 5 is a diagram schematically showing the process by which the trajectory generator 560 obtains the target trajectory (target route and target vehicle speed) using nonlinear optimization theory.
  • the trajectory generator 560 calculates a target trajectory as an optimum solution that satisfies a plurality of conditions by performing trajectory calculation using a known nonlinear optimization method such as the quasi-Newton method.
  • the trajectory generator 560 finds a target trajectory that satisfies the following constraint conditions as a nonlinear optimization problem and maximizes the evaluation function.
  • ⁇ Restraint condition 1 [Safety and security] Keep the vehicle within the drivable area.
  • Constraint condition 2 [Time saving] Minimize the running time.
  • Constraint condition 3 [Comfort] Horizontal acceleration and jerk are kept within permissible values.
  • FIG. 6 and 7 are diagrams showing calculation examples of the target trajectory by the trajectory generator 560 for each of the first block to the third block, FIG. 6 showing the target route for the road shape, and FIG. Changes in acceleration and jerk when following the trajectory are shown.
  • the trajectory generation unit 560 calculates the target trajectory according to the traveling area that changes from moment to moment, thereby calculating the target trajectory that can realize a comfortable ride by suppressing the lateral acceleration and jerk of the vehicle 100 within the allowable range. Generate.
  • smoothly connecting the track means, for example, that the track is switched when the differential value of the curvature of the track is a predetermined value or less, and the track is switched when the lateral jerk of the vehicle 100 is a predetermined value or less.
  • FIG. 8 shows a first form of trajectory switching processing for smoothly connecting trajectories.
  • the trajectory generation unit 560 has a storage unit 561 (see FIG. 4), and stores the trajectory by the LKA function 410 and the ACC function 420 in the storage unit 561 . Then, the trajectory generation unit 560 calculates the target trajectory in ride comfort control so as to be smoothly connected to the trajectory stored in the storage unit 561 . That is, the control command is switched so that the track is connected when the differential value of the curvature of the track is equal to or less than a predetermined value or the jerk in the lateral direction of the vehicle 100 is equal to or less than a predetermined value.
  • FIG. 9 shows a second form of trajectory switching processing for smoothly connecting trajectories.
  • the trajectory generation unit 560 has a trajectory prediction unit 562 (see FIG. 4) that predicts a future trajectory when the driving support by the LKA function 410 and the ACC function 420 continues as it is.
  • the control command is switched based on the predicted trajectory predicted by the trajectory prediction unit 562 and the second control command.
  • the trajectory prediction unit 562 predicts the future trajectory based on the trajectory so far by the LKA function 410 and the ACC function 420, the operation state of the driver, the motion state of the vehicle 100, and the like.
  • the operation state of the driver includes any one of the operation angle of the steering wheel, the operation force of the steering wheel, the depression of the brake pedal, and the depression of the accelerator pedal.
  • the motion state of the vehicle 100 includes any one of vehicle speed, yaw rate, and left, right, front, and rear acceleration.
  • the trajectory generator 560 generates a target trajectory based on ride comfort control such that part of the target trajectory based on ride comfort control overlaps part or all of the trajectory predicted by the trajectory predictor 562 . That is, the control command output to the actuator unit 600 is switched from the first control command to the second control command so that the trajectory (in other words, ride comfort trajectory) based on the second control command overlaps at least a part of the predicted trajectory. .
  • FIG. 10 shows a third mode of trajectory switching processing for smoothly connecting trajectories.
  • the trajectory generator 560 has a trajectory predictor 562 (see FIG. 4), similarly to the second embodiment shown in FIG.
  • the trajectory generation unit 560 sets the trajectory estimated by the trajectory prediction unit 562 as the target trajectory immediately after switching from driving assistance by the LKA function 410 and the ACC function 420 to ride comfort control, and causes the vehicle 100 to follow the predicted trajectory. After that, the trajectory generator 560 switches the control command so that the predicted trajectory is gradually changed to the trajectory based on ride comfort control.
  • FIGS. 8 to 10 show the processing when switching from the driving assistance state by the LKA function 410 and the ACC function 420 to the ride comfort control, in other words, when switching from the first control command to the second control command.
  • the vehicle motion control device 500 can perform switching processing similar to that of the first to third modes even when switching in the opposite direction. That is, when returning from the ride comfort control to the driving support by the LKA function 410 and the ACC function 420, in other words, when switching from the second control command to the first control command, the storage unit 561 shown in FIGS. or the trajectory prediction unit 562 can be used to smoothly connect trajectories.
  • FIG. 11 is a block diagram showing one aspect of the trajectory tracking control section 570.
  • the trajectory following control section 570 has a vehicle position estimation section 571 , a curvature calculation section 572 , a closest point calculation section 573 , an attitude angle calculation section 574 , a relative position calculation section 575 and an actuator command section 576 .
  • the vehicle position estimator 571 estimates the position of the vehicle 100 by dead reckoning based on integral values of wheel speed, yaw rate, longitudinal acceleration, lateral acceleration, and the like. Note that the trajectory tracking control unit 570 can identify the position of the vehicle 100 using GPS.
  • the curvature calculation unit 572 acquires information on the target trajectory from the trajectory generation unit 560 and calculates the curvature and curvature change of the target trajectory.
  • the closest point calculator 573 calculates the closest point (in other words, the closest target position) that is the closest point to the position of the vehicle 100 on the target trajectory.
  • Attitude angle calculation unit 574 calculates an attitude angle of the own vehicle necessary to match the traveling direction of the own vehicle at the nearest point with the yaw angle of the nearest point (that is, the tangential direction of the target trajectory) based on the curvature and curvature change of the target trajectory.
  • the attitude angle is calculated by considering the vehicle speed and the like.
  • the relative position calculator 575 calculates the relative position of the closest point to the position of the host vehicle.
  • the actuator command section 576 corrects the yaw angle of the closest point based on the attitude angle calculated by the attitude angle calculation section 574 . Then, the actuator command unit 576 issues a steering command and an acceleration command (In other words, a drive command) or a deceleration command (in other words, a braking command) is generated based on the relative positions of the closest points.
  • a steering command In other words, a drive command
  • a deceleration command in other words, a braking command
  • FIG. 12 is a flowchart showing one aspect of intervention condition determination processing executed by control intervention determination unit 580 .
  • the control intervention determination unit 580 determines whether or not the conditions for carrying out ride comfort control are met based on the information in front of the vehicle.
  • control intervention determination unit 580 determines that the conditions for carrying out ride comfort control are not met, for example, when the recognition information of the front of the vehicle cannot be used. Further, control intervention determination unit 580 determines that the conditions for carrying out ride comfort control are not met, for example, when the shape of the travelable area in front of the vehicle is too complicated to calculate the route.
  • control intervention determination unit 580 determines in step S581 that the conditions for executing the ride comfort control are not met (in other words, the intervention conditions for the ride comfort control are not satisfied).
  • the process proceeds to step S585, and the ride is stopped.
  • Driving assistance functions such as the LKA function 410 and the ACC function 420 are continued without intervening comfort control.
  • control intervention determination unit 580 outputs a signal corresponding to the result of determining that the intervention condition for ride comfort control is not satisfied to switches 590A, 590B, and 590C.
  • the first control command is continuously output to the actuator section 600 without switching from the first control command to the second control command.
  • control intervention determination unit 580 determines in step S581 that the conditions for executing ride comfort control are met, the process proceeds to step S582 to perform further condition determination.
  • control intervention determination unit 580 determines whether or not it is sufficient for vehicle 100 to travel with the driving assistance function, in other words, whether or not desired effects can be obtained by ride comfort control.
  • the driving assistance function It is determined that it is sufficient if the vehicle 100 runs.
  • step S582 determines in step S582 that it is sufficient for the vehicle 100 to travel by the driving support function, in other words, if it is determined that there is little need to intervene in the ride comfort control, the process proceeds to step S585, where the vehicle 100 is driven. Driving assistance functions such as the LKA function 410 and the ACC function 420 are continued without intervening comfort control.
  • step S583 determines in step S582 that the ride comfort is expected to be improved by intervening the ride comfort control.
  • control intervention determination unit 580 determines whether or not the vehicle is in a state in which a predetermined vehicle motion that takes precedence over ride comfort is requested.
  • the state in which a predetermined vehicle motion that takes precedence over ride comfort is required means the state in which driving support functions other than the LKA function 410 and the ACC function 420 are implemented, and when the driver performs a driving operation, Such as the state of implementation of the safety function.
  • Driving support functions other than the LKA function 410 and the ACC function 420 include parking support functions, collision safety functions such as collision avoidance support and collision damage mitigation braking. Further, the driving operation by the driver includes the operation of the steering wheel by the driver, the operation of the brake pedal, the accelerator pedal, and the like.
  • the safety function includes a function called ABS (Anti-lock Braking System) that reduces the occurrence of skidding due to locking of the wheels, and a function called ESC (Electronic Stability Control) that suppresses skidding of the vehicle 100 .
  • ABS Anti-lock Braking System
  • ESC Electronic Stability Control
  • control intervention determining unit 580 determines in step S583 that the predetermined vehicle motion that takes precedence over the ride comfort control is not requested, it determines that the intervention condition for the ride comfort control is satisfied. Proceeding to step S584, settings are made to intervene in ride comfort control. In other words, when proceeding to step S584, the control intervention determination unit 580 outputs a signal corresponding to the result of determining that the intervention condition for ride comfort control is satisfied to the switches 590A, 590B, and 590C. The control command output to unit 600 is switched from the first control command to the second control command, and ride comfort control is performed.
  • the control intervention determination unit 580 After shifting to the ride comfort control, for example, when the road curvature is equal to or less than a predetermined value and the forward information of the vehicle no longer satisfies the predetermined condition, the control intervention determination unit 580 proceeds to step S585 to perform the ride comfort control. to stop Further, even if a safety function such as ESC is activated after transition to ride comfort control, the control intervention determination unit 580 proceeds to step S585 to stop the ride comfort control. Further, if the driver performs, for example, a steering operation after shifting to the ride comfort control, the control intervention determination unit 580 proceeds to step S585 to stop the ride comfort control.
  • a safety function such as ESC
  • the vehicle dynamics control device 500 cancels intervention of ride comfort control and returns to control by the LKA function 410, the ACC function 420, etc. will be described.
  • the vehicle motion control device 500 connects the trajectory by the LKA function 410, the ACC function 420, etc. to the trajectory by the ride comfort control when intervening the ride comfort control.
  • the vehicle motion control device 500 changes the control command output to the actuator unit 600 from the second control command by the ride comfort control to the second control command by the LKA function 410, the ACC function 420, etc. 1 control command.
  • the switches 590A, 590B, and 590C can have a function of gradually changing from the second control command to the first control command.
  • FIG. 13 is a time chart exemplifying changes in the control command when the ride comfort control intervention is cancelled.
  • the vehicle motion control device 500 changes the control command output to the actuator unit 600 from the second control command by the ride comfort control to the LKA function 410, the ACC function 420, and the like. The process of gradually approaching the first control command is started.
  • vehicle motion control device 500 changes the control command to be output to actuator section 600 from the second control command to the first control command over a period of several seconds, and at time t2, controls output to actuator section 600. Return the command to the first control command.
  • vehicle dynamics control device 500 gradually changes the control command from the second control command to the first control command, thereby suppressing sudden changes in vehicle behavior that accompany the switching of the control command. To prevent an occupant from feeling uncomfortable when switching a control command.
  • the vehicle motion control device 500 does not control the time during which the control signal is changed from the second control command to the first control command, in other words, the time during which the control command is changed from the second control command to the first control command.
  • the change speed of the command can be changed according to the condition that caused the cancellation.
  • the vehicle motion control device 500 changes the control signal from the second control command to the second control command when the satisfaction of the condition for canceling the intervention of the ride comfort control is due to the execution of the collision safety function, ABS, ESC, or other safety function.
  • the time required to change to 1 control command (time ⁇ t from time t1 to time t2 in FIG. 13) can be shortened compared to the case of canceling based on other canceling conditions.
  • FIG. 14 is a functional block diagram when the ADAS-ECU 400 has the functions of the vehicle motion control device 500. As shown in FIG.
  • the ADAS-ECU 400 can include a first microcomputer that executes arithmetic processing for driving support control and a second microcomputer that executes arithmetic processing for ride comfort control. Also, one microcomputer included in the ADAS-ECU 400 can execute arithmetic processing for driving support control and arithmetic processing for ride comfort control.
  • the ADAS-ECU 400 can also have an automatic driving function that automatically overtakes on a highway, a function that automatically merges and merges on a highway, and the like.
  • Actuator portion 600 may also include an active suspension with an energy source such as hydraulic or pneumatic.
  • the vehicle motion control device 500 can output a control command such as damping force of a damper to the active suspension in ride comfort control.
  • the vehicle motion control device 500 intervenes in ride comfort control on the condition that the "comfort" mode that emphasizes ride comfort is selected. can do.
  • ride comfort control the vehicle motion control device 500 calculates either the route or the vehicle speed in order to reduce lateral acceleration and jerk, and issues a control command ( second control command) can be output to the actuator unit 600 .
  • SYMBOLS 100... Vehicle, 200... Vehicle control system, 300... External recognition sensor device, 400... Driving assistance control unit (ADAS-ECU, first control unit), 410... Lane keep assist function (LKA function), 420... Adaptive cruise control Function (ACC function) 500 Vehicle motion control device (vehicle control device, second control unit) 510 Forward information acquisition unit 520 First control command acquisition unit 530 Second control command generation unit 540 Switching unit 600 Actuator unit 610 Steering device 620 Driving device 630 Braking device

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Control Of Driving Devices And Active Controlling Of Vehicle (AREA)

Abstract

本発明に係る車両制御装置、車両制御方法、及び車両制御システムによれば、その一態様として、車両の前方情報が所定の条件を満たすとき、車両の運動を制御するアクチュエータ部へ出力する制御指令を、車両の運転支援または自動運転に関する制御指令である第1制御指令から、前記第1制御指令とは異なる指標に基づいて車両の運動を実行させるための制御指令である第2制御指令へ切り替える。これにより、運転支援や自動運転による車両走行状態において、快適な乗り心地などの異なる指標の性能を付加できる。

Description

車両制御装置、車両制御方法、及び車両制御システム
 本発明は、車両制御装置、車両制御方法、及び車両制御システムに関する。
 特許文献1の走行軌跡生成装置は、運転者の要求する通過時間及びその他の運転条件を満足した走行軌跡を導出するものであり、所定の目標通過時間と道路境界線とに基づいた第1拘束条件を達成するように収束演算して走行軌跡を導出する第1収束演算部と、前記第1拘束条件を達成している状態において、所定の運転条件を優先させるための評価関数を収束演算して走行軌跡を導出する走行軌跡導出部と、を備える。
特開2009-115464号公報
 近年、レーンキープアシスト(Lane Keeping Assist:LKA)やアダプティブクルーズコントロール(Adaptive Cruise Control:ACC)などの機能を有する、先進支援システム(Advanced Driver Assistance System:ADAS)若しくは自動運転(Autonomous Driving:AD)と呼ばれる運転支援技術が開発されている。
 しかし、LKAやACCなどの機能は、乗員の乗り心地を考慮して車両運動を制御するものではないため、走行条件によっては左右方向の加速度や左右方向の加加速度の増大によって、乗員の乗り心地が悪くなってしまう場合があった。
 本発明は、従来の実情に鑑みてなされたものであり、その目的は、運転支援や自動運転による車両走行状態において、快適な乗り心地などの異なる指標の性能を付加できる、車両制御装置、車両制御方法、及び車両制御システムを提供することにある。
 本発明によれば、その1つの態様において、車両の前方情報が所定の条件を満たすとき、車両の運動を制御するアクチュエータ部へ出力する制御指令を、車両の運転支援または自動運転に関する制御指令である第1制御指令から、前記第1制御指令とは異なる指標に基づいて車両の運動を実行させるための制御指令である第2制御指令へ切り替える。
 本発明によれば、運転支援や自動運転による車両走行状態において、快適な乗り心地などの異なる指標の性能を付加できる。
車両制御システムを示すブロック図である。 LKA及びACCによる走行における経路、車速、加速度、加加速度を示す図である。 乗り心地制御による走行における経路、車速、加速度、加加速度を示す図である。 車両制御システムの具体的構成を示すブロック図である。 軌道計画の概要を示す図である。 軌道計画による経路の計算例を示す図である。 軌道計画による車速、加速度、加加速度の設定を示す図である。 軌道の切り替え処理の第1形態を示す図である。 軌道の切り替え処理の第2形態を示す図である。 軌道の切り替え処理の第3形態を示す図である。 軌道追従制御部の構成を示すブロック図である。 乗り心地制御の介入条件の判定処理を示すフローチャートである。 第2制御指令から第1制御指令への切り替え処理を示すタイムチャートである。 ADAS-ECUが乗り心地制御機能を備える場合のシステムブロック図である。
 以下、本発明に係る車両制御装置、車両制御方法、及び車両制御システムの実施形態を、図面に基づいて説明する。
 図1は、4輪自動車である車両100に搭載される車両制御システム200の一態様を示す概略構成図である。
 車両制御システム200は、外界認識センサ装置300、第1コントロールユニットである運転支援コントロールユニット400(以下では、ADAS-ECU400と称する。)、第2コントロールユニットである車両運動制御装置500、アクチュエータ部600を有する。
 外界認識センサ装置300は、車両100の外界情報を検知、認識する装置であり、ステレオカメラ、単眼カメラ、全周囲カメラなどを有する。
 そして、外界認識センサ装置300は、車両100が走行している道路白線や路肩に関する情報や、車両100の先行車に関する情報を出力する。
 車両100の運動を制御するアクチュエータ部600は、操舵装置610、駆動装置620、制動装置630を有する。
 操舵装置610は、操舵輪である前輪101,102の向き、つまり、操舵角を変えるためのモータなどの操舵アクチュエータを備え、操舵アクチュエータの電子制御によって操舵角を可変にできる、電子制御パワーステアリング装置或いはステアバイワイヤ式ステアリング装置である。
 駆動装置620は、たとえばモータや内燃機関などの動力源が発生する駆動力を車両100の前輪101,102及び/または後輪103,104に伝える装置であり、モータへの供給電力の電子制御や内燃機関のスロットルの電子制御などを通じて駆動力を可変にできる装置である。
 制動装置630は、たとえばエネルギー源としての電動式の油圧ポンプを備え、車輪101-104のブレーキシリンダに供給する油圧の電子制御を通じて、車輪101-104に付与する制動力を可変にできる装置である。
 なお、制動装置630を油圧式や摩擦制動に限定するものではなく、車両制御システム200は、モータ駆動によってブレーキパッドを動かす制動装置や、駆動装置620としてのモータによる回生制動などを制動装置630として用いることができる。
 ADAS-ECU400は、取得した情報に基づいて演算処理した結果を出力するマイクロコンピュータ(演算処理部)を備えた電子制御装置である。
 そして、ADAS-ECU400は、外界認識センサ装置300などから車両100の前方情報を含む各種の情報を取得し、アクチュエータ部600を制御するための制御指令(以下、第1制御指令と称する。)を生成する。
 アクチュエータ部600を制御するための制御指令は、操舵装置610に出力される操舵指令、駆動装置620に出力される駆動指令、制動装置630に出力される制動指令を含む。
 ここで、操舵指令は操舵トルク指令若しくは操舵角指令であり、駆動指令は駆動トルク指令であり、制動指令は、制動トルク指令、液圧指令、ブレーキ圧指令などである。
 ADAS-ECU400は、車両100の運転者の運転操作を支援するためにアクチュエータ部600を制御する機能を有し、ADAS-ECU500が生成する第1制御指令は、運転支援を実現するための制御指令である。
 ADAS-ECU400は、運転支援機能として、レーンキープアシスト(Lane Keeping Assist)機能410(以下、LKA機能410と称する。)、及び、アダプティブクルーズコントロール(Adaptive Cruise Control)機能420(以下、ACC機能420と称する。)を有する。
 LKA機能410は、道路白線や路肩の検知、認識に基づく操舵制御によって、車線中央の維持や車線逸脱の抑制を行う運転支援機能である。
 つまり、LKA機能410は、車両100の横位置、換言すれば、道路若しくは車線の幅方向における車両100の位置を制御する機能であり、道路形状に沿った経路に車両100を追従走行させる。
 ACC機能420は、先行車との距離である車間距離の検知、認識に基づき、制駆動力を制御する機能であって、基本的にLKA機能410と一緒に使用される。
 ACC機能420は、設定速度で車両100を定速走行させ、更に、先行車に近づいたときに車両100を自動的に加減速させて適切な車間距離を維持しながら先行車に追従走行させる運転支援機能である。
 なお、LKA機能410とACC機能420とのいずれか一方が運転支援する状態は、レベル1の自動運転に相当し、LKA機能410とACC機能420との双方が運転支援することで、車両100が車線を維持しながら先行車に追従走行する状態は、レベル2の自動運転に相当する。
 つまり、ADAS-ECU400は、運転主体を人とするレベル1乃至レベル2の自動運転を実現する制御機能を有し、運転支援または自動運転に関する制御指令である第1制御指令を生成する第1制御指令生成部を備えた制御装置である。
 車両運動制御装置500は、取得した情報に基づいて演算処理した結果を出力するマイクロコンピュータ(換言すれば、演算処理部)を備えた電子制御装置である。
 車両運動制御装置500は、前方情報取得部510、第1制御指令取得部520、第2制御指令生成部530、及び、切り替え部540を有し、アクチュエータ部600に制御指令を出力して車両100の運動を制御する車両制御装置である。
 前方情報取得部510は、外界認識センサ装置300などが検知、認識した車両100の前方情報を取得する。つまり、前方情報取得部510は、車両運動制御において、車両100の前方情報を取得するステップを実行する。
 第1制御指令取得部520は、ADAS-ECU400のLKA機能410、ACC機能420が生成した制御指令である第1制御指令を取得する。つまり、第1制御指令取得部520は、車両運動制御において、第1制御指令を取得するステップを実行する。
 第2制御指令生成部530は、快適な乗り心地を実現できる軌道を計画し、計画した軌道に車両100が追従させるためのアクチュエータ部600の制御指令(以下、第2制御指令と称する。)を生成する。つまり、第2制御指令生成部530は、車両運動制御において、第2制御指令を生成するステップを実行する。
 なお、第2制御指令生成部530が生成する軌道は、経路の情報と車速の情報とを含む。
 ここで、第2制御指令生成部530は、車両100の左右方向の加速度、または、車両100の左右方向の加加速度を条件として軌道計画を行うことで、快適な乗り心地を実現できる軌道を計画する。
 換言すれば、第2制御指令生成部530は、所定の乗り心地条件を満たすように、車両100の左右方向の加速度、または、車両100の左右方向の加加速度を考慮して、軌道を計画する。
 前述したように、第1制御指令は、道路形状に沿った経路、車間距離、または、設定速度に関する制御指令であるのに対し、第2制御指令は、車両100の左右方向の加速度、または、車両100の左右方向の加加速度を条件として計画された軌道に関する制御指令である。
 つまり、第2制御指令生成部530は、第1制御指令とは異なる指標に基づいて前記車両の運動を実行させるための制御指令である第2制御指令を生成する。
 なお、以下では、第2制御指令による車両制御を、「乗り心地制御」と称する。
 切り替え部540は、車両100の前方情報が所定の条件を満たすとき、アクチュエータ部600へ出力する制御指令を、ADAS-ECU400が生成した第1制御指令から第2制御指令生成部530が生成した第2制御指令へ切り替える。つまり、切り替え部540は、車両運動制御において、第1制御指令から第2制御指令へ切り替えるステップを実行する。
 つまり、切り替え部540は、LKA機能410及びACC機能420による運転支援が行われている車両走行状態において、「快適な乗り心地」という運転支援とは異なる指標の性能を付加する。
 換言すれば、切り替え部540が第1制御指令から第2制御指令に切り替えることで、LKA機能410及びACC機能420による運転支援が行われるときの乗り心地を改善することができる。
 なお、後で詳細に説明するように、切り替え部540による制御指令の切り替え判断は、車両100の前方情報としての道路曲率の情報や、所定の車両運動が要求されているか否かの情報などに基づいて行われる。
 また、第1制御指令による車両運動制御状態(換言すれば、運転支援状態)と、第2制御指令による車両運動制御状態(換言すれば、乗り心地制御状態)との間での遷移が滑らかに行われるように、アクチュエータ部600に出力される制御指令を過渡的に処理する機能を、切り替え部540及び/または第2制御指令生成部530が備えることができる。
 ここで、第2制御指令生成部530における乗り心地の良い車両運動とは、車両100の左右方向(換言すれば、横方向)の加速度、左右方向の加加速度が所定範囲内に抑えられた車両運動である。
 係る乗り心地の良い車両運動を実現するため、第2制御指令生成部530は、時々刻々変化する走行可能領域に合わせて、左右方向の加速度、加加速度を小さくできる軌道を計画し、計画した軌道に車両100を追従させるための第2制御指令を生成する。
 なお、走行可能領域とは、前方道路の車線内であって、道路白線(換言すれば、車線境界)までの余裕が確保され、更に、障害物を避け、先行車との車間距離が確保された領域である。
 LKA機能410及びACC機能420によって、車両100が車線を維持しながら、定速走行若しくは先行車に追従走行する状態では、道路形状及び車速にしたがって左右方向の加速度、加加速度が発生する。
 これに対し、第2制御指令生成部530は、経路に合わせた加速度、加加速度を小さくする車速と、車速に合わせた道幅を有効に使う経路とを同時に計算して、軌道を適切に計画することで、車両100の左右方向の加速度、加加速度を低減して乗員の乗り心地を向上させる。
 図2は、LKA機能410及びACC機能420によって、車両100が車線を維持しながら定速走行する状態での車速、左右方向の加速度、及び、左右方向の加加速度を例示する図である。
 また、図3は、図2と同じ道路において乗り心地制御を介入させた走行状態での車速、左右方向の加速度、及び、左右方向の加加速度を例示する図である。
 LKA機能410及びACC機能420の運転支援によって、道路形状に沿った経路(詳細には、車線の中央付近)を車両100が定速走行する場合、道路が曲がっている場所、つまり、カーブでは、道路形状に沿って車両100の左右方向の加速度、左右方向の加加速度が大きくなる(図2参照)。
 これに対し、乗り心地制御では、経路に合わせた加速度、加加速度を小さくする車速と、車速に合わせた道幅を有効に使う経路とを同時に計算することで、操舵角を小さくできる経路を設定し、また、道路曲率の増大に合わせて車速を低下させる(図3参照)。
 したがって、道路が曲がっている場所でも、左右方向の加速度、左右方向の加加速度を抑えることができ、車両100の乗員の乗り心地が向上する(図3参照)。
 図4は、車両制御システム200の構成をより具体的に示すブロック図である。
 車両制御システム200は、外界認識センサ装置300とともに、地図データベース301、V2Xモジュール302、GPS(Global Positioning System)受信部303、車両物理量センサ304を備える。
 地図データベース301は、車両100に搭載された記憶装置内に形成される。地図データベース301の地図情報は、道路位置、道路形状、交差点位置などの情報を含む。
 V2X(ビークルツーエブリシング)モジュール302は、ADAS-ECU400や車両運動制御装置500のマイクロコンピュータが、他の車両のマイクロコンピュータや、道路上の設備である路側機との間で通信を行うための装置である。
 GPS受信部303は、GPS衛星から信号を受信することにより、車両100の位置の緯度及び経度を測定する。
 ここで、車両制御システム200は、GPS受信部303が測定した車両100の位置の情報に基づき地図データベース301を参照することで、車両100が走行している道路を特定したり、車両100の目的地までの経路を設定したりする。
 車両物理量センサ304は、車速センサまたは車輪速センサを有し、車両100の車速を検出する。
 更に、車両物理量センサ304は、車両100の前後加速度、左右加速度、上下加速度、ヨーレート、ピッチレート、ロールレートのうちのいずれかを検出する車両挙動センサを有する。
 車両運動制御装置500は、第2制御指令生成部530を構成する乗り心地制御部550を有し、乗り心地制御部550は、軌道生成部560及び軌道追従制御部570を有する。
 軌道生成部560は、車両前方の走行可能領域の情報に基づき、安全安心、快適、かつ、時短で移動できる目標軌道を生成する軌道計画を実施する。
 なお、軌道生成部560が生成する目標軌道は、目標経路の情報及び目標車速の情報を含む。
 ここで、「安全安心」とは、未知の状況やリスクを、余裕をもって避けられることを意図するもので、「快適」とは、曲がった道路でも乗員の体が前後左右に振られず乗員の乗り心地が良い走行を意図し、「時短」とは、法規や周囲環境の範囲においてできるだけ高い車速を維持することを意図する。
 軌道生成部560は、上記の「快適」、換言すれば、乗り心地の良い走行を実現するために、車両100の左右方向の加速度、加加速度を条件として目標軌道を計画する。
 つまり、軌道生成部560は、運転支援、詳細には、LKA機能410、ACC機能420による走行状態に比べて左右方向の加速度、加加速度を小さくするために、左右方向の加速度、加加速度が所定範囲内になるように、目標軌道を計画する。
 なお、加速度、加加速度の所定範囲とは、乗り心地の観点から許容される範囲であって、許容上限値を下回る範囲である。
 そして、軌道追従制御部570は、軌道生成部560が計画した目標軌道に車両100を追従させるためのアクチュエータ制御指令、つまり、第2制御指令として、操舵制御指令、駆動制御指令、制動制御指令をそれぞれ出力する。
 また、車両運動制御装置500は、切り替え部540を構成する、制御介入判定部580及び3個の切替器590A,590B,590Cを有する。
 制御介入判定部580は、乗り心地制御を介入させる条件、換言すれば、ADAS-ECU500による運転支援機能で生成された第1制御指令に代えて、乗り心地制御による第2制御指令をアクチュエータ部600に出力する条件が成立しているか否かを判定する。
 そして、制御介入判定部580は、介入条件の成立、非成立の判定結果に応じた切り替え制御信号を、切替器590A,590B,590Cそれぞれに出力する。
 切替器590Aは、ADAS-ECU500(詳細には、LKA機能410)が出力する操舵制御指令(以下、第1操舵制御指令と称する。)、及び、乗り心地制御部550(詳細には、軌道追従制御部570)が出力する操舵制御指令(以下、第2操舵制御指令と称する。)を取得する。
 そして、切替器590Aは、制御介入判定部580が乗り心地制御の介入条件の成立を判定すると、操舵装置610に出力する操舵制御指令を、第1操舵制御指令から第2操舵制御指令へ切り替える。
 切替器590Bは、ADAS-ECU500(詳細には、ACC機能420)が出力する駆動制御指令(以下、第1駆動制御指令と称する。)、及び、乗り心地制御部550が出力する駆動制御指令(以下、第2駆動制御指令と称する。)を取得する。
 そして、切替器590Bは、制御介入判定部580が乗り心地制御の介入条件の成立を判定すると、駆動装置620に出力する駆動制御指令を、第1駆動制御指令から第2駆動制御指令へ切り替える。
 切替器590Cは、ADAS-ECU500(詳細には、ACC機能420)が出力する制動制御指令(以下、第1制動制御指令と称する。)、及び、乗り心地制御部550が出力する制動制御指令(以下、第2制動制御指令と称する。)を取得する。
 そして、切替器590Cは、制御介入判定部580が乗り心地制御の介入条件の成立を判定すると、制動装置630に出力する制動制御指令を、第1制動制御指令から第2制動制御指令へ切り替える。
 以下では、軌道生成部560による目標軌道の生成処理、換言すれば、軌道計画を詳細に説明する。
 図5は、軌道生成部560が、非線形最適化理論を用いて目標軌道(目標経路及び目標車速)を求める処理を概略的に示す図である。
 軌道生成部560は、準ニュートン法などの既知の非線形最適化手法を用いて軌道計算を行うことで、複数の条件を満たす最適解としての目標軌道を求める。
 つまり、軌道生成部560は、非線形最適化問題として以下の拘束条件を満たし、評価関数を最大化する目標軌道を求める。
 ・拘束条件1:[安心安全]走行可能領域内に収める。
 ・拘束条件2:[時短]走破時間を最短にする。
 ・拘束条件3:[快適]左右方向の加速度、加加速度を許容値に収める。
 このように、非線形最適化理論を用いて目標軌道を求める場合、基準となる中央線の情報を必要とせず、走行可能領域の形状によらない計算が可能である。
 図6及び図7は軌道生成部560による目標軌道の計算例を第1ブロック-第3ブロック毎に示す図であり、図6は道路形状に対する目標経路を示し、図7は、目標車速及び目標軌道に追従させたときの加速度、加加速度の走行距離に対する変化を示す。
 軌道生成部560は、時々刻々変化する走行領域に合わせて目標軌道を計算することで、車両100の左右方向の加速度、加加速度を許容範囲内に抑えた快適な乗り心地を実現できる目標軌道を生成する。
 ここで、軌道生成部560が実施する、LKA機能410及びACC機能420による軌道から、乗り心地制御による軌道に滑らかにつなげるための軌道切り替え処理を説明する。
 なお、「軌道が滑らかにつながる」とは、たとえば、軌道の曲率の微分値が所定値以下で軌道の切り替えが行われ、また、車両100の横方向の加加速度が所定値以下で軌道の切り替えが行われることを意味する。
 図8は、軌道を滑らかにつなげるための軌道切り替え処理の第1形態を示す。
 この第1形態において、軌道生成部560は、記憶部561(図4参照)を有し、LKA機能410及びACC機能420による軌道を記憶部561に記憶させる。
 そして、軌道生成部560は、乗り心地制御における目標軌道が、記憶部561に記憶した軌道から滑らかにつながるように計算する。
 つまり、軌道の曲率の微分値が所定値以下または車両100の横方向の加加速度が所定値以下で軌道がつながるように、制御指令の切り替えが行われる。
 図9は、軌道を滑らかにつなげるための軌道切り替え処理の第2形態を示す。
 この第2形態において、軌道生成部560は、LKA機能410及びACC機能420による運転支援がそのまま継続する場合の将来の軌道を予測する軌道予測部562(図4参照)を有する。
 そして、第2形態では、軌道予測部562が予測した予測軌道と第2制御指令とに基づいて制御指令の切り替えを行なう。
 軌道予測部562は、LKA機能410及びACC機能420によるこれまでの軌道、運転者の操作状態、車両100の運動状態などに基づいて、将来の軌道を予測する。
 なお、運転者の操作状態は、ステアリングホイールの操作角、ステアリングホイールの操作力、ブレーキペダルの踏み込み、アクセルペダルの踏み込みのいずれかを含む。
 また、車両100の運動状態は、車速、ヨーレート、左右前後の加速度のいずれかを含む。
 そして、軌道生成部560は、乗り心地制御による目標軌道の一部が、軌道予測部562が予測した軌道の一部あるいは全てに重なるように、乗り心地制御による目標軌道を生成する。
 つまり、予測軌道の少なくとも一部に第2制御指令による軌道(換言すれば、乗り心地軌道)が重なるように、アクチュエータ部600へ出力する制御指令が第1制御指令から第2制御指令へ切り替えられる。
 図10は、軌道を滑らかにつなげるための軌道切り替え処理の第3形態を示す。
 この第3形態において、軌道生成部560は、図9に示した第2形態と同様に、軌道予測部562(図4参照)を有する。
 軌道生成部560は、LKA機能410及びACC機能420による運転支援から乗り心地制御への切り替え直後は、軌道予測部562が推定した軌道を目標軌道とし、車両100を予測軌道に追従させる。
 その後、軌道生成部560は、予測軌道から乗り心地制御による軌道に徐々に乗り替わるように、制御指令を切り替える。
 ところで、図8-図10は、LKA機能410及びACC機能420による運転支援状態から乗り心地制御に切り替えるとき、換言すれば、第1制御指令から第2制御指令に切り替えるときの処理を示すが、車両運動制御装置500は、逆方向の切り替えにおいても、第1形態―第3形態と同様な切り替え処理を実施することができる。
 つまり、乗り心地制御からLKA機能410及びACC機能420による運転支援に戻すとき、換言すれば、第2制御指令から第1制御指令に切り替えるときに、図8-図10に示した、記憶部561や軌道予測部562を用いて軌道を滑らかにつなげる軌道切り替え処理を適用することができる。
 次に、軌道追従制御部570を詳細に説明する。
 図11は、軌道追従制御部570の一態様を示すブロック図である。
 軌道追従制御部570は、自車位置推定部571、曲率演算部572、最近接点演算部573、姿勢角演算部574、相対位置演算部575、及び、アクチュエータ指令部576を有する。
 自車位置推定部571は、車輪速、ヨーレート、前後加速度、左右加速度などの積分値に基づくデッドレコニングにより車両100の位置を推定する。
 なお、軌道追従制御部570は、車両100の位置を、GPSを用いて特定することができる。
 曲率演算部572は、軌道生成部560から目標軌道の情報を取得し、目標軌道の曲率及び曲率変化を演算する。
 最近接点演算部573は、目標軌道上で車両100の位置に最も近い点である最近接点(換言すれば、最近接目標位置)を演算する。
 姿勢角演算部574は、目標軌道の曲率及び曲率変化に基づき、最近接点において自車両の進行方向を最近接点のヨー角(すなわち、目標軌道の接線方向)と一致させるために必要な自車両の姿勢角を、車速なども考慮して演算する。
 相対位置演算部575は、自車両の位置に対する最近接点の相対位置を演算する。
 アクチュエータ指令部576は、姿勢角演算部574により演算された姿勢角に基づき最近接点のヨー角を補正する。
 そして、アクチュエータ指令部576は、車両100が目標車速及び補正後のヨー角で最近接点を通過することになる、つまり、車両100を目標軌道に追従させるための、操舵指令、及び、加速指令(換言すれば、駆動指令)または減速指令(換言すれば、制動指令)を、最近接点の相対位置に基づき生成する。
 次に、制御介入判定部580による乗り心地制御の介入条件の判定処理を詳細に説明する。
 図12は、制御介入判定部580が実行する、介入条件判定処理の一態様を示すフローチャートである。
 制御介入判定部580は、まず、ステップS581で、車両前方の情報に基づき、乗り心地制御を実施できる条件が整っているか否かを判断する。
 ここで、制御介入判定部580は、たとえば、車両前方の認識情報を使用することができない場合に、乗り心地制御を実施できる条件が整っていないと判断する。
 また、制御介入判定部580は、たとえば、車両前方の走行可能領域の形状が複雑すぎて経路の計算ができない場合に、乗り心地制御を実施できる条件が整っていないと判断する。
 制御介入判定部580は、ステップS581で、乗り心地制御を実施できる条件が整っていない(換言すれば、乗り心地制御の介入条件が成立していない)と判断すると、ステップS585に進んで、乗り心地制御を介入させることなく、LKA機能410やACC機能420などの運転支援機能を継続させる。
 つまり、制御介入判定部580は、ステップS585に進んだ場合、乗り心地制御の介入条件が成立していないと判断した結果に応じた信号を切替器590A,590B,590Cに出力することで、第1制御指令から第2制御指令への切り替えは実行されず、第1制御指令が継続してアクチュエータ部600に出力される。
 一方、制御介入判定部580は、ステップS581で、乗り心地制御を実施できる条件が整っていると判断すると、ステップS582に進んで、更なる条件判定を実施する。
 制御介入判定部580は、ステップS582で、運転支援機能によって車両100が走行すれば十分であるか否か、換言すれば、乗り心地制御によって所期の効果が得られるか否かを判断する。
 ここで、制御介入判定部580は、たとえば、車両100が走行している道路が高速道路であるなど、車線中央を走行するしかない場合に、運転支援機能によって車両100が走行すれば十分であると判断する。
 また、制御介入判定部580は、たとえば、道路曲率が所定値以下で経路の修正による乗り心地の向上(換言すれば、横方向の加速度、加加速度の抑制)が見込めない場合、運転支援機能によって車両100が走行すれば十分であると判断する。
 制御介入判定部580は、ステップS582で、運転支援機能によって車両100が走行すれば十分である、換言すれば、乗り心地制御を介入させる必要性が低いと判断すると、ステップS585に進んで、乗り心地制御を介入させることなく、LKA機能410やACC機能420などの運転支援機能を継続させる。
 一方、制御介入判定部580は、ステップS582で、乗り心地制御を介入させることで乗り心地の向上が見込まれると判断すると、ステップS583に進んで、更なる条件判定を実施する。
 制御介入判定部580は、ステップS583で、乗り心地よりも優先される所定の車両運動が要求されている状態であるか否かを判断する。
 ここで、乗り心地よりも優先される所定の車両運動が要求されている状態とは、LKA機能410及びACC機能420以外の運転支援機能の実施状態、運転者による運転操作が行われた場合、安全機能の実施状態などである。
 LKA機能410及びACC機能420以外の運転支援機能は、駐車時支援機能や、衝突回避支援若しくは衝突被害軽減ブレーキなどの衝突安全機能などである。
 また、運転者による運転操作には、運転者によるステアリングホイールの操作、ブレーキペダルやアクセルペダルなど操作が含まれる。
 また、安全機能は、ABS(Anti-lock Braking System)と呼ばれる車輪のロックによる滑走発生を低減する機能や、ESC(Electronic Stability Control)と呼ばれる車両100の横滑りを抑止する機能などである。
 制御介入判定部580は、ステップS583で、乗り心地よりも優先される所定の車両運動が要求されていると判断すると、ステップS585に進んで、乗り心地制御を介入させることなく、LKA機能410やACC機能420などの運転支援機能を継続させる。
 一方、制御介入判定部580は、ステップS583で、乗り心地制御よりも優先される所定の車両運動が要求されていないと判断すると、乗り心地制御の介入条件が成立していると判断して、ステップS584に進み、乗り心地制御を介入させる設定を行う。
 つまり、制御介入判定部580は、ステップS584に進んだ場合、乗り心地制御の介入条件が成立していると判断した結果に応じた信号を切替器590A,590B,590Cに出力することで、アクチュエータ部600に出力される制御指令が第1制御指令から第2制御指令へ切り替えられ、乗り心地制御が実施される。
 なお、乗り心地制御に移行した後に、たとえば道路曲率が所定値以下になって車両の前方情報が所定の条件を満たさなくなった場合、制御介入判定部580は、ステップS585に進んで、乗り心地制御を停止させる。
 また、乗り心地制御に移行した後に、たとえばESCなどの安全機能が作動した場合も、制御介入判定部580は、ステップS585に進んで、乗り心地制御を停止させる。
 更に、乗り心地制御に移行した後に、運転者がたとえば操舵操作を行うと、制御介入判定部580は、ステップS585に進んで、乗り心地制御が停止させる。
 次に、車両運動制御装置500が、乗り心地制御の介入を解除し、LKA機能410やACC機能420などによる制御に戻るときの処理を説明する。
 図8-図10に示したように、車両運動制御装置500は、乗り心地制御を介入させるときに、LKA機能410やACC機能420などによる軌道から、乗り心地制御による軌道につなげるようにする。
 これに対し、車両運動制御装置500は、乗り心地制御の介入を解除するとき、アクチュエータ部600に出力する制御指令を、乗り心地制御による第2制御指令からLKA機能410やACC機能420などによる第1制御指令にまで徐々に変化させる。
 なお、切替器590A,590B,590Cが、第2制御指令から第1制御指令にまで徐々に変化させる機能を有することができる。
 図13は、乗り心地制御の介入を解除するときの制御指令の変化を例示するタイムチャートである。
 車両運動制御装置500は、時刻t1において乗り心地制御の介入解除の条件が成立すると、アクチュエータ部600に出力する制御指令を、乗り心地制御による第2制御指令からLKA機能410やACC機能420などによる第1制御指令に徐々に近づける処理を開始する。
 そして、車両運動制御装置500は、アクチュエータ部600に出力する制御指令を、数秒の時間をかけて第2制御指令から第1制御指令にまで変化させ、時刻t2において、アクチュエータ部600に出力する制御指令を第1制御指令に戻す。
 このように、車両運動制御装置500は、第2制御指令から第1制御指令にまで徐々に変化させることで、制御指令の切り替えに伴って車両挙動が急に変化することを抑止し、また、制御指令の切り替えが乗員に違和感を与えないようにする。
 但し、車両運動制御装置500は、制御信号を第2制御指令から第1制御指令にまで変化させる時間、換言すれば、制御指令を第2制御指令から第1制御指令にまで変化させるときの制御指令の変化速度を、解除の要因となった条件に応じて変更することができる。
 具体的には、車両運動制御装置500は、乗り心地制御の介入解除の条件成立が、衝突安全機能やABSやESCなどの安全機能の実行に因る場合、制御信号を第2制御指令から第1制御指令にまで変化させる時間(図13の時刻t1から時刻t2までの時間Δt)を、他の解除条件に基づき解除するときに比べて短くすることができる。
 上記実施形態で説明した各技術的思想は、矛盾が生じない限りにおいて、適宜組み合わせて使用することができる。
 また、好ましい実施形態を参照して本発明の内容を具体的に説明したが、本発明の基本的技術思想及び教示に基づいて、当業者であれば、種々の変形態様を採り得ることは自明である。
 図1に示した車両制御システム200では、ADAS-ECU400と、車両運動制御装置500とを個別のユニットとして備えるが、ADAS-ECU400が車両運動制御装置500の機能、つまり、乗り心地制御機能を備えることができる。
 図14は、ADAS-ECU400が車両運動制御装置500の機能を備える場合の機能ブロック図である。
 ここで、ADAS-ECU400が、運転支援制御のための演算処理を実行する第1マイクロコンピュータと、乗り心地制御のための演算処理を実行する第2マイクロコンピュータとを備えることができる。
 また、ADAS-ECU400が備える1個のマイクロコンピュータが、運転支援制御のための演算処理と、乗り心地制御のための演算処理とを実行することができる。
 また、ADAS-ECU400は、LKA機能410やACC機能420に加え、高速道路で自動追い越しを行なう自動運転機能や、高速道路の分合流を自動で行う機能などを備えることができる。
 また、アクチュエータ部600は、油圧や空気圧などのエネルギー源をもったアクティブサスペンション(active suspension)を含むことができる。そして、車両運動制御装置500は、乗り心地制御においてダンパーの減衰力などの制御指令をアクティブサスペンションに出力することができる。
 また、車両運動制御装置500は、車両100のドライブモードが複数種用意されている場合に、乗り心地重視の「コンフォート」のモードが選択されていることを条件に、乗り心地制御の介入を実施することができる。
 また、車両運動制御装置500は、乗り心地制御において、左右方向の加速度、加加速度を小さくするために、経路と車速とのいずれか一方を計算し、計算した目標を実現するための制御指令(第2制御指令)をアクチュエータ部600に出力することができる。
 100…車両、200…車両制御システム、300…外界認識センサ装置、400…運転支援コントロールユニット(ADAS-ECU、第1コントロールユニット)、410…レーンキープアシスト機能(LKA機能)、420…アダプティブクルーズコントロール機能(ACC機能)、500…車両運動制御装置(車両制御装置、第2コントロールユニット)、510…前方情報取得部、520…第1制御指令取得部、530…第2制御指令生成部、540…切り替え部、600…アクチュエータ部、610…操舵装置、620…駆動装置、630…制動装置

Claims (14)

  1.  車両の前方情報を取得する前方情報取得部と、
     前記車両の運転支援または自動運転に関する制御指令である第1制御指令を取得する第1制御指令取得部と、
     前記第1制御指令とは異なる指標に基づいて前記車両の運動を実行させるための制御指令である第2制御指令を生成する第2制御指令生成部と、
     前記前方情報取得部で取得された前記車両の前方情報が所定の条件を満たすとき、前記車両の運動を制御するアクチュエータ部へ出力する制御指令を、前記第1制御指令から前記第2制御指令へ切り替える切り替え部と、
     を備える車両制御装置。
  2.  請求項1に記載の車両制御装置であって、
     前記第1制御指令は、道路形状に沿った経路、車間距離、または、設定速度に基づく制御指令であり、
     前記第2制御指令は、前記車両の左右方向の加速度、または、前記車両の左右方向の加加速度を条件として計画された軌道に基づく制御指令である、
     車両制御装置。
  3.  請求項1に記載の車両制御装置であって、
     前記切り替え部は、
     前記車両の前方情報が所定の条件を満たさない場合、及び、所定の車両運動が要求された場合の少なくともいずれかの場合に、前記アクチュエータ部へ出力する制御指令を、前記第2制御指令から前記第1制御指令へ切り替える、
     車両制御装置。
  4.  請求項3に記載の車両制御装置であって、
     前記切り替え部は、
     前記第1制御指令と前記第2制御指令のうちのいずれか一方の出力状態での軌道を記憶する記憶部の情報に基づき、経路の曲率の微分値が所定値以下または前記車両の左右方向の加加速度が所定以下で軌道がつながるように、前記一方の制御指令から他方の制御指令へ切り替える、
     車両制御装置。
  5.  請求項3に記載の車両制御装置であって、
     前記切り替え部は、
     前記第1制御指令と前記第2制御指令のうちのいずれか一方の制御指令から予測される軌道である予測軌道を求め、前記予測軌道と他方の制御指令とに基づいて、前記アクチュエータ部へ出力する制御指令を前記一方の制御指令から前記他方の制御指令へ切り替える、
     車両制御装置。
  6.  請求項5に記載の車両制御装置であって、
     前記切り替え部は、
     前記予測軌道の少なくとも一部に前記他方の制御指令による軌道が重なるように、前記アクチュエータ部へ出力する制御指令を前記一方の制御指令から前記他方の制御指令へ切り替える、
     車両制御装置。
  7.  請求項5に記載の車両制御装置であって、
     前記切り替え部は、
     前記予測軌道から前記他方の制御指令による軌道に徐々に乗り替わるように、前記アクチュエータ部へ出力する制御指令を前記一方の制御指令から前記他方の制御指令へ切り替える、
     車両制御装置。
  8.  請求項3に記載の車両制御装置であって、
     前記切り替え部は、
     前記車両の運転者が操舵操作を行った場合は、前記アクチュエータ部へ出力する制御指令を、前記第2制御指令から前記第1制御指令へ切り替える、
     車両制御装置。
  9.  請求項1に記載の車両制御装置であって、
     前記切り替え部は、
     前記第1制御指令の出力状態での軌道を記憶する記憶部の情報に基づき、経路の曲率の微分値が所定値以下または前記車両の左右方向の加加速度が所定以下で軌道がつながるように、前記第1制御指令から前記第2制御指令へ切り替える、
     車両制御装置。
  10.  請求項1に記載の車両制御装置であって、
     前記切り替え部は、
     前記第1制御指令から予測される軌道である予測軌道を求め、前記予測軌道と前記第2制御指令とに基づいて、前記アクチュエータ部へ出力する制御指令を前記一方の制御指令から前記他方の制御指令へ切り替える、
     車両制御装置。
  11.  請求項10に記載の車両制御装置であって、
     前記切り替え部は、
     前記予測軌道の少なくとも一部に前記第2制御指令による軌道が重なるように、前記アクチュエータ部へ出力する制御指令を前記第1制御指令から前記第2制御指令へ切り替える、
     車両制御装置。
  12.  請求項10に記載の車両制御装置であって、
     前記切り替え部は、
     前記予測軌道から前記第2制御指令による軌道に徐々に乗り替わるように、前記アクチュエータ部へ出力する制御指令を前記第1制御指令から前記第2制御指令へ切り替える、
     車両制御装置。
  13.  車両制御方法であって、
     車両の前方情報を取得する前方情報取得ステップと、
     前記車両の運転支援または自動運転に関する制御指令である第1制御指令を取得する第1制御指令取得ステップと、
     前記第1制御指令とは異なる指標に基づいて前記車両の運動を実行させるための制御指令である第2制御指令を生成する第2制御指令生成ステップと、
     取得された前記前方情報が所定の条件を満たすとき、前記車両の運動を制御するアクチュエータへ出力する制御指令を前記第1制御指令から前記第2制御指令へ切り替える切り替えステップと、
     を備える車両制御方法。
  14.  車両制御システムであって、
     車両の前方情報を取得する外界認識センサ装置と、
     前記車両の運転支援または自動運転に関する制御指令である第1制御指令を生成する第1コントロールユニットと、
     前記第1制御指令とは異なる指標に基づいて前記車両の運動を実行させるための制御指令である第2制御指令を生成し、前記外界認識センサ装置で取得された前記車両の前方情報が所定の条件を満たすとき、出力する制御指令を前記第1制御指令から前記第2制御指令へ切り替える第2コントロールユニットと、
     前記第2コントロールユニットから出力された制御指令を取得し、前記制御指令に基づいて前記車両の運動を制御するアクチュエータ部と、
     を備える車両制御システム。
PCT/JP2022/027368 2021-09-09 2022-07-12 車両制御装置、車両制御方法、及び車両制御システム WO2023037758A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2023546811A JPWO2023037758A1 (ja) 2021-09-09 2022-07-12
DE112022004317.2T DE112022004317T5 (de) 2021-09-09 2022-07-12 Fahrzeugsteuerungsvorrichtung, fahrzeugsteuerungsverfahren und fahrzeugsteuerungssystem
CN202280059749.6A CN117916137A (zh) 2021-09-09 2022-07-12 车辆控制装置、车辆控制方法以及车辆控制系统

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-146582 2021-09-09
JP2021146582 2021-09-09

Publications (1)

Publication Number Publication Date
WO2023037758A1 true WO2023037758A1 (ja) 2023-03-16

Family

ID=85506474

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/027368 WO2023037758A1 (ja) 2021-09-09 2022-07-12 車両制御装置、車両制御方法、及び車両制御システム

Country Status (4)

Country Link
JP (1) JPWO2023037758A1 (ja)
CN (1) CN117916137A (ja)
DE (1) DE112022004317T5 (ja)
WO (1) WO2023037758A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016012192A (ja) * 2014-06-27 2016-01-21 本田技研工業株式会社 走行制御装置
JP2018154218A (ja) * 2017-03-17 2018-10-04 マツダ株式会社 運転支援制御装置
JP2020069954A (ja) * 2018-11-01 2020-05-07 トヨタ自動車株式会社 車両用運転支援装置

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016012192A (ja) * 2014-06-27 2016-01-21 本田技研工業株式会社 走行制御装置
JP2018154218A (ja) * 2017-03-17 2018-10-04 マツダ株式会社 運転支援制御装置
JP2020069954A (ja) * 2018-11-01 2020-05-07 トヨタ自動車株式会社 車両用運転支援装置

Also Published As

Publication number Publication date
DE112022004317T5 (de) 2024-06-27
JPWO2023037758A1 (ja) 2023-03-16
CN117916137A (zh) 2024-04-19

Similar Documents

Publication Publication Date Title
CN112373477B (zh) 自动驾驶系统的冗余控制方法、自动驾驶系统、汽车、控制器及计算机可读存储介质
JP6525402B2 (ja) 車両制御装置
JP4967806B2 (ja) 経路曲率に応じた車両の速度制御装置
US9409554B2 (en) Method for improving the driving stability
US7860653B2 (en) Obstacle avoidance control apparatus
WO2023139867A1 (ja) 車両運動制御装置、および、車両運動制御方法
JP2020157985A (ja) 車両の走行制御装置
JP4873047B2 (ja) 走行制御装置
JP6525401B2 (ja) 車両制御装置
US10843711B2 (en) Method and device for generating target path for autonomous vehicle
JP2009061878A (ja) 走行制御装置
JP2020104829A (ja) 車両の走行制御装置
JP7193408B2 (ja) 車両制御装置
US20200257292A1 (en) Automated driving systems and control logic with enhanced longitudinal control for transitional surface friction conditions
JP2015219830A (ja) 運転支援装置
Ali et al. Predictive prevention of loss of vehicle control for roadway departure avoidance
JP2020028151A (ja) 駆動力制御装置
Hima et al. Controller design for trajectory tracking of autonomous passenger vehicles
US11364928B1 (en) Driver transition assistance for transitioning to manual control for vehicles with autonomous driving modes
JP2021169291A (ja) 車両の運転支援装置。
JP2019206258A (ja) 車両制御システム
CN208585235U (zh) 一种提高公交车乘坐舒适性的智能辅助系统
WO2023037758A1 (ja) 車両制御装置、車両制御方法、及び車両制御システム
Lee Automatic speed control system for vehicle approaching and driving on a curve
JP7505840B2 (ja) 車両の運転支援装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22867080

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2023546811

Country of ref document: JP

WWE Wipo information: entry into national phase

Ref document number: 202280059749.6

Country of ref document: CN

122 Ep: pct application non-entry in european phase

Ref document number: 22867080

Country of ref document: EP

Kind code of ref document: A1